
Dynamic Real-Time Optimisation of an
Amine-Based Post-Combustion CO2
Capture Facility using Single-Level
Nonlinear Model Predictive Control

Mathilde Hotvedt

Master of Science in Cybernetics and Robotics

Supervisor: Lars Imsland, ITK
Co-supervisor: Svein Olav Hauger, Cybernetica AS

Fredrik Gjertsen, Cybernetica AS

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology



 



Preface
This Master’s thesis was written in collaboration with Cybernetica AS, who
suggested the research questions investigated in this thesis. Cybernetica AS has
made their software tools Modelfit, CENIT and RealSim available for investigation
of the research questions and have provided assistance for utilisation of the tools.
The thesis has utilised previous work done in a Project thesis during autumn
2017, which has been enclosed for the interested reader, although contents relevant
for this thesis have been included in condensed form for completeness. Further
description of Cybernetica AS involvement may be found in Chapter 1, in particular
Sections 1.3-1.5, and a deeper explanation of software tools and for what task
they have been applied may be found in Chapter 3. For the interested reader, has
it been decided with support from Cybernetica AS, to write a conference paper
based on the result in this thesis. The conference paper is in progress, a draft
may be found in Appendix B, and will hopefully be published in 2019.

June 1, 2018, Trondheim, Norway
Mathilde Hotvedt

i





Abstract
A complete model of a CO2 capture facility has been optimised with the aid of
Dynamic Real-Time Optimisation (DRTO) utilising single-level, Nonlinear Model
Predictive Control to merge regulatory and economic objectives. The goal has been
to, during 24 hours, minimise the cost related to the energy consumption in the
reboiler by variable solvent regeneration, whilst achieving a specified accumulated,
or overall, capture ratio of CO2 at the end of the simulation horizon. An hourly
varying price of energy with a period of 24 hours have been included in the
optimisation problem.

The complete model is based on a previous model from Cybernetica AS, the original
model, with model reductions suggested by Hotvedt (2017) for the absorber,
desorber and heat exchanger. The suggestions included modelling using molar
amounts as state variables for each substance in the facility and discretising the
unit models in space using control volumes. The complete reduced model has been
validated against the original model in addition to instrumental measurements
from an existing test facility at Tiller in Trondheim (SINTEF, 2017). It was found
the reduced model yielded adequate behaviour although with deviations from both
the original model responses and instrumental measurements. Introduction of
simple estimator; bias updating, removed the deviations significantly. Eigenvalue
analysis of the original and the reduced model were performed, and results show
that the reduced model yielded only minor reductions in stiffness. On the other
hand, the reductions decreased the dimension of the state space with 225 states,
resulting in a simulation time reduction of ≈ 73%.

The DRTO was designed using the infeasible soft-constraint method where con-
straints on the energy costs have been set infeasible. Results from simulation show
that the DRTO is able to achieve the reference accumulated capture ratio after 24
hours in addition to utilise the time varying price of energy to minimise cost. The
performance was compared to a basic case where the accumulated capture ratio
of CO2 was forced constant during the prediction horizon, obtaining a constant
solvent regeneration, and a cost reduction of 13.0% and 10.9% was found using a
reference value for the accumulated capture ratio of 85% and 91% respectively.
The DRTO was further tested for robustness by firstly inducing a step change
in inlet conditions of the flue gas, secondly by abruptly increasing the price of
energy and lastly by applying stricter constraints on the reboiler duty. The DRTO
accomplished the capture goal in all cases, except for a step in inlet conditions
close to the end of the simulation horizon. Lastly, the optimal solution resulted in
unnecessary use of reboiler duty analysing a simulated plant replacement model,
and consequently was bias updating introduced to enhance cost minimisation.
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Sammendrag
En fullstendig modell av et CO2 fangstanlegg har blitt optimalisert ved bruk av
en Dynamisk Sanntids Optimeringsalgoritme (DRTO) hvor et ett-nivås Ulinær
Model Prediktiv Regulator (MPC) kombinerer økonomiske og regulatoriske mål.
Hensikten har vært å minimere kostanden relatert til energibehovet i kokeren i
løpet av et døgn ved bruk av variabel regenerering av aminløsingen, samt å nå et
referansemål for fangstgraden av CO2 etter 24 timer. Optimering har tatt hensyn
til en tidsvarierende energipris med periode på 24 timer.

Den fullstendige modellen er basert på en tidligere modell fra Cybernetica AS,
den originale modellen, med modellreduksjoner fra Hotvedt (2017) for absorberen,
desorberen og varmeveksleren. Reduksjonene besto i å modellere enhetene med
molare mengder som tilstandsvariable for hver av substansene i anlegget, samt
å diskretisere likningene romlig ved bruk av kontrollvolum. Den fullstendige re-
duserte modellen har blitt sammenlignet med responsen til den originale modellen
i tillegg til instrumentelle målinger fra et eksisterende testanlegg på Tiller i Trond-
heim (SINTEF, 2017). Resultatene viste god respons for den reduserte modellen,
men med avvik fra den originale modellen og målinger. Introduksjon av en enkel
estimator; bias-oppdatering, fjernet avvikene tilstrekkelig. En egenverdianalyse
av både den reduserte modellen og den originale modellen viste at den reduserte
modellen kun ga små reduksjoner i stivheten til systemet. Derimot minket den
reduserte modellen tilstandsrommet med 225 tilstander sammenlignet med den
originale modellen, noe som førte til at simuleringstiden ble redusert med ≈ 73%.

DRTO algoritmen ble designet ved bruk av infeasible soft-constraint metoden
hvor begrensingene på energikostnaden ble satt uoppnåelige. Resultatene viste
at algoritmen oppnådde referansemålet for fangstgrad av CO2 i tillegg til å
utnytte den varierende energiprisen til å redusere kostandene. Resultatene ble
sammenlignet med et tilfelle der fangstgraden ble holdt på et konstant nivå
igjennom hele døgnet, som resulterte i en konstant regenerering av aminløsningen,
og kostnadsreduksjonen ble henholdsvis 13.0% og 10.9% med et referansemål på
85% og 91% fangst. Robustheten til optimeringsalgoritmen ble testet, først med
et sprang i innløpsbetingelsene til røykgassen, så med en økning i energipris for
deretter å innføre strengere begrensinger for energiforbruket i kokeren. Resultatene
viste at algoritmen var robust i de aller fleste tilfeller, med unntak av sprang
i innløpsbetingelser mot slutten av simuleringshorisonten, der målet for fangst
ikke ble nådd. Til slutt, analyse av et simulert CO2 anlegg viste at den optimale
løsningen ga et unødvendig høyt forbruk av energi i kokeren. Derfor ble bias-
oppdatering innført for å minke kostnadene ytterligere.
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Chapter 1

Introduction

According to World Meterological Organization (2017), was 2017 not only a
year with numerous weather and climate events such as devastating hurricanes,
floods, heatwaves, draughts and fires, but also among the third warmest years
on record. WMO states that the extreme weather is most likely caused by the
steadily increasing average global temperature, which is further caused by the
human made emissions of greenhouse gases into the atmosphere, whereby the most
prominent gas is carbon dioxide (CO2). In fact, Olivier et al. (2017) reports that
the global greenhouse gas emissions reached 49.3 gigatonnes of CO2 equivalents in
2016, which is an increase of shockingly 50% compared to 1990. Three economic
sectors stand out when it comes to greenhouse gas emissions to the atmosphere
on a global basis. Production of electricity and heat by the use of fossil fuels,
agriculture along with forestry and land use, and industry such as cement and
fertiliser production (Olivier et al., 2017). In addition, transportation utilising
fossil fuels together with emissions from buildings are also contributing greatly.
In Norway, emissions due to electricity production are only minor as most of the
production utilise renewable sources such as water. However, numbers from 2016
(SSB, 2017) show that Norway contributed with 53.3 million tonnes to the global
emissions, in which most of it comes from oil- and gas production, industry and
transportation. If Norway and the rest of the world are to contribute towards
stalling of the global warming and its devastating consequences, a higher focus on
decreasing human made greenhouse gas emissions is essential.

In 2015, Norway was among the 196 countries that established The Paris agreement
(European Commission, 2018b), a legally binding climate deal with a long term
goal of keeping the global temperature increase below 2◦C compared to pre-
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CHAPTER 1. INTRODUCTION

industrial levels. The goal of the agreement was to limit the severe consequences
that global warming could bring. In order to meet this goal, the global emissions
of greenhouse gases to the atmosphere, and especially CO2, have to be reduced
extensively in the coming years, and in the end be abolished completely. Even
though the numbers from 2016 show that Norway largely contributes to the global
greenhouse gas emissions, they also show that the percentage change in emissions
from the oil and gas, industrial and transportation sector have been reduced since
2015 (SSB, 2017). This fact suggest that Norway’s increased focus on reducing
greenhouse gas emissions is successful.

Norway focuses on reduced emissions of greenhouse gases in several ways. Norway
is for instance a part of the EU Emission Trading System (ETS). This is a system
in which maximum amounts of allowable greenhouse gas emissions exists, and the
countries within the system will have to trade amongst themselves for emission
allowances (European Commission, 2018a). Further, the maximum amount will
decrease each year, forcing a reduction in the overall emissions. Several industries
in Norway, such as the oil and gas industry and cement and fertiliser production,
are covered by the EU ETS. On the other hand, does there exist technologies
that may significantly reduce the CO2 emissions without trading for emission
allowances. Carbon Capture and Storage (CCS) is one such technology. According
to Carbon Capture and Storage Association (2018), is CCS a technology able to
capture approximately 90% on average of the CO2 from exhaust gas of power
plants and other industrial processes. Considering the numbers from SSB (2017)
which suggest that approximately 26 million tonnes of CO2 were in 2016 released
into the atmosphere due to the aforementioned industries in Norway, will CCS
installed in all these industries reduce emissions with approximately 23.4 million
tonnes. This amount is approximately twice the amount of Norway’s predicted
reductions within the transportation sector if all suggested preventive actions
are introduced (EnergiNorge, 2016). Unfortunately, it is highly unlikely that
all industries in Norway will invest in a carbon capture plant, as the plant is
associated with a large operational energy demand in addition to establishing
costs. In fact, Smith et al. (2013) showed that for a gas-fired power generation
plant, a connected CO2 capture plant would not only increase the operational
cost of the plant but also decrease the power plant efficiency. Consequently, many
factories will not afford having a capture plant attached to their exhaust outlet
and will rather choose to pay for emission allowances from EU ETS.

In order to make CCS a more desirable investment for power and industrial plants,
the operational costs related to the carbon capture process must be reduced. This
thesis therefore investigates the development of control technology to minimise
the cost in relation to the energy requirement of the CO2 capture process, over a
time horizon of 24 hours. With this time horizon in mind, the natural periodicity
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of the energy price during 24 hours with high and low peaks may be exploited.
The solvent regeneration, which is the most energy demanding process in the
plant, may thus be varied regarding the energy price, allowing less regeneration
during high peaks of the energy price and high regeneration during the low peaks.
Consequently, will also the capture ratio of CO2 in the facility vary as a high
amount of regeneration results in a high capture ratio and vice versa. Additionally,
such control technology enables a more automatic system without the necessity of
operators, obtaining a further reduction of the total operational costs. Hopefully,
will the results of this thesis contribute towards a more desirable carbon capture
technology such that companies will choose to invest in a capture plant rather
than trading for emission allowances. If so, greenhouse gas emissions to the
atmosphere may be reduced, possible stalling global warming and prevent severe
climate changes and extreme weather conditions.

1.1 Background

The model of the CO2 capture facility that has been used in this thesis to
investigate cost minimisation is a model of an existing test facility located in
SINTEF’s laboratories at Tiller in Trondheim (SINTEF, 2017). Even though
the real facility is a test facility, the model is generic and may be used for full-
scaled facilities by changing certain constants and parameters. The test facility
is a post-combustion facility, which in contrary to a pre-combustion facility that
attempts removal of CO2 from the fuel used in industrial plants, removes the CO2

component from the exhaust gas of industrial processes (Carbon Capture and
Storage Association, 2018). The technique used to remove CO2 from the exhaust
gas in the Tiller facility is absorption using the solvent monoethanolamine (MEA).
According to Wang et al. (2017), is absorption with MEA a suitable way to remove
CO2 from exhaust gas, and most used due to a high reaction rate between the
MEA and the CO2. The MEA is mixed with H2O and referred to as the lean
liquid solution. In contrary, is the liquid solution with absorbed CO2 referred to
as the rich solution. Figure 1.1 illustrates the unit models and connections of the
Tiller facility.
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Figure 1.1: Overview of the unit models in the CO2 capture facility at Tiller and
connections between the models (Hotvedt, 2017)

In the absorber or absorption tower, the exhaust gas consisting of the components
H2O vapour, CO2, MEA, N2 and O2 is inlet at the bottom of the column and flows
upwards. In the top of the absorber, the lean liquid solution that is pre-cooled by
the lean cooler is inlet and will flow counter currently to the exhaust gas. The
MEA in the liquid and the CO2 in the exhaust gas will thus be exposed to each
other and a reaction occur such that the CO2 is absorbed into the MEA. The
rich solution will leave the absorber sump and enter the heat exchanger counter
currently with the relatively hotter lean solution coming from the desorber or
stripping tower. The rich solution is hence preheated before it enters the top of
the desorber where the MEA is to be regenerated. The regeneration is the most
energy demanding process in the facility. In the desorber, the reboiler adds heat
such that the temperature of the rich liquid solution increases. Resultantly, will
the MEA release the absorbed CO2 and a stream of CO2, H2O vapour and some
MEA vapour will enter the condenser, and a leaner liquid solution will exit the
desorber. In the reboiler the leaner solution is additionally boiled such that more
CO2 is released from the MEA and the MEA may be circulated back to be used
anew in the absorber. In the condenser, H2O and MEA gas is condensed such
that an approximately 99% pure CO2 gas stream exits the condenser and may
later be compressed and transported away for storage (Wang et al., 2017). In
the test facility at Tiller, two buffer tanks, one for lean and one for rich liquid
solution, also exist for storage if necessary.
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The complete CO2 capture facility at Tiller has previously been modelled by
Flø (2015), and further details about the real facility may be found in her
thesis (Flø, 2015, p. 27). The modelling has been performed using sequential
modular modelling (Westerberg and Piela, 1994), where each of the unit models
of the facility has been modelled separately, and consequently are routines for
calculation of internal inputs to each of the connected unit models also present.
Each of the unit models in Flø (2015) were dynamically modelled using first
principle conservation laws and the use of the orthogonal collocation method for
discretization of the differential equations in space (Arora et al., 2005).

A version of the complete model in Flø (2015) was further developed by Cybernetica
AS. This version will be thoroughly used in this thesis to compare the responses
of the new developed model and will henceforth be referred to as the original
model. Cybernetica AS is a company that specialises in advanced process control
solutions, for instance Model Predictive Control (MPC) for online estimation and
optimisation (Cybernetica AS, 2018). Cybernetica AS found that the large and
complex state space of the original model, with more than 400 states, induced a
high computational effort when performing online estimation and optimisation,
and the model was resulting not well suited for optimisation using large time
horizons. In an attempt at making the model of the facility more suitable for
such conditions, Hotvedt (2017) experimented with model reductions of three
of the unit models, the absorber, desorber and heat exchanger. The collocation
method for discretization in space was substituted with the simpler control volume
method, and additionally were the state space changed from using molar flows to
molar amounts as state variables for each of the substances in the liquid and gas.
The responses of the reduced unit models in Hotvedt (2017) were compared to
the responses of original unit models, and an adequate correspondence was found
using 10 control volumes in the absorber and desorber, and 2 control volumes
in the heat exchanger. In this thesis, the suggested model reductions for the
three unit models have been incorporated in the original model and the resulting
complete model will hereafter be referred to as the reduced model. The reduced
model have been analysed and validated against the original model considering
modelling errors, system stiffness and simulation time, before it has been used
in optimisation with a time horizon of 24 hours considering costs related to the
energy requirement in the reboiler for MEA regeneration. This thesis however,
is not the first to experiment with long term optimisation of an amine-based
post-combustion CO2 capture facility which have been explained in the following,
Section 1.2.
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1.2 Literature review

As mentioned in Chapter 1, the amine based post-combustion carbon capture
process is able to capture more than 90% of the CO2 in the flue gas from
industrial processes or power plants (Carbon Capture and Storage Association,
2018). However, the stripping process in the desorber requires high amounts
of energy supplied from the reboiler and will consequently induce extra costs
on the industrial plant with the CO2 capture facility attached. Several studies
in literature have tried to minimise the energy requirement, and thus the cost,
related to the stripping process. Flø et al. (2015) used basic PI controllers in
order to minimise the reboiler duty with the presence of a variable energy marked,
both for a variable energy demand and for a variable energy price during 24 hours.
The study investigated several different flexible modes; load following, exhaust gas
venting, a varying degree of solvent regeneration and solvent storage. However,
Flø et al. (2015) found that due to the basic controllers, the goal of an average
capture ratio of 90% was not reached in some of the modes. Other studies utilises
more advanced control techniques such as Model Predictive Control (MPC) to
increase the performance of the capture facility.

MPC is an highly beneficial technology that are able to handle large multiple-input
multiple-output (MIMO) systems, system constraints and regulatory objectives
in addition to utilising feedback from the system response (Foss and Heirung,
2016). The control technology is also able to handle nonlinear constraints, which
is the concept of a Nonlinear MPC (NMPC). Several types of (N)MPC have
been explored in literature to minimise the energy consumption related to the
CO2 capture. Some have utilised standard (N)MPC where the objective function
consists of regulatory objectives. For instance, Laird et al. (2012) investigated the
use of NMPC to minimise the energy consumption in the reboiler. However, only
a reduced-order model implementing the separation unit consisting of desorber,
reboiler and condenser was utilised. The study found that the control solution
minimised the energy consumption adequately, however, as the study only included
the separation unit, effects the rest of the facility might inflict on the energy
consumption was not examined. Sahraei and Ricardez-Sandoval (2014) on the
other hand, used a complete model of an amine-based post-combustion CO2

facility together with a linear MPC to prove the superiority of the MPC over basic
PI-controllers. The study showed how the control solution could consider energy
and environmental constraints and stated that the solution could be suitable for
inclusion of economic objectives as well as regulatory objectives.

When economic objectives are to be included in the optimisation design, quite
common in literature is the use of multilevel controllers. The upper level will
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typically solve the economic objectives providing setpoints to the lower level
controlling the regulatory performance of the plant. For instance, Arce et al.
(2012) studied the use of a multilevel MPC on the reboiler of a CO2 capture
facility. The upper layer included a variable price of both CO2 emission fees and
electricity to find the optimal energy utilisation during 24 hours for operational cost
minimisation. The upper layer provided setpoints to the the lower level controller
which regulated the level of liquid solution within the reboiler. The study found
that the use of such a multilevel MPC resulted in a reduction of up to 10% in
energy costs. However, as with Laird et al. (2012), only parts of the complete
capture facility were included in the optimisation analysis, and consequently were
possible downstream effects from the rest of facility ignored. Manaf et al. (2017)
however, investigated the effect of a multilevel hybrid optimisation algorithm on a
full-scale capture facility. A mixed integer nonlinear program (MINLP) were used
on the top level to calculate the optimal carbon capture profile for maximising the
plant’s revenue considering both electricity prices and carbon prices, whereas a
linear MPC were use at the lower level to control the performance of the capture
plant. The results showed a plant net average revenue increase of 6%. Nonetheless,
Maree and Imsland (2011) points out that several difficulties of the multilevel
controller may lead to sub-optimal economic performance. Suggested instead by
several papers including Maree and Imsland (2011), is the use of an integrated,
single-level (N)MPC whereby both economic and regulatory performance are
optimised. This kind of optimisation is often referred to as an Economic MPC
(EMPC) or Dynamic Real-Time Optimisation (DRTO) (Willersrud et al., 2013).

Maree and Imsland (2011) used a DRTO on a simplified non-linear model of a
multi-well oil production plant and found the DRTO to give optimal economic
performance as well as satisfactory control performance. Willersrud et al. (2013)
used two designs of a DRTO to optimise the control of an offshore oil and gas
production plant and found that both designs were able to find the economically
optimal point. However, to the authors’ knowledge, no studies in literature have
experimented with a DRTO on a full-scaled amine-based post-combustion CO2

capture facility. Therefore, in this thesis the performance of such a controller will
be experimented with on a reduced model of the CO2 capture plant at Tiller.

