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preface

This master’s thesis in signal processing of ECG-signals was done at NTNU
as part of the Engineering Cybernetics program. The thesis was done during
Spring 2018, and the idea for this thesis was inspired by supervisor Harald
Martens, who proposed the initial idea for heart modeling based on multi-
variate principles. During the thesis, much of the physiological information
that helped form the methods was provided by co-supervisor Nils Kristian
Skjærsvold. Feedback on the content and layout of the thesis was provided by
Nils Kristian Skjærsvold, and also by Ph.D. student Silje S.Fuglerud. The
main programming language used in the thesis was MATLAB R2017b by
MathWorks, and the thesis was written in the Overleaf LaTeX editor. The
instruments for the ECG measurements was provided by St. Olavs Hospital
and consisted of a Bio Amp FE132, a three-pack of Shielded Lead Wires
MLA2503, and a 3 Lead Shielded Bio Amp Cable MLA2340 from ADinstru-
ments. Fellow student Tina Danielsen worked with some of the challenges
on Blood Pressure signals, and several methods in the thesis were refined
after discussion with her. An interested reader is advised to have a solid un-
derstanding of Fourier Transforms and Convolution, with some rudimentary
knowledge of digital filters and adaptive algorithms.

Trondheim, 2018-06-1

Mikael Dyb Wedeld
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Summary

In order lay the framework for a possible multivariate heart model, a set
of methods for preprocessing an electrocardiogram signal has been created.
A normalized least mean square adaptive filter was created for filtering out
high-frequency noise and power line interference, and the baseline wandering
was estimated using respectively a Savitzky-Golay smoothing filter, a Dis-
crete Wavelet Transform, and an Empirical Mode Decomposition, with the
Discrete Wavelet Transform showing most promise out of the three. The
separate heart cycles in the signal were accurately identified using another
Discrete Wavelet Transform, and an algorithm was implemented for splitting
the signal and arranging the cycles on top of each other. A method for clas-
sifying cycles that showed abnormal behaviour was created, which captured
all artifacts, but will be in need of further tuning. An estimation of the res-
piratory rate was also done, and the frequency content could be observed in
the power spectrum of the heart rate variability.
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Sammendrag

For å legge grunnlaget for en mulig multivariat hjertemodell, har et
sett med metoder for pre-prosessering av elektrokardiogram signaler blitt
laget. et normalisert minste kvadraters adaptivt filter ble laget for å fil-
trere ut høyfrekvent støy og strømnettforstyrrelser, og grunnlinjebevegelsene
ble estimert gjennom henholdsvis et Savitzky-Golay jevningsfilter, en diskret
wavelet transformasjon, og en empirisk tilstandsdekomposisjon (Empirical
Mode Decomposition), hvor den diskret wavelet transformasjonen presterte
best ut av de tre. De individuelle hjerteslagene i signalet ble nøyaktig iden-
tifisert gjennom bruk av en ytterliger diskret wavelet transformasjon, og en
algoritme ble implementert for å splitte signalet og arrangere slagene opp̊a
hverandre. En metode for å klassifisere slag som viste unormal oppførsel ble
prøvd, og som klarte å fange alle artifakter, men vil trenge ytterligere ar-
beid. En estimering av respirasjonsraten ble ogs̊a gjort, og frekvensinnholdet
kunne bli observert i energispekteret (power spectrum) til pulsvariabiliteten
(heart rate variability).
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Abbrivations

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

ECG Electrocardiography

EDR ECG derived respiration

EMD Empirical Mode Decomposition

FIR Finite Impulse Response

HRV Heart Rate Variability

IIR Infinite Impulse Response

IMF Intrinsic Mode Functions

MODWT Maximum Overlap Discrete Wavelet Transform

MSE Mean Square Error

NLMS Normalized Least Mean Square

PAV Peak Amplitude Variation

PLI Power Line Interference

QRS The three points on the ECG-signal that make up the characteristic
peak caused by the heart contracting
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Chapter 1

Introduction

1.1 Background

Problem Formulation

The introduction of the electrocardiograph gave medical personnel worldwide
an invaluable tool for heart diagnostics, making it possible for them to view
the hearts condition from a whole new perspective, where heart phenomena
such as ectopic beats or myocardial infarctions could be easily discerned.
Electrocardiography is, however, a very sensitive method of measuring, and
the signal received can easily be corrupted by known sources of noise such
as power line interference(PLI), baseline wandering due to respiration, and
stochastic noise due to activity in the muscles(muscle noise). Some of these
can be separated from the signal without much trouble, but others, and espe-
cially muscle noise, can have a frequency content that is deeply intertwined
with that of the actual heart activity, making it hard to process without
changing the desired information content. Additionally, practitioners of ECG
today are primarily concerned with local time events in the heart, that is,
they look at what is happening in the heart at the time of measurement, and
they often apply the same method of analysis to all their patients, making
observations and decisions based on a standardized set of rules for ECG-
data. Though this still yields a lot of useful information, they will, in doing
so, miss two great opportunities. First of all, observing the heart over a short
window of time might not give enough information to predict the hearts con-
dition, and if one uses an approach based on multivariate principles, it can
be possible to consider the heart in a long-term perspective, in which it is
quite simple to tell, from very minute changes, when the heart is starting
behave ”abnormally”. Secondly, every individual is uniquely different, heart
included, and taking this into consideration when making an ECG-diagnosis
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makes for a data-driven approach, where a potential model for determining
the state of a subject’s heart can make decisions based on what is considered
normal for that patient. Thus, there is room and need for a set of methods
that can take in an ECG-signal, preferably in real-time, and treat it in a
way that filters out the parts that are guaranteed noise, extracts and keeps
the parts that are undesired (but still might contain useful physiological in-
formation), and arrange the processed signal on a multivariable form that is
easy for the practitioner to interpret. This thesis shall therefore attempt to
create such a set of methods, with the multivariate approach being primarily
concerned with changes in the morphology of the individual heartbeats. For
now, this will only be done on static data, but in way that ideally can be
easily extended to a real-time scenario.

Related work

On the topic of filtering the ECG-signal, extensive research has been done
from a wide set of perspectives and approaches, and it is not feasible to ac-
count for them all. Of the ones that have worked on topics strongly related
to this thesis, there are Manosueb, Jeerasuda & Paramote [4] who uses an
adaptive filter in order to remove the Power Line Interference(PLI). By ex-
pressing the PLI as a sum of a sine wave and a cosine wave, and by proposing
a method for calculating the optimal initial weight of the filter, they reduce
both the Mean Square Error(MSE) and improve the Signal to Noise Ra-
tio(SNR). A more general approach to ECG filtering using adaptive filters,
where baseline wandering, muscle noise, and motion artifacts are considered
in addition to the PLI, have been done by Thakor & Zhu [21]. They present
several adaptive filter structures such as the Least-Mean-Squares(LMS) algo-
rithm and the Adaptive Recurrent Filter, and how they can be implemented
not only for noise cancellation but also for arrhythmia and ectopic heart-
beats. Both of these builds again upon the principles set forth by Widrow,
Glover & McCool [6], who showed the strength of using adaptive filters for
noise canceling in such data as, for example, ECG signals. On ECG filter-
ing using wavelet transforms, Addison [3] has done an extensive paper on
the subject, not only in-depth explaining how both Continuous and Discrete
Wavelet Transform (CWT & DWT) might be used for noise cancellation and
baseline adjustment, but also thoroughly describes how they can be applied
in order to solve a wide range of medical challenges such as robust QRS-
identification, arrhythmia detection etc. Furthermore, on the topic of iden-
tifying and detecting R-peaks, a recent study by Park, Lee & Park [16] has
used a combination of DWT and Modified Shannon energy envelope in order
to detect the R-peak in the 48 first-channel ECG records from the MIT-BIH
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arrhythmia database, obtaining an accuracy of 99.84%. Other similar studies
that use WT in order to detect R-peaks, are as mentioned Addison [3], Rab-
bani et al. [14], who combine WT and the Hilbert Transform for R-detection
in highly noisy environments, and Merah et al. [18], who uses an approach
based on the Stationary Wavelet Transform (also known as Dyadic wavelet
transform, or Maximum Overlap DWT). Regarding the challenge of ECG
baseline wandering removal, Jayant et al. [5] gives a compact overview over
different existing techniques together with some of their strengths and weak-
nesses. Several of these techniques are tried by Lenis et al. [12] a attempt
to minimize the artificial change in the ST-segment so that any diagnosis
of ischemia or infarction is as accurately as possible. On their simulated
500 Hz ECG-signals, They found that the wavelet-based baseline cancella-
tion performed best out of the methods, but that an almost equally good
result could be obtained with a computationally much faster butterworth
filter. Other attempts to solve the problem has been, amongst others, tried
by Rastogi and Mehra [20] who combines the use of a Savitzky-Golay filter
and a Daubechies (db4) wavelet. An approach using multivariate Empirical
Mode Decomposition and Hilbert vibration decomposition [32] was used by
Gupta et al. [25], who evaluated the method by adding ECG baseline signals,
gathered from the MIT-BIH noise stress test database, on synthetically and
measured ECG-signals before testing. They found the baseline wandering to
be accurately represented by the last two IMFs, and obtained good results by
simple extraction of these from the ECG-signal. Regarding identification and
estimation of the ECG derived respiration (EDR), Moody et al. [11] found the
respiratory rate by observing the changes in the mean cardiac electrical axis
direction caused by expansion and contraction of the chest. By interpolat-
ing these axises with cubic spline, they found significant resemblance to the
respiratory signal found using a pneumatic respiration transducer. Sarkar,
Bhattacherjee and Pal [29] compared the respiration rate derived from respec-
tively Heart Rate Variability (HRV) and Peak Amplitude Variation (PAV),
and used both synthetic and real-time data. In both, they found that HVR
performs overall better than PAV. To the authors knowledge, no papers on
individual focused multivariate heart modeling exists that is strongly related
to the approach used in this thesis.

What Remains to be Done?

Though a lot of work has been done on noise cancellation and baseline wan-
dering removal, there are still room for improvement. Many of the papers
done on these subjects concerns themselves primarily with either synthetic
data, or measurements done under ideal circumstances. Therefore, though
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they might show great results for that specific situation, little evidence exists
that tells whether or not they would perform well in other environments,
and to the authors knowledge, robustness has been a little focused area of
ECG-signal treatment methods.

1.2 Objectives

The main objectives of this Master’s project are as follows

1. Remove or significantly reduce the high-frequency noise in the ECG-
signal by implementing a Normalized Least Mean Square filter.

2. Estimate and extract the baseline wandering and baseline shifts from
the signal by using a Savitzky-Golay filter, a Discrete Wavelet Trans-
form, and an Empirical Mode Decomposition.

3. Implement an algorithm for detecting QRS-complexes and estimating
the heart rate.

4. Create an algorithm for separating the heartbeats, classifying them as
either ”normal” or artifacts, and arrange them into separate matrices
respectively on top of each other.

5. Attempt to identify the respiration rate and respiration form from the
ECG-signal by observing the frequency content contained in the HRV.

1.3 Approach

First of all, the previously implemented low-pass filter from the project work
shall be improved upon in order to attempt removing/reducing the ringing
artifacts (Fig:1.1)

combining this with a wish for making the filter robust against both
power line interference (PLI) and stochastic noise, a Normalized Least Mean
Square (NLMS) filter shall be implemented and tuned. As the desired signal
input to this filter, a FIR filtered version of the ECG-signal with an added
50 Hz sine wave noise shall be used. The filter will then be tested on ECG-
measurements taken from 7 different subjects. Next, the baseline wandering
and baseline shifts shall be estimated, singled out from the rest of the signal,
and extracted and kept for later analysis. This will not be attempted with
a standard high-pass filter, and among the methods to be tested and com-
pared to each other are a Savitsky-Golay smoothing filter, low-frequency re-
moval by Empirical Mode Decomposition(EMD), and low-frequency removal
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Figure 1.1: Low-pass filtered ECG-signal using a butterworth filter. Powerful
and unwanted ringing artifacts can be seen after each R-peak
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by Discrete Wavelet Transform(DWT). Further, a DWT will be done on the
post-NLMS filtered signal, and the QRS-complexes shall be identified using
peak detection on the transform plot of the DWT coefficients that is found to
most closely correspond to the frequency range for QRS-complexes (approx.
0 Hz-20 Hz [17]). The resulting QRS-locations will then be used as anchor
points for splitting the signal into separate cycles, and also for deciding the
temporal and mean heart rate. Next, the signal separation distance shall be
be adjusted to each separate subject based on their mean heart rate, and
all the split cycles shall be arranged consecutively on top of each other in a
matrix. As part of the artifact classification, this signal separation algorithm
shall also create and set aside artifact cycles whenever a certain time passes
without a new QRS-complex being detected. A second part of the artifact
classification shall then be created, which will first create a reference cycle on
some subset of already classified cycles, and then classify all new cycles by
cross-correlation. This algorithm shall also be implemented so as to contin-
uously update this reference cycle as new cycles are being processed. Lastly,
the EDR shall be attempted estimated by straightforward power spectrum
analysis of the HRV found in the QRS-complex procedure.

1.4 Limitations

The by far largest inconvenience during this project was the lack of actual
respiratory measurements from the different subjects. A respiratory belt was
provided during the measuring process, which measures the respiration us-
ing small piezo-electric elements that register the change in circumference
around the thorax due to inhalation and exhalation. Unfortunately, the belt
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had a defect, and so no direct respiratory data could be recorded. This, in
turn, made determining the accuracy of the different respiratory estimates
found in this thesis difficult, as there was no reference respiration to compare
them with. Though established methods of measuring respiration have been
shown to give some small error [9], it would nonetheless have been quite il-
luminating to have this respiration data in order to provide some statistical
insight on how successful this project had been in achieving the aforemen-
tioned objective. Furthermore, the quality of the measurements used for this
project has been a subject of discussion. These are the same measurements
that were recorded and used in the in-depth project leading up to this thesis,
and briefly explained, the measurements were done by the author and his
partner, both lacking any medical training, and therefore most likely result-
ing in above averagely noisy data1. In addition, the high sampling frequency
of the instruments made some of the frequency bands, especially in the lower
spectra, hard to discern. For the purpose of determining the accuracy of the
different QRS-detection methods, it would also have helped to have someone
with medical knowledge mark the QRS-complexes beforehand, so it would
be possible to quantify the performance of the methods (e.g. as a percent-
age), though admittedly, the post-filtered signals were for the most part of
high enough quality that an untrained eye could rather easily determine the
position of an R-peak. This limitation is also extended to the baseline es-
timation in the sense that there were no reference baseline that one could
compare the estimates to, so there was no way of accurately determine their
accuracy other than empirically compare them to the signal. In addition, the
methods have not been tested extensively on a larger samples size of diverse
individuals. The 7 subjects the measurements were done on was healthy
adults in the same age group (22-25 years old), and in order to see if the
methods indeed detect known heart abnormalities (or on other age groups
for that matter), testing should also have been done on data from patients
with known cardiovascular diseases, or on geriatric patients.

1However, taking into consideration that the methods created in this thesis ideally
should work on a wide range of different ECG-signals, one could argue that the heightened
noise in the measurements actually helps the methods becoming more robust.
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Chapter 2

Theory

2.1 Electrocardiography(ECG)

Electrocardiography(ECG) is the process of recording the electrical activity
of the heart. This is done by using a set of electrodes placed on the skin that
measures the minute electrical changes caused by the currents propagating
through the tissue out from the heart. This is then shown on a connected
monitor or printed out as seen in figure 2.4.

Figure 2.1: A 12-lead ECG of a healthy adult

By placing as many as 4 leads on the limbs, and 6 leads across the chest,
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one can observe the heart from 12 different angles (or leads), which corre-
sponds to the labels aVR, V1, V2 etc. in Figure 2.4. The most basic setup,
and the one used for the data in this thesis consists of 3 leads on the right
arm, left arm, and the left leg as shown in Figure 2.2a.

Figure 2.2: 3-lead ECG

(a) The electrode placement in a 3-lead
ECG setup.

(b) The electrode placement in a 3-lead
ECG setup.

Measuring only the voltage directly across the heart along lead I, yields
the most studied and known wave form Fig:2.2b, and many of the hearts
primary functions can be easily observed here. Physiologically, and overly
simplified, the different components in Fig:2.2b are as follows [38]:

• The P-wave represents the atrial depolarization or atrial contraction,
that is responsible for filling the last approximately 30% of the ven-
tricles before ventricular contraction. A large or irregular P-wave may
indicate enlarged atria or nerve impulses coming from different sites.

• The QRS-complex represents the ventricular depolarization, or ventric-
ular contraction that pushes the blood from the ventricles out in the
body. Deep or wide QRS-complexes can indicate a possible myocardial
infarction (heart attack) or other pathology.

• The T-wave represents the ventricular repolarization or relaxation of
the cardiac muscles in the ventricles whereupon they enter a recovery
period. Tall or peaked T-wave may indicate myocardial injuries.
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2.2 Filtering techniques

As mentioned earlier, the ECG-signal is prone to several known sources of
noise such as power line interference(PLI), baseline movement due to res-
piration, and muscle noise [31]. These sources of noise drastically change
the signal form, and since much of the desired information in the signal is
derived directly from it morphology, some sort filtering technique was neces-
sary in order to glean this information. A short presentation will therefore
be made here of different classes of filters tried on the signals, their mathe-
matical construction, and their strength and weaknesses. The section on the
Least-Mean-Square algorithm is heavily based on the book by Haykin about
Neural Networks [13]

2.2.1 Finite impulse response filters

Finite impulse response filters or FIR filters is a class of digital filters which
have, as the name implies, finite impulse response. That is, when subject
to an impulse (e.g. a Kronecker delta function), every value of that filters
response for t → ∞ will be zero. When looking at the transfer function for
the general digital filter of arbitrary order N [34]

yn
xn

=

∑N
i=0 aiz

−i∑N
i=0 biz

−i
, (2.1)

where yn and xn is the respective output and input, ai is the feedforward
filter coefficients, bi is the feedback filter coefficients, and z−i is the the delay
operator (z−ixn = xn−i). We can see that the filters behavior is caused by
the non-trivial nature of the denominator, but in the case of a FIR-filter, we
usually set b0 to 1, and all other values of b to 0. Thus, the filters response
will not be dependent on earlier responses (due to zero feedback). One great
advantage this gives, is that no FIR filter response can be unstable (again,
due to zero feedback), and they will usually outperform IIR filters in terms
of accuracy. IIR filters, however, will usually have a faster response time,
and is overall easier to tune and implement.

2.2.2 Least mean square filter

Let us now assume that our signal is the sum of N different independent
signals x, each with their own corresponding weight w, that is

y =
N∑
k=1

wkxk, (2.2)
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If we further assume some desired response signal d, the error between
them will be defined as

e = d− y. (2.3)

and as a cost function J for minimizing e, we introduce the mean square
error(MSE)

J =
1

2
E[e2], (2.4)

The linear optimum filtering problem is thus to determine a set of weights
w that minimizes J . The resulting filter is called a Wiener filter, after its
creator Norbert Wiener [37], and by inserting Eq2.2 in Eq2.3 and Eq2.3 in
Eq2.4, we can write the MSE as

J = −1

2
E[d2]− E[

n∑
k=1

wkxkd] +
1

2
E[

n∑
k=1

n∑
j=1

wkwjxkxj], (2.5)

which, by assuming constant weights, can be written as

J = −1

2
E[d2]− wk

n∑
k=1

E[xkd] +
1

2
wkwj

n∑
k=1

n∑
j=1

E[xkxj], (2.6)

We now have three different expectation terms, and define

rd = E[d2], (2.7)

as the mean-square value of the desired response d,

rdx(k) = E[xkd], (2.8)

as the cross-correlation function between xk and d, and

rx(j, k) = E[xkxj], (2.9)

as the auto-correlation function of x itself. Inserting these into Eq2.6, we
obtain

J = −1

2
rd −

n∑
k=1

wkrdx(k) +
1

2

n∑
k=1

n∑
j=1

wkwjrx(j, k), (2.10)
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In order to minimize this cost function, we have to differentiate it with re-
spect to wk and set the result to zero for every k. This gives us the expression
for the gradient of the filters error surface.

∇wJ =
∂J

∂wk
, k = 1, 2, . . . , p, (2.11)

Inserting Eq2.10 into this gradient expression yields us

∇wJ = −rdx(k) +
n∑
j=1

wjrx(j, k), (2.12)

which by setting equal to zero gives us

n∑
j=1

wojrx(j, k) = rdx(k), k = 1, 2, . . . , p. (2.13)

This set of equations is called the Wiener-Hopf equations, where woj
denotes the optimal weights of the aforementioned Wiener filter that solves
these equations. One popular method for solving these equations is the
method of steepest descent, in which the weights assumes a time-varying
form that iteratively adjusts themselves along the error surface towards an
optimal solution. The optimal solution will be at the bottom point of the
error surface, and intuitively, one sees that the weights of the filter should be
adjusted so that they point in the direction of steepest descent, which will
be the opposite of the gradient vector given by Eq2.12.

