
Formal verification of the Norwegian
Internet Voting Protocol

Solvei Slågedal

Master of Science in Physics and Mathematics

Supervisor: Kristian Gjøsteen, IMF

Department of Mathematical Sciences

Submission date: June 2018

Norwegian University of Science and Technology

Table of Contents

Abstract i

Sammendrag i

1 Introduction iii
1.0.1 Abbrevations . iv
1.0.2 Notations . iv

2 Theoretical background 1
2.1 Indistinguishability . 1
2.2 The Group Structure . 2
2.3 Homomorphic encryption . 2
2.4 Multi-ElGamal . 3
2.5 The Decision Diffie-Hellman problem 3
2.6 Hybrid argument . 4
2.7 Pseudo-Random Function families . 5
2.8 Random Oracle Model . 5
2.9 Fiat-Shamir transformation . 6
2.10 Non-interactive Zero Knowledge Proofs 6

2.10.1 Σ-Protocols . 6
2.10.2 Equality of Discrete Logarithms 6

3 Formal verification 15
3.1 EasyCrypt . 15
3.2 SMT-solvers . 15
3.3 Problems . 16

4 Simplified protocol 17
4.1 Completeness . 20
4.2 Security . 21

4.2.1 (a) Voter and computer . 21

i

4.2.2 (b) Computer . 21
4.2.3 (c) Infrastructure players . 21

4.3 Sketch of full protocol . 38

5 The Cryptosystem 41
5.1 Definition and instantiation . 42
5.2 Security Requirements . 45
5.3 Security . 49
5.4 Equality of Discrete Logarithms . 51
5.5 NIZK . 54

5.5.1 Random Oracle . 54
5.5.2 Proof of correct computations 55
5.5.3 Soundness . 62
5.5.4 B-Integrity . 64

6 The Voting Protocol 71
6.1 Security analysis . 73

7 Concluding remarks 75

Bibliography 77

Abstract

In this paper we look at the formalization and verification of several security components
of the cryptosystem underlying The Norwegian Internet Voting Protocol. The focus will be
on vote submission and B-Integrity.

Sammendrag

I denne artikkelen ser vi på formalisering og verifisering av diverse sikkerhetskomponenter
av det underliggende kryptosystemet til den norske e-valgprotokollen. Fokuset vil være på
stemmeavgivning og B-integritet.

i

ii

Chapter 1
Introduction

In this paper, the cryptosystem underlying The Norwegian Internet Voting Protocol will be
presented, analyzed and some components of it formally verified using the computer-aided
cryptographic proof framework EASYCRYPT.

The players will be

V The voter

P The voter’s computer

B The ballot box

R The return code generator

D The decryptor

A The auditor.

V P

F

B

R

F

A

Figure 1.1: Overview of the protocol players and communication channels. [ste13]

iii

1.0.1 Abbrevations

ZK = Zero Knowledge
SHVZK = Special Honest Verifier Zero Knowledge
NIZK = Non-interactive Zero Knowledge
ROM = Random Oracle Model
PRF = Pseudo Random Function Family
DDH = Decision Diffie-Hellman

1.0.2 Notations
In the following paper, the following notations are used.

A dollar sign $ over an arrow, x $← X , is used to denote that x is sampled at random
from the distribution X .

A distribution over X is denoted dX .
A vector (v1, ..., vk) is denoted as ~v.
Let AO denote that the algorithm A has access to an oracle O.

iv

Chapter 2
Theoretical background

To argument for the security in components of the cryptosystem the voting protocol is build
upon, some properties will be needed. In this chapter the theoretical background for this
will be introduced.

The cryptosystem uses ElGamal encryption (§2.4) and the fact that ElGamal is homo-
morphic (§2.3) with regards to multiplication.

For the cryptosystem and security, there will be a group structure (§2.2) with certain
properties and related problems, among then the Decision Diffie-Hellman (§2.5) distin-
guishing problem (§2.1).

For the security in the return code generator, a hybrid argument (§2.6) is used.
In a simplified version of the protocol, security in the ballot box is argued with the

Decision Diffie-Hellman assumption. An encoding function from a pseudo-random function
family (§2.7) is used for the encryption of the ballots, and this concept is explained here.

To assure that certain computations have been done correctly, some non-interactive
Zero Knowledge Proofs (§2.10) will be needed. In this chapter the interactive protocols for
generating and verifying such proofs are introduced, along with a transformation (§2.9) to
make them non-interactive to argue security in the random oracle model (§2.8).

2.1 Indistinguishability
A distinguishing problem P is a problem (S,X0, X1) where S is a set of instances, and X0

and X1 are two probability spaces over S. An algorithm can achieve success probability
1/2 simply by guessing.

A measure on ”how good” an algorithm A is at solving P , called the advantage, is

AdvP (A) = 2
∣∣∣SuccP (A)− 1

2

∣∣∣,
where SuccP (A) is the success probability of an algorithm A solving P ,

1

SuccP (A) = Pr[A(x) = b | b $←− {0, 1}, x $←− Xb]

= Pr[A(x) = 1 | x $← X1] · Pr[b = 1 | b $← {0, 1}]

+ Pr[A(x) = 0 | x $← X0] · Pr[b = 0 | b $← {0, 1}]

= Pr[A(x) = 1 | x $← X1] · 1

2
+ Pr[A(x) = 0 | x $← X0] · 1

2

= Pr[A(x) = 1 | x $← X1] · 1

2
+ (1− Pr[A(x) = 1 | x $← X0]) · 1

2
.

Then the advantage becomes

AdvP (A) =
∣∣∣Pr[A(x) = 1 | x $← X1]− Pr[A(x) = 1 | x $← X0]

∣∣∣.
2.2 The Group Structure
To build the cryptosystem (and the voting protocol on top of it), we need a group structure
with some specific properties needed to be able to compress ElGamal ciphertexts. In this
paper only the properties needed in the case study will be given, but full descriptions can
be found in [ste13].

Let q be a prime such that p = 2q + 1 is also a prime. The group G which is going to
be used in this paper, is the finite cyclic group of quadratic residues modulo p. The group
will have prime order q and a generator g.

2.3 Homomorphic encryption
Homomorphic encryption is a method that allows operations to be done to ciphertexts
instead of the plaintext, and which yields the same result when decrypted. The point is to be
able to perfom operations on encrypted data without needing to decrypt it. An encryption
scheme can be homomorphic in regards to some particular operations but not to others.
Then the scheme is called homomorphic with regards to those operations, and is called a
partially homomorphic cryptosystem. Schemes that are homomorphic in regards to arbitrary
operations are called fully homomorphic.

E(m) E(f(m)) (= f ′(E(m)))

m f(m) (= D(E(f(m))))

apply f ′

decrypt using D

apply f

encrypt using E

2

2.4 Multi-ElGamal
Let G be a cyclic group of prime order q with generator g.

ElGamal

K :

sk
$←− {1, ..., q − 1}

(pk, sk)← (gsk, sk)

E(pk,m) :

y
$←− {1, ..., q − 1}

c← (gy, pky ·m)

D(sk, c) :

(c1, c2)← c

m← (c1 · c−sk2)

Multi-ElGamal

K :

ski
$←− {1, ..., q − 1}, 1 ≤ i ≤ k

sk ← (sk1, ..., skk)

pk ← (gsk1 , ..., gskk)

E(pk, (m1, ...,mk)) :

y
$←− {1, ..., q − 1}

ci ← (gy, pkyi ·mi)

c← (c1, ..., ck)

D(sk, c) :

(c1, c2i)← ci

mi ← (c2i · c−ski1)

m← (m1, ...,mk)

To the left is the standard ElGamal encryption scheme, and to the right is a multi-variant
with k messages and k corresponding keys.

ElGamal is homomorphic in regard to multiplication. That is, for two plaintexts m1

and m2,

E(m1) · E(m2) = (gy1 , pky1m1) · (gy2 , pky2m2)

= (gy1+y2 , (m1 ·m2)pky1+y2)

= E(m1 ·m2).

Then D(E(m1) · E(m2)) = D(E(m1 ·m2)) = m1 ·m2.

2.5 The Decision Diffie-Hellman problem
Given a multiplicative cyclic group G with generator g, order q, and a set of integers
Zq = {0, ..., q − 1}, the Decision Diffie-Hellman problem is to distinguish between the
Diffie-Hellman tuple outputted by DDH0 and the random tuple outputted by DDH1.

3

DDH0

a
$← Zq

u← ga

v
$← G

w ← va

Diffie-Hellman tuple (g, u, v, w).

DDH1

a
$← Zq

u← ga

v
$← G

w
$← G

Random tuple (g, u, v, w).

In both games a is sampled from Zq and v from G, and u = ga. In DDH0, w = va,
and in DDH1, w is sampled from G. The challenge is in determining whether w = va or
random. The Decision Diffie-Hellman assumption states that, given u = ga and v uniformly
and independently chosen, w ”looks like” va. That is, the probability distributions of the
two tuples are computationally indistinguishable. Distinguishing a random w from w = va

is considered a hard problem.
Let X1 be the set of random tuples and X0 the set of DDH-tuples, then the advantage

of a DDH-distinguisher is

AdvDDH(D) =
∣∣∣Pr[D(g, u, v, w) = 1 | (u, v, w)

$← X1]−Pr[D(g, u, v, w) = 1 | (u, v, w)
$← X0]

∣∣∣.
2.6 Hybrid argument
We want to compare the two distributions D0 and D1. Let D0 := H0, H1, ...,Hn =: D1

be a sequence of hybrid distributions where Hi can be seen as an interpolation from H0 to
Hn where the distances between the adjacent Hi’s are small.

Then f(D0)− f(D1) can be written as a telescoping series

f(D0)− f(D1) = f(H0)− f(Hn) =

n−1∑
i=0

(f(Hi)− f(Hi+1)) ,

and bounding f(D0)− f(D1) may be reduced to bounding the terms in the sum.
Let the advantage of an algorithm A be denoted by

Advdist
Hi,Hi+1

(A) =
∣∣∣Pr[A(x) = 1 | x $←Hi]− Pr[A(x) = 1 | x $←Hi+1]

∣∣∣,
then, by the triangle equality, we have that

Advdist
D0,D1

(A) ≤
n−1∑
i=0

Advdist
Hi,Hi+1

(A),

and
Advdist

D0,D1
(A) ≤ nAdvdist

Hk,Hk+1
(A)

for some k, 0 ≤ k < n.

4

2.7 Pseudo-Random Function families
Pseudo-Random Function (PRF) families are functions F : K × D → R where K is a
keyspace equipped with a distribution dK, D is the domain, and R is the range equipped
with a distribution dR. The keys are sampled from dK. Let PRF-security denote the
indistinguishability between a random function (defined by dR, and with key sampled from
dK) and a function from the PRF family with key sampled from dK. The function from
the family will be used in game PRFr (real), and the random function will be used in PRFi
(ideal), below.

PRFr

On input x,

k
$← dK

r ← F (k, x)

b← D(r)

PRFi

On input x,

r
$← dR

b← D(r)

Let X0 be the range of the function from the function family in PRFr and X1 the range of
the random function in PRFi, then the advantage of a PRF-distinguisher D is

AdvPRF
F (D) =

∣∣∣Pr[D(r) = 1 | r $← X0)]− Pr[D(r) = 1 | r $← X1]
∣∣∣.

2.8 Random Oracle Model
The Random Oracle Model is a model in which cryptographic hash functions are modelled
as random oracles. A random oracle is an oracle that responds to every unique query with a
response sampled uniformly at random from its output space, and, if a query is repeated, it
repeats the response corresponding to that query. A sketch of a possible implementation is
given below.

ROMH

on input i

y
$←− dH

H(i)←

{
y, i /∈ domH
H(i), i ∈ domH

output H(i)

5

On query i, the random oracle H will check if i already is in the domain of the recorded
queries to H , and if so, return H(i). If i is not in its domain, it will set H(i) equal to the
randomly sampled y from the output distribution dH and return it.

2.9 Fiat-Shamir transformation
Let H be a hash function in the random oracle model. The prover will compute a value h
by obtaining it from the hash function on an input x. Then the verifier will obtain a value
h′ from H on input x′, where x′ is some input calculated from x and the proof the prover
has outputted. The verifier may now check whether h′ = h, and accept if it is, or reject if it
is not.

2.10 Non-interactive Zero Knowledge Proofs
At some points we will need to know that certain computations have been done correctly,
and this is done by Non-Interactive Zero Knowledge (NIZK) proofs. This will force an
adversary to prove that she knows the content of a ciphertext, and that certain computations
have been done correctly.

2.10.1 Σ-Protocols
Let a prover P and a verifier V have common input s. P sends V a message a, then V sends
P a random reply b. Lastly P sends a reply c, and V decides to accept or reject based on
the data it has seen (s, a, b, c).

A protocol P is a Σ-protocol for relation R if

– P is on the above 3-move form, and have completeness.

– Satisfies the special soundness property. That is, from any statement s and cor-
responding accepting conversations (a, b, c) and (a, b′, c′), where b 6= b′, one can
compute w such that (s, w) ∈ R.

– Satisfies the Special Honest Verifier Zero Knowledge (SHVZK) property. That is,
there exists a polynomial-time simulator S , which gets as input s and a random b and
outputs an accepting conversation (a, b, c) with the same probability distribution as
conversations between the honest prover and verifier on input s.

2.10.2 Equality of Discrete Logarithms
The voter’s computer P uses the encryption algorithm E . We want to make sure that P
computes correctly during the encryption. For this, we will use a proof that two elements
have the same discrete logarithm relative to two distinct generators of the group G. The
proof is πE , and is between a prover P I

eqdl and a verifier V I
eqdl.

The ballot box B uses the transformation algorithm T . We also want to make sure that
B computes correctly. For this, we will need two equality of discrete logarithms proofs.