1.3 Assumptions

There are several assumptions made in this thesis that the reader should be made
aware of. Firstly, the original model provided by Cybernetica AS has been utilised
under the perfect model assumption. That is, any modelling errors from the true
facility are ignored. This is done for simplicity, as the original model is the best
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model of the Tiller facility so far regarding performance and fit to measurements.
Further, by the use of another model instead of measurements from a true plant,
one has access to all states for direct comparison of the reduced model to the
original model. One must keep in mind however, that the original model is
likewise a model, and deviations from responses of the true facility may occur.
Consequently, will measurements from a test run at the Tiller facility (courtesy of
SINTEF) be included in the validation of the reduced model against the original
model. These measurements have been assumed to reflect the reality well and
be appropriate for analysis. Furthermore, the suggested reductions from Hotvedt
(2017) only concerned the absorber, desorber and heat exchanger unit models. It
has therefore been assumed that the remaining unit model behaviours, such as
the reboiler and condenser, are adequate. Moreover, has optimisation of the CO2

capture facility been performed assuming that the low-level controllers adjusting
liquid levels, amount of water, mass flow rates, reboiler duty and temperatures
in lean cooler and reboiler behaves flawlessly. That is, the low-level controllers
will ensure that the optimal inputs calculated by the optimisation algorithm
are implemented on the real system. Lastly, due to the design of the objective
function for optimisation, it has been assumed that the local optimum found by
the optimisation algorithm is also a global optimum. If the optimal solution deem
inadequate, global analysis of the optimisation problem should be performed.

1.4 Thesis

The goal of this thesis has been to develop a Dynamic Real-Time Optimisation
Algorithm to minimise the cost related to the energy consumption in the reboiler
for MEA regeneration in a full-scaled, amine-based, post-combustion CO2 capture
facility whilst achieving an accumulated, or overall, specified capture ratio after 24
hours. The model of the CO2 capture facility will be created based on an already
existing model from Cybernetica AS with the suggestions for model reductions
by Hotvedt (2017). The models will further be validated against each other, and
parameter adjustments performed for a better fit of the reduced model to the
original model. The DRTO will be constructed as a single-level Nonlinear Model
Predictive Controller utilising the infeasible soft-constraint method for merging
regulatory and economic objectives. To achieve both cost minimisation and the
reference accumulated capture ratio and the end of the simulation horizon, has
time-varying solvent regeneration been experimented with in accordance to an
hourly varying price of energy with a periodicity of 24 hours.
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1.5 Contributions

The work done in this thesis has been in collaboration with Cybernetica AS who
has made their own tools Modelfit, RealSim and CENIT, in addition to C-code
interfaces for communication with the tools, available in order to investigate the
topic of this thesis. Cybernetica AS has furthermore provided guidance regarding
utilisation of the tools. Additionally has the original model of the CO2 capture
facility been provided to use as a starting point for development of the reduced
model and as a plant replacement model for both validation of the reduced model
and for simulation of the capture facility during optimisation.

The main contributions of the work done in this thesis are five-fold

• Model validation of the new developed model of the CO2 capture facility
at Tiller with model reductions from Hotvedt (2017) integrated. Modelfit
has been utilised for comparison of the reduced model to the original
model and instrumental measurements from the test facility at Tiller. The
measurements have been provided by SINTEF for additional analysis of
the model responses and utilised for inclusion of a simple estimator, bias
updating. Parameter adjustment has been performed.

• Analysis of the stiffness of the reduced model compared to the original
model. MATLAB has been used for estimation of the Jacobian matrix and
analysis of the eigenvalues. A MATLAB interface to the C-code of the
original model, provided by Cybernetica AS, has been utilised to obtain the
derivatives of the model.

• Development of a Dynamic Real-Time Optimisation Algorithm
using a single-level Nonlinear Model Predictive Controller considering both
regulatory and economic objectives. The DRTO has been designed using
the infeasible soft-constraint method to include economic objectives in the
optimisation problem.

• Analysis of the performance of the DRTO with a time varying
price of energy in two modes of operation. A fixed mode, keeping the
accumulated capture ratio at a specified reference throughout the simulation
horizon, thus inducing a constant MEA regeneration, and a flexible mode
utilising time-varying solvent regeneration such that a specified accumulated
capture ratio is achieved after 24 hours. The two modes were compared to
each other considering cost related to the energy requirement in the reboiler.
Bias updating was introduced to enhance performance. Cybernetica AS
tools RealSim and CENIT were utilised for simulation.
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• Analysis of the robustness of the DRTO by inducing a step change in
the composition of CO2 in inlet exhaust gas, increasing the energy price,
and lastly, enforcing strict constraints on the reboiler duty.

1.6 Outline

The thesis is structured such that firstly, in Chapter 1, will the reader be introduced
to the importance of the research questions in this thesis considering global aspects.
A brief introduction to the model of CO2 capture facility at Tiller along with
recent investigations of it will be given in Section 1.1, whereas a literature review
of earlier research on optimising CO2 capture facilities, or parts of it, with different
control techniques are introduced in Section 1.2. Following in Section 1.3 is a
description of important assumptions being made in order to complete this thesis,
while the problem description is shortly given in Section 1.4. A list of contributions
that have been provided is further given in Section 1.5.

The reader will moreover be given an introduction to the important theoretical
aspects necessary to understand the results of this thesis in Chapter 2. The model
equations for the unit models integrated into the original model are summarised
in Section 2.1, theory related to system stiffness and integration routine is given
in Section 2.2 and theory related to optimisation in general and the specific
optimisation problem for the DRTO is introduced in Section 2.3. In Chapter
3, have code implementation and utilised software tools been described and
illustrated such that the reader will be made aware of the extent of help given by
Cybernetica AS and which parts have been implemented during the work with
this thesis. The result of the validation of the reduced model against the original
model considering modelling errors and analysis of the two system’s stiffness
and simulation time have been given in Chapter 4, whereas the analysis of the
performance and robustness of the DRTO have been illustrated and discussed in
Chapter 5.

An overall discussion of the assumptions made during this thesis and their influence
on the results for the model validation and optimisation may further be found in
Chapter 6, and a conclusion to the work done may be found in Chapter 7. Lastly,
suggestions for future work are discussed in Chapter 8.
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Chapter 2

Theory

This chapter will introduce relevant theory that have been used completing the
thesis and will be of importance for the reader to understand the results in the
following chapters of this thesis. The first task done in this thesis has been the
implementation of the unit models for the absorber, desorber and heat exchanger
from Hotvedt (2017) in the original model to obtain a model more suitable for
optimisation using large time horizons. Consequently for the completeness of this
thesis, a short description and summary of the balance equations for the three
unit models have been included in Section 2.1. Section 2.2 contains theory related
to eigenvalue analysis, system stiffness and choosing of an appropriate integration
routine. This will be important theory for the model validation of the reduced
model performed in Chapter 4. Lastly, in Section 2.3 has a presentation of general
optimisation theory along with advanced control techniques been included in order
for the reader to understand how the specific optimisation problem with a DRTO
may be set up for the CO2 capture facility, and to understand the result of the
optimisation in Chapter 5.

2.1 Unit models

In Hotvedt (2017), were balance equations for the heat exchanger and general
column of an amine-based post-combustion CO2 capture facility developed. The
development was based on first-principle conservation laws, and used the same
approach as in Flø (2015). However, there were two important differences from
the equations in Flø (2015). Firstly, molar amounts were used as state variables
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in the mass balance equations instead of molar fractions, and secondly, the control
volume method to approximate spatial derivatives was utilised instead of the
collocation method. As the balance equations for both energy and mass in the
heat exchanger and general column are highly dependent on the mass flow through
the system, a relationship between molar amounts and molar flows was found such
that the differential equations could be written in terms of the state variables.
The relationship was established assuming constant gas and liquid velocity vg, vl
in each unit model and may be seen in equation 2.1.

Fcv = vACtot,cv = vA
Ntot,cv

Vcv
= vA

Ntot,cv

ALcv
=
nvNtot,cv

L
(2.1)

Here Lcv = L
n is the length of each control volume where L is the total length of

the unit and n is the number of control volumes. F is the molar flow, Ntot,cv is
the total molar amount in each control volume, Vcv is the volume and A is the
cross-sectional area which is assumed constant for each control volume. For the
completeness of this thesis, a short description of the heat exchanger and general
columns have been included in the subsections below, together with a summary
of the balance equations of each unit model using control volumes.

2.1.1 Heat exchanger

The heat exchanger in the capture facility at Tiller is a counter current exchanger
where the lean and rich liquids enter at opposite ends to each other as in Figure
2.1.

Figure 2.1: Illustration of the counter current heat exchanger divided into control
volumes (Hotvedt, 2017). Here the lean and rich liquid solution enter at opposite
ends to each other.
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A wall separates the two liquids from each other such that mass is conserved and
only heat exchange occur between the two liquids from the relatively hotter side
to the relatively colder side. The heat flux q̇ may be described using either a local
temperature difference approach or using the logarithmic mean temperature in
each control volume according to the equations in 2.2 and 2.3 respectively. Here
ĥ is the heat transfer coefficient. The molar amount and temperature balance
equations for the heat exchanger taken from Hotvedt (2017) are summarised in
equations 2.4-2.7. T is the temperature and cp is the specific heat capacity. Here
k refers to the components in the liquid, CO2, H2O or MEA and i indicates the
current control volume.

q̇local = ĥ(Tlean − Trich) (2.2)

q̇lm = ĥ∆Tlm = ĥ
∆T2 −∆T1

ln ∆T2

∆T1

= ĥ
(Tlean,out − Trich,in)− (Tlean,in − Trich,out)

ln (
Tlean,out−Trich,in

Tlean,in−Trich,out
)

(2.3)

dNlean,k

dt
(i) = Flean,k,in − Flean,k,out

=
nvl
L

(Nlean,k,in −Nlean,k,out)

=
nvl
L

(Nlean,k(i− 1)−Nlean,k(i)) = 0

k = 1, 2, 3 i = 1..n

(2.4)

dNrich,k

dt
(i) = Frich,k,in − Frich,k,out

=
nvl
L

(Nrich,k,in −Nrich,k,out)

=
nvl
L

(Nrich,k(i+ 1)−Nrich,k(i)) = 0

k = 1, 2, 3 i = 1..n

(2.5)

dTlean
dt

(i) =
1

Nlean,tot(i)cp,lean(i)
×
[nvlean

L
Nlean,tot(i− 1)

(
cp,lean(i− 1)Tlean(i− 1)− cp,lean(i)Tlean(i)

)
− A

n
q̇(i)

]

i = 1..n

(2.6)
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dTrich
dt

(i) =
1

Nrich,tot(i)cp,rich(i)
×
[nvrich

L
Nrich,tot(i+ 1)

(
cp,rich(i+ 1)Trich(i+ 1)− cp,rich(i)Trich(i)

)
+
A

n
q̇(i)

]

i = 1..n

(2.7)

2.1.2 General Column

Both the absorber and the desorber in the CO2 capture facility are represented
by the differential equations for a general column, however, the normal operating
conditions regarding temperature and molar amounts will be different in the two
units models. There are two fluids present, and they are inlet at opposite ends of
the column and flowing counter currently to each other. The liquid solvent, which
has components CO2, H2O and MEA and a gas with at most five components;
CO2, H2O, MEA, N2 and O2. An illustration of how the column has been divided
into control volumes may be found in Figure 2.2.

Figure 2.2: Illustration of the general column divided into control volumes
(Hotvedt, 2017). Here the liquid enters at the top of the column in control
volume n whereas the gas enters at the bottom of the column in control volume 1.
In each control volume, both mass and heat may diffuse.
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Both mass and energy are allowed to diffuse from one fluid to another, and to
describe the diffusion of mass the two-film theory has been utilised (Withman,
1923). In the absorber, flue gas consisting of all five components will encounter
the lean amine flow, and a reaction between the MEA in the liquid and the CO2

in the gas occurs such that the MEA absorbs the CO2. This reaction is described
by Xie et al. (2010) and for the interested reader repeated below in equation 2.8,
where RNH2 is a primary amine.

CO2 + 2RNH2 = RNHCOO− +RNH+
3 (2.8)

The desorber on the other hand, is the reverse process of the absorber, (Geankoplis,
1993, p. 610), and by applying enough heat through the reboiler is the MEA
stripped of CO2. Further assumptions that have been made modelling the general
column may be found in Hotvedt (2017).

The differential equations for the general column using control volumes developed
in Hotvedt (2017) have been summarised below. The molar balance equations
for each liquid and gas component may be found in equation 2.11 and 2.12
respectively. Here ncl = 3 and ncg = 5 in the absorber whereas ncg = 3 in the
desorber where the gas components O2 and N2 has been neglected due to small
amounts. Equations 2.13 and 2.14 describes the differential energy balance of
the liquid and gas. The heat flux between the two phases has been described
using the local temperature difference in equation 2.9 where positive direction is
assumed from the gas to the liquid. However, heat flux to the surrounding has
been assumed to only leave the liquid phase and may therefore be described by
2.10. Here Jg/l represents the mass diffusion through the gas-liquid interface Ag/l

and hg, hl refers to the enthalpy in the gas and liquid respectively.

q̇g/l = −ĥ(Tl − Tg) (2.9)

q̇surr = ĥsurr(Tl − Tsurr) (2.10)

dNl,k

dt
(i) =

nvl
L

(
Nl,k(i+ 1)−Nl,k(i)

)
+Ag/lJg/l,k(i)

k = 1..(nc)g i = 1..n
(2.11)

dNg,k

dt
(i) =

nvg
L

(
Ng,k(i− 1)−Ng,k(i)

)
−Ag/lJg/l,k(i)

k = 1..(nc)l i = 1..n
(2.12)
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dTl
dt

(i) =
1

Nl,tot(i)cp,l(i)
×
[
nvl
L
Nl,tot(i+ 1)

(
cp,l(i+ 1)Tl(i+ 1)

− cp,l(i)Tl(i)
)

+Ag/l

ncl∑

k=1

Jg/l,k(i)(hg,k(i)− hl,k(i))

+Ag/lq̇g/l(i)−Asurr q̇surr(i)

]
i = 1...n

(2.13)

dTg
dt

(i) =
1

Ng,tot(i)cp,g(i)
×
[
nvg
L
Ng,tot(i− 1)

(
cp,g(i− 1)Tg(i− 1)

− cp,g(i)Tg(i)
)
−Ag/lq̇g/l(i)

]
i = 1...n

(2.14)

2.2 Integration routine, eigenvalue analysis and
system stiffness

According to Gravdahl and Egeland (2002, p. 560), do highly nonlinear systems
often exhibit large variations in the eigenvalues of the system. This fact may
cause several problems when solving the system, and will often limit which solvers
may be used. For instance, constant step solvers such as Explicit Euler may
be difficult to utilise as the step size must be small enough to account for the
fastest dynamics, corresponding to the eigenvalue with the largest absolute real
value λ = max(abs(real(λi))) (Gravdahl and Egeland, 2002, 535). In highly
nonlinear systems, the fastest eigenvalue may change from sample to sample and
consequently may a small step size often be required for stability, increasing the
solving time.

The same problem arises for so-called stiff systems where there is a large spread
in the system eigenvalues (Gravdahl and Egeland, 2002, p. 534). In such systems,
will there exist both fast and slow dynamics and consequently must the step size
again be reduced to obtain stability. Resultantly, having a constant step size
whilst obtaining a stable and accurate solution may be difficult to achieve. In
fact, Cybernetica AS found that the original model was non-solvable with Explicit
Euler even with a very small step size. This suggests that the original model is
very stiff.

Even though the model investigated and used for optimisation in this thesis is a
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reduction of the original model, is it still nonlinear and of high order. Whether or
not the stiffness has been reduced due to the model reductions will be investigated
in Chapter 4. If sufficient reductions in stiffness is achieved, Explicit Euler may
be used as an integration routine to solve the system. On the other hand, in most
cases with a complex system, will a variable step method increase accuracy, reduce
computation time and account for possible stiffness. One such integration routine
is CVODE. CVODE is a solver for both stiff and non-stiff Ordinary Differential
Equations (ODE) (Computation, 2018). An advantage with CVODE is the use
of both variable-order and variable-step multistep methods for integration. This
will ensure better accuracy and less simulation time. For instance, according to
Gravdahl and Egeland (2002, p. 518) may the ability to vary the order of the
method decrease the local error and thus increase accuracy. Further, will the
ability to vary the step size throughout the simulation decrease the total simulation
time because larger steps may be taken where it is possible and smaller steps
where it is necessary, in order to obtain stability. Multistep methods may further
increase the accuracy due to utilisation of several previous points to estimate the
solution (Gravdahl and Egeland, 2002, p. 560, p. 576). However, CVODE is also
a quite complex system solver and do have its disadvantages. For instance, will
CVODE have to estimate the system matrix, the Jacobian, and if the system has
a large state space, this may be very time consuming.

How stiff a system is may be investigated through an eigenvalue analysis using
the evaluation variable Stiffness Ratio (SR) (Moody, 2007). The Stiffness Ratio is
defined as in equation 2.15, where λi are the eigenvalues of the system Jacobian
matrix J, defined in equation 2.16, where m is the number of states in the system.
Here g = g(t,x,u) describes the system differential equations. Moody (2007)
defines a system as stiff if SR >> 1.

SR =
max

i
|<(λi)|

min
i
|<(λi)|

(2.15)

J =




∂g
∂x1
∂g
∂x2

...
∂g
∂xm



|x0,u0

(2.16)

The Jacobian of the system equations may be difficult to find analytically if the
model is nonlinear and has a large state space. A numerical approximation of the
Jacobian may thus be calculated using the following equation for finite differences,
equation 2.17, for each i = 1..m (Nocedal and Wright, 2000, p. 195). e is here a
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vector with 1 at position i but zeros elsewhere and ε is the perturbation parameter.

∂g

∂xi
≈ g(x+ ε · ei)− g(x)

ε
(2.17)

According to Nocedal and Wright (2000, p. 196), choosing the perturbation
parameter as

ε = 10−8 (2.18)
is close to optimal if the problem is well scaled. However, in the reduced model of
the CO2 capture facility there are very many states with different units and ranges
of values. Ideally should the states be scaled, for instance with a typical reference
value, before approximating the Jacobian. In the original model on the other hand,
are all states scaled to yield dimensionless variables, and consequently may the
Jacobian approximation for the original model yield more accurate results than for
the reduced model. This should be kept in mind while performing the eigenvalue
analysis. Other approximations of the Jacobian matrix may also be used if the
results deem inaccurate, for instance the central differences scheme (Nocedal
and Wright, 2000, p. 196). Using equation 2.17 together with the perturbation
parameter in 2.18, the simple for-loop in Listing 2.1 may be set up to calculate
the Jacobian matrix in MATLAB.

1 % I n i t i a l i s e
2 J = ze ro s (m) ;
3 x_perturbed = x0 ;
4 % Pertubat ion parameter
5 ep s i l o n = 10^(−8) ;
6 % Find func t i on value o f unperturbed s t a t e
7 gx = g ( t , x0 , u0 ) ;
8

9 f o r k = 1 :m
10 % Perturb s t a t e vec to r
11 x_perturbed (k ) = x_perturbed (k ) + ep s i l o n ;
12 % Find func t i on value o f perturbed s t a t e
13 gx_perturbed = g ( t , x_perturbed , u) ;
14 % Estimate jacob ian
15 J ( : , k ) = ( gx_perturbed−gx ) / ep s i l o n ;
16 % Reset s t a t e vec to r
17 x_perturbed (k ) = x0 (k ) ;
18 end

Listing 2.1: Finding the Jacobian numerically in MATLAB

The eigenvalues of the Jacobian may further be found by using the MATLAB
command eig(J) which calculates the roots of the characteristic polynomial

det(J − λI) = 0 (2.19)
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and thus may the Stiffness Ratio be found with equation 2.15. An eigenvalue
analysis of both the original model and the reduced model have been performed
in Chapter 4.

2.3 Optimisation

An optimisation problem is, according to Foss and Heirung (2016), a problem
in which an objective function is to be minimised or maximised with respect
to certain decision variables and constraints. In general, may the optimisation
problem be formulated as in equation 2.20, where f(φ) is the objective function to
be minimised (or maximised), φ the decision variables and ci(φ) the constraints
of the optimisation problem. The optimal solution to the problem will thus be
the minimum (or maximum) of f(φ) within the constraints. The constraints are
of two types, equality constraints i ∈ ε and inequality constraints i ∈ I.

min
φ∈Rn

f(φ)

subject to

ci(φ) = 0 i ∈ ε
ci(φ) ≥ 0 i ∈ I

(2.20)

In a dynamic nonlinear system, the system equations are described with a set of
nonlinear differential equations dependent on time t, previous states x and inputs
u, equation 2.21, and is an example of equality constraints that must be satisfied
in order to solve the problem. Here both x and u will be decision variables, and
x0 is the initial point for the state variables.

