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Abstract: This paper reports the leaching of seafloor massive sulphides (SMS) from the Loki’s Castle
area at the Arctic Mid-Ocean Ridge in sulphuric acid with manganese dioxide and sodium chloride.
The results presented are of various leaching experiments conducted under different conditions in
order to optimise the dissolution of copper and silver. It was shown that the main copper bearing
minerals in the SMS were chalcopyrite and isocubanite, while silver could occur as an admixture in
the crystallographic lattice of sulphides or as disseminated micro inclusions. Based on the results,
the leaching mechanism was discussed and elucidated. It was shown that the dissolution of the
SMS was mainly due to galvanic interactions between the primary marine minerals of SMS and
manganese dioxide. Addition of sodium chloride promoted the extraction mechanism.

Keywords: leaching; chalcopyrite; isocubanite; copper; silver; manganese dioxide; marine minerals;
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1. Introduction

The major copper-bearing mineral in the seafloor massive sulphides (SMS) from the Loki’s
Castle area at the Arctic Mid-Ocean Ridge is isocubanite (CuFe2S3), rather than chalcopyrite (CuFeS2),
which causes difficulties in flotation. Hence, hydrometallurgical processing appears to be an alternative
method for efficient extraction of metals from the SMS. In our previous paper, we showed that copper
and zinc can be effectively extracted by nitric acid leaching [1]. Nitric acid is a strong lixiviant and
allows rapid extraction of primary metals of interest from the SMS, however, it is uneconomical due
to its high price. Alternatives include the use of conventional industrial lixiviants, such as sulphuric
acid. Several authors have investigated copper dissolution from sulphides in sulphuric acid (H2SO4),
with manganese dioxide (MnO2) [2–4] and sodium chloride (NaCl) [5–8].

A potential source of MnO2 can also be from the deep seabed area, specifically polymetallic
nodules (PN). The largest deposits of such ores are found in the Pacific Ocean between Hawaii,
California, and around Polynesia, and, particularly, the eastern equatorial Pacific within the Clarion
Clipperton Zone (CCZ) [9]. Several metallurgical methods were proposed to extract manganese and
other base metals, such as silver, copper, zinc, and cobalt from the nodules. Direct hydrometallurgical
processing of manganese nodules involves leaching with ammonia, hydrochloric, or sulphuric
acid in the presence of other reductants, such as glucose, charcoal, and even sulphide minerals,
including chalcopyrite, sphalerite, pyrrhotite, and pyrite [10–12].

Minerals 2018, 8, 235; doi:10.3390/min8060235 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
https://orcid.org/0000-0002-1432-030X
http://www.mdpi.com/2075-163X/8/6/235?type=check_update&version=1
http://dx.doi.org/10.3390/min8060235
http://www.mdpi.com/journal/minerals


Minerals 2018, 8, 235 2 of 14

Both the seafloor massive sulphides and the deep-sea polymetallic nodules can serve as potential
sources of critical raw materials. Potential galvanic interactions between the primary marine minerals
of the SMS and PN may allow extraction of the valuable metals from these resources. Addition of
sodium chloride, i.e., also potentially from the sea (seawater evaporation), may even promote the
extraction mechanism. For such a leaching system, no artificial introduction of air is needed.

In this study, we examined the feasibility of galvanic leaching of seafloor massive sulphides
using manganese dioxide in H2SO4-NaCl media. The effects of temperature, as well as the dosage
of H2SO4, MnO2, and NaCl, on the extraction of copper and silver were investigated. Based on the
results, the leaching mechanism was discussed and elucidated.

2. Materials and Methods

2.1. Materials

In this work, the seafloor massive sulphide (SMS) rock samples from the Loki’s Castle
hydrothermal vent field at the Artic Mid-Ocean Ridge were investigated. The SMS deposit was
first reported by Pedersen et al. [13]. It occurs on an axial volcanic ridge adjacent to an ultraslow
spreading plate margin, where active venting is observed at a depth of 2400 m. A series of black
smoker chimneys cap two sulphide-bearing mounds, each approximately 150 m across and 30 m high.
In 2016, the MarMine cruise recovered, via grab sampling, more than 200 kg of loose boulders from
the mound flanks [14]. The location and areas of operation, as well as a method of sample storage,
are described elsewhere [1,14]. Prior to the leaching experiments, the SMS samples were unpacked
and dried at room temperature. Elemental and mineralogical analyses were accomplished using X-ray
fluorescence (XRF), X-ray diffraction (XRD), and optical microscopy. The elemental composition of the
SMS rock samples from the Loki’s Castle is shown in our previous paper [1]. In this work, the sample
with the relatively high content of copper (2.2%) and silver (15 ppm) was used in the leaching tests.