6

One that proves that several group elements are raised to the same power as a certain
element, and one that proves that several elements has been correctly raised to distinct
powers. The proofs are πT I and πT II, respectively, and are between a prover P II

eqdl and a
verifier V II

eqdl, and a prover P III
eqdl and a verifier V III

eqdl, respectively.
The three proofs above, must all satisfy the three properties Completeness, SHVZK, and

Soundness with definitions given below.

Completeness Any proof generated by an honest P must be accepted by V .

Special Honest Verifier Zero Knowledge That the proof is SHVZK means that on a
given challenge e, a simulator should be able to choose a random ν which produces
transcripts indistinguishable from the real ones. The simulator will not get the private input
w.

Soundness Let Rel(s, w) be the relation between the statement s and the witness w. It
must be hard to generate valid proofs when the relation does not hold.

Proof of correct computation I

We want to prove that two element have the same discrete logarithm relative to distinct
generators of the group G. Both the prover and the verifier are given as public input some
auxiliary information aux, two generators g and ḡ of G, and the commitments x, x̄. The
prover is in addition given the private input integer t. The relation is Rel(x, t) = (logg x

?
=

logḡ x̄
?
= t).

For this equality of discrete logarithms problem, the prover and the verifier algorithms
are:

πE ← PIeqdl(aux, t; g, ḡ;x, x̄)

1/0← VIeqdl(aux; g, ḡ;x, x̄;πE).

Instantiation A Σ3-protocol for the Equality of Discrete Logarithms with prover P ,
verifier V , statement s = (aux, g, ḡ, x, x̄) and witness t such that x = gt and x̄ = ḡt is:

Prover P
Input s, t

u
$← Zq

α1 ← gu

α2 ← ḡu

ν ← u− et mod q

(α1,α2)−−−−→
e←−−−−
ν−−−−→

Verifier V
Input s

e
$← Zq

Accept iff

α1 = gνxe and
α2 = ḡν x̄e.

7

The completeness condition requires that any proof generated by an honest P must be
accepted by V .

Applying the Fiat-Shamir transformation we get the following.
Let H1 : {0, 1}∗ ×G6 → {1, 2, ..., 2τ} be a hash function in the random oracle model.

Then the prover will compute

e← H1(aux, g, ḡ, x, x̄, α1, α2),

and the verifier will compute

e′ ← H1(aux, g, ḡ, x, x̄, gνxe, ḡν x̄e).

The proof is πE = (e, ν), and the verifier will accept iff e′ = e.

Security analysis Two properties for the proofs are required: they most be zero knowl-
edge and satisfy a soundness condition. For the zero knowledge it suffices for the protocol
to be Special Honest Verifier Zero Knowledge (SHVZK), the non-interactive proof will
then be Non-interactive Zero Knowledge, with the hash oracle acting as an honest verifier.
For the Soundness property, there need to exist a simulator that on a given input produces a
conversation with the same probability as in the real proof.

Completeness An honest P will on statement (aux, g, ḡ, x, x̄) generate a proof
(e, ν) = (H1(aux, g, ḡ, x, x̄, gu, ḡu), u − et mod q). The verifier V will then compute
e′ = H1(aux, g, ḡ, x, x̄, gνxe, ḡν x̄e). It is easy to see that e′ = e if the relation holds, and
hence the proof will be accepted by V .

Special Honest Verifier Zero Knowledge Given any challenge e, we can choose a
random ν and compute α1 = gνxe and α2 = ḡν x̄e, with x = gt and x̄ = ḡt. It is easy to
see that α1 and α2 has the same distribution as in the real proof.

Non-interactive Zero Knowledge An interactive proof that is SHVZK becomes
Non-interactive Zero Knowledge (NIZK) when the Fiat-Shamir Transformation is applied
to make the proof non-interactive.

Prover PH1

u
$← Zq

α1 ← gu

α2 ← ḡu

e← H1(aux, g, ḡ, x, x̄, gu, ḡu)

ν ← u− et mod q

(s,t)←−−
(e,ν)−−→
b←−−−

Adversary AH1

Choose t and
s = (aux; g, ḡ;x, x̄).

b← guess

8

Let a left game LHS be as above. An adversary A have access to a random oracle
H1 and outputs a statement s and a witness t. The prover P (with access to the same
random oracle) follows the protocol as before, and then sends the proof (e, ν) to A. The
adversary then tries to distinguish between the real proof and the simulation.

Simulator SIMS

e← S
ν ← SimI

eqdl(aux; g, ḡ;x, x̄, e)

α1 ← gνxe

α2 ← ḡν x̄e

Reprogram
H1(aux, g, ḡ, x, x̄, gνxe, ḡν x̄e) = e.

s←−−−
(e,ν)−−→
b←−−−

Adversary AS

Choose t and
s = (aux; g, ḡ;x, x̄).

b← guess

Let a right game RHS be as above, where SimI
eqdl(aux; g, ḡ;x, x̄, e) just samples ν at

random, ν $← Zq, and the simulated hash function S just samples e at random, e $← dH1.
An adversary A have access to the simulator S and outputs a statement s and a witness t.
The simulator SIM (with access to S) uses S to get e, SimI

eqdl(aux; g, ḡ;x, x̄, e) to get
ν and then sends the proof (e, ν) to A. The adversary then tries to distinguish between the
real proof and the simulation.

LHS ZKL

(s, t)← AH1

(e, ν)← PH1(s, t)

b← AH1(e, ν)

RHS ZKR

(s, t)← AS

(e, ν)← SIMS(s)

b← AS(e, ν)

The advantage of the adversary is∣∣∣Pr[AH1(e, ν) = 1 | (e, ν)
$← PH1]− Pr[AS(e, ν) = 1 | (e, ν)

$← SIMS]
∣∣∣.

Soundness Probability bounds for the adversary being able to forge proofs when the
relation does not hold are given in the following propositions.

Lemma 2.10.1. Let G be a group of prime order q, and let g and ḡ be generators of G.
Suppose t and ∆,∆ 6= 0 are integers, and g, ḡ, x, x̄, α1, α2 are group elements such that
x = gt and x̄ = ḡu+∆. Let e be an integer choosen uniformly at random from {1, ..., 2tau}.

9

Then the probability that there exists an integer ν such that

α1x
−e = gν and α2x̄

−e = ḡν

is at most 1/2τ .

Proof. Let α1 = gu and α2 = ḡu+δ for δ an integer. Then the relations will be

u− et ≡ ν mod q and u+ δ − et− e∆ ≡ ν mod q.

For this to be satisfied, we must have that

δ − e∆ ≡ ν mod q.

Both δ and ∆ are fixed before e is sampled, so the probability of this event is at most
1/2τ . �

Theorem 2.10.2. For any algorithm A that makes at most η queries to the random oracle
H1 and outputs a proof πE and statement s, where the relation logg x = logḡ x̄ does not
hold, then

VIeqdl(s, πE) = 1

with probability at most 2η/2τ .

Proof. If the algorithm has not already queried H1 at the relevant point, the proof verifies
with probability 1/2τ .

By Lemma 2.10.1, the adversary has a probability of at most 1/2τ of forging a proof
every time she queries H1.

We now have at most η+1 event, each with probability at most 1/2τ , and the probability
that at least one of them happen can be bounded as

1−
(

1− 1

2τ

)η+1

= 1−
η+1∑
i=0

(
η + 1

i

)
(−1)i

(1

2τ

)i
≤ (η + 1)

1

2τ
+

η+1∑
i=2

(η + 1)i
(1

2τ

)i
η+1<2τ/2

≤ (η + 1)
1

2τ
+

η+1∑
i=2

1

2τ

≤ 2η
1

2τ
(2.1)

�

Proof of correct computation II

We need to prove that we have raised a number of group elements to the same power. The
proof is πT I with the prover’s and the verifier’s algorithms as follows:

πT I ← P II
eqdl(aux, g, γ, s;w1, ..., wk, w̌1, ..., w̌k)

1/0← V II
eqdl(aux, g, γ;w1, ..., wk, w̌1, ..., w̌k;πT I).

10

The public input which both the prover and the verifier gets, is some auxillary information
aux, a generator g, a commitment γ, and the group elements w1, ..., wk, w̌1, ..., w̌k.The
prover’s private input is the integer s such that γ = gs and wsi = w̌i, i = 1, ..., k.

Completeness is also required here.

Instantiation The verifier chooses random e1, ..., ek from {1, ..., 2τ} and sends ~e =
(e1, ..., ek) to the prover.

The prover computes x = Πk
i=1w

ei
i , chooses u at random from Zq, computes α1 =

gu, α2 = xu and send (α1, α2) to the verifier.
The verifier chooses random e from Zq and send it to the prover.
The prover computes ν ← u− se mod q, and sends ν to the verifier.
The verifier computes x = Πk

i=1w
ei
i and x̌ = Πk

i=1w̌
ei
i and accepts iff

α1 = gνγe and α2 = xν x̌e.

Now, apply the Fiat-Shamir transformation to get the proof non-interactive. Let a hash
functions H1 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}k and H2 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}
be evaluated as

~e← H1(aux, g, γ, ~w, ~̌w)

e← H2(aux, g, γ, ~w, ~̌w, α1, α2).

The proof is πT I = (e, ν) and is accepted iff

e = H2(aux, g, γ, ~w, ~̌w, gνγe, xν x̌e).

Security analysis As before, zero knowledge and soundness is required.
The protocol is SHVZK because there exists a simulator that for a given e, samples ν at

random and outputs it, ν ← SimII
eqdl(aux, g, γ, ~w, ~̌w,~e, e). Then it is clear that α1 = gνγe

and α2 = xν x̌e with x and x̌ as above have the same distribution as in the real protocol.
Applying the Fiat-Shamir transformation then yields a non-interactive zero knowledge

proof. Generate this proof by first sampling an e at random, query H1 to get ~e, use SimII
eqdl

to get ν, and then reprogram the H2 oracle appropriately.
This proof is sound in the Random Oracle Model and a soundness bound is given below.

Lemma 2.10.3. Let V be any proper subspace of Fkq , and let S be a subset of Fq with
2τ elements. Sample e1, ..., ek independently and uniformly at random from S. Then the
probability that ~e lies inside V is at most 1/2τ .

Proof. The proof is given in [ste13]. �

Lemma 2.10.4. Let G be a group of prime order q and g a generator of it. Let S be a
subset of Zq with 2τ elements. Suppose s,∆1, ...,∆k are integers such that s 6≡ 0 mod q
and ∆j = 0 for at least one j. Let w1, ..., wk, w̌1, ..., w̌k be group elements such that
w̌i = wsi g

∆i , i = 1, ..., k.

11

If ∆i 6≡ 0 mod q for any i, and e1, ..., ek are integers chosen uniformly at random from
a set with 2τ elements, then

Πk
i=1w̌

ei
i = (Πk

i=1w
ei
i)s (2.2)

holds with probability at most 1/2τ .

Proof. The equation Σki=1∆iei ≡ 0 mod q defines a proper subspace of Fkq . If equation
(2.2) holds, then Πk

i=1g
∆iei = 1, or Σki1 ≡ 0 mod q. That is, (2.2) holds only if ~e

considered as an Fq-vector falls inside a proper subspace of Fkq . The claim then follows by
Lemma 2.10.3. �

The last lemma needed for soundness is similar to the one above, 2.10.1, with the proof
being similar as well.

Theorem 2.10.5. For any algorithm that makes at most η queries overall to the random
oracles H1 and H2, outputs a proof πT I = (e, ν), a bit string aux, an integer s, and group
elements g, γ, w1, ..., wk, w̌1, ..., w̌k such that wsi 6= w̌i for some i, then

V II
eqdl(aux, g, γ, ~w, ~̌w;πT I) = 1

holds with probability at most 2η/2τ .

Proof. If the algorithm has not already queried both H1 and H2 at the relevant points, the
proof verifies with probability 1/2τ .

By Lemma 2.10.4, the adversary has a probability of at most 1/2τ of forging a proof
every time she queries H1.

By Lemma 2.10.1, the adversary has a probability of at most 1/2τ of forging a proof for
some input by which she cannot already create a forged proof for, every time she queries
H2.

We now have at most η+1 event, each with probability at most 1/2τ , and the probability
that at least one of them happen can be bounded similar as in equation (2.1). �

Proof of correct computation III

We need to prove that a single group element has been raised to correct, distinct powers.
The proof is πT II with the prover’s and the verifier’s algorithms as follows:

πT II ← P III
eqdl(aux, g, x̌, y21, ..., y2k, a21, ..., a2k; ŵ1, ..., ŵk)

1/0← V III
eqdl(aux, g, x̌; y21, ..., y2k, ŵ1, ..., ŵk;πT II).

Both the prover and the verifier receive the public input consisting of some auxilliary
information aux, a generator g of G, the commitments y2i, ..., y2k, the base x̌ and the
powers ŵ1, ..., ŵk. The prover in addition gets the private input the integers a21, ..., a2k.

Completeness is also required here.

12

Instantiation The verifier chooses random e1, ..., ek from {1, ..., 2τ} and sends ~e =
(e1, ..., ek) to the prover.

The prover chooses u at random from Zq, computes α1 = gu, α2 = x̌u and send
(α1, α2) to the verifier.

The verifier chooses random e from Zq and send it to the prover.
The prover computes ν ← u− eΣki=1eia2i mod q, and sends ν to the verifier.
The verifier computes y2 = Πk

i=1y
ei
2i and ŵ = Πk

i=1ŵ
ei
i , and accepts iff

α1 = gνye2 and α2 = x̌νŵe.

Now, apply the Fiat-Shamir transformation to get the proof non-interactive. Let a hash
functions H1 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}k and H2 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}
be evaluated as

~e← H1(aux, g, x̌, ~y2, ~̂w)

e← H2(aux, g, x̌, ~y2, ~̂w, α1, α2).

The proof is πT II = (e, ν) and is accepted iff

e = H2(aux, g, γ, ~w, ~̌w, gνye2, x̌
νŵe).

Security analysis As before, zero knowledge and soundness is required.
The protocol is SHVZK because there exists a simulator that for a given e, samples ν at

random and outputs it, ν ← SimIII
eqdl(aux, g, x̌, ~y2, ~̂w,~e, e). Then it is clear that α1 = gνye2

and α2 = x̌νŵe with y2 and ŵ as above have the same distribution as in the real protocol.
Applying the Fiat-Shamir transformation then yields a non-interactive zero knowledge

proof. Generate this proof by first sampling an e at random, query H1 to get ~e, use SimIII
eqdl

to get ν, and then reprogram the H2 oracle appropriately.
This proof is sound in the random oracle model and a soundness bound is given below.

Lemma 2.10.6. Let G be a group of prime order q and g a generator of it. Suppose
a21,...,a2k ,∆1, ...,∆k are integers and x̌, y21, ..., y2k, ŵ1, ..., ŵk group elements such that
y2i = ga2i and ŵi = x̌a2ig∆i , i = 1, ..., k.

If ∆i 6≡ 0 mod q for any i, and e1, ..., ek are integers chosen uniformly at random from
a set with 2τ elements, then the probability that there exists an integer a such that

Πk
i=1y

ei
2i = ga and Πk

i=1ŵ
ei
i = x̌a (2.3)

holds with probability at most 1/2τ .

Proof. If the left part of (2.3) holds, then Πk
i=1g

∆iei = 1 or Σki=1∆iei ≡ 0 mod q. So
(2.3) only holds if ~e considered as an Fq-vector falls inside the previously defines proper
subspace of Fkq . The claim then follows by Lemma 2.10.3. �

The last lemma needed for soundness is similar to the one above, Lemma 2.10.1, with
the proof being similar as well.

13

Theorem 2.10.7. For any algorithm that makes at most η queries overall to the random
oracles H1 and H2, outputs a proof πT II = (e, ν), a bit string aux, integers a21, ..., a2k,
and group elements g, x̌, y21, ..., y2k, ŵ1, ..., ŵk such that y2i = ga2i for all i, but x̌a2i 6=
ŵi for some i, then

V III
eqdl(aux, g, x̌, ~y2, ~̂w;πT II) = 1

holds with probability at most 2η/2τ .

Proof. If the algorithm has not already queried both H1 and H2 at the relevant points, the
proof verifies with probability 1/2τ .

By Lemma 2.10.6, the adversary has a probability of at most 1/2τ of forging a proof
every time she queries H1.

By Lemma 2.10.1, the adversary has a probability of at most 1/2τ of forging a proof for
some input by which she cannot already create a forged proof for, every time she queries
H2.

We now have at most η+1 event, each with probability at most 1/2τ , and the probability
that at least one of them happen can be bounded similar as in equation (2.1). �

14

Chapter 3
Formal verification

Formal verification is proving the correctness of algorithms with respect to formal specifi-
cations. Tools for formal verification may be used to prove (or disprove) the correctness
of cryptographic protocols. The pen and paper proofs often uses the provable security
approach, in which mathematical problems are tried reduced to attacks on the cryptographic
construction. These proofs are often long and complicated. Tools where one may formalize
systems and write proofs, and interactively verify steps on the way, may be used to increase
confidence in such reductionist proofs.

3.1 EasyCrypt
EASYCRYPT is a tool for reasoning about probabilistic relational properties and the security
of cryptographic constructions with adversial code. Is is used to construct and verify
game-based cryptographic proofs. Four logics are used: Hoare logic, probabilistic Hoare
logic, relational probabilistic Hoare logic, and ambient logic. SMT-solvers are able to
automatically prove certain simple ambient logic goals.

EASYCRYPT has been used to provide machine-checked proof of privacy-related
properties (including ballot privacy) for an electronic voting protocol in the computational
model [War17] [cat17].

3.2 SMT-solvers
SMT (satisfiability modulo theories) are decision problems for logical formulas. SMT-
solvers are tools to automatically solve SMT problems. It is useful for verification and
program correctness proving. In interactive theorem proving and computer-aided program
verification, SMT solvers may be used to automatically verify (or reject) proof steps. There
are several techniques for this, but one is to translate assertions, pre-, post-, and possibly
loop-conditions or conditionals into SMT formulas so that it can be decided if all properties

15

hold. SMT solvers will take as input a first-order logic formula F over a ground theory T
and return if it is satisfiable or not.

EASYCRYPT uses the the SMT solvers Alt-Ergo, Z3 and E by default, but more are
available if wanted.

Alt-Ergo Alt-Ergo is an SMT solver dedicated to prove mathematical formulas in pro-
gram verification. It provides support for theories including empty theory, linear integer
and rational arithmetic, non-linear arithmetic, polymorphic arrays, enumerated datatypes,
bitvectors, and quantifiers.

E E is a theorem prover for full first-order logic with equality. It accepts a problem
specification (typically consisting of a number of first-order clauses or formulas) and a
conjecture, and will then try to find a formal proof for the conjecture, assuming the axioms.
If a proof is found, proof steps that can be individually verified is provided.

Z3 Z3 is a SMT solver with support for theories including empty theory, linear arithmetic,
nonlinear arithmetic, bitvectors, arrays, datatypes, quantifiers, and strings. Z3 is commonly
used in program verification.

3.3 Problems
During the development of the modelling of the system and writing of the proofs, some
problems occurred. A couple of bugs were found in the SMT solvers Alt-Ergo and E. We
were able to prove false when a real divided with a real were in context. This resulted in us
being able to prove that the order of a prime-order group, or that an arbitrary prime, was 1.
The problematic SMT solvers were blocked. This lead to some of the proofs not working
and they needed to be rewritten.

16

Chapter 4
Simplified protocol

In [ste10] from 2010, a simplified protocol is specified and analyzed.
The players in the protocol are the voter V , the voter’s computer P , the ballot box B,

the return code generator R, and the decryption service D. The auditor A is not part of the
simplified protocol.

V P B D

R A

Figure 4.1: The players and the communication canals. Figure 1 in [ste10].

The infrastructure players are B, R, D and A. The players communicate via secure,
authenticated channels. In the simplified protocol, the ballot box knows which voter is
communicating with which computer. The players in the protocol and their communication
is illustrated in Figure 4.1.

The voter chooses as her ballot a sequence of options (v1, ..., vk) from a set of options
O = {1, 2, ...}. The computer then pads this sequence with zeros for k < i ≤ kmax,
encrypts it with the election encryption key, and then submits the encrypted ballot to the
ballot box. Then the ballot box and the return code generator computes return codes from a
set C for each voter that are sent directly to the voter. The voter can check if the return code
she received matches the options she selected. If it matches the voter accepts, and if not,
something went wrong.

Prerequisites The system uses a finite cyclic group G of prime order q with generator g,
pseudo-random function family F : G→ C, an injective encoding function

17

f : O → G, f(0) = gid, where gid is the identity element in G.

Key generation The key generation is assumed done by a trusted third party. It is done
before the election.

Key generation KG

a1, a2, a3
$← Zq, a1 + a2 ≡ a3 (mod q)

y1 ← ga1 , y2 ← ga2 , y3 ← ga3

s
$← Zq

d
$← F

r : O → C, r(v) = d(f(v)s)

V = {(v, r(v)) | v ∈ O}

a1−→ D

a2,s−→ B

a3,d−→ R

V−→ V

The key generation algorithm generates the private keys a1, a2, a3 and the public keys
y1, y2, y3, and send a1 to D, a2 to B and a3 to R. In addition, an integer s and a function d
is sampled for every voter, such that every voter V is given a set with pairs (v, d(f(v)s))
for each option v.

Vote submission The vote submission has four players. The voter V wants to submit the
ballot v = (v1, ..., vk) with k options as her vote.

18

Vote submission

V

v ← (v1, ..., vk).

v−→

P

for i = k + 1, ..., kmax, vi = 0.

for i = 1, ..., kmax,

ti
$← Zq

(xi, wi)← (gti , yti1 f(vi)).

x (ř1, ..., řk)

y((x1,w1),...,(xkmax ,wkmax))

R

for i = 1, ..., kmax,

ři ← d(w̌ix̌
−a3
i).

((x̌1,w̌1),...,(x̌kmax ,w̌kmax)←−−−−−−−−−−−−−−−
Vid

B

for i = 1, ..., kmax,

(x̌i, w̌i)← (xsi , w
s
i x̌
a2
i).

The vote submission goes as follows. The voter V sends her ballot (v1, ..., vk) to P ,
which pads it with zeros from k to kmax, encrypts it and sends it to B. The ballot box then
computes using the integer s for the voter and sends it, in addition to the voter’s identity
Vid, to R. Now R generates return codes which it sends to V . Lastly, the voter verifies that
pair of options and return codes are in the set of return codes which she received before
the election. The voter is able to submit several ballots. If a new ballot is submitted the
previous are superseded by it.

In Figure 4.2 the protocol for submission of one option and generation of one return code is
illustrated.

Counting The voter V has verified that every pair (vi, ři) is in the set of return codes V
received by KG before the election, and if so considered the ballot cast.

19

V P B R

x← gt1 x̌← xs ř ← d(w̌x̌−a3)

w ← yt11 f(v) w̌ ← wsx̌a2

• •

v (x,w) (x̌, w̌)

ř

Figure 4.2: Vote submission. Figure 2 in [ste10].

Counting

D

for i = 1, ..., kmax,

µi ← wix
−a1
i .

Output the resulting ballots in random
order.

When the ballot boxB closes, superceded ballots are discarded. ThenB sends the remaining
encrypted ballots ((x̌1, w̌1), ..., (x̌kmax , w̌kmax)) to the decryption service D, in random
order. In D all the ciphertexts are decrypted, and the resulting ballots output in random
order.

4.1 Completeness
The protocol is complete if, when all players are honest, the submitted ballots are correctly
decrypted and the return codes match the ones in the set the voter received before the ballot
submission.

We have completeness in the return code received by the voter if (v, ř) is in V , that is,
that ř = r(v). Completeness follows from computing

w̌x̌−a3 = (wsx̌a2)x̌−a3 = wsx̌−a1 = ws(xs)−a1 = (wx−a1)s = f(v)s.

20

4.2 Security
This section will argue for the security of the simplified protocol. The corruption models
considered are:

(a) The voter and its computer are corrupted.

(b) The voter’s computer is corrupt.

(c) One of the tree infrastructure players is passively corrupt (or honest-but-curious).

The focus will be on (c), and especially an honest-but-curious corruption in the ballot
box and return code generator. Honest-but-curious means that the adversary follows the
protocol, but will try to deduce information about the voter’s ballots. The two following
properties are argued for:

1. The voter will most likely notice if a corrupt computer modifies a ballot,

2. No honest-but-curious infrastructure player will learn any non-trivial information
about the ballots,

with a focus on the latter one.

4.2.1 (a) Voter and computer
There is assumed to be authenticated channels, and the ballot box can therefore ensure that
only one ballot is counted per voter. If the ballot’s ciphertext is malformed, it will invalidate
the ballot.

4.2.2 (b) Computer
Suppose the computer submits (v′1, ..., v

′
k) ∈ O′ instead of (v1, ..., vk) ∈ O, whereO′ ⊇ O.

Since f is an injection, exponentiation in G just is a permutation, and d is a random looking
function, the composition of f , a permutation and d will look like a random function from
O′ to C.

Any function fromO′ to C defines a partition ofO′, which again defines an equivalence
relation. The uniform distribution on the set of functions from O′ to V therefore induces a
probability distribution on the set of equivalence relations on O′. Let ∼ be an equivalence
relation and extend it onO′ such that (v1, ..., vk) ∼ (v′1, ..., v

′
k) iff k = k′ and vi ∼ v′i, i =

1, ..., k. The voter will accept the manipulation iff (v′1, ..., v
′
k) ∼ (v1, ..., vk). Assuming the

set C is sufficiently large, the probability of this event will be small.

4.2.3 (c) Infrastructure players
We consider the three infrastructure playersB,R andD. All of them are honest-but-curious,
so we will only need to simulate the input they normally would see, and will not need
to model interaction with other players in the system. First B is considered, then R, and
finally, D.

21

The ballot box We are given a finite cyclic group G with generator g and prime order q.
Let Zq = {0, ..., q − 1} be the set where keys and exponents are sampled from.

Suppose we have an honest-but-curious ballot box B∗ that after the election is over
looks at the ciphertexts and outputs some non-trivial information about the ballots submitted.
This B∗-adversary, along with a DDH-distinguisher, will be modelled in EASYCRYPT.
They will be used in games that simulates the view of B∗.

We want to show that a simulated input from DDH0 (defined in §2.5) simulates the
ballot box’s input perfectly. To do this, we will play a IND-CPA game (indistinguishability
under chosen-plaintext attack) where we use the key generation algorithm KG and the
computer P .

22

Key generation KG

Generate a1, a2, a3 such that a1 +a2 ≡
a3 (mod q).

Compute yi = gai .

Output (a1, a2, a3, y1, y2, y3).

Computer P

Receive public key y1 and an option v.

t
$← {0, ..., q − 1}

Encrypt v and output (gt, yt1f(v)).

IND-CPA

(a1, a2, a3, y1, y2, y3)← KG
(v0, v1)← B∗(a2)

b
$← {0, 1}

(x,w)← P (y1, vb)

b′ ← B∗(x,w)

B∗ wins if b′ = b.

module KG1 = {
proc kg() = {
var a1, a2, a3, y1, ¦
y2, y3;
a1 <$ dt;
a2 <$ dt;
a3 <− a1 + a2;
y1 <− gˆa1;
y2 <− gˆa2;
y3 <− gˆa3;
return (a1, a2, a3, ¦
y1, y2, y3);

}
}.

module P1 = {
proc enc(y1 : group, v : ¦
int) = {
var t, x, w;
t <$ dt;
x <− gˆt;
w <− y1ˆt * (f v);
return (x, w);

}
}.

module INDCPA (B' : HbC) = {
proc main() = {
var a1, a2, a3, y1, ¦
y2, y3, m0, m1, x, w, ¦
b, b';
(a1, a2, a3, y1, y2, ¦
y3) <@ KG1.kg();
(m0, m1) <@ ¦
B'.choose(a2);
b <$ {0,1};
(x, w) <@ P1.enc(y1, ¦
b?m1:m0);
b' <@ ¦
B'.guess(x, w);
return b' = b;

}
}.

The keys are obtained from KG and a2 is sent to B∗. Two chosen options v0 and v1

are outputted by B∗. A bit b is sampled at random, and vb, along with y1, is sent to P for

23

encryption. The ciphertext (x,w) obtained from P is given to B∗, and B∗ makes a guess
b′ on which of v0 and v1 that were encrypted. If b′ = b, B∗ has won the game.

Adversaries
Two abstracts adversaries. The DDH-
adversary DDHADV will later be instan-
tiated, while the honest-but-curious bal-
lot box HbC will remain abstract.

module type DDHADV = {
proc guess(gx gy gz : ¦
group) : bool

}.

module type HbC = {
proc choose(gx : t) : ¦
int * int

proc guess(gy gzm : ¦
group) : bool

}.

The Decision Diffie-Hellman problem from §2.5 is used in the two games DDH0 and
DDH1 below.

24

DDH0

a1
$← Zq

y1 ← ga1

u1
$← G

u2 ← va1

Send DDH-tuple (y1, u1, u2) to the
simulator and receive b. B∗ has won
if b = 1.

DDH1

a1
$← Zq

y1 ← ga1

u1
$← G

u2
$← G

Send random tuple (y1, u1, u2) to the
simulator and receive b. B∗ has won if
b = 1.

module DDH0 (A : DDHADV) = {
proc main() = {
var b, a1, y1, u1, u2;
a1 <$ dt;
y1 <− gˆa1;
u1 <$ dG;
u2 <− u1ˆa1;
b <@ A.guess(y1, u1, ¦
u2);
return b;

}
}.

module DDH1 (A : DDHADV) = {
proc main() = {
var b, a1, y1, u1, u2;
a1 <$ dt;
y1 <− gˆa1;
u1 <$ dG;
u2 <$ dG;
b <@ A.guess(y1, u1, ¦
u2);
return b;

}
}.

In DDH0 a DDH-tuple is generated and outputted, and in DDH1 a random tuple is gener-
ated and outputted.

We will have a reduction where we, from the B∗-adversary, construct a DDH-adversary
as below.

25

DDH-adversary

On input (y1, u1, u2).

Generate a2.

Compute y3 = y1g
a2 .

Send a2 to B∗ and receive cleartext op-
tions m0,m1.

b
$← {0, 1}.

t, t′
$← {0, ..., q − 1}.

Encryptmb as (gtut
′

1 , y
t
1u
t′

2 f(mb)) and
send the ciphertext to B∗.

B∗ outputs its guess b′ and wins if
b′ = b.

module DDHAdv (B' : HbC) = {
var bad : bool
proc guess(y1, u1, u2) = {
var a2, y3, m0, m1, t, ¦
t', b, b';
a2 <$ dt;
y3 <− y1*gˆa2;
(m0, m1) <@ ¦
B'.choose(a2);
b <$ {0,1};
t <$ dt;
t' <$ dt;
bad <− (t + ¦
log(u1) * t') = F.zero ¦
\/ - t' * log u1 + (t ¦
+ log(u1) * t') = ¦
F.zero;
b' <@ ¦
B'.guess(gˆt*u1ˆt', ¦
y1ˆt*u2ˆt'*f(b?m1:m0));
return b' = b;

}
}.

The DDH-adversary above will get an input tuple (y1, u1, u2) either from DDH0 or DDH1.
It generates a2 which it sends to B∗, which responds with two options m0 and m1. A bit b
is sampled at random, before t, t′ are sampled at random from Zq . The encryption of mb is
sent to B∗. Notice that the encryption here is not the usual (gt, yt1f(mb)), but instead the
elements u1, u2 from the input tuple are used as (gtut1

′, yt1u
t′

2 f(mb)).
To show that the simulated input from DDH1 contains no information about the ballots,

we will use a game Gb.

26

Gb

Generate a1, a2, a3 such that a1 +a2 ≡
a3 (mod q).

Compute yi = gai .

(v0, v1)← B∗(a2)

b
$← {0, 1}

t
$← {0, ..., q − 1}

(x,w)← (gt, yt1)

b′ ← B∗(x,w)

B∗ wins if b′ = b.

Guess
The ciphertext B∗ receive contains no
information about the option, so its
probability of winning is equal to 1/2.

module Gb (B' : HbC) = {
var bad : bool
proc main() = {
var a1, a2, a3, y1, ¦
y2, y3, m0, m1, t, t', ¦
b, b', u1, u2;
a1 <$ dt;
a2 <$ dt;
a3 <− a1 + a2;
y1 <− gˆa1;
y2 <− gˆa2;
y3 <− gˆa3;
u1 <$ dG;
u2 <$ dG;
(m0, m1) <@ ¦
B'.choose(a2);
b <$ {0,1};
t <$ dt;
t' <$ dt;
bad <− t = F.zero ¦
\/ - t' * log u1 + t = ¦
F.zero;
b' <@ ¦
B'.guess(gˆt, y1ˆt);
return b' = b;

}
}.

lemma Gb_half (B' <: HbC) ¦
&m :

Pr[Gb(B').main() @ &m : ¦
res] = 1%r / 2%r.

The keys are generated by Gb the usual way before a2 is sent to B∗. As in IND-CPA,
B∗ outputs two options v0 and v1 and a bit b is sampled at random. Now the ciphertext
(x,w) is computed as (x,w) = (gt, yt1) with the randomly sampled t. Since this ciphertext
contains no information about the ballots, B∗’s probability of winning is like a coin flip.

Now all the games are modelled, so all we need to do to make a conclusion is to express
some intermediate lemmas.

The first lemma we will need is one that states that

INDCPA(B') ∼ DDH0(DDHAdv(B')).

27

DDH-tuple
If the given tuple (y1, u1, u2) from G is a DDH-tuple, the simulation will simulate
the ballot box input perfectly.

lemma B_DDH0 (B' <: HbC {DDHAdv}) &m :
Pr[INDCPA(B').main() @ &m : res] = ¦
Pr[DDH0(DDHAdv(B')).main() @ &m : res].

The input to B∗ from INCPA is as to the ballot box B, (gt, yt1f(vb)), and the input to B∗

from DDH0(DDHAdv) is (gtut
′

1 , y
t
1u
t′

2 f(vb)). Since

(gtut
′

1 , y
t
1u
t′

2 f(vb)) = (gtut
′

1 , (g
a1)t(ua11)t

′
f(vb))

= (gt+t
′ logg u1 , ga1(t+t′ logg u1)f(vb)),

we have that
(gt, yt1f(vb)) ∼ (gtut

′

1 , y
t
1u
t′

2 f(vb)).

In the proof an isomorphism t± t′ logg u1 is made use of when sampling t to get this result.
The second lemma we will need is one that states that (for large q)

Gb(B') ∼ DDH1(DDHAdv(B')).

Here we will need to bound the equivalence by 2/q.

Random tuple
If the given tuple (y1, u1, u2) from G is a random tuple, the input will contain no
information about the ballots.

lemma Gb_DDH1 (B' <: HbC {Gb, DDHAdv}) &m :
`| Pr[Gb(B').main() @ &m : res] - ¦
Pr[DDH1(DDHAdv(B')).main() @ &m : res] | <=

Pr[DDH1(DDHAdv(B')).main() @ &m : DDHAdv.bad].

lemma Bad (B' <: HbC {Gb, DDHAdv}) &m :
Pr[DDH1(DDHAdv(B')).main() @ &m : DDHAdv.bad] <= 2%r / q%r.

The simulation with (y1, u1, u2) from DDH1 will be equivalent to a game which produces
an input to B∗ that contains no information about the option. The input to B∗ in Gb is
(gt, yt1), and the input to B∗ in DDH1(DDHAdv) is (gtut

′

1 , y
t
1u
t′

2 f(vb)) (with both random
u1 and u2). The input to B∗ from Gb will therefore be like a coin flip, and B′ therefore has
a probability 1/2 of a successful guess.

28

The bad event DDHAdv.bad is that t is sampled to be equal to 0 or t′ logg u1. The
probability of this happening is at most 2/q. The need for this bound and additional lemma
is due to a need of isomorphisms between the samplings and avoiding to divide by 0 (also,
if t = 0, one input will just be two identity elements of G, (gid, gid), and the other an
identity element and f(vb), (gid, f(vb))). The isomorphisms are:

for t

• t− t′ logg u1 • t+ t′ logg u1

and for a1

•

{
a1t−t′ logg u2−logg f(vb)

t−t′ logg u1
, t 6= 0, t− t′ logg u1 6= 0

a1, otherwise

•

{
a1(t−t′ logg u1)+t′ logg u2+logg f(vb)

t , t 6= 0, t− t′ logg u1 6= 0

a1, otherwise.

After the use of these isomorphisms, we get that

(gt, yt1) ∼ (gtut
′

1 , y
t
1u
t′

2 f(vb)),

and a probability bound of 2/q by the lemma Bad.
By the help of these lemmas we may prove the final conclusion.

Conclusion
If B∗ can extract some information about the ballots, we have a distinguisher for the
Decision Diffie-Hellman problem.

lemma Conclusion (B' <: HbC {Gb, DDHAdv}) &m :
`| Pr[INDCPA(B').main() @ &m : res] - 1%r/2%r | <=
`| Pr[DDH0(DDHAdv(B')).main() @ &m : res] -

Pr[DDH1(DDHAdv(B')).main() @ &m : res] | + 2%r / q%r.

The advantage of the DDH-adversary DDHAdv is

`| Pr[DDH0(DDHAdv(B')).main() @ &m : res]

- Pr[DDH1(DDHAdv(B')).main() @ &m : res] | .

The last term, 2/q (which is negligible in q), is due to the bad event DDHAdv.bad explained
above. The advantage of B∗ to distinguish between the real input and the input containing
no information about the ballot,

`| Pr[INDCPA(B').main() @ &m : res] - 1%r/2%r | ,

is therefore close to zero (assuming a large q).

29

The return code generator (RCG) Let R∗ be an honest-but-curious return code gener-
ator that after the election is over outputs some non-trivial information about the ballots
submitted. This will be modelled in EASYCRYPT as following.

We assume that the family of functions from O to G given by v 7→ f(v)s is a pseudo-
random function family. The functions used in the games PRFr and PRFi in §2.7 in
EASYCRYPT looks like:

module PRFr = {
proc keygen(): K = {

var k;

k <$ dK;
return k;

}

proc f(k:K,x:D): R = { ¦
return F k x; }

}.

module PRFi = {
var m:(D,R) fmap

proc init(): unit = { m ¦
= empty; }

proc f (x:D): R = {
if (x \notin m) m.[x] ¦
= $dR;
return (oget m.[x]);

}
}.

Here the left game PRFr samples a key at random and uses a real function from the
family, while the right game PRFi is the ideal one. The right game initializes a key-value-
correspondence, and then has as its function a model of a random function. The right
module’s procedure f takes as input a key k from its keyspace K = Zq and an argument x
from its domain D = O, and has range R = G. The variable m : (D, R) fmap in PRFi

is the set of random finite maps from the domain to the range.
Given f, ρ : O → G and j, 1 ≤ j ≤ N , let

ρl : O → G, 1 ≤ l < j, ρl = ρ, l = j, ρl : v 7→ f(v)sl , j < l ≤ N.

The given functions f and ρ are modelled in EASYCRYPT as operators that have their
associated properties stated as axioms. The integers j and N will also be operators with
axioms that they are integers less than or equal to one. The set of functions from the family
v 7→ f(v)s is modelled as the operator F.

30

Given

f : O → G, f(0) = gid,

ρ : O → G,

j, 1 ≤ j ≤ N.

For V1, ..., Vj−1,

ρl
$← {r | r : O → G}, 1 ≤ l < j.

For Vj ,

ρl ← ρ, l = j.

For Vj+1, ..., VN ,

sl
$← Zq

ρl ← f(v)sl , j < l ≤ N.

op f : {O −> group | f(0) ¦
= g1 && injective f} ¦
as encFunc.

op rho : O −> group.
op N : {int | 1 <= N} as N_.
op j : {int | 1 <= j <= N} ¦

as j_.

op F = fun (s : t) (v : ¦
O), f(v)ˆs.

module PRFb : H.Orclb = {
proc leaks () : unit = { }
proc orclL = ¦
PRF_Wrap(PRFr).f

proc orclR = PRFi.f
}.

module type Orcl = {
proc orcl(m : O) : group

}.

module HybOrcl (Ob : ¦
Orclb, O : Orcl) = {

var l, l0 : int
proc orcl(m : O): group ¦
= {
var r : group;
if (l0 < l) r <@ ¦
Ob.orclL(m);
elif (l0 = l) r <@ ¦
O.orcl(m);
else r <@ ¦
Ob.orclR(m);
l <− l + 1;
return r;

}
}.

The encoding function f is as before. As before in f , the encoding of zero is the identity
element in G, here given by g1, and it is injective. Let rho be the given function ρ such
that rho : O −> G, and F be the PRF operator that is used in PRFr. Then the functions
from the PRF family will be v 7→ f(v)s as required.

The hybrid oracle HybOrcl is used in the above game as follows. For the given j, the
PRF family F in orclL = PRF_Wrap(PRFr).f is used to get the function ρl if j < l.
Else, if j = l, the given ρ is returned (here modelled as Orcl.orcl). Else, the procedure

31

orclR = PRFi.f checks if the option v is already in the domain, and if not, samples a
value from the range and returns it.