ẋ = g(t,x,u), x(0) = x0 (2.21)

An example of inequality constraints may for instance be the set φ ≥ 0 which are
common if the decision variables represent non-negative variables such as products
produced in a factory. In order to formulate an optimisation problem for such a
system, the system is discretised and solved at a time interval of interest k ∈ [0, N ].
Here N is called the prediction horizon, due to optimising and predicting the
system over N discrete time samples into the future. According to Seborg et al.
(2004, p. 429), is it common to choose the prediction horizon N in such a way
that the last input has completely taken effect, that is, the dynamics of the state
variables x have settled after a change in input. Foss and Heirung (2016) also
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states that the prediction horizon influences the stability of the solution and a
larger horizon typically produce better stability. The time between k and k + 1,
∆k, is usually equidistant for simplicity, but may also be variable. The differential
equations for the system in discrete time may be described using equation 2.22.

xk+1 = g(xk,uk), x(0) = x0, k = 0, ..., N − 1 (2.22)

The optimisation problem for a dynamic, nonlinear system such as in equation
2.22, will have the same shape as the general optimisation problem in 2.20 with
both equality and inequality constraints and are illustrated in equation 2.23 (Foss
and Heirung, 2016). Here, the rate of change of the inputs represented by ∆uk.

min
φ∈Rn

f(φ) =

N−1∑

k=0

fk(xk+1,uk)

subject to
xk+1 = g(xk,uk), k = 0, ..., N − 1

x0,u−1 = given

xlow ≤ xk ≤ xhigh, k = 1, ..., N

ulow ≤ uk ≤ uhigh, k = 0, ..., N − 1

∆ulow ≤ ∆uk ≤ ∆uhigh, k = 0, ..., N − 1

where
x ∈ Rnx

u ∈ Rnu

∆uk = uk − uk−1

φT = (xT
1 , ...,x

T
N ,u

T
0 , ...,u

T
N−1)

φ ∈ Rn, n = N · (nx + nu)

(2.23)

The algorithm solving the optimisation problem will, at time t0, find a set of inputs
uk, k = 0...N − 1, which will minimise the function f over the prediction horizon
N , while keeping within the boundaries specified by the constraints. The design
of the objective function plays a crucial role to the solution of the optimisation
problem. In fact, nonlinear optimisation problems are non-convex due to the
nonlinear constraints, usually yielding several regions with several local extrema.
Choosing f wrongly may result in a large solving time of the optimisation problem,
and worst-case scenario not being able to find the optimal solution at all (Foss
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and Heirung, 2016). A general way of representing the objective function f(φ)
in equation 2.23 with state and input variables may be seen in equation 2.24, in
which the matrices Q and R at each time sample should be positive semi-definite
Qk, Rk � 0.

f(φ) =

N−1∑

k=0

1

2
xk+1Qk+1xk+1 + dTx,k+1xk+1 +

1

2
uT
kRkuk + dTu,kuk (2.24)

The design of the objective function in equation 2.24 makes it easy to penalise or
minimise certain states and inputs in the function more than other. For instance,
if the term 1

2xk+1Qk+1xk+1 becomes increasingly larger than the other terms,
will the optimisation algorithm focus on decreasing the state variables sufficiently
such that f also decreases sufficiently. Additionally, will the design of separate
elements in the matrices Q,R and vectors dx, du in the objective function make
it possible to penalise states relative to other states or inputs relative to other
inputs. For instance, may a high value of the first element in the Q matrix, force
the algorithm to focus more on minimising state x1 relatively to the other states
in order to minimise the complete objective function.

According to Foss and Heirung (2016), does the objective function also exists
with several modifications. For instance, if the states are to follow a reference
trajectory, changing xk → (xk−xref

k ), will lead to the objective function penalises
deviations away from reference as the optimum xk = xref

k would lead to the
corresponding term becoming zero in the objective function. Another quite
common modification is the use of derived variables instead of the actual state,
xk → zk = h(xk). In the model of the CO2 capture facility, a natural derived
variable to use for optimisation is the capture ratio of CO2 in the absorber column.
Furthermore, in a physical system, there will often be limitations to how fast
actuators may move, such as opening of a valve. Including terms for the rate of
change of input, 1

2∆uT
kR∆k∆uk, may thus enable the inclusion of such limitations

in the control problem and penalise wear and tear on the actuators.

A disadvantage with the formulation in 2.23, is that for nonlinear systems, the
constraints may sometimes render the solution infeasible; outside the bounds given
by the constraints. In order to avoid infeasibility, soft constraints are often added
for the state or derived variables through slack variables ε (Foss and Heirung,
2016, p. 44). Changing the constraints

xlow ≤ xk ≤ xhigh, ⇒ xlow − εk ≤ xk ≤ xhigh + εk

(or similarly for zk) and including the slack variables εk in the objective function
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for minimisation, will ensure feasibility but minimise the violations as much as
possible. Including the aforementioned modifications, the objective function may
be represented by equation 2.25. The matrices and vectors Qk, Rk, ρk and Sk may
vary with time k but is also quite common to set constant in time.

min
φ∈Rn

f(φ) =

N−1∑

k=0

(
1

2
(xk+1 − xref

k+1)Qk+1(xk+1 − xref
k+1)

+ dTx,k+1(xk+1 − xref
k+1)

+
1

2
uT
kRkuk + dTu,kuk +

1

2
∆uT

kR∆k∆uk

+ ρTk+1εk+1 +
1

2
εTk+1Sk+1εk+1

)

where
Qk � 0, k = 1, ..., N

Rk � 0, k = 0, ..., N − 1

εk ∈ Rnx � 0, k = 1, ..., N

ρk ∈ Rnx � 0, k = 1, ..., N

Sk ∈ diag{s1, .., snx
}, si � 0, i = 1, ..., nx

(2.25)

2.3.1 Nonlinear Model Predictive Control

The general optimisation problem described above and in equations 2.23 and
2.24 is according to Foss and Heirung (2016) an open loop optimisation problem.
This is due to the optimal input uk being calculated at time instant t0 for
the whole prediction horizon without feedback of the states during simulation.
Model Predictive Control (MPC) is on the other hand a closed loop optimisation
problem in which feedback is taken into consideration. MPC solves the general
dynamic optimisation problem using the current state as initial state x0 = xk,
yielding an optimal input u for the prediction horizon at each time instant
k = k + 1, .., k + N − 1. However, only the first control move is used. As an
illustration, the pseudo-algorithm for the state feedback MPC procedure from
Foss and Heirung (2016, p. 40) is stated below. This algorithm assumes that
the actual state is available for feedback. If the dynamic system is nonlinear,
the algorithm will be referred to as Nonlinear Model Predictive Control (NMPC)
Algorithm.
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Algorithm: State feedback (N)MPC procedure

for k = 0,1,2,... do
Get the current state xk;
Solve a dynamic optimisation problem on the prediction horizon
from k to k+N with xk as the initial condition;
Apply the first control move uk from the solution above;

end for

An illustration of the state feedback (N)MPC procedure, courtesy of Cybernetica
AS, may be found in Figure 2.3. In the figure may one see how the controlled
variables (CV) and manipulated variables (MV), zk and uk respectively, have
varied in the past history and how the predicted trajectory N time samples ahead
looks like at the current time instant. The predictions show how the CV’s will
change given that the optimal MV’s calculated are applied. However, only the
first optimal control move uk is applied, and a new solution will be calculated
at the next time instant possible changing the optimal predicted solution and
trajectory towards reference point. Consequently, as a constant N is used at each
time step, will the prediction horizon move in time, a so-called receding prediction
horizon. What is less common, but sometimes utilised, is a shrinking prediction
horizon where N decreases by one time sample each sample Nk+1 = Nk −∆k.

The (N)MPC algorithm will be solved for time steps k = 0, 1, .. possible to infinity,
and it is therefore common to discard the summation over k in the problem
formulation of the (N)MPC and use i for summation over the prediction horizon.
Using z as the control variable in the objective function and assuming constant
weight matrices and vectors, the complete (N)MPC problem formulation may be
written as in equation 2.26. Several variants of the objective function f(φ) exists,
but the one in equation 2.26 includes the most common terms.
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min
φ∈Rn

f(φ) =

N−1∑

i=0

(
1

2
(zk+i+1 − zrefk+i+1)Q(zk+i+1 − zrefk+i+1)

+ dTz (zk+i+1 − zrefk+i+1)

+
1

2
uT
k+iRuk+i + dTuuk+i +

1

2
∆uT

k+iR∆∆uk+i

+ ρTεk+i+1 +
1

2
εTk+i+1Sεk+i+1

)

subject to
xk+i+1 = g(xk+i,uk+i), i = 0, ..., N − 1

zk+i = h(xk+i,uk+i), i = 1, ..., N

xlow − εk+i ≤ xk+i ≤ xhigh + εk+i, i = 1, ..., N

ulow ≤ uk+i ≤ uhigh, i = 0, ..., N − 1

∆ulow ≤ ∆uk+i ≤ ∆uhigh, i = 0, ..., N − 1

0 ≤ εk+i ≤ εmax, i = 1, .., N − 1

where
∆uk+i = uk+i − uk+i−1

x ∈ Rnx

z ∈ Rnz

u ∈ Rnu

φT = (zT1 , ...,z
T
N ,u

T
0 , ...,u

T
N−1) ∈ Rn, n = N · (nz + nu)

Q ∈ Rnz×nz , R ∈ Rnu×nu , R∆ ∈ Rnu×nu , S ∈ Rnz×nz

dz ∈ Rnz , du ∈ Rnu , ρ ∈ Rnz

(2.26)
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Figure 2.3: Illustration of (N)MPC procedure with history and predictions for
manipulated and controlled variables. Also illustrated is the concept of CV evalu-
ation points and input blocking. Courtesy of Svein Olav Hauger at Cybernetica
AS

Also illustrated in Figure 2.3, are two methods for variable elimination to obtain
a simpler problem with fewer degrees of freedom; input blocking and controlled
variable evaluation points. Input blocking is according to Foss and Heirung (2016)
a way of structuring the input variables to an adjacent-in-time structure, such
that the number of optimal predicted inputs becomes smaller than in the original
problem. For the original problem will the number of decision variables emanating
from the input equal to N · nu. That is, one variable for each time sample for
each u. Using input blocking, one are able to specify the number of time samples
desired before the next change in input, and keep the input constant between the
two time instants. Consequently, will there be a reduction of input variables and
hence the degree of freedom. Keeping the input constant in each input block is
referred to as zero-order hold. According to Zhang et al. (2011) however, does
zero-order hold not provide high accuracy if the time between each input blocks
is large. First-order hold may instead be utilised, which linearly interpolates
two recurrent input values instead of keeping it constant in the block interval.
According to Zhang et al. (2011), will first-order hold improve accuracy very much
while only insignificantly affecting the computational effort. According to Foss
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and Heirung (2016), has input blocking worked well in industrial applications.
The number of input blocks may vary from 1 to N, however, an important factor is
that the u with fewer blocks should be able to approximate the optimal u without
input blocking. The number of input blocks may be specified independently for
each MV. How many blocks are needed will depend on how fast the inputs needs
to change in order to reach optimum within the prediction horizon. According
to Strand and Sagli (2004), are 4 to 8 blocks for standard MPC very common.
However, Strand and Sagli (2004) considers a linear dynamic system and may
thus use many blocks without affecting the simulation time in equal scale as if a
nonlinear system was to be optimised due to the complexity and iterative style
of the nonlinear solver. A large number of input blocks will result in a large
simulation time. Resultantly, if NMPC is used in online optimisation where the
solving time per sample must be less than the time between each sample, will the
highest number of input block tolerated, be constrained by the time between each
sample.

Controlled variable evaluation points is also a technique used to reduce the degrees
of freedom of an optimisation problem by reducing the number of constraints
(Strand and Sagli, 2004). Instead of having the objective function evaluated
at each time instant k, a smaller number of time instants between the current
and N are chosen and the objective function only evaluated at these points in
time. How many evaluation points are needed and where to place them will be
dependent on the system and the wanted behaviour of the controller. In addition
may different CV have a different number of evaluation points, and they may be
specified independently. Strand and Sagli (2004) states that 5 to 20 evaluation
points is common in standard MPC algorithms. For large nonlinear systems, such
as the system in this thesis, input blocking and controlled variable evaluation
points will be very important techniques in order to reduce the computational
effort and speed up the solving time. The decision variables in equation 2.26,
φT = (zT1 , ...,z

T
N ,u

T
0 , ...,u

T
N−1), will with these techniques include fewer variables,

but the rest of the formulation will stay the same.

In the above description of the (N)MPC procedure, a plant replacement model
of a physical system have been used in the closed loop optimisation in which all
states, xk, are known and may be fed back at each time sample. However, if
the (N)MPC scheme is to control a real physical plant, some kind of feedback
from the true plant should exist as there for several reasons almost always exist
modelling errors between the model and the true process. Consequently, will
an estimator be necessary to remove modelling errors such that the (N)MPC
procedure may provide a more optimal solution in accordance with the true plant.
Such an (N)MPC scheme is often referred to as an output feedback procedure
and is illustrated in Figure 2.4. In addition to the CV’s and MV’s, the diagram in

26



CHAPTER 2. THEORY

Figure 2.4 includes disturbance variables (DV), which are inputs not calculated
by the controller, for instance noise. There exist several variants of the estimator,
but in general will an estimator compare measurements from instruments of
the plant, y, against predicted measurements from the model, ȳ, and use the
deviation between the two to update the model and reduce modelling errors. An
example of a simple and effective estimator is bias updating. In bias updating,
the deviation between instrumental and modelled measurements are multiplied
with a factor, quite often constant, and introduced additively back into the model.
Which measurements to use in bias updating, must be determined in advance of
starting the optimisation. For instance, the CO2 capture facility at Tiller provides
instrumental measurements for the mass flow of CO2 out of the condenser. The
deviation between this measurement and the calculated measurement in the
model be used to update the predicted measurement variable in the model, and
consequently will the model reflect the true conditions in the plant better. In
addition should this deviation be used to update the capture ratio in the absorber
column as there is a direct relationship with the absorbed CO2 in the absorber
and the outflow of CO2 from the condenser.

There are however, several downsides with bias updating. Firstly, the updates
of the model will not occur in the states of the system but rather in derived
variables used for optimisation or variables for calculated measurements. Secondly,
the update factor must be manually adjusted to achieve appropriate updating of
variables. Lastly, which variables should be updated must be made in advance of
starting the optimisation. A more advanced estimator such as (Extended) Kalman
Filter may on the other hand, by using measurements observed over time and
statistical analysis, automatically determine which states or parameters should be
updated, and actually update the states and not derived or calculated measurement
variables in the system. Further, the gain factor may be automatically calculated
at each time sample without manual tuning, and additionally, is the Kalman Filter
also able to estimate time varying parameters which may be beneficial for the
predictions of the system (Brown and Hwang, 2012, p. 257). However, advanced
estimators such as the Kalman Filter are very time consuming and may cause
complications in online optimisation where the solving time per sample must be
less than the time between samples. In fact, Cybernetica AS found that when the
original model of the CO2 capture facility were to be used for online optimisation,
the solving of the model was too time consuming by itself to be able to include
an estimator for parameter and state estimation. Additionally, a Kalman Filter
may sometimes result in parameter adjustments that renders the system stiffer
than original. Resultantly, has bias updating been utilised to reduce errors in the
most important variables and for optimisation of the reduced model, as a Kalman
Filter should be properly experimented with before inclusion in online estimation
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of real facilities.

Figure 2.4: Illustration of the output feedback (N)MPC procedure with feedback
from measurements through the estimator. Courtesy of Svein Olav Hauger at
Cybernetica AS.

2.3.2 Dynamic Real-Time Optimisation

The dynamic optimisation problem that will be experimented with for the CO2

capture facility in this thesis will be different from a standard (N)MPC problem
as economic aspects will be taken into consideration. As stated in Section 1.2,
common in literature is the use of a two-level control hierarchy in which the
economical optimisation problem is solved at an upper level, often called Real-
Time Optimisation (RTO), providing set points for the advanced regulatory
controller at the level below. Oliveira (2016) points out that using a two-layer
approach will have the advantage of a less complex problem because there will
be a clear separation between the economic and regulatory objectives causing
simpler sub-problems. Quite often however, will the upper level optimisation
problem utilise steady state, non-linear models, which results in new setpoints
being found only when the model has reached steady-state (Maree and Imsland,
2011). In line with the computer becoming increasingly faster, dynamic models
to solve the economic objectives became common. However, often were different
sample times for the two layers utilised in which the RTO had a larger sample
time than the MPC for regulatory control. Both Maree and Imsland (2011) and
Willersrud et al. (2013) suggested merging of the two-level hierarchy into one-level,
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in which the objective function evaluates both regulatory and economic objectives
of the plant, for instance reference tracking in addition to cost minimisation.
Such an optimisation problem is sometimes referred to as an Economic MPC
(EMPC) (Maree and Imsland, 2011) or a Dynamic Real-Time Optimisation
Problem (DRTO) (Willersrud et al., 2013). As the two objectives are to be
merged, a small sample time will be utilised also for the economic objectives.
Willersrud et al. (2013) points out that this is one of the advantages of a one-level
control hierarchy, as the algorithm will obtain faster reactions to disturbances.
Additionally, direct comparison of the control and economic objectives will be
available, and the importance of the two objectives may be weighed against each
other. Two-level and one-level control hierarchy are illustrated in Figure 2.5.

Figure 2.5: Illustration of a two-level advanced control hierarchy being merged
into a single-level advanced controller on top of low-level controllers.

Willersrud et al. (2013) suggested two methods to include economic optimisation
variables in the objective function. Firstly, by the use of an unreachable setpoint
and secondly by the use of infeasible soft-constraints. The two methods have
been illustrated in Figure 2.6 for both maximisation and minimisation problems.
Unreachable setpoint is a method where a high or low unrealistic setpoint is
used for the variable that will be maximised or minimised respectively. Using
the division of decision variables as in Willersrud et al. (2013), ztrac for tracking
objectives and zopt for the optimisation variables, like cost, the following objective
function in equation 2.27 was utilised for the unreachable setpoint method. Here,
Q, R∆, ρ and zref have been assumed constant in time with zrefopt unreachable, MV
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penalisation’s and linear CV penalisation’s together with quadratic CV variable
violations through slack variables have been omitted.

min
φ∈Rn

f(φ) =

N−1∑

i=0

(ztrac,k+i+1 − zreftrac)Qtrac(ztrac,k+i+1 − zreftrac)

+ (zopt,k+i+1 − zrefopt )Qopt(zopt,k+i+1 − zrefopt )

+ ∆uT
k+iR∆∆uk+i + ρTεk+i+1

(2.27)

However, as Willersrud et al. (2013) states, may the value of the optimal setpoint
affect the solution of the (N)MPC, even though it is set arbitrarily. This is due to
the setpoint appearing in the gradient of the objective function that is used in
the conditions for optimality. Infeasible soft-constraints on the other hand, utilise
slack variables instead of setpoints to penalise deviations away from reference.
By setting both the bounds on the variable out of reach but including slack
variables in the objective function will yield a feasible solution and still minimise
or maximise the variable in question. In a minimisation problem, the following
will always hold

zopt,min ≤ zopt,max ≤ zopt,k+i

εopt,k+i = zopt,k+i − zopt,max ≥ 0

ρToptεopt,k+i = ρTopt(zopt,k+i − zopt,max)

Consequently, as the term −ρToptzopt,max ≤ 0 as long as ρTopt and zopt,max are non-
negative, this term may be omitted in the objective function and the objective
function will no longer be dependent on the optimal value as it was in the
unreachable setpoint method. zopt,max non-negative is usually safe to assume
if the optimisation variable represent cost. The objective function may thus be
written as in equation 2.28, now with a linear penalisation term for the optimal
(often economic) decision variable.

min
φ∈Rn

f(φ) =

N−1∑

i=0

(ztrac,k+i+1 − zreftrac)Qtrac(ztrac,k+i+1 − zreftrac)

+ ∆uT
k+iR∆∆uk+i + ρTtracεtrac,k+i+1 + ρToptzopt,k+i+1

(2.28)
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Figure 2.6: Illustration of the Unreachable setpoint and Infeasible soft-constraint
method for maximisation and minimisation problems.

Willersrud et al. (2013) found by experimenting with both methods for production
optimisation of an offshore oil and gas facility, that both solutions were able to
find the economic optimal point. On the other hand, Willersrud et al. (2013) also
state that the infeasible soft-constraint method was easier to tune due to fewer
tuning parameters.