Figure 2.3: The method of steepest descent for one weight
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If we now let wk(n) be the weight at the iterative step n by the method
of steepest descent, the corresponding filter equation 2.12 will also take on a
time-varying iterative form

∇wJ(n) = −rdx(k) +
n∑
j=1

wj(n)rx(j, k), (2.14)

and for any step n, the adjustment applied to wk(n) as per method of
steepest descent will be

∆wk(n) = −η∇wkJn, (2.15)

where η is the learning-rate parameter, or step size, which is a positive
parameter that determines the speed and accuracy of error convergence. We
can now formulate the expression for the value the updated weight w−k(n+1)
as

wk(n+ 1) = wk(n) + ∆wk(n) = wk(n)− η∇wkJn, (2.16)

and inserting Eq2.14 in Eq2.20 gives the method of steepest descent ex-
pressed in terms of the correlation functions rx(j, k) and rdx(j, k)

wk(n+ 1) = wk(n)− η[rdx(k)−
M∑
j=1

wj(n)rx(j, k)], k = 1, 2, . . . , p. (2.17)

However, the method of steepest descent requires a priori knowledge
about the signal xk in order to calculate the spatial correlation functions
rdx(k) and rx(j, k), which will not be available in the case where the filter
must operate in unknown environments. In addition, one must take great
care when choosing a step-size η, as both performance and accuracy are
greatly decided by this. In order to compensate for this, we finally turn
to the least-mean-square algorithm which is an approach that uses instan-
taneous estimates of rx(j, k) and rdx(j, k). These are defined directly from
Eq2.8 as

r̂dx(k;n) = xk(n)d(n), (2.18)

and from Eq2.9 as

r̂x(j, k;n) = xk(n)xj(n), (2.19)

We thus have transformed the expressions for cross-correlation and auto-
correlation over in a non-stationary general form, where both the signals and
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the desired response has taken on time-varying forms. inserting Eq2.18 and
Eq2.19 into Eq2.20, gives us the finalized expression for the computation of
the weight estimates as

ŵk(n+ 1) = ŵk(n) + η[xk(n)d(n)−
P∑
j=1

ŵj(n)xj(n)xk(n)]

= ŵk(n) + η[d(n)−
P∑
j=1

ŵj(n)xj(n)]xk(n)

= ŵk(n)η[d(n)− y(n)]xk(n), k = 1, 2, . . . , p.

(2.20)

where y(n) is the output of the spatial filter at iteration n, and d(n)− y(n)
is, as mentioned earlier, the error e(n). Since the input xj(n) is sensitive to
scaling, we’ll also normalize the input in order to guarantee stability of the
algorithm [13], and it is now simple to set up the normalized LMS algorithm
as follows

Table 5.1 Summary of the NLMS algorithm
1.Initialization set

ŵk(1) = 0 fork = 1, 2, . . . , p

2.Filtering. For time n= 1, 2, . . . , compute

y(n) =
∑p

j=1 ŵj(n)xj(n)

e(n) = d(n)− y(n)

ŵk(n+ 1) = wk(n) + ηe(n)xk(n)
xT x

fork= 1, 2, . . . , p

A great advantage of this approach compared to the method of steepest
descent is that it is instantaneous in the sense that it only seeks to minimize
the instantaneous error squared, defined as 1

2
e2(n). The steepest method

will try to minimize the sum of error squares integrated over all the previous
iterations, thus needing to store this information for calculating the exact
gradient vector, while the LMS algorithm will calculate a ”random” gradient
vector that will minimize the average error squared over time, only needing
to store the information contained in the current weights of the filter. Since
it can operate in non-stationary environments, it can also find an optimal
solution when the minimum point of the error surface varies with time. On
the flip-side, the stochastic behavior of the gradient vector also means that
one often needs large sample sizes in order to achieve a small mean square
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error1. In addition, if the signal to be filtered is highly non-stationary, the
tracking of the optimal solution will improve with smaller step-sizes η, but
at the cost of a slower adaptation rate.

Figure 2.4: A schematic drawing of the principle idea behind an adaptive
filter. The algorithm will update the weights of the linear FIR-filter based
in the error e between the desired signal d and the output signal y

2.2.3 Savitzky-Golay filter

One of the simplest and most straightforward ways to smooth fluctuating
data is to employ a moving average filter. For a point xk in a discrete data
set, and for a static number m, this can be thought of as summing all the
points from xk−m to xk+m and dividing by the number of elements n contained
in this interval. When this averaged value has been generated, one drops the
last value xk−m, adds a new value xk+m+1, and repeats the process for the
point xk+1, that is

gk =
k+m∑
i=k−m

Cixk, (2.21)

where Ci is the filter coefficients with constant value 1/n. This method
works wonderfully as long as the underlying function that describes the data
is constant or linear, but in the case of a non-zero second derivative, a bias
will be introduced which will change the shape, and thereby information
in the data [30]. In order to remove this highly undesirable trait, Savitzky
and Golay proposed in 1964 a way of retaining the shape and form of the
data while still using the principles of a moving window [1]. They sought to

1Unless one considers a large step-size η. However, one must in this cause be fairly
certain of the statistics of the signal in order for the error rate to converge
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replace the filter coefficients Ci with polynomials of higher order instead of
the constant average. By least-square fitting this polynomial line to the n
points inside the window, the smoothed value gk would be chosen in such a
way as to best retain the fundamental shape of the data (as seen in figure
2.5).

Figure 2.5: moving average filter (middle) and 4th order Savitzky-Golay filter
(bottom) applied to a noisy chirp signal with window size 33. Notice how
the moving average filter fails to retain the shape of the wave tops. [26]

Mathematically, the problem is to find the best mean-square fit of a poly-
nomial of degree p thorough the set of 2m + 1 consecutive values, where
p < 2m+ 1, and the polynomial is on the form

gk =

i=p∑
i=0

bpik
i = bp0 + bp1k + bp2k

2 + . . .+ bpik
p. (2.22)
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Taking the derivatives of this polynomial gives us

dgk
dk

= bp1 + 2bp2k + 3bp3k
2 + . . .+ pbppk

p−1 (2.23a)

d2gk
dk2

= 2bp2 + 6bp3k + . . .+ (p− 1)pbppk
p−2 (2.23b)

dpgk
dkp

= pbpp. (2.23c)

And since the least squares criterion requires us to minimize the sum
of the squares of the differences between the observed values yk and the
estimated values gk inside the window, we have that

∂

∂bpi
[
k=m∑
k=−m

(gk − yk)2] = 0 (2.24)

minimizing Eq2.24 with respect to bpk, gives us

∂

∂bpk
[
k=m∑
k=−m

(bp0 + bp1k + . . .+ bppk
p − yk)2]

= 2
k=m∑
k=−m

(bp0 + bp1k + . . .+ bppk
p − yk)k = 0

(2.25)

Since there are n+1 number of equations to calculate (one for each point
of data), we can also minimize 2.24 with respect to the general bpr, where r
represents the index of the equation number, that is

k=m∑
k=−m

[

i=p∑
i=0

bpik
i − yk]kr = 0, (2.26)

which can be expressed as

k=m∑
k=−m

i=p∑
i=0

bpik
i+r =

k=m∑
k=−m

ykk
r. (2.27)
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2.3 Detection of QRS-complexes

Next, not only for determining heart rate and R-peak magnitude but also
for the purpose of later splitting the signal into separate heartbeats in order
to compare them, a method for detecting individual QRS-complexes is nec-
essary. Several methods and approaches have already been done on this sub-
ject [14]- [18], and this thesis will mostly use the Maximum Overlap Discrete
Wavelet Transform (MODWT) for QRS-detection. The theory on wavelet
transforms is based on the ”Illustrated wavelet transform handbook” [2] by
Addison.

2.3.1 Wavelets and the Discrete wavelet transform (DWT)

Wavelets are small ”local” wavelike functions, and the principal idea behind
their use in signal analysis is to convolute them with the signal in order to
transform the signal over in a more useful form that better represents the
signal information.

Figure 2.6: A set of different wavelets

Mathematically, a wavelet has to satisfy certain criteria. If we denote the
wavelet function as ψ(t), then it must

1. Have finite energy

E =

∫ ∞
−∞
|ψ(t)|2dt <∞ (2.28)
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2. If ψ̂(f) is the fourier transform of ψ(t)

ψ̂(f) =

∫ ∞
−∞

ψ(t)e−i(2πf)tdt (2.29)

then the following condition must hold

Cg =

∫ ∞
0

|ψ(f)|2

f
dt <∞ (2.30)

where Cg is the admissibility constant that changes value depending on
what wavelet form is used. These criteria simply mean that a wavelet must
have a zero mean, and wavelets that fulfill the second condition operate in
fact as bandpass filters, letting through frequencies contained in the bandpass
defined by the wavelets corresponding energy spectrum. We will now consider
a simple wavelet, the mexican hat wavelet (see Figure 2.6), defined as

ψ(t) = (1− t2)e(−t2/2) (2.31)

When we convolute this wavelet with a signal x(t), there are two opera-
tions we can do in order to manipulate the wavelet so it becomes more flexible
for use in signal analysis. The first one is to stretch or compress (dilate) it,
and the other one is to translate it along the time axis.

Figure 2.7: The two different wavelet manipulations, Dilation to the left (1),
and translation to the right (2). [40]

Denoting dilation and translation as the parameters a and b respectively,
we can rewrite the mexican hat wavelet in this shifted and dilated version as

ψ(
t− b
a

) = [1− (
t− b
a

)2]e−
1
2
[(t−b)/a]2 . (2.32)
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The wavelet transform of a signal x(t) with a wavelet ψ(t) in the contin-
uous case can now be defined as

T (a, b) = w(a)

∫ ∞
−∞

x(t)ψ∗(
t− b
a

)dt (2.33)

Where w(a) is the weighting function, and the asterisk tells us to use the
complex conjugate of the wavelet transform if applicable (which is not the
case for the mexican hat wavelet, or any other wavelet used throughout this
thesis). For energy conservation purposes, w(a) = 1/

√
a is often used (so

that all scales of the wavelet have the same energy), and we can compactly
write the normalized wavelet function as

ψa,b =
1√
a
ψ(
t− b
a

), (2.34)

which in turn gives us the compact version of the continuous wavelet
transform integral

T (a, b) =

∫ ∞
−∞

x(t)ψ∗a,bdt (2.35)

We now see that the wavelet transform is simply a convolution of x(t)
and differently scaled versions of the wavelet that are slid along x(t). If
the wavelet at a certain scale a′ has a high correlation with the signal at a
certain position b′, the corresponding transform value T (a′, b′) will be high
as well. Plotting a and b against each other can thus give us a clear view
of whether or not patterns similar to the wavelet form exist somewhere in
the signal, and can tell us how strongly they correlate with the signal, their
temporal locations, and their approximate frequency contents. However,
this also means that the quality of the analysis will depend largely on what
wavelet is used, as one is restricted to a limited set of pre-existing wavelets.
If you know a priori that your signal contains patterns that well fits one of
the wavelets, you will obtain an accurate representation of that pattern using
that wavelet. If the phenomena you’re after does not match well any existing
wavelet, you will, on the other hand, most likely not be able to discern the
desirable information satisfactorily.

