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Problem description
Much of the research in product development in heartbeats have focused on modeling the
heart rate, and in this study, the focus is modeling the shape of the heartbeats. Measure-
ments of heartbeats can be performed in many different ways; Electrocardiography and
Arterial Pressure waves (APW) (blood pressure curves). One part of this problem is to
model APW and then try to find variations between persons and variations for one person.
This study focus on one part of this problem. The focus is to perform prepossessing tech-
niques to find baseline variations and finding peaks in APW. Furthermore, try to find the
respiratory rate based on the APW.



Summary
Arterial pressure waves (APW) contain essential information, where the different shape
of the waveform can indicate illness or essential information. Furthermore, there can be
differences between subject independent of they are healthy or sick. The motivation for
this thesis is to make individual models, such that the differences between subjects and
the normality for one person is taken into account. In this thesis preprocessing of APW is
performed and the purpose is to later use these preprocessing techniques before modeling
individual heartbeats. The preprocessing have the goal of removing the baseline variations,
remove the differences caused by different heart rate (HR), and separate the data into
individual heartbeats.

The measurements of the data for seven healthy subjects in age 22-27 were performed by
using The Human NIBP Set from ADInstruments, which is used to perform non-invasive
blood pressure measurements from finger arterial pressure. The first step in the preproces-
sing was removing the baseline variations, and for this purpose, two different techniques
were tried. The first technique was Savitzky-Golay (SG)-filtering and the second one was
locally regression (LOESS). The second step was to interpolate the signal to get the same
HR for all the subjects. The third step was to identify the systolic peaks and then at last
separate the data into individual heartbeats. Besides, multi scatter correction (MSC) was
tried as a preprocessing technique for removing the additive and multiplicative effect. The
study ends with some principal component analysis (PCA) to study the possibilities of
using the preprocessing techniques in further work.

The preprocessing with both LOESS and SG-filtering removes the baseline variations al-
most identically, and both methods give a satisfying result. However, the advantage with
LOESS is the possibility to find several frequency components and that LOESS is a mode-
ling method and not a filtering method. Furthermore, the result of the interpolation method
shows a good result for the subjects with high HR, but not optimal for subjects with a HR
around 1.2 Hz. The systolic peaks function work correctly, and it never fails to find the
systolic peaks or classify other peaks to be the systolic peak. The separation function
works good, and in most of the cases, the next and the last heartbeat are excluded from
the heartbeat. The result of the MSC shows a good result for removing the additive and
multiplicative effect, as long as there is not too much peak shifting.

Finding the respiration rate based on the baseline variations are hard since the baseline
variations are influenced by the respiration rate, but are also other factors. This makes it
hard to find the respiration rate only based on the baseline variations.

After the preprocessing a further analysis of the signals was performed, and then PCA
was performed to check if individual difference appeared in the PCA. The PCA shows
that there are variations between subjects and inside subjects. It also shows that outliers
like premature ventricular contraction (PVC) heartbeats appear in the PCA model, which
shows an opportunity to work further with the problem of finding an individual model for
heartbeats.
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Sammendrag
Arterielle trykkbølger (arterial pressure waves (APW)) inneholder viktig informasjon,
hvor forskjellig bølgeform kan indikere sykdom eller annen viktig informasjon. Videre
kan det være forskjeller mellom personer uavhengig av om de er friske eller syke. Mo-
tivasjonen for denne oppgaven er å lage individuelle hjertemodeller, slik at forskjellene
mellom personer og normalitet for en person tas hensyn til. I denne oppgaven utføres
preprosessering av arterielle trykkbølger og hensikten er å senere bruke disse preprosesse-
ringsteknikkene før modellering av individuelle hjerteslag. Preprosesseringen har som mål
å fjerne grunnlinjevariasjonene, fjerne forskjeller som skyldes forskjellig puls, og skille
dataene i individuelle hjerteslag.

Målingene av dataene for syv friske personer i alderen 22-27 ble utført ved bruk av The
Human NIBP Set fra ADInstruments, som brukes til å utføre ikke-invasivt blodtrykk-
smålinger fra finger arterielt trykk. Det første trinnet i forbehandlingen var å fjerne grunn-
linjevariasjonene, og for dette formålet ble to forskjellige teknikker prøvd. Den første tek-
nikken var Savitzky-Golay filtrering og den andre var lokal regresjon (LOESS). Det andre
trinnet var å interpolere signalet for å få samme puls for alle personene Det tredje trinnet
var å identifisere de systoliske toppene og siste steg var å skille dataene inn i individuelle
hjerteslag. Dessuten ble Multi Scatter Correction (MSC) prøvd som en preprosesserings-
teknikk for fjerning av additiv og multiplikativ effekt. Studien avsluttes med prinsipal
komponent analyse (PCA) for å se mulighetene for å bruke preprosessreringsteknikkene i
videre arbeid.

Preprosesseringen med både LOESS og Savitzky- Golay filtrering fjerner grunnlinjevaria-
sjonene nesten identisk, og resultatet er bra for begge teknikkene. Fordelen med LOESS er
imidlertid muligheten til å finne flere frekvenskomponenter, og at LOESS er en modelle-
ringsmetode og ikke en filtreringsmetode. Videre viser resultatet av interpoleringsmetoden
et godt resultat for personene med høy puls, men ikke optimal for personer med puls rundt
1.2 Hz. Funksjonen for å finne sytolikse topper fungerer bra, og den klarer alltid å finne
de systoliske toppene og klassifisere aldri en annen topp for å være den systoliske top-
pen. Separasjonsfunksjonen fungerer bra, og i de fleste tilfeller er det neste og det forrige
hjerteslag ekskludert fra ønskede hjerteslag. Resultatet av MSC viser et godt resultat for å
fjerne additiv og multiplikativ effekt, så lenge det ikke er for mye skift i toppene.

I denne studien ble det også forsøkt å finne respirasjonfrekvensen basert på grunnlinjeva-
riasjonene. Konklusjonen er at grunnlinjevariasjonene påvirkes av respirasjonsfrekvensen,
men er også andre faktorer. Dette gjør det vanskelig å finne respirasjonsfrekvensen bare
basert på grunninjevariasjonene.

Etter preprosesseringen kan en analyse av signalene utføres, og det ble dermed utført en
PCA for å sjekke om den de ulike forskjellene mellom hjerteslag oppstod i PCA. PCA
viser at det er forskjeller mellom personer og mellom hjerteslag for en person. Det viser
også at ventrikulære hjerteslag skiller seg ut fra resten av hjerteslagene i PCA modellen,
og dette viser store muligheter til å jobbe videre med dette problemet.
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Kapittel 1
Introduction

In this chapter the background and motivation for this thesis will be presented, followed
by a brief description of previous work performed on the topic and the last part consist of
the outline of the thesis.

1.1 Background and Motivation

BP measurement has clinically been used since around 1900. In the doctors’ office a cuff
on the arm is the standard way of measuring the BP and in the intensive care uint (ICU)
invasive BP measurement, known as the APW at the monitor, is standard [6]. Even though
the APW are measured, there is not much focus on the shape of the heartbeats. In [31] it
is discussed the advantage of focus and understanding arterial pressure waves. The main
point mentioned is that one should have a full understanding of normal waveform com-
ponents, their relation to the cardiac cycle and the difference in waveforms recorded from
different body sites. Besides, there are pointed out many different types of waveforms
which origin in different diagnostics.

One of the challenges with the hospital today is the lack of individual models and control
of the patients. Today monitoring has alarms based on what is healthy based on an average
of parts of the population. However, all humans are different and what is normal for one
person can be abnormal for another person. Another problem with today’s alarms setting
is that each of the monitoring channels, i.e., BP, ECG, temperature, respiration, HR, and
oxygen saturation have separate alarm settings. There should be possible instead to use a
technique that uses the different channels and make an individual model.

Making the future patient monitor with integrated clinical decision support and intelligent
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Kapittel 1. Introduction

alarms settings will both solve the problems of easier monitoring and control of patients.
Included in this problem is follow the track of individual patients by unsupervised lear-
ning and compare diagnosis by supervised learning. Individual models with a smart alarm
system will improve advanced health care with better control, minimizing adverse events,
guide treatment and early diagnose detection with early targeted treatment. Included in this
there should be an automatic outlier-detector. To achieve, a method like different machi-
ne learning techniques and continuous multivariate analysis are techniques that can solve
these problems.