In this thesis, the cost related to the energy consumption in the reboiler will
be attempted minimised while keeping an overall capture ratio of CO2 in the
absorber at a specified reference level after 24 hours. Consequently, may both
the unreachable setpoint and infeasible soft-constraint method be utilised for this
problem. Which is the better method for the model of the CO2 capture facility
will be experimented with in Chapter 5.
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2.3.3 Solving nonlinear optimisation problems

As previously mentioned, for nonlinear systems in an NMPC scheme must a
more complex nonlinear solver, often iterative in nature, be utilised at each
time sample to solve the optimisation problem. One such algorithm, which has
been used in this thesis, is Sequential Quadratic Programming (SQP). In SQP,
the nonlinear optimisation problem will be formulated as a sequence of smaller
quadratic problems which are approximation to the nonlinear objective function
(Nocedal and Wright, 2000). The number of QP iterations will define how many
quadratic sub-problems will be solved in an iterative fashion in the search of a
more optimal solution. Using for instance two QP-iterations, the algorithm will
firstly approximate the nonlinear objective function around the current point
with a quadratic approximation, and find the optimum of this sub-problem. The
algorithm will next use the point on the nonlinear curve closes to the found
optimum and use this to approximate the second quadratic sub-problem. The
point on the nonlinear curve closest to the second optimum will then be used to
step one sample in the NMPC scheme. The SQP algorithm with one QP iteration
is illustrated in Figure 2.7. In practice, will a higher number of QP iterations
result in the optimal solution being found faster, with the consequence of higher
solving time per sample. However, if the time between each sample is small, a
somewhat slower convergence to the optimal solution is often accepted. On the
other hand, if the time between samples are large, is it of higher importance
to find the optimal solution fast, thus will a higher number of QP iterations be
required. Further, one QP iteration is often accompanied with a line search. In
a line search, several points on the nonlinear curve between the start point and
the optimum of the approximation is tested before choosing the point on the
nonlinear curve giving the most optimal value of the objective function so far.
This is necessary because the algorithm sometimes steps too far when choosing the
point on the nonlinear curve nearest to the optimal value of the quadratic problem
and thus overlooks a better optimal value of the nonlinear curve. Unfortunately,
the SQP algorithm may only guarantee convergence to a local optimum if the
problem is non-convex, as most nonlinear problems are (Nocedal and Wright,
2000). Dependent on the starting point may therefore the SQP algorithm find
itself stuck in a local optimum different from the global optimum. There are
methods for also finding a global optimal solution for non-convex problems, for
instance the Multistart methods (FrontlineSolvers, 2018), where a local optimal
solver such as SQP is run from several different starting points to see if the optimal
solution converges to the same extrema. Other methods may utilise different
Branch and Bound methods where the region of interest is divided into smaller
sub-regions such that the local optimisation solver may be utilised in each region
(FrontlineSolvers, 2018). However, methods for global optimisation of nonlinear
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problems may be very time consuming. On the other hand, proper design of the
objective function may often avoid unnecessary many local optimum such that, in
practise, the local optimum found by the SQP is also the global optimum.

Figure 2.7: Illustration of the Sequential Quadratic Programming algorithm with
one QP iteration. A quadratic approximation to the nonlinear curve in the current
point is established, and the point on the nonlinear curve closest to the optimum
of the approximation is used as the new, so far best, optimum of the nonlinear
problem.
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Chapter 3

Implementation and Software

As mentioned in Section 1.5, Cybernetica AS has provided software tools for
investigation of the topic in this thesis, namely Modelfit, RealSim and CENIT.
Interfaces developed to communicate with the software have also been provided
such that the setup of the model validation in Chapter 4 and optimisation
algorithm in Chapter 5 was manageable. In addition, has the original model
been provided to use as plant replacement model for analysing the performance
of the reduced model. Consequently, has Cybernetica AS provided a complete
framework as a starting point for both development of the reduced model in
addition to development of the DRTO algorithm. An overview of the different
software, interfaces and code provided, and communication links between them
may be found in Figure 3.2. However, the framework provided will need extensive
changes in order to investigate this thesis.

First, will the model reductions from Hotvedt (2017) for the absorber, desorber and
heat exchanger be integrated in the original model. Consequently, will the state
space and complexity of the new reduced model be quite different from the original
model. The reduced unit models integrated are summarised in Section 2.1. Since
the complete model is built using sequential modular modelling, mentioned in
Section 2.1, was the substitution of the reduced unit models effortlessly completed.
On the other hand, routines calculating inputs to each unit model based on the
output of other and routines calculating measurements, y, and derived variables,
z, had to be changed due to different state variables in the reduced unit models
and the original unit models. Additionally, it was decided to keep external inputs
to the model equal to those in the original model such that a direct comparison
of the responses of the models could be performed. Consequently, were inclusion
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of several conversions between molar flows and molar amounts using equation 2.1
necessary.

After the new state space and model equations were implemented in addition
to adjustments of the routines calculating inputs, measurements and derived
variables, the new complete model of the facility could be validated against both
instrumental measurements available from the real CO2 facility at Tiller, courtesy
of SINTEF, and the original model. The validation is done in Chapter 4 by the
use of Modelfit, which is a tool designed by Cybernetica AS for offline estimation
and model validation (Cybernetica AS, 2018). Input to Modelfit is a large, pre-
generated data set with input and measurement vectors for each time sample
of the simulation horizon. In Chapter 4, most of the simulations performed in
Modelfit are ballistic, which means that no controllers nor parameter estimations
are turned on. Modelfit uses the program flow illustrated in Figure 3.1 for ballistic
simulations. Here ”Calculate additional inputs” is the routine calculating inputs
to each unit model based on the outputs of other unit models as explained above.
Both measurements and derived variables are calculated, yet not used in the next
loop of simulations because of running the simulations ballistic. However, if an
estimator is included, the dashed line in Figure 3.1 will take effect.

Figure 3.1: Program flow of ballistic simulations in Modelfit. The dashed line will
take effect if an estimator is included for feedback of measurements to the system.
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An eigenvalue analysis has also been performed in Chapter 4, to analyse the
stiffness of the original and reduced model. The analysis was performed in
MATLAB using the implemented estimation of the Jacobian matrix in Listing 2.1,
in addition to built-in functions in MATLAB to obtain the eigenvalues. However,
a MATLAB interface to the C-code of the model was necessary to acquire the
model derivatives. This interface was also provided by Cybernetica AS.

For optimisation purposes, two other software applications from Cybernetica AS
have been utilised, and consequently were there several other interfaces from
the provided structure and code that had to be modified. RealSim is one of the
applications, and is used as a plant replacement process simulator (Cybernetica
AS, 2018). That is, simulation of the capture facility using a model if instrumental
measurements from the actual plant is unavailable. CENIT is the second software
used, which handles the controller of the optimisation problem along with the
estimator (Cybernetica AS, 2018). Consequently, the controller interface had to
be changed such that the one-level Dynamic Real-Time optimisation algorithm
with both economic and regulatory objectives was implemented. The accumulated
capture ratio and the cost related to the reboiler duty had to be included into the
objective function and the appropriate CV evaluation points had to be chosen and
set. Additionally, as the optimisation would proceed over 24 hours, the prediction
horizon and the number and length of input blocks for appropriate responses
had to be experimented with. For illustration of which processes corresponds
to the different tools, see Section 2.3 Figure 2.4, where the block ”Process” is
simulated by RealSim, whereas CENIT is responsible for ”Model”, ”Estimator”
and ”Controller”. In this thesis, online measurements during optimisation from the
facility at Tiller is unavailable, and consequently has the original model been used
as a replacement and simulated in RealSim. This design is beneficial as the original
and reduced model behave differently from each other due to modelling errors, and
will thus be a well reflection of the reality. However, as mentioned in Section 2.3,
Cybernetica AS found that the original model was too computationally inefficient
to additionally run a complex estimator such as a Kalman Filter. Consequently,
during tuning and testing of the controller will the estimator be turned off and
later for performance enhancement has only bias updating been introduced.

Lastly, in the original code are also interfaces for several integrators implemented.
These include CVODE and Explicit Euler which are briefly described in Section
2.2. As CVODE is already implemented, this routine will be used to integrate
the system as it usually accounts for possible stiffness, better accuracy and less
simulation time. However, if the reduced model show significantly decreased
stiffness, Explicit Euler may be considered as integration routine.
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Figure 3.2: Overview of software and available interfaces utilised in this thesis for
offline model validation and online optimisation.
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Chapter 4

Model validation

Modelfit has been used to validate the reduced model against instrumental
measurements from the Tiller facility and the original model. In Hotvedt (2017),
was each of the reduced unit models for the absorber, desorber and heat exchanger
separately analysed against the corresponding original unit model by running
ballistic simulations from an initial value until steady state was reached. However,
the influence of the reduced unit models on the complete model of the CO2 capture
facility was not verified. Consequently, in this chapter each of the unit models
have first been substituted separately into the complete original model and the
response analysed. These models with only one reduced unit model substituted
into the original model are referred to as temporary models. The influence of the
temporary model with the reduced heat exchanger has been analysed in Section
4.1, the temporary model with the reduced absorber model in Section 4.2 and the
temporary model with the reduced desorber model in Section 4.3. Secondly, in the
Section 4.4, have all the reduced unit models been substituted and the complete
model response analysed. The simulations that have been performed in all the
above mentioned sections are ballistic with no influence of controllers nor bias
updating from instrumental measurements. In the last section however, Section
4.5, has bias updating with instrumental measurements been experimented with
to further decrease modelling errors. The data set that has been used in all
simulations (courtesy of SINTEF) illustrates a set of representative operating
conditions from a test run at the real facility at Tiller, at which steps in some
of the inputs have been induced. The most important changes in inputs may be
seen in Figure 4.1. The inputs for the reboiler duty and mass flow of lean amine
solution into the absorber are optimal inputs generated by the NMPC controller
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through CENIT and is thus a consequence of the manual step changes in the
inlet of flue gas and changes in inlet composition of CO2 in the flue gas. The
large spikes in the inlet composition of CO2 is caused by the daily resetting of a
propane burner which provides flue gas to the absorber in the Tiller facility.

Figure 4.1: Overview of the most important inputs and steps in input during
the ballistic simulations in Modelfit. Obtained from the data set provided by
SINTEF.

One of the assumptions made in this chapter is treating the original model with
the perfect model assumption. That is, neglecting modelling errors between the
model and the true facility. Consequently, the goodness of fit of the reduced
model response have been compared to the original model response instead of to
instrumental measurements from the facility. Consequently, responses of variables
in the models that have not been measured in the Tiller facility may be compared
to each other. Two evaluation variables have been applied to investigate the
goodness of fit; maximum and average absolute deviation defined in equation 4.1,
Chapter 2.
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max |D̃| = max
k

(
|φi,org,k − φi,red,k|

)

avg|D̃| =
∑K

k=0

(
|φi,org,k − φi,red,k|

)

K

(4.1)

Here K = 4656 samples, which are the number of samples in the data set. One
sample represents one minute, thus the complete data set represents input and
measurement values for more than three days. φ is a generic vector with both
controlled variables z and predicted measurements ȳ from the model, and i is
the index for the variable in question. The variables that have been analysed are
the instantaneous capture ratio (CR) in the absorber column, the mass flow rate
of CO2 from the condenser, the concentration of CO2 in the top of the absorber
column and the temperature in the absorber column approximately one meter
from the top. The first mentioned variable is a controlled variable which is derived
using equation 4.2. Here Fabs,CO2 is the molar flow of CO2 which may be found
using the relationship between molar flows and molar amounts in equation 2.1.

CR = 100× Fg,abs,CO2,in − Fg,abs,CO2,out

Fg,abs,CO2,in
(4.2)

The capture ratio is a derived variable, and is hence not measured by instrumen-
tation in the Tiller facility, but is still a very important variable. This is because
the capture ratio often is used in optimisation and control and the variable must
thus be able to reflect the conditions in the true plant. The three others variables
are predicted measurements from the model where instrumental measurements
from the Tiller facility have been made available by SINTEF. It has been decided
that the mass flow rate of CO2 from the condenser is, compared to the others, of
most importance to yield correct results. This is because the variable is direct
result of how much CO2 has been captured from the exhaust gas and because the
instrumental measurements for this variable is the most reliable measurements of
those available.

Parameter adjustment have manually been experimented with in order for the
reduced model to fit better to the original model. Three parameters have been
adjusted in the different models; the heat transfer coefficient in the heat exchanger
ĥhex and two factors called the K-factors of CO2. The last mentioned factors are
multiplied with the overall mass transfer coefficients in the absorber and desorber,
in order to change the overall mass transfer. They should ideally be set to 1, as
not to enhance nor decrease the overall mass transfer coefficient in the column
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found from correlations (Flø, 2015, p. 71). However, in the original model, these
factors were set less than 1 through parameter estimation such that the response
of the original model would fit better to measurements. An overview of the final
parameter adjustments for each of the temporary models with a separate reduced
unit model substituted, in addition to the complete reduced model may be seen
in Table 4.1. Notice that the K-factors for CO2 had to be increased above one
for well fit between the reduced model and the original model. However, in the
model used for optimisation in Chapter 5 these factors will be set to their ideal
values, unity, and thus may further parameter adjustments should be performed
if the result deem inadequate. Several other parameters may also be adjusted,
however, these three yielded noticeable changes with small adjustments and have
was thus been focused on. To enhance the goodness of fit between the models,
more parameters should be experimented with.

Table 4.1: Overview of parameter values in the original model and adjustments
made in the temporary models with one unit model substituted and the total
reduced model during model validation (hex = heat exchanger).

Model

Parameter Original Temp. w.
hex

Temp. w.
absorber

Temp. w.
desorber Reduced

ĥhex 0.3788 0.55 0.55 2 2
K-factorCO2,abs 0.7 0.7 1 0.7 4
K-factorCO2,des 0.5 0.5 0.5 0.5 2

Last but not least, have eigenvalue analyses been performed using the Stiffness
Ratio in equation 2.15 which is calculated based on the eigenvalues of the estimated
Jacobian matrix. The Jacobian is found in MATLAB using Listing 2.1 in Section
2.2 with a perturbation parameter of ε = 10−8. Stiffness is as explained in Section
2.2 an important property which for instance decides how small the step size in
the integration routine must be for stability. The step size may also influence
the simulation time. A stiffer system require a smaller step size and consequently
would the simulation time increase. Consequently, it is of interest to investigate
the stiffness of the reduced model. The analysis might determine whether simple
integration routines such as Explicit Euler may be used on the system or if more
advanced routines such as CVODE is necessary. Firstly however, have each of
the separate reduced unit models from Hotvedt (2017) been investigated using
the same constant input as for the simulations in Hotvedt (2017). The reason for
this is to see whether the introduction of control volume discretisation instead of
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the collocation method, in addition to change of state space adds stiffness to the
unit models. If so, the unit models are also likely to influence the stiffness in the
complete model. The stiffness ratio along with the absolute real maximum and
minimum eigenvalue for each of the original unit models may be found in Table
4.2. As explained in Section 2.2, an SR >> 1 implies a stiff system. Consequently,
the original unit models for the absorber and desorber are stiff. This is most likely
due to having dynamical states for both gas and liquid in the same system. Gas
dynamics are usually very quick whereas liquid dynamics are slow. Consequently,
a large spread in eigenvalues of such systems is to be expected.

Table 4.2: Result of the eigenvalue analysis for the different separate original unit
models; heat exchanger, absorber and desorber.

Unit model max |<(λi)| min |<(λi)| SR

Heat exchanger 0.017 0.011 1.56
Absorber 17.4 1.2·10−3 1.42 ·104

Desorber 1.56 1.5·10−2 1.12·103

Thereafter, have each of the temporary models with one of the reduced units in
addition to the complete reduced model been analysed regarding stiffness. The
data set provided by SINTEF have been utilised such that the stiffness could
be investigated for different operating conditions. The SR was thus analysed
at four samples, two at which there are large changes in the responses and two
at steady state. The samples chosen may thus not be representative for other
operating areas. The SR’s together with the absolute real maximum and minimum
eigenvalue at each sample for the original model may be seen in Table 4.3. As
one may see, are the SR’s for the complete original model much larger at all
samples than for the separate original unit models in Table 4.2. This suggests
that other unit models apart from the heat exchanger, absorber and desorber,
induce stiffness in the system. For instance the reboiler or the condenser, which
also have dynamical states for both liquid and gas.

In addition to analysing the stiffness of the temporary reduced models and the
complete reduced model against the original model, has the approximate simulation
time in Modelfit for the ballistic simulations of each of the temporary and complete
models been reported. As stated may the stiffness of the model influence the
simulation time, and hence may this analysis give additional information about
the system stiffness. On the other hand, will the complexity of the state space
also influence the simulation time and is therefore likewise reported. Either way,
the simulation time plays an important role for online optimisation where there
is a real-time demand on how fast the system may be solved. Therefore, both
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Table 4.3: Result of the eigenvalue analysis of the original model at different
samples in the data set provided by SINTEF

Sample max |<(λi)| min |<(λi)| SR

80 5.30·103 3.07·10−7 1.73·1010

1000 5.31·103 3.72·10−6 1.43 ·109

3000 5.40·103 5.39·10−5 1.00·108

4000 5.36·103 4.11·10−5 1.30·108

the stiffness of the model in addition to state space complexity will determine
whether the model is suitable for use in online optimisation. The original model
in this thesis have a state space dimension of 448 and using the large data set
provided by SINTEF, Modelfit used ≈ 26 seconds to simulate the model.

Even though this thesis treats the original model with the perfect model assump-
tion, will there always exist modelling errors and hence will it be quite valuable to
investigate how well the reduced model responses fit to instrumental measurements.
The measurements from the real facility at Tiller are therefore also shown in the
simulation results. A model that fits well to instrumental measurements without
correction from measurements is of high importance, however, sometimes the
parameters are difficult to tune. Introduction of a Kalman Filter for parameter
estimation could update the parameters in the model such that the responses
fits well with the measurements. However, a Kalman Filter may result in the
parameters become infeasible or outside physical boundaries, which may cause
more stiffness. If that is the case, bias updating with a time varying bias will
be essential to obtain optimal solutions for the true facility. Bias updating, as
explained in Chapter 5, does not update the parameters or states in the model
directly but adjusts predicted measurements or derived variables instead to re-
move modelling errors. In this thesis, experimentation with a Kalman Filter
has not been provided, however, to illustrate that bias updating may provide an
equally well response if well-tuned, the last section, Section 4.5, show the results
of simulation with a bias updating using instrumental measurements of the mass
flow of CO2 from the condenser.
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4.1 Validation of the temporary model with the
reduced heat exchanger

In Table 4.4 and Figures 4.2 and 4.3 may one see the result of the ballistic
simulation of the temporary model in which only the reduced unit model for the
heat exchanger has replaced the original unit model. Hotvedt (2017) found that
a number of control volumes of n = 2 was necessary for the best match to the
original model, however, testing the complete reduced model in this chapter, it
was found that changing the number of control volumes to n = 1 gave insignificant
differences. In order for the complete model response to fit nicely to the original
model for both n = 2 and n = 1, ĥhex had to be changed from ĥhex,org = 0.3788

to ĥhex,red = 0.55. A further increase in ĥhex gave only minor improvements. As
a result, the average absolute deviation decreased for all variables as seen in Table
4.4. On the other hand did some of the maximum absolute deviations increased
slightly, for instance the capture ratio, yet this may be due to the disturbances
causing rapid changes in the model responses.

Table 4.4: Maximum and average deviation of the capture ratio, mass flow of CO2

from condenser, absorber temperature and CO2 concentration in the top of the
absorber comparing the temporary model with reduced heat exchanger against
the original model. Without and with parameter adjustments.

Case Variable max|D̃| avg|D̃|

Without
parameter
adjustment

Capture ratio [%] 8.40 1.38
Flow of CO2
from condenser [kgh ]

6.60 0.59

Absorber temperature [◦C] 1.90 0.31
Concentration of CO2
in top of absorber [%] 0.58 0.11

With
parameter
adjustment

Capture ratio [%] 9.11 0.15
Flow of CO2
from condenser [kgh ]

6.52 0.15

Absorber temperature [◦C] 1.92 0.07
Concentration of CO2
in top of absorber [%] 0.58 0.01

One may also notice that neither the original model response nor the temporary
model fits perfectly to the instrumental measurements across the whole simulation
horizon, even with parameter adjustment. In addition, one may see that the
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responses in mass flow of CO2 vapour from condenser and the temperature in
the absorber column exhibits spikes in the solution which are not present in
the measurement. These are most likely caused by the rapid changes in inlet
composition of CO2 in the flue gas. However, as the model will be used with a
large time horizon in the optimisation problem, such disturbances causing rapid
changes will not be significant.

Eigenvalue analysis of the reduced unit model of the heat exchanger gave the
results in Table 4.5, whereas the results of the eigenvalue analysis of the complete
temporary model may be seen in Table 4.6. As one may see comparing to the
results for the original unit model of the heat exchanger in Table 4.2, did the
introduction of control volumes in the heat exchanger increase the spread of
the eigenvalues somewhat. However, the results in Table 4.6 suggests that the
replacement of the original heat exchanger unit model with the reduced unit
model in the complete model did little to the stiffness of the complete model.
The SR in sample 80 and 1000 reduced slightly compared to the original in Table
4.3, on the other hand, did the SR in samples 3000 and 4000 increase slightly.
Nevertheless, all the SR’s are much larger than one, and the complete model is
consequently still very stiff.

Table 4.5: Result of eigenvalue analysis of the reduced heat exchanger unit model

Model max |<(λi)| min |<(λi)| SR

Reduced heat exchanger 0.022 0.002 10.8

Table 4.6: Result of the eigenvalue analysis of the temporary model with the
reduced unit model for the heat exchanger. Analysed at different samples in the
data set provided by SINTEF

Sample max |<(λi)| min |<(λi)| SR

80 5.29·103 3.60·10−6 1.47·109

1000 5.31·103 4.67·10−6 1.14 ·109

3000 5.40·103 5.69·10−5 1.46·108

4000 5.36·103 3.99·10−5 1.34·108

The model reductions for the heat exchanger did not result in reduction of state
space of the complete model, which therefore still has 448 states. However, the
simulation time of the ballistic simulation in Modelfit became ≈ 24 seconds, which
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is a reduction of 7.7%. This suggests that the calculation of the heat exchanger
response has simplified, and that the slight increase in stiffness did not influence
the simulation time.

Figure 4.2: Response of the capture ratio in the absorber column and mass flow of
CO2 from the condenser in the temporary model with the reduced heat exchanger
model substituted for the original unit model. Response compared to the original
model and instrumental measurements.

47



CHAPTER 4. MODEL VALIDATION

Figure 4.3: Response of the concentration of CO2 and temperature in the top of
absorber column in the temporary model with the reduced heat exchanger model
substituted for the original unit model. Response compared to the original model
and instrumental measurements.

4.2 Validation of the temporary model with the
reduced absorber

The result of the ballistic simulations for the temporary model with only the
reduced absorber unit model substituted for the original may be seen in Figures
4.4 and 4.5 and Table 4.7. Even though Hotvedt (2017) found that a number of
control volumes of n = 10 was sufficiently accurate in the absorber, a number of
control volumes of n = 40 was also tested in order to see if increasing the number
of control volumes would affect the results.
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Table 4.7: Maximum and average deviation of the capture ratio, mass flow of
CO2 from condenser, absorber temperature and CO2 concentration in the top of
the absorber comparing the temporary model with reduced absorber against the
original model. Without and with parameter adjustments.

Case Variable max|D̃| avg|D̃|
Without
parameter
adjustment
n = 10

Capture ratio [%] 27.14 2.43
Flow of CO2
from condenser [kgh ]

10.99 0.52

Absorber temperature [◦C] 15.91 9.11
Concentration of CO2
in top of absorber [%] 2.57 0.15

Without
parameter
adjustment
n = 40

Capture ratio [%] 28.99 1.76
Flow of CO2
from condenser [kgh ]

8.65 1.78

Absorber temperature[◦C] 11.21 1.29
Concentration of CO2
in top of absorber [%] 2.52 0.52

With
parameter
adjustment
n = 10

Capture ratio [%] 29.45 1.46
Flow of CO2
from condenser [kgh ]

11.17 0.42

Absorber temperature[◦C] 16.37 8.93
Concentration of CO2
in top of absorber [%] 2.83 0.10

As may be seen from the figures, only the response for the temperature in the
absorber, bottom figure in Figure 4.5, yielded a better fit to the original model
using n = 40 than n = 10 with or without parameter adjustment. However,
considering the instrumental measurements, may one see that using n = 40
improved both the response of the mass flow rate of CO2 from the condenser
and the temperature in the absorber column. On the other hand, the response
with n = 40 seems to be overestimating the concentration of CO2 in the absorber
column. Considering the average deviations in Table 4.7, may one see that
besides from the temperature in the absorber column, using n = 10 in addition to
parameter adjustment yielded somewhat better results to the original model than
using n = 40. Consequently as it is of more importance the mass flow rate of CO2

from the condenser to yield high accuracy, in addition to desiring a less complex
state space, the solution with n = 10 and parameter adjustment seem sufficient. If
the temperature in the absorber column was of more importance, a bias updating
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for the temperature could be introduced to account for the large deviation using
n = 10. The end parameter adjustment for the best fit became ĥhex,red = 0.55 and
K-factorCO2,abs,red = 1 where the original K-factorCO2,abs,red = 0.7. One may
additionally notice that the ”spikes” in the solution are smoothed out, yielding
less rapid changes.

The eigenvalue analysis of the reduced unit model of the absorber may be seen in
Table 4.8 and the analysis of the temporary model with only the reduced unit
model for the absorber substituted gave the results in Table 4.9. Comparing to
result of the original unit model for the absorber in Table 4.2, one may see that
the introduction of control volumes largely increased the stiffness of the system.
From the results in Table 4.9 however, may one see that the reduced model of the
absorber in the temporary model fortunately did not make much of a difference
in terms of the stiffness compared to the original model. On the other hand,
notice that the largest SR from the original in Table 4.3, sample 80 has been
reduced. Even so, as the SR’s are all much larger than unity is the total model
still extremely stiff.

Table 4.8: Result of eigenvalue analysis of the reduced absorber unit model

Model max |<(λi)| min |<(λi)| SR

Reduced absorber 7.20 9.04·10−7 7.96·106

Table 4.9: Result of the eigenvalue analysis of the temporary model with the
reduced unit model for the absorber. Analysed at different samples in the data
set provided by SINTEF

Sample max |<(λi)| min |<(λi)| SR

80 5.32·103 2.11·10−6 2.52·109

1000 5.33·103 9.96·10−7 5.25 ·109

3000 5.41·103 6.10·10−6 8.86·108

4000 5.43·103 4.74·10−6 1.15·109

Even though the reduced unit model for the absorber did not decrease the stiffness
of the complete model significantly, was the state space complexity drastically
reduced to 295 states, with the number of control volumes set to 10, compared to
the original of 448 states. In addition were there a large reduction in simulation
time of the ballistic simulation, ≈ 10 seconds, a reduction of 61.5%. As the stiffness
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is insignificantly reduced, is the smaller simulation time probably caused by the
reduced state space in addition to the simplification of using control volumes
instead of the collocation method as the results from Section 4.1 also suggests.

Figure 4.4: Response of the capture ratio in the absorber column and mass flow
of CO2 from the condenser in the temporary model with the reduced absorber
model substituted for the original unit model. Response compared to the original
model and instrumental measurements.
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Figure 4.5: Response of the concentration of CO2 and temperature in the top
of absorber column in the temporary model with the reduced absorber model
substituted for the original unit model. Response compared to the original model
and instrumental measurements.

4.3 Validation of the temporary model with the
reduced desorber

The reduced unit model for the desorber was also substituted separately into the
original model and the results may be seen in Figures 4.6 and 4.7 in addition to
Table 4.10.
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Table 4.10: Maximum and average deviation of the capture ratio, mass flow of
CO2 from condenser, absorber temperature and CO2 concentration in the top of
the absorber comparing the temporary model with reduced desorber against the
original model. Without and with parameter adjustments.

Case Variable max|D̃| avg|D̃|
Without
parameter
adjustment
n = 10

Capture ratio [%] 13.69 6.36
Flow of CO2
from condenser [kgh ]

4.52 1.90

Absorber temperature [◦C] 4.60 1.16
Concentration of CO2
in top of absorber [%] 1.07 0.41

Without
parameter
adjustment
n = 40

Capture ratio [%] 12.87 5.63
Flow of CO2
from condenser [kgh ]

6.51 1.78

Absorber temperature[◦C] 4.51 1.05
Concentration of CO2
in top of absorber [%] 1.11 0.38

With
parameter
adjustment
n = 10

Capture ratio [%] 11.42 3.18
Flow of CO2
from condenser [kgh ]

4.10 1.01

Absorber temperature[◦C] 3.64 0.64
Concentration of CO2
in top of absorber [%] 0.60 0.21

As one may see, both the average and maximum deviation decreased after adjusting
the parameters, however, it was harder to adjust the parameters such that the
response fit well. What may also be seen is that increasing the number of control
volumes to n = 40 did not improve the results of the four variables investigated.
Consequently, for a better fit of the capture ratio and mass flow rate of CO2 from
the condenser, bias updating would be necessary. The end parameter adjustment
became ĥhex,red = 2 whilst the K-factors were unchanged from their original
values.

The result of the eigenvalue analysis of the reduced unit model for desorber may
be found in Table 4.11 whereas the result for the temporary model with only the
reduced unit model for desorber substituted may be seen in Table 4.12. As in
Section 4.2 did the use of control volumes increase the stiffness of the desorber
unit model largely, but decreased the large SR in sample 80 in the temporary
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model compared to the original model.

Table 4.11: Result of eigenvalue analysis of the reduced unit model for desorber

Unit max |<(λi)| min |<(λi)| SR

Reduced desorber 35.0 1.31·10−4 2.67·105

Table 4.12: Result of the eigenvalue analysis of the temporary model with the
reduced unit model for the desorber. Analysed at different samples in the data
set provided by SINTEF

Sample max |<(λi)| min |<(λi)| SR

80 5.35·103 2.24·10−6 2.39·109

1000 5.35·103 2.05·10−6 2.62 ·109

3000 5.44·103 2.69·10−5 2.02·108

4000 5.52·103 2.09·10−5 2.64·108

The reduced unit model for the desorber, with n = 10, decreased the state space
complexity of the complete model to 376 states compared to 448 in the original.
The simulation time also decreased to ≈ 17 seconds, a reduction of 34.6%.
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Figure 4.6: Response of the capture ratio in the absorber column and mass flow
of CO2 from the condenser in the temporary model with the reduced desorber
model substituted for the original unit model. Response compared to the original
model and instrumental measurements.
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Figure 4.7: Response of the concentration of CO2 and temperature in the top
of absorber column in the temporary model with the reduced desorber model
substituted for the original unit model. Response compared to the original model
and instrumental measurements.

4.4 Validation of the complete reduced model

Finally, the complete reduced model was tested using the same data set as
before, and the results may be seen in Figures 4.8 and 4.9, and Table 4.13. In
this simulation the number of control volumes in the absorber and desorber
was set to nabs = ndes = 10, and the heat exchanger as previously, nhex = 1.
Similarly to the results in Section 4.3, did parameter adjustment decrease all
of the average deviations even though a complete match was difficult to obtain.
The end parameter adjustment became ĥhex,red = 2, K-factorCO2,abs,red = 4 and
K-factorCO2,des,red = 2. However, increasing the CO2 K-factors this much may
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cause additional stiffness in the system as their ideal values are unity. Therefore,
may bias updating be beneficial to remove modelling errors instead of increasing
the K-factors above unity.

Table 4.13: Maximum and average deviation of the capture ratio, mass flow of
CO2 from condenser, absorber temperature and CO2 concentration in the top of
the absorber comparing the complete reduced model against the original model.
Without and with parameter adjustments.

Case Variable max|D̃| avg|D̃|

Without
parameter
adjustment

Capture ratio [%] 27.68 11.21
Flow of CO2
from condenser [kgh ]

11.10 3.18

Absorber temperature [◦C] 14.63 8.96
Concentration of CO2
in top of absorber [%] 1.87 0.71

With
parameter
adjustment

Capture ratio [%] 25.25 2.32
Flow of CO2
from condenser [kgh ]

12.63 0.85

Absorber temperature [◦CWi] 14.82 7.47
Concentration of CO2
in top of absorber [%] 2.38 0.17

The eigenvalue analysis of the complete reduced model gave the results in Table
4.14. As the unit models insignificantly changed the stiffness when substituted
into the complete model, Sections 4.1-4.3, the results found was expected. Similar
to before, has the SR in sample 80 been reduced but the other SR’s increased.
Consequently, other unit models in the complete model are probably causing the
large stiffness, for instance the reboiler or condenser. On the other hand, one must
keep in mind that the samples chosen for investigation may not be representative
in all operating modes. As the reduction in stiffness is negligible, will CVODE be
used as integration routine when solving the reduced model in optimisation in
Chapter 5.

It found simulating that Modelfit used ≈ 7 seconds on the complete simulation,
which is reduction in simulation time of 73.1% from the original. The introduction
of all the model reductions suggested by Hotvedt (2017) resulted in the reduced
model having 223 states compared to the 448 states of the original model. It
was mentioned in Section 2.2 that solving a system using CVODE may be time
consuming if the state space is large. Therefore, the decrease in simulation time is
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Table 4.14: Result of the eigenvalue analysis of the complete reduced model at
different samples in the data set provided by SINTEF

Sample max |<(λi)| min |<(λi)| SR

80 5.34·103 1.43·10−6 3.74·109

1000 5.33·103 7.87·10−7 6.78 ·109

3000 5.43·103 3.25·10−6 1.67·109

4000 5.48·103 2.18·10−6 2.52·109

most likely caused by the reduced state space, in addition to the simplification of
using control volumes for spatial discretization instead of the collocation method.
Conclusively, as the simulation time drastically reduced, the reduced model is
better suitable for online optimisation than the original model, even though the
stiffness of the complete model was insignificantly changed. A table summarising
the reduction in state space complexity and the simulation time for the different
temporary models with only one unit model substituted in addition to the original
model and the reduced model may be found in Table 4.15.

Table 4.15: Overview of state space dimension, simulation time and reduction of
simulation time of the different temporary and complete models

Model Dimension Simulation time [s](red. [%])

Original 448 ≈ 26
Temporary model w.
red. heat exchanger 448 ≈ 24 (7.7)

Temporary model w.
red. absorber 295 ≈ 10 (61.5)

Temporary model w.
red. desorber 376 ≈ 17 (34.6)

Total reduced 223 ≈ 7 (73.1)
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Figure 4.8: Response of the capture ratio in the absorber column and mass flow
of CO2 from the condenser in the complete reduced model. Response compared
to the original model and instrumental measurements.
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Figure 4.9: Response of the concentration of CO2 and temperature in the top
of absorber column in the complete reduced model. Response compared to the
original model and instrumental measurements.

4.5 Reduced model response with bias updating

As mentioned in the beginning of Chapter 4, a Kalman Filter for parameter
adjustment has not been experimented with due being time consuming and very
complex. However, as mentioned may a simple estimator such as bias updating
be introduced instead to reduce modelling errors, see Section 2.3 for explanation
of bias updating. An example of this is bias updating using the measurement
of the mass flow of CO2 from the condenser. Notice how in Section 4.4, Figure
4.8 the response for mass flow of CO2 from the condenser in the reduced model
show a deviation from the original model response and measurement. Inclusion of
bias updating however, results in the responses in Table 4.16 and Figures 4.10
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and 4.11. The original model and the reduced model responses for the mass flow
from condenser fits better with the measurement. The bias updating is further
used to update the capture ratio and the concentration of CO2 in the top of
the absorber column, however only the capture ratio in the reduced model show
significant better fit to the original model. Notice, comparing Figure 4.9 to Figure
4.11 that it seems that the concentration of CO2 in the top of the absorber is
updated too much as both the original and reduced model responses now lies
above the measurement and not below. Further, there are no noticeable changes
in the absorber temperature. Comparing the maximum and average absolute
deviation with bias updating in Table 4.16 to the complete reduced model in
Section 4.4, Table 4.13 may one see that the average absolute deviation for all
variables, except the temperature in the absorber, are highly improved and yields
even less deviation than the results for the complete reduced model with parameter
adjustments. The still large maximum absolute deviation is most likely due to the
rapid disturbances in the responses. This suggest that bias updating using only
one measurement may not remove modelling errors in all variables, and in fact
induce new errors. Consequently, should bias updating with several measurements
be experimented with for sufficient reduction of modelling errors in all states. As
mentioned in Section 2.3, may therefore a Kalman Filter be beneficial in such
circumstances because it may automatically determine which states or parameters
needs updating analysing all available measurements. Experimentation with
Kalman Filter however, will be a topic of future work with the reduced model.

Table 4.16: Maximum and average deviation of the capture ratio, mass flow of CO2

from condenser, absorber temperature and CO2 concentration in the top of the
absorber comparing the complete reduced model against the original model. With
bias updating from measurements of the mass flow of CO2 from the condenser.

Case Variable max|D̃| avg|D̃|

With
bias
updating

Capture ratio [%] 29.54 1.20
Flow of CO2
from condenser [kgh ]

11.68 0.55

Absorber temperature [◦C] 14.64 8.97
Concentration of CO2
in top of absorber [%] 1.92 0.08
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Figure 4.10: Response of the capture ratio in the absorber column and mass
flow of CO2 from the condenser in the reduced model where bias updating
has been included. Response compared to the original model and instrumental
measurements.
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Figure 4.11: Response of the concentration of CO2 and temperature in the
top of absorber column in the complete reduced model where bias updating
has been included. Response compared to the original model and instrumental
measurements.
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Chapter 5

Simulation results from
optimisation

The optimisation problem that has be set up in this thesis is a Dynamic Real-
Time Optimisation problem, which utilises single-level Nonlinear Model Predictive
Control with both economic and regulatory objectives in the objective function.
This type of controller is described in Section 2.3.2. The dynamic model in the
optimisation problem has been the complete reduced model of the Tiller facility
which was validated against the original model in Chapter 4. The algorithm has
been designed such that the total cost related to the energy consumption in the
reboiler is minimised, while an overall, or accumulated, capture ratio (CRacc)
should reach a minimum specified reference, CRref

acc , after 24 hours. These two
variables will be controlled variables in the optimisation problem, and has been
defined as follows, in equation 5.1.

CRacc = 100 ·
∫ k

0
(Fg,abs,CO2,in − Fg,abs,CO2,out)dt∫ k

0
Fg,abs,CO2,indt

Cost =

∫ k

0

ψ ·RDdt
(5.1)

ψ is here the price of energy in [NOK
kWs ], RD is the reboiler duty in [kW ] and k

is the current sample. Notice that, due to only being interested in the result
after 24 hours, one evaluation point for both the cost and the CRacc will be
needed and may be placed 24 hours ahead. However, as the prediction horizon
N is receding in an standard (N)MPC controller, the evaluation point will be
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moving in time. The way to achieve the evaluation point at precisely k = 24h is
therefore by ”freezing” the controlled variables at this point in time. That is, after
simulating 24 hours, the updating of CRacc and cost is stopped. Consequently,
even though the optimisation problem operates with a receding horizon, the effect
will be that of a shrinking horizon which shrinks by one time sample each sample
Nk+1 = Nk −∆k.

By having the optimisation problem focusing on the accumulated CO2 capture
ratio after 24 hours, a flexible mode is established in which the regeneration
of MEA, and thus the instantaneous capture ratio (CR), defined in Chapter
4 equation 4.2, may vary during the prediction horizon. The algorithm may
consequently utilise the knowledge of a daily varying price of energy and alter the
regeneration of MEA correspondingly. During high peaks of the energy price, less
regeneration may be performed such that less energy is used, inducing lower costs.
More MEA regeneration may hence be performed in low peaks of the electricity
price to keep the accumulated capture ratio at a certain percentage after 24 hours.
However, the instantaneous CR should stay within certain bounds for optimal
controlling. A too low CR may cause an unwanted shutdown of the facility that
require large amounts of energy for start-up. Furthermore, an instantaneous
capture ratio close to 100% increases the uncertainty of the model and might
induce inconvenient large modelling errors. Consequently, a lower and upper
constraint of CR(min,max) = (75,96)% have been introduced to prevent such
conditions.

Two manipulated variables have been chosen to optimise for optimisation; the
reboiler duty (RD) and the mass flow of lean amine into the absorber, Fl,abs.
By the use of these two MV’s, will there exist an optimal combination such
that the reboiler duty may be minimised as much as possible but still achieve
the regulatory goal. As explained in Section 2.3, input blocking will be used to
decrease the degrees of freedom of the optimisation problem. The price of energy
changes every hour during the day and ideally should therefore 24 input blocks
be applied. However, it was found during simulations that 12 input blocks evenly
spread throughout the day yielded adequate responses. The time between each
input block will therefore be 2 hours, and thus should first-order hold instead of
zero-order hold be utilised as described in Section 2.3. The initial point used for
all simulation cases of the optimisation problem is a known steady-state solution
with a capture ratio of ≈ 95%. One may argue that the initial point rather should
be an endpoint of a previous simulated case where the system reached its reference
value. However, this initial point along with the needed inputs were provided by
Cybernetica AS and as long as all simulation cases uses the same initial point,
they may be compared to each other and conclusions may be established. An
overview of the CV’s and MV’s used in the DRTO along with their initial values,
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may be found in Table 5.1.