For voter Vl with ballot (v1, ..., vkmax) and function ρl, we compute

(x̌i, w̌i) = (gt
′
i , y

t′i
3 ρl(vi)).

If j = 1 and the given ρ comes from the function family, this simulates R perfectly.
Whereas, if j = N and the given ρ is random, R∗ can extract no non-trivial information
about the ballots. After a hybrid argument, we see that if R∗ can extract some information
about the ballots, we have a distinguisher for the function family.

This will be modelled in EASYCRYPT as the following games and lemmas similar to in
§4.2.3.

32

Key generation KG is the same as
before, except this time also s is
outputted.

Ballot box B

On input (a2, s, (x,w)),

(x̌, w̌)← (xs, wsx̌a2).

Output (x̌, w̌).

IND-CPA

(a1, a2, a3, y1, y2, y3, s)← KG
(v0, v1)← R∗(a3)

b
$← {0, 1}

(x,w)← P (y1, vb)

(x̌, w̌)← B(a2, s, (x,w))

b′ ← R∗(x̌, w̌)

R∗ wins if b′ = b.

module B1 = {
proc enc(a2 s : t, x_w : ¦
(group * group)) : ¦
(group * group) = {
var x', w' : group;
x' <− x_w.`1ˆs;
w' <− x_w.`2ˆs * ¦
x'ˆa2;
return (x', w');

}
}.

module INDCPA' (R' : HbC) ¦
= {

var bad : bool
proc main() = {
var a1, a2, a3, y1, ¦
y2, y3, s, m0, m1, x, ¦
w, x', w', b, b';
(a1, a2, a3, y1, y2, ¦
y3, s) <@ KG1.kg();
(m0, m1) <@ ¦
R'.choose(a3);
b <$ {0,1};
(x, w) <@ P1.enc(y1, ¦
b?m1:m0);
(x', w') <@ B1.enc(a2, ¦
s, (x, w));
bad <− s = F.zero;
b' <@ ¦
R'.guess(x', w');
return b' = b;

}
}.

The IND-CPA game is similar to the one for B∗, but this time both P and B are used to
obtain the ciphertext (x̌, w̌) which is sent to R∗.

33

Gb

Generate a1, a2, a3 such that a1 +a2 ≡
a3 (mod q).

Compute yi = gai .

(v0, v1)← R∗(a2)

b
$← {0, 1}

s, t
$← {0, ..., q − 1}

(x̌, w̌)← (gt
′
, yt

′

1)

b′ ← R∗(x̌, w̌)

R∗ wins if b′ = b.

Guess
The ciphertext R∗ receive contains no
information about the option, so its
probability of winning is equal to 1/2.

module Gb' (R' : HbC) = {
var bad : bool
proc main() = {
var a1, a2, a3, s, y1, ¦
y2, y3, m0, m1, t', b, ¦
b';
a1 <$ dt;
a2 <$ dt;
a3 <− a1 + a2;
s <$ dt;
y1 <− gˆa1;
y2 <− gˆa2;
y3 <− gˆa3;
(m0, m1) <@ ¦
R'.choose(a2);
b <$ {0,1};
t' <$ dt;
bad <− t' = F.zero;
b' <@ ¦
R'.guess(gˆt', y3ˆt');
return b' = b;

}
}.

lemma Gb'_half (R' <: HbC) ¦
&m :

Pr[Gb'(R').main() @ &m : ¦
res] = 1%r / 2%r.

Also the Gb game is quite similar to the one for B∗.

34

module PRFAdvR (R' : HbC) ¦
= {

var bad : bool
proc main() = {

var a1, a2, a3, s, y1, ¦
y2, y3, m0, m1, r, t', ¦
b, b';
a1 <$ dt;
a2 <$ dt;
a3 <− a1 + a2;
s <$ dt;
y1 <− gˆa1;
y2 <− gˆa2;
y3 <− gˆa3;
(m0, m1) <@ ¦
R'.choose(a2);
b <$ {0,1};
r <@ PRFr.f(s, ¦
b?m1:m0);
t' <$ dt;
bad <− s = F.zero;
b' <@ ¦
R'.guess(gˆt', y3ˆt'*r);
return b' = b;

}
}.

module PRFAdvI (R' : HbC) ¦
= {

var bad : bool
proc main() = {
var a1, a2, a3, s, y1, ¦
y2, y3, m0, m1, r, t', ¦
b, b';
a1 <$ dt;
a2 <$ dt;
a3 <− a1 + a2;
s <$ dt;
y1 <− gˆa1;
y2 <− gˆa2;
y3 <− gˆa3;
(m0, m1) <@ ¦
R'.choose(a2);
b <$ {0,1};
r <@ ¦
PRFi.f(b?m1:m0);
t' <$ dt;
bad <− t' = F.zero;
b' <@ ¦
R'.guess(gˆt', y3ˆt'*r);
return b' = b;

}
}.

The left game PRFAdvR is used to simulate the input to R, and it uses PRFr.f to get
a function from the family. The right game PRFAdvI is used to simulate an input that does
not contain any non-trivial information about the ballots, and it uses PRFi to get a random
function.

The games may now be used to express the needed intermediate lemmas.

35

Family function
If j = 1 and the given function ρ is from the PRF family, this will simulate the return
generator input perfectly.

lemma R_PRFr (R' <: HbC {INDCPA', PRFAdvR}) &m :
`| Pr[INDCPA'(R').main() @ &m : res] - ¦
Pr[PRFAdvR(R').main() @ &m : res] | <=

Pr[PRFAdvR(R').main() @ &m : PRFAdvR.bad].

lemma Bad1 (R' <: HbC {PRFAdvR}) &m :
Pr[PRFAdvR(R').main() @ &m : PRFAdvR.bad] <= 1%r / q%r.

Random function
If j = N and the given function ρ is random, the input will contain no information
about the ballots.

lemma Gb'_PRFi (R' <: HbC {Gb', PRFAdvI}) &m :
`| Pr[Gb'(R').main() @ &m : res] - Pr[PRFAdvI(R').main() @ ¦
&m : res] | <=

Pr[PRFAdvI(R').main() @ &m : PRFAdvI.bad].

lemma Bad2 (R' <: HbC {PRFAdvI}) &m :
Pr[PRFAdvI(R').main() @ &m : PRFAdvI.bad] <= 1%r / q%r.

Both these lemma’s probability bounds have similar reasoning to in the intermediate lemmas
in §4.2.3.

36

Hybrid argument
A standard hybrid argument as defined in §2.6 tells us that it is equivalent (assuming
largeN) to consider one andN cases. Let X0 be the case j = 1 and ρ from the family,
and X1 the case that j = N and ρ random. Then Advdist

X0,X1
(A) ≤ NAdvdist

ρl,ρl+1
(A)

for some k, 1 ≤ l < N .

local lemma Hybrid:
forall &m,
Pr[Ln(PRFb, HybGame(A)).main() @ &m : (res /\ HybOrcl.l ¦
<= N) /\ Count.c <= 1] -
Pr[Rn(PRFb, HybGame(A)).main() @ &m : (res /\ HybOrcl.l ¦
<= N) /\ Count.c <= 1] =
1%r / N%r *
(Pr[Ln(PRFb, A).main() @ &m : (res /\ Count.c <= N)] -
Pr[Rn(PRFb, A).main() @ &m : (res /\ Count.c <= N)]).

Using these lemmas, we can conclude with the following:

Conclusion
If R∗ can extract some non-trivial information about the ballots, we have a distin-
guisher for the function family.

lemma Conclusion' (R' <: HbC {INDCPA', Gb', PRFAdvR, ¦
PRFAdvI}) &m :

`| Pr[INDCPA'(R').main() @ &m : res] - 1%r/2%r | <=
`| Pr[PRFAdvR(R').main() @ &m : res] -

Pr[PRFAdvI(R').main() @ &m : res] | + 2%r / q%r.

The advantage of R∗ in extracting some non-trivial information about the ballots is bonded
above by the advantage of a PRF-distinguisher.

The decryption service The decryption service sees the ballots in random order, and
hence can extract no information about which ballot belongs to which voter.

37

4.3 Sketch of full protocol
The full verison of the 2010-variant of the protocol in [ste10] is sketched below.

V P B R

• • • •

ballot enc. w/proof&sign. enc. w/proof&sign.

acceptance sign. sign.

return codes

A R B D

• • • •

hashes ctxts

content

ctxts, decryptions, correctness proof

Figure 4.3: Figure 3 in 2010.

In Figure 4.3 the submission of a ballot and receiving return codes (above) and counting is
illustrated.

In the ballot submission, the computer P will encrypt the voter’s ballot and sign the
ciphertext on the voter’s behalf. It will send the ciphertext and the signature along with
a proof that it knows the content of the ciphertext it encrypted to the ballot box B. After
receiving this, B will compute return code ciphertexts and send them to the return code
generator R along with a proof of correct computations and a signature. Then R verifiers
the voter V ’s signature and every proof, generates the return codes and sends them directly
to the voter. In addition, R signs a hash of the ballot wish it sends to B. The computer P
will accept a correct signature, and inform V of acceptance.

In the counting, the decryption service D decrypts the ciphertexts it receives from B. It
then shuffles the decryptions and sends them along with a proof that it is shuffles of the

38

ciphertexts and the ciphertexts to the auditor A. The auditor receives the entire content of
B and a list of hashes of encrypted ballots from R. The auditor now verifies all the content
it got.

39

40

Chapter 5
The Cryptosystem

The cryptosystem can be considered isolated from the protocol. The security properties
from the cryptosystem can then be used to reason about the security of the protocol.

In the 2013 version of the Norwegian Internet Voting Protocol [ste13] a technical
obstruction occurred. In 2015 a new instantiation was made in [sL15], and a Schnorr Proof
of Knowledge was replaced with another Equality of Discrete Logarithms proof. The new
instantiation satisfies the requirements for functionality and security, but in the security
proof, the technical obstruction is avoided. The cryptosystem in this new instantiation uses
the same encryption and transformation methods, and is based on the same group structure.
When this new cryptosystem is used, the protocol and analysis in [ste13] still applies. The
below incorporates the changes from the new instantiation.

The focus of this chapter will be on the computer P and the ballot box B.

V P B R

c← E(ek, V,~v) č← T (dk2, V, sV , c)

• • • •

~v (V, c) (V, c, č)

~r

Figure 5.1: The computer P uses the encryption algorithm E and the ballot box B uses the transfor-
mation algorithm T.

41

5.1 Definition and instantiation
Preliminaries Let I be a set of identities, M a set of messages, O ⊆M a set of options,
and C a set of pre-codes. We denote options by v and ballots (v1, ..., vk) by ~v (∈ Ok).

The cryptosystem consists of six algorithms and one protocol. The six algorithms and
an additional decryption algorithm D that is needed only to define security requirements
are instansiated below.

Key generation K

ai1, ..., aik
$←− Z∗, i = 1, 2

a3j = a2j + a1j mod q, 1 ≤ j ≤ k
yij = gaij , i = 1, 2, 3, 1 ≤ j ≤ k

choose random generator ḡ ∈ G
outputs keys ek = (g, ḡ, {y1j}, {y2j}, {y3j}), 1 ≤ j ≤ k

and dki = (ai1, ..., aik), i = 1, 2, 3

A key generation algorithm K that outputs a public key ek, a decryption key dk1, a
transformation key dk2, and a pre-code decryption key dk3.

Pre-code map generation S(ek, V)

s
$←− {1, ..., q − 1}

γ = gs

outputs (s, γ)

A pre-code map generation algorithm S that gets input ek and an identity V , and outputs a
pre-code map s and a commitment γ to that map.

42

Encryption E(ek, V,~v)

t
$←− Zq

x = gt, x̄ = ḡt

wi = yt1ivi, 1 ≤ i ≤ k
πE ← PIeqdl(V ‖ x ‖ w1 ‖ ... ‖ wk, g, ḡ, x, x̄, t)

outputs c = (V, x, x̄, wi, ..., wk, πE)

An encryption algorithm E that gets input ek, V , and outputs a message sequence ~m ∈Mk,
and outputs ciphertext c.

Extraction X (c)

Verifies πE .

Computes w̄ = w1 · w2 · · · wk.

Outputs (x, w̄).

A deterministic extraction algorithm that produces the naked ciphertext (x, w̄).

Transformation T (dk2, V, s, c)

verify πE

x̌ = xs

ŵi = x̌a2i , w̌i = wsi , 1 ≤ i ≤ k
πT I ← P II

eqdl(c, g, s, x, w1, ..., wk, x̌, w̌1, ..., w̌k)

πT II ← P III
eqdl(c, g, x̌, a21, ..., a2k, ŵ1, ..., ŵk)

outputs č = (x̌, ŵ1, ..., ŵk, w̌1, ..., w̌k, πT I , πT II)

43

A transformation algorithm T that gets as input dk2, V , s and c, and outputs a pre-code
ciphertext č or ⊥.

Pre-code decryption DR(dk3, V, γ, c, č)

verifies πE , πT I , πT II

ρi = w̌iŵix̌
−a3i(= vsi), 1 ≤ i ≤ k

outputs ~ρ = (ρ1, ..., ρk)

A deterministic pre-code decryption algorithm DR that gets as input dk3, V , γ, c and č, and
outputs a sequence of pre-codes ~ρ ∈ Ck or ⊥.

Decryption D(dk1, V, c)

verifies πE

mi = wix
−a1i , 1 ≤ i ≤ k

outputs ~m = (m1, ...,mk)

A decryption algorithm D that gets as input dk1, V and c, and outputs ~m ∈Mk or ⊥.
A decryption protocol ΠDP is between a prover and a verifier. They have common input

of a public key ek and a sequence of naked ciphertexts c̄1, ..., c̄k. The prover gets as private
input a decryption key dk1. The prover and the verifier output either ⊥ or a sequence of
messages ~m1, ..., ~mk.