Now for the discrete case of the wavelet transform, we can no longer
move continuously along the time axis but must move the wavelet in discrete
steps, and also at discrete values of dilation. A natural choice for sampling
the parameters a and b in Eq2.35 would be to logarithmically discretize the
scale size a and then link it to the size of the step b. Thus, our movement
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Figure 2.8: Signal showing yearly epidemiological occurrences. Two different
scales of the wavelet are shown at the top with the signal, and at the bottom,
we see clearly that the first wavelet scale captures the sine movement of the
signal, while the other wavelet is too stretched out to correlate well with
the signal. The plot is from a paper on spectral analysis on epidemiological
time-series by Cazelles et al. [7]

through time in steps of b is directly proportional to the scale a, and we can
rewrite Eq2.35 in this form as

ψm,n(t) =
1√
am0

ψ(
t− nb0am0

am0
) (2.36)

Where m and n are integers that control respectively wavelet dilation
and wavelet translation, and which can be set to any real value. a0 is a fixed
dilation step parameter set to a value greater than 1, and b0 is the location
parameter set to any value greater than zero. Using this discrete wavelet
form, we can now express the general discrete wavelet transform as

Tm,n =

∫ ∞
−∞

x(t)
1

a
m/2
0

ψ(a−m0 t− nb0)dt (2.37)

Where Tm,n are known as the detail coefficients. One thing to watch out
for is whether or not one might lose signal information in the transition from
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the continuous to the discrete transform. This is equal to asking whether or
not one has lost energy, so by summing the energy of the detail coefficients,
we can see if it lies within a certain bounded range of the energy E of the
original signal, that is

AE ≤
∞∑

m=−∞

∞∑
n=−∞

|Tm,n|2 ≤ BE (2.38)

where ideally, A should be equal to B (that is, no information was lost in
the transition). One easy and common way of conserving information, and
that gives efficient discretization, is choosing a0 and b0 as 2 and 1 respec-
tively. This power-of-two logarithmic scaling of both dilation and translation
is known as the dyadic grid arrangement, and inserting a0 = 2 and b0 = 1
into Eq2.36 gives us the dyadic grid wavelet

ψm,n(t) =
1√
2m
ψ(
t− n2m

2m
), (2.39)

written more compactly as

ψm,n(t) = 2−m/2ψ(2−mt− n). (2.40)

If we, in addition, normalize the dyadic grid wavelets, we will have an
orthonormal wavelet basis, so that no information in any specific wavelet co-
efficient is repeated anywhere else, and so that all wavelet coefficients together
completely define the original signal x(t). Using the dyadic grid wavelet in
2.39, we can now express the discrete wavelet transform(DWT) as follows

T (m,n) =

∫ ∞
−∞

x(t)ψm,ndt, (2.41)

and the original signal x(t) can be fully and completely reconstructed by
doing the inverse discrete wavelet transform, which is simply the summation
of the detail coefficients and the dyadic grid wavelet over all the wavelet
translation and dilation parameters, that is

x(t) =
∞∑

m=−∞

∞∑
n=−∞

Tm,nψm,n(t). (2.42)

2.4 Baseline and respiratory rate estimation

Finally, in order to estimate the baseline wandering, respiration form and
respiration frequency, three methods were used. Savitzky-Golay as described

21



earlier was used in baseline estimation, and DWT was used for both baseline
and respiratory rate estimation. The final method was EMD, which will be
briefly described here.

2.4.1 Empirical Mode Decomposition(EMD)

The Empirical Mode Decomposition is a technique for decomposing a signal
into a set of functions called Intrinsic Mode Functions(IMFs). This tech-
nique is actually part of the Hilbert-Huang-Transform(HHT) [23], which is
a method for observing the instantaneous frequency [22] in a data set, and
EMD is a highly data-driven, a posteriori view of the time-frequency do-
main. This is due to how EMD only operates directly in the temporal space,
treating the signal as is regardless of frequency content. However, for this
approach to work, the assumption must be made that any signal consists of
a finite number of oscillatory modes which is superimposed on top of each
other [24], which often (due to the highly non-stationary nature of the real
world) have widely different frequencies. These oscillatory modes are what
is called IMFs, and there are two criteria that needs to be fulfilled in order
for a function to qualify as an IMF, namely:

1. The number of extremum points and the number of zero-crossings in
the data set must be equal, or at most differ by one.

2. The mean local value between the envelope defined by the maximum
points, and the envelope defined by the minimum points, must be zero.

In order to construct these IMFs, EMD is implemented through a sifting
process of the data set. This process will extract the modes in order from the
highest frequencies to the lower ones, and the algorithm can be summarized
as follows [36]:

1. identify all the local extrema in the data.

2. Create envelopes of respectively the upper and lower extrema by use of
cubic spline lines.

3. Find the mean of the envelopes.

4. Use the difference between the data and the mean as a proto-IMF.

5. check the IMF criteria and a stoppage criterion in order to determine
whether or not the proto-IMF qualifies as an IMF.
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Figure 2.9: One step of the EMD sifting process. An upper and lower enve-
lope has been created of the oscillatory signal, and the stippled line shows
the mean. [35]

6. if not, repeat step 1-5 with the proto-IMF as the data.

7. if it qualifies as an IMF, assign it as such, and the residue is defined as
the data after extracting the IMF.

8. Repeat step 1-7 with this residue as the new data.

9. The operation ends when the residue has no more than one extremum.

Mathematically, this operation can be described as:

x(t)−m1,1(t) = h1,1(t);

h1,1(t)−m1,2(t) = h1,2(t);

. . .

. . .

h1,k−1(t)−m1,k(t) = h1,k(t);

⇒ h1,k(t) = c1(t).

(2.43)

where x is the data, m is the mean of the data, h is the the proto-IMF,

23



and c is the IMF. From equation 2.43, we see that

x(t)−m1,1(t) = h1,1(t);

h1,2(t) = h1,1(t)−m1,2(t) = x(t)− (m1,1 +m1,2);

. . .

. . .

h1,k(t) = h1,k−1(t)−m1,k(t) = x(t)− (m1,1 +m1,2 + . . .+m1,k);

⇒ c1(t) = x(t)− (m1,1 +m1,2 + . . .+m1,k).

(2.44)

Equation 2.44 show how to extract the first IMF component, and subse-
quently we have that

x(t)− c1(t) = r1(t);

r1(t)− c2(t) = r2(t);

. . .

. . .

rn−1(t)− cn(t) = rn(t);

⇒ x(t)−
n∑
j−1

cj(t) = rn(t).

(2.45)

where r is the residue after extracting the IMF from the data. The first
residue can be expressed as

r1(t) =

k1∑
j−1

m1,j (2.46)

and from equation 2.45, we get the expression for our second IMF as

c2(t) = r1 − r2 =

k1∑
j−1

m1,j −
k2∑
j−1

m2,j (2.47)

which generalized becomes

ci(t) = ri−1 − ri =

k1∑
j−1

mi−1,j −
k2∑
j−1

mi,j (2.48)

Thus, we see that except from the first one, all IMFs can be expressed as
a sum of spline functions, and a basis for the signal can now be expressed in
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terms of IMFs as

x(t) =
n∑
j−1

cj + rn

= x(t)−
k1∑
j−1

m1,j + (

k1∑
j−1

m1,j −
k2∑
j−1

m2,j)

+ . . .+ (

kn−1∑
j−1

mn−1,j −
kn∑
j−1

mn,j) +
kn∑
j−1

mn,j

= x(t).

(2.49)

and equation 2.49 shows us that the original signal is fully and precisely
constituted by the IMFs. Since the first IMFs will have the most zero-
crossings, it is intuitive that these also are the ones with the highest frequen-
cies. Therefore, IMFs not decompose the signal into separate oscillatory IMF
modes, but does it in a way that presents the information in the signal from
the highest to the lowest frequencies (much like the detail coefficients in the
Wavelet Transform) as seen in Figure 2.10.
One weakness of the EMD, however, is its lack of mathematical rigidity, as it
has no analytical solution. For example, one popular choice for the stoppage
criterion of the sifting process is the Cauchy type criterion [23], in which the
sifting process stops when the difference SD given as

SD =
T∑
t=0

[hk−1(t)− hk(t)]2

h2k−1(t)
(2.50)

is smaller than some preset small value ε. This can be empirically shown to
always hold true when the number of iterations exceeds a certain large value,
but it can not be strictly proven mathematically. Another major weakness
of the EMD algorithm, is also the phenomena known as mode-mixing. As
the name implies, modes with the same frequency content or time scale can
be assigned to different IMFs, e.g. when a large amplitude signal contains
intermittency with high frequencies [10]. Thus, IMFs with mode-mixing may
not always correctly reflect the signal components at different time scales and
frequencies, and care should be taken when considering an IMF with respect
the possibility of mode-mixing. This is incidentally also the part of EMD
where research has focused the most on finding a solution, and interested
readers are recommended to read the works of, amongst others, Deering &
Kaizer [8], Torres et al. [33] and Wu et al. [39].
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Figure 2.10: An EMD done on a noisy signal with significant sine behaviour.
The first IMF captures almost all of the high-frequency noise, while IMF2
and IMF3 clearly shows the lower frequency sine components. [19]
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Chapter 3

Methods

The measurements used in this thesis was taken with instruments by ADin-
struments. The equipment consisted of an biological amplifier Bio Amp
FE132, a three-pack of Shielded Lead Wires MLA2503, and a 3 Lead Shielded
Bio Amp Cable MLA2340. The software used for measuring was LabChart
8 for windows, and the programming language used was MATLAB R2017b.
The NLMS-filter was implemented using the MATLAB Digital Signal Pro-
cessing(DSP) toolbox. A dsp.LMSfilter object was created with a filter length
of 200, method ’normalized’, and a step size 0.001. As a reference signal input
to the NLMS-filter, a dsp.FIRfilter object was created with a window based
FIR-filter design, implemented using the inbuilt fir1 function with a filter
order of 200, and a lowpass frequency constraint of 0.08 (cutoff frequency
40Hz divided by Nyquist frequency 500Hz). The baseline wandering of the
signal was estimated with three different methods. Firstly, a third order
Savitzky-Golay filter, using the Matlab sgol function with a window length
of 2501 samples. Secondly, a maximum overlap discrete wavelet transform
using a symlet 4 wavelet and the Matlab modwt function with 12 levels of de-
composition (in order to capture frequencies as low as 0.1 Hz), followed by a
maximum overlap discrete transform multiresolution analysis using the Mat-
lab modwtmra function, and summing the last 4 levels. Thirdly, an empirical
mode decomposition using the last 4 of the resulting intrinsic mode func-
tions plus the residue as baseline estimate. The algorithm for detecting the
QRS-complexes was implemented using first, as for the baseline estimation,
a modwt and modwtmra approach using a symlet 4 wavelet down to the 10th
level1. The magnitude and location of the peaks was then found by using
the 5th level of the resulting transforms as input to the Matlab findpeaks

function, with ’minpeakprominence’ of the peaks set to 0.0001, and ’min-

1though this choice was arbitrary, as any level of 5 or below would have sufficed
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peakdistance’ between peaks set to 200. the separation of the ECG-signal
into heart cycles was done by using the R-peak location as the base, and
then cutting off the signal at each side of this point at a distance equal to
half the mean heart rate (e.g. with sampling frequency 1000Hz, and mean
heart rate 80 BPM, the cutoff distance would be ((60/80)*1000)/2 = 375).
As the first part of artifact classification, a threshold of 1.5 was used, where
if any R-peak location occurred later than 2*cutoffDistance*threshold, a cy-
cles worth of signal would be extracted at the midpoint between the last and
current R-point locations and treated as an artifact. In the second part of
the artifact classification, an initial reference cycle was created by taking the
mean of the 20 first separated cycles. For each new consecutive cycle oc-
curring, a normalized cross-correlation was done between this cycle and the
reference cycle using the Matlab xcorr function with normalization option
’coeff’. A threshold value of 0.97 was chosen, and if the max value in the
cross-correlation sequence matched or exceeded this value, the current cycle
would be classified as normal, and a new updated reference cycle would be
created using the current cycle together with the preexisting ones. If the
threshold was not met, the cycle would be classified as an artifact and put in
a separate matrix together with the artifacts classified in the cycle separation.
Lastly, in the part concerning EDR estimation, the HRV was extrapolated
over the measurement duration using the R-peak locations as input data,
and compared to the filtered ECG-signal. A power spectrum was also made
of the HRV signal in order to analyze its frequency content.
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Chapter 4