Table 5.1: Overview of manipulated and controlled variables in the optimisation
problem

Variable Abbreviation Unit Initial

MV Reboiler duty RD kW 19.3
Mass flow of lean amine
into absorber Fl,abs

kg
min 4.97

CV

Accumulated Capture Ratio
of CO2 in absorber column CRacc % 94.8

Total energy costs Cost NOK 0
Capture Ratio CR % 94.8

To make the variable energy price function authentic, data regarding the energy
price in Trondheim, Norway, was collected from Nord Pool, Market Data (2018).
The energy price will also be dependent on outside temperature. Therefore, were
the energy prices for the hottest and coldest day (Yr, 2018) from the period April
2017 to April 2018 in Trondheim selected for further analysis. The hourly varying
price of these two days has been illustrated in Figure 5.1. As may be seen, the
energy prices from the hottest day did not change the shape of the price function.
Consequently, only the energy prices from the coldest day have been used in the
optimisation. An outside algorithm predicting the day-by-day energy prices based
on weather forecasts and previous data from Nord Pool, Market Data (2018) could
be developed in order to make the optimisation problem even more authentic.
Additionally could daily varying prices for CO2 emissions also be included. An
algorithm for energy price prediction is a suggestion for future work.
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Figure 5.1: Illustration of a variable price of energy during 24 hours, data collected
from Nord Pool, Market Data (2018)

Several variants of the optimisation problem have been tested. To be able
conclude something about the performance of the DRTO with a varying degree
of regeneration, has a base case using a fixed mode of operation also been
implemented. In the fixed mode, the accumulated capture ratio has been forced
constant throughout the simulation horizon, such that the MEA regeneration also
remain constant. In addition has the cost been minimised as much as possible.
Two different fixed values for the accumulated capture ratio were tested; 91% and
85%. Further description along with results of the cost for the base case may
be found in Section 5.1. The idea behind comparing two different fixed mode
scenarios against their corresponding flexible modes is that for the lower reference
value, the DRTO will in the flexible mode be able to vary the CR to a much
larger degree than for the higher reference value as the bounds on the CR is set to
(75,96). Consequently, may the percentage decrease in cost be larger for the lower
reference value scenario. Thus, the cases with the lower reference value will be an
example of how much may be saved if allowing a somewhat smaller accumulated
capture ratio than the often specified standard of more than 90%.
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Both methods for the DRTO; infeasible soft-constraint and unreachable setpoints,
explained in Section 2.3, were attempted for the flexible mode, however, it was
found that the tuning related to the infeasible soft-constraint method required less
effort. This is due to objective function having fewer quadratic weight penalties
and more linear (exact) weight penalties, which makes it easier to compare the
regulatory and economic objectives against each other. Setting the linear weights
for the regulatory objectives sufficiently larger than for the economic objectives
will ensure fulfilment of the regulatory objectives, while minimising the economic
as much as possible. For the flexible mode simulations, has a solution been
accepted if the end accumulated capture ratio was in the range CRref

acc ±0.2% after
24 hours. The result of the infeasible soft-constraint method without disturbances
and for fixed exhaust inlet conditions may be seen in Section 5.2. It is also of
interest to see if the algorithm is robust enough to re-plan the optimal solution if
abrupt changes in either the exhaust inlet conditions or the energy prices occur.
Consequently, a simulation case where the composition of CO2 in the exhaust gas
increases has been performed and reported in Section 5.3 and a simulation case
where the electricity price suddenly increases has been investigated in Section 5.4.
In addition, one case where stricter physical constraints on the reboiler duty have
been imposed, has been experimented with and may be seen in Section 5.5.

The optimisation cases have been simulated using Cybernetica AS software Real-
Sim and CENIT. As mentioned in Chapter 3 has the original model been used
in RealSim as a plant replacement model to simulate the facility. The results
from Chapter 4 suggests that a bias updating using measurements is necessary
if the reduced model should fit the responses of the original model. This may
be introduced into the model, using the predicted measurements from RealSim.
However, tuning of the controller will be simpler if measurements are disregarded
and the model optimised based on the perfect model assumption, neglecting
modelling errors. On the other hand, it is of importance to keep an eye on the
values in the simulator in order to avoid a complete mismatch to the simulated
facility. Consequently, will the CRacc from RealSim be reported and compared to
the results from CENIT to be certain that the facility’s accumulated capture ratio
is at least not lower than the reference value. On the other hand, is it of interest
to see how the DRTO behaves under influence of bias updating and consequently
has this been experimented with in Section 5.6. Furthermore, as explained in
Section 1.3, is it assumed that the low-level controllers work perfectly. This means
that the optimal MV trajectories calculated by CENIT will be implemented.

Through CENIT’s MMI, may one analyse optimal predicted trajectories, history,
current values and perform online adjustment of constants and tuning parameters.
An example is illustrated in Figure 5.2 where both history, illustrated with negative
time, and predicted trajectories, positive time, are visible. The values that have
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already been implemented in the facility are values up until time zero, whereas
the predictions are given from time zero and up until the complete receding
prediction horizon N . Notice here, how the cost and CRacc have been frozen
after 24 hours of simulation time yielding a shrinking horizon effect. In Figure
5.2 this is approximately 17 hours into the future. However, the instantaneous
CR and MV’s have not been frozen and consequently, in Figure 5.2b, the CR
after 17 hours into the future is not reflected in CRacc. However, the predictions
after this point in time will not be considered in the objective function as the
algorithm only optimises the problem during the first 24 hours. That is, each
day is optimised isolated without regarding the solutions for the previous or the
coming day.

A great amount of tuning was experimented with in order to achieve the goal of
the optimisation problem. Not only have the weights for deviation penalisation in
the controller been adjusted several times, but the number of input block’s and
evaluation points for sufficient response have been investigated. Common for all
simulation cases described in the subsections below is the use of one QP iteration
and at most 10 line searches in the SQP algorithm to solve the nonlinear problem.
As explained in Section 2.3, are few QP iterations often accepted if the time
between each sample is small. In all the simulation cases has a sample time of 3
minutes been utilised. On the other hand, a brief experimentation on increasing
the number of QP iterations was performed out of curiosity. Increasing the number
of QP iteration resulted, as expected, in the same optimal end result, although
fewer samples where required before the algorithm settled at the optimal solution.
This suggest that the SQP algorithm yields convergence towards optimum already
in the first QP iteration. Consequently, as a larger number of QP iterations
increased the solving time but did little to the end result, one QP iteration was
used in the simulation cases. After finding the best possible combination of tuning
parameters were the cases simulated throughout the simulation horizon without
online adjustment.
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(a) Manipulated variables

(b) Control Variables

Figure 5.2: Illustration of MV’s and CV’s with history and predictions from CENIT
MMI. Negative time illustrates history whereas positive time are predictions into
the future.
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5.1 Fixed mode of operation

As mentioned, in order to analyse the performance of the DRTO, a base case using
a fixed mode of operation has been established for comparison to the flexible mode
investigated in Section 5.2. In the base case, the DRTO forces the accumulated
capture ratio to stay at a reference value, CRref

acc , throughout the horizon whilst
manipulating the reboiler duty and mass flow to minimise the cost. Two reference
values were inspected; 91% and 85%. To achieve the goal of the base case,
an infeasible soft-constraint method was utilised because it yielded only small
fluctuations in the accumulated capture ratio compared to the unreachable setpoint
method that was also attempted. Hence, the minimum and maximum constraint of
the accumulated capture ratio was set to CRacc(min,max) = (CRref

acc ,CRref
acc ) and

violations penalised. To minimise the cost, Cost(min,max) = (0,0) was enforced.
Decreasing the number of degrees of freedom, input blocking and control variable
evaluation points, explained in Section 2.3, were also implemented. The input
blocking was set equal for all MV’s, the first change after 30 minutes and further
every second hour. The CV evaluation points however, were chosen differently for
the CRacc and the Cost, with the CRacc being evaluated every fourth hour, while
the cost only evaluated after 24 hours. Additionally were the constraints on the
CR applied to avoid shutdown and too high model uncertainties. The base case
is summarised below.
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Case: Basic
Goal:
Maintain an accumulated capture ratio of CRref

acc throughout horizon
Minimise Cost

MV’s: RD, Fl,abs

CV’s: CRacc, Cost, CR

CV setpoints:
N.A.

CV constraints:
CRacc: [CRref

acc ,CRref
acc ]

Cost: [0,0]
CR: [75,96]

MV input blocking:
RD: first after 30min, then every 2 h
Fl,abs: first after 30min, then every 2 h

CV evaluation points:
CRacc: every 4 hour
Cost: after 24 h
CR: every 4 hour

The results obtained for the base case using CRref
acc = 91% may be seen in Figure

5.3. Figure 5.3b shows how the algorithm forces the instantaneous capture ratio
to remain at 91% after an initial transient. Figure 5.3a illustrates how the reboiler
duty and the mass flow were not able to vary much due to the strict CRacc

requirement. The end cost after 24 hours became CostN = 384NOK. The result
for CRref

acc = 85% may be seen in Figure 5.4. Also here did the DRTO manage to
keep the CR at 85% after initial transient. Notice how the RB and Fl,abs have
settled lower than for CRref

acc = 91%, which is expected. Resultantly, the cost
became smaller and the end value became CostN = 353NOK. The results for the
two base cases are summarised in Table 5.2.
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(a) Manipulated variables

(b) Control Variables

Figure 5.3: Result of basic case where the accumulated capture ratio is held
constant through the horizon after an initial transient. CRref

acc = 91%
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(a) Manipulated variables

(b) Control Variables

Figure 5.4: Result of basic case where the accumulated capture ratio is held
constant through the horizon after an initial transient. CRref

acc = 85%
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5.2 Flexible mode of operation

The infeasible-soft constraints method were utilised also for the flexible mode due
to easier tuning of the controller. However, the unreachable setpoint method was
experimented with and yielded well results. However, not as good as the results
from the infeasible-soft constraints method in this section. For the interested
reader, may the simulation case using the unreachable setpoint method be found
in the Appendix, Section A.1. For the flexible mode using the infeasible soft-
constraint method, constraints on the CRacc were set to CRacc(min,max) =
(CRref

acc ,96) with only one evaluation point, at k = 24 hours. Consequently, will
the accumulated capture ratio in addition to the instantaneous capture ratio be
allowed to vary around CRref

acc during the prediction horizon, hopefully minimising
the cost significantly. Such constraints on the CRacc should make the algorithm
find and optimal solution yielding an end accumulated capture ratio at the the
reference value, the lowest bound. This is because less CRacc always induce less
cost, such that even though the end CRacc is allowed between the bounds, the
algorithm should force CRacc to the minimum to also minimise cost. Equivalently
to the base case, were two reference values; CRref

acc = 91% and CRref
acc = 85%

experimented with. As before were the infeasible soft-constraints set on the cost,
Cost(min,max) = (0,0), and constraints set on the CR, CR(min,max) = (75,96).
However, for the CR in this case, a CV evaluation point where set every 6 hour.
The number and length of the input blocks are the same as in the base case. A
summary of the flexible mode simulation case may be found below.
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Case: Flexible mode, infeasible-soft constraint method

Goal:
Achieve accumulated capture ratio of CRref

acc after 24 h
Minimise Cost

MV’s: RD, Fl,abs

CV’s: CRacc, Cost, CR

CV setpoints:
N.A.

CV constraints:
CRacc: [CRref

acc ,96]
Cost: [0,0]
CR: [75,96]

MV input blocking:
RD: first after 30min, then every 2 h
Fl,abs: first after 30min, then every 2 h

CV evaluation points:
CRacc: after 24 h
Cost: after 24 h
CR: every 6 hour

The result of the simulation using CRref
acc = 91% may be found in Figure 5.5 whereas

for CRref
acc = 85% in Figure 5.6. The resulting end cost became CostN = 343NOK

and CostN = 307NOK for the two cases respectively, which yielded a cost reduction
from the basic case of 10.9% and 13.0%. The results show as suggested earlier,
that a lower reference value would grant the instantaneous capture ratio to vary
to a larger degree than for the higher reference value such that the cost reductions
increased. The resulting cost and cost reductions for the different cases may be
seen in Table 5.2. In both cases, may one see that the optimal solution for the
reboiler duty varies in agreement with the price of energy in Figure 5.1. When the
energy price has its lowest peaks the reboiler duty has its highest peaks and vice
versa. From Figure 5.6 it may seem that the CR violates the constraints enforced
of [75,96]. However, keep in mind that the CR has evaluation points only every 6
hours such that the CR is allowed to be outside the bounds between the evaluation
points. In addition, if the penalisation weight on this variable is sufficiently lower
than for the other CV’s, deviations from constraints may be accepted in order to
comply with the constraints of the other CV’s. If it is undesired for the CR to be
outside the bounds, the number of evaluation points may be increased and the
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penalisation weight may be set higher.

It is worth noticing that the initial point used in the simulation cases in this
section and in the previous induces a warm start for the cost minimisation. The
algorithm may thus focus on decreasing the CRacc towards reference point, hence
use less energy than if the initial point was lower. This has been experimented
briefly with in which an initial point of 91% and 80% accumulated capture ratio
were used. The resulting end cost became, as expected, larger for both cases.
With CRinit

acc = 91% the end cost became CostN = 350NOK and for CRinit
acc = 80%

the end cost became CostN = 410NOK. The resulting optimal trajectories for
both cases may be found in the Appendix, Section A.2 and A.3.

Aforementioned, as bias updating was excluded for tuning purposes, is it of
importance to keep an eye on the CRacc in the simulator such that it is not
below the reference value at the end of the simulation horizon. However, it was
found that the CRacc in RealSim was always greater than the CRacc in CENIT
after 24 hours, see Table 5.2, which suggest that the algorithm uses more energy
than necessary. Consequently, could bias updating benefit cost minimisation
as measurements from the simulated facility would be taken into account. The
algorithm would be able to use less reboiler duty as the accumulated capture ratio
in RealSim may be lowered to achieve the reference value. Keep in mind however,
that even though the total operational cost could be lowered introducing bias
updating, would the cost reductions in percentage be the same as bias updating
would cause a decrease of the CRacc in RealSim also for the base cases. Simulation
with bias updating is briefly experimented with and the results may be seen in
Section 5.6.

Table 5.2: Summary of cost, cost reduction and accumulated capture ratio in
RealSim for different optimisation cases

Case Capture
goal [%]

Cost
[NOK]

Cost
red.
[%]

CRacc [%]
(RealSim)

Basic 91 384 ∼ 95.4
85 353 ∼ 89.5

Infeasible
s.-c.

91 342 10.9 93.7
85 307 13.0 87.7

Unreachable
setpoint 91 348 9.4 94.3
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(a) Manipulated variables

(b) Control Variables

Figure 5.5: Result of MV’s and CV’s for the flexible mode using the infeasible
soft-constraint method with CRref

acc = 91%
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(a) Manipulated variables

(b) Control Variables

Figure 5.6: Result of MV’s and CV’s for the flexible mode using the infeasible
soft-constraint method with CRref

acc = 85%
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One effect to notice from the flexible mode with infeasible soft-constraints is how
Fl,abs increases towards the end of the prediction horizon, both in Figures 5.5a
and 5.6a and for the cases with the different initial points in the Appendix A.2
and A.3. Why the algorithm chooses this as optimal is not evident, however, one
idea is as follows. There are several ways of instantly increasing the CR in the
absorber column and two of these are; increasing the circulation rate of the liquid
solution Fl,abs and increasing the MEA regeneration by increasing the reboiler
duty. Due to the shrinking horizon effect caused by freezing the optimisation
variables, the algorithm optimises one day isolated without regarding the previous
or the coming day. One should expect the reboiler duty to increase towards the
end of the simulation horizon as the energy price decreases. However, as the
accumulated capture ratio is above the reference value towards the end of the
simulation horizon, the algorithm may relax the costly regeneration step and
rather increase Fl,abs sufficiently to achieve an accumulated capture ratio of CRref

acc

at k = 24hours.

A consequence of the combination of Fl,abs and RD at the end of the prediction
horizon is a quite low instantaneous capture ratio. This effect is not ideal if the
simulations were to continue into the next day, as the delayed regeneration of the
MEA would have to be performed to increase the CR. In fact, a two-day simulation
has been investigated and the simulation results may be seen in the Appendix,
Section A.4. Notice how the cost is reset after 24 hours due to minimising the
cost during each 24 hours. As expected, the end cost after simulating day two
became CostN = 411NOK as CENIT started with an instantaneous capture ratio
of less than 91% and consequently had to use more energy to reach the goal of
CRref

acc = 91%. One solution to this problem is to introduce end constraints on for
instance the inputs or the instantaneous capture ratio to force a desired condition
at the end of the horizon. This may however, influence the minimisation of cost
on the current day. Another solution may be to expand the prediction horizon
to several days and use evaluation points every 24 hours. However, this would
result in either increasing the time between each input block if the same number
of input blocks where to be used, or increase the number of input blocks to yield
the same length of each input block. Thus a trade-off between solving time and
sensitivity to change in price would occur. A prediction horizon of 48 hours,
although without the evaluation point after 24 hours, was experimented briefly
with and the simulation result may be seen in the Appendix A.5. It was chosen
to increase the number of input blocks to maintain the same sensitivity, which
drastically increased solving time. As may be seen, the algorithm chose to utilise
the low energy price around the beginning of a new day and increase the reboiler
duty instead of relaxing it. This is as expected, as the algorithm now have to
reach the reference after 48 hours. The inclusion of the evaluation point after
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24 hours, could further make the CRacc reach its reference at the beginning of
each new day, most likely without the low CR towards the end of the prediction
horizon.

Simulating several days after each other, one should expect that the optimal
solution would converge such that two consecutive days look similar to each other
with the same initial point and same end point. However, after simulating 7 days
in a row, day 6 and day 7 still became slightly different from each other. For
instance the initial point at the beginning of a new day for the CR and the RB.
The simulated optimal trajectories may be found in the Appendix, Section A.6.
The reason for this may be the use of only one QP iteration to solve the nonlinear
optimisation problem, which may give somewhat different results each time.
Simulating even longer may show a convergence of the optimal solution, however,
another problem may thus occur. The optimal solution may then experience loss
of sensitivity for the variables consisting of integrals such as the accumulated
capture ratio, equation 5.1. Notice, how the cost is reset each 24 hours because of
minimising the cost through every day, however, the accumulated capture ratio is
not reset as to avoid large, unrealistic jumps in the CRacc from one sample to the
next. Not resetting this variable will result in, as time increases, the integral being
made up of numerous samples such that changes in the instantaneous capture
ratio will have little influence on the accumulated capture ratio. This may in fact
be illustrated comparing Figure A.4b to Figure A.6b. The CR for day 6 in Figure
A.6b is very similar to day 2 in Figure A.4b, however, the CRacc in A.4b varies
much more than in Figure A.6b. A solution to this problem is either resetting the
accumulated capture ratio now and then, or, as the time goes by, throw away a
certain amount of old samples.

5.3 Flexible mode with an abrupt change in the
carbon dioxide composition of the inlet ex-
haust gas

In order to test the robustness of the optimisation algorithm, several cases has
been experimented with and one of these is a case where an abrupt change in
the CO2 composition of the inlet exhaust gas is induced. The aim of testing the
robustness is to see whether CENIT will be able to re-plan the optimal solution
to account for abrupt disturbances. The flexible mode case in Section 5.2 with
CRref

acc = 91% was carried out, and the change in CO2 composition was manually
performed after approximately 11.5 hours of simulation. At this time of the day,
the results from Section 5.2, Figure 5.5b, show that the instantaneous capture
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ratio is quite low and by increasing the CO2 composition at this point, one should
expect CENIT to re-plan such that the CR increases sufficiently to reach the goal
of CRref

acc = 91%. From the results in Figures 5.7, one may see that the optimal
solution is as expected. At 11.5 hours into the day, the CO2 inlet composition
is changed from 4.3% to 7%, which is a very large change. However, if the
algorithm is able to re-plan and reach the goal considering such a large change,
then smaller changes will not cause problems either. As a consequence to the
increase in composition, do both the reboiler duty and Fl,abs increase, such that
the reference value for the accumulated capture ratio is achieved after 24 hours.
Notice however, that the instantaneous capture ratio drops instantly after the
change in composition. This is due to the inlet flow of CO2 gas to the absorber
becoming much larger than before and due to the inputs not being able to change
abruptly to increase the absorption rate. Correspondingly, due to more utilisation
of energy, does also the end cost increase to CostN = 468NOK. For sufficient test
of robustness of the DRTO for disturbances in CO2 inlet composition, should the
composition also be changed at different times and it should be decreased and
increased with different amounts. One additional simulation case was performed
changing the composition to 7% after 19 hours of simulation instead of 11.5 hours.
This is shown in the Appendix, Section A.7. Unfortunately, due to the instant
drop in the CR after the change, the goal of CRref

acc = 91% is not reached at the
end of simulation. Had the change in composition been less, the reference value
for CRacc been lower, for instance 85%, or the rate of change of the input been
allowed larger, the goal might have been reached. Consequently, one may see that
the algorithm is not robust for all conditions, and is most probably limited by
physical properties, such as the rate of change of inputs.
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(a) Manipulated variables and CO2 composition

(b) Control Variables

Figure 5.7: Result of MV’s and CV’s for the flexible mode with an abrupt change
in exhaust inlet CO2 composition after 11.5 hours. CRref

acc = 91%.
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5.4 Flexible mode with an abrupt change in the
price of electricity

In this section, the robustness of the DRTO to an abrupt change in electricity
price was investigated. As with the case in Section 5.3, the flexible mode case
from Section 5.2 was utilised with a CRref

acc = 91%. After approximately 4.5 hours
into the simulation, the electricity price was manually increased by thrice the
amount such that the algorithm had to re-plan its optimal solution according
to the new predictions of the energy price. The results may be seen in Figure
5.9. Comparing with the results from the flexible mode in Section 5.2 Figure 5.5,
may one see that the reboiler duty is lower around 10 hours into the simulation
where the electricity price has its highest peak for the case with increased price.
Correspondingly, does the instantaneous capture ratio become smaller around
this point in time than in the flexible mode simulation case without disturbances
in Section 5.2 Figure 5.5b. This is as expected as it is much more costly to
use energy after the increase, and the algorithm should take more advantage
of the low peaks in the electricity price. However, in order to still reach the
goal of CRref

acc = 91%, the instantaneous capture ratio around 20 hours into the
simulations becomes larger for the case with increased price in Figure 5.9b than
the case without in Figure 5.5b. A case where the price of electricity increased
after 12 hours of simulation was also investigated and the simulation results may
be found in the Appendix Section A.8. Comparing these results to that of Figure
5.5 for the flexible mode without disturbances, there are only minor differences in
the MV’s and CV’s except for the cost which is larger as expected. The reason
for only minor difference is probably due to the increase in price occurring after
the highest peak in the original energy price curve in addition to having less time
left to focus on cost reductions compared to the case in Figure 5.9 where the
change in price occurs earlier. The cost at the end of the prediction horizon is
further weighted significantly lower than the CRacc so that the algorithm chooses
to fulfil the goal of the CRacc to a larger extent than cost minimisation. These
two cases show that the algorithm is robust to increases in the electricity price
and manages to reach its most important goal of CRacc = CRref

acc . On the other
hand, different shaped price curves should also be tested for proper conclusions
of the robustness to changes in the electricity price. In fact, out of curiosity was
one case investigated where a different price curve was utilised throughout the
simulation horizon, and for the interested reader the simulation results may be
seen in Appendix A.9. The DRTO managed to achieve the reference accumulated
capture ratio also in this case.
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(a) Price of electricity before increase

(b) Price of electricity after increase

Figure 5.8: Illustration of electricity price before and after increase for the flexible
mode with an abrupt change in electricity price after 4.5 hours. CRref

acc = 91%.
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(a) Manipulated variables

(b) Control Variables

Figure 5.9: Result of MV’s and CV’s for the flexible mode with an abrupt change
in electricity price after 4.5 hours. CRref

acc = 91%.
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5.5 Flexible mode with strict constraints on the
reboiler duty

Another way to test the robustness of the DRTO is to enforce strict constraints
on one of the manipulated variables in the optimisation problem, to see if the
DRTO is able to find an optimal solution in a much stricter environment. This is
investigated using the flexible optimisation case with a goal of 91% in addition to
setting much stricter constraints on the reboiler duty, RD(min,max) = (10,18)kW.
The maximum constraint applied here, is obviously a violation considering the
results from the previous subsections in which the reboiler duty often increases
above this limit. Hence, one should expect the optimal trajectories to change
considerably. The result of the simulation may be seen in Figure 5.10. Notice how
the reboiler duty is restricted by the upper constraint of 18kW. Consequently, the
reboiler duty cannot decrease as much as in Section 5.2 during the highest peak
in the electricity price, as it cannot increase too much during low peaks in the
electricity price. The result became an end cost of CostN = 369NOK. This is
nevertheless an increase in cost reduction from the basic case of 4.7%. Further,
one may see that the DRTO was able to regulate the accumulated capture ratio
to the goal of 91% at the end of the prediction horizon.
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(a) Manipulated variables

(b) Control Variables

Figure 5.10: Result of MV’s and CV’s for the flexible mode with strict constraints
on the reboiler duty. CRref

acc = 91%.
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5.6 Flexible mode with bias updating

As previously, bias updating was excluded for simplicity during tuning and testing
of the controller. However, as seen from the result in Table 5.2, using the original
model as the simulated facility in RealSim resulted in a CRacc which was several
percentage points above the CRacc in CENIT. This suggest that the optimisation
algorithm uses more energy in the reboiler than necessary yielding a higher
end accumulated capture ratio than the reference value in the simulated facility.
Consequently, may further cost minimisation be accomplished if bias correction
is introduced to adjust the deviation in the CRacc. As in Section 4.5 was bias
updating using measurements of the mass flow of CO2 from the condenser utilised.
Yet now predicted measurements from the original model are utilised instead of
instrumental measurements. Of course, in a real setting where the algorithm is to
control a plant, the measurements will be instrumental once again. In the Tiller
facility, the normal range for this variable is 15-20 kg

h . The flexible simulation
case from Section 5.2 with CRref

acc = 91% was run and the results may be seen
in Figure 5.11. The estimated bias is illustrated in Figure 5.11c. Notice that
the values for the bias is at most 4% of the normal range of the mass flow of
CO2 from condenser. Some differences from the flexible case in Section 5.2 are
noticeable, for instance, the instantaneous capture ratio becomes larger at the
beginning of simulation such that it therefore may be less between 10 to 15 hours
of simulation where the energy price is largest. Also notice how both the reboiler
duty and the Fl,abs are larger at the end of horizon than in Section 5.2, Figure
5.5a. One could claim that it is more logical for the reboiler duty to increase
towards the end of the simulation horizon as the energy price becomes cheap
once again. However, the optimisation algorithm obviously found, in Section 5.2,
that increasing Fl,abs was enough to capture the remaining CO2 before end of
simulation horizon without increasing RD. In this case on the other hand, Fl,abs

had to be increased even more, and most likely not enough by itself to reach
the goal as the RD also increases considerably. The bias updating resulted in
the CRacc in the simulator to become 92.6% which is smaller than in Section
5.2 (95.4%) and hence less energy have been utilised throughout the simulation.
Therefore, the resulting end cost became smaller, in fact CostN = 335NOK. On
the other hand, additionally tuning will be required for the CRacc in RealSim
reaching the reference value and further enhance cost minimisation.
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(a) Manipulated variables

(b) Control Variables
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(c) Bias for mass flow of CO2 from condenser

Figure 5.11: Result of MV’s and CV’s for the flexible mode with bias updating
from measurement included. CRref

acc = 91%.

92



Chapter 6

Discussion

Even though results from Chapter 4 and Chapter 5 are satisfactory both when it
comes to responses for the reduced model compared against the original model and
the performance of the DRTO, are there several assumptions made to achieve the
results and several improvements exists that should be considered. For instance,
the complete reduced model of the CO2 capture facility has only implemented
the model reductions suggested by Hotvedt (2017) for the unit models absorber,
desorber and heat exchanger. Further experimentation with the remaining unit
models may be performed to reduce the state space and possible decrease the
simulation time additionally. Whether or not stiffness of the model may be
improved by further model reductions are difficult conclude as dynamical states
for both gas and liquid will persist and consequently will a natural spread in
eigenvalues still exist. As was seen, the reduced unit models of the heat exchanger,
absorber and desorber did increase the stiffness of the unit models. However, it
must be kept in mind that the stiffness was analysed only at certain operating
conditions and may not be representative for others. Moreover, the approximation
of the Jacobian in Listing 2.1 was done using finite differences which has a smaller
accuracy than for instance the central differences scheme which may also influence
the stiffness results. Furthermore, explained in Section 2.2 could the Jacobian
matrix be estimated well only if the problem was well scaled. However, the reduced
unit models, the complete temporary models with only one reduced unit model
substituted and the total reduced model all have states for both temperature
and molar amounts, whereas the states in the original model are scaled with a
reference value to yield dimensionless variables. Both the operating conditions
and the way the Jacobian is estimated may influence the result of the eigenvalue
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analyses. Ideally, should the states in the reduced model be well scaled, the
Jacobian estimated with higher accuracy and the eigenvalue analysis repeated for
several operating conditions before conclusions are made about the stiffness of
the system.

Moreover, both in Chapter 4 and in Chapter 5 have the original model been
used under the perfect model assumptions, that is, ignoring any modelling errors
between the original model and measurements. Consequently, have the reduced
model been compared and adjusted to fit the original model better. However,
measurements from a facility, although only a simulated facility in Chapter 4,
have been accessible and briefly included in the analysis, but not utilised to its full
extent. In Chapter 4 have the data set with measurements provided by SINTEF
only been used to illustrate that bias updating is significant to remove modelling
error. However, the data set could instead be used in a Kalman Filter for proper
parameter estimation, such that modelling error would significantly reduce. On
the other hand, it must be kept in mind that a Kalman Filter may result in
infeasible parameters. Consequently, should in an in depth study of Kalman
Filter for parameter estimation be investigated as it result in both advantages
and disadvantages and is therefore a suggestion for future work with the reduced
model. Additionally, in Chapter 5 was the original model run in the simulator
RealSim but only briefly used for bias updating due to simplifying the tuning of
the controller. In Section 5.6, was bias updating included to illustrate that it may
lead in further cost minimisation, however, only one case was experimented with
and the results still showed an accumulated capture ratio much larger than the
needed reference. Consequently, should further investigation with bias updating
be performed, for instance, with several other measurements in addition to the
mass flow of CO2 from the condenser. Moreover, instead of bias updating, could
the responses from the simulator be used in a Kalman Filter for online parameter
or state estimation. As previously mentioned did Cybernetica AS find the original
model to be too computationally inefficient to include a Kalman Filter in online
optimisation. However, it has been shown from results that the reduced model
improves the efficiency and reduces the simulation time. Therefore, inclusion of
a Kalman Filter may be possible for the reduced model. Consequently, this is
a recommendation for future work. Regarding the results for the reduction in
simulation time of the reduced model compared to the original model in Chapter
4, was this analysis only approximate to illustrate that the model reductions
induces simulation time reductions. Exactly how much time will be saved by
the introduction of control volumes and the reduction in state space complexity
should be further investigated with proper tools before conclusions are made.

In Chapter 5, did the DRTO yield very good results with more than 10% cost
reductions comparing the fixed and flexible mode. However, as discussed in

94



CHAPTER 6. DISCUSSION

Section 5.2, one should keep in mind that due to the high initial point of the CR
and CRacc, the optimal solution was subject to a warm start as the algorithm
could focus on decreasing the accumulated capture ratio towards reference. Had
another initial point been utilised for both basic case and flexible mode case
might the reductions in cost have been less. Moreover, did the shrinking horizon
effect result in each day being optimised separately such that the MV’s end point
yielded a less optimal solution for the coming day. Suggestions for improvements
were made, however not experimented sufficiently with. Testing the robustness
of the DRTO showed that the algorithm was robust in several scenarios. On the
other hand, was the algorithm only tested for certain specific cases and for proper
conclusions about the robustness of the DRTO, further experimentation with
steps in inputs, strict constraints and different shapes for the curve of the price of
electricity should be performed.

Furthermore, was it assumed that the low-level controllers in the facility that for
instance control liquid levels, behaved perfectly. Such an assumption is acceptable
for this thesis as the simulator for the facility simulates another model with the
same low-level controllers implemented. However, if a true facility had been
controlled using CENIT, the assumption of perfect low-level controllers may be
less adequate. In addition, it was assumed that one QP iteration was sufficient to
yield good results for the optimal solution. As explained in Chapter 5, additional
QP iterations was experimented briefly with and resulted in the optimal solution
settling after fewer samples than with only one QP iteration as expected. However,
one might be tempted to increase the time between samples as the price of energy
only changes once an hour. If so, will it be of more importance for the optimisation
algorithm to find the true optimum at each sample, and thus should the number
of QP iterations be increased.

As mentioned in Section 2.3, the SQP algorithm is only able to guarantee con-
vergence to a local solution and attempts at analysing the optimisation problem
considering global solutions were not performed. Even though the optimisation
problem in this thesis is highly nonlinear, are there existing methods for global
analysis. If the optimisation problem was to be further experimented with, such
global analysis should be attempted. However, as explained in Section 2.3, a well
designed objective function is often enough to make the optimisation algorithm
find the global optimum. Therefore, as the DRTO is fully able to reach the
reference in addition to minimising the cost, may one most probably conclude
that the local optimum found is also the globally optimal solution.

Lastly, only one technique for cost minimisation has been investigated, namely
a time-varying MEA regeneration throughout the 24 hours. Other techniques
are also possible to investigate such as exhaust gas venting, amine storage or a
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combination of techniques. Which technique provides the most cost reductions
should be experimented with and is a suggestion for future work.
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Conclusion

The results from Chapters 4 and 5 are very promising when it comes to firstly,
modelling a complete CO2 capture facility using molar amounts as state variables
and discretising in space using control volumes, and secondly, optimisation of
the model using a Dynamic Real-Time Optimisation Algorithm incorporating
both control and economic objectives. Results from Chapter 4 show that the
complete reduced model decreased the complexity of the state space with 225
states compared to the original model, in addition to decreasing the simulation
time by ≈ 73%. On the other hand, the stiffness of the reduced model did not
improve significantly. In fact, the separate reduced unit models for the absorber,
desorber and heat exchanger had a higher degree of stiffness than the original
unit models. Fortunately, the introduction of the reduced unit models did not
increase the stiffness of the complete system largely. This is most likely due to
having several other unit models in the complete system with both slow and fast
dynamics that contribute to stiffness, such as the reboiler or condenser. The
reduction in simulation time was thus concluded to be caused by the reduction in
state space complexity and simplified spatial discretization using control volumes
instead of the collocation method. Moreover, the model reductions induced
modelling errors between the reduced model and the original model. On the
other hand, Section 4.5 showed that by including bias updating from instrumental
measurement of the mass flow of CO2 from the condenser, the modelling errors
were significantly removed in variables such as the capture ratio. These results
suggest that further modelling errors may be removed by additional feedback from
instrumental measurements.

Results from Chapter 5 suggests that optimising a CO2 capture facility during 24
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hours with the aid of a DRTO is highly feasible. It was shown that the DRTO
was able to reach a specific reference value for the accumulated capture ratio
after 24 hours whilst minimising the cost related to the energy consumption in
the reboiler. The DRTO was able to utilise the knowledge of an hourly varying
price of energy to vary the costly solvent regeneration accordingly, and thus the
capture ratio, such that the resulting end cost after 24 hours became less than
if the DRTO held the regeneration at a constant level. Two specified reference
values for the accumulated capture ratio was experimented with; 85% and 91%,
and the resulting cost reductions became 13.0% and 10.9% respectively comparing
the end cost of the variable regeneration mode to the fixed regeneration mode.
Results testing the robustness of the DRTO showed that the algorithm is robust
to abrupt changes in CO2 composition of the inlet exhaust gas, except for large
changes occurring close to the end of the simulation horizon. The DRTO was
also robust to abrupt increases in the energy price, and was additionally able
to handle stricter constraints on the energy utilisation in the reboiler. However,
analysing the behaviour of the simulated facility, where the original model was
run, showed that due to the modelling errors between the reduced model and the
original model, the DRTO utilises unnecessary energy for solvent regeneration
resulting in the accumulated capture ratio in the simulator becoming larger than
the reference value. Consequently, bias updating using the measurements of the
CO2 mass flow from condenser in the simulator was introduced to further enhance
cost minimisation.

Consequently, utilising the results from this thesis may drive carbon capture
technology one step closer at becoming desirable for companies to invest in.
However, there will always be an extra energy demand associated with a connected
carbon capture plant, and until the cost of operating the plant is less than the fee
of greenhouse gas emissions, there will always exist those who prefer trading for
emission allowances. On the other hand, due to the increased focus on reduction of
greenhouse gas emissions on a global basis, the results of this thesis may contribute
towards an increasing focus on the CCS technology. Especially in Norway, where
most of the electricity production comes from the use of renewable sources could
CCS greatly benefit reduced emissions of CO2, contributing towards stalling of
global warming and its disastrous consequences on a global basis.
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Future work

Several extensions and further experimentation of this thesis have been suggested
throughout the thesis and are repeated in this chapter. As mentioned in Chapter
4 are there several unit models in the complete model that have not been inves-
tigated considering model reductions. Further model reductions may introduce
additional modelling errors and larger deviations from measurements. However,
it may also lead to additional decrease in simulation time. On the other hand,
model reductions must be taken with care, as too large modelling errors are
unacceptable. Additionally, discussed in Chapter 6, is the simulation time analysis
only approximately done in Modelfit and proper tools should be utilised for exact
conclusions of simulation time reductions comparing the reduced model to the
original model.

Furthermore, was a Kalman Filter not experimented with in this thesis, neither
for parameter estimation in Chapter 4, nor for state estimation and feedback in
Chapter 5. As previously explained did Cybernetica AS found that the original
model was too computational inefficient for online parameter estimation using a
Kalman Filter. However, results from Chapter 4 suggests that the reduced model
greatly decreased the simulation time and consequently could a successful inclusion
of an online Kalman Filter be more probable. At least, a Kalman Filter for offline
parameter adjustment during model validation should be further experimented
with, as no real-time demand exist for offline model validation.

Moreover, has only one technique for cost minimisation been experimented with,
namely time-varying solvent regeneration. Other techniques may also be inves-
tigated, such as solvent storage or exhaust gas venting or a combination. In
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fact, at the Tiller facility, there exists two storage tanks, see Figure 1.1 in which
solvent could be stored during high peaks of the energy curve. Such techniques
should also be experimented with in order to see which technique result in most
reductions in cost.

As mentioned in Chapter 5, were the energy prices for the coldest day the last year
utilised in the optimisation. However, the energy price will change from day to day
and will be dependent on the season. Consequently, should an outside algorithm
predicting the energy price curve for the day based on for instance weather
forecasts and previous data from Nord Pool, Market Data (2018) be introduced
to make the optimal solution of optimisation more authentic. Additionally could
the CO2 emission fee which is daily varying also be included.

Lastly, as mentioned in Chapter 6 has a global analysis of the optimisation problem
not been provided due to the system equations being highly nonlinear. However,
there exists solutions for global analysis of nonlinear, non-convex problems, and
further investigations of the optimisation problem should attempt such an analysis
to see whether the local optimum found is also a global optimum, which has only
been assumed in this thesis due to good results of the DRTO.
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APPENDIX A. EXTRA OPTIMISATION CASES

Appendix A

Extra optimisation cases

A.1 Flexible mode, unreachable setpoint method

Case: Flexible mode, unreachable setpoint method

Goal:
Achieve accumulated capture ratio of 91% after 24 h
Minimise Cost

MV’s: RD, Fl,abs

CV’s: CRacc, Cost, CR

CV setpoints:
CRacc: 91
Cost: 0

CV constraints:
CRacc: [75,96]
CR: [75,96]

MV input blocking:
RD: first after 30min, then every 2 h
Fl,abs: first after 30min, then every 2 h

CV evaluation points:
CRacc: after 24 h
Cost: after 24 h
CR: every 6 hour
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APPENDIX A. EXTRA OPTIMISATION CASES

(a) Manipulated variables

(b) Control Variables

Figure A.1: Result of MV’s and CV’s for the unreachable setpoint method with
CRref

acc = 91%
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APPENDIX A. EXTRA OPTIMISATION CASES

A.2 Flexible mode, infeasible soft-constraints, ini-
tial starting point at CR = 91%

(a) Manipulated variables

(b) Control Variables

Figure A.2: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%,

initial starting point at CR = 91%
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APPENDIX A. EXTRA OPTIMISATION CASES

A.3 Flexible mode, infeasible soft-constraints, low
initial starting point for CR

(a) Manipulated variables

(b) Control Variables

Figure A.3: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

and a low initial starting point
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APPENDIX A. EXTRA OPTIMISATION CASES

A.4 Flexible mode, two days simulation

(a) Manipulated variables

(b) Control Variables

Figure A.4: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

after two days simulation.
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APPENDIX A. EXTRA OPTIMISATION CASES

A.5 Flexible mode, prediction horizon of 48 hours

(a) Manipulated variables

(b) Control Variables

Figure A.5: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

and prediction horizon of 48 hours
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APPENDIX A. EXTRA OPTIMISATION CASES

A.6 Flexible mode, day 5-7 after 7 days simula-
tion

(a) Manipulated variables

(b) Control Variables

Figure A.6: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

after 7 days of simulation. Illustrated are day 5-7.
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APPENDIX A. EXTRA OPTIMISATION CASES

A.7 Flexible mode, abrupt change in composition
of carbon dioxide in the exhaust gas after 19
hours

(a) Manipulated variables

(b) Control Variables

Figure A.7: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

and an abrupt change in CO2 composition in the exhaust gas after 19 hours
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A.8 Flexible mode, abrupt change in electricity
price after 12 hours

(a) Manipulated variables

(b) Control Variables
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APPENDIX A. EXTRA OPTIMISATION CASES

(c) Electricity price curve with increase after 12 hours simulation

Figure A.8: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

and an abrupt change in price after 12 hours
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A.9 Flexible mode, different shaped electricity
price curve

(a) Manipulated variables

(b) Control Variables
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APPENDIX A. EXTRA OPTIMISATION CASES

(c) Electricity price curve

Figure A.9: Result of MV’s and CV’s for the flexible mode with CRref
acc = 91%

and a different shaped price of electricity
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Abstract: A complete model of an amine-based post-combustion CO2 capture facility has been
attempted optimised considering the energy consumption related to the costly liquid amine
regeneration process in the facility. The dynamic model used for optimisation is a reduced
version of a previous modelled facility by Cybernetica AS, where molar amounts has been used
as state variables and control volumes have been utilised for spatial discretisation. The two
models have been validated against each other and parameter adjustments performed for the
reduced version to fit better to the original. The results show that the reduced version yields
adequate responses with parameter adjustments although deviations from the original is visible
such that bias update through measurements are necessary for a good fit. The two models
have also been analysed considering stiffness, and it was found that the reduced model yielded
negligible reduction in stiffness. However, the model reductions yielded a decrease in state space
complexity resulting in a simulation time reduction of 73%. The reduced model was optimised
using a dynamic real-time optimisation algorithm that merged economic, cost related to energy
consumption, and regulatory objectives, obtaining an accumulated capture ratio of 91% after
24 hours. Results comparing a fixed case with constant amine regeneration to a flexible case
with a variable amine regeneration according to the natural periodicity of the electricity price
show a cost reduction of 10.9% for the flexible case.