The instantiation of ΠDK is not given in this paper because the focus is on the ballot
submission.

Completeness requirements For the cryptosystem to be useful, it must guarantee correct
decryption of ciphertexts and transformed ciphertexts. The three following completeness
requirements should hold.

C1. For any message and identity, encryption followed by decryption should return the
original message. For any keys ek, dk1, any message ~m and identiry V ,
Pr[D(ek, dk1, E(ek, V, ~m)) = ~m] = 1.

C2. For any sequence of messages, encrypting, extracting and then running the decryption
protocol, should reproduce the messages.

44

C3. Transformation of a ciphertext should apply the given pre-code map to the content
of the ciphertext. For any ~m ∈Mk, V ∈ I ,
(ek, dk1, dk2, dk3)← K; (s, γ)← S(ek, V);
c← E(ek, V, ~m); č← T (dk2, V, s, c);
~ρ← DR(dk3, V, γ, c, č);
should result in č 6= ⊥ and ~ρ = s(~m).

5.2 Security Requirements
Security notions for the cryptosystem are sketched here.

D-Privacy Naked ciphertexts should not be correlatable to identities. For any V ∈ I and
~m ∈Mk, if keys, ciphertext and naked ciphertext is generated as follows

(ek, dk1, dk2, dk3)← K; c← E(ek, V, ~m); c̄← X (c),

then the distribution of the naked ciphertext c̄ should be independent of the identity V .

B-Privacy An adversary that knows the transformation key dk2 should not be able to say
anything about any content of any ciphertexts she sees.

45

Simulator S

b
$←− {0, 1}

(ek, dk1, dk2, dk3)← K

Challenge messages requested by A one by one, for i = 1, 2, ...,

(~m
(0)
i , Vi)← A(ek, dk2)

~m
(1)
i

$←−Mk

ci ← E(ek, Vi, ~m
(b)
i)

send ci to A.

At any time,

(V, c, č, s, γ)← A
verifies that s matches γ

~m← D(dk1, V, c)

~ρ← DR(dk3, V, γ, c, č)

send


⊥, a decryption failed
1, (V, c) = (Vi, ci)

~ρ, otherwise
to A.

Finally,

b′ ← A
A wins if b′ = b

The probability of A winning should be close to 1/2.

R-Privacy An adversary that controls the pre-code decryption key and sees many trans-
formed encryptions of valid ballots from Ok should not be able to say anything non-trivial
about the content of those encryptions.

46

Simulator S

b
$←− {0, 1}

π1
$←− permutation on O

π0 = identity map on O
(ek, dk1, dk2, dk3)← K

V ← A(ek, dk3)

(s, γ)← S(ek, V)

send γ to A

A submits sequences of ballots from Ok one by one

~vi ← A
ci ← E(ek, V, πb(~vi))

či ← TR(dk2, V, s, ci)

send (ci, či) to A

Finally,

b′ ← A
A wins if b′ = b

The probability of A winning should be close to 1/2.

A-Privacy An adversary that runs the verifier part of the decryption protocol should not
be able to correlate ciphertexts with decryptions.

47

Simulator S

b
$←− {0, 1}

(ek, dk1, dk2, dk3)← K
((V1, ~m1), ..., (Vn′ , ~mn′),

(V ′1 , ~m
(0)
1), ..., (V ′n′′ , ~m

(0)
n′′))← A(ek)

π0 = identity map on {1, 2, ..., n′}

π1
$←− permutation on {1, 2, ..., n′}

(~m
(1)
1 , ..., ~m

(1)
n′′)

$←−Mk

c′i ← E(ek, V ′i , ~m
(b)
i)

ci ← E(ek, V ′i , ~mπb(i))

c̄i ← X (Vi, ci)

send (c′1, ..., c
′
n′′ , c1, ..., cn′) to A

run the prover part of the protocol ΠDP

b′ ← A
A wins if b′ = b

The probability of A winning should be close to 1/2.

B-Integrity An adversary that knows all the key material and chooses the per-voter key
material, should not be able to create an identity, a ciphertext and a transformed cipher-
text such that the transformed ciphertext is inconsistent with the decryption of the ciphertext.

B-Integrity

(ek, dk1, dk2, dk3)← K
(V, s, γ, c, č)← A(ek, dk1, dk2, dk3)

~m← D(dk1, V, c)

~ρ← DR(dk3, V, γ, c, č)

A wins if ~ρ 6= ⊥ and either
~m = ⊥, or s(~m) 6= ~ρ.

The probability of the adversary winning should be close to 0.

48

D-Integrity An adversary that runs the prover’s part of the protocol ΠDP should not be
able to tamper with decryptions.

Simulator S

(ek, dk1, dk2, dk3)← K
((V1, ~m1), ..., (Vn, ~mn))← A(ek, dk1)

ci ← E(ek, V ′i , ~mi)

c̄i ← X (Vi, ci)

send (c̄1, ..., c̄n) to A
runs the prover part of the protocol ΠDP

A wins if the verifier run outputs a sequence of messages
that is not a permutation of ω(~m1), ..., ω(~m1)

The probability of A winning should be close to 0.

5.3 Security
For the completeness requirements, we see that C1 clearly holds. C2 will not be described
here since we have not described the decryption protocol.

C3. Completeness The zero knowledge proofs are complete, and ElGamal is homomor-
phic. The following equation will hold:

ρi = w̌iŵix̌
−a3i = wsi x̌

a2ix−sa3i = (wxa2i−a3i)s = (wix
−a1i)s = vsi .

Proofs of D-privacy, B-privacy, R-privacy, A-privacy and D-integrity can be found in
[ste13] and will not be described here.

The proof of B-integrity will be given in this chapter.

49

50

5.4 Equality of Discrete Logarithms
For the Equality of Discrete Logarithms (EQDL) problem in §2.10.2, we can model the
protocols in EASYCRYPT. We will show the modelling of the proof in §2.10.2. The two
others from §2.10.2 and §2.10.2 goes similarly.

The prover P I
eqdl and the verifier V I

eqdl will be modelled as follows.

module Prover = {
proc i(s : aux * group * ¦
group * group * group, ¦
t : t) = {
var u, a1, a2;
u <$ dt;
a1 = s.`2ˆu;
a2 = s.`3ˆu;
return (u, a1, a2);

}
proc iii(t u e : t) = {

var nu : t;
nu = u - e * t;
return nu;

}
}.

module Verifier = {
proc ii(a1 a2 : group) = {
var e;
e <$ dt;
return e;

}
proc ver(s : aux * group ¦

* group * group * ¦
group, a1 a2 : group, ¦
e nu : t) = {
return (a1 = s.`2ˆnu * ¦
s.`4ˆe /\ a2 = s.`3ˆnu ¦

* s.`5ˆe);
}

}.

Both P I
eqdl and V I

eqdl will get the public input s (= (aux, g, ḡ, x, x̄)), only P I
eqdl will

get the private input t.
In i, P I

eqdl samples an u at random from dt (= Zq) and computes (a1, a2) (=
(α1, α2) = (gu, ḡu)).

In ii, V I
eqdl will get (a1, a2) and output an e chosen at random from dt.

In iii, P I
eqdl computes nu with the given t, u, e.

In ver V I
eqdl will verify that α1 = gνxe, α2 = ḡν x̄e for given s, a1, a2, e, nu.

The three-way protocol run with the prover Prover and verifier Verifier is modelled
below in EQDL.

51

The relation with the statement
(aux, g, ḡ, x, x̄) and witness t will be
x = gt and x̄ = ḡt.

Step I P I
eqdl chooses random u ∈ Zq

and computes α1 = gu, α2 = ḡu and
sends (α1, α2) to V I

eqdl.

Step II V I
eqdl chooses random chal-

lenge e ∈ Zq and sends to P I
eqdl.

Step III P I
eqdl computes ν = u −

et mod q and sends to V I
eqdl.

V I
eqdl accepts iff α1 = gνxe, α2 =
ḡν x̄e.

Completeness

A proof by a honest P I
eqdl will be ac-

cepted by V I
eqdl.

op Relation (s : aux * ¦
group * group * group ¦

* group, t : t)
= (s.`4 = s.`2ˆt /\ s.`5 ¦
= s.`3ˆt).

module EQDL = {
proc main(s, t) = {
var u, a1, a2, e, nu, ¦
b;
(u, a1, a2) <@ ¦
Prover.i(s, t);
e <@ Verifier.ii(a1, ¦
a2);
nu <@ Prover.iii(t, u, ¦
e);
b <@ Verifier.ver(s, ¦
a1, a2, e, nu);
return b;

}
}.

lemma Completeness &m (s : ¦
aux * group * group * ¦
group * group) (t : t) :

Pr[EQDL.main(s, t) @ &m ¦
: Relation s t => res] ¦
= 1%r.

The lemma Completeness states that the probability of the verifer accepting the proof
must be equal to one if the relation holds.

To prove that the protocol is SHVZK, we will need a simulator which will be modelled
as follows.

52

Given any challenge e, we can choose
a random ν and compute α1 =
gνxe, α2 = ḡν x̄e with x and x̄
as above and get α1, α2 with the
same distribution as in the real proof.
We denote this sampling by ν ←
SimI

eqdl(aux, g, ḡ, x, x̄).

module SIM = {
proc sim_eqdl(s : aux * ¦
group * group * group ¦

* group, e : t) = {
var nu;
nu <$ dt;
return nu;

}
proc main(s, e) = {
var nu, a1, a2;
nu <@ sim_eqdl(s, e);
a1 = s.`2ˆnu * s.`4ˆe;
a2 = s.`3ˆnu * s.`5ˆe;
return (a1, a2);

}
}.

Using this simulator, we can play a game and prove equivalence between a real proof
and a simulated proof.

53

Given challenge e, we have a left game
that uses the prover.

We also have a right game that uses the
simulator described above, with given
e.

SHVZK

(α1, α2) from the simulator will have
the same distribution as in the real proof
by the prover.

module SHVZK_L = {
proc main(s, t, e) = {
var u, a1, a2, nu;
(u, a1, a2) <@ ¦
Prover.i(s, t);
nu <@ Prover.iii(t, u, ¦
e);
return (a1, a2);

}
}.

module SHVZK_R = {
proc main(s, e) = {
var a1, a2;
(a1, a2) <@ ¦
SIM.main(s, e);
return (a1, a2);

}
}.

equiv SHVZK s t e :
SHVZK_L.main ˜ ¦
SHVZK_R.main : arg{1} ¦
= (s, t, e) /\ arg{2} ¦
= (s, e) ==> Relation ¦
s t => ={res}.

The lemma SHVZK states that the left game using the prover and the right game using
the simulator are equivalent. As long as the relation holds, the proofs will have the same dis-
tribution and be indistinguishable. Note that only the prover gets the witness, the simulator
only gets the statement.

5.5 NIZK

5.5.1 Random Oracle
In EASYCRYPT, the random oracle is modelled as a finite mapping, and the random function
samples values uniformly at random. On the same queries, the random oracle will always
output the same value.

54

Random oracles

I

H2 : {0, 1}∗ ×G6 → {1, ..., 2τ}
e← H2(aux, g, ḡ, x, x̄, α1, α2)

II

H1 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}k

H2 : {0, 1}∗ ×G2k+4 → {1, ..., 2τ}
~e← H1(aux, g, γ, ~w, ~̌w)

e← H2(aux, g, γ, ~w, ~̌w, α1, α2)

III

H1 : {0, 1}∗ ×G2k+2 → {1, ..., 2τ}k

H2 : {0, 1}∗ ×G2k+4 → {1, ..., 2τ}

~e← H1(aux, g, x̌, ~y2, ~̂w)

e← H2(aux, g, x̌, ~y2, ~̂w, α1, α2)

module H : H = {
var m1 : (stm, out list) ¦
fmap

var m2 : (inp, out) fmap
proc init() = { m1 <− ¦
empty; m2 <− empty; }

proc h1(s : stm) : out ¦
list = {
var evec : out list;
evec <$ dlist dout k;
if (! s \in m1)
m1.[s] <− evec;

return oget (m1.[s]);
}
proc h2(i : inp) : out = {
var e : out;
e <$ dout;
if (! i \in m2)
m2.[i] <− e;

return oget (m2.[i]);
}

}.

This version of the random oracle is a lazy one, that is, it does not populate the key-
value store before it is queried. To initialize the random oracle, the init()-function is
used to set the key-value store to empty. Adversaries, provers and verifiers are only given
access to the random function, not the initializing.

5.5.2 Proof of correct computations
I When the computer P is encrypting, we want to make sure it computes the ciphertext c
correctly. This will be done by proving that two element have the same discrete logarithms
relative to disitinct generators g and ḡ of the group G and the proof is between a prover and
a verifier, as in §2.10.2.

The bad event is that the adversary A queries the random oracle with a statement for
which the relation does not hold, and it results in a valid hash value.

Lemma 2.10.1 in §2.10.2 is stated in EASYCRYPT as

lemma dout1E: forall (x : out), mu1 dout x = 1%r / (2ˆτ)%r.

and Lemma 2.10.3 as

axiom Bad1 :
mu (dlist dout k) inVdim'k_1 <= 1%r / (2ˆτ)%r.

55

The probability ofA to forge a proof πE (the two other proofs πT I and πT II have similar
lemmas) is stated as

lemma SoundAI (A <: I.ANY {I.Sys.SYS, I.Sys.Bound, I.Sys.H})
&m (bad : (glob I.Sys.H) −> bool) :

(forall m2 m1, bad (m2, m1) = E2I m2) =>
Pr[I.SoundA(A, I.Sys.H).main() @ &m : bad (I.Sys.H.m2, ¦
I.Sys.H.m1)] <= qH%r/ (2ˆτ)%r.

and Theorem 2.10.2 is expressed as

lemma Sound (A <: I.ANY {I.Sys.SYS, I.Sys.Bound, I.Sys.H}) &m :
phoare[A(Bound(H)).forge : Bound.c = 1 ==> Bound.c <= qH] = ¦
1%r =>

phoare[A(Bound(H)).forge : true ==> ! Rel res.`1 witness] = ¦
1%r =>

hoare[A(Bound(H)).forge : true ==> (res.`2.`1 = (\o d/D) <=>
(Inp' res.`1 (oget ¦

H.m1.[res.`1]) res.`2 \in H.m2))] =>
phoare[A(Bound(H)).forge : true ==> res.`2.`1 = (\o d/D)] <= ¦
(qH%r/(2ˆτ)%r) =>

Pr[Sound(A).main() @ &m : res] <= (2 * qH)%r / (2ˆτ)%r.

Lemma dout1E states that for all values sampled at random from the uniform distribu-
tion dout (= {1, ..., 2τ}), the probability of sampling a specific value is 1/2τ . Lemma
Bad1 (here stated as an axiom) states that the probability of sampling a vector that lies
inside the supspace V defined in §2.10.3 is at most 1/2τ .

When the ballot box B is encrypting, we want to make sure that it computes the
transformed ciphertext č correctly. For this, we will need to prove that several group
elements are raised to the same power of a certain element, and that several elements has
been correctly raised to distinct powers.

II The proof is between a prover and a verifier as in §2.10.2.
The bad event for H2 is similar to the one in I, and the proof goes the same way.

The bad event for H1 is that Πk
i=1w̌

ei
i = (Πk

i=1w
ei
i)s.

III The proof is between a prover and a verifier as in §2.10.2.
The bad event for H2 is similar to the one in I, and the proof goes the same way.

The bad event for H1 is that there exists an a such that Πk
i=1y

ei
2i = ga and Πk

i=1ŵ
ei
i =

x̌a.
With the Fiat-Shamir transformation from §2.9, the proofs can be made non-interactive.

Both the prover and the verifier have access to a random oracle H (= H) with functions h1
(= H1) and h2 (= H2), as in §5.5.1.

The prover P I
eqdl’s and the verifier P I

eqdl’s algorithms for the non-interactive proofs are
modelled in EASYCRYPT as follows.

56

Prover P I
eqdl(aux, g, ḡ, x, x̄, t)

u
$←− Zq

α1 ← gu

α2 ← ḡu

e← H2(aux, g, ḡ, x, x̄, α1, α2)

ν ← u− et mod q

return πE = (ν, e)

module (P : Prover) (H : ¦
AH) = {

proc prove(s : stm, w : ¦
wit) = {
var u, evec, e, nu;
u <$ dt;
evec <@ H.h1(s);
e <@ H.h2(Inp s evec u);
nu <− u - ((*) (\q e) ¦
evec w);
return (e, nu);

}
}.

Verifier V I
eqdl(aux, g, ḡ, x, x̄, πE)

(ν, e)← πE

α1 ← gνxe

α2 ← ḡν x̄e

e′ ← H2(aux, g, ḡ, x, x̄, α1, α2)

return e ?
= e′

module (V : Verifier) (H : ¦
AH) ={

proc verify(s : stm, p : ¦
prf) = {
var evec, e, nu, e';
(e, nu) <− p;
evec <@ H.h1(s);
e' <@ H.h2(Inp' s ¦
evec p);
return (e = e');

}
}.

A proof for which the relation holds, must be accepted by the verifier.

57

Completeness

The random function is initialized.

It is checked if the relation holds. If it
does not, output ⊥.

If it holds, generate a proof from an
honest prover.

Verify the proof with an honest verifier.

Output the answer of the verifier.

A proof for a statement for which the
relation holds, generated by an honest
prover, must be accepted by an honest
verifier with probability one.

module Completeness(R : ¦
Relation, P : Prover, ¦
V : Verifier, H : H) = {

proc main(s : stm, w : ¦
wit) : bool = {
var p, b;
H.init();
SYS.rel <@ R.main(s, w);
b <− false;
if (SYS.rel) {
p <@ P(H).prove(s, w);
b <@ V(H).verify(s, ¦

p);
}
return b;

}
}.
lemma Complete (s' : stm, ¦

w' : wit) &m :
Pr[Completeness(R, P, V, ¦
H).main(s', w') @ &m : ¦
SYS.rel => res] = 1%r.

The simulator used to simulate the real protocol is as following.

58

For I , stm = (aux, g, ḡ, x, x̄).

For II , stm = (aux, g, γ, ~w, ~̌w).

For III , stm = (aux, g, x̌, ~y2, ~̂w).

Simeqdl(stm,~e, e)

ν
$←− {1, ..., 2τ}

Output ν.

Simulator

e
$←− {1, ..., 2τ}

~e← H1(stm)

ν ← Simeqdl(stm,~e, e)

Reprogram H2.

The proof is (e, ν).

module (S : Simulator, H) ¦
= {

module Sim = {
proc main(s : stm, evec ¦
: out list, e : out) : ¦
t = {
var nu : t;
nu <$ dt;
return nu;

}
}

var inp : inp

proc init = H.init

proc h1 = H.h1

proc h2(i : inp) : out = {
var e : out;
e <$ dout;
return e;

}

proc prove(s : stm) : ¦
prf = {
var evec, e, nu;
e <@ h2(Inp s ¦
witness<:out list> ¦
witness<:t>);
evec <@ h1(s);
nu <@ Sim.main(s, ¦
evec, e);
inp <− Inp' s evec (e, ¦
nu);
(* Reprogram h2(inp) = ¦
e : *)
H.m2.[inp] <− e;
return (e, nu);

}
}.

The simulator does not have access to the random oracle H2 for querying, but will re-
program it to output the randomly sampled value at the given query.

We will have an abstract zero knowledge adversary with adversary to the hash functions
H1 and H2.

59

The adversary AH1,H2 has access to
query H1 and H2. It outputs a state-
ment and a witness. For a given proof
for the statement, it outputs a bit.

An axiom stating that when the abstract
relation holds, the input to the hash ora-
cle can be calculated in the prover and
the verifier to give the same input. This
abstraction will later be instantiated for
the three proofs of correct computation,
I , II and III .

module type AdvZK (H : AH) ¦
= {

proc a1() ¦
: stm * wit {H.h1 H.h2}

proc a2(p' : prf option) ¦
: bool {H.h1 H.h2}

}.

axiom RelInp s w evec u (p ¦
: out * t) :

Rel s w => Inp s evec u ¦
= Inp' s evec (p.`1, ¦
p.`2).

As defined in the theory, a left and a right ZK game will be used to bound the advantage
of the adversary in distinguish between the simulator and the real proof. The two games are
as follows.

60

ZKL

Initialize logs and random oracles.

(s, w)← A(Log(H))

π ← P(H)(s, w)

b← A(Log(H))(π)

ZKR

Initialize logs and random oracles.

(s, w)← A(Log(H))

π ← S(s)

b← A(Log(H))(π)

module ZK_L(R: Relation, P ¦
: Prover, A : AdvZK, H ¦
: H) = {

proc main(): bool = {
var p;
Log(H).init();
(SYS.s, SYS.w) <@ ¦
A(Log(H)).a1();
SYS.rel <@ R.main ¦
(SYS.s, SYS.w);

p <@ ¦
P(H).prove(SYS.s, ¦
SYS.w);

SYS.p <− Some p;
SYS.b <@ ¦
A(Log(H)).a2(SYS.p);
return SYS.b;

}
}.

module ZK_R(R: Relation, ¦
S:Simulator, A:AdvZK, ¦
H : H) = {

proc main(): bool = {
var p;
Log(S).init();
(SYS.s, SYS.w) <@ ¦
A(Log(H)).a1();
SYS.rel <@ R.main ¦
(SYS.s, SYS.w);

p <@ ¦
S.prove(SYS.s);

SYS.p <− Some p;
SYS.b <@ ¦
A(Log(H)).a2(SYS.p);
return SYS.b;

}
}.

In both ZKL and ZKR, first the random oracles and the logs are initialized, then the
adversary is given access to query it, and eventually outputs a statement s and a witness
w. In ZKL, the game proceeds with the real prover. The prover has access to the random
oracle, and generates a proof π which is given to the adversary. The adversary will now try
to guess if she has received a real proof or a simulated one. In ZKR, the adversary is given
a simulated proof π and makes a similar try on distinguishing. Note that the simulator never
receives the witness w the adversary outputs.

61

A bound for the adversary being able to distinguish between the two is given below.

Non-interactive Zero Knowledge
Given an adversary A that outputs a statement and a witness such that the relation
holds, the advantage of A in distinguishing between the simulated proof and the real
one, is bounded by the probability of A guessing the query such that it is in the set of
logged queries.

lemma ZK (A <: AdvZK {H, S, Log, SYS}) &m :
hoare[A(Log(H)).a1 : true ==> Rel res.`1 res.`2] =>
Pr[ZK_L(R, P, A, H).main() @ &m : res] <=
Pr[ZK_R(R, S, A, H).main() @ &m : res] + Pr[ZK_R(R, S, A, ¦
H).main() @ &m : S.inp \in Log.qs2].

5.5.3 Soundness
It must be hard to generate valid proofs when the discrete logarithms are not equal, that is,
the relation does not hold.

An algorithm that has access to a random oracle will output a statement for which the
relation does not hold and a proof as follows.

62

ANY

I

(aux, g, ḡ, x, x̄, πE)← A(Hη)

A wins if logg x 6= logḡ x̄ and 1 ←
V I
eqdl(aux, g, ḡ, x, x̄, πE).

II

(aux, g, γ, ~w, ~̌w, πT I, s)← A(Hη)

A wins if wsi 6= w̌i for some i, and
1← V II

eqdl(aux, g, γ, ~w, ~̌w, πT I).

III

(aux, g, x̌, ~y2, ~̂w, πTII , ~a2)← A(Hη)

A wins if y2i = ga2i∀i, but x̌a2i 6=
ŵi for some i and 1 ←
V III
eqdl(aux, g, x̌, ~y2, ~̂w, πTII).

module type ANY (H : AH) = {
proc forge() : stm * prf ¦
{H.h1 H.h2}

}.

module Sound (A : ANY) = {
proc main() = {
var s, p, evec;
Bound(H).init();
(s, p) <@ ¦
A(Bound(H)).forge();
(SYS.s, SYS.p) <− (s, ¦
Some p);
SYS.b <− false;
if (!(SYS.s \in H.m1)) {
evec <@ H.h1(SYS.s);
if (!(Inp' SYS.s ¦

evec (oget SYS.p)) \in ¦
H.m2) {

SYS.b <@ ¦
V(H).verify(SYS.s, ¦
oget SYS.p);

}
}

}
}.

We have an adversary algorithm ANY that is used in a soundness-game Sound together with
a verifier V.

Looking at all the tree proofs of correct computations from §2.10.2, we have an adver-
sary that outputs relevant statements for which the relation does not hold. The adversary
wins if the corresponding verifier verifies the forged proof.

The point the adversary outputs may either not be in the domain of the random oracle
(i.e. the adversary has not queried it at the relevant point) and will be verified by the verifier
by a small probability (the resulting randomly sampled value equals the one outputted
by she adversary), or it may be a forged proof which will be verified by the verifier with
probability equal to one.

63

Theorem 3.1
I: Take any algorithm that outputs a proof πE = (ν, e), a bit string aux, and group
elements g.ḡ, x, x̄ such that logg x 6= logḡ x̄. If the algorithm uses at most η queries
to the random oracle H1, then the probability that

VIeqdl(aux; g, ḡ;x, x̄;πE)

is at most 2η/2τ .
The theorems for II and III are similar.

lemma Sound (A <: ANY {SYS, Bound, H}) &m (bad : (glob H) −> ¦
bool) m1A m2A :

hoare[H.init : true ==> ! bad (glob H)] =>
hoare[H.h1 : bad (glob H) ==> bad (glob H)] =>
hoare[H.h2 : bad (glob H) ==> bad (glob H)] =>
phoare[H.h1 : ! bad (glob H) ==> bad (glob H)] <= (1%r / ¦
(2ˆτ)%r) =>

phoare[H.h2 : ! bad (glob H) ==> bad (glob H)] <= (1%r / ¦
(2ˆτ)%r) =>

phoare[A(Bound(H)).forge : Bound.c = 0 ==> Bound.c <= qH] ¦
= 1%r =>

hoare[A(Bound(H)).forge : true ==> H.m1 = m1A /\ H.m2 = ¦
m2A] =>

Pr[Sound(A).main() @ &m : bad (m2A, m1A) \/ SYS.b] <= 2%r ¦

* qH%r / (2ˆτ)%r.

The soundness game in EASYCRYPT uses the adversary algorithm and the verifier algorithm.
First, the adversary has η tries with a probability 1/2τ to forge a proof, and then it may
output a forged proof or a proof for which it has not queried the hash oracle. This proof is
given to the verifier, which will accept with probability 1/2τ if it is an unqueried point, or
with probability 1 if the proof is forged.

5.5.4 B-Integrity
One of the security notions for the cryptosystem is B-Integrity. The computer P and the
ballot box B are corrupt and cooperate. The computer uses the encryption algorithm E to
compute the ciphertext c and generate a proof of correct computation πE . The decryption
algorithmD verifies this proof when it is to decrypt c. The ballot box uses the transformation
algorithm T to produce a ciphertext č and proof of correct computations πT I and πT II

which the pre-code decryption algorithm DR verifies when it decrypts č.
For the integrity property in the ballot box B, a game is played between an adversary A

and a simulator S.