Mineralogical phases include silica, with minor barite (BaSO4), pyrite/marcasite (FeS2),
sphalerite ((Zn,Fe)S), intergrowths of isocubanite (CuFe2S3) and chalcopyrite (CuFeS2), galena (PbS),
and minor pyrrhotite (Fe(1−x)S (x = 0–0.17)) (Figure 1). Sulphide minerals were disseminated in
variably intergrown and sub-angular throughout a fine-grained black groundmass with a grain size of
1–100 µm [1]. Sphalerite, chalcopyrite, and isocubanite showed complex intergrowth textures on the
nano- to microscale (Figure 1). The lamellae of chalcopyrite, down to 20 nm, were observed in a matrix
of isocubanite; in rare occasions, pure chalcopyrite rims the isocubanite/chalcopyrite intergrowths or
exists as separate grains. The Cu-phases were intimately intergrown with sphalerite, showing typical
“chalcopyrite disease” [15] on various scales (Figure 1C). In addition, homogeneous sphalerite may
overgrow sphalerite with chalcopyrite disease (Figure 1B), isocubanite-chalcopyrite intergrowths may
overgrow homogenous sphalerite, and sphalerite with or without chalcopyrite disease may overgrow
the heterogeneous Cu phase (Figure 1C). Finally, homogenous sphalerite may contain anomalously
high levels of Fe, which can be up to 20%. Isocubanite is closely associated with chalcopyrite. The silver
phase was not detected by XRD due to its low content in the sample. Silver could occur as an admixture
in the crystallographic lattice of sulphides or as disseminated micro inclusions.

Despite featuring a relatively typical volcanogenic massive sulphide (VMS) mineralogy, these complex
intergrowths provide challenges to conventional mineral processing methods, such as liberation by
mechanical comminution and upgrading by flotation. Figure 1A illustrates that milling to approximately
10 s of µm would appear to liberate most of the sulphides. However, the ubiquitous sub-micron textures
observed in both Cu+Fe- and Zn-bearing minerals may prevent total liberation by conventional
grinding. Thus, discrete phases may not be accessed by flotation techniques. This inherent
mineralogical characteristic, along with the high Fe content in sphalerite, has been a challenge in the
attempts to upgrade a sulphide concentrate by removing pyrite.

Sample preparation prior to leaching involved crushing using a jaw crusher (Retsch GmbH, Haan,
Germany), followed by grinding in a disc mill (Retsch GmbH, Haan, Germany), and subsequent
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dry-sieving to obtain a particle size fraction that was below 50 µm, with a d80 of 35 µm. No significant
changes in the particle size distribution were observed after leaching. Mili-Q water® and analytical
grades of MnO2 in powdered form, H2SO4, and NaCl, were used in all experiments.
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Figure 1. (A) Photomicrograph demonstrating sulphide mineralogy and textures: Cu is hosted in
isocubanite (Icb) and chalcopyrite (ccp) intergrowths; Zn in sphalerite (Sp); Pb in galena (Gn) and
pyrite (Py), highly altered in this sample. (B) Gradual decrease in chalcopyrite inclusions (upper arrow)
in sphalerite (light grey), with the distance from the Cu-phase. Isocubanite (dark grey) host lamellae of
chalcopyrite (lower arrow). (C) Various modes of sphalerite and chalcopyrite-iscocubanite textures.
The centre yellow grain is an intergrowth of isocubanite and chalcopyrite. Several initial grains of
sphalerite, with strong chalcopyrite disease, are rimmed by zones of homogenous sphalerite.

2.2. Methods

Leaching tests were carried out in aqueous solutions of sulphuric acid (H2SO4) as the primary
lixiviant and additives, such as manganese dioxide (MnO2) and sodium chloride (NaCl). A known
mass of a feed (2.15 ± 0.05 g), together with 70 cm3 of specific concentration of acid and additives,
were added to 100 cm3 reaction flasks. The flasks were then placed in the Carousel 6 Plus reaction
station from Radley’s Innovation Technology and heated to the target temperature under reflux.
Mechanical agitation was set at 300 rpm.