Results and Discussion

4.1 NLMS-filtering

The Filter showed an overall high performance in reducing the noise values for
the different subjects, and Figure 4.1-4.2 shows a 10-second extract of both
the raw signal and the filtered signal, while Figure4.8 shows the fast fourier
transform power spectrum after filtering. The results for Subject 1 (Fig:4.1)
are enlarged in order to show a more detailed example of the filter perfor-
mance. Not surprisingly, the measurements that were of ”better” quality,
yielded better results then passed through the filter, as seen in, for example,
Figure 4.1 and Figure 4.3, where the noise is predominantly power line in-
terference. Even in the measurements that showed more stochastic behavior
such as Figure 4.5a and Figure 4.2a, the filter performance significantly re-
moves the high-frequency noise. However, for subject 4, the measurements
were done under less than optimal conditions, where recent strenuous activ-
ity caused extensive respiratory movement and muscle noise, and moist skin
due to sweat made for difficulties in electrode placement. The result is seen
in Figure 4.4a, where one can see large amounts of stochastic noise in the
signal, and the corresponding filtered signal in Figure 4.4b shows that the
NLMS-filter, though performing admirably, struggles in locating the optimal
solution when the stochastic nature of the environment it is operating in
surpasses a certain threshold. On the positive side, the post-filtered signals
does not seem to change their shape in any significant way1, and the different
waveforms and complexes are shown clearly with minute amounts of noise,
which is important both for the methods in this thesis, and also for future

1However, there exists the possibility of information being distorted even from these
small changes, so depending on how strict one wishes to be with respect to conserving
information, it might be worth considering an alternative method for high-frequency re-
moval.
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implementations. Note that some degree of ringing still occurs, most notice-
ably seen in Figure 4.1b in the onset of each QRS-complex. This is due to
the Gibbs phenomenon, and will most likely be impossible to fully remove in
any filter operation that employs an IIR-filter. Also, as seen from the power
spectra in Figure 4.8, some subjects show frequency content slightly above
the cutoff frequency of 40 Hz, and a slightly lower cutoff frequency might be
considered if one is able to safely avoid encroaching on the QRS-complex
frequency domain.
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Figure 4.1: Filter results for subject 1. Note that the ventricular heartbeat
does not affect the filter performance noticeably

(a) Raw signal subject 1
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(b) NLMS filtered signal subject 1
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Figure 4.2: Filter results for subject 2

(a) Raw signal subject 2
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(b) NLMS filtered signal subject 2
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Figure 4.3: Filter results for subject 3

(a) Raw signal subject 3
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(b) NLMS filtered signal subject 3
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Figure 4.4: Filter results for subject 4

(a) Raw signal subject 4
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(b) NLMS filtered signal subject 4
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Figure 4.5: Filter results for subject 5

(a) Raw signal subject 5
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(b) NLMS filtered signal subject 5
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Figure 4.6: Filter results for subject 6

(a) Raw signal subject 5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time(ms)

-3

-2

-1

0

1

2

3

4

5

6

V
o
lt
a
g
e
(V

)

10-4 Subject 6

(b) NLMS filtered signal subject 6
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Figure 4.7: Filter results for subject 7

(a) Raw signal subject 7
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(b) NLMS filtered signal subject 7
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Figure 4.8: FFT power spectrum for the different subjects

(a) Subject 1

0 20 40 60 80 100

frequency(Hz)

1

2

3

4

5

6

7

8

9

A
m

p
lit

u
d

e
(D

b
)

10-6
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(c) Subject 3
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(d) Subject 4
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(e) Subject 5
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(f) Subject 6
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(g) Subject 7

0 20 40 60 80 100

frequency(Hz)

1

2

3

4

5

6

7

8

A
m

p
lit

u
d

e
(D

b
)

10-6

4.2 Baseline wandering identification and re-

moval

Though using quite different methods, both Savitzky-Golay, DWT, and EMD
performed fairly well in estimating the baseline wandering and shifts of the
different subjects, as seen in Figures 4.9-4.15. The figures show the first 100
seconds of the post NLMS-filtered ECG-signal with the estimated baseline
plotted on top, and as both the R-peaks and T-peaks have some inherent
variability in them, the baseline wandering is most clearly seen from the
changes in the P-wave (the shortest of the peaks among the peaks in the
signal). While some subjects had little baseline wandering to begin with,
such as Subject 14.9 and Subject 44.12, others such as Subject 24.10, Sub-
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ject 34.11 and Subject 54.13 showed a much larger degree of fluctuation, and
performance-wise, the EMD estimated baseline performs less accurately in
baseline estimation compared to the two other methods, especially on catch-
ing baseline shifts as seen in Figure 4.13. However, this is most likely due to
mode-mixing or improper choice of which intrinsic mode functions to extract,
and with more refinement, EMD would quite probably yield as good a result
as for the other methods. Regarding Savitzky-Golay and DWT, they show
similar behavior, with DWT on the overall performing markedly better, as
especially seen in Figure4.9 and Figure4.14, with the noticeable exception of
Figure4.15, where Savitzky-Golay outperforms DWT slightly. As seen from
Subject 2 in Figure 4.10, The Savitzky-Golay estimated baseline shows for
some subjects a slightly oscillatory behavior, due to the third degree of its
filter order. This is unwanted, as it can affect the morphology of the signal
when extracted, but lower order filter performs more poorly with respect to
following baseline shifts, making it a trade-off in terms of baseline accuracy
versus signal distortion. More tuning of the filter by varying window lengths
is also a possibility, but for the rest of the thesis, the baseline will be extracted
using the DWT method. Also note how the DWT estimated baseline centers
itself around zero, while the Savitzky-Golay and EMD estimated baseline
more closely overlaps with the signal, as most clearly seen in Figure4.10 and
Figure4.15. This is due to
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Figure 4.9: Baseline estimates for subject 1
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Figure 4.10: Baseline estimates for subject 2
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Figure 4.11: Baseline estimates for subject 3
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Figure 4.12: Baseline estimates for subject 4
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Figure 4.13: Baseline estimates for subject 5
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Figure 4.14: Baseline estimates for subject 6
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Figure 4.15: Baseline estimates for subject 7
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4.3 QRS-complex detection

The goal of the QRS-complex detection was met with a large degree of suc-
cess, and the use of DWT with a sym4 wavelet proved to be a highly efficient
method for detecting the different heartbeats. In Figure 4.16, the fifth level
wavelet transform is plotted on top of the ECG-signal, showing how each
R-peak results in a sharp increase in the transform value due to the high
correlation between the QRS-complex and the sym4 wavelet, and the posi-
tion of this peak transform value is then marked on the ECG-signal with a
red circle, showing a high degree of accuracy in peak-detection. The ventric-
ular heartbeat in the middle has little correlation with the wavelet, as seen
from its transform value, and it is therefore correctly not marked as a QRS-
complex. The 10-minute NLMS-filtered and baseline adjusted signal for each
of the seven subjects is shown in Figure 4.17a-4.17g, and the detected QRS-
complexes are marked as red circles. Some subjects, and especially Subject
1 (Fig:4.17a) and Subject 3 (Fig:4.17c), shows very little variation in the
R-peak values, and with distinct differences between the R-peaks and the P-
and T-wave, a comparably good result could probably have been achieved by
simply using the built-in findPeak function in Matlab. Since the DWT does
not consider baseline offset in its calculations, however, the implemented
method performs remarkably well in the signals with large differences be-
tween R-values, such as Subject 5,6 and 7 (Fig:4.17e-4.17g). In addition,
it achieves equally good results on Subject 4 despite the much larger noise
content remaining in the signal, indicating that the method is quite robust as
well, as long as the distinct QRS-complex shape is not noticeably distorted.
Note also that the beginning of every signal has significantly lower peak val-
ues compared to the rest of the signal. This is due to the NLMS-filter needing
some amount of time (approx. 4-5 beats) in order for the error to converge to
zero, and while the QRS detection method performs admirably in catching
even these early heartbeats, they are actually unwanted in the sense that
they are too artificially altered (by the filter) to represent the accurate shape
of the heartbeat. Though they will be promptly removed by later stages of
the pre-processing, it might, therefore, be better to start the QRS-detection
algorithm first after the NLMS-filter has converged.
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Figure 4.16: ECG-signal extract from subject 1, showing the wavelet trans-
form value at different parts of the signal. The ventricular heartbeat in the
middle does not have a typical QRS-complex form, and therefore yields a low
transform value.
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Figure 4.17: QRS-detection results
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(b) QRS Subject 2
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(c) QRS Subject 3
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(d) QRS Subject 4
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(e) QRS Subject 5
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(f) QRS Subject 6
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(g) QRS Subject 7
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4.4 Separation of the ECG-signal into sepa-

rate heartbeats

The results of separating the signal into samples based on the separate heart
beat cycles are shown in Figure 4.18-4.24, where columns of three show re-
spectively the samples deemed to be artifacts, the ”normal” samples, and
the initial and final reference sample used in determining whether or not
to label a sample as an artifact. The algorithm for determining artifacts
was, as mentioned earlier in the thesis, twofold, and in Figure 4.18, we can
see that the first part resulted in all the ventricular heartbeats having been
correctly identified as artifacts even though they never were marked as QRS-
complexes. The other part of the algorithm, with samples being consecutively
cross-correlated against a reference sample, worked arguably well, depending
on what one defines as a ”normal” sample. For example, in Figure 4.19, a
high number of approximately 8.2% of the samples were marked as artifacts,
and though some of the samples noticeably deviate from the other samples,
most still have the characteristic form one would think would pass for a good
sample. There are two chief observations to be made here. Firstly, both
the initial and final reference sample clearly indicates an inverted S-wave,
in fact, the final reference sample shows that the more samples you use in
creating a reference, the more distinct this inversion becomes. Secondly, the
overall height and depth of respectively the R-peak and S-wave of the arti-
facts are lower when compared to the samples. Thus, a sample that might
be seemingly normal, will still be classified as an artifact if the amplitude at
any of the waves or complexes differ markedly from the amplitudes of the
reference. Conversely, a sample that might appear to be odd, as especially
seen occurring in the samples in Figure 4.18,4.21 and 4.24, can be classified
as a normal sample as long as it deviates only at that temporal location (or
very little at several locations), and accurately follows the reference sample
the rest of the time. The prime example of this is Subject 4 (Fig:4.21),
whose samples seem at first glance rather erratic and turbulent. Interest-
ingly, the reference samples show that the underlying shape of the heartbeat
is actually quite defined and distinct, not showing any distortion compared
to the other subjects, and an inspection of the initial and final reference
sample shows that the small expected fluctuations found in the beginning
evens out as the samples are being processed. Though the aforementioned
amplitude variance also plays into artifact classification, this shows thus that
most of the cycles are well-behaved, with the few erratic only being tempo-
rally so. Another observation to be made, and which is a logical extension of
earlier observations, is that the subjects with the fewest classified artifacts
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(Fig:4.18,Fig:4.20,Fig:4.23 and Fig:4.24) also have the least R-peak variance,
as seen in Figure 4.17a,4.17c,4.17f and 4.17g, with the noticeable exception
of Subject 7, those small degree of artifact classification is likely due to con-
sistent and well-behaved cycles. All this together might, therefore, indicate
that the current implementation of artifact classification is slightly sensitive
towards ECG-signals containing high variance in R-peak magnitude, and
some adjustment will probably be considered with specific respect to R-peak
magnitude. An undesirable trait that showed up can be seen in the samples
of Subject 1,4,6 and 7 (Fig:4.184.23), where at the beginning of the samples,
some of them have a slight overlap with the previous sample. Observing the
heart rates (Fig:4.25a-4.31a) of these subjects yields a rather straightforward
explanation, in that both the mean heart rate and the difference between
local heart rates are significantly higher than for the other subjects. Thus,
by separating samples a set distance defined by the mean heart rate, some
samples will slightly overlap if the maximum temporal heart rate differs from
the mean heart rate above a certain value, and conversely, some samples will
not manage to catch the whole cycle if the minimum temporal heart rate
differs from the mean heart rate below a certain value. Interestingly, the
P-wave of Subject 6 shows significant shifting back and forth, and since this
point is located well away from the ends of the cycles, this is likely behaviour
independent from the cycle overlapping. Exactly what causes this shifting
can only be theorized for now, but this is exactly the type of phenomena that
would be interesting to study further in an multivariate analysis.
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Figure 4.18: Artifacts, Samples
and References for subject 1
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Figure 4.19: Artifacts, Samples
and References for subject 2
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Figure 4.20: Artifacts, Samples
and References for subject 3
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Figure 4.21: Artifacts, Samples
and References for subject 4
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Figure 4.22: Artifacts, Samples
and References for subject 5
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Figure 4.23: Artifacts, Samples
and References for subject 6
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Figure 4.24: Artifacts, Samples
and References for subject 7
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4.5 Determining respiration rate

As mentioned earlier in the thesis, accurately determining the respiration
rate was hard without some reference respiratory signal gathered from e.g.
a respiratory belt. Empirically, by observing the subjects under the mea-
surements, a ballpark estimate of the respiration was done that placed the
respiration rate at about 0.1 Hz to 0.2 Hz. In Figure 4.25-4.31, the heart rate
variability found from the detected R-peaks is plotted together with its cor-
responding Power spectrum, and as immediately seen in Subject 1 (Figure
4.25), the HRV is highly influenced by how consistent R-peaks are detected,
with the sudden drops in HRV corresponding to the premature ventricu-
lar heartbeats. While it is quite possible to compensate for this (e.g. by
manually inserting some mean value whenever an expected R-peak is not
detected), the overall result will not change markedly as long as number of
non-typical QRS-complexes remains low. In this case, it holds especially true
as we are more concerned with the long-term trends (respiration) than local
phenomena (ectopic heartbeats). It is, however, most likely a contributor to
the high peaks in the very lowest frequencies in Figure 4.25b, and must be
remembered when considering the power spectrum. Regarding the different
spectra, it is, not surprisingly, hard to spot the EDR as a single frequency or
a narrow frequency band. This is due to the differences between the subjects
during measurements, with some, such as Subject 3 and 5 (Figure4.27 and
Figure4.29) talking and laughing several times during the measurements, and
others, especially Subject 6 and 7 (Figure4.30 and Figure4.31) sitting very
still while breathing slowly and steady. Observing the power spectrum for
Subject 6 and 7 in Figure 4.30b and Figure 4.31b reflects this by showing
significant peaks at approximately 0.1 Hz, which closely corresponds to the
respiration rate that was observed during measurements. This can also be
seen in the corresponding HRV, with steadier clearer sine movement patterns
than for the other subjects. Subject 2 and 4 (Figure4.26 and Figure4.28) also
shows frequency content around that region, but it is much more distributed,
or the peaks are not significant enough to be clearly determined. One in-
teresting observation worth noting, is that except from Subject 5, all the
power spectra shows similar patterns. They start with some larger peaks
in the lowest frequency range followed by a dip in power, and then comes
back more strongly again upon entering the respiration frequency range. The
peaks around 0.1 Hz-0.2 Hz were of course expected, but the powerful low fre-
quencies is a bit harder to explain. A theory is that they may be connected
to ultra-low-frequency physiological oscillations, but this is as of now only a
conjecture.
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Figure 4.25: HRV subject 1
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Figure 4.26: HRV subject 2
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Figure 4.27: HRV subject 3
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Figure 4.28: HRV subject 4
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Figure 4.29: HRV subject 5
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Figure 4.30: HRV subject 6
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Figure 4.31: HRV subject 7
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Chapter 5

Future work and Conclusion

5.1 Future Work

Most of the work done in this master thesis has been reaffirming or conform-
ing existing methods on measured raw data from several subjects1. However,
these methods are all done on a preexisting set of measurements, and a great
motivation behind the origin of this thesis is to make these methods work in
real time as well. For that to happen, the first step must be real-time filtering
of the signal. Luckily, Simulink in Matlab has excellent tools for handling
real-time processing of signals, and since the NLMS-algorithm only mini-
mizes the instantaneous cost at each iteration, the processing power needed
for real-time implementation should be negligible, as long as care is taken
in choosing proper step-sizes. Filtering using instead DWT, as mentioned
earlier, will likely be just as effective, and as mentioned in the discussion,
has several strengths that make it preferable to an NLMS-filter in a future
implementation. Additionally, other studies [15] [27] have approached real-
time filtering of ECG from several different angles, granting insight that
may further improve the filter. It is worth mentioning, however, that even
though Matlab is a powerful tool with excellent handling of large sets of
data, it might be worth considering implementing these methods in another
language (e.g. Python or C) in order to make it computationally easier on
eventual hardware with sparse amounts of power. Next, a real-time imple-
mentation of baseline wandering removal shall be attempted. Though this is
also a form of filtering the signal, it will be most likely be slightly harder than
straight-forward high-frequency filtering. This is due to the need for a pos-
teriori knowledge about trends in the signal, at least for any implementation

1With the notable exception of the signal separation algorithm, which is to the author’s
knowledge is a not yet attempted method for ECG-signal processing
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using polynomial splines (such as LOESS) or moving averages, making the
processing at best pseudo real-time (which is good enough for most practical
purposes). Baseline wandering removal using DWT or EMD will probably
enhance this performance, and there are in fact papers on pseudo real-time
EMD filtering of EEG signals that perform quite well [28], but whether or
not this comes at the cost of increased processing power or loss of information
remains to be seen. It is nonetheless imperative that any method for baseline
wandering removal is able to retain the information removed so it can be fur-
ther analyzed. The algorithm for QRS-complex detection is, as of now, quite
stable, and has performed outstandingly on the measurements used in this
thesis. A more extensive testing on a more varied set of data from different
subjects is desirable, however, for the sake of confirming the validity of the
method in different situations, and an experimental design for this purpose is
likely to be made in the future. As for the cycle separation algorithm, some
improvements are to be made. First of all, the separation distance should no
longer be statically set based on the mean heart rate, but change based on the
temporal heart rate at that location in order to both avoid redundant repli-
cation of information and avoid failing to encompass all information. If the
method shall operate in real-time, the matrix containing these cycles must
also be designed in a way as to continuously update its size with respect
to the varying sizes of concurrent cycles. Furthermore, and as mentioned
earlier, the criteria for artifact classification needs to be better defined. A
simple way of doing this could be to combine the existing cross-correlating
method with some other approach that would more precisely classify cycles.
Also, more multivariate analysis should be done on the cycles with methods
such as e.g. Principal Component Analysis(PCA) and Partial Least Square
Regression(PLSR). Such analysis might give information about physiological
phenomena based on the variance between cycles, and would be of utmost
interest. Lastly, more work should be done on determining the respiratory
movement in the signal. The most critical part of this stage would be to set
up an experimental design, in which the subjects would be equipped with an
respiratory belt, and instructed to breathe in a certain pattern underway in
the measurement. Thus, it would be possible, with a much higher degree of
accuracy, to say whether or not the methods used in this thesis are adequate.
An investigation should also be done on whether or not the EDR is a sig-
nal possible to identify from the aforementioned heart cycle variance. Any
work beyond that other than refining what’s already done, would likely be
to look for signs of other physiological phenomena not typically considered
in ECG-signals. One could also perhaps extend the part of the methods to
other bodily signals such as, for example, EEG.
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5.2 Conclusion

A set of methods was created for pre-processing the ECG-signals with respect
to frequency content and signal morphology, and a rudimentary framework
was laid for further multivariate analysis. An NLMS-filter was created and
implemented for filtering out high-frequency noise and power line interfer-
ence. The filter performed well in minimizing the error between the input
signal and given reference signal, but some slight distortions in the signal
morphology was detected when the signal entered highly stochastic environ-
ments, and for future implementations, another approach will be used. The
three different methods for estimating the baseline wandering all showed
good results, but the EMD method showed a distinctly poorer performance
compared to the Savitzky-Golay filter and the DWT. The Savitzky-Golay fil-
ter also changed the signal morphology slightly, and so, the DWT estimated
baseline was shown to represent the baseline wandering most accurately out
of the three methods. The method for identifying QRS-complexes was suc-
cessfully implemented using a DWT, and proved to be highly accurate in all
seven subjects, with only QRS-complexes showing the correct morphology be-
ing correctly detected. The algorithm for separating the signal into separate
heart cycles performed as desired, and the first part of the artifact classifi-
cation successfully extracted the premature ventricular heartbeats whenever
they arose. However, cycles from subjects with large differences between high
and low temporal heart rate showed a tendency to overlap with each other,
and a future implementation will take this into consideration. The second
part of the artifact classification also worked markedly well, with reference
signals being accurately generated and updated, but the algorithm proved
to be overly zealous in the sense that it classified several normal cycles as
artifacts, and as such, should be further improved upon. The respiratory rate
estimation was rather uncertain due to the lack of a reference respiratory sig-
nal, but in the power spectrum of the HRV, frequency content was observed
that closely matched what was empirically observed in the subjects. In order
to quantify the performance of this estimation method, it was decided that
a new estimate will be done at a later date with a proper reference signal.
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Matlab Code

Main Function

1 %% Parameters
2

3 ECGdata = data (1 : 600000) ; %10 minute o f measurements
4 Ts = 1000 ; %Sampling f requency
5 t = 1 : f l o o r ( l ength (ECGdata) /Ts )∗Ts ; %time in ms
6

7

8

9 %% F i l t e r i n g and Base l i n e e s t imat ion
10

11 [ ECGdata , e r ro r , weights ] = NLMSfilt50Hz (ECGdata , Ts ) ; %
NLMS f i l t e r i n g o f high−f r equency no i s e .

12

13 s g o l B a s e l i n e = s g o l a y f i l t (ECGdata , 3 , 4501 ) ; %Base l i n e
e s t imat i on us ing Savitzky−Golay smoothing f i l t e r .

14

15 [ f i l teredECG , dwtBasel ine ] = ECGwavefilt (ECGdata) ; %
Estimation and e x t r a c t i o n o f b a s e l i n e us ing DWT

16

17 imf = EMD(ECGdata) ; %Empir ica l mode decomposit ion o f
the data

18 emdBaseline = imf{end}+imf{end−1}+imf{end−2}+imf{end
−3}+imf{end−4}+imf{end−5}; %Base l i n e e s t i amt ion
us ing IMFs

19

20

21

22 %% Signa l component d e t e c t i o n
23

24 [ peaks , R loc ] = locate R ( f i l teredECG ) ; %Locates the R−
peaks in the s i g n a l in add i t i on to t h e i r ampl itudes

25

26

27 %% Heartrate and R−wave amplitude
28

29 [ heartRate , meanHeartRate ] = HRdetection ( R loc , Ts ) ; %
Find both the temporal and mean heart r a t e .
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30 CurrentHeartRate = reSamp ( heartRate , l ength ( t ) , l ength (
heartRate ) ) ; %Extrapo late the heart ra t e to the same

length as the ECG−s i g n a l .
31

32 R amp = fi l teredECG ( R loc ) ; %Amplitude o f R−peaks
33 currentR amp = reSamp (R amp , l ength ( t ) , l ength (R amp) ) ; %

Extrapo late the R−amplitude to the same length as
the ECG−s i g n a l .

34

35

36

37

38 %% Signa l s epa ra t i on
39

40 [ s , a ] = EKGsep( f i lteredECG , meanHeartRate , Ts ) ; %Separate
the ECG−s i g n a l i n to Samples and a r t i f a c t s .

41 s ( 1 : 5 , : ) = [ ] ; %Remove the f i r s t 5 samples .
42 s ( end−5:end , : ) = [ ] ; %Remove the l a s t 5 samples .
43 s (˜ any ( s , 2 ) , : ) = [ ] ; %Removes empty sample i f any .
44 [ samples , a r t i f a c t s ] = sortSamples ( s , a ) ; % Separates any

f u r t h e r a r t i f a c t s from the samples
45

46

47

48 %% Generating r e f e r e n c e c y c l e
49

50 C = 2 ; %Number o f PCA components
51

52 Z = Zre f ( samples ) ; %ex t r a c t the mean s i g n a l o f the
samples

53 normZ = normal izeZ ( samples , Z) ; %Trans la t i on o f samples
to mean sample

54 [U, S ,V] = svd ( samples , 0 ) ;
55

56 P = V( : , 1 :C) ; %Extract l oad ing s from r i g h t s i n g u l a r
va lue s

57

58 percExp1 = S (1 , 1 ) /sum( diag (S) ) ; %exp la ined var iance o f
the f i r s t two l oad ing s

59 percExp2 = S (2 , 2 ) /sum( diag (S) ) ;
60
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61

62

63 %% p l o t s
64

65 f i g u r e (1 )
66 subplot ( 3 , 1 , 1 )
67 p lo t ( t , f i l teredECG ) ;
68 hold on
69 p lo t ( R loc , f i l teredECG ( R loc ) , ’ ro ’ ) ;
70 hold o f f
71 t i t l e ( ’ Detected R−peaks ’ ) ;
72 x l a b e l ( ’ time (ms) ’ ) ;
73 y l a b e l ( ’ vo l t age (V) ’ ) ;
74

75 subplot ( 3 , 1 , 2 )
76 p lo t ( t , CurrentHeartRate ) ;
77 t i t l e ( ’ HeartRate ’ ) ;
78 x l a b e l ( ’ time (ms) ’ ) ;
79 y l a b e l ( ’BPM’ ) ;
80

81 subplot ( 3 , 1 , 3 )
82 p lo t ( t , currentR amp ) ;
83 t i t l e ( ’ s p l i n e d R−amplitude ’ ) ;
84 x l a b e l ( ’ time (ms) ’ ) ;
85 y l a b e l ( ’ vo l t age (V) ’ ) ;
86

87

88

89 f i g u r e (2 )
90 subplot ( 3 , 1 , 1 )
91 p lo t ( t , ECGdata , t , s g o l B a s e l i n e ) ;
92 t i t l e ( ’S−G est imated b a s e l i n e ’ ) ;
93 x l a b e l ( ’ time (ms) ’ ) ;
94 y l a b e l ( ’ vo l t age (V) ’ ) ;
95

96 subplot ( 3 , 1 , 2 )
97 p lo t ( t , ECGdata , t , dwtBase l ine ) ;
98 t i t l e ( ’DWT est imated b a s e l i n e ’ ) ;
99 x l a b e l ( ’ time (ms) ’ ) ;

100 y l a b e l ( ’ Voltage ’ ) ;
101
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102 subplot ( 3 , 1 , 3 )
103 p lo t ( t , ECGdata , t , emdBaseline ) ;
104 t i t l e ( ’EMD est imated b a s e l i n e ’ ) ;
105 x l a b e l ( ’ time (ms) ’ ) ;
106 y l a b e l ( ’ vo l t age (V) ’ ) ;
107

108

109

110 f i g u r e (3 )
111 hold on ;
112 p lo t ( i n i t i a l R e f S a m p l e ) ; p l o t ( endRefSample )
113 t i t l e ( ’ I n i t i a l and f i n a l r e f e r e n c e sample ’ )
114 x l a b e l ( ’ time (ms) ’ )
115 y l a b e l ( ’ vo l t age (V) ’ )
116 l egend ( ’ I n i t i a l r e f e r e n c e ’ , ’ F ina l r e f e r e n c e ’ )
117

118

119 p lo tCyc l e s ( samples , ’ samples ’ ) ;
120 p lo tCyc l e s ( a r t i f a c t s , ’ a r t i f a c t s ’ ) ;
121

122

123 f i g u r e (6 )
124 subplot (C, 1 , 1 )
125 p1 = P( : , 1 ) ’ ;
126 p lo t ( p1 ) ;
127 t i t l e ( ’ Loading 1 ’ )
128 l egend ( s t r c a t ( ’ exp la ined var iance = ’ , num2str ( percExp1

) ) ) ;
129

130 subplot (C, 1 , 2 )
131 p2 = P( : , 2 ) ’ ;
132 p lo t ( p2 ) ;
133 t i t l e ( ’ Loading 2 ’ )
134 l egend ( s t r c a t ( ’ exp la ined var iance = ’ , num2str ( percExp2 )

) ) ;

NLMS filter

1 f unc t i on [ y , e r ro r ,w] = NLMSfilt50Hz ( data , Ts )
2

3 %This func t i on uses an adapt ive normal ized l e a s t mean
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square f i l t e r in
4 %order to remove almost a l l f r e q u e n c i e s above

approximately 40Hz . Some PLI
5 %s t i l l remains , but i s about 3 order o f magnitudes

sma l l e r than the ac tua l
6 %s igna l , which i s f o r the most part n e g l i g a b l e . I f the

measurement i s done
7 %on a power l i n e us ing 60Hz , change the sigFC v a r i a b l e

a c co rd ing ly .
8

9 FrameSize = 1000 ;
10 NumIter = f l o o r ( l ength ( data ) /FrameSize ) ;
11 Nyquist = Ts /2 ;
12 f i l t L e n g t h = 128 ;
13 s tep = 0 . 0 1 ;
14 f i l t O r d e r = 200 ;
15 f i l t F c = 40 ; %The c u t o f f f r equency o f the d e s i r e d

f i l t e r s i g n a l .
16 sinAmp = 0 . 0 0 0 1 ; %Amplitude o f the added s i n e no i s e .
17 s igFc = 50 ; %Known PLI f requency . Change to 60 i f the

r eg i on c a l l s f o r i t .
18

19 lmsF i l t = dsp . LMSFilter ( ’ Length ’ , f i l t L e n g t h , ’ Method ’ , ’
Normalized LMS ’ , ’ S tepS ize ’ , step , ’ AdaptInputPort ’ ,
t rue ) ;

20 f i r F i l t = dsp . FIRFi l te r ( ’ Numerator ’ , f i r 1 ( f i l t O r d e r ,
f i l t F c / Nyquist ) ) ;

21 s i n e = dsp . SineWave ( ’ Amplitude ’ , sinAmp , ’ Frequency ’ ,
s igFc , ’ SampleRate ’ , 1 , ’ SamplesPerFrame ’ , FrameSize ) ;

22

23 %f r e q z ( f i r F i l t ) ;
24

25 TS = dsp . TimeScope ( ’ TimeSpan ’ , FrameSize∗NumIter , ’
TimeUnits ’ , ’ Seconds ’ , . . .

26 ’ YLimits ’ , [−0.0015 0 . 0 0 1 5 ] , ’ Buf ferLength ’ ,2∗
FrameSize∗NumIter , . . .