Keywords: Model-based control, optimisation, Post combustion CO2 capture, Model
Predictive Control, cost minimisation, process control

1. INTRODUCTION

The year of 2017 had numerous extreme weather condi-
tions such as hurricanes, floods and draughts, and was
according to WMO (World Meterological Organization,
2017) among the three warmest years on record. WMO
states that the climate changes are most likely caused
by the increasing amount of human-made greenhouse gas
emissions into the atmosphere, where the most prominent
is CO2. There are several ways to reduce the emissions of
CO2 to the atmosphere, and a very promising technology
is Carbon Capture and Storage (CCS), which according
to Carbon Capture and Storage Association (2018) is
able to capture on average 90% of the CO2 in exhaust
gas from power plants and industrial processes. However,
Smith et al. (2013) found that having a CO2 capture
plant attached to the outlet of a power plant increased the
operational costs of the power plant. Consequently, many
companies chooses not to invests in carbon capture plants.
In order to make CCS a more desirable technology, possible
contribute towards reduced greenhouse gas emissions and
stalling of global warming, is it of high importance to
reduce the operational costs related to the capture process.

This paper will represent results obtained in a Master’s
thesis by Hotvedt (2018), regarding cost minimisation
of an amine-based post-combustion CO2 capture facility.
A post-combustion facility attempts removal of the CO2

from exhaust gas for instance through absorption with
monoethanolamine (MEA) (Carbon Capture and Storage
Association, 2018). In the absorption tower of the plant,
the liquid MEA solution will come in contact with the
exhaust gas such that the MEA absorbs the CO2 com-
ponent of the gas. In the desorption tower, the reverse
process is occurring where the MEA solution is regener-
ated such that CO2 is removed from the liquid solution
resulting in a nearly pure stream of CO2 gas out of the
desorption tower whereas the liquid amine solution may be
circulated back to the absorption tower to be used anew.
The regeneration process in the capture facility is a very
energy demanding process as the liquid solution must be
heated sufficiently for the MEA to release the CO2. The
goal has therefore been to minimising the cost related to
the energy consumption of the amine regeneration process
while regulate the accumulated, or overall, capture ratio,
to a specified reference level after 24 hours of simulation.
A variable price of electricity has been implemented such
that the algorithm may exploit the natural periodicity of



the price curve for less regeneration during high peaks and
more regeneration during low peaks.

The model of the capture facility used for optimisation, is
a model of an existing test facility located at Tiller, Trond-
heim (SINTEF, 2017). It will be based on a previous model
from Flø (2015) that Cybernetica AS has further developed
to use in online optimisation, referred to as the original
model. Model reductions suggested by Hotvedt (2017) for
three of the unit models, absorber, desorber and heat
exchanger, has been implemented and the complete model
referred to as the reduced model. The model reductions
consisted of modelling each of the dynamical equations
for the components in the liquid and gas using molar
amounts as state variables in addition to control volumes
for spatial discretisation. Therefore has firstly the reduced
model been validated against the original model consid-
ering performance, system stiffness, state space dimension
and simulation time. Theory regarding this topic may be
seen in Section 2.1 and simulation results in Section 3.

The reduced model of the capture facility has thereafter
been optimised considering cost minimisation related to
the energy requirement of the amine regeneration process.
Several papers, see Arce et al. (2012), Manaf et al. (2017),
have attempted cost minimisation by the use of two-level
control hierarchy, which the upper level provides economic
setpoints to the lower level for regulatory performance.
However, Maree and Imsland (2011) points out that a
disadvantage with the two-level hierarchy is an often
sub-optimal economic performance and suggests merging
the objectives into one-level. One-level control hierarchy
was experimented with by Willersrud et al. (2013) on a
simplified multi-well oil production plant to yield optimal
economic and satisfactory regulatory performance. Such
a one-level control hierarchy is sometimes referred to as
Dynamic Real-Time Optimisation (DRTO) or Economic
MPC (EMPC). Consequently has a DRTO been used on
the reduced model of the capture facility to obtain the goal
described above. The infeasible soft-constraint method for
merging the objectives has been utilised and described in
Section 2.2 whilst the simulation results of the DRTO may
be found in Section 4.

2. METHOD

2.1 Model validation and analysis

The model validation has been performed treating the
original model with the perfect model assumption, dis-
regarding modelling errors from the true facility. This
assumption has been made as the original model has
yielded satisfactory responses when tested by Cybernetica
AS. Consequently, has the reduced model been validated
against the original model in several steps. Firstly, have the
two model responses of certain variables been evaluated
against each other using maximum and average absolute
deviation defined in (1). Here φ represents a generic vari-
able, subscripts org and red represent the variable in the
original and reduced model, i is the index for the variable
in question and K is the total number of samples.

max |D̃| = max
k

(
|φi,org,k − φi,red,k|

)

avg|D̃| =

∑K
k=0

(
|φi,org,k − φi,red,k|

)

K

(1)

The variables have been analysed in Modelfit using a pre-
generated data set from SINTEF containing inputs and
a few instrumental measurements for K = 4656 samples,
representing more than 3 days. The inputs induces steps
in the inlet flow of flue gas to the absorber and in
the composition of CO2 in the inlet flue gas, and the
model responses are calculated based on these inputs.
The two most important analysed variables have been
the capture ratio in the absorber column, which is a
derived variable z = h(x), and the mass flow of CO2

from the condenser, which is a predicted measurement
in the model ȳ. The last mentioned variable does have a
corresponding instrumental measurement in the data set.
Manual parameter adjustment was performed to make the
reduced model response fit better to the original model,
and a simple estimator, bias updating from measurements,
was introduced to illustrate the importance of including
measurements in feedback for removal of modelling errors.

Secondly, has the system stiffness been investigated
through an eigenvalue analysis. Stiffness is a property that
usually occurs from having both fast and slow dynamics
that results in a large spread in eigenvalues. Stiffness may
influence the solving time of the system as the step size in
integration routines must be set small to account for the
fastest dynamics in the system. Stiffness may be analysed
using the Stiffness Ratio defined in (2) from Moody (2007),
where an SR >> 1 characterise a stiff system. λi for
i ∈ Rm are the eigenvalues of the Jacobian matrix J of
the system, defined in (3), with dimension m of the state
variables x. Here g represent the set of system differential
equations.

SR =
max
i
|<(λi)|

min
i
|<(λi)|

(2)

J = [
∂g

∂x1
,
∂g

∂x2
, . . . ,

∂g

∂xm
]T|xp,up

(3)

For a nonlinear, high order system, the finite differences
scheme in (4) from Nocedal and Wright (2000) may used
to approximate J . Here, ε is the perturbation parameter
and ei a vector with 1 at position i and 0 elsewhere. The
perturbation parameter may be chosen ε = 10−8 if the
problem is well scaled, see Nocedal and Wright (2000).

∂g

∂xi
≈ g(x + ε · ei)− g(x)

ε
(4)

Lastly, was an analysis of the approximate simulation time
in Modelfit performed. Cybernetica AS found using the
original model in online optimisation that the original
model was too time-consuming by itself to include complex
estimators such as Kalman Filter for improved response
through feedback from measurements of a real facility.
Consequently, was it of interest to see whether the reduced
model has decreased the simulation time and hence will be
more suitable for online optimisation including a Kalman
Filter.

2.2 Optimisation problem

The optimisation problem for optimising the reduced
model of the capture facility was to merge economic



Fig. 1. Illustration of the infeasible soft-constraint method
for single-level MPC

and regulatory objectives. Consequently, a Dynamic Real-
Time Optimisation (DRTO) algorithm was implemented
using single-level Nonlinear Model Predictive Controller.
Constructing a single-level control hierarchy may be done
using for instance the infeasible setpoint method or the
infeasible soft-constraint method explored in Willersrud
et al. (2013). The infeasible soft-constraint method has
been implemented for this optimisation problem and is
illustrated in Fig. 1. The infeasible soft-constraint method
introduces out-of-bounds constraints on the economic ob-
jectives and takes advantage of slack variables in the ob-
jective function to make the optimisation problem feasible
but minimise the deviation from the constraints as much
as possible. In a minimisation problem the following will
always hold as long as the variable z is lower bounded and
−ρoptzopt,max ≤ 0. Here ρ is a weight vector for the slack
variables.

zmin ≤ zmax ≤ z
ε = z− zmax ≥ 0
ρT ε = ρT (z− zmax) ≤ ρT z

(5)

Dividing the objectives into two, control objectives zopt
and regulatory objectives zreg and utilising the derivation
above, may one write the objective function in an (N)MPC
scheme with N as the prediction horizon as in (6). Notice
how the objective function is independent of the bounds
on the economic objectives such that these may be set
arbitrarily. For minimisation the cost related to the energy
requirement in the capture facility, may the bounds for
instance be set to Cost (max,min) = (0,0). Additionally,
if Qreg is set small, the objective function will in practice
become an exact penalty function in which the regulatory
and economic objectives may be weighed directly against
each other. Setting ρreg sufficiently larger than ρopt will
ensure fulfilment of the regulatory objectives but still
optimise the economic objectives as much as possible.

min
φ∈Rn

f(φ) =
N−1∑

i=0

(zreg,i+1 − zrefreg )Qreg

·(zreg,i+1 − zrefreg ) + ∆uTi R∆∆ui
+ρTregεreg,i+1 + ρToptεopt,i+1

=
N−1∑

i=0

(zreg,i+1 − zrefreg )Qreg

·(zreg,i+1 − zrefreg ) + ∆uTi R∆∆ui
+ρTregεreg,i+1 + ρToptzopt,i+1

(6)

Fig. 2. Illustration of the varying price of electricity in
Trondheim, Norway collected from Nord Pool (2018)

The regulatory objective in the optimisation problem of
the capture facility is to achieve a specified reference value
for the accumulated, or overall, capture ratio (CRacc) at
the end of prediction horizon N = 24 hours. In such
a way will a flexible mode be established such that the
amine regeneration process is allowed to vary considering
a time varying price of electricity, which is illustration in
Fig. 2. The data was collected from Nord Pool (2018).
The price curve has two high peaks during the day, and
consequently should the optimal solution illustrate less
energy utilisation in the reboiler (reboiler duty) during
these peaks for cost minimisation, whilst CRacc reaches
its references after 24 hours.

The flexible mode will be compared to a fixed mode such
that conclusions about cost reductions for the flexible
mode may be investigated. In the fixed mode, CRacc
is forced constant throughout the simulation horizon, to
obtain a constant amine regeneration thus constant use
of energy. Three controlled variables are utilised in the
optimisation problem. The accumulated capture ratio, the
cost related to the reboiler duty for amine regeneration,
and the instantaneous capture ratio (CR), which should
be kept inside bounds of CR (min, max) = (75, 96)% to
avoid a complete shutdown of the capture facility for low
capture ratio and to avoid large model uncertainties for
large capture ratio. Controlled variable evaluation points
will be utilised to decrease the number of constraints of
the optimisation problem (Strand and Sagli, 2004). For
the flexible mode may the Cost and CRacc have only
one evaluation point due to obtaining the objectives after
24 hours. For the fixed mode however, several evaluation
points for CRacc are needed throughout the horizon due to
the stricter requirement of constant CRacc, and 6 evalua-
tion points evenly spread out during 24 hours have shown
adequate results. To keep the CR within the bounds, 6
evaluation points were used also for this variable. There
are two manipulated variables that the DRTO must find
optimal solutions for, the reboiler duty (RD) and the
mass flow of lean amine into the absorber Fl,abs. Input
blocking has been utilised to reduce the degrees of freedom
of the problem (Nocedal and Wright, 2000). As the price of
electricity changes every hour of the day, 24 input block’s
would be ideal, however, 12 input block’s evenly spread
out have yielded sufficient performance.



Fig. 3. Result of capture ratio in the absorber column and
mass flow of CO2 from the condenser comparing the
original model against the reduced model

3. SIMULATION RESULTS OF MODEL VALIDATION

The simulation result of the capture ratio (CR) and mass
flow of CO2 from condenser (Fg,CO2,cond) may be seen in
Fig. 3, where the original model response, the reduced
model response, and the reduced model response with
parameter adjustments have been illustrated. In addition,
illustrates the dashed line in the bottom figure of Fig.
3 instrumental measurements for the mass flow of CO2

from condenser from the data set provided by SINTEF.
The maximum and average absolute deviation of the two
variables comparing the original model to the reduced
model may be seen in Table 1.

Seen from the results, parameter adjustments reduced the
average absolute deviation of the reduced model to the
original model significantly although not removed com-
pletely. Notice how the reduced model response without
parameter adjustment for FCO2,cond seem to fit better to
the instrumental measurements in the first 3000 samples,
however, due to treating the original model as with the
perfect model assumption, the response with parameter
adjustment is superior. On the other had, it was difficult to
remove the deviations completely with manual parameter
adjustment. Consequently, was a simple estimator, bias
updating, introduced such that feedback from instrumen-
tal measurements of the mass flow of CO2 could be used
to update the responses of the two variables such that the
reduced model fit even better to the original. Seen from
the two bottom lines in Table 1 did bias updating result
in even less deviations. However, with bias updating the
variables to be updated must be determined in advance
of simulation and will consequently not remove modelling
errors in all variables in the model. Consequently, should
also a more complex estimator such as Kalman Filter be
experimented with for parameter estimation.

The eigenvalue analysis of the original and the reduced
model was performed at two samples in the data set and
gave the results in Table 2 and Table 3 respectively. The
two samples represent two different operation conditions
where at sample 1000, the models are at an approximate
steady state, whereas at sample 3000, dynamic changes
are occurring. As may be seen, are both models highly
stiff as SR >> 1 and in fact are the stiffness in the
reduced model slightly higher than did the original model.
On the other hand, did the model reduction result in a

halving of the state space complexity and consequently a
reduction in simulation time of approximately 73%, see
Table 4. Conclusively, even though the stiffness increased
slightly, may one state that the reduced model is more
suitable for use in online optimisation as the solving time
of the system is drastically reduced, and thus may it also
be possible to include a complex estimator for state and
parameter estimation in online estimation.

4. SIMULATION RESULTS FROM OPTIMISATION

The optimisation cases for the fixed and flexible mode were
started from the same initial point using a reference of
CRrefacc = 91%, and 24 hours were simulated. The result
of the manipulated and controlled variables for the fixed
mode may be seen in Fig. 4 and Fig. 5 and the result
for the flexible mode may be seen in Fig. 6 and Fig. 7. A
solution was accepted if the accumulated capture ratio was
within CRrefacc ±0.2%. As may be seen was the DRTO able
to force a constant CRacc through the horizon after an
initial transient for the fixed mode, resulting in a constant
reboiler duty. For the flexible mode was the DRTO able to
vary the reboiler duty according to the price of electricity
in Fig. 2, obtaining much energy utilisation during low
peaks of the electricity price and vice versa. Consequently,
allowing a flexible mode resulted in a cost reduction of
10.9%. Keep in mind that the simulation was run from a
high initial point resulting in a warm start for the DRTO
such that it could focus on decreasing the CRacc towards

Table 1. Maximum and average absolute devi-
ation of the capture ratio and the mass flow
of CO2 from the condenser. Without and with
manual parameter adjustment in addition to

bias updating.

Case Variable max | D̃ | avg | D̃ |
Without parameter
adjustment

CR [%] 27.68 11.21

Fg,CO2,cond [ kg
h
] 11.10 3.18

With parameter
adjustment

CR [%] 25.25 2.32

Fg,CO2,cond [ kg
h
] 12.63 0.85

With bias
updating

CR [%] 29.54 1.20

Fg,CO2,cond [ kg
h
] 11.68 0.55

Table 2. Eigenvalue analysis of the original
model for sample 1000 and 3000 from the data

set provided by SINTEF

Sample max | <(λi) | min | <(λi) | SR

1000 5.31·103 3.72·10−6 1.43·109
3000 5.40·103 5.39·10−5 1.00·108

Table 3. Eigenvalue analysis of the reduced
model for sample 1000 and 3000 from the data

set provided by SINTEF

Sample max | <(λi) | min | <(λi) | SR

1000 5.33·103 7.87·10−7 6.78·109
3000 5.43·103 3.25·10−6 1.67·109

Table 4. Comparison of state space dimension
and simulation time in Modelfit for the original

and reduced model

Model State space dimension Simulation time (s)

Original 448 ≈ 26
Reduced 223 ≈ 7



Fig. 4. Result of the Manipulated Variables for the fixed
case with CRrefacc = 91%

Fig. 5. Result of the Controlled Variables for the fixed case
with CRrefacc = 91%

Fig. 6. Result of the Manipulated Variables for the flexible
case with CRrefacc = 91%

reference. Had a lower initial point been used may the cost
reductions have been less.

The simulation results shown in Fig. 4-7 have not in-
cluded bias updating with feedback from measurements
due to simplifying the tuning of the controllers. However,
in Hotvedt (2018), was bias updating experimented with
using a simulator tool, RealSim, from Cybernetica AS to
simulate the facility. Without bias updating, it was found
that the facility in the simulator yielded a much larger
end accumulated capture ratio than the reference, thus

Fig. 7. Result of the Controlled Variables for the flexible
case with CRrefacc = 91%

suggesting an unnecessary use of reboiler duty. Inclusion
of bias updating from Fg,CO2,cond resulted in a smaller
end accumulated capture ratio and thus lower cost. Con-
sequently may bias updating benefit cost minimisation.
Furthermore, in Hotvedt (2018), were the robustness of
the DRTO to an abrupt change in CO2 composition of
the inlet flue gas and an abrupt change in electricity
price tested and the results were satisfactory. The DRTO
showed able to achieve the reference value for the CRacc
in most cases, except for changes in composition close to
the end of simulation horizon. Stricter constraints on the
reboiler duty was also tested, and results showed that the
DRTO was capable of obtaining CRrefacc also in a stricter
environment, with the consequence of higher costs.

A Kalman Filter was unfortunately not experimented
with for parameter and state estimation and correction.
As mention, was the original model too time-consuming
for use in online optimisation. However, as results from
Section 3 show that the reduced model has a much shorter
solving time, inclusion of a Kalman Filter may be possible
and should be experimented with in future work with
the capture facility. A Kalman Filter may, likewise to
bias updating, enhance cost minimisation by adjusting
the model to reflect the reality well, and contrary to
bias updating, do so in a more automatic way without
predetermination of which states or parameters to update.

5. DISCUSSION

Simulation results from Section 3 show that modelling
a CO2 capture facility using molar amounts as state
variables for each of the components in the liquid and gas
in addition to spatial discretisation using control volumes
are very promising. Even though deviations from the
original model is present, was it shown that the deviation
could be removed significantly through either parameter
adjustments or even better through bias updating using
instrumental measurements from a real facility. On the
other hand, did the reduced model induce slightly more
stiffness to the system than originally. It must be kept
in mind however, that the stiffness was only analysed at
a few samples from the data set and may not illustrate
the stiffness in other operation conditions. Furthermore,
as both models are very stiff, should the extra stiffness
in the reduced model not in particular influence the



solving of the system. In spite of increased stiffness, did
the model reduction result in a halving of the state
space dimension of the reduced model compared to the
original model resulting in a simulation time reduction
of 73%. Consequently, will the reduced model be more
suitable for online optimisation. Results from Section 4
show that the use of a DRTO with a single-level NMPC
for merging economic and regulatory objectives yield very
satisfactory results. Comparing a flexible mode to a fixed
mode of amine regeneration, a cost reduction of 10.9% was
obtained. Future work with the model of the CO2 capture
facility should include experimentation with a Kalman
Filter to further enhance cost minimisation.
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