64

B-Integrity

(ek, dk1, dk2, dk3)← K
(V, s, γ, c, č)← AH

η

(ek, dk1, dk2, dk3)

~m← D(dk1, V, c)

~ρ← DR(dk3, V, γ, c, č)

A wins if ~ρ 6= ⊥ and either
~m = ⊥, or s(~m) 6= ~ρ.

module type ADV (HI : ¦
I.Sys.H, HII : ¦
II.Sys.H, HIII : ¦
III.Sys.H) = {

proc a(ek : group list * ¦
group list * group list,

dk1 dk2 dk3 : t ¦
list) : I * t * group ¦

* c * cc (* V, s, ¦
gamma, c, cc *) {HI.h1 ¦
HI.h2 HII.h1 HII.h2 ¦
HIII.h1 HIII.h2}

}.
module Sim_lite (A : ADV) ¦

= {
proc main() = {
var ek, dk1, dk2, dk3;
var v, s, gamma, c, cc;
var m, rho;
I.Sys.Bound(I.Sys.H) ¦
.init();

II.Sys.Bound(II.Sys.H) ¦
.init();

III.Sys.Bound(III.Sys.H) ¦
.init();

(ek, dk1, dk2, dk3) <@ ¦
KG.kg();

(v, s, gamma, c, cc) <@ ¦
A(I.Sys.Bound(I.Sys.H), ¦
II.Sys.Bound(II.Sys.H), ¦
III.Sys.Bound(III.Sys.H)) ¦
.a(ek, dk1, dk2, dk3);

m <@ Dec_lite.dec(dk1, ¦
v, c);

rho <@ ¦
DecR_lite.dec(dk3, v, ¦
gamma, c, cc);

return (rho, m, s);
}

}.

65

Decryption

D(dk1, V, c)

Verifies πE
Computes mi = wix

−a1i , 1 ≤ i ≤ k
Outputs ~m = (m1, ...,mk)

if the proof verifies, or
⊥ otherwise

module Dec_lite = {
proc dec(dk1 : t list, v ¦
: I, c : c) = {

var x, x', w, p, m;
(v, x, x', w, p) <− c;
m <− Some (zW (fun w (a ¦
: t), w * xˆ(-a)) w ¦
dk1);

return m;
}

}.

66

Pre-Code Decryption

DR(dk3, V, γ, c, č)

Verifies πE , πT I , πT II
Computes ρi = w̌iŵix̌

−a3i

(= ms
i), 1 ≤ i ≤ k

Outputs ~ρ = (ρ1, ..., ρk)

if the proofs verifies, or
⊥ otherwise

module DecR_lite = {
var inpII : II.Sys.inp
var inpIII : III.Sys.inp
var bII : bool
var bIII : bool
proc dec(dk3 : t list, v ¦
: I, gamma : group, c ¦
: c, cc : cc) = {

var auxI, auxII, auxIII ¦
: bits;

var g, x, x', w, pI, xc, ¦
wh, wc, pII, pIII, rho;

var evecII, evecIII;
(v, x, x', w, pI) <− c;
(xc, wh, wc, pII, pIII) ¦

<− cc;
auxI <− encodeI (v, x, ¦
x', w);

auxII <− encodeII c;
auxIII <− encodeIII c;
g <− Top.g;
bII <− false;
bIII <− false;
if ((auxII, g, gamma, w, ¦
wc) \notin ¦
II.Sys.H.m1) {
evecII <@ ¦

II.Sys.H.h1((auxII, g, ¦
gamma, w, wc));

inpII <− II.Sys.Inp' ¦
(auxII, g, gamma, w, ¦
wc) evecII pII;
if (inpII \notin ¦
II.Sys.H.m2) {

bII <@ ¦
II.Sys.V(II.Sys.H) ¦
.verify((auxII, g, ¦
gamma, w, wc), pII);
}

}

Continued below.

67

if ((auxIII, g, xc, ¦
KG.y2, wh) \notin ¦
III.Sys.H.m1) {
evecIII <@ ¦
III.Sys.H.h1((auxIII, ¦
g, xc, KG.y2, wh));
inpIII <− III.Sys.Inp' ¦
(auxIII, g, xc, KG.y2, ¦
wh) evecIII pIII;
if (inpIII \notin ¦
III.Sys.H.m2) {

bIII <@ ¦
III.Sys.V(III.Sys.H) ¦
.verify((auxIII, g, ¦
xc, KG.y2, wh), pIII);
}

}
rho <− None;
if (bII /\ bIII) {

rho <− Some (zW2 G.(* ¦
) (fun w (a : t), w * ¦
xcˆ(-a)) wc wh dk3);

}
II.Sys.SYS.b <− bII;
III.Sys.SYS.b <− bIII;
return rho;
}

}.

68

B-Integrity
An adversary that knows all the key material and chooses the per-voter key material,
should not be able to create an identity, a ciphertext and a transformed ciphertext such
that the transformed ciphertext is inconsistent with the decryption of the ciphertext.
Adversary wins if ~ρ 6= ⊥ and either ~m = ⊥, or s(~m) 6= ~ρ.
The probability of the adversary winning should be close to 0.

lemma B_Int (A <: ADV {SYS, KG, HSYS})
(AII <: II.ANY {II.Sys.SYS, II.Sys.Bound, II.Sys.H})
(AIII <: III.ANY {III.Sys.SYS, III.Sys.Bound, ¦
III.Sys.H}) &m gHII gHIII
(badII : (glob II.Sys.H) −> bool) (badIII : (glob ¦
III.Sys.H) −> bool)
(ek' : group list * group list * group list) (dk1' dk2' ¦
dk3' : t list) :

(forall m2 m1, badII (m2, m1) = (E2II m2 \/ E1II m1)) =>
(forall m2 m1, badIII (m2, m1) = (E2III m2 \/ E1III m1)) =>
hoare[KG.kg : true ==> res = (ek', dk1', dk2', dk3')] =>
hoare[A(I.Sys.Bound(I.Sys.H), II.Sys.Bound(II.Sys.H), ¦
III.Sys.Bound(III.Sys.H)).a : true ==> gHII = ¦
(II.Sys.H.m2, II.Sys.H.m1) /\ gHIII = (III.Sys.H.m2, ¦
III.Sys.H.m1)] =>

hoare[B_IntA(A).main : true ==> gHII = (II.Sys.H.m2, ¦
II.Sys.H.m1) /\ gHIII = (III.Sys.H.m2, III.Sys.H.m1)] =>

Pr[Sim_lite(A).main() @ &m :
let (rho, m, s) = (res.`1, res.`2, res.`3) in
rho <> None] <= (4 * qH)%r / (2ˆτ)%r.

Since bothD andDR checks the πE -proof, it cannot be the case that ~ρ 6= ⊥ and ~m = ⊥. The
case then reduces to the probability of both πT I and πT II being verified. The probability
of the adversary succeeding in forging at least one of the proofs is bounded by 4η/2τ .

69

70

Chapter 6
The Voting Protocol

The full protocol from 2013 is described in [ste13], and is an improvement of the simplified
one in [ste10] described in Chapter 4. This version uses multi-ElGamal and more efficient
NIZK proofs for a performance improvement.

The security of the protocol follows from the security of the cryptosystem.
In this chapter an overview of the full protocol from 2013 will be given. The voting

protocol will be sketched, including the environment assumptions and the phases, before an
overview of the security analysis is given.

V P B D

F R A

Figure 6.1: Full protocol. Figure 1 in 2013.

Figure 6.1 is a sketch of the players involved in the protocol, and their communication.
The four players to the right, B, R, D and A, are the infrastructure players. The voter V
submits his ballot to a computer P , which encrypts the ballot and submits it to the ballot
box B. The ballot box and a return code generator R computes return codes for the ballot
and sends them to the voter’s cell phone F . When the ballot box closes, the submitted
encrypted votes are decrypted by a decryptor D while an auditor A supervises.

In the protocol, there is a setup phase, a ballot submission phase, and a counting phase.
The players in the protocol are divided into three categories: the voters with their computers
and phones, the infrastructure players, and the electoral board members. It is assumed to be
secure, authenticated channels between the infrastructure players, the voters and computers,
the voters and their phones, and a one-way channel from the return code generator to the

71

voter’s phones. The return code generator will have a signing key, and the ballot box and
the computers will have the corresponding verification keys. All other keys are assumed
generated by a trusted dealer.

The distribution of the key material to the different players are as follows

V The set {(m,DV (sV (m))) |m ∈ O {1O}}.

P Public key ek.

B Transformation key dk2 and {(V, sV)}.

R Pre-code decryption key dk2 and {(V, γV , DV)}.

D Decryption key dk1.

A Public key ek.

V PV FV B R

• •

• • •

~v (V, c, σ) (seq, V, c, σ, č)

ok σ′ (seq, σ′)

~r ~r

Figure 6.2: Full protocol. Figure 10 in 2013.

During the ballot submission the messages in Figure 6.2 are sent. The voter is V , her
phone is FV and the computer she uses to vote is PV .

Setup phase The key generation may happen a long time before the election, so it is not
important that the generation is quick. During this setup phase, only the electoral board-
and infrastructure-players are active.

Ballot submission phase During the ballot submission, the voter’s with their computers
and phones, along with two of the infrastructure players (the ballot box and the return code
generator), are active. First, the voter gives her ballot to a computer. The computer then

72

encrypts the ballot, and submits it, along with a signature on the voter’s behalf, to the ballot
box. Then the ballot box transforms the ciphertext and send everything to the return code
generator. The return code generator creates the return codes which it sends to the voter’s
phone. In addition, it signs a hash of the ballot and sends the signature to the ballot box.
The ballot box stores the encrypted ballot and sends the return code generator’s signature
to the voter’s computer. Then the computer verifies the signature and tells the voter if the
ballot was accepted or not. The voter receives the return codes from her phone, and the
voter accepts if the computer accepted the ballot and the return codes are correct.

The ballot submission ends when the ballot box is told to close.

Counting phase During the counting, only infrastructure players are active. The ballot
box is told to close, and after this it waits until ongoing ballot submissions are done, but
refuses to accept any new submissions. When the ballot box closes, it informs the return
code generator that it has closed, and sends every recorded ballot to the auditor. Then it
extracts naked ciphertext from the valid ballots, and sends them to the decryptor.

The return code generator send all its records to the auditor, and the decryptor informs
the auditor which naked ciphertexts it received, before running the decryption protocol.
While running the decryption protocol, the auditor works as a verifier. It also verifies that
the ballot box and the return code generator agree on which ballots were submitted, and
that the ballot box and the decryptor agrees on the valid naked ciphertexts that should be
counted. Lastly, the auditor runs the decryption protocol with the decryption as a prover.

6.1 Security analysis
Ideal functionality is a protocol where there is a trusted party that communicates over secure
channels with the protocol participants and can compute the desired protocol output, or if it
is a protocol indistinguishable from an ideal functionality. This can not be realized under
adaptive corruption for public key encryption. Since the cryptosystem is essentially public
key encryption, corruption is restricted to static.

Static corruption is when the set of corrupted players is chosen before the election, and
is fixed.

In the setup phase, the electoral board and the infrastructure players generate keys. If
an adversary blocks key generation, functionality never enters the ballot submission.

In the ballot submission phase, the adversary may interfere with ballot submissions to
a certain degree, or attempt forgery of the ballots. The amount of information that leaks
directly to the adversary, is denoted by a leak-function defined as

leak(Λ, V, P, ~m) =


~m, P corrupt
Λ(~m), R corrupt
⊥, otherwise,

where Λ is a permutation of the option set. That means a corrupt computer will learn the
voter’s chosen options, and a corrupt return code generator will learn a permutation of it.

In the counting phase, an adversary may interfere to a certain degree.

73

The protocol is only guaranteed security if no more than one infrastructure player is
corrupt. Here we have four categories of who is statically corrupt:

– The ballot box, a subset of the voters and a subset of the computers

– The return code generator

– The decryptor

– The auditor

The security of the internet voting protocol follows from the security of the cryptosystem,
that is, the security of the encryption scheme and properties of certain infrastructure.

74

Chapter 7
Concluding remarks

The goal of this paper has been to use a code-based sequence of games approach to reason
about security components of the cryptosystem underlying the Norwegian Internet Voting
Protocol.

Further work includes more thorough analysis of the constructions, in addition to
formalizing and verifying other components of the security proof, including privacy and
integrity notions.

75

76

Bibliography

[cat17] catalindragan. Easycrypt code for privacy of labelled-minivoting.
https://github.com/catalindragan/minivoting-privacy/tree/master/proof, 2017.

[sL15] Kristian Gjøsteen and Anders Smedstuen Lund. The norwegian internet voting
protocol: A new instantiation. Cryptology ePrint Archive, Report 2015/503, 2015.

[ste10] Kristian Gjøsteen. Analysis of an internet voting protocol. Cryptology ePrint
Archive, Report 2010/380, 2010.

[ste13] Kristian Gjøsteen. The norwegian internet voting protocol. Cryptology ePrint
Archive, Report 2013/473, 2013.

[War17] Cortier Dragan Dupressoir Schmidt Strub Warinschi. Machine-checked
proofs of privacy for electronic voting protocols. https://www.ieee-
security.org/TC/SP2017/papers/401.pdf, 2017.

77

78

	Abstract
	Sammendrag
	Introduction
	Abbrevations
	Notations

	Theoretical background
	Indistinguishability
	The Group Structure
	Homomorphic encryption
	Multi-ElGamal
	The Decision Diffie-Hellman problem
	Hybrid argument
	Pseudo-Random Function families
	Random Oracle Model
	Fiat-Shamir transformation
	Non-interactive Zero Knowledge Proofs
	-Protocols
	Equality of Discrete Logarithms

	Formal verification
	EasyCrypt
	SMT-solvers
	Problems

	Simplified protocol
	Completeness
	Security
	(a) Voter and computer
	(b) Computer
	(c) Infrastructure players

	Sketch of full protocol

	The Cryptosystem
	Definition and instantiation
	Security Requirements
	Security
	Equality of Discrete Logarithms
	NIZK
	Random Oracle
	Proof of correct computations
	Soundness
	B-Integrity

	The Voting Protocol
	Security analysis

	Concluding remarks
	Bibliography