27 ’ ShowLegend ’ , true , ’ ChannelNames ’ , . . .
28 { ’ Noisy s i g n a l ’ , ’ F i l t e r e d s i g n a l ’ }) ;
29

30 s = ze ro s ( FrameSize∗NumIter , 1 ) ;
31 e r r o r = ze ro s ( FrameSize∗NumIter , 1 ) ;
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32

33 f o r k = 1 : NumIter
34 x = data ( ( k−1)∗FrameSize +1:k∗FrameSize ) ’ ;
35 d = f i r F i l t ( x ) ;% + s i n e ( ) ;
36 [ y , e ,w] = lmsF i l t (x , d , 1 ) ;
37 TS ( [ d , e ] ) ;
38 s ( ( k−1)∗FrameSize +1:k∗FrameSize , 1 ) = y ;
39 e r r o r ( ( k−1)∗FrameSize +1:k∗FrameSize , 1 ) = e ;
40 end
41

42 y = s ’ ;
43

44 end

ECG baseline estimation

1 f unc t i on [ f i lteredECG , b l ] = ECGwavefilt ( data )
2

3 %This func t i on takes in an ECG−s i gna l , and decomposes
i t i n to ’ waveLev ’

4 %d i s t i n c t d e t a i l c o e f f i c i e n t s . A b a s e l i n e i s est imated
by adding d e t a i l

5 %c o e f f i c i e n t s from ’ waveLev ’ to ’ waveLev−f i l t L e v ’ , and
i s i t e r a t i v e l y and

6 %a l g e b r a i c a l l y removed from the s i g n a l .
7

8 waveLev = 12 ;
9 f i l t L e v = 2 ;

10

11

12 wt = modwt( data , waveLev ) ;
13 mra = modwtmra(wt ) ;
14 a s s i g n i n ( ’ base ’ , ’mra ’ ,mra) ;
15

16 f i l teredECG = data ;
17 b a s e l i n e = mra( end , : ) ;
18 bl = ze ro s ( s i z e ( data ) ) ;
19

20 f o r k=1: f i l t L e v
21 f i l teredECG = fi lteredECG−b a s e l i n e ;
22 b a s e l i n e = mra( end−k , : ) ;
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23 bl = bl + b a s e l i n e ;
24 end
25

26 f i l teredECG = fi lteredECG−b a s e l i n e ;
27

28 end

Empirical Mode Decomposition

1 f unc t i on [ imf ] = EMD( data )
2

3 %Credit goes to Alan Tan , who i s the o r i g i n a l c r e a t o r
o f t h i s

4 %EMD implementation .
5

6 data = transpose ( data ( : ) ) ;
7 N = length ( data ) ;
8 n =1;
9 imf = [ ] ;

10

11 whi le ˜ i smonotonic ( data )
12

13 x1 = data ;
14 sd = I n f ;
15

16 whi le ( sd > 1)
17

18 [ ˜ , upperLocs ] = f indpeaks ( x1 ) ; %f i n d the max
and minimum po in t s o f the curve

19 [ ˜ , lowerLocs ] = f indpeaks (−x1 ) ;
20

21 uSpl ine = s p l i n e ( [ 0 upperLocs N+1] , [ 0 x1 (
upperLocs ) 0 ] , 0 :N) ; %Create a cubic s p l i n e
f o r r e s p e c t i v e l y the max and min po in t s

22 l S p l i n e = s p l i n e ( [ 0 lowerLocs N+1] , [ 0 x1 (
lowerLocs ) 0 ] , 0 :N) ;

23 x2 = x1 − ( uSp l ine ( 1 , 2 : end ) + l S p l i n e ( 1 , 2 : end ) )
/2 ;

24

25 sd = sum ( ( x1 − x2 ) . ˆ 2 ) /sum( x1 . ˆ 2 ) ;
26
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27 x1 = x2 ;
28 n = n+1;
29

30 end
31

32 imf{end+1} = x1 ;
33 data = data − x1 ;
34 end
35

36 imf{end+1} = data ;
37

38 end

Detection of QRS-complexes

1 f unc t i on [ peaks , R loc ] = locate R ( data )
2

3 wt = modwt( data , 1 0 ) ;
4 mra = modwtmra(wt ) ;
5

6 [ peaks , R loc ] = f indpeaks (mra ( 5 , : ) , ’ MinPeakProminence ’
,1 .0∗10ˆ(−4) , ’ MinPeakDistance ’ ,200) ;

7

8

9 end

Heart rate detection

1 f unc t i on [ heartRate , meanHeartRate ] = HRdetection ( R loc ,
Ts )

2

3 %Detects the heart ra t e as the time over three
cons e cu t i v e R loc va lue s d iv ided

4 %by the sampling f requency Ts . Also r e tu rn s the mean
heart r a t e over the

5 %whole aray R loc .
6

7 TbP = ze ro s (1 , l ength ( R loc ) ) ; %Time ( in ms) between R−
peaks

8

9 heartRate = [ ] ;
10
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11 f o r k = 1 : l ength ( R loc )
12 i f ( k+1<l ength ( R loc ) )
13 TbP( k ) = R loc ( k+1) − R loc ( k ) ;
14 end
15 i f k>3
16 heartRate ( k ) = 60/(sum(TbP(k−2:k ) ) /(3∗Ts) ) ;
17 end
18 end
19

20 meanHeartRate = 60/(sum(TbP) /( l ength (TbP)∗Ts) ) ;
21

22 end

Resampling

1 f unc t i on [ y ] = reSamp ( data , heartRate , re fHeartRate )
2

3 %Resamples the data to a new s i z e based o f the r a t i o
between the i n t e g e r

4 %values heartRate and re fHeartRate . I f the r a t i o i s
l a r g e r than one , that

5 %data i s ext rapo lated , and i f i t i s sma l l e r than one ,
i t i s i n t e r p o l a t e d .

6

7

8 beatRatio = heartRate / re fHeartRate ;
9 extendedTime = 1 : c e i l ( l ength ( data )∗beatRatio ) ;

10

11 newDataPoints = 1 : beatRatio : l ength ( extendedTime ) ;
12

13 i f beatRatio >= 1
14 resampledData = in t e rp1 ( newDataPoints , data ,

extendedTime , ’ l i n e a r ’ , ’ extrap ’ ) ;
15 e l s e
16 resampledData = in t e rp1 ( data , extendedTime ) ;
17 end
18

19 y = resampledData ;
20

21 end
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ECG cycle separation

1 f unc t i on [ s , a ] = EKGsep( data , re fHeartRate , Ts )
2

3 %Separates the s i g n a l i n to seaparate c y c l e s and
a r t i f a c t s . The s epa ra t i on

4 %happens a d i s t ance o f ’ sepDist ’ samples from the R−
peak at e i t h e r s ide , and

5 %adapts to the value o f ’ re fHeartRate ’ . I f the time
between detec ted

6 %R−peaks exceeds a c e r t a i n va lue based on the ’
missHeartThreshold ’ , the

7 %data between the R−peaks w i l l be c l a s s i f i e d as an
a r t i f a c t .

8

9 missHeartThreshold = 1 . 5 ; %Threshold value f o r a r t i f a c t
c l a s s i f i c a t i o n

10

11 sepDis t = round ( ( (60/ re fHeartRate )∗Ts) /2) ; %the
s e p e r a t i o n d i s t ance from the R−peaks

12 [ ˜ ,R] = locate R ( data ) ;
13

14 s = ze ro s ( l ength (R) , sepDis t ∗2+1) ;
15 a = [ ] ;
16

17 timeBetweenR = d i f f (R) ;
18 c = 0 ;
19

20 f o r k = 1 : l ength (R)−1
21 i f (R( k )−sepDis t >= 0)&&(R( k )+sepDis t <= length (

data ) )
22 s (k , : ) = data (R( k )−sepDis t :R( k )+sepDis t ) ;
23 i f ( ( timeBetweenR ( k )>missHeartThreshold ∗(2∗

sepDis t ) )&&(k>2) ) %C l a s s i f i e s sample as
a r t i f a c t i f no QRS−complex i s detec ted a f t e r
a c e r t a i n time .

24 c = c+1;
25 a ( c , : ) = data ( round (R( k )−(R( k )−R(k−1) ) /2)−

sepDis t : round (R( k )−(R( k )−R(k−1) ) /2)+
sepDis t ) ;

26 end
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27 end
28 end
29

30 end

Cycle classification

1 f unc t i on [ samples , a r t i f a c t s ] = sortSamples (
unsortedSamples , anomalySamples )

2

3 %take the f i r s t 10 heartBeats in unsortedSamples , and
use as a r e f e r e n c e

4 %the mean o f them . For every heartbeat in
unsortedSamples , check then the

5 %normal ized cros s−c o r r e l a t i o n between the heartbeat and
the r e f e r e n c e

6 %heartbeat . I f the c r o s s c o r r e l a t i o n at any po int peaks
over the s e t

7 %corrThreshHold , i t pa s s e s and i s so r t ed in to samples ,
and the r e f e r e n c e

8 %beat i s updated by tak ing a new mean o f t h i s new
sample toge the r with the

9 %prev ious ones . Else , i t s form d e v i a t e s from what i s
deemed ”normal ” ,

10 %and i t w i l l be so r t ed in to a r t i f a c t s f o r l a t e r
a n a l y s i s

11

12 corrThreshHold = 0 . 9 7 ;
13

14 re fSample = Zre f ( unsortedSamples ( 4 0 : 6 0 , : ) ’ ) ;
15 a s s i g n i n ( ’ base ’ , ’ i n i t i a l R e f S a m p l e ’ , re fSample ) ;
16

17 samples = [ ] ;
18 a r t i f a c t s = [ ] ;
19 c = 0 ;
20

21

22 f o r k = 1 : l ength ( unsortedSamples ( : , 1 ) )
23 sampleCorr = xcor r ( refSample , unsortedSamples (k , : ) , ’

c o e f f ’ ) ;
24
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25 %plo t ( refSample ) ;
26

27 i f max( sampleCorr ) > corrThreshHold
28 samples (k−c , : ) = unsortedSamples (k , : ) ;
29 re fSample = Zre f ( samples ’ ) ;
30 %disp ( k ) ;
31 e l s e i f max( sampleCorr ) < corrThreshHold
32 c = c + 1 ;
33 a r t i f a c t s ( c , : ) = unsortedSamples (k , : ) ;
34 %disp ( k ) ;
35 e l s e
36 di sp ( ’ something something ’ ) ;
37 end
38 end
39

40 a s s i g n i n ( ’ base ’ , ’ endRefSample ’ , re fSample ) ;
41

42 a r t i f a c t s = [ a r t i f a c t s ; anomalySamples ] ;

Reference cycle creation

1 f unc t i on [ z ] = Zre f ( samples )
2 %Takes in an matrix ’ samples ’ , and outputs a an array

that i s the mean
3 %values o f a l l the columns in ’ samples ’ .
4

5 z = ze ro s (1 , l ength ( samples ( : , 1 ) ) ) ;
6

7 f o r k = 1 : l ength ( samples ( : , 1 ) )
8 z ( k ) = mean( samples (k , : ) ) ;
9 end

10

11 end
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