This thesis focuses on a small part of the problem with individual-based modeling of heart-
beats an the study if it is possible to find individual differences in the shape of the APW.
The thesis focus of preprocessing APW and this consists of removing baseline variations,
interpolation and separate the data into individual heartbeats. There is a small part at the
end of the thesis, where some PCA is performed to observe how individual differences
will appear in a PCA model.

1.2 Previous Work

There are some few research which combining multivariate analysis and APW. Howe-
ver, there are some few research which uses PCA in parts of the signal. In [23] They
used data from participants with normal blood pressure and participants with hypertensive
blood pressure, and then use PCA to analyze the data. They used a sphygmomanometer
to measure the blood pressure. In addition to the blood pressure, they had variables like
weight, height, and BMI. In addition to the blood pressure, they had variables like height,
weight, BMI, age and arm circumference. Another study [5] used PCA to find cardiovas-
cular risk traits in three generations cohort among Indian Punjabi population. Both of these
studies used PCA to find which factors are the most important concerning cardiovascular
disease. However, these two studies have used the BP value and not the APW. Further-
more, in [39] and [20], they have used wave separation analysis to separate the pressure
waves into forward and backward waves, while in [2] they investigate the accuracy of the
wave equation in predicting arterial pulse propagation. Both of these studies are focusing
on mathematical models.

In [3] they did research where the primary purpose was to use machine learning algo-
rithms to deal with vectorized features extracted from APW. They performed some pre-
processing work on the dataset to reduce the number of input features and increase the
model accuracy by selecting the most relevant ones. For classification of the dataset, they
used four machine learning algorithms: Random Forest, BayesNet, J48(decision tree) and
RIPPER. One of the primary goals was to provide a multi-parametric approach capable of
retrieving valuable information from arterial blood pressure waveforms. In opposite to tra-
ditional single parameter analysis where they focus on one component, instead of several
components.

In [36] it is explained the problem with alarms in the ICU and that the problem is a sig-
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1.3 Outline of the thesis

nificant amount of false alarms. Artifacts cause many of the alarms, which are caused by
example movements or that something is wrong with the monitor equipment. The problem
is that most of these artifacts influence the measurements, which then triggers the alarm.
In [22] they discuss the problems with different alarm algorithms and explain three levels
where the alarms can be improved and which methodological criteria the monitoring alarm
must fulfill. One observation is that most of the alarms only use a univariate alarm algo-
rithm. However, when monitoring a patient, several different measurements are performed
at the same time. Therefore they suggest using multivariate alarms. Multivariate can mean
that either the results of univariate analysis are combined or that multivariate analyses like
PCA or factor analyses are performed.

There is much research on using different types of artificial intelligence approach for con-
struction of alarms systems. In [24] a knowledge-based alarms system during heart surgery
for monitoring patients was tested. The overall performance was promising with low fal-
se positive rate, but it was only tested at few patients. Furthermore, in [16] a knowledge
discovery based intelligent decision support system for intensive care medicine was pre-
sented. They used the technique to predict organ failure and mortality assessment.

In [9] they have performed a study with a wearable Multisensor in an outpatient glucose
monitoring. It showed that the Multisensor and the algorithmic routine could track glucose
trends in all patients both in controlled and uncontrolled conditions. One crucial part they
discussed in this study is the importance of using multiple sensors to track activity and
health parameters day and night over an extended period. Besides this, an important part is
large battery capacity and future capability to monitor multiple parameters, including HR
and its derivatives. Therefore, even though they do not use the ability for using multiple
sensors yet, they can that this is the future and the importance of what this information
together can give.

1.3 Outline of the thesis

This thesis is organized into five chapters with the following contents:

Chapter 2 is the background theory to understand the next chapters. The chapter starts
with ideal and nonideal spectral measurements focused on how this can be used in the
APW analysis. The next topic is preprocessing, where the first part is the theory behind the
baseline removal techniques LOESS and SG-filtering and the next part is the interpolation.
The next topic is the theory of BP and different methods for BP measurement. The last
topic is multivariate data analysis (MVA), where the focus is PCA.

Chapter 3 is the approach chapter where the first part is the data collection approach.
The next part is the preprocessing and the analysis and which methods was used in each of
these parts. The prepossessing part starts with the baseline correction methods SG-filtering
and LOESS, then it is a description of finding the systolic peaks function. Furthermore,
the signal separation algorithm is described, and the last part is MSC. The chapter ends

3



Kapittel 1. Introduction

with a description of how PCA is performed in Unscrambler.

Chapter 4 is the analyze chapter with results and discussion, where the first part is the
preprocessing, and the last part is the PCA. First, there is the result and discussion about
the baseline removal techniques SG-filtering and LOESS, then there is the result of finding
systolic peak function. Furthermore, the result of the interpolation algorithm is shown
together with the signal separation algorithm. The preprocessing parts end with the result
of the MSC. The chapter ends with the result of the PCA before and after MSC.

Appendix A shows parts of the Matlab code developed in this thesis.
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Kapittel 2
Theory

2.1 Ideal and Nonideal Spectral Measurements

In quantitative measurements, there are some different phenomena, which can create pro-
blems if they are not handled correctly. In spectral measurements, these effects can be
minimized if the instruments and the procedures are optimized. However, sometimes this
can be too expensive, too time-consuming or can introduce new artifacts. In that case, the-
re are some different techniques to do this computationally. Different effects are additive
effects, multiplicative effects, both additive and multiplicative effects, response curvature
due to signal saturation, sideways shift and random noise. The different kinds of phen-
omena are presented in the next section based on [7]. Furthermore, these problems can
also appear in APW, when each heartbeat are plotted on top of each other. To find out if
the differences in individuals independent of additive and multiplicative effect, this is one
way of understanding the problems.

In figure 2.1, the reference spectrum r and the unknown spectrum z are in each case com-
pared, and it shows the different types of the unwanted phenomena. We assume for sim-
plicity that zTrue = r, is unknown to us and that the reference spectrum is equal to the
true spectrum zTrue. Further, we assume that the measured spectrum z has been affected
by various unwanted and unknown phenomena during the measurement process:

z = f(zTrue). (2.1)

Then the correction can be found by estimating f(.) and inverting this function:

zCorr = f−1(z). (2.2)
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Figur 2.1: Ideal and Nonideal Spectral Measurements. The figure are reproduced in Matlab based
on figure 1 in [7].

2.1.1 Additive Problem

The additive problem is due to baseline variations, which can be caused by an incorrect
calibration before measurements or normal variations for a person, in BP measurements.
In row one in figure 2.1 the theory behind the additive problem is shown and the model
generating the measured z from the true z adds a fixed baseline effect of size a in z:

z = f(zTrue) = zTrue + a. (2.3)

After the additive correction,

zCorr = z − a (2.4)

r and zcorr fall on top of each other as seen in figure 2.1 row 1 and column 4 as they
should.

In the project thesis, it was showed that there is an additive effect in the APW due to
variations in the baseline. However, the code for this is improved further in this thesis
by adding the mean signal in the line plot. The plot constructed in the master thesis for
showing the additive effect is shown in figure 2.2, and this shows almost a straight line in
parallel with the mean, which shows an additive effect.
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Figur 2.2: Mean versus signal with additive effect

2.1.2 Multiplicative problem

The Multiplicative problem is due to scaling variations, which can be caused by normal
variations for a person or disturbances in the measurements. The theory behind this is
shown in figure 2.1 row 2. The z in figure 2.1 row two and column one, were generated
with a fixed scaling parameter b by

z = f(zTrue) = bzTrue. (2.5)

The difference (z− r) is shown in figure 2.1 row 2 and the blue curve, and it has the same
shape as z and r

After the multiplicative correction

zCorr = b−1z, (2.6)

where the r and zcorr spectra fall on top of each other in figure 2.1 row 3 and column 4 as
they should.

2.1.3 Additive and Multiplicative Problem

The additive and multiplicative problem are due to both baseline and scaling variations
occurring at the same time.

z = f(zTrue) = bzTrue + a (2.7)
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To deal with this problem a preprocessing technique MSC can be used, or if this is not
good enough more advanced preprocessing like extended extended multi scatter correction
(EMSC) can be used. The MSC is a transformation method used to compensate for additive
and multiplicative effects in spectral data. This method is capable of correcting differences
in the baseline and the trend and has an advantage that the transformed spectra are similar
to the original spectral(most of the time) and that an optical interpretation is, therefore,
more easily accessible [29]. If MSC is used the data z is represented by

z = f(zTrue) = br + a, (2.8)

and the spectrum are then corrected for by reordering equation 2.8:

zCorr = b−1(z − a). (2.9)

A way to not remove the relevant information when using MSC is to use EMSC instead,
which is an extension to conventional MSC. The performance of the methods can be im-
proved if the user has prior knowledge about which parts of the signal contains essential
information. Then these regions can be removed from the MSC correction to reduce the
risk of removing relevant information. The way this is done is to down-weight the essential
parts of the signals [10]. How multiplicative and additive effect occurs in APW is shown
in figure 2.3, where it can be observed that the line is not parallel with the mean, but it is
oblique with the mean.

2.1.4 Shifts

Figure 2.1 row 4 illustrates the problem with shifts in the signal. A sideways positional
shift from spectrum zTrue to spectrum z at channel j by δ(j) channels units is attained by

z(j + δ(j)) = zTrue(j). (2.10)

I the size of the shift δ(j) is known or can be estimated, a shift correction can then be made
by for example

zcorr(j) = z(j + δ(j)) (2.11)

A more precise shift may be by using continuous interpolation between the signals. Furt-
hermore, shifts are a problem in APW, because the peaks are compressed and stretched
based on the HR of the subject. How shifts appear in APW are shown in figure 2.4 and it
can be observed that it is a small shift in the systolic peak.
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Figur 2.3: Mean versus signal with multiplicative and additive effect in the data
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2.2 Preprocessing

2.2.1 Local Regression

LOESS is a modeling method that is built on linear and nonlinear least squares regression.
LOESS combines the simplicity of linear squares regression with the flexibility of nonli-
near regression. LOESS does this by fitting simple models to localized subsets of the data
and then find a function that describes the deterministic part of the variation in the data
[14].

Definition of a LOESS model

LOESS was originally proposed in [11] and further developed in [12] where it was called
locally weighted regression. At each point in the data set a low degree polynomial is fit
to a subset of the data with an explanatory variable value near the point whose response
is being estimated. An explanatory variable means that the variable is not independent
for certain. The polynomial is fit by using weighted least squares, where points near the
point estimated get more weight and point further away gets less weight. The value of the
regression function for the point is obtained by evaluating for the local polynomial using
explanatory for value variable for that data point. The locally fit of the data is done for
each data point, and when this is completed for every n data point, and a LOESS model is
completed. LOESS is a flexible method in the way that both the degree of the polynomial
and the weight can be changed. How this is performed is discussed further in the text.

Localized Subsets of Data

The subsets of the data used for each weighted least squares fit in LOESS are determined
by the nearest neighbor algorithm. A smoothing parameter, which is chosen by the user,
determine how much of the data are used to fit each local polynomial. The smoothing
parameter q is a number between (d + 1)/n and 1, where d is denoting the degree of the
local polynomial. Large values of q produce the smoothest function, where there are few
wiggles. A small q produces a function with many wiggles since it then captures the small
variation in the data. Too small q is not desirable since the regression function will then
start to capture random noise in the data.

Degree of Local Polynomials

The local polynomials to fit the data are almost always the first or second degree, hence
locally linear or locally quadratic. A zero degree polynomial turns LOESS into a weighted
moving average. A higher degree of polynomial would work in theory, but this is not the
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2.2 Preprocessing

spirit of LOESS. LOESS is based on the idea that a low degree polynomial can approxi-
mate the function in a small neighborhood and the simple model can be fit to data easily.

Weight Function

The weight function gives more weight to the data points close to the point estimated and
less weight to data points further away.

The traditional weight function used for LOESS is the tri-cube weight function,

w(x) =

{
(1− |x|3)3, for |x| < 1

0, for |x| ≥ 1.
(2.12)

In Cleveland(1979) properties for a weight function W satisfying the properties is listed;

1. W (x) > 0 for |x| < 1

2. W (−x) = W (x)

3. W (x) is a nonincreasing function for x ≥ 0

4. W (x) = 0 for x ≥ 1.

Any function which satisfies these properties could be used as a weight function. The
weight for a specific point in any localized subset of data obtained by evaluating the weight
function at a distance between that point and the point of estimation, after scaling the
distance so that the maximum absolute distance over all of the point in the subset of data
is precisely one.

2.2.2 Savitzky-Golay Smoothing Filters

SG finite impulse respons (FIR) smoothing filters, also known as polynomial smoothing,
or least-square smoothing filters, are a generalizations of the FIR average filter that can
preserve better than the high-frequency content of the desired signal, at the expense of not
removing as much noise as the average. These filters are typically used to smooth out a
noisy signal whose frequency span(without noise) is significant [32].

The next theory is based on the book by Gander and Matt(1993) [17]. The fundamental
idea for this filter is that the smoothed value gi in the point xi is obtained by taking an
average f of its neighboring data. The simplest method consists in computing a moving
average of a fixed number of fi’s(the function to be smoothed). Furthermore, this can be
performed more generally by fitting a polynomial through a fixed number of points. Then
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the value of the polynomial at xi gives the smoothed value gi. Let nL denotes the number
of points to the left of xi and nR denotes the number of points right to xi. By pi(x) we
denote a polynomial degree of M which is fit in the least square through the nl + nR + 1
points.Then we have gi = pi(xi).

Filter Coefficients

The polynomial pi(x) of degree M, which is to be fitted through the data fi, can be written
as

pi(x) :=

M∑
k=0

bk

(
x− xi

∆x

)k
. (2.13)

It is assumed that xi are uniformly spaced with xi+1−x ≡ ∆x. In order to fit pi(x) in the
least squares sense through measured data, we have to determine the coefficients bk such
that

i+nR∑
j=i−nL

(pi(x(j)− fj)2 = min. (2.14)

Let us define the matrix

A :=


(−nL)M · · · −nL 1

...
...

...
0 · · · 0 1
...

...
...

nRM · · · nR 1

 ∈ R(nL+nR+1)×(M+1) (2.15)

and the two vectors

b :=


bM

...
b1
b0

 ∈ RM+1 (2.16)

and
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f :=


fi−nL

...
fi
...

fi+nR

 ∈ R(nL+nR+1). (2.17)

Using these definitions, we can restate the least squares problem in equation 2.14 in matrix
terms as

||Ab− f || = min. (2.18)

It would be possible to solve equation 2.14 for b by means of the QR-decomposition of A.
For our filtering purpose, however, we only need to know gi = pi(x) = b0. The solution
of 2.14 can also be expressed as the solution of the normal equations

ATAb = ATf . (2.19)

Thus we get
gi = eTM+1(ATA)−1f , (2.20)

where eM+1 denotes the (M + 1)st unit vector.

We can then represent gi as linear combinations of the fi’s. We define the vector

c := A(ATA)−1eM+1 (2.21)

containing the filter coefficients c−nL , . . . , CnR . Since c does not depend on xi and ∆x,
it only needs to be evaluated once. All the smoothed values gi can be computed by simple
scalar product

gi = cTf =

i+nR∑
j−nL

cj−ifj . (2.22)

The calculation of the vector c according to Equation 2.21 may be inaccurate for large
values of M. This loss of accuracy can be attributed to the fact that the condition number
of A is squared in forming ATA. The condition number of a function with respect to an
argument measures how much output value of the function can change for a small change
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in the input argument. On the other hand, it is well known that the least squares system in
equation 2.14 can be stably solved using the QR-decomposition

A = QR. (2.23)

By Q, we denote an orthogonal nL +NR + 1-by-(M + 1) matrix, and by R we denote an
upper triangular (M + 1)-by-(M + 1) matrix. If we substitute decomposition 2.23 into of
equation 2.21, we get for the vector c the expression

c =
1

rM+1,M+1
Qem+1 (2.24)

2.2.3 Interpolation

In [35] interpolation in the field of mathematics is defined as a method of constructing
new data points within the range of a discrete set of known data points. Furthermore, in
engineering and science, one often have many data points, which represents the values of a
function for a limited number of values of the independent variable. It is often required to
interpolate the value of that function for an intermediate value of the independent variable.

Interpolating a set of data points can be done using polynomial, spline function or Fourier
series. In [4] polynomial interpolation and interpolation by splines, i.e., piecewise polyno-
mial interpolation are described. However, here the focus is on polynomial interpolation.

For n ∈ N ∪ {0}, we denote by Pn the linear space of polynomials

p(x) =

n∑
k=0

akx
k (2.25)

for a real (or complex) variable x with real (or complex) coefficients a0, . . . , an.

A polynomial p ∈ Pn is said to be of degree n if an 6= 0. Pn is a subspace of the linear
space C[a, b] of continuously differentiable real (or complex) valued functions on [a, b],
where a < b. For m ∈ N we denote Cm[a, b], the linear space of m times continuously
differentiable real (-or comlex) valued functions on [a, b].

Given that n+1 distinct points x0, . . . , xn ∈ [a, b] and n+1 values y0, . . . , yn ∈ R , there
exists a unique polynomial Pn with the property

pn(xj) = yj , j = 0, . . . , n (2.26)

In the Lagrange representation, this interpolation polynomial is given by
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pn =

n∑
k=0

yklk (2.27)

with Lagrange factors

lk(x) =

n∏
i=0,i6=k

x− xi
xk − xi

, k = 0, . . . , n. (2.28)

Lagrange discovered the representation in equation (2.27) in 1764, and it is simple and
easy for theoretically investigations. However, it is not computationally stable enough for
large n. However Newton obtained a quadratic formula for interpolation in 1676, and this
is more practical for computational purposes. [4]

To define Newtons theorem, we state the following definition.

Definition 2.2.1. Given n+1 distinct points x0, . . . , xn ∈ [a, b] and n+1 values y0, . . . , yn ∈
R, the divided differences Dk

j of order k at the point xj are recursively defined by

D0
j := yj , j = 0, . . . , n, (2.29)

Dk
j :=

Dk−1
j+1 −D

k−1
j

xj+k − xj
, j = 0, . . . , n− k, k = 1, . . . , n. (2.30)

Newtons theorem states that for n ≥ 1 the uniquely determined interpolation polynomial
pn of the Lagrange representation in equation (2.27)-(2.28) is given by

pn(x) = y0 +

n∑
k=1

Dk
0

k−1∏
i=0

(x− xi). (2.31)

2.3 Continuous Wavelet transform

2.3.1 The Analytic Wavelet Transform

A wavelet ψ(t) ∈ L2(R) is an analyzing function used to localize a signal simultaneous-
ly in time and frequency. By definition, a wavelet has zero mean and finite energy, and
additionally satisfy the ”admissibility condition”[27]
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∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞, (2.32)

where Ψ(ω) is the Fourier Transform of the wavelet. The wavelet transform of a signal
x(t) ∈ L2(R) is a series of projections onto the rescaled and translated version of ψ(t),

Wψ(t, s) ≡
∫ ∞
−∞

1

s
ψ∗
(
τ − t
s

)
x(τ)dτ, (2.33)

where t is the time parameter, s is the scale parameter, and ”*represents the complex
conjugate. Furthermore, analytic wavelets are defined for positive frequencies, such that
Ψ(ω) = 0 for ω < 0. In the frequency domain, this is represented by

Wψ(t, s) =

∫ ∞
0

Ψ∗(sω)X(ω)eiωtdω (2.34)

A family if analytic wavelets are the generalized Morse wavelets. They are useful for
signals that both vary in time and frequency.

The Fourier transform of the generalized Morse wavelet is

ΨP,γ(ω) = U(ω)aP,γω
P2

γ e−ω
γ

, (2.35)

where U(ω) is the unit step, aP,γ is the normalizing constant, P is the time-bandwidth
product, and γ is the symmetry of the Morse wavelet. The two parameters symmetry γ
and time-bandwidth P can be adjusted to obtain analytic wavelets with different properties
and behavior. These two parameters determine the wavelet shape and affect the behavior
of the transform. γ controls the symmetry of the wavelet in time through the demodulate
skewness, and P is proportional to the wavelet duration in time. The duration determines
how many oscillations can fit into the time-domain wavelet’s center window at its peak
frequency. The peak frequency is (

P 2

γ

) 1
γ

.

The demodulate skewness of Morse Wavelet is the normalized third centra moments α3;φ

and for generalized Morse wavelets this becomes

α3;β,γ = i
γ − 3

Pβ,γ
, (2.36)
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where Pβ,γ =
√
βγ. We can see that when γ = 3 and α3;β,γ = 0 [26]. In study CWT

are used for showing which frequency component we have for a certain time, and then it
is important that both frequency and time are optimal.

2.4 Blood Pressure and Heart Theory

2.4.1 The Cardiac cycle

The cardiac events that occur from the beginning of one heartbeat to the beginning of the
next are called the cardiac cycle. The cardiac cycle consists of a period of a relaxation
called diastole, during which the heart fills with blood, followed by a period of contraction
called systole [19].

2.4.2 Arterial Pressure Waves

In figure 2.5 the arterial line waveform is shown, and this is the APW, which travels much
faster than the actual blood which is ejected. It represents the impulse of left ventricular
contraction [40]. The systolic upstroke is the ventricular ejection, and the peak systolic
pressure (also known as the systolic BP) is the maximum pressure generated during the
systolic ejection. The systolic decline is the rapid decline in arterial pressure as the ven-
tricular contraction comes to an end and the dicrotic notch represents the closing of the
aortic valve. The diastolic runoff is the rapid decline in arterial pressure as the ventricular
contraction comes to an end, while the end-diastolic pressure is the pressure exerted by
the vascular tree back upon the aortic valve (know as the diastolic pressure). The different
parts of the arterial wave contain important information, that can explain much of the car-
diac health. In [31] there is explained some diagnostic, where the waveform is different
from the normal shape shown in figure 2.5 [19]. The diagnostic are for example aortic
stenosis, aortic regurgitation, hypertrophic cardiomyopathy.

2.4.3 Methods of Blood Pressure Measurements

There is both invasive and non-invasive method for measuring the BP, and in the next
section, the invasive and the non-invasive method with finger cuff is explained. Howe-
ver, there is a lot of other non-invasive methods like ultrasound techniques, auscultatory
method, and the oscillometric technique.
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Figur 2.5: Normal Arterial Line Waveforms for BP

Invasive Method

Invasive blood pressure monitoring is a commonly used technique in the ICU and is also
often used in the operating theatre. This technique involves direct measurement of arterial
pressure by inserting a cannula needle in a suitable artery. The cannula must be connected
to a sterile, fluid-filled system, which is connected to an electronic patient monitor. The
advantage of this system is that a patient’s BP is constantly monitored beat-by-beat, and
the APW are shown on the monitor [30].

The finger cuff method

A noninvasive recording of BP at finger level was first developed in [34] and was further
developed in [38]. That is the FINAPRES method, which was compared with the invasi-
ve method by [33]. They discovered that the beat-to-beat changes in finger systolic and
diastolic BP were on average similar to beat-to-beat changes measured intra-arterial. Furt-
hermore, the beat-to-beat BP recording via FINAPRES provides an accurate estimate of
means and variability of radial BP. In most cases, this is an acceptable alternative to in-
vasive BP monitoring during laboratory studies.

Factors that can affect blood pressure readings

During a BP measurement, many factors can influence the BP measurements, which can
result in the wrong result. When measuring the BP, the patient needs to sit entirely still
and sit correctly. Factors that can affect the BP are the emotional state, talking, alcohol,
smoking, etc. Since all these factors can influence the BP, it is essential to take these factors
into account when measuring BP [15].
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Figur 2.6: Premature Ventricular Contraction in ECG (top plot) and BP (bottom plot)

2.4.4 Premature Ventricular Contraction

PVC are premature heartbeats originating from the ventricles of the heart. Premature ven-
tricular contractions are premature because they occur before the regular heartbeat. PVC
is common, and many people have premature ventricular contractions without any sym-
ptoms. Premature ventricular contractions may be more common among older patients,
patients with high BP, and patients with heart disease. Premature ventricular contractions
can also occur in young healthy individuals without heart disease or high BP [25]. How
this appears in the ECG and in the APW is shown in figure 2.6.

2.5 Multivariate Data Analysis

MVA is the investigation of many variables, simultaneously, to understand the relationship
between them. MVA can analyze data with variables from two to millions of variables. So
MVA gives us an opportunity to analyze a significant amount of data in a short time. This
type of technique is different from the traditional statistical way of doing it, where one
variable is compared with one variable. With MVA relationships of the data that was not
known beforehand can be found.

MVA is soft modeling tool, where a model is based on the data and no assumptions are
made. As opposed to mathematics and physics, where a model is made based on a simpli-
fied version of the world with many assumptions. The procedure is executed, and the result
is analyzed based on the graphical view. The advantage of MVA is first that it identifies
variables that contribute most to the overall variability in the data. Second, it helps to iso-
late the variables that are related, so they co-vary with each other. Third, the possibility of
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graphical presentation, which for humans means a lot. Further, in the chapter, the different
types of tools in MVA are presented [8].

2.5.1 Principal Component Analysis

PCA is the analysis of variability in a particular set of data. It is an essential part of MVA
and its the first step of MVA. PCA can be presented graphically for understanding the
relationship between samples and variables [8]. PCA can be used for any data set which
has more than one variable, but it is best suited for data set with more than 10 variables
and 100 samples [8]. PCA has a broad range of applications like exploratory data analysis,
classification, and identification, variable reduction, etc.

PCA use principal component (PC) to separate the data. A PC is a latent variable, which
means that the variable cannot be measured directly. Latent variables are computed as
linear combinations of a set of input variables, which can be computed directly [21]. A
PC defines which variables most contribute to the greatest sources of variability, shows
which variables are related to each other and which ones are not and describes whether a
particular set of variables are describing the important structure or are just random noise
[8]. The goal is to have the fewest possible PCs without loss of essential information.
The first PC is the one that contributes the most to the variability and PCs reflect the
largest eigenvalues of the co-variances in the data [21]. PCA tries to find as few PC as
possible to represent the data, which gives PCA the opportunity to reduce the dimension
of the data. Usually, each PC does not correspond to an individual physical phenomenon.
However, seen together, the first few PCs usually span the important information space of
how physical phenomena vary [21]. The equation for the PCA model is

X = tp’ + E, (2.37)

where t are the scores, p are the loadings and E are the residuals and where t, p and E
are unknown [21]. Loadings are the correlation between variables, while scores are the
correlation between the samples.

2.5.2 Mean-Centering

Mean-centering is necessary for variables with higher values, not are weighted higher than
the rest. In multivariate data analysis, we are usually interested in the patterns of variations
between the samples, not in absolute numbers. Mean centering is, therefore, a common
practice in MVA. This means that the input data X are first modeled regarding the mean
for the variables, plus an initial residual E0 [21]. This is computed by

E0 = X + 1x̄. (2.38)

20



2.5 Multivariate Data Analysis

2.5.3 Cross-validation

Validation is important for ensuring the quality of the model and the method presented here
is cross-validation. In cross-validation we leave out a part of the data, and make submodels
to all of the data has been taken out once. We need to set a validation level, example 5%
of the data. If there is no obvious groups of samples or background knowledge, random
cross-validation is the best choice [21]. Other cross-validation methods are k-fold cross-
validation and leave-k-out cross-validation.
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Approach

3.1 Data collection

The data collection was done in November in work with the project thesis and is presented
in the next section.

3.1.1 Study population

The study population was students in the age of 22-27, and they had no known heart pro-
blems or other important health problems. It was a total of 7 participants, where there
were five male and two females. The study was approved by REK (Regional Committe-
es for medical and health research ethics). All participants signed an informed consent
agreement, and all of the subjects are identified with a number.

3.1.2 Measurements

Measurements of the data were performed by using The Human NIBP Set from ADInstru-
ments, which is an equipment to perform non-invasive blood pressure (NIBP) measure-
ments from finger arterial pressure. The equipment uses a finger cuff to measure the finger
arterial pressure at the annular finger. There were three different sizes of the finger cuff, to
fit all the subjects finger size [1]. The equipment used to measure is supposed to represent
the pressure wave in the same way as the invasive measurement.

The measurements were performed for each of the subjects in the same way:
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1. Test person at rest for 5 min before test start

2. Do an ECG and a blood pressure measurement at the same time for 10 min while
the person rests, while sitting on a chair.

3. Repeat 4 times per person

Most of the measurements were performed on the same day and right after each other
with a small break between each of the measurements. Before the measurements, there
was no restriction about food, training, coffee, etc. We know for sure that some of the
subjects was training and drinking coffee right before. All of these factors can influence
the result, and since all the measurements were done in approximately one hour, there can
be a difference between the last and the first measurement since they have relaxed longer
at the last measurement.

We had 7 test persons, and each measurement was repeated four times per subject, and
this resulted in 28 measurements. The APW were measured with a cuff on the finger as
described in background chapter. The problem with the measurement in this experiment
was that the calibration equipment for the BP did not work, so the measurement is not
correct in value. This gave the problem that for each new experiment the reference level
varied a lot from one measurement to the next. From one measurement to the next the
middle value varied from 0-40 mmHg for some of the subjects, which resulted in an not
accurate BP measurement at all. However, the problem was to analyze the shape of the
heartbeat and not the actual value, and therefore the relative value is important an not the
actual value.

3.2 Preprocessing

In all of the preprocessing steps, except for MSC, Matlab version R2017a is used to do
the preprocessing, where parts of the code are shown in the appendix. MSC is perfor-
med in Unscrambler® X, which is a complete multivariate data analysis and experimental
design software solution, equipped with powerful methods including PCA, partial least
square regression (PLSR), clustering, and classification [10]. One of the goals is to do the
preprocessing in real-time and therefore the preprocessing is in general performed in a 20
seconds window, but the result is also shown for the whole signal in some cases. This is
not completely real-time, but it is better than using the whole signal. Some of the prep-
rocessing (i.e., systolic peak separation and MSC) shows the result of the whole signal.

Preprocessing of the signals have been a large part of the analysis, and the following steps
are performed:

1. Baseline correction by LOESS/SG smoothing filters

2. Interpolation to change heart rate
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3.2 Preprocessing

3. Finding systolic peaks

4. Signal separation

5. MSC

The different steps are explained in more detail in the next sections.

3.2.1 Baseline correction

The BP varies over time, as explained in theory chapter since it is dependent on where in
the cardiac cycle the heart is at a particular time. In chapter 2.1 ideal and nonideal spectral
measurements are explained, explicitly additive and multiplicative effect.

Removal of the additive effect, due to variations in the baseline caused by the respiration
rate and other unknown factors, was performed different methods for trying to find the ba-
seline variations and correct for this. LOESS and SG smoothing filters are the two methods
used, and these are presented in the next sections.

LOESS

The Matlab function smooth with input parameters data, span and method is used to find
the LOESS model. Data is which data to perform the smoothing at, the span is how much
of the data to use to find the model, and LOESS was the method used. Like described
in theory chapter large span gives the low-frequency components, including the baseline
drift, and a low span gives the high-frequency components. The baseline correction with
LOESS is shown in appendix A.1.3. The output of the algorithm is a baseline corrected
BP, and this algorithm also gives a model for each of the frequency signals, i.e., LOESS
model 1, 2 and 3. These signals are important to keep, such that we do not lose information
we may want to use in later analysis. This information may keep interesting information
such that heart rate, respiration rate or other relevant information. The span values are
dependent on how large the original data is. If the full signal at ten minutes are smoothed
a smaller value of span are used than if 20 seconds of the signal is used.

Savitzky-Golay smoothing filter

SG are another method to find the baseline variations and here are the Matlab function
sgolayfilt with the input parameters Data, Polynomial order and framelength used. It works
by finding the baseline by use of the sgolayfilt and then subtract this from the original raw
data. The function is shown in the appendix A.1.4.
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Kapittel 3. Approach

3.2.2 Finding Systolic Peaks

To find the systolic peaks, which is the highest peak as explained in Theory Chapter, the
Matlab function findpeaks whit input parameters data and Minimum peak prominence is
used. The minimum peak prominence is the peaks that have a relative importance of a least
the Minimum peak prominence-value. Also, to find the peaks the mean heart rate is found
by finding the interval between peaks and take the mean of this. The function is shown in
appendix A.1.2.

3.2.3 Interpolation to change the heart rate

The HR varies from person to person and from situations to situations, which makes it
complicated to compare the shape of the heartbeats independent of the HR. So to compare
the heartbeats in different settings, the HR is interpolated such that the signals are not
dependent on the HR and that all have the same constant HR, which is set to 72 beats/min
(1.2 Hz). In section 2.1 there is explained about shift, and this is one way of trying to fix the
shift problem. The interpolation was performed with the Matlab function interp1, which
have the the input old time vector, data, new time vector and method. The method used is
a linear interpolation. In able to find the correct interpolation frequency the average HR is
used to find the right new sampling frequency. The mean HR are found by finding systolic
peaks and then find the time between each peak. The interpolation method is shown in
appendix A.1.5, where there can be seen that how to choose the new sampling frequency
are dependent on the mean HR is below or above the wanted 1.2 Hz.

3.2.4 Signal Separation

A separation of the BP curve into one heartbeat put on top of each other needs to be per-
formed before a PCA can be performed to do the analyze. This algorithm was developed
in the project thesis, and are further developed in the master thesis. The algorithm, shown
in appendix A.1.1, uses the findpeaks as described in section 3.2.2 and from each side of
the systolic peak a constant number of samples included in that specific heartbeat.

3.2.5 Multi Scatter Correction

A description of how MSC works are explained in the theory section 2.1, and then it is
explained that it can correct for additive and multiplicative effects. The MSC of the data
was performed in Unscrambler® X.
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3.3 Principal Component Analysis

3.3 Principal Component Analysis

PCA is performed in Unscrambler® X to analyze the data after preprocessing. NIPALS
algorithm is used to find the PC in Unscrambler® X, and the validation method is the
cross-validation method random 20 segments method used to validate the data.
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Kapittel 4
Analysis

4.1 Preprocessing

To analyze a signal an important part is to prepossess the data. Different kinds of signals
need different kinds of prepossessing, so to find the best and a good way to prepossess the
data, different methods were used and tested. In the next sections, SG smoothing filters and
LOESS is presented, and both are used for finding the baseline of the signal and correct
for the baseline. CWT is used to illustrate the effect of removing the low frequencies in
the signals. The Matlab function cwt with input parameters data and sampling frequency
is used to find the the CWT. cwt use as default the analytic Morse Wavelet with symmetry
parameter of 3 and a time-bandwidth of 60.

4.1.1 Baseline Removal

Savitzky-Golay Smoothing Filters

Figure 4.1 and figure 4.2 shows the APW before and after the SG filter is performed. How
the SG filter work is presented in theory. In this analyze the sgolayfilt function in Matlab
was used to find the baseline of the data. The input for this function is data, polynomial or-
der, and frame length. Experimentation with different size of frame length and polynomial
order was performed to find a good size. To not change the form of the signal the frame
length needed to be high and frame length on 501 was used and a polynomial order of 3
was used. Furthermore in figure 4.3 the BP before and after SG filtering for each of the
subjects in a 20 seconds window is shown. We can observe that the filter finds the baseline
shift and then the baseline is subtracted from the BP signal. We can observe that this works
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Figur 4.1: (a) 20 seconds of BP curve before and after SG filtering of measurement 1 of subject
1. The blue curve is the BP signal, the green curve is the baseline, and the read curve is after the
baseline subtraction from the BP curve (b) shows CWT of the baseline curve (c) shows CWT of the
BP curve before filtering (c) shows CWT of the BP curve after filtering

since we find the baseline and it is shifted down such that the baseline is at 0 instead of at
100.

SG-filtering is an easy method to implement and gives a good result and do not change
the signal in this case, but there are signals where the SG-filtering can change the signal.
One of the downsides with SG-filtering is that it is a filtering method and not a modeling
method.

LOESS

In the theory chapter the theory of how LOESS works are explained and here it is used to
find different frequency components in the signal. Figure 4.4 shows the different LOESS
models and figure 4.5 shows the corresponding CWT of the models. In able to find a good
model it was much tuning of the span parameter. In figure 4.4 a span of respectively 0.5,
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Figur 4.2: 20 seconds of the BP curve with SG-filtering for subject 1 measurement 1, a) BP cur-
ve(blue, the upper curve), the black curve is the baseline curve found by SG-filtering and the red
curve(the bottom curve) is the BP curve after the baseline is subtracted from the blue BP curve b)
the CWT of the baseline curve, c) CWT of the BP before filtering and d) CWT of the BP after the
baseline is subtracted from the BP curve.
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Figur 4.3: The BP before and after SG-filtering: (a) subject 1; (b) subject 2; (c) subject 3; (d) subject
4; (e) subject 5; (f) subject 6; and, (g) subject 7.
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0.2 and 0.05 is used from the three LOESS models.

In the first LOESS model the desired result was to find the baseline variation and fre-
quency, so therefore one half of the signal was used to find this trend. LOESS model 1 is
as shown in figure 4.4 a low-frequency signal, and this low frequency could be the respi-
ratory rate.

Further, the LOESS model 2 is also a low-frequency signal, however with a higher fre-
quency. These two models are subtracted from the original model, such that the low-
frequency components are no longer a part of the signal. In figure 4.5 CWT of the after the
LOESS models are subtracted from the signal. The last plot shows that there are almost
no longer frequency components lower than 0.5 Hz. The LOESS model 3 in figure 4.4
have a much higher frequency, and we can observe that this is a sinus wave with an almost
perfect fit of the frequency of the heart rate. Figure 4.5 there is a strong yellow line around
1 Hz, which corresponds to the HR. Furthermore, this shows that by the LOESS technique
there can found both high and low-frequency components, and remove the low-frequency
components, which is the baseline variations.

In figure 4.6 the 20 second of the APW curve are plotted before and after LOESS. An
observation is that the baseline is moved from around 100 mmHg to 0, which not cause
a problem since we are not interested in the actual value, but the shape. If the value were
necessary, this would cause some problems if the real value is not preserved, but we are
preserving the model, such that it can be used for later analyzes. Furthermore, we can
observe that the baseline for all the subjects are found and then subtracted and the result is
a new BP curve without baseline shifts.

Figure 4.7 shows the ten minutes APW before and after LOESS for subject one. The
observation is that LOESS finds the baseline variations, and remove these variations. The
frequency of this baseline variate and are not consistent. One desired result was to find the
respiratory rate from APW, but as observed in figure 4.7 this is hard. One of the problems
is that the baseline varies with respiration and other factors like talking and movements.
Besides, respiratory rate can be self-controlled, which makes it even harder to find it based
on a curve.

LOESS versus SG-filtering

A comparison between LOESS and SG-filtering based on figure 4.6 and 4.3, shows that
they give almost the same result of baseline removal without change the form of the sig-
nal, and they both compensate and find the PVC beats. The problem with both LOESS
and SG-filtering is they both need a window to find the baseline components, and they
can not do it in real time. However, when an analysis is performed, there will not be in
absolute real time, and some time delay will appear. Both SG-filtering and LOESS has the
advantage that they are simple methods to implement and easy computationally since they
only use polynomials to find the baseline models. LOESS is computationally easy for the
short signal 20 seconds signal, but finding a model for the whole 10 minutes signal was
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Figur 4.4: LOESS model for subject 2 by 20 seconds of measurement 1: a) BP curve(the blue)
before any preprocessing and the red curve is LOESS model 1, b) BP curve(the blue) before after
LOESS 1 is subtracted from the original BP and the red curve is LOESS model 2 and c) The ‘the
blue curve is the BP after LOESS model 2 are subtracted from the BP curve and the red curve is
LOESS model 3.
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Figur 4.5: CWT after LOESS model are subtracted for subject 2, 20 seconds in measurement 1:
a) BP before LOESS, b) BP after first LOESS model is subtracted and c) BP after second LOESS
model is subtracted and this is the final model

35



Kapittel 4. Analysis

0 2 4 6 8 10 12 14 16 18 20

time[s]

-20

0

20

40

60

80

100

120

140

160

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

LOESS model 1

(a)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-50

0

50

100

150

200

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(b)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-40

-20

0

20

40

60

80

100

120

140

160

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(c)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-40

-20

0

20

40

60

80

100

120

140

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(d)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-20

0

20

40

60

80

100

120

140

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(e)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-20

0

20

40

60

80

100

120

140

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(f)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-20

0

20

40

60

80

100

120

140

160

p
[m

m
H

g
]

BP

BP after baseline correction with LOESS

(g)

Figur 4.6: BP curve plotted before and after LOESS, where the blue (upper) curve are before LOESS
and, red (bottom) curve is after LOESS and the green in (a) are the LOESS model 1: (a) subject 1;
(b) subject 2; (c) subject 3; (d) subject 4; (e) subject 5; (f) subject 6; and, (g) subject 7.
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Figur 4.7: LOESS model for the whole 10 min dataset for subject 1, where the red curve (upper) is
the orginial signal, the black curve is LOESS model 1 and the blue curve (bottom) is the signal after
LOESS

time-consuming. An advantage with LOESS is the possibility to find different frequency
components in the signal, not only the baseline. In figure 4.4 plot c) LOESS found the
sine wave corresponds to the HR. The downside with LOESS is the possibility to find the
wrong frequency components if the parameter tuning is bad, as the baseline and then the
wrong baseline is subtracted from the BP curve. In this study, there was used some time
to find a good value for the span, and this may be a disadvantage for LOESS. When the
span value was found, there was no further tuning even for a new subject. However, in this
study, there were only seven subjects, and they were sitting on a chair during the measure-
ments, and there were few disturbances. This will may cause more problems when there
are different subjects and more disturbances.

4.1.2 Find Systolic Peaks

Figure 4.8 shows a result of the function findpeaks for each of the subjects. The function
never fails to find a systolic peak and never classify the peak dicrotic notch peak as the
systolic peak. In the project thesis, the function sometimes missed some peaks or misclas-
sified a dicrotic notch peak as a systolic peak, as described in the introduction. One of the
reasons that it works better know is the removal of the baseline shift before finding the
peaks. In this study only the peak minimum prominence was used as the input parameter,
this is indifference from the project thesis [13], where both peak prominence and mini-
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Figur 4.8: Find systolic peaks: (a) subject 1; (b) subject 2; (c) subject 3; (d) subject 4; (e) subject 5;
(f) subject 6; and, (g) subject 7.

mum peak distance was used as input parameters. In the project thesis [13] the minimum
peak distance was used to use the knowledge about the HR, but this may not be the best
idea if the HR suddenly changes. A result can be that some systolic peaks can be missed.

4.1.3 Interpolation and Heartbeat Separation

In the theory chapter, it is described that the HR varies between persons and that it also can
change over time. However, to compare signals with different heart rate an interpolation
was performed to compare different signals independent of the heart rate and compensate
for shifts in the signals. Furthermore, are the heart beats separated into individual heart-
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beats. Figure 4.9(a)-(g) shows the interpolation and the heartbeat separation for each indi-
vidual subject, and figure 4.9(h) shows the interpolation for all the individuals. In section
2.1 there is explained about a shift in spectral measurements, and this is what is tried to fix
here. In figure 4.9 it can be observed that the signals are stretched both before and after the
middle peak and where the central peaks are still at the same point. Furthermore observe
that the dicrotic notch peak is shifted to the left, which are the result we wanted such that
we can perform further analysis independent of shifts. In addition to the individual subject
in figure 4.9(a)-(g), we have figure 4.9(h) with all the subjects. The observation is that the
dicrotic notch is almost fitted on top of each other. However, it is not a completely perfect
fit as desired.

Figure 4.10 shows the interpolated, and separated heart beats for the whole 10 min signal
for the seven subjects different subjects. We can observe in figure 4.10(a) that all the curves
fit over the dicrotic notch and we can also observe that there are some few curves which
are higher and are separated from the rest and these curves are the premature ventricular
beats, explained and shown in the theory chapter. Furthermore in figure 4.10(b) it is more
shift in the peak after the dicrotic notch and and last figure 4.10(c) it does not fit good. It
can be observed that there are two different peaks. It was performed an investigation of the
HR for each part of the simulation, to understand these differences in the separation. The
result of this investigation was that when the pulse is a little bit higher than the constant
1.2 Hz HR as wanted, and the algorithm does not work that good.

Based on both the 20 seconds signals and the 10 minutes signals, we can observe that this
algorithm does not perform optimal, when the HR changes over time, especially if the
HR is near 1.2 Hz. Furthermore, we can observe that the subjects the algorithm have most
problems with finding one constant frequency are the subjects shown in figure 4.9(c) and
4.9(e), which both separates into two different frequency components. A good observation
is that both of these two subjects have respectively HR with mean frequency 1.08 Hz and
1.09 Hz, which means they have almost the same mean pulse. However, this is the mean
pulse over the whole 10 minutes signal a further investigation of the result of each analysis
of 20 seconds showed that the frequency is changing over time and are sometimes above
the limit 1.2 Hz. The problem with the algorithm is that it finds the new sampling frequency
based on if it is above or below the limit. However, when it just above the limit this will
not change the sampling frequency much and then the signal is not stretched. On the other
hand the signals with frequency above 1.4 Hz are shown in figure 4.10(a), 4.10(c) and
4.10(f), where all the peaks are almost on top of each other. However, this is not perfect,
and there are some minor shifts in the peaks. At last, figure 4.10(b) and 4.10(g) shows
two subject with HR below 1.08 Hz. Here we can observe that there are none of the heart
beats, which separates clearly from the rest. However, there are more shifts in the dicrotic
notch peak in the low HR than for the signals with HR above 1.4 Hz. The shift in the peaks
shows that the algorithm performs well for subjects with a high HR, but not that good for
subjects with lower HR.
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4.1.4 Heartbeat separation

In figures 4.9(a)-(g) interpolation and heartbeat separation is shown for each individual
subject, and in figure 4.9(h) all individuals are shown. We can observe from the different
subjects that a difference in HR leads to a difference in how much of the heartbeat is
included for each subject. Before interpolation subjects with subjects with a high HR (i.e.,
subject 1, 4 and 6) parts of the next and prior heartbeat are included in the separation. After
the interpolation, the prior heartbeat is included, but not the next one. For subjects with a
low HR (i.e., subject 2, 3, 5, and 7) neither the prior or the next heartbeat are included in
the separation. The difference in how the separation works for different subjects creates
a problem in the analysis, and this may be improved further to use the knowledge about
the HR to find the separation instead of using a constant value. However, this creates
a problem with comparing different subjects in the same analysis, but if the goal is to
analyze individuals, this is not a problem.

4.1.5 MSC

Figure 4.9 shows the result of the separated heartbeats after the interpolation. The result
of the MSC for each subject are shown in figure 4.11. A comparison of these two figu-
res an observation is that the systolic peaks are closer to the MSC after the MSC than
before. However, the dicrotic notch peak is not compressed that much. Furthermore, we
can observe that after the MSC the few curves (due to PVC higher than the rest, are now
together with the rest. This is because that the PVC are multiplicative since it is higher
than the rest and additive since the baseline is at a low value. This shows that MSC can
correct for both the additive and multiplicative effect in the systolic peak. However, MSC
have not managed to compress much of the small peak except for the PVC. Furthermore,
when use MSC this is a modeling tool and the information is not lost, and the correction of
the multiplicative and the additive effect are kept in parameters and can be used for later
analyzes.

4.2 PCA

Figure 4.12 shows the result of thePCA of subject one and the marked samples in figure
4.12(a) and (c) corresponds to the peaks that are higher because of the premature ven-
tricular beats. An observation is that the marked samples in the influence plot are in the
part where corresponds to high influence on the PCA model. In figure 4.12(b) the first PC
shows that the first PC is where the value in the start of the signal. In figure 4.9(a) this
corresponds to the value, which is almost a straight line and a low value. The second PC
is mostly due to the value of the systolic peak. Furthermore, the explained variance plot in
4.12(d) needs seven PC to explain 95 % of the variance in the data.
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Figur 4.9: Separated heart beats of 20 seconds, where blue curves are after interpolation and red
curves are before interpolation: (a) subject 1 with mean HR = 1.6Hz; (b) subject 2 with mean HR =
1.04Hz; (c) subject 3 with mean HR = 1.08Hz; (d) subject 4 with mean HR = 1.4Hz; (e) subject
5 with mean HR = 1.09Hz; (f) subject 6 with mean HR = 1.49Hz; (g) subject 7 with mean HR =
1.07Hz;and, (h) shows all the different subjects after interpolation, where each color corresponds to
different subjects.
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(a) (b) (c)

(d) (e) (f)

(g)

Figur 4.10: Separated heart beats after interpolation for 10 minutes signal: (a) subject 1 with mean
HR = 1.6Hz; (b) subject 2 with mean HR = 1.04Hz; (c) subject 3 with mean HR = 1.08Hz; (d)
subject 4 with mean HR = 1.4Hz; (e) subject 5 with mean HR = 1.09Hz; (f) subject 6 with mean
HR = 1.49Hz; and, (g) subject 7 with mean HR = 1.07Hz.
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(a) (b) (c)

(d) (e) (f)

(g)

Figur 4.11: Separated heart beats after MSC: (a) subject 1 ; (b) subject 2 ; (c) subject 3 ; (d) subject
4 ; (e) subject 5 ; (f) subject 6 ; and, (g) subject 7.
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Furthermore, figure 4.13 shows the PCA of subject one after MSC. As discussed in MSC
section, the outliers caused by PVC are removed by the MSC. This is shown in figure
4.13(a), where there is a smaller variations in the APW curves than before the MSC in
figure 4.12(a). Figure 4.13(b) shows the loading plot and the first PC shows that the most
variance the value of the start of the heartbeat, which also was the case before the MSC.
Based on this there may have been a better separation of the heart beats before the analysis.

Figure 4.14 shows the result of PCA for subject two, and here we can observe that there
is no clear outliers in figure 4.14(a). In figure 4.14(b) the first PC shows that most of the
variance around the dicrotic notch peak. A comparison with figure 4.9(b) shows that there
is both a shift, the multiplicative and the additive effect in this area. PC two shows that
most of the variances are at the start of the signal.

Figure 4.15 shows the result of PCA for subject two after MSC, and a comparison with
before MSC there is almost the same result. The differences are small variations in the
explained variance for each PC, and in both cases the PCA model can explain over 95 %
of the variance in the data with 7 PC. In the loading plot for the first 3 PC, there is almost no
difference between them. This is confirmed by comparing figure 4.9(b) and 4.11(b), where
there is just a small difference between them. In the loading plot for PC for PC 4 to 7,
there are more variations between before and after the MSC. However, these components
explain a much smaller part of the variations in the data.

The PCA was as explained not the primary focus of this research, but used as an illustration
of how the APW can be modeled after the preprocessing. We can observe that the model
picks up differences in the APW.
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(a) (b)

(c) (d)

Figur 4.12: PCA of subject 1: (a) score plot; (b) loading plot; (c) influence plot ; (d) explained
variance
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(a) (b)

(c) (d)

Figur 4.13: PCA of subject 1 after MSC: (a) score plot; (b) loading plot; (c) influence plot ; (d)
explained variance
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(a) (b)

(c) (d)

Figur 4.14: PCA of subject 2: (a) score plot; (b) loading plot; (c) influence plot ; (d) explained
variance
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(a) (b)

(c) (d)

Figur 4.15: PCA of subject 2 after MSC: (a) score plot; (b) loading plot; (c) influence plot ; (d)
explained variance
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Kapittel 5
Conclusion and Further Work

5.1 Conclusion

The preprocessing with both LOESS and SG-filtering removes the baseline variations al-
most identically. However, the advantage with LOESS is the possibility to find several
frequency components, such as both HR and the baseline variations. Also, LOESS is a
modeling method and not a filtering method like SG-filtering. In this study, we want to
model the heartbeats and not filtering the heartbeats. In every step of the way the data are
modeled, and all the information in each of the step are preserved. Therefore, LOESS is
the first and the best choice.

The interpolation algorithm works and stretches the signal such that the signals are possible
to compare independent of the HR. However, it does not perform flawlessly, but good
enough to be able to compare each independent of the HR. Furthermore, the separation
algorithm works much better after the interpolation than before the interpolation, since it
is then independent of the HR.

MSC removes the additive and multiplicative effect good in the systolic peak without
changing the shape the form of the heartbeats, but not that good in the dicrotic notch peak.
MSC have troubles with removing the additive and multiplicative effect in signals with
peak shifting. However, MSC removes the outliers due to PVC, since this these heartbeats
differs from the rest by higher BP during the whole heartbeats.

Finding the respiration rate based on the baseline variations are hard since the baseline
variations are influenced by the respiration rate, but are also other factors. This makes it
hard to find the respiration rate only based on the baseline variations.
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Kapittel 5. Conclusion and Further Work

After the preprocessing a further analysis of the signals can be performed, and as a part
of that a small PCA was performed to check if individual difference appeared in the PCA.
The PCA shows that there are variations between subjects and inside subjects. It also shows
that outliers like PVC heartbeats appear in the PCA model, which shows an opportunity to
work further with this problem.

5.2 Future Work

During this work, many issues have been discovered and there are many possibilities to
work further with this study and the problem.

The interpolation algorithm should be further developed, such that it adapts and change
when the HR changes independent of the HR is low or high.

In this study, Matlab is used as the tool for development, but for further development,
this should be used in open source tools like Python or C/C++. Matlab is expensive and
not an open source tool, which will make it hard to use this for commercial purposes.
Furthermore, Unscrambler is not a tool for development it is more for graphical analysis
looking for patterns.

After all the preprocessing the next step would be to model the heartbeats continuously and
have a system which detects changes. One way of doing this could be to use the On-The-
Fly (OTFP) tool as explained in [37]. The OTFP is a method for rational handling of time
series of multi-channel measurements, which automatically detects any new co-variation
patterns arising in the data and will remove much of the noise in the data. In this study,
the focus has been APW. In further work it not only the APW should be included in this
model, but also other signals like ECG, respiration, and temperature.

The study only involved seven subjects to test the algorithms at, so for further work, there
should be new test persons There would be very interesting if the patients have some
different disease or other known artifacts, this will give the chances to verify the results
and further development.

There was performed an attempt to find the respiration rate based on baseline movement,
but we had no actual measurements on the respiration to verify the results. With new data,
there would be nice also to measure the respiration and then compare with the baseline
movement. New data will give the opportunity to study what of the baseline movement is
because of respiration and what is caused by other factors.

Other methods for finding the baseline in APW could also be tried, for example, discrete
wavelet transform [18] or empirical mode decomposition [28]. Besides, other methods
for finding systolic peaks could be tried, for example, [18] which uses empirical wavelet
transform for locating systolic peak of the BP pulse.
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Tillegg A
Appendix

A.1 Matlab Code

A.1.1 Blood Pressure Separation

1 function [s] = BloodPressureSeparation(data,meanpeakprom)
2

3 sepDist = 120; %the seperation distance after the systolic peak
4 sepDist2 =80; % separation distance before the systolic peak
5 systolic = locate_syst(data,meanpeakprom);
6 s = zeros(length(systolic),sepDist+sepDist2+1);
7 for k = 1:length(systolic)-1
8 if (systolic(k)-sepDist2 ≥ 0)&&(systolic(k)+sepDist ≤ ...

length(data)) && ((systolic(k)≥sepDist) && ...
(systolic(k)≥sepDist2))

9 s(k,:) = data(systolic(k)-sepDist2:systolic(k)+sepDist);
10 end
11 end
12 end

A.1.2 Locate Systolic Peak

1 function [syst_loc] = locate_syst(data,meanpeakprom)
2 [¬,syst_loc] = findpeaks(data,'MinPeakProminence',meanpeakprom);
3 end
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A.1.3 LOESS

1 loess_model_1 =smooth(BloodPressure,0.5,'loess');
2 smooth_data_1 = BloodPressure -loess_model_1';
3

4 loess_model_2 =smooth(smooth_data_1,0.2,'loess');
5 smooth_data_2 = smooth_data_1 -loess_model_2';
6

7 loess_model_3 =smooth(smooth_data_2,0.05,'loess');
8 smooth_data_3 = smooth_data_2 -loess_model_3';
9 BP_After_LOESS = smooth_data_2;

A.1.4 SG-filtering

1 baseliney = sgolayfilt(BloodPressure,3,501);
2 detrendedY = BloodPressure - baseliney;

A.1.5 Interpolation

1 meanpeakprom=40;
2 [pk_systolic,location_systolic] = ...

findpeaks(BP_After_LOESS,'MinPeakProminence',meanpeakprom);
3 pk_syst_interval = zeros(1,length(location_systolic)-1);
4 for m=2: length(location_systolic) % from m = 2 since the first is zero
5 pk_syst_interval(m) = location_systolic(m)-location_systolic(m-1);
6 end
7 meanCycle_syst = mean(pk_syst_interval(2:end));
8 pulse = Fs/meanCycle_syst;
9 if pulse <1.2

10 pulse_want = 0.9+(1-pulse);
11 else
12 b=1;
13 pulse_want = 1.2;
14 end
15 Fsq = pulse/pulse_want*Fs;
16 Tq = 1/Fsq; % Sampling period for interpolation
17 Lq = Fsq *L/Fs;
18 tq = (0:Lq-1)*Tq;
19 interpolate_BP = interp1(t,BP_After_LOESS,tq,'line');
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