
An STPA Analysis of the ReVolt
Expanding and Improving the System-

Theoretic Process Analysis (STPA)

Framework

Christine Lovise Solberg

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK
Co-supervisor: Jon Arne Glomsrud, DNV GL

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Preface

This thesis is written as a part of a collaborative project between NTNU and DNV GL,
the ReVolt. The ReVolt is a small soon-to-be autonomous boat, developed by students
from the cybernetics department at NTNU. The objective of thesis is to investigate
the safety aspects of the project. DNV GL requested an STPA hazard analysis of the
ReVolt to explore the potential of this method. The project thesis, carried out last
semester, was used to become familiar with the theory behind STPA, and learning
how to carry out the steps of the analysis. Instead of using the tables presented in the
STPA guidelines, I used tables in Excel with a framework designed by co-supervisor,
Jon Arne Glomsrud. Additionally, I spent a large amount of time understanding the
ReVolt, and learning its design. Two students designed and implemented the software
on the ReVolt, as a part of their master thesis last year. The documentation provided
by these students is quite inadequate.

Spending a lot of time being frustrated by the lack of thorough documentation and
poorly commented code, I realized that providing system documentation is essential.
As a result, I proposed adding this to be the focus of the Master thesis. Suggesting
that documentation of the system software, hardware and behaviour must be in place
before a safety analysis can be performed. I went through the process of selecting
suitable documentation tools. Since I was not given a description of the work I was ex-
pected to perform in my thesis, I presented various ideas of my own to the supervisors.
Together, we agreed that it would be reasonable to limit the STPA analysis to a single

i

controller, instead of the entire system, since the documentation process was added to
the assignment. A single controller is sufficient for the concept demonstration. An
analysis of the entire system will become very large.

After meeting with co-supervisor, Glomsrud, in February I learned that he had im-
proved the Excel framework that was used in the project thesis. We agreed that it
would be interesting to perform the low-level STPA analysis of the ReVolt once more.
The results are significantly improved. The scope of the thesis has therefore been
modified and expanded since the beginning of the semester.

I have been given access to the ReVolt, so that I can study the hardware mounted
inside and on the vessel. Some of the hardware and electronics onboard have been
placed inside boxes, so that it cannot be studied closely. I have been given access to
the software from the summer of 2017, and this is what has been used to document the
software. I have not needed any equipment or software license to perform the work
presented in this thesis, except for Microsoft Excel, which NTNU provides.

I have met with my main supervisor five times throughout the semester to briefly
discuss the progress of my work. My co-supervisor has provided the STPA Excel
framework, and has been available for questions regarding STPA. I would like to thank
them for the help and support throughout this semester. However, I want to emphasize
that I have performed the work presented in this thesis independently.

Trondheim, June 4th , 2018,
Christine Lovise Solberg

ii

Abstract

The ReVolt is an idea developed by DNV GL. It is an autonomous vessel designed for
container transport between harbors. To test the concept, a co-operational project was
started with NTNU. Two master students from the cybernetics department developed
a smaller version of the ReVolt. DNV GL provided them with the hull itself, as well as
the thruster design. The remaining components are chosen by these students, and they
have implemented functionality for dynamic positioning and remote control. Because
this project was successful, DNV GL have chosen new students that will continue
working on the ReVolt. It is intended to become autonomous within the near future.

Safety is an important aspect of an autonomous vessel. If safety cannot be guar-
anteed, the vessel cannot be used. Therefore, DNV GL requested that a safety analysis
is performed of the ReVolt. The method chosen to perform the analysis is called STPA
(System-Theoretic Process Analysis). This analysis is the main focus of this master
thesis. Using the available information, and the future plans for the ReVolt, an STPA
analysis has been performed.

Due to the lack of documentation from the developers of the ReVolt, a significant
amount of time was spent trying to develop the required documentation in this thesis,
based on the available information. UML diagrams were used to document system
behavior and functionality. Adding the step of documentation to the STPA approach
has been proposed. For the STPA analysis, a framework developed by the co-supervisor

iii

was tested and evaluated. The framework provided good support to the analyst, and
helped make sure no details were ignored in the analysis.

STPA is a safety analysis tool that is well suited for a complex system as the Re-
Volt. Several design guidelines were extracted from the analysis results, even though
time limited the level the analysis was taken to. The fact that the analysis was per-
formed by a single person, most likely reduced the quality of the analysis. A team of
people is required to ensure a satisfactory analysis. Still, the documentation that was
developed greatly contributed to performing a thorough system analysis. The results
from the analysis presents three main areas for system improvement for the ReVolt at
this time; loss of communication, incorrect or missing sensor measurements, and time
delays in the reference channels.

iv

Sammendrag

ReVolt er en idé utviklet av DNV GL. Den er et selvstyrt fartøy designet for container-
transport mellom havner. For å teste konseptet ble det startet et samarbeidsprosjekt
med NTNU. To masterstudenter fra kybernetikk-avdelingen utviklet en mindre ver-
sjon av ReVolt. DNV GL ga dem selve skroget, samt thruster-designet. De resterende
komponentene er valgt av studentene selv, og de har implementert funksjonalitet
for dynamisk posisjonering og styring med fjernkontroll. Fordi dette prosjektet var
vellykket, har DNV GL valgt nye studenter som skal fortsette å jobbe med ReVolt.
Intensjonen er at ReVolt skal bli autonom innen nær fremtid.

Sikkerhet er et viktig aspekt for et selvstyrt fartøy. Hvis sikkerheten ikke kan garan-
teres, kan ikke fartøyet brukes. Derfor anmodet DNV GL at en sikkerhetsanalyse
skulle utføres av ReVolt. Metoden som er valgt for å utføre analysen kalles STPA
(System-Theoretic Process Analysis). Denne analysen har vært hovedfokuset for
denne masteroppgaven. Ved å bruke tilgjengelig informasjon, og fremtidige planer for
ReVolt, har en STPA-analyse blitt utført.

På grunn av mangel på dokumentasjon fra utviklerne av ReVolt, ble det brukt en
betydelig mengde tid på å utvikle denne dokumentajonen i denne oppgaven, basert på
tilgjengelig informasjon. UML diagrammer ble brukt til å dokumentere systemadferd
og funksjonalitet. Å legge til trinnet med dokumentasjon i STPA-fremgangsmåten er
foreslått. For STPA-analysen ble et rammeverk som er utviklet av medveileder testet

v

og evaluert. Rammeverket ga god støtte for den som utførte analysen, og sørget for at
ingen detaljer ble ignorert.

STPA er et sikkerhetsanalyseverktøy som passer godt til et komplekst system som
ReVolt. Flere retningslinjer for systemdesignet ble hentet fra analyseresultatene, selv
om tiden begrenset nivået analysen kunne tas til. Det faktum at analysen ble utført
av en enkelt person, reduserte sannsynligvis kvaliteten på analysen. Et team av men-
nesker er nødvendig for å sikre en fullverdig analyse. Dokumentasjonen som ble
utviklet, bidro imidlertid godt til å utføre en grundig systemanalyse. Resultatene fra
analysen presenterer foreløbig tre hovedområder for potensiell systemforbedring for
ReVolt; tap av kommunikasjon, feil eller manglende sensormålinger og tidsforsinkelser
i referansekanaler.

vi

Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 2
1.3 Motivation . 3

1.3.1 ReVolt . 3
1.3.2 System-Theoretic Process Analysis - STPA 4
1.3.3 Personal Motivation . 4

1.4 Abbreviations . 5
1.5 Outline . 6

2 Conclusions 7

3 Background Theory 9
3.1 Description of STAMP (Systems-Theoretic Accident Model and Pro-

cesses) and STPA . 9
3.1.1 Why Use STPA? . 13

vii

3.2 Unified Modelling Language - UML 14
3.3 Redundancy Block Diagram - RBD . 14
3.4 Proposed Improvements to STPA . 15

3.4.1 Maneuvering Capacity . 17
3.5 Existing Work on STPA with UML . 18

3.5.1 STPA based Hazard and Risk Analysis - SAHRA 18

4 Tools and Tables Used in the STPA Analysis 23
4.1 Improved and extended STPA analysis 23
4.2 The Train Door Example . 24
4.3 Leveson’s STPA Tools and Framework 25

4.3.1 Step 0 - Defining Accidents and Hazards 25
4.3.2 Step 1 - Defining Unsafe Control Actions 29
4.3.3 Step 2 - Identify the Causes of and the Scenarios Leading to

Unsafe Control Actions . 34
4.4 Proposing a Modified Framework for STPA 36

4.4.1 Step 0 . 37
4.4.2 Step 1 . 39
4.4.3 Step 2 . 40

5 The ReVolt 43
5.1 The ReVolt Model . 44

5.1.1 Operational Modes . 45
5.1.2 The Hardware . 47
5.1.3 The Software . 51

6 System Description using UML and RBD 59
6.1 Description of the Modeled System 59
6.2 Software and System Behavior - UML 63

6.2.1 Use-Case Diagram . 64
6.2.2 Activity Diagram . 65
6.2.3 Sequence Diagram . 68

viii

6.2.4 State Machine Diagram . 70
6.2.5 Class Diagram . 70
6.2.6 UML contributions to the analysis 71

6.3 Hardware . 72
6.3.1 RBD . 75

7 STPA Results 77
7.1 Overall System . 78
7.2 The Force Controller . 90

8 Discussion 93
8.1 STPA Framework . 93

8.1.1 Advantages and Disadvantages 93
8.1.2 Evaluation . 95

8.2 UML Documentation . 95
8.3 Hardware Documentation . 97
8.4 Challenges . 99

9 Future work 101

A SW and HW documentation 103

B Process models 109

C Miscellaneous 119

References 123

ix

List of Tables

5.1 List of hardware mounted inside . 48
5.2 Identifying control signals . 57

6.1 Identifying control signals in the new version of the ReVolt 62

x

List of Figures

3.1 Simple example of a simple redundancy block diagram 15
3.2 The SAHRA toolbox. Courtesy of (Safety-Critical Systems Research

Lab Team of ZHAW; 2017). 19
3.3 Small example showing Step 1 of STPA analysis with SAHRA. Courtesy

of (Safety-Critical Systems Research Lab Team of ZHAW; 2017). . . . 20
3.4 Small example showing Step 1 of STPA analysis with SAHRA. Courtesy

of (Safety-Critical Systems Research Lab Team of ZHAW; 2017). . . . 21

4.1 The control structure of the train door 24
4.2 Table used to identify system accidents and the related hazards . . . 26
4.3 Table used to identify system-level safety constraints 26
4.4 Typical control loop . 27
4.5 Leveson’s guide to the hierarchical control structure, courtesy of (Leve-

son; 2011) . 28
4.6 Table for Step 1 - Identify UCAs . 29
4.7 Example of context table for a train door controller 30
4.8 Part of the process model of the door controller. 32
4.9 Context table 1 . 32
4.10 Context table 2 . 33
4.11 Table used to provide an overview of which UCAs are related to which

hazards and accidents - as presented in (Leveson and Thomas; 2015). 33

xi

4.12 Tool that can help identify causal scenarios of unsafe control actions.
As presented in (Leveson; 2011). 35

4.13 Excel table for Step 0 of STPA . 37
4.14 Table listing all controllers and control actions 38
4.15 Excel table for STPA-analysis . 39
4.16 Excel table showing UCA scenarios and constraints 41
4.17 Illustrating how sub-scenarios and sub-constraints are shown in the

Excel-table . 42

5.1 Illustration of the concept ship, ReVolt. Courtesy of DNV GL, (Tvete;
n.d.). 43

5.2 The Revolt Model. Courtesy of Alfheim and Muggerud, (Alfheim and
Muggerud; 2017a). 44

5.3 RC Remote Control. Courtesy of Alfheim and Muggerud, (Alfheim
and Muggerud; 2017b). 45

5.4 Hardware overview. Courtesy of Alfheim and Muggerud, (Alfheim
and Muggerud; 2017a). 47

5.5 Modularized block diagram illustrating the software of the ReVolt in
DP-mode, as presented by (Alfheim and Muggerud; 2017a) 51

5.6 Control Structure of the ReVolt . 54
5.7 Illustration of ROS communication between two nodes 56

6.1 Presumed control structure of the future state of ReVolt 61
6.2 Use-case diagram of the ReVolt . 65
6.3 Simple activity diagram showing the behavior of the ReVolt 67
6.4 Sequence diagram . 69
6.5 State machine diagram of the ReVolt 70
6.6 Top level of the ReVolt class diagram 71
6.7 Showing the hardware that is connected to the embedded computer . 72
6.8 Showing the hardware that is connected to the Arduino Uno 73
6.9 Showing the hardware that is connected to the Arduino Mega 74
6.10 Simple redundancy block diagram . 75

xii

7.1 STPA Step 0, defining system-level accidents, hazards and constraints 78

7.2 The controllers of the ReVolt and their control actions. 79

7.3 Hierarchical safety control structure for the ReVolt. 81

7.4 The detailed operating process of the hierarchical safety system control
structure . 82

7.5 The first 22 lines of Step 1 and 2 of the STPA analysis of the ReVolt . 83

7.6 On-board computer and Arduinos . 85

7.7 Illustration of the functionality of the embedded computers onboard
the ReVolt . 86

7.8 STPA analysis to level 4 . 91

7.9 Partial STPA analysis to level 8 . 92

8.1 Proposed added functionality to STPA table for Step 1 and 2 95

A.1 Sequence diagram showing the detailed operation of control signals
being calculated and applied to the thrusters 104

A.2 Part of the class diagram, showing details of the system actuators . . 105

A.3 Part of the class diagram, showing details of the system controllers . 106

A.4 Part of the class diagram, showing details of the system sensors . . . 107

A.5 Sub-states of the operative state . 108

A.6 Sub-states of the degraded state . 108

B.1 Process model for the operator . 110

B.2 Process model for the obstacle avoidance 111

B.3 Process model for the navigation controller 112

B.4 Process model for the force controller 113

B.5 Process model for the thruster allocation 114

B.6 Process model for the bow controller 115

B.7 Process model for the stern controller 116

B.8 Process model for the stepper controller 117

xiii

C.1 Auto-generated ROS graph illustrating all ROS nodes and ROS topics -
note that the Hemisphere is not shown in this graph 120

C.2 Shows the components connected to the OBC 121
C.3 Shows components connected to the Arduino Uno 121
C.4 Shows components connected to the Arduino Mega 122

xiv

Chapter 1

Introduction

1.1 Background

In the project assignment carried out the fall of 2017 (Solberg; 2017), an STPA analysis
was performed of the ReVolt. The ReVolt is a concept ship, designed by DNV GL. The
ReVolt is intended to become a fully autonomous ship, for transportation of containers.
Last year, two students from NTNU built and developed a small model version of the
ReVolt, for a test of concept. At this time, the ReVolt model is not fully autonomous, but
(Alfheim and Muggerud; 2017a) developed functionality for DP (dynamic positioning)
and remote control using RC (radio communication) in their Master thesis. This year,
two new students have continued the development of the ReVolt. One working with
sensor fusion, installing to cameras and a Lidar on the ReVolt. The other student is
working with path planning and obstacle avoidance. Both working towards the goal
of an autonomous ReVolt.

DNV GL requested an STPA analysis of the ReVolt to be performed. STPA (System-
Theoretic Process Analysis) is a hazard analysis technique which is used to define
safety constraints and design guidelines to ensure safe behavior of a system. STPA
was developed by Prof. Nancy Leveson (MIT) in the early 2000’s, and is designed for

1

2 CHAPTER 1. INTRODUCTION

analyzing modern, complex systems. In the project thesis, an STPA analysis of the
ReVolt was started. The analysis was only taken to level 3, which is far from a complete
analysis. The levels will be explained later in this report. Performing an STPA analysis
is a very comprehensive process which requires much time, which is the reason why
the analysis was not taken to a higher level. Also, a large amount of time was spent
trying to understand the design of the ReVolt, since the existing documentation had
significant shortcomings.
Co-supervisor, Jon Arne Glomsrud had designed a framework in Excel for the STPA
analysis. This framework was tested in the project thesis.

1.2 Problem Description

In this thesis, an extension that may improve the quality of the STPA analysis is
suggested. The more thoroughly a system is documented, the more orderly and straight-
forward the process of analyzing the system becomes. By providing proper documentation,
the time required to do the analysis may be significantly reduced. A set of UML (Uni-
fied Modelling Language) diagrams will be used to document the system behavior
and the software onboard the ReVolt. The hardware will be described, and an RDB
(Redundancy Block Diagram) will be presented. It will be argued whether this should
be adopted as a preparatory step in the STPA analysis.

After the UML and hardware diagrams are drawn for the ReVolt, a new STPA analysis
is performed. Glomsrud has, since the project assignment was delivered, updated the
Excel framework for the STPA analysis. This framework will therefore be described
and tested. There are no definitions stating how many levels of an STPA analysis
is required for the analysis to be complete. It is different for all systems. It will be
attempted to complete the analysis for a small part of the system. Completing the
entire STPA analysis in a semester, would require too much time for a single person to
be able to complete. Based on the results of the analyses, improvements to the safety
design of the ReVolt are proposed. The results of the analysis will help determine
what kind of changes are needed to improve the safety of the design. It may be e.g.

1.3. MOTIVATION 3

hardware monitoring, changes in the ROS communication, or any other part of the
system.

Summarized:

1. Decide which UML diagrams are needed to sufficiently describe a system for
STPA.

2. Create these UML diagrams for the ReVolt, to document the system behavior
and the software.

3. Create documentation for the hardware of the ReVolt.

4. Using the documentation, perform a low-level STPA analysis of the ReVolt.

5. Choose a small part of the system and take the analysis as far as is required to
be able to define concrete safety design constraints and guidelines.

6. Based on the results of the analysis, propose changes that may improve the
safety of the ReVolt.

7. Argue whether the documentation should be included in the approach of the
STPA analysis, and discuss whether the new framework provides any advantages
for the analysis.

1.3 Motivation

1.3.1 ReVolt

The road network across Europe is heavily congested. Trailer transportation of goods
is one of the major causes of the heavy traffic. Something needs to change. The
motivation behind the ReVolt has several contributors. Taking parts of the container
transportation to the seas, is one of them. It would relieve the road network of some
stress.
The increasing focus on autonomous vessels is another important contributing factor.

4 CHAPTER 1. INTRODUCTION

DNV GL is a leading company within technology standards. Naturally, it is important
to them to be a part of this leap in technology, and to get involved early on is essential.
The cybernetics department at NTNU has another motivational factor behind the
interest in the ReVolt. Based on the ReVolt model, they are planning to develop an
autonomous shuttle passenger ferry across Nidelva. This is an area of great interest
to the cybernetics department, that is currently hiring six Ph.D.s to work with the
autonomous ferry. There are several interesting cases in this project, such as; the
autonomy challenge itself, the fact that it is planned to have all-electric power, sensor
tracking of obstacles, the challenge of cyber and communications security, how to
handle remote monitoring and possibly control by human operators, and lastly the
challenge of safety.

1.3.2 System-Theoretic Process Analysis - STPA

DNV GL wants to investigate the potential of STPA as a tool for safety analysis. They
are experts within the area of rules and standards, and studying the potential of STPA
can be of great value to them. As will be discussed later in the thesis, traditional safety
analysis tools are becoming outdated. When applied to new, complex systems they are
not capable of identifying all potential causes of accidents. As technology is advancing,
it is important for a company such as DNV GL to keep up with the development of
methods for safety analysis.

1.3.3 Personal Motivation

During a part-time job last summer, I was involved in the start-up phase of a pilot
project. It was related to driver-less vehicles inside production halls. The company
was hiring an external company to develop the product. In the process of selecting
the company, all the companies presented PowerPoint’s to explain why they would
be the best fit. They all promised extraordinary results with low production costs.
The problem was, none of them barely provided a single technical detail on their
solution, or explained how they would guarantee for the safety of their vehicles. It
was frustrating to watch such a high-technological challenge being "solved" using only

1.4. ABBREVIATIONS 5

words and promises. It was impossible to make a qualified choice. During this process
I learned the importance of the ability to express and illustrate technical solutions. If a
single one of the companies had presented a draft of their solutions with a few UML
diagrams, and hardware sketch, it would have been so much easier to understand what
their solution had to offer. The fact that only a few of the companies even mentioned
safety, made me realize the lack of focus on this important topic. Working with UML
and STPA has been rewarding and has emphasized the importance of using tools like
these in industry.

1.4 Abbreviations

• ADC - Analog-to-Digital Converter

• ESC - Electronic Speed Controller

• GNSS - Global Navigation Satellite System

• IMU - Inertial Measurement Unit

• INS - Inertial Navigation System

• Lidar - Light Detection and Ranging

• OBC - On-Board Computer

• RBD - Redundancy Block Diagram

• RC - Radio Communication

• RTK - Real-Time Kinematic

• SAHRA - STPA based Hazard and Risk Analysis

• STAMP - Systems-Theoretic Accident Model and Processes

• STPA - System-Theoretic Process Analysis

6 CHAPTER 1. INTRODUCTION

• UCA - Unsafe Control Action

• UML - Unified Modelling language

1.5 Outline

The report is organized as follows

• Chapter 2 presents the conclusion of the thesis.

• Chapter 3 gives a brief introduction to the theory behind STAMP, and introduces
the hazard analysis technique STPA. The theory behind UML and RBD is also
presented in this chapter.

• Chapter 4 presents the detailed step-by-step approach to STPA, as it is presented
by Leveson. Next, the framework designed by Glomsrud is explained in detail.

• Chapter 5 introduces the ReVolt, and its technical details are explained.

• Chapter 6 explains the version of the ReVolt that has been used in this thesis,
and UML and hardware documentation is presented.

• Chapter 7 shows the results of the work that has been performed in this thesis.

• Chapter 8 presents the discussion of the results from chapter 7.

• Chapter 9 briefly discusses the possibilities for future work on this topic.

Chapter 2

Conclusions

STPA is a hazard analysis technique designed for large, complex systems, enabling
detection of all possible types of flaws. As a consequence, performing the analysis is
challenging and very time-consuming. For someone who are new to the method, it
might seem overwhelming at first. There are two main keys to being able completing
a complete an STPA analysis.

The first key is a proper framework that provides guidelines to the analyst. Even
though the result of the analysis greatly depends on the knowledge and skills of the
analyst, the framework can provide a supporting structure. In this thesis, the frame-
work developed in Excel by Jon Arne Glomsrud has been presented and tested. The
framework provided the analyst with great support. It helped in showing the next
natural step along the process. A few details were discussed for possible improvements
to the framework, but these are not very significant. Another advantage of the Excel
framework is that it reduces the number of tables that the analyst needs to keep track
of, and everything is kept in one document. The original STPA tables are sufficient for
performing the analysis, but the Excel table provides better support.

The second key is keeping thorough documentation of the system. In this thesis,

7

8 CHAPTER 2. CONCLUSIONS

UML documentation has been proposed to document system behavior and functional-
ity. UML consists of a wide range of different diagrams that can be used to visualize
all the qualities and specifications of a system. A use-case diagram, a state machine
diagram, an activity diagram and a sequence diagram have been chosen to describe
the system behavior, and a class diagram is chosen to provide the system structure
with information. Although, there are probably other alternatives that might be used
for the same purpose. UML was chosen here because it is a widely used standard, and
it was already familiar to the author of this thesis. Hardware documentation, however
was unfamiliar territory. The hardware components and their connections have been
documented and an RBD diagram has been presented. These provide a good system
overview that the analyst can use while performing the STPA analysis. If the UML
and hardware diagrams had been designed before the development of the ReVolt was
started it would have been possible to perform an STPA analysis alongside the imple-
mentation of the ReVolt. Now, assumptions have had to be made on what the system
will look like, to provide a somewhat useful analysis. However, the documentation is
a great supplement to the analysis, and helped keep a structured overview of the system.

The ReVolt is a large, and extremely interesting project with great potential. Without
an extensive focus on safety, this project can never be realized. Launching a driver-less
boat onto the ocean without being able to guarantee safety, is a risk one cannot take.
Up until now, the development process has not made it easy to confirm a safe system
design. The system has not been adequately planned for, before implementation is
started. This way, it is more likely to encounter challenges that have not been con-
sidered, resulting in design flaws which do not enhance the system safety. Ideally,
the system should be redesigned and documented, before the implementation process
is continued, or maybe even started over. Then a safety analysis can be performed
alongside the implementation phase, to provide a safety-guided design. Detecting
possible system flaws as early as possible will make the cost of fixing it as small as
possible.

Chapter 3

Background Theory

3.1 Description of STAMP (Systems-Theoretic Acci-
dent Model and Processes) and STPA

In the early 2000’s Nancy Leveson developed the framework for a new accident causa-
tion model; Systems-Theoretic Accident Model and Processes (STAMP). It was based
on theories from modern systems thinking and systems theory. STAMP stood out from
the traditional accident causation models in the way it viewed safety. To understand
Leveson’s framework it is important to provide clear definitions of the following terms:
safety, reliability, accidents, accident causes and hazards.

Reliability: "The probability that something satisfies its specified behavioral re-
quirements over time and under given conditions; that is does not fail." (Leveson;
2011). Meaning that a component, software or a system behaves as has been spec-
ified, and does not fail at this (CambridgeDictionary; 2017a).

Previously, it had been assumed that safety and reliability were equivalent. A system
composed of only reliable components would result in a reliable and safe system. The

9

10 CHAPTER 3. BACKGROUND THEORY

traditional accident causation models assume that by avoiding failure of components,
a system is considered safe. Leveson does not completely agree with this. According
to Leveson, safety must be handled as a control problem. By applying the correct
constraints to a system, the safety can be controlled. Contradictory to the older accident
causation models, Leveson claimed that the having reliable system components did not
imply safety of a system. Modern systems are much more complex and software-based
than what they were before, and the nature of accidents are changing.

Safety: A system’s ability to avoid accidents and losses. "A state in which you are
safe and not in danger or at risk" (CambridgeDictionary; 2017b).

To understand Leveson’s methodology, it is just as important to understand what is
considered unsafe. In fact, the first step of the method is defining what is considered
unsafe for the system, by defining accidents and hazards. Traditional safety analysis
techniques had never really defined what was unsafe, other than safety being the
absence of accidents and losses.

Unsafe: Any state where the system is at a significant risk of being prone to an
accident or loss. Whether a system is unsafe or not also depends on external fac-
tors. E.g. it is only unsafe for a vessel to head towards the shore if the distance is
considered too small, and/or the speed to high, relative to the weather conditions,
currents and the vessel’s current maneuvering capacity.

The state where a system is prone to accidents is called a hazard. A hazardous
situation is where a system is considered unsafe. In a hazardous state, the system
itself is no longer in control of whether an accident will occur.

As long as a system avoids hazards, accidents cannot happen. If an accident happens,
without being in a hazard, the system description is inadequate. It is crucial that all
possible accidents and related hazards are defined.

"Accident: In STAMP, accidents are the result of a complex process that results in
the system behavior violating the safety constraints." Leveson (2011)

To Leveson, safety is a control problem. Safety can be assured by avoiding hazards.
The defined hazards can be avoided if the correct constraints are applied to the system.

3.1. DESCRIPTIONOF STAMP (SYSTEMS-THEORETICACCIDENTMODELANDPROCESSES) AND STPA11

From the STAMP framework, Leveson developed System-Theoretic Process Anal-
ysis, STPA. STPA is a hazard analysis technique based on the concepts introduced
in STAMP. Safety constraints, hierarchical control structures and process models are
central concepts for STPA.

• Safety constraint - Safety constraints are enforced on the system behavior to
prevent hazards and accidents from occurring. The constraints appear as rules
or guidelines applied to the system design.

• Hierarchical Control Structure - The control structure of a system is arranged
in a tree-like structure. It contains the controllers, actuators and sensors of a
system. Each controller is in control of the components below it. In Leveson’s
theory, each level in the hierarchical structure can impose safety constraints on
the level below.

• Process model - Each controller must hold a model of the process it is control-
ling. The process model is used by the control structure to determine which
control actions are required to ensure safety constraints are not violated.

STPA is a step-by-step approach to analyze the safety of complex systems. STPA can
be applied before developing a system, to ensure it will be operating safely, or it can
be applied to a system after an accident has happened, to help identify the cause(s) of
the accident, or even alongside the development of a system.

The STPA analysis consists of three main steps:

0. Define system-level accidents, hazards and constraints. Design the hierarchical
control structure of the system.

1. Define the unsafe control actions, that lead to the defined hazards.

2. Define the causal scenarios of the unsafe control actions. What allowed the
given control action to be provided?

• Based on the identified causes, system constraints must be defined that
will prevent the unsafe control actions from being provided.

12 CHAPTER 3. BACKGROUND THEORY

• Accidents will only happen if one of these constraints are somehow vio-
lated.

To perform these steps, the two following lists can be used to identify how unsafe
control signals have been applied. How to use them will be explained in greater detail
in Chapter 4.
"If an accident occurs, at least one of the following must have happened:

1. The safety constraints were not enforced by the controller.

(a) The control actions necessary to enforce the associated safety constraint
at each level of the socio-technical control structure for the system were
not provided.

(b) The necessary control actions were provided but at the wrong time (too
early or too late) or stopped too soon.

(c) Unsafe control actions were provided that caused a violation of the safety
constraints.

2. Appropriate control actions were provided, but not followed." (Leveson; 2011).

The following list provides four types of system flaws that can cause unsafe control
actions to be provided (Leveson; 2011):
1 - Unsafe Inputs: The unsafe control is caused by incorrect or missing input from
the controller above it in the control structure.
2 - Unsafe Control Algorithms: There are flaws in the control algorithm which
result in the algorithm being unable to enforce the required safety constraints. Also,
if the system or process is modified without the control algorithm being modified
accordingly, control flaws may occur. Note that controllers may also be human. In that
case, required training, as well as providing clearly stated procedures for the operators
will make up the control algorithm.
3 - Inconsistent, Incomplete or Incorrect Process Models: The process models

3.1. DESCRIPTIONOF STAMP (SYSTEMS-THEORETICACCIDENTMODELANDPROCESSES) AND STPA13

held by the controllers must correctly represent the actual process state. If the model
deviates from the actual process it may cause unsafe control actions. For a human
controller, the mental model is as important. The process model may be incorrectly
updated due to incorrect or missing sensor data. Resulting in an incorrect belief of the
current process state.
4 - Actuators and Controlled Processes: The commands that are given are safe,
but they are not put into action. There may be various causes; An actuator or another
component may be broken or without power. Also, the reference channels may not be
working properly. If there are multiple controllers for one process, they may provide
contradictory commands.

3.1.1 Why Use STPA?

STPA is developed to go beyond the traditional safety analysis techniques, which may
ignore important accident causes such as inadequate requirements, software bugs
and errors, and flaws in component interactions (Thomas; 2013). Traditional methods
cannot prevent all of the accident causes that may occur in modern systems. Examples
of the methods referred to as traditional are Failure Mode and Effect Analysis (FMEA),
Fault Tree Analysis (FTA), Event Tree Analysis (ETA) and Hazard and Operability
Analysis (HAZOP). These were very briefly introduced in the project thesis, and will
not be discussed further here. There already exists a number of articles discussing how
STPA differs from these methods. Most importantly, STPA can be applied at any stage
of the development process, and it can find accident causes that traditional methods
are not able to find. Traditional methods mainly focus on failures that can be solved
with redundancy (by keeping backup components). STPA has a broader view on the
range of accident causes. STPA is designed to analyze socio-technical systems, where
many types of components, humans and machines, are operating together. (Thomas;
2013)

14 CHAPTER 3. BACKGROUND THEORY

3.2 Unified Modelling Language - UML

UML is a graphical modelling language developed by the Object Management Group.
UML is the notation for a set of diagram types that are used to model software. In
total, there are 13 types of UML diagrams. The most commonly used diagram types
are class diagrams, sequence diagrams, use case diagrams, state machine diagrams and
activity diagrams. These will be explained in Chapter 6. Since UML was developed in
1997, it has become a standard for describing system software and functionality. UML
can be considered a kind of programming language created to visualize systems, and
to serve as an assistant to system developers in the process of communicating ideas.
UML is an open standard, which is continuously being developed and and improved
to keep up with modern software systems. (Fowler; 2004)

There had not been developed any UML documentation before or during the de-
velopment of the ReVolt, which has made it challenging to work with for those taking
over the project. In this thesis, a set of UML diagrams will be presented to describe the
functionality and the software of the ReVolt. A subset of the existing UML diagram
types will be chosen to supplement the STPA analysis.

3.3 Redundancy Block Diagram - RBD

Because the author was not familiar with any tools for hardware documentation, the
supervisor recommended that RBDs are used for this purpose. This paragraph will
provide some information about RBDs.
RBDs are visual representations of the operational relationships between the elements
making up the systems (Denning; 2017). The diagrams are used to evaluate the
reliability of a system. Even though STPA states that reliability does not imply safety,
it does not exclude that redundancy is not necessary for some components. RBD
provides a way of showing which hardware components must work for the system
to function properly. Which components are critical to maintain normal operation?
Figure 3.1 shows a simple example of an RBD. Objects connected in parallel illustrate

3.4. PROPOSED IMPROVEMENTS TO STPA 15

Figure 3.1: Simple example of a simple redundancy block diagram

the concept of redundancy. If block A stops working, B and C can still perform the
necessary tasks. D, however, must work for the system to work properly. As of now,
there are not many redundant functions on the ReVolt. Therefore, there will not be
many diagrams to present at this stage.

3.4 Proposed Improvements to STPA

While working with the STPA method in the project assignment, several challenges
were encountered. In the project assignment, a low-level STPA analysis was performed
of the ReVolt. The ReVolt was built and developed by two students as a part of their
Master thesis the spring of 2017. The focus of their thesis was to build the ReVolt,
get the thrusters and the dynamic positioning algorithm to work. Safety was never
considered as an important aspect of their thesis. This is often the case in most student
projects, due to time being a limited resource. Finishing the product becomes the only
priority, and making the product safe is forgotten. Not only students have a limited
amounts of time to finish their products. This is also the case for working engineers.
For a product to succeed, time to market can be crucial. While being in a hurry, it can
be easy to ignore a small mistake, that can have fatal results if it is not handled properly.
To be able to guarantee safer systems, it is important to have a proper framework that
can help uncover these types of mistakes, that do not require more time than necessary.

During the project assignment, it was discovered that STPA can be an extremely

16 CHAPTER 3. BACKGROUND THEORY

time-consuming process. The reason for this, in the ReVolt case, was essentially be-
cause of the lack of documentation. Having never seen the ReVolt before, not knowing
the system specifications and details, it is difficult to predict any potential system acci-
dents. A significant amount of time was committed to carefully reading and studying
every single line of code behind the ReVolt, to learn how everything functioned.
As a result of this, it was realized of how little value STPA can be, if the system to be
analyzed is not properly documented. Often, those who are making and designing the
system are not the ones performing the hazard analysis. As a result of poor documen-
tation, the analysis takes significantly more time. The time required is also depending
on the complexity of the system and the quality and structure of the written code.

This Master thesis will propose adding a preparatory step to the STPA approach;
Ensure that proper documentation of software and hardware is in order be-
fore performing the analysis. Ideally, this should be done partially before and
partially during the development of a system or product. The documentation should
be developed by those who are designing and developing, not by those performing
the safety analysis. In fact, making proper documentation for a system that is being
developed should be common practice. Yet, it is surprisingly common to cut corners
here. To be able to perform a thorough analysis, that will reveal all potential hazards,
one must know the system well. Not only the hardware and software of the system
itself, but also all external conditions that may affect the system during operation. The
objective of this Master thesis will be considering what advantages UML documen-
tation of the software and documentation of the system hardware may provide for
STPA. It may be implicit from Leveson’s theory that any system should be adequately
described and documented before performing STPA, but it is not explicitly mentioned,
and may make a big difference to those who are beginning to study the method.
However, it should be noted that the safety analysis should ideally be performed along-
side with the planning and development of a product, to reduce the cost of necessary
safety measures. Removing safety issues after a product is made can be significantly
more expensive than integrating it into the system design, before the product is devel-
oped. Yet, performing a safety analysis in retrospect is still quite common, and may

3.4. PROPOSED IMPROVEMENTS TO STPA 17

also be applicable while studying accidents that have happened to find its causes.

3.4.1 Maneuvering Capacity

During a discussion with co-supervisor Glomsrud, he brought up a concept he had
defined during his work with STPA and autonomous vessels. The term was found very
useful when describing scenarios in the STPA analysis and has therefore been used
frequently. The term maneuvering capacity refers to a vessel’s ability to maneuver
in the water. A vessel with all its thrusters and components working as expected,
in perfect conditions (weather, waves and currents) will have its full maneuvering
capacity available. There are a number of factors that can reduce the maneuvering
capacity of a vessel. Examples are provided in the list below:

• The loss of a thruster. E.g. if the bow thruster of the ReVolt stops working, the
ReVolt can still maneuver, but with a reduced ability to perform sharp turns and
has less total thruster power.

• Reduced functionality of a thruster, such as not being able to apply its full thrust
force or being unable to move a thruster to certain angles.

• Damage to the hull of the vessel. A deformation of the hull may increase the
drag force of the vessel, which may result in the process model of the controller
to incorrectly modeling the state of the vessel.

• Poor weather conditions cause in the applied control signals not to result in the
expected change in position.

• Significant movements of the water masses (such as waves and currents) around
the vessel, cause the control signals not to have the expected outcome.

These are just a few examples of what may reduce the maneuvering capacity of the
vessel.

18 CHAPTER 3. BACKGROUND THEORY

3.5 Existing Work on STPA with UML

3.5.1 STPA based Hazard and Risk Analysis - SAHRA

Researching the topic of UML and STPA, it was found that others have developed a
UML tool, designed for visualization of the STPA analysis itself. A group of students
from Zurich University of Applied Sciences have developed SAHRA; STPA based
Hazard and Risk Analysis (Krauss et al.; 2015a). SAHRA is a software tool developed
to perform the STPA process with visual tools. SAHRA proposes a set of new types of
UML diagrams specialized for the STPA process. It provides functionality to draw the
hierarchical control structure, and to visualize STPA Step 1 and STPA Step 2 separately.
This tool is already implemented into Sparx Systems Enterprise Architect. An STPA
analysis for a complex system can become very large and may seem unorganized.
These UML diagrams may help provide some overview and structure to the "clutter"
of unsafe control actions and constraints. These UML diagrams may make up a good
combination with the proposed change, modeling the system using various UML dia-
grams before performing an STPA.

Figure 3.2 shows the SAHRA toolbox. The toolbox contains all the system components
that can be used in SAHRA. There are four different categories. STPA Fundamentals
include the components that are required in Step 0 of STPA, for identification of acci-
dents, hazards and safety constraints. Hierarchical Control Structure contains the
components required for such a diagram; controller, controlled process, control action
and feedback. STPA Step 1 includes components to describe unsafe control actions.
STPA Step 2 contain the variables that are used to describe the causal scenarios and
factors of the unsafe control actions (as in the listed accident causes shown earlier in
the chapter). (Krauss et al.; 2015b) shows a few examples of what the diagrams look
like, these are shown in Figure 3.3 and 3.4.
Note that in Figure 3.4 there is a box with a small key-symbol in the corner. This
is a keyword. The keyword is not shown in the SAHRA toolbox in Figure 3.2. The
keywords are corresponding to those presented in the list at the top of page 12. (Krauss
et al.; 2015b)

3.5. EXISTING WORK ON STPA WITH UML 19

Figure 3.2: The SAHRA toolbox. Courtesy of (Safety-Critical Systems Research Lab
Team of ZHAW; 2017).

20 CHAPTER 3. BACKGROUND THEORY

Figure 3.3: Small example showing Step 1 of STPA analysis with SAHRA. Courtesy of
(Safety-Critical Systems Research Lab Team of ZHAW; 2017).

3.5. EXISTING WORK ON STPA WITH UML 21

Figure 3.4: Small example showing Step 1 of STPA analysis with SAHRA. Courtesy of
(Safety-Critical Systems Research Lab Team of ZHAW; 2017).

22 CHAPTER 3. BACKGROUND THEORY

Chapter 4

Tools and Tables Used in the
STPA Analysis

4.1 Improved and extended STPA analysis

The project thesis introduced an excel framework designed for performing the STPA
analysis. Since the project thesis was delivered, the co-supervisor, Glomsrud, has im-
proved this excel framework. Glomsrud’s framework is more systematic and provides
a better structure than the existing frameworks for STPA. It makes it easier to perform
a complete STPA analysis, without accidentally omitting any details. To investigate
whether the updated framework improves the analysis, the low-level STPA analysis of
the ReVolt has been redone as part of this Master thesis. The improved method will be
described in this chapter.
First, an example will be introduced that is often used when explaining STPA. This
example will be used in this chapter when explaining the methods and principles of
the STPA analysis are explained. Then, the tables that Leveson has introduced for
performing an STPA analysis will be explained. Lastly, the new Excel framework will
be introduced and discussed.

23

24 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

4.2 The Train Door Example

Please note that the information presented in this section is retrieved from (Leveson;
2011) and (Leveson and Thomas; 2015).
The example describes the controller of a train door. The door controller can perform
four different control actions; open door, stop opening door, close door and stop closing
door. Figure 4.1 shows the control structure of the train door.
Some possible system accidents are: a passenger falling out of the train (A1), passengers

Figure 4.1: The control structure of the train door

are not let out of the train when an emergency is reported (A2), the door closes on a
person resulting in an injury (A3). Some related system hazards are:

1. The door is not closed when the train starts moving.

2. The door opens while the train is in motion.

3. The door opens while the train is not aligned with a platform.

4. The door does not open when an emergency is reported.

5. The door is closed while there is someone in the doorway.

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 25

The list of hazards is not complete, but serves well as an example. From the hazards,
one can observe that the door controller must receive information regarding the train
motion and position, whether any emergencies are reported, in addition to the door
position and state. The information regarding the door will come from the door sensors,
but the other information is shown as "other inputs" in the control structure.

4.3 Leveson’s STPA Tools and Framework

4.3.1 Step 0 - Defining Accidents and Hazards

The first part of the STPA analysis mainly consists of three steps:

1. List all possible system-level accidents and losses.

2. List the system-level hazards that are related to each accident.

3. List system-level safety constraints.

These three steps provide an overview of what can go wrong (accidents), how it may
happen (hazards), and how it should be avoided (safety constraints). Hazards occur
when safety constraints are violated. Note that everything is on system-level, and does
not contain any technical details. The technical details will be studied further down in
the steps of the analysis. When explaining these concepts, the train door controller
is often used as an example. For the train, a system-level accident might be a person
falling out of a moving train. The related system-level hazards are the situations where
this accident is prone to happen; the train door is open while the train is moving. To
avoid this hazardous situation from occurring one can apply system-level constraints,
such as; the doors must always be closed before the train can start moving, and the doors
cannot open as long as the train is in motion. There are several ways to perform and
document these steps of the STPA analysis. Two alternatives are presented in (Leveson;
2011). It is common to simply list all the accidents, hazards and system constraints,
and identify them as A1, A2, H1, H2, SC1, SC2 and so on. However, using the tables
presented in Figure 4.2 and 4.3 makes it more orderly.

26 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

Figure 4.2: Table used to identify system accidents and the related hazards

Figure 4.3: Table used to identify system-level safety constraints

Before starting the next step of the STPA-analysis one must design the safety control
structure of the system. There are not many clearly stated guidelines explaining how
a safety control structure should be designed. Figure 4.4 provides some guidance on
the general form of the control structure. However, most systems will be significantly
larger and more complex. This part of the analysis may be quite time-consuming for a
first-timer. Studying existing examples is often the most effective way of understanding
how to design the safety control structures.

Leveson has provided a socio-technical hierarchical control structure, which is shown
in Figure 4.5. It shows a template for a typical hierarchical control structure. The
box marked operating process contains the system itself, and the layers above and to
the left show the hierarchy of controllers above it. The right side shows the system

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 27

Figure 4.4: Typical control loop

development and the left side shows the system operations. Each controller imposes
constraints on the layers below. The controllers can be of different types; human,
automated or they can even be a set of laws or guidelines.

Definition: "Between the hierarchical levels of each safety control structure effective
communication channels are needed, both a downward reference channel providing
the information necessary to impose safety constraints on the level below and an
upwards measuring channel to provide feedback about how effectively the constraints
are satisfied" (Leveson; 2011).

28 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

Figure 4.5: Leveson’s guide to the hierarchical control structure, courtesy of (Leveson;
2011)

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 29

4.3.2 Step 1 - Defining Unsafe Control Actions

Once a detailed control structure is in place, it is time to perform step 1; identify the
unsafe control actions. In her book, Engineering a Safer World, Leveson states that it
may be beneficial to use a table to document this stage of the process. The type of
table presented in the book is shown in Figure 4.6. The rightmost column identifies
the control action in question. The next four columns show the four types of possibly
unsafe control actions Leveson has defined:

• Providing a control action results in a hazard

• A safe control action is provided too early, too late or in the wrong order results
in a hazard

• A safe control action is applied too long or stopped too soon results in a hazard

• The lack of a control action leads to a hazard

A table as this one should be created for every controller in the system. For each
control action, one must list the condition or context that may make the control action
unsafe. A control action will most likely only be hazardous under certain conditions.
Such as the train door example; opening the train door will only lead to a hazard if the
train is moving or if it is not aligned with the platform.
The context is sometimes referred to as a set of process model variables. They are

Figure 4.6: Table for Step 1 - Identify UCAs

simply a set of variables that help describe the situation when the control action is
applied. Defining which process model variables are important for each control action

30 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

can be very challenging for complex systems. It is up to the analyst to determine which
factors are significant and may have an impact on the safety of the control actions,
which may not always be obvious. This way, every combination is at least considered,
but it is up to the one performing the analysis to determine whether a control action
really is unsafe.

Figure 4.7 shows an example of a context table for the train door controller. Note

Figure 4.7: Example of context table for a train door controller

that this table is not complete, it is just included to illustrate how the table should be
used. If a control action is safe, the box can be filled with N/A or a dash, indicating
that it is considered safe or not relevant. For unsafe control actions, one should fill in
which context makes the control action unsafe. Note that there may be more than one
context where the control action is unsafe.

A new, alternative table is presented in An STPA Primer (Leveson and Thomas; 2015).
It is called a context table, and is designed by John Thomas (MIT). The context table

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 31

provides a two-step process to identify unsafe control actions. The tables are presented
in Figure 4.9 and Figure 4.10. These tables are slightly different from the table from
Engineering a safer world. There are added columns containing process model vari-
ables. These process model variables are variables that describe the context where the
control action is applied. For the train door, examples of the process model variables
can be the train motion, its position, reported emergency, the door state or the door
position. For every control action, one must go through every possible combination of
the context variables and assess whether it is safe or unsafe.

The first table examines the events where applying a control action can become
hazardous. The second table examines the cases where not applying a control action
can lead to a hazard. The tables are independent of each other and can be completed in
any order, providing the same results. The results from these tables can be summarized
in a table such as the one designed by Leveson (Fig. 4.6).

Finding all the process model variables for each control action is not always straight-
forward. To do this, one must first define the process model of the controller. In a
controller’s process model, there should be a list of which system states and environ-
mental states may affect the outcome of the control action. Figure 4.8 illustrates what
the train door controller’s process model may look like (note that not all states are
included here). For every variable, there is an option named unknown. This is to cover
the cases where a sensor is broken, or the data from the sensor does not reach the
controller.
According to (Leveson and Thomas; 2015) all the required process model variables
can be found by studying the "defined hazards, the feedback in the control structure
and other knowledge of the environmental and process states". There are no other
guidelines to this step of the process, making it very dependent on the expertise of the
analyst. Still, it is stated in (Leveson and Thomas; 2015) that this part of the analysis
can easily be done by a single analyst, in contrary to the last step of the STPA process,
which may require a team of people.

32 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

Figure 4.8: Part of the process model of the door controller.

When using Thomas’ tables, it is easier to uncover potential conflicts in the sys-

Figure 4.9: Context table 1

tem. Such as for the train door controller: What should be done if the train is moving
and a fire is reported? Should the passengers be trapped inside the train until it reaches
a complete stop, or should the doors open allowing passengers to jump out of a moving
train? Situations like these may be crucial for the design and should be carefully
considered.

A table like the one shown in Figure 4.11, can be used to make a structured overview

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 33

Figure 4.10: Context table 2

of which accidents and hazards the unsafe control actions are linked to. In this case,
each UCA that is identified in the context table should be given a number, and the
number-id can be listed as in fig. 4.11.

Leveson and Thomas (2015) provides the typical structure for an unsafe control

Figure 4.11: Table used to provide an overview of which UCAs are related to which
hazards and accidents - as presented in (Leveson and Thomas; 2015).

action: Source, Type, Control Action, Context. The source explains which con-
troller provides the control action. The type explains if the was provided or not, and
the timing of the command (too early/too late). The control action is the name of the
command that is given. The context is a description of the system and/or environmental
state that contributes to making the action unsafe.

34 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

4.3.3 Step 2 - Identify the Causes of and the Scenarios Leading
to Unsafe Control Actions

In the second step of STPA, the scenarios for and causes of unsafe control actions
are identified. Leveson states that there are two general causes of inadequate control.
Either the designers have failed to identify a hazard and its accompanying safety
constraints, or the control actions that are applied do not fully enforce the safety con-
straints. (Leveson; 2004) Leveson has provided a tool that is designed to help identify
the scenarios that may lead to hazards: a detailed control loop. Figure 4.12 shows what
type of failures may occur in the different parts of the control loop. These are the
failures that can result in unsafe control actions. For every unsafe control action that
has been identified in Step 1, one should go through the control loop and identify the
possible scenarios that may allow it to happen. The results from the analysis can aid
the engineers and designers in making a safe system, by indicating required changes to
the existing system design. The scenarios that have been identified as causes of unsafe
control actions should either be removed, controlled or mitigated to an acceptable
level. (Leveson and Thomas; 2015)
Note that in the control loop in Figure 4.12 there are small circled numbers. These
indicate four types of control flaws. They will be explained in this section. Note
that these were already listed in Chapter three, but are repeated her for increased
readability. Leveson (2011)
1 - Unsafe Inputs: The unsafe control is caused by incorrect or missing input from
the controller above it in the control structure.
2 - Unsafe Control Algorithms: There are flaws in the control algorithm which
result in the algorithm being unable to enforce the required safety constraints. Also,
if the system or process is modified without the control algorithm being modified
accordingly, control flaws may occur. Note that controllers may also be human. In that
case, required training, as well as providing clearly stated procedures for the operators
will make up the control algorithm.
3 - Inconsistent, Incomplete or Incorrect Process Models: The process models
held by the controllers must correctly represent the actual process state. If the model

4.3. LEVESON’S STPA TOOLS AND FRAMEWORK 35

Figure 4.12: Tool that can help identify causal scenarios of unsafe control actions. As
presented in (Leveson; 2011).

deviates from the actual process it may cause unsafe control actions. For a human
controller, the mental model is as important. The process model may be incorrectly
updated due to incorrect or missing sensor data. Resulting in an incorrect belief of the
current process state.
4 - Actuators and Controlled Processes: The commands that are given are safe,
but they are not put into action. There may be various causes; An actuator or another
component may be broken or without power. Also, the reference channels may not be
working properly. If there are multiple controllers for one process, they may provide
contradictory commands.

Note that 4 includes the fourth type of unsafe control action that was defined in

36 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

Step 1: The lack of a control action leads to a hazard. In addition, it covers component
failures, which in most other accident analysis techniques is considered the main cause
of accidents. The cause of unsafe control actions being provided can typically be found
in the right side of the loop (1-3). While the causes for the lack of needed control
actions or inadequate execution of control actions are usually found in the left side of
the control loop (4).

The final step is the most difficult and time-consuming part of the STPA-analysis.
Additionally, it is the step that requires the most from those performing the analysis.
It may require a lot of brainstorming, and it will most likely require a team of people
working together. Prior experience with similar types of systems can be an important
factor when it comes to identifying all possible causes. One of the most discussed chal-
lenges of STPA is how to know when step 2 is finished. For every scenario and safety
constraint that is identified, one can define a set of sub-scenarios and sub-constraints
for every scenario. "Note that the analysis does not have to continue to find every de-
tailed cause but can stop once enough information has been collected that an acceptable
solution is identified. The analyst can stop refining causes at the point where an effective
mitigation can be identified and not go down any further in detail. The analyst only has
to continue refining causes if an acceptable mitigation cannot be designed." Leveson and
Thomas (2015).

4.4 Proposing a Modified Framework for STPA

The preparatory work that was done in the project thesis, (Solberg; 2017), introduced
an outline for an alternative framework for performing the STPA analysis. Since then,
Glomsrud has developed the excel framework even further. The new framework will be
presented in the following sections. It is important to note that this is just a framework
that is designed to ease the use of STPA, it will not change the STPA-analysis itself.
It is intended to replace the tables that have been presented in the previous sections,
designed by Leveson (and Thomas).

4.4. PROPOSING A MODIFIED FRAMEWORK FOR STPA 37

4.4.1 Step 0

Step 0 is the one where the least number of changes have been done. Table 4.13
illustrates the outline of step 0 of STPA in the Excel framework.

Figure 4.13: Excel table for Step 0 of STPA

At the lowest level, the system accidents are defined. Note that the leftmost column
states that it is level 0, and the type is A - accident. Each accident is given in ID, here:
01. In the column labeled text, the accident is to be stated, such as Passenger falling
out of the train.
One level higher, a related system-level hazard is stated. It is at level one, and is of
type H - hazard. The ID first states which accident it is related to, and then which
number of hazard it is; 01.1. In the text-column, one could write something like Door
opens while the train is moving.
At level 2, a system-level constraint is defined, to prevent the hazard from happen-

38 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

ing. The type, C, indicates a constraint. The ID consists of three terms; acciden-
tID.hazardID.constraintID - 01.1.1. Continuing with the train door example, the con-
straint could be The doors must never open while the train is in motion.
The constraint explicitly requires some functional requirements (FR), resulting in the
need for observers and controllers in the system. The ID consists of four terms; acciden-
tID.hazardID.constraintID.functionalRequirementID - 01.1.1.1. Continuing with the ex-
ample, the resulting functional requirements would be: Must know the state of the train:
moving/stopped (observer), Must know the state of the door: open/closed/opening/closing
(observer), Must be able to control the state of the door: open/close (controller) In the
excel table it can be stated in the rightmost column whether the FR expresses the need
for an observer or controller.

The safety control structure is designed as in Leveson’s description, no changes are
done. All controllers and their possible control actions should be listed in a table such
as the one shown in Figure 4.14. For the train door, this table would be quite simple. It
only includes one controller, with 4 possible control actions: open, close, stop opening
and stop closing.

Figure 4.14: Table listing all controllers and control actions

4.4. PROPOSING A MODIFIED FRAMEWORK FOR STPA 39

4.4.2 Step 1

When all the information from step 0 is correctly entered into the excel tables, a table
as the one shown in Figure 4.15 is generated.

Figure 4.15: Excel table for STPA-analysis

For each hazard, one has to go through every controller and its control actions. On
level two, note that the four types of unsafe control actions are listed: Not provided
when needed, Provided, but unsafe, Wrong magnitude/length/timing/sequence provided
and Provided, but not followed. In this auto-generated table, every possible unsafe
control action is listed. Now, it is up to the analyst to consider whether each one can
occur, and whether it will result in the hazard in question. Note that the hazard is

40 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

listed at the top of the table.
Looking at Figure 4.15, the analyst starts with the first possibly unsafe control action:
Train door controller does not provide open door command (when needed) while the train
is moving. Note that this is formulated as explained at the end of section 4.3.2; Source,
Type, Control Action, Context. The analyst may then conclude that the door will never
need to be opened while the train is in motion, and that it is acceptable that a door
open command is not provided while the train is in motion. In that case, this control
action will be considered safe, and it does not have to be studied any further. This is,
of course, if the analyst has decided that it is safer to keep the doors closed while the
train is moving, even when an emergency is reported.
The analyst will then move on to the next line. Train door controller (unsafely) provides
a door open command while the train is moving. This is a control action that can be
considered unsafe. This is where step 2 of STPA comes in. The analyst(s) must examine
how this unsafe control can be provided.

4.4.3 Step 2

The analysts must now closely study every part of the control loop in Figure 4.12. It
must be determined in which ways the unsafe control action can occur. It is important
to note that there may be more than one cause of an unsafe control action. These
scenarios should be entered into the table that is shown in Figure 4.15. Continuing
the example that was started in 4.4.2, a set of potential causes for the unsafe control
action will be listed (note that accident cause is abbreviated to AC):

• AC1 - The controller above falsely indicates that the train is at a platform.

• AC2 - The control algorithm is incorrectly implemented, the door will be opened
in all situations where an emergency is reported, even when the train is in
motion.

• AC3 - The sensormeasuring the trainmotion ismalfunctioning, falsely indicating
that the train has stopped.

4.4. PROPOSING A MODIFIED FRAMEWORK FOR STPA 41

• AC4 - An open door command that was provided while the train had stopped, is
delayed and is put into action after the train has started moving.

For each scenario, a constraint should be created to assure that the scenario cannot
occur, or that can mitigate the consequences of the control action. An example is
shown in figure 4.16. Note that the analysis has reached level four. Level 0 indicates

Figure 4.16: Excel table showing UCA scenarios and constraints

the controller, level 1 indicates the control action, and level 2 indicates the (potentially)
unsafe control action. At level 3, the scenarios for the unsafe control action are
specified, and at level 4 the corresponding system-constraints are specified. These
scenarios are quite general, and not so system specific. To get to the technical details,
the analysis must be taken to higher levels. This is done by finding sub-scenarios
and sub-constraints, that go further into the details of the already defined scenarios.
The sub-scenarios will typically be a scenario where the defined constraint does not
hold. The sub-scenarios can also be found using the control loop from Fig. 4.12. Then,
sub-constraints are designed to handle the sub-scenarios. Figure 4.17 illustrates how

42 CHAPTER 4. TOOLS AND TABLES USED IN THE STPA ANALYSIS

the sub-scenarios and sub-constraints are shown in the excel framework.

Figure 4.17: Illustrating how sub-scenarios and sub-constraints are shown in the
Excel-table

New sub-scenarios can be defined under the sub-scenarios, taking the analysis to even
higher levels. This is shown in Figure 4.17 with the sub-scenario with level 7, and
the associated sub-constraint with level 8. The analysis can be taken as far as the
analyst sees it necessary, by continuing to examine sub-scenarios under every scenario
and sub-scenario. At the end of section 4.3, it was briefly discussed when to stop
the analysis. The analyst must determine when the constraint is specific enough to
prevent the unsafe control action from happening. Some sub-constraints can also be
functioning as a safety net, that prevents an unsafe control action from being provided
even if a lower level constraint is not applied correctly.

Chapter 5

The ReVolt

The following chapter is retrieved from the project thesis that was written in the fall of
2017, (Solberg; 2017). Some parts of the chapter are slightly rephrased, but the majority
is used as it was written in the project assignment. It is confirmed with the supervisor
that this is reasonable to reuse the theory that is unchanged since the project thesis
was delivered.

Figure 5.1: Illustration of the concept ship, ReVolt. Courtesy of DNV GL, (Tvete; n.d.).

The Revolt is a concept ship developed by DNV GL, shown in Figure 5.1. It is intended
to become an unmanned ship, used for transportation of large containers. The ReVolt

43

44 CHAPTER 5. THE REVOLT

will be a battery-driven ship that is designed for short-sea shipping. Its purpose is to
relieve the increasingly congested road network in Europe. The increased focus on
autonomous vessels has been an important motivational factor for DNV GL’s ReVolt.
DNV GL has not started developing the ship yet, but they have initiated a student
project in cooperation with NTNU. A smaller model version of the ReVolt, 2.99 meters
long, has been built to enable testing of various strategies for autonomous operation.
This model ship is shown in Figure 5.2 and will be discussed further in the following
sections.

5.1 The ReVolt Model

The fall of 2016, two cybernetics students started working with the ReVolt as a part
of their project thesis. DNV GL provided them with the hull, and the thruster design.
The two students chose and installed the remaining hardware, and began developing
software. The work they did with the ReVolt model will be discussed in the following
sections. Note that for simplicity, the ReVolt model will be referred to as the ReVolt
from this point on.

Figure 5.2: The Revolt Model. Courtesy of Alfheim and Muggerud, (Alfheim and
Muggerud; 2017a).

5.1. THE REVOLT MODEL 45

5.1.1 Operational Modes

During the spring of 2017, two main operational modes were developed for the Revolt:
Remote control and dynamic positioning. There is also an emergency stop mode, in
case an error occurs and the ReVolt needs to be stopped. By the summer of 2018, a
mode offering autonomous navigation will hopefully have been implemented.

5.1.1.1 Remote controlled operation

Figure 5.3: RC Remote Control. Courtesy of Alfheim and Muggerud, (Alfheim and
Muggerud; 2017b).

Using the remote control from Figure 5.3, the ReVolt can be controlled from shore.
By shifting the levers on the remote, the operator can control the throttle and rudder
of the thrusters, as well as lowering and retracting the bow actuator. The maximum
distance between the remote and the ReVolt is limited by the coverage of the radio
signals. If the ReVolt detects that communication with the remote is broken, it will
shut down the thrusters.

There are three different modes of manual operation:

• Fully manual: the operator is in direct control of all thrusters

• Heading control: the operator can set the reference heading using the remote,
and the heading controller software works to keep this heading.

• Manual thrust allocation: the operator sets a desired reference heading and
throttle using the remote. The operator input goes through the thruster allocation

46 CHAPTER 5. THE REVOLT

controller, instead of being applied directly to the thrusters. (The complete
control structure will be explained later in Figure 5.6).

5.1.1.2 Dynamic Positioning - DP

In DP-mode, the ReVolt is controlled by a computer located on-shore. Using ROS, the
computer communicates with the ReVolt over wifi. The computer sends the desired
position and heading to the ReVolt. The algorithm used to keep the vessel in the desired
position and heading was developed by Alfheim and Muggerud, as a part of their
Maser’s thesis (Alfheim and Muggerud; 2017a). The desired position cannot be located
far away from the current location of the vessel; only within a few meters. There is a
switch on the RC remote control, referred to as the override switch. If this is switched
while the ReVolt is in DP-mode, it will immediately change to remote-controlled
operation.

5.1.1.3 Emergency stop mode

There is a large, red emergency stop button located on top of the ReVolt. In the case
where this is pushed, all thrusters are set to neutral values. The state is immediately
switched to remote controlled.
This is the only safety aspect that has been added to the ReVolt at this point. An
operator has to physically push the stop button located on the ReVolt for it to be
activated.

5.1.1.4 Autonomous operation

If the autonomous development goes as intended, the vessel will be able to receive
a destination as input, and move to the desired position autonomously. This will be
accomplished by autonomously creating a safe path for the vessel to follow. As it is
navigating along the planned path, it will be using cameras and a LiDAR to monitor its
surroundings. These sensor measurements will be used for collision avoidance and to
update the path plan. ReVolt will communicate with the on-shore operator using 4G,

5.1. THE REVOLT MODEL 47

and continuously feed the operator with its state information. This will be discussed
further in Chapter 6.

5.1.2 The Hardware

Fig. 5.4 shows the hardware mounted inside of the ReVolt. Table 5.1 identifies each of
the components. In addition to the listed components, there are a few components
mounted on the outside of the ReVolt. These can be seen in fig. 5.2. There are two
antennas for the GNSS receiver, one in the front and one in the back. A light beacon is
used to indicate the state of the ReVolt is mounted in the back of the vessel. There are
two wifi-antennas, because with the current approach, the computer on-shore uses wifi
to communicate with the ReVolt. There is a red stop-button installed on top of the rear
end of the vessel. Lastly, there is a radio link antenna, used for radio communication
with the remote. Inside the ReVolt, there also is a water sensor intended to detect
potential water leakages, designed and built by Alfheim and Muggerud.

Figure 5.4: Hardware overview. Courtesy of Alfheim and Muggerud, (Alfheim and
Muggerud; 2017a).

5.1.2.1 Embedded computer

The embedded computer onboard the ReVolt runs Linux Ubuntu with the ROS frame-
work on top (ROS is briefly described in a section later in this chapter). This is where

48 CHAPTER 5. THE REVOLT

Number Component
1 Arduino Mega
2 Electronic Speed Controller(ESC) - AC
3 Stern Thruster
4 Battery
5 Embedded Computer
6 Xsens (Inertial Measurement Unit (IMU))
7 Arduino Uno
8 Bow Thruster
9 Electronic Speed Controller(ESC) - DC
10 RC Receiver
11 Satel Radio Link
12 GNSS Receiver

Table 5.1: Identifying the components in Figure 5.4 (Alfheim and Muggerud; 2017a)

the majority of the information processing is done. The computer is a Tank-720. The
"brain" of the ReVolt runs on this embedded computer. In addition to performing the
heavy calculations, it provides the Arduinos with control signals.

5.1.2.2 Arduinos

There are two Arduinos on-board the ReVolt. Arduinos are small micro-controllers
which are quite intuitive to use for beginners to embedded programming. Arduino
has an open-source programming language based on C++, which offers great online
support. The Arduinos are used to interface with the hardware onboard. An Arduino
Uno is located in the front of the vessel. It mainly applies control signals to the bow
thruster. The Arduino Mega is located in the rear of the vessel. This Arduino applies
control signals to the stern thrusters, in addition to operating the radio receiver, the
water sensor and the stop button. The Arduino Uno and Arduino Mega offer the same
functionality, but the Mega has 40 digital I/O pins and 10 analog I/O pins more than
the Uno. Also, the Mega has 224kB more flash memory and 6 kB more SRAM (Static

5.1. THE REVOLT MODEL 49

Random-Access memory) than the Uno. The Arduino Mega is slightly larger in size
than the Uno; about 3.3 cm longer. Technical details are retrieved from (Arduino Uno;
n.d.) and (Arduino Mega 2560; n.d.).

5.1.2.3 Bow Thruster

The bow thruster consists of a DC-motor, an electronic speed controller (ESC), a servo
motor and a linear actuator. The linear actuator can retract the thruster into the hull
of the vessel. This will reduce the drag of the vessel in the water, but it makes precise
maneuvering harder. The servo motor controls the direction of the thruster, which
ranges from -45 degrees to 45 degrees. The thruster is capable of a rotation of ±270
degrees, but the implemented code limits the movement from -45 to +45 degrees. The
electronic speed controller regulates the speed of the DC-motor, which controls the
thrust by applying power to the propellers.

5.1.2.4 Stern Thrusters

There are two identical thrusters in the stern of the vessel, one referred to as the
starboard thruster and the other as the port thruster, indicating the side they are
installed at. Each one consists of a stepper motor, an AC-motor and an ESC. The
stepper motors are used for rotation of the thrusters, controlling the direction of thrust.
They can rotate 360 degrees, but are, for now, limited between ±50 degrees. Here, the
ESC controls the speed of the AC-motor, which controls the effort of the propellers.
The propellers can be rotated both ways, enabling the vessel to reverse.

5.1.2.5 The Xsens and the GNSS receiver

The Xsens MTi-G-710 is an advanced sensor, providing measurements for position
and orientation. The Xsens functions as an inertial measurement unit (IMU), a global
navigation satellite system (GNSS) and inertial navigation system (INS) (Xsens; n.d.). In
addition to position and orientation, it provides estimates for angular velocity as well
as acceleration. The accuracy of the position estimate is ±2 meters, and the accuracy
of the orientation estimate is ±0.3 degrees, ±0.3 degrees and ±1.0 degrees for the roll,

50 CHAPTER 5. THE REVOLT

pitch and yaw. (Alfheim and Muggerud; 2017a)

The Hemisphere vector is a GNSS receiver equipped with two antennas. The Hemi-
sphere Vector VS330 together with the Satel radio link and RTK is capable of providing
significantly more accurate position estimates than the Xsens. The position is esti-
mated with an accuracy of ±2 cm. The accuracy of the orientation estimate is ±1.0
degrees, ±1.0 degrees and ±0.2 degrees for the roll, pitch and yaw. Hemisphere (n.d.)
Note that for the accuracy of the yaw measurements to be ±0.2 degrees, the antennas
must be placed 0.5 meters apart. The accuracy can be increased by increasing the
distance between the antennas.

5.1.2.6 RC Receiver

The RC receiver is used to receive the signals from the RC remote shown in Fig. 5.3,
containing maneuvering instructions. The receiver is connected to the Arduino Mega,
in the rear end of the vessel.

5.1.2.7 Additional sensors

There is a water sensor installed to make sure any potential leakages are detected. The
sensor is designed and built by (Alfheim and Muggerud; 2017a). There is a light beacon
installed which is used to indicate the state of the ReVolt, e.g. indicating whether a
water leakage is detected. Both of these components are connected to the Arduino
Mega, in addition to the RC receiver and the stern thrusters. This may not be optimal.
The Arduino does not have as much processing power as the embedded computer.
Having this many separate tasks on a single microcontroller may create problems. If
something is wrong with e.g. the light beacon, the software may get stuck in some
unforeseen software loop. Then, both the RC-communication and the control of the
stern motors could be lost. Ideally, these components should be implemented on a
separate Arduino. This is, most likely, not done due to a limited budget.

5.1. THE REVOLT MODEL 51

Figure 5.5: Modularized block diagram illustrating the software of the ReVolt in DP-
mode, as presented by (Alfheim and Muggerud; 2017a)

5.1.3 The Software

Understanding what happens in detail in the software of the ReVolt is essential to
be able to perform a safety analysis for the vessel. In their Master thesis, Alfheim
and Muggerud divided the ReVolt into several modules; a guidance system, a control
system and a navigation system. These modules and the communication between
them is shown in Figure 5.5. Each of these modules has separate responsibilities and
contain a set of software blocks. Note that η is the position and orientation vector;

x

y

ψ

=

Body-fixed position in the x-direction

Body-fixed position in the y-direction

Euler angle about the z-axis

(5.1)

ν is the linear and angular velocity vector;
u

v

r

=

Body-fixed linear velocity in the x-direction

Body-fixed linear velocity in the y-direction

Body-fixed angular velocity about the z-axis

(5.2)

52 CHAPTER 5. THE REVOLT

u indicates the total force applied by the thrusters.

• The guidance system receives input signals from the operator, as well as the
estimated position, orientation and velocity of the vessel from the sensors. Based
on the input, it calculates how to reach the next desired position and velocity,
as a path or a trajectory. In DP-mode, the guidance system consists of a single
software block; the reference filter. The reference filter provides a trajectory to
the desired position and orientation, as long as its relatively close to the current
position. As the ReVolt becomes increasingly autonomous, there will be more
software components within the guidance system. The reference filter is not
used while the ReVolt is manually operated.

• The control system receives the trajectory that takes it from the current posi-
tion and velocity, to the desired position and velocity. The control system is
divided into two software blocks; DP-controller and thruster allocation. The DP-
controller calculates the force needed to move the vessel to the desired position
and velocity, as well as the direction of the force. The thruster allocation takes in
the force and the direction of the force from the DP-controller, and calculates the
control signals that need to be applied to each of the three thrusters to achieve
the desired force.

• As the control signals are applied to the thrusters, the position of the ship moves
accordingly. External forces, that are not controlled by the vessel or the operator,
will also change the position of the vessel. Among these are wind, waves and
currents. The system sensors help overcome this challenge.

• The navigation system receives measurement data from the Xsens and Hemi-
sphere vector sensors. It uses this data to estimate the current position, orienta-
tion and velocity. This software block is referred to as the observer from now
on.

In the master thesis of Alfheim and Muggerud (Alfheim and Muggerud; 2017a), there
is no complete overview of all software- and hardware-components together, showing

5.1. THE REVOLT MODEL 53

the communication between them. To be able to perform a safety analysis, as the one
that will be presented later in this report, it is vital to have a correct, complete control
structure of the system. Therefore, a significant amount of time has been spent making
a complete control structure, illustrating the flow of information and control signals
in the ReVolt system. The result is shown in Figure 5.6. Explanations to the figure are
given in table 5.2 and the paragraphs below.

The state controller is the most complex software component of the ReVolt. Its func-
tionality is a little different for each of the states. It listens for instructions from the
on-shore computer and the override switch on the RC-remote, and changes states
based on these instructions. The ReVolt will only change state by a command being
given.

• While in DP-mode, the state controller provides the reference filter with DP
parameter updates. The DP-parameters being the reference position and orien-
tation. Once the on-shore computer changes the parameters, these are sent to
the reference filter. Looking at Figure 5.6, only the green arrow is used while in
DP-mode.

• While in manual mode, the input from the RC-remote is applied directly to the
thruster controller (bow), thruster controller (stern) and the stepper controller.
Only the purple arrows in Figure 5.6 are used in this mode. Note that the observer,
reference filter and thruster allocation are not used while being in this state. The
purple arrows will only be used for the manual control.

• In manual thrust allocation mode the user specifies a force relative to the ship.
This force and direction of force are sent to the thruster allocation node, which
provides the correct control input for each thruster. In Figure 5.6, this corre-
sponds to the red arrow

• In heading control mode, the RC-remote is used to set a reference heading. This
reference value will go into the heading controller, which provides a control
effort reference for the thruster allocation. In Figure 5.6, this corresponds to the

54 CHAPTER 5. THE REVOLT

Figure 5.6: Control Structure of the ReVolt

5.1. THE REVOLT MODEL 55

orange arrows, in addition to the heading controller block, which is only used
in this mode.

Note that the messages from the thruster controllers and stepper controller are not
specified in the figure. It is omitted because of limited space, so an explanation is
provided in this paragraph. The thruster controllers use low-level communication
signals; pulse width modulated signals, to provide the hardware with command signals
it is capable of understanding. E.g. instead of providing the electronic speed controllers
with a signal between -100 and 100 percent, a number between 1100 and 2100 µs is
given. 1500 µs corresponds to the neutral position of the ESC, where the propeller
does not move. The percentage value is simple and intuitive to work with for the
human operators, but not for the hardware components. The thruster controllers
simply performs the translating work.

5.1.3.1 Robot Operating Systems (ROS)

ROS is an open-source framework developed for writing software for robots. Both
Python and C++ can be used. ROS provides a standard for communication, which
is used by the ReVolt. Software components are divided into nodes, the nodes com-
municate through topics. A node publishes messages to a specified topic, and other
nodes can choose to subscribe (listen) to one or more of these topics. The publisher is
unaware of the subscribers, it publishes whether or not a node is subscribing. This
makes the communication easy to scale, and it can be utilized to enhance safety. A
simple illustration is given in Figure 5.7 The ROS communication used in ReVolt uses
both wifi, USB and RS232. The auto-generated ROS graph is shown in the appendix,
Figure C.1. The oval shape indicates a node, the small rectangles are topics. The arrows
indicate which nodes publish and subscribe to topics. The auto-generated graph is
quite disorganized and can seem overwhelming for someone who does not know the
system. It can serve as a supplement to the control structure, to get an overview of the
type of information that is sent between the system components.

56 CHAPTER 5. THE REVOLT

Figure 5.7: Illustration of ROS communication between two nodes

5.1. THE REVOLT MODEL 57

From To Message Explanation
Vector
VS330

Observer η, ν Explained in equations 5.1 and 5.2

Xsens Observer η, ν Explained in equations 5.1 and 5.2
Observer Ref. filter

State
controller

η, ν Explained in equations 5.1 and 5.2

Ref. filter DP-
controller

ηd Desired position and orientation

DP-
controller

Thruster
allocation

τ Forces and moments vector;
τx

τy

τN

 =

body-fix. force in x-dir
body-fix. force in y-dir

body-fix. moment about y-axis

Thruster
allocation

Thruster
controller
bow

thrust,
angle,
lin. actua-
tor

effort for the bow thruster given as ±100%
angle for the bow thruster given as ±45◦
position of the linear actuator (up/down)

Thruster
allocation

Thruster
controller
stern

thrust (p
and s)

effort for the stern thrusters given as ±100%
s = stern, p = port

Thruster
allocation

Stepper
controller

angle (s and
p)

angle for the stern thrusters given as ±50◦
s = stern, p = port

On-shore
computer

State
controller

DP-params,
state

DP-params set the reference position and orienta-
tion for the ReVolt in DP-mode
State indicates whether the ReVolt is being remote
controlled or using DP

Water sen-
sor

State
Controller

Water
detected

Boolean, alerts if water is detected inside the hull

RC-
receiver

State
Controller

Controls,
override
button

When being remote controlled, the thrust effort and
direction is sent
The override button signals whether the switch has
been moved or not

EM-stop State
Controller

EM-stop
button
pushed

Boolean, alerts if stop-button is pushed

State con-
troller

Light
beacon

Color,
interval

Indicates which color and at which frequency the
light beacon should light

State con-
troller

x x Complex functionality - explained below

Table 5.2: Identifying the messages in Figure 5.6

58 CHAPTER 5. THE REVOLT

Chapter 6

System Description using
UML and RBD

6.1 Description of the Modeled System

A set of assumptions have been made, in order to make a more interesting and use-
ful case for the STPA analysis. The ReVolt model that was introduced in Chapter 5
illustrates the ReVolt as it was before the fall of 2017. As explained previously, further
development has continued during this school-year. In order to be able to work con-
tinuously throughout the whole semester, it was decided to work with a static model
of the ReVolt. Static meaning that the design of the model does not change throughout
the semester. Following the development of the ReVolt done by other students during
the semester would require much time, and performing the STPA-analysis alongside
the development would be complicated. It was decided to design a ReVolt model
that illustrates the expected state of the ReVolt by the end of this semester. An STPA
analysis of this version may provide more help to those continuing to develop the
ReVolt in the future. An analysis of the remote-controlled or the DP-state of the ReVolt,
may not provide much help for the engineers in the future development. The new

59

60 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

ReVolt model is based on the previous design (introduced in Chapter 5), and the added
functionality is built on top of the old framework. Assuming the future ReVolt will
build on the original design from the fall of 2017.

The new control structure is presented in Figure 6.1. It looks a lot like the old control
structure presented in Chapter 5. A few sensors have been added, and some of the old
controllers have been replaced with new, more complex ones. The functionality of the
controllers are explained in the next paragraphs, and the process models can be found
in Appendix B. Table 6.1 provides descriptions of the communication signals that are
illustrated in 6.1.
Note that the stippled arrows indicate measuring channels for feedback and the solid
arrows indicate reference channels, as is defined in Chapter 4.

The following list briefly explains the functionality of the controllers in Figure 6.1:

• The thruster allocation, bow controller, stern controller and stepper controller will
be kept as they were described in Chapter 5. The thruster allocation calculates
the needed contribution from each controller, in terms of thruster effort and
direction, based on the input from the above controller. The thruster controllers
pulse width modulate the control signals and apply them to the correct output
ports.

• The DP-controller will be replaced by a force controller. The functionality of
the force controller will be similar to the DP-controller, but it will also be able
to calculate necessary control signals between two points that are further dis-
tanced (where the DP could only handle small distances). The DP-functionality
should also be integrated into this controller, if it is desirable to keep the DP-
functionality. The DP-controller provides the thruster allocation with a vector
containing the required force in the x-direction, the force in the y-direction and
the moment about the z-axis.

• The navigation controller will be the most complex part of software. It is where

6.1. DESCRIPTION OF THE MODELED SYSTEM 61

Figure 6.1: Presumed control structure of the future state of ReVolt

the majority of the functionality for autonomous navigation is implemented.
The navigation controller will receive inputs from the operator, the obstacle
avoidance and the observer, with information regarding the destination of the
vessel, the position of any detected obstacles, and the ReVolt’s current position,
speed and heading. It is the navigation controller’s task to provide a safe path,
as a set of points, to follow in order to reach the destination provided by the
operator, without causing a collision on the way. It provides the force controller
with the current pose and the next desired pose (note that pose is a notation for
position and orientation).

• The obstacle avoidance will receive data from the vision sensors containing
information about the ReVolt’s surroundings. Object detection algorithms are
used to detect obstacles in the RGB images from the camera(s). The Lidar

62 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

From To Message Explanation
Operator 4G-comm

unit
ηd The desired destination and heading provided by

the operator in 4G message format
4G-comm
unit

Navigation
controller

ηd The desired destination coordinate and heading

Camera Obstacle
avoidance

RGB img. An array containing the RGB data in the images
captured by the camera(s)

Lidar Obstacle
avoidance

Depth img. An array containing the depth (distance) data in the
images captured by the Lidar

Obstacle
avoidance

Navigation
controller

ηo , νo The estimated position, heading and velocity of a
detected obstacle

Xsens Observer roll
pitch

The measured roll and pitch angles

Hemisphere Observer η, ν Measured position, orientation (yaw), velocity and
angular velocity

Observer Navigation
controller

η, ν Measured position, orientation (yaw), velocity and
angular velocity

Navigation
controller

Force
controller

Trajectory
from η to
ηdx

The trajectory from the current pose to the next
point along the path

Force con-
troller

Thruster al-
location

τ Forces and moments vector;
τx

τy

τN

 =

body-fix. force in x-dir
body-fix. force in y-dir

body-fix. moment about y-axis

Thruster
allocation

Thruster
controller
bow

effort,
direction,
lin. act.

Thruster effort between ±100%
Thruster direction between ±45◦
Position of the linear actuator (up/down)

Thruster
allocation

Thruster
controller
stern

Effort
(p and s)

Effort for the stern thrusters between ±100%
s = stern, p = port

Thruster
allocation

Stepper
controller

Direction
(s and p)

Direction for the stern thrusters between ±50◦
s = stern, p = port

Table 6.1: Identifying the messages in Figure 6.1

provides depth image of the surroundings. Fusing the information from the
camera(s) and the Lidar, the position of an obstacle can be estimated. The speed

6.2. SOFTWARE AND SYSTEM BEHAVIOR - UML 63

and heading can also be estimated by tracking the obstacles over time. This
information is shared with the navigation controller.

• The observer uses data from the Hemisphere’s and the Xsens’s GNSS, IMU and
INS to estimate the position, linear and angular velocity. This information is
shared with the navigation controller.

• The communication unit: All communication with the on-shore operator is done
over the 4G-network. The ReVolt will be able to send and receive data using 4G
communication. The communication unit’s function is to send and receive these
messages in real-time. All received messages from the operator are distributed
on to the navigation controller. The operator will mainly provide the ReVolt with
its destination coordinates. The navigation controller uses the communication
unit to send feedback information to the operator.

• The operator’s main role is to provide the ReVolt with destination coordinates.
The remaining functionality is not determined yet. It may get functionality to
block off areas that the vessel is restricted from operating in, due to e.g. poor
weather conditions or an accident in the area. The operator should be able to
request information from the ReVolt, and should be able to monitor the data
captured by the cameras. The operator will have the ability to perform an
emergency stop, if there is reason to believe something is wrong with the vessel.
It should be discussed whether it is necessary for the operator to be able to
remote control the vessel.

Note that there will most likely be two cameras onboard, to enable a broader angle of
vision (even though there is just one camera in 6.1). It is planned to use Muvi K2 Sport
cameras and a Velodyne VLP-16 Lidar.

6.2 Software and System Behavior - UML

A set of UML diagrams have been designed to describe the functionality of the ReVolt,
they will be presented in the next few pages. It is assumed that those reading this

64 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

report are familiar with the UML language, and are able to read and understand the
UML diagrams. Therefore, there will not be given detailed explanations to reader this
report. UML Distilled (Fowler; 2004) is recommended if there are questions regarding
standards and rules of the UML language.

6.2.1 Use-Case Diagram

Use-case diagrams illustrate the interaction between users and the system itself, show-
ing how the system is used (Fowler; 2004). It offers a black-box view of the services
that are provided by the system (Delligatti; 2014). Figure 6.2 shows the actions that
the operator can perform, in order to control and supervise the ReVolt. The ReVolt
is intended to be able to run independently of the operator the majority of the time.
The most important task of the operator is to set a destination or a DP-coordinate.
Without these inputs, the ReVolt will not be able to operate. The remaining control
actions are intended to offer safety functionality. The operator can restrict the vessel
from navigating into specific areas, by blocking off areas. This can be necessary in
various cases, e.g. unfortunate weather conditions or an accident in the area. The
remaining functions that are listed should be excessive once the ReVolt has become
fully autonomous, but are included to let the operator override control in case of an
emergency. The operator can request the video stream captured by the camera, request
state data such as position and velocity, and provide an emergency stop command, if
necessary.
The UML diagram is chosen to be a part of the system description in order to illustrate
the context and the main functionality of the system. This diagram can be helpful in
the process of defining accidents and hazardous scenarios.

6.2. SOFTWARE AND SYSTEM BEHAVIOR - UML 65

Figure 6.2: Use-case diagram of the ReVolt

6.2.2 Activity Diagram

The activity diagram is used to illustrate the dynamic behavior of the system (Delli-
gatti; 2014), and it shows the typical workflow of the system (Fowler; 2004). Figure 6.3
presents a simple overview of the workflow of the ReVolt. Note that this diagram is
not very detailed, and only contains the main functionality of the ReVolt.

Once the ReVolt has received the destination coordinates and it is given its current
position estimate, it can calculate the route to the destination as a list of set-points.
The system handles one point at the time, crossing off each point as it is reached. If an

66 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

obstacle is detected close to the future path of the ReVolt, the route must be modified,
to avoid a collision. When the last set-point of the route is reached, the mission is
completed, and the operator can provide a new destination, or a DP-setpoint.
Several activity diagrams can be designed to visualize all possible scenarios. More
details can be included in the activity diagram illustrate everything that happens in
the different scenarios of operation. In addition, activity diagrams can illustrate error
handling and fallback strategies. This is not done here, but should ideally be done as
soon as it is determined how possible malfunctions, errors or deviations should be
handled with fallback strategies.

The activity diagram provides an overview of the possible system scenarios and
the various chains of events that may occur. This UML diagram can also help define
scenarios where fallback strategies must be designed. These are qualities that are
useful to the STPA analysis.

6.2. SOFTWARE AND SYSTEM BEHAVIOR - UML 67

Figure 6.3: Simple activity diagram showing the behavior of the ReVolt

68 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

6.2.3 Sequence Diagram

The sequence diagram is an additional method for describing the behavior of a system.
It is typically more detailed than an activity diagram. It illustrates the internal system
workflow, and specifies how the various control actions are initiated by the internal
controllers. Figure 6.4 shows a sequence diagram for the normal operation of the
ReVolt.

1. The operator enters a destination, and the position sensors provide the current
position of the vessel.

2. The navigation controller calculates the route to the destination as a list of points,
referred to as set-points.

3. As long as a route exists, the navigation controller follows the list of set points.

4. The thruster allocation and control provides the control signals to the thrusters
that results in the desired force and direction of the vessel.

5. The vision sensor data is continuously read by the obstacle avoidance.

6. When an obstacle is detected its position is estimated, and the navigation control
is warned.

7. The route is adjusted accordingly, and normal operation continues until the final
set-point is reached.

Note that not all controllers are shown here, to keep the diagram simple and easy
to follow. The force controller’s functionality is included in the navigation control.
Thruster allocation and control are merged into one participant in the sequence dia-
gram.

This sequence diagram only provides a brief overview of the normal operation of
the ReVolt. One can go into greater detail showing the detailed flow of information
and commands. An example is included in the Appendix in Figure A.1. It shows how
control signals are continuously calculated and applied to the thrusters, including all
the controllers.

6.2. SOFTWARE AND SYSTEM BEHAVIOR - UML 69

Figure 6.4: Sequence diagram

70 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

6.2.4 State Machine Diagram

The state diagram is another behavioral diagram. It describes the different system
states and the transitions between the states (Fowler; 2004). The nodes illustrate the
different system states, and the triggers on how to change between states are described
along the transition lines. It is suited to describe the behavior of an object over many
use cases (Fowler; 2004). The state diagram helps the STPA analyst, in finding the
various functionality obtained by each software component. It can be a helpful tool
when identifying potential fallback strategies. The state machine diagram that is
presented in Figure 6.5 is a general, overall structure only containing three states. State
diagrams that describe the sub-states of the state machine can be seen in the Appendix
in Figure A.5 and A.6. More details are provided in these diagrams.

Figure 6.5: State machine diagram of the ReVolt

6.2.5 Class Diagram

The class diagram is a way of describing the structure of a system. It helps provide a
description of the types of objects a system consists of and the relationships among
these objects. Additionally, it describes the properties and operations of the classes
Fowler (2004).

The class diagram of the ReVolt is quite large and does not fit in a single page. There-
fore, it has been divided into multiple figures. Figure 6.6 shows a simplified version of
the class diagram. The ReVolt, consisting of a set of controllers, actuators and sensors.

6.2. SOFTWARE AND SYSTEM BEHAVIOR - UML 71

For more detailed figures illustrating the various sensors, actuators and controllers,
check Figures A.2, A.3, A.4 in Appendix A.

Figure 6.6: Top level of the ReVolt class diagram

6.2.6 UML contributions to the analysis

In the project assignment (Solberg; 2017), an STPA analysis was performed without
having any documentation describing the ReVolt. The process was difficult, and the
mental model of the ReVolt kept changing along with the analysis. Without keeping
an exact model of the system the is being analyzed, the analysis is guaranteed to fail.
Keeping a consistent process model is vital. This can easily be done with a set of
UML diagrams and hardware documentation. Creating the documentation requires
time, but it most definitely makes up for it. With a few diagrams, the STPA analysis
can much more easily be completed, and is more likely to produce suitable system
constraints and design guidelines. Thousands of lines of (poorly) written code can
be replaced with a few comprehensible visual diagrams. It makes the STPA process
much more efficient. The selection of UML diagrams may have to be reconsidered.

72 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

Those presented in the previous sections served well for a low-level STPA analysis.
Once the analysis is taken to higher levels, the need for additional qualities may be
revealed. UML is a great tool, which is easy to learn and use. The diagrams most
certainly provide the STPA analyst with great advantages. During the STPA analysis
presented in this thesis, the UML diagrams saved the analyst a significant amount of
time.

6.3 Hardware

In this section, the hardware components onboard the ReVolt will be shown and briefly
discussed. Figures have been drawn to show how the hardware on the ReVolt is
connected. For more details on the hardware that has been used, see Figures C.2, C.3
and C.4 in Appendix C. These figures show images of the actual components that are
used, but the same information is given in the next figures in this chapter.

Figure 6.7: Showing the hardware that is connected to the embedded computer

6.3. HARDWARE 73

Figure 6.7 shows the hardware that is connected to the embedded computer onboard
the ReVolt. The red lines indicate the parts that will be installed onboard the ReVolt this
semester. The type of communication media is indicated along the lines connecting the
components. A few of them are missing a label, this is because it is not yet determined.
Note that the Xsens sensor is labeled IMU, because during normal operation the Xsens
serves as an inertial measurement unit. The Hemisphere sensor is the one labeled
GNSS receiver. The router will most likely be removed once the 4G communication is
up and running. The wifi is currently used for ROS communication with the on-shore
computer. The remaining hardware on-board is connected to the Arduino micro-
controllers. The details are shown in Figure 6.8 and 6.9.

Figure 6.8: Showing the hardware that is connected to the Arduino Uno

Figure 6.8 shows the Arduino Uno and the hardware connected to it. It is mainly
connected to the components of the bow thruster, the ESC, DC-motor, servo motor,
linear actuator, and the sensor for the position of the linear actuator. A water sensor is
connected to alert the system if water is detected inside the vessel. The last component
shown in Figure 6.8 is an analog to digital converter (ADC). This component is not listed

74 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

in the previous documentation for the ReVolt, but is used in the code implementation.
The Arduinos are placed inside boxes onboard the ReVolt, so it cannot be visually
confirmed that they are there. According to the code that is written for the Arduino
Uno, the ADC receive inputs from the bow thruster and the two stern thrusters,
measuring the motor currents to detect if a thruster stops working.

Figure 6.9: Showing the hardware that is connected to the Arduino Mega

Figure 6.9 shows the Arduino Mega and the hardware connected to it. The Arduino’s
main function is to control the effort of the stern thrusters. The emergency stop-button
and light beacon are also connected to it. The RC-receiver is also connected to the
Arduino Mega. It is shown with a stipulated line in the figure, because it will be
removed as soon as remote-controlled operation is no longer necessary. The current
sensor (s) and current sensor (p) are labeled sensor_s and sensor_p in the Arduino
code. It is not explained further what these are in the previous documentation. In
this thesis, it has been assumed that they are sensors measuring the thruster currents,

6.3. HARDWARE 75

providing the ADC (located in the bow) with inputs.

6.3.1 RBD

Figure 6.10: Simple redundancy block diagram

Figure 6.10 is a sketch of a potential RBD for the ReVolt. The OBC (on-board
computer) is the embedded computer. Note how the Xsens and Hemisphere are
connected in parallel to illustrate that one can work as a back-up for the other. The
camera and the Lidar are connected in series, to show that both are required to work,
in order for the RGB point cloud to exist. The RGB point cloud is a 3D model of the
ReVolt’s surroundings with RGB and depth information.
If the Arduino in the bow is lost, one cannot control the direction or the force of the
bow thruster. The stern thrusters have two separate controllers for force and direction.
If the stepper controller is lost, the stern Arduino can still be used to set the force of
the thrusters.

76 CHAPTER 6. SYSTEM DESCRIPTION USING UML AND RBD

Chapter 7

STPA Results

A low-level STPA analysis of the ReVolt has been carried out, and the results from the
analysis will be presented in this chapter. Note that the ReVolt-model described in
Chapter 6 is used. The results from the analysis can serve as design and implementation
guidelines for those who will continue to develop and work with the ReVolt. The
analysis is only taken to level four, which means that the analysis cannot be considered
complete. However, it can provide indicators on where it is important to focus in order
to increase the level of safety. Also, it is performed by a single analyst, which is not
ideal. As was mentioned in Chapter 4, Step 2 of the STPA analysis may require a team
of analysts, to find all accident causes and the required constraints. As a result, there
is no guarantee that the results from the analysis can give a fail-safe system. Still,
the analysis will contribute to a safety guided design strategy for the engineers. In
addition, a higher level STPA analysis has been carried out using a part one of the
ReVolt’s controllers. The force controller was chosen to serve as an example. The
purpose of this is showing that STPA can provide more detailed and specific safety
constraints when it is taken to higher levels. The results from this analysis will be
presented at the end of this chapter.

77

78 CHAPTER 7. STPA RESULTS

7.1 Overall System

To reduce the size of the analysis the number of accidents and hazards have been
limited. This was agreed upon with the co-supervisor. Including all accidents and
hazards in the analysis would make the analysis too time-consuming and too extensive
for the scope of this thesis. However, a complete STPA analysis of the ReVolt should
be performed in the near future to be ensure a safe system design. The accident that
will be examined in this analysis is a collision, either with another vessel, the shore
or another type of obstacle. This may be considered the most comprehensive type
of accident the ReVolt can be prone to, and is central to the autonomous behaviour.
This accident very comprehensive, and will lead to numerous system constraints and
design guidelines for the system. Step 0 from the STPA analysis is shown in Figure 7.1.

Figure 7.1: STPA Step 0, defining system-level accidents, hazards and constraints

7.1. OVERALL SYSTEM 79

For the chosen accident, there are two defined hazards; The vessel has an unsafe speed
and course relative to an obstacle, (heading towards an obstacle, risking collision) and
The distance to an obstacle is too short to avoid a collision. The functional requirements
provide a brief overview of which parts of the system needs to be observed and con-
trolled, in order to avoid the listed hazards.

Figure 7.2: The controllers of the ReVolt and their control actions.

Figure 7.2 shows the controllers of the ReVolt and their control actions. The control
actions for the operator is reduced to a minimum, since it is not yet determined what

80 CHAPTER 7. STPA RESULTS

functionality will be required in the end.

Figure 7.3 shows a sketch of the hierarchical control structure of the ReVolt. It is
slightly different from the template in Figure 4.5. The ReVolt does not have as many
layers of controllers in the hierarchy of system development. For the ReVolt, the
project management, the design and assurance are merged into one controller, con-
sisting of only a few people; the students developing the ReVolt software and their
supervisors. The safety control and documentation consists of the work presented in
this Master thesis. Maintenance and evolution is also included in the figure, although
at the moment this also is included in the design and development controller. However,
at a later stage this will most likely become a separate controller in the hierarchical
safety control structure. The operating process will be explained in greater detail in a
separate control structure.

7.1. OVERALL SYSTEM 81

Figure 7.3: Hierarchical safety control structure for the ReVolt.

82 CHAPTER 7. STPA RESULTS

Figure 7.4: The detailed operating process of the hierarchical safety system control
structure

7.1. OVERALL SYSTEM 83

Figure 7.4 shows the detailed operating process of the ReVolt. The ReVolt itself
consists of a set of automated controllers, along with a set of sensors (shaded in green),
and a set of actuators (in yellow). The operator communicates with the ReVolt using
4G communication. The controlled process here is the ReVolt’s position. The sensors
measure the position, linear and angular velocity of the vessel, and the controllers
change it as desired by applying control signals to the thrusters.

Figure 7.5: The first 22 lines of Step 1 and 2 of the STPA analysis of the ReVolt

Using the excel framework developed by Glomsrud, step 1 and 2 of STPA are presented
in one table. Figure 7.5 shows the a small selection from the table. The complete table
is delivered along with the master thesis in the zip-file. The STPA-analysis for the
first hazard, to level four, reaches 803 excel lines, and is too large to be included in the
report. Therefore, a summary of the most important results will be presented.

84 CHAPTER 7. STPA RESULTS

Although the the analysis is only taken to level 4, it resulted a set of important
indicators and design guidelines for the engineers. A number of safety constraints
were produced, which can be found in the Excel table. Discussing each individual
constraint is to extensive to be presented here. However, it has been attempted to make
a summary of the most important result of the analysis. Among the most critical causes
of the listed hazard are loss of communication among system components, incorrect or
missing sensor measurements and time delays in the reference channels. The details of
these causes will be discussed in the next pages, and represent the most important
results of the analysis that has been performed. Taking the analysis to higher levels
would have resulted in even more design guidelines and constraints.

Loss of communication
Losing the 4G-communication between the on-shore computer (used by the operator)
and the ReVolt is critical. If the operator cannot provide new instructions, there is
no way for the operator to control the ReVolt. It should be a priority to make the 4G-
communication as fail-safe as possible. However, a fallback strategy must be designed.
An alternative is to provide the ReVolt with a set of predetermined "safe-coordinates". In
the scenario where the ReVolt detects communication is lost, it should start navigating
towards the closest safe-coordinate. Implicit in this suggestion is that the connection
between the operator and the ReVolt must be monitored. This can be solved by sending
pings at a set time interval, and implementing a watchdog that times out and alerts the
ReVolt if no ping is received. Pings are simply messages sent at a set time-interval to
inform other systems it is alive. However, this fallback strategy is risky. Having an au-
tonomous vessel running, with no possibility for controlling or monitoring is a big risk.

Onboard the ReVolt there are two Arduinos connected to an embedded computer.
The thruster hardware is connected to the Arduinos, which applies them with control
signals. If the Arduinos do not receive messages from the embedded computer, it is not
possible to provide the thrusters with new control signals. Without being in control
of the thrusters, there is nothing that can be done in order to avoid a collision. The
Arduinos receive their instructions from the onboard computer through a USB cable.

7.1. OVERALL SYSTEM 85

Rosserial, a ROS library, which is used to handle this communication. It is vital that
the communication between these components is working properly. There does not
exist a backup solution for the communication between the Arduinos and the onboard
computer. The connection between these components must be monitored.
A fallback strategy should be implemented that can handle the situation where the
communication is lost. It is impossible to define a state for the thrusters that can
always guarantee that the hazards will be avoided. The safest solution may be shutting
off the thrusters completely. However, this is no way to guarantee that hazards will
be prevented. The vessel may drift into an obstacle, causing an accident. Note that
the Arduino located in the bow controls the bow thruster. The Arduino located in the
stern controls the DC-motors in the stern. The stepper controller controls the angles
of the stern thrusters. The connections are illustrated in Figure 7.6. It is not likely that
communication with all three components is lost at the same time. Therefore, it is
important to consider what should be done if one of the three components are lost.

Figure 7.6: On-board computer and Arduinos

Is it possible to control the ReVolt if communication is lost with the stern Arduino or
the stepper motors? If the bow thruster alone is strong enough to steer the vessel, an
alternative mode must be defined for the navigation controller, force controller, and
thruster allocation, based on the maneuvering capacity of the vessel in this state. If it
is possible, this mode can be used to avoid hazards until the error is repaired.
Next, it must be considered: Is it possible to control the ReVolt if communication is lost
with the bow Arduino? It must be examined whether the stern thrusters alone are able
to precisely steer the heading of the vessel. If so, an alternative mode must be designed
for the the navigation controller, force controller, and thruster allocation, based on the

86 CHAPTER 7. STPA RESULTS

maneuvering capacity of the vessel in this state. Note that the safety buffers, in terms
of distance to obstacles and maximum speed, will have to be adjusted to compensate
for the reduction in maneuvering capacity.
As soon as either of the Arduinos detect that the communication with the onboard
computer is lost, the thruster should be set to neutral positions. If the stepper motors
are not functioning, the stern thrusters should not be used.

The two embedded computers onboard the ReVolt will communicate with each other.
The specifics of the type of communication that will be used, is not determined. How-
ever, it is crucial that the chosen type of communication provides a stable connection
between the two computers. A brief description of the functionality of the computers
is listed in Figure 7.7.

Figure 7.7: Illustration of the functionality of the embedded computers onboard the
ReVolt

The embedded computer that performs the path planning is reliant on the data input
from the sensor fusion computer, to avoid collisions. Without being able to sense its
surroundings, the ReVolt cannot anticipate any potential collisions. There is no way to
ensure that collisions are avoided without the data from the vision sensors. Thus, it is
crucial that the communication is flawless. Finding a sufficient fallback strategy for
the scenario where this communication is lost is difficult. The option that is closest to

7.1. OVERALL SYSTEM 87

guaranteeing safety is: setting the thrusters in neutral positions and cast the anchor.
This means that it might be necessary to equip the ReVolt with an anchor. If this is not
done, the ReVolt will either be navigating blind, or drifting in the water waiting for
help, if the communication breaks down.

Incorrect or missing sensor measurements
The ReVolt has four different sensors that are used for navigational purposes; a Hemi-
sphere GNSS receiver, an Xsens sensor (combined IMU, INS and GNSS), a Lidar and two
RGB-cameras. The information from each sensor is crucial for the ReVolt to function
properly, and to avoid hazards.

• Without data from the Hemisphere GNSS receiver, the ReVolt cannot measure
its current position accurately. If the Hemisphere fails, the Xsens sensor can be
used as a backup GNSS receiver. The accuracy of the Xsens’ position estimate
is ± 2 meters, and for the orientation it is ± 0.3 ° (roll), ± 0.3 ° (pitch), ± 1.0 °
(yaw). In comparison, the accuracy of the Hemisphere’s position measurements
is ± 2 cm (with RTK correction data). If the ReVolt has to navigate using the
Xsens measurements, the safety buffers must be adjusted accordingly. Note
that the safety buffers refer to the minimum accepted distance to an object, the
maximum safe speed and so on, this was discussed in the project thesis (Solberg;
2017). The measurements from the Xsens should be used for navigation while
the system attempts to restart the Hemisphere. If a restart of the sensor does
not help, the Xsens should be used to navigate to a predefined safe-place, where
the Hemisphere can be repaired.

• The only data that is normally used from the Xsens is from the inertial measure-
ment unit (IMU); the roll and pitch. The Xsens provides a little higher accuracy
than the Hemisphere does for these values. The accuracy for the Hemisphere
is: ± 1.0 ° (roll), ± 1.0 ° (pitch), ± 0.1 ° (yaw). Note that the yaw-measurements
are more accurate for the Hemisphere, and is normally used. If data from the
Xsens is no longer available, it is possible to use the roll and pitch measured by
the Hemisphere. As a consequence the safety buffers, such as maximum speed

88 CHAPTER 7. STPA RESULTS

or safe course, may have to be slightly expanded. Losing the Xsens is not very
critical, as long as the Hemisphere is functioning properly. However, without
the Xsens, there is no backup that can take over in case the Hemisphere loses
functionality.

• The cameras are used to continuously capture the surroundings of the ReVolt
as RGB images. Object recognition is used to detect obstacles on the water,
islets, harbours and other obstacles. By combining the images from the cameras
with the data from the Lidar, it is possible to estimate the position of detected
obstacles. The video stream can be sent to the on-shore operator in real-time
for supervision. If the cameras stop working, it is difficult to detect obstacles. It
is possible to perform object recognition using the data from the Lidar alone,
but this will require more advanced algorithms. It has to be considered which
functionality is sufficient to implement on the ReVolt. Object recognition from
depth data are among the qualities that may have to be implemented for safety
assurance.

• The Lidar is used to map the ReVolt’s surroundings as a 3D point cloud model.
It can estimate the distance to everything around it. The Lidar that is planned
to use has a range of 100 meters. Using this data, the obstacle avoidance can
estimate the position of objects that are discovered by the object recognition
algorithm. Without the data from the Lidar, the ReVolt cannot estimate the
distance to obstacles around it. This information is necessary to perform path
planning with collision avoidance. The safest fallback strategy for the scenario
where the Lidar data is lost, may be going into DP-mode until the error is fixed.

It is important that the loss of a sensor is discovered as early as possible. The sooner
the error is detected, the sooner the ReVolt can perform the planned fallback strategy.
Continuing normal operation without one of these sensors can allow hazards to hap-
pen. If hazards occur, accidents and losses may occur.
A sensor may lose power, and will stop providing sensor data. Providing the most
vital sensors with a backup power source may increase the reliability of the sensors.
Malfunction of the sensors is difficult to predict, and the easiest way to handle sensor

7.1. OVERALL SYSTEM 89

failures is by redundancy. However, redundancy can also be expensive. The Hemi-
sphere VS330 RTK Heading Receiver Kit alone, costs almost 100 000 NOK. Keeping an
extra Hemisphere on the ReVolt as back-up in case the other one stops working, is an
expensive solution.
Detect incorrect sensor data must also be considered. Sensors can "freeze", have spike
values, offset values and so on. Using data like this can be dangerous. Logical checks
must be set up for the sensor inputs, and any erroneous data must be rejected. However,
it is important that good sensor data is not rejected. A real-time system needs all its
sensor inputs to guarantee safety.

Time delays in the reference channels
It is important that the system is only working on the real-time data. Working on old
data, believing it is real-time data, can have fatal consequences. All collected sensor
data should be marked with a time-stamp. Before the data is used, their time-stamp
must be checked and verified. Old data must be rejected. If the position estimator
uses old data, the ReVolt’s position belief will lag. An incorrect position belief will
cause problems for the navigation controller. The navigation controller will attempt to
control the ReVolt’s position, while having an incorrect position estimate. The applied
control actions will appear to have a different effect than what is expected. This may
cause the system to believe there is something wrong with the Hemisphere, and choose
to use the less precise Xsens data instead.
Working on old data from the vision sensors can be just as critical. Objects may not be
detected until it is too late to avoid a collision. Also, the system may falsely believe
that detected objects are further away than they really are. The surroundings of the
ReVolt may have changed significantly since the vision data was recorded.
There are various reasons that may cause data to be delayed.
It might be a flaw or a failure in the transmission of the data in the reference channel.
Using the ROS-communication protocol, it is possible to set up buffers at the receiving
end of a topic, where incoming messages are stored until the system wishes to access
them. It must be carefully considered which topics (communication channels) require
a buffer and the consequences it might have. The data will be read from the topic in

90 CHAPTER 7. STPA RESULTS

the order it was received, meaning the most recent sensor data will be read last. All
possible causes of delayed data should be studied, in order to avoid this from happening.
These causes may be discovered in a complete STPA analysis.

7.2 The Force Controller

This is mainly aimed to be a study which investigates the potential of using STPA as the
hazard analysis technique for a system like the ReVolt. It is too extensive for a single
person to perform a complete analysis of the ReVolt. Therefore, as explained previously,
the STPA analysis was stopped at level four. It provided some useful information for
the system engineers. To fully investigate the method’s full potential, it was chosen
to attempt carrying out an analysis of a chosen controller to a higher level. For this
purpose, the force controller was chosen. This decision was made together with with
the supervisors.

Choosing an arbitrary controller turned out to be a poor strategy. One of the most
important aspects of STPA is the hierarchical system structure; each controller en-
forces constraints on the controllers further down in the structure. Without having
completed the analysis of the controller above the force controller, not all the necessary
constraints have been enforced on the force controller yet. This may have resulted in
more safety constraints being enforced on the force controller than what was necessary.
Since the results would not be optimal, it was decided to choose only one of the UCAs
of the force controller, which will still suffice for concept demonstration. The chosen
scenario is:

Controller: Force Controller
Control Action: Apply force command
Unsafe Control Action: Command is provided, but is unsafe.

Figure 7.8 shows the selected part of the analysis at level 4. Figure 7.9 shows the
expanded version of the analysis, when it is taken to higher levels. In this case, it is

7.2. THE FORCE CONTROLLER 91

Figure 7.8: STPA analysis to level 4

taken to level 8. The eight lines in excel are expanded to 31 lines with the higher level
analysis. The analysis is almost four times as large. This provides a rough overview of
the potential size of the complete analysis. The analysis to level four, for one hazard,
exceeded 800 lines of code, which means that the completed analysis for the same haz-
ard will most likely exceed at least 3200 lines. The analysis for one accident with two
hazards may then exceed 6400 lines. This seems overwhelming for an inexperienced
STPA analyst, who may not even know all the details of the ReVolt that well, due to
the lack of documentation. It is also important to note that the analysis presented in
Figure 7.9 may need to be taken to even higher levels. As was discussed in Chapter
4, it is difficult to know how many levels of the STPA are required to consider the
analysis complete. Here, it seemed like the defined constraints gave restrictions that
are specific enough for the engineers to work with.

92 CHAPTER 7. STPA RESULTS

Figure 7.9: Partial STPA analysis to level 8

Chapter 8

Discussion

8.1 STPA Framework

8.1.1 Advantages and Disadvantages

The STPA framework designed by Glomsrud offers a set of advantages to the analyst.

• The Excel framework gathers all the information related to the analysis in one
place. There are three separate tables, but they are all tied together in the end.
The information from the first two tables; the accident and hazard overview
and the controller overview (Step 0), is used to generate the framework for the
table used in STPA Step 1 and 2. When the Step 0 tables are completed, one can
simply start "filling out the gaps" in the auto-generated STPA-table. This is more
intuitive to work with, and provides a well-organized structure. Compared to
using the five separate tables that is originally designed for STPA, Glomsrud’s
framework is easier to work with.

• If any changes are done in the first two tables (Step 0), the changes are automat-
ically updated in the final table. This way, it is easy to confirm that all tables are
based on the same version of the system.

93

94 CHAPTER 8. DISCUSSION

• The auto-generated table for Step 1 and 2 ensures that all potentially unsafe
control actions are considered. This way, no UCAs can be forgotten or ignored.
The only way a UCA can be left out of the analysis, is that the analyst incorrectly
decides a control action is safe.

• The number-ID makes it easier to keep track of which hazards and controllers
the scenarios and constraints are derived from.

Also, a few challenges have been encountered while working with the Excel framework.

• When performing Step 1 and 2 of the analysis to higher levels, the scenarios
and constraints at all levels look more or less the same. It makes it hard to
grasp the depth-perspective of the analysis. In the analysis shown in Figure
7.9, indentation is used to separate the higher levels from the low ones. The
left-most column indicates the level of each scenario and constraint, but the
indentation improves the readability of the tables.

• As explained in Chapter 4, each UCA must be analyzed using the control loop
presented in figure 4.12, where the four types of accident causes are listed.
Accident cause may be a misleading notation. They are causes of unsafe control.
Unsafe control actions might lead to an accident, but will not always lead to an
accident. However, it should be considered to add these to the auto-generated
table. So that for each potentially unsafe control action, the table requires that
all possible scenarios and causes of an unsafe control action are considered. In
some cases, an unsafe control action may have more than one cause of the same
category (AC1, AC2, AC3, or AC4). Meaning it can have two causes of category
AC1. Where this is the case, it must be up to the operator to add the extra rows
that might be necessary.

• With the STPA table design, it is difficult to add rows in the middle of the table
for Step 1 and 2. If a small mistake is made when inserting a new row, the
part of the table below the inserted row may become flawed. Some columns
may become offset relative to the other columns. If possible, it can be helpful
to develop a small set of functions for the framework, such as those shown in

8.2. UML DOCUMENTATION 95

Figure 8.1. The first two buttons add a single line, the third adds eight rows (4
scenarios and 4 constraints), the fourth one deletes a specified number of rows.

Figure 8.1: Proposed added functionality to STPA table for Step 1 and 2

8.1.2 Evaluation

The Excel framework has been easy to adapt to and work with. The changes that have
been done to the Excel framework, since the project thesis (Solberg; 2017) was written,
have improved the framework greatly. The results from the analysis performed in
Solberg (2017) could not be used to create any guidelines for the future design of the
ReVolt. The analysis performed as a part of this Master thesis is significantly larger
in size, but it also contributes to several design guidelines for the ReVolt. This is a
result of the changes done to the Excel framework. It assists the analyst in finding the
natural next step of the analysis process. This framework is more intuitive and easy to
use than Leveson’s tables, of course depending on the preferences of the analyst.

8.2 UML Documentation

The UML diagrams presented in Chapter 6 were designed before the STPA analysis
was performed. These diagrams were actively used as the analysis was performed.
The diagrams served as support for the analyst, providing details of the system while
the system was analyzed. The visual language made it easier to examine details of the
system quickly, rather than having to find the correct part of the software or looking
it up in (Alfheim and Muggerud; 2017a).
The reason why UML was chosen for this purpose is that it is considered an (unofficial)
universal standard for software documentation. There are most likely other options
for SW documentation that could serve the same purpose. However, most software
engineers are at least acquainted with UML, which is very often the preferred tool

96 CHAPTER 8. DISCUSSION

for software documentation and describing system behaviour. It is possible to create
UML diagrams without knowing the entire UML language, when only choosing a
few of the diagram types. It is quite common choosing to only work with a subset of
the diagram types. Most of the UML diagrams are quite intuitive to understand for
readers, and there is plenty of supplementary literature available online. Also, there
are many options of open-source software that can be used to create the diagrams. For
this project, draw.io has been used. It might be beneficial to use software that offers
more functionality than this option, but it works for illustrative purposes.
The 13 types of UML diagrams are grouped into two categories; structural and be-
haviour diagrams. The STPA analysis is mainly analyzing the behaviour of a system.
Hence, most of the UML diagrams chosen to advance the analysis are behavioral
diagrams. The use-case, state machine, activity and sequence diagrams help describe
the overall system behavior, as well as the detailed internal system behavior. The class
diagram was chosen to identify all the components of the system and providing a brief
overview of their functionality. The five chosen diagram types are among the most
commonly used types of UML diagrams.

So, which advantages can the UML diagrams offer to the STPA analysis?
The analyst is usually not the one designing and implementing the system software.
Understanding the complete functionality and all the details of a system one has not
seen before may require a significant amount of time. Having to go through the process
of describing a system’s behavior can help the analyst get to know and understand
the system better. This way, it reduces the number of times the analyst needs to go
back to study details of the system he/she might have ignored or forgotten. Having a
well-structured, visual representation of the system is advantageous. It makes it easier
to find the answers to questions the analyst may have while performing the analysis.
It is also easier to present the system to others, who are not familiar with the system,
when UML diagrams are available.

STPA is a very young method, which still lacks a strong, solid framework. An STPA
analysis will typically be quite large, and will require the analyst(s) to be very struc-

8.3. HARDWARE DOCUMENTATION 97

tured to guarantee that the analysis is performed correctly. By having the system
properly documented with UML diagrams, it is easier to perform the STPA analysis,
because system information is easily accessible. The easier it is to access required
information about the system, the more effectively the analysis can be done.

Developing UML documentation for a system that is not yet finished can help strength
the design. Using STPA along with the UML documentation, one can develop a system
with a safety-guided design. In fact, UML diagrams should be created before a system
is developed. It makes it easier to create well organized, structured system software.

By combining the UML documentation with the SAHRA framework, introduced in
Chapter 3, UML could serve as a universal language for STPA. UML already being a
universal standard for software documentation, it can be advantageous to base STPA
on UML, by using an alternative such as SAHRA. By making UML documentation a
mandatory, preparatory step of STPA and using e.g. the SAHRA framework, UML
might become the universal language for STPA.

Is it really worth spending the time it takes to design and draw the diagrams? And was
it easier to perform the analysis with the documentation in place? Creating UML docu-
mentation for a system you do not know can be challenging and time-consuming. Still,
without it, the STPA analysis becomes even more challenging and time-consuming.
When performing an analysis with only a mental model of the system, faults are
doomed to happen. Keeping a consistent and complete mental model of such a com-
plex system as the ReVolt is almost impossible. By keeping structured behavioural
diagrams, as well as hardware documentation, the risk of introducing analysis failures
can be significantly reduced.

8.3 Hardware Documentation

Having never worked with much hardware documentation before, it was challenging
to know where to start when studying which types of documentation can be used.

98 CHAPTER 8. DISCUSSION

Supervisor Onshus recommended using redundancy block diagrams. RBDs are dia-
grams which models the reliability of single components and how reliable a system is
based on the composition of its components. This can be useful using alongside the
STPA analysis when considering the need for backup solutions for critical hardware
components. There has not been spent a lot of time designing RBDs, due to the lack of
redundant components onboard at this time. In Chapter 7 it was discussed which sen-
sors and actuators it can be critical to lose. It was concluded that it might be necessary
to add backup components, which will increase the level of system redundancy. In
this case, a redundancy diagram would provide more information.

The main motivation for including hardware documentation was simply to provide an
overview of the hardware components and how they are connected. The designers
of the ReVolt did not provide any wiring diagrams. This should ideally have been
drawn before installing all the hardware onboard. Now that many components are
hidden inside boxes onboard the vessel, it is difficult to find all the details. It has been
attempted to create some approximate sketches, which were presented in Chapter 6.
These sketches do not contain all details, but shows all the hardware components of
the ReVolt and roughly explains how they are connected. Some information is missing
from these diagrams, such as power sources for the individual components are not
shown, because it is not possible to find without unscrewing the boxes, and taking
them apart.

It is important to know which hardware components are used in the system and
how they are connected while performing an STPA analysis. It is important that the
hardware that is added or modified by others in the future is documented, if it is
desirable to analyze the system safety. It is important to consider which components
are critical for sufficient system operation.

8.4. CHALLENGES 99

8.4 Challenges

Even though working with both STPA and the ReVolt has been very interesting
and educational, it has been slightly frustrating and challenging at times. The most
significant challenges will be briefly discussed here.

• It has been emphasized several times that the lack of documentation has com-
plicated the work in this thesis and in the project thesis (Solberg; 2017). Not
knowing the system completely makes it difficult to perform a sufficient safety
analysis. Every line of code and the work done in (Alfheim andMuggerud; 2017a)
has been carefully studied. Based on the available information, the hardware was
documented. An updated ReVolt version was designed for the purpose of making
behavioral diagrams that can be useful for further development of the ReVolt.
The updated model is based on the old control structure of the ReVolt, and is
intended to show what the ReVolt is expected to look like. The actual ReVolt
model will most likely differ from the model designed in this thesis. Hopefully
the structures will be similar, so that the STPA analysis performed here can be
used for future development.

• An STPA analysis of the ReVolt is an excessive task. An analysis like this should
be performed by experts, who are familiar with the technique and the type of
system. It has at times felt like a race with time, when not being completely
aware of the extent of the analysis.

• Working alone on such a complex analysis is difficult. Having never worked
with hardware and/or software systems this extensive before, it is a significant
transition working with and understanding the ReVolt. It is stated that it is
beneficial to perform Step 2 of the STPA with a team of analysts. It is challenging
to come upwith all potential accidents. Even with the improved Excel framework
it is easy to ignore details that may have fatal consequences.

• Since STPA is a relatively new method it is difficult to find good examples. The
method has been tested within a wide range of subject areas, such as autonomous

100 CHAPTER 8. DISCUSSION

vehicles, aerospace, airplanes and more. However, the documentation of the
STPA process itself is limited in most cases. Therefore, the main source of
inspiration for how the STPA procedure is performed is found in Leveson’s train
door example. The train door is a basic example, only containing one controller
with only discrete variables (e.g. train moving/train stopped, door open/door
closed). The train door is not always sufficient for illustrating the challenges that
can be encountered while working with STPA. Other examples include systems
that are too complex to understand for someone who are not familiar with the
type of technology.

To summarize, STPA is a difficult method, but it has great potential with the right aids
and tools.

Chapter 9

Future work

There are endless possibilities when it comes to further work with both STPA and the
ReVolt. Some of them will be discussed in this section.
Before the ReVolt is developed further, a concrete plan should be made for its goal state.
All details should be planned and documented thoroughly. The hardware components
must be planned for, and wiring diagrams must be drawn. The functionality can
be visualized with a set of UML diagrams. A complete control structure should be
designed to provide guidelines for the software design. The communication flow must
be clearly stated to provide a well-structured ROS framework, this can be done with
UML.

Once a satisfactory system description is in place, the continued system develop-
ment can take place. If the chosen control system is very different from the one that
has been used until now, the development process may have to start from scratch.
Readability and structure must be the main focus of a project such as this one. Where
the project is sent from one developer to the next without all the necessary information
sharing.

With a well-documented, complete project plan, the STPA safety analysis can be

101

102 CHAPTER 9. FUTURE WORK

performed alongside the development. This way, the STPA analysis can provide useful
inputs for the system developers. If it is decided to make any changes to the planned
system design, it is important that all of the developers and the safety analysts are
informed.
If the development process continues as it has until now, without providing detailed
plans for development, it is almost impossible to guarantee safety.

In fact, it is planned to develop an autonomous shuttle ferry in Trondheim (Brekke;
2017). This ferry will most likely be based on the ReVolt. The ferry is planned to go
from Ravnkloa to Fosenkaia, and to board up to 12 passengers at the time. It is an
area where it is quite likely to meet other vessels, and will have to be able to navigate
around them. The developers must be able to guarantee a safe system, that do not
cause collisions. As has been demonstrated in this thesis, it is a complicated task.
However, it is an extremely important task. It is important that the autonomous ferry
project keeps safety as its main focus.

Appendix A

SW and HW documentation

103

104 APPENDIX A. SW AND HW DOCUMENTATION

Figure A.1: Sequence diagram showing the detailed operation of control signals being
calculated and applied to the thrusters

105

Figure A.2: Part of the class diagram, showing details of the system actuators

106 APPENDIX A. SW AND HW DOCUMENTATION

Figure A.3: Part of the class diagram, showing details of the system controllers

107

Figure A.4: Part of the class diagram, showing details of the system sensors

108 APPENDIX A. SW AND HW DOCUMENTATION

Figure A.5: Sub-states of the operative state

Figure A.6: Sub-states of the degraded state

Appendix B

Process models

109

110 APPENDIX B. PROCESS MODELS

Figure B.1: Process model for the operator

111

Figure B.2: Process model for the obstacle avoidance

112 APPENDIX B. PROCESS MODELS

Figure B.3: Process model for the navigation controller

113

Figure B.4: Process model for the force controller

114 APPENDIX B. PROCESS MODELS

Figure B.5: Process model for the thruster allocation

115

Figure B.6: Process model for the bow controller

116 APPENDIX B. PROCESS MODELS

Figure B.7: Process model for the stern controller

117

Figure B.8: Process model for the stepper controller

118 APPENDIX B. PROCESS MODELS

Appendix C

Miscellaneous

119

120 APPENDIX C. MISCELLANEOUS

Figure C.1: Auto-generated ROS graph illustrating all ROS nodes and ROS topics - note
that the Hemisphere is not shown in this graph

121

Figure C.2: Shows the components connected to the OBC

Figure C.3: Shows components connected to the Arduino Uno

122 APPENDIX C. MISCELLANEOUS

Figure C.4: Shows components connected to the Arduino Mega

References

Alfheim, H. and Muggerud, K. (2017a). Development of a Dynamic Positioning System
for the ReVolt Model Ship, Master’s thesis, Norwegian University of Science and
Technology.

Alfheim, H. and Muggerud, K. (2017b). Revolt user manual.

Arduino Mega 2560 (n.d.). [Online; retrieved 26-May-2018].
URL: https://store.arduino.cc/arduino-mega-2560-rev3

Arduino Uno (n.d.). [Online; retrieved 26-May-2018].
URL: https://store.arduino.cc/arduino-uno-rev3

Brekke, E. F. (2017). Autonomous shuttle ferry in trondheim, "https://www.sintef.
no/globalassets/project/hfc/sarepta/4-ntnu-autonomus-ferry-efb.pdf.
[Online; accessed 31-May-2018].

CambridgeDictionary (2017a). Cambridge dictionary: definition reliable, "https://
dictionary.cambridge.org/dictionary/english/reliable. [Online; accessed
5-December-2017].

CambridgeDictionary (2017b). Cambridge dictionary: definition reliable, "https:
//dictionary.cambridge.org/dictionary/english/safety. [Online; accessed
5-December-2017].

Delligatti, L. (2014). SysML Distilled: A Brief Guide to the Systems Modeling Language,
Addison-Wesley Professional.

123

https://www.sintef.no/globalassets/project/hfc/sarepta/4-ntnu-autonomus-ferry-efb.pdf
https://www.sintef.no/globalassets/project/hfc/sarepta/4-ntnu-autonomus-ferry-efb.pdf
https://dictionary.cambridge.org/dictionary/english/reliable
https://dictionary.cambridge.org/dictionary/english/reliable
https://dictionary.cambridge.org/dictionary/english/safety
https://dictionary.cambridge.org/dictionary/english/safety

124 REFERENCES

Denning, R. (2017). Applied R and M Manual for Defence Systems, Part C Techniques.
Reliability Block Diagrams Contents the Nature of a Reliability Block Diagram, UK
SARS.

Fowler, M. (2004). UML Distilled, Third edition - A brief guide to the standard object
modelling language, Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA.

Hemisphere (n.d.). Vector vs330 gnss compass, "https://
hemispheregnss.com/Products/Products/Position-Heading/

vector-vs330e284a2-gnss-compass-94. [Online; accessed 2-December-2017].

Krauss, S. S., Rejzek, M. and Hilbes, C. (2015a). Tool Qualification Considerations for
Tools Supporting STPA, Procedia Engineering 128: 15–24.
URL: http://dx.doi.org/10.1016/j.proeng.2015.11.500

Krauss, S. S., Rejzek, M. and Hilbes, C. (2015b). Tool Qualification Considerations for
Tools Supporting STPA, Procedia Engineering pp. 15–24.
URL: http://dx.doi.org/10.1016/j.proeng.2015.11.500

Leveson, N. (2004). A new accident model for engineering safer systems, Safety Science
42(4): 237–270.

Leveson, N. G. (2011). Engineering a Safer World: Systems Thinking Applied to Safety,
The MIT Press.
URL: http://medcontent.metapress.com/index/A65RM03P4874243N.pdf

Leveson, N. and Thomas, J. (2015). An STPA Primer.

Safety-Critical Systems Research Lab Team of ZHAW, Z. U. o. A. S. (2017). The new
enterprise architect extension for stpa sahra. [Online; accessed 1-April-2018].
URL: http://www.sahra.ch/

Solberg, C. L. (2017). Design and Verification of Safety Critical Systems, STAMP and
STPA analysis of the ReVolt.

https://hemispheregnss.com/Products/Products/Position-Heading/vector-vs330e284a2-gnss-compass-94
https://hemispheregnss.com/Products/Products/Position-Heading/vector-vs330e284a2-gnss-compass-94
https://hemispheregnss.com/Products/Products/Position-Heading/vector-vs330e284a2-gnss-compass-94

REFERENCES 125

Thomas, J. (2013). Extending and Automating a Systems-Theoretic Hazard Analysis
for Requirements Generation and Analysis, PhD thesis, Massachusetts Institute of
Technology.

Tvete, H. A. (n.d.). The revolt, a new inspirational ship concept, "https://www.
dnvgl.com/technology-innovation/revolt/index.html. [Online; accessed 20-
November-2017].

Xsens (n.d.). Mti-g-710, "https://www.xsens.com/products/mti-g-710/. [Online;
accessed 2-December-2017].

https://www.dnvgl.com/technology-innovation/revolt/index.html
https://www.dnvgl.com/technology-innovation/revolt/index.html
https://www.xsens.com/products/mti-g-710/

	Preface
	Abstract
	Sammendrag
	Introduction
	Background
	Problem Description
	Motivation
	ReVolt
	System-Theoretic Process Analysis - STPA
	Personal Motivation

	Abbreviations
	Outline

	Conclusions
	Background Theory
	Description of STAMP (Systems-Theoretic Accident Model and Processes) and STPA
	Why Use STPA?

	Unified Modelling Language - UML
	Redundancy Block Diagram - RBD
	Proposed Improvements to STPA
	Maneuvering Capacity

	Existing Work on STPA with UML
	STPA based Hazard and Risk Analysis - SAHRA

	Tools and Tables Used in the STPA Analysis
	Improved and extended STPA analysis
	The Train Door Example
	Leveson's STPA Tools and Framework
	Step 0 - Defining Accidents and Hazards
	Step 1 - Defining Unsafe Control Actions
	Step 2 - Identify the Causes of and the Scenarios Leading to Unsafe Control Actions

	Proposing a Modified Framework for STPA
	Step 0
	Step 1
	Step 2

	The ReVolt
	The ReVolt Model
	Operational Modes
	The Hardware
	The Software

	System Description using UML and RBD
	Description of the Modeled System
	Software and System Behavior - UML
	Use-Case Diagram
	Activity Diagram
	Sequence Diagram
	State Machine Diagram
	Class Diagram
	UML contributions to the analysis

	Hardware
	RBD

	STPA Results
	Overall System
	The Force Controller

	Discussion
	STPA Framework
	Advantages and Disadvantages
	Evaluation

	UML Documentation
	Hardware Documentation
	Challenges

	Future work
	SW and HW documentation
	Process models
	Miscellaneous
	References