Leaching was conducted for 24 h at the following parameters: Temperatures (30–80 ◦C),
acid concentrations (0–1.5 M), MnO2 (0–19.5 g/dm3) and NaCl (0–1 M) dosages. Solution aliquots were
collected periodically and analysed using inductively coupled plasma mass spectrometry (ICP-MS,
PerkinElmer, Waltham, MA, USA). Final leaching residues were dried and analysed using XRF (Thermo
Scientific™, Waltham, MA, USA).

3. Results and Discussion

3.1. Effect of Manganese Dioxide and Sodium Chloride Addition

Dissolution of the economically significant metals, copper (XCu) and silver (XAg), from the seafloor
massive sulphides (SMS) was investigated in 1 M H2SO4, with different dosages of MnO2 and NaCl at
80 ◦C. No extraction of either metals in the aqueous H2SO4 solution was observed in the absence of
MnO2, either with or without NaCl (Figures 2 and 3). This means that the oxidation of the copper and
silver species did not happen.
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Figure 2. Effect of MnO2 dosage (g/dm3) on the dissolution (X) of copper (a,b) and silver (c,d) in the
absence (a,c) and presence (b,d) of chloride ions (80 ◦C, 1 M H2SO4, 30 g/dm3 SMS, 300 rpm).

Copper and silver only started to dissolve in the presence of MnO2. The leaching rate of chalcopyrite
and isocubanite, the copper-bearing minerals present in the SMS sample, increased with the addition of
MnO2. Initially, rapid leaching kinetics were achieved, exhibiting rapid extraction of copper (Figure 2).
The results also indicate that the ultimate dissolution (i.e., extracted fraction X after 24 h) of copper
increased from ca. 60%, with 6.5 g/dm3 MnO2, to ca. 80%, with 13 g/dm3 MnO2. Higher dosage
of MnO2 only slightly enhanced copper extraction. In the case of silver, the leaching kinetics were
linear and very slow, and only 35% of the silver was extracted, with 19.5 g/dm3 of MnO2, after 24 h.
The kinetics curves indicate that a longer leaching time would facilitate the dissolution of the copper
and silver (Figure 2).

In the given SMS sample, solubilisation of the sulphide minerals in the H2SO4 solution,
with MnO2, can be explained by galvanic interactions between the copper and silver phases and
the MnO2 [2–4]. Chalcopyrite and, most probably, isocubanite (no available data in the literature)
have lower rest potentials than MnO2 and could act as a cathode against the anodic MnO2 forming a
galvanic couple. Under galvanic contact, the rate of corrosion of the mineral-MnO2 is much higher
than their individual self-corrosion rates [3,16].
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Figure 3. Effects of the addition of manganese dioxide and sodium chloride on the ultimate extraction
of copper and silver (80 ◦C, 1 M H2SO4, 30 g/dm3 SMS, 300 rpm, leaching time 24 h).

Moreover, the rest potential of the mixed mineral matrices consisting of chalcopyrite and cubanite,
a mineral with the same composition as isocubanite but different structure, as well as sphalerite
and chalcopyrite, are lower than that of chalcopyrite alone [17]. With the copper phases composed
predominantly of isocubanite/chalcopyrite and sphalerite/chalcopyrite intergrowths, this encouraged
the relatively fast initial dissolution of copper, via the reduction of the primary oxidant MnO2 in the
cathodic half-cell reaction:

MnO2 + 4H+ + 2e− →Mn2+ + 2H2O (1)

Oxidative dissolution of chalcopyrite is electrochemical in nature, and follows the principle of
corrosion where it corrodes anodically [3]:

CuFeS2 → Cu2+ + Fe2+ + 2S◦ + 4e− (2)

The same electrochemical mechanism is proposed for isocubanite:

CuFe2S3 → Cu2+ + 2Fe2+ + 3S◦ + 6e− (3)

Under investigated conditions, zinc dissolved rapidly and, for the clarity of this paper, the extraction
data and leaching mechanism for zinc are not shown here.

The identified galvanic reactions indicate that the leaching in the H2SO4-MnO2 media resulted in
the reduction of manganese(IV) to manganese(II), via electron transfer from the anodic corrosion of
sulphide minerals [3]. Ferrous (Fe2+) ions could be oxidized to ferric (Fe3+) ions by manganese dioxide
forming ferric sulphate in aqueous H2SO4 solution:

2Fe2+ + MnO2 + 4H+ → 2Fe3+ + Mn2+ + 2H2O (4)

Electrochemical oxidation of the chalcopyrite by ferric ions has been demonstrated [18–21],
and can be simplified in the anodic reaction:

Fe3+ + e− → Fe2+ (5)

and described as [18,22]:
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CuFeS2 + 4Fe3+ = Cu2+ + 5Fe2+ + 2S◦ (6)

In reaction (6), it has been generally understood that sulphates (cupric and ferrous) may form
at the expense of the elemental sulphur; however, the presence of the resulting ferrous sulphate may
retard the chalcopyrite oxidation with ferric ions [19]. This ferric-ferrous couple of reaction (5) could
act as the secondary oxidant, which may also oxidize isocubanite following the same mechanism as
chalcopyrite in the proposed reaction:

CuFe2S3 + 6Fe3+ = Cu2+ + 8Fe2+ + 3S◦ (7)

Due to limited mass of the sample for leaching tests, XRD analyses of the residues could not be
obtained, however, the XRF data showed an increased sulphur concentration that may be due to the
formation of elemental sulphur during leaching under the investigated conditions. Some sulphur
could also be further oxidized to sulphate ions in the presence of the oxidants in the acidic medium.

The non-linear shapes of the dissolution curves for copper (Figure 2) suggests the formation of a
passivation layer on the chalcopyrite/isocubanite surfaces during leaching. Many studies have been
undertaken to establish the type and structure of the passivation layer on the chalcopyrite surface.
It was shown that the dissolution of chalcopyrite depended on the oxidation rate from the sulphide to
elemental sulphur reaction [23–26].

Manganese dioxide can also act as the oxidizing agent for silver, although the results showed
that leaching in the sulphate media was very slow and inefficient. This was consistent with the
data presented by Jiang et al. [27]. Due to the relatively low concentration of silver in the sample,
the silver phase was not detected by XRD, and we assume that it could occur as an admixture in the
crystallographic lattice of the sulphides. Thus, the presence of manganese dioxide might cause the
dissolution of silver according to the simplified reaction:

2Ag + MnO2 + 4H+ → 2Ag+ + Mn2+ + 2H2O (8)

The results show that the leaching performance of silver and copper was strongly affected by the
dosage of MnO2, while the addition of sodium chloride only influenced the dissolution rate of silver
(Figures 2 and 3). As seen, in the absence of chloride ions and at low dosages of manganese dioxide
(6.5 g/dm3), the extraction of silver was negligible.

The addition of chloride ions, together with manganese dioxide, accelerated the process kinetics
and increased the ultimate dissolution of silver by ca. 30%, with 6.5–13 g/dm3 MnO2 (Figure 3).
Extraction of silver, with 13 g/dm3 MnO2, after 24 h was 53%. The effect was less pronounced at higher
dosages of manganese dioxide (19.5 g/dm3), which was probably due to the limited solubility of the
silver complexes.

A relatively fast silver dissolution rate was primarily attributed to the potential formation of
dissolved chlorine gas in the reaction of MnO2 and NaCl in the acidic solution:

MnO2 + 2NaCl + 4H+ →Mn2+ + 2Na+ + Cl2 + 2H2O (9)

However, no gas formation was noted during leaching, i.e., any formed chlorine may have been
readily utilized in the redox reactions.

Silver can be leached out as chloride complexes of Ag(I):

AgCl + (n − 1)Cl− → [AgCln](1−n), n = 1, 2, 3, 4 (10)

Free chloride ions could redissolve the formed silver chloride precipitates due to the progressive
formation of chloro-complexes of silver [AgCln]1−n, with a higher stability [24,28,29]. The proportion
of complex ions depends on the concentration of chloride ions in the solution, and at 1 M NaCl the
concentration of insoluble AgCl is very low [30].
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Copper was also effectively dissolved during leaching with sodium chloride, however, the results
showed that the addition of chloride ions did not effectively increase the dissolution rate in comparison
to leaching without NaCl (Figures 2 and 3). The influence of sodium chloride during the sulphuric
leaching of the chalcopyrite is still under debate. The rate of the chalcopyrite dissolution in the presence
of sodium chloride depends on many parameters, including the mineral origin, grain size, impurities,
and stoichiometry [5]. To date, no paper has been published on the dissolution of isocubanite, which is
the major copper-bearing mineral in the investigated sample. During the leaching of seafloor massive
sulphides, chlorine gas could dissolve the chalcopyrite and isocubanite according to the reactions:

2CuFeS2 +5Cl2 → 2CuCl2 + 2FeCl3 + 4S◦ (11)

CuFe2S3 +4Cl2 → CuCl2 + 2FeCl3 + 3S◦ (12)

Leaching in the mixed sulphate-chloride media yielded mixed chloro-aquo copper complexes
(green colour of the leach solution, [31]), elemental sulphur, which was proved by Parker et al. [32],
and an increased content in the residue, as well as oxidation of ferrous to ferric ions. Dissolution of the
chalcopyrite in ferric chloride can be represented as follows [33]:

CuFeS2 + 4FeCl3 → CuCl2 + 5FeCl2 + 2S◦ (13)

while for isocubanite oxidation the proposed reaction is:

CuFe2S3 + 6FeCl3 → CuCl2 + 8FeCl2 + 3S◦ (14)

Oxidative dissolution of the chalcopyrite [34,35] and isocubanite in the presence of cupric chloride
was also possible according to reactions:

CuFeS2 + 3Cu2+ → 4Cu+ + Fe2+ + 2S◦ (15)

CuFe2S3 + 5Cu2+ → 6Cu+ + 2Fe2+ + 3S◦ (16)

The potential formation of cupric chloride may allow the existence of the Cu(II)|Cu(I) couple,
acting as the oxidant in reactions (15) and (16). The presence of chlorides stabilized the Cu(I) species in
the solution [31]. Resulting cuprous chloride complexes have a higher stability than cupric chloride
complexes [36], hence, cupric ions tend to undergo reduction.

Al-Harahsheh et al. [37] reported the synergistic effect of ferric chloride and the resulting
formation of cupric chloride in chalcopyrite leaching, noting that the latter is a stronger oxidant than
the former. Moreover, agitation could sweep away the cupric chloride complexes formed. Unlike under
stagnant conditions, cupric chloride complexes accumulate at the reaction interface, causing enhanced
dissolution of copper.

The data from Figure 2, for 13 g/dm3 MnO2, were replotted to show the influence of the addition
of chloride ions on the relationship between the dissolution of copper and silver. This type of curve
is very helpful for the assessment of any separation results and has been used in mineral processing
to show the process selectivity and kinetics [38]. As seen from Figure 4, in the absence of NaCl,
the curve has a parabolic shape, which means that there was no simultaneous leaching of the copper
and silver phases. Dissolution of the copper was very fast, while leaching of the silver was very slow.
Silver started to dissolve slightly when most of the copper was leached out. It might indicate that
the silver was finely disseminated in the sulphides and that their initial leaching was beneficial in
exposing the silver phase. Sulphides are less noble than silver and dissolve first.
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When chloride ions were used, instantaneous dissolution of the silver and copper at the initial
stage of the process can be observed. Then, the leaching kinetics of the silver slowed down, while the
copper continued. A similar dependency was observed for all dosages of manganese dioxide, but for
the clarity of the figures, the data were not plotted.

Initial fast dissolution of copper and, especially, silver may be due to the formation of highly
oxidizing chlorine, which could have oxidized the copper sulphides faster when compared to galvanic
oxidation, primarily due to the Mn(IV)|Mn(II) couple in the chloride-free system. The oxidized
species of copper and silver may have competed with the available chlorine, as well as free chloride.
Silver dissolution in the aqueous solution may have been restricted by the available chlorine and
limited solubility of the silver chloride complexes. On the other hand, continued leaching of the copper
may be a result of:

(i) Primary galvanic interactions between the chalcopyrite, isocubanite, and manganese oxide, or
(ii) Synergistic effects of both the ferric chloride and cupric chloride leaching.

As indicated, the shape of the XAg vs. XCu curve (Figure 4) depends on the presence of chloride
ions, therefore, two different mathematical equations were derived for the best approximation of the
experimental points. The empirical formulae, obtained by using a nonlinear least-squares regression
for one-adjustable parameter a, are:

(i) For sulphate media leaching without NaCl

XAg =
a1·XCu

(1− XCu) + (a1·XCu)
(17)

(ii) For sulphate media leaching with 1 M NaCl

XCl−
Ag = 1− (1 + a2XCu)

−0.5 (18)

where a1 and a2 are the empirical constants for leaching in the absence and presence of chloride
ions, respectively. The constants, a1 and a2, were calculated using the Sigma Plot software package.
The constants assume values at different ranges, but both start from 0 for the dissolution of copper
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only, and increases when the dissolution of silver also increases. Thus, the higher the value of a1 and a2,
the faster the dissolution of silver, and the slower the extraction rate of the copper. For simultaneous
leaching of the copper and silver phases, the constant, a1, is equal to 1. The calculated values of
the empirical constants, a1 and a2, for leaching tests, with different dosages of MnO2, are collected
in Table 1. For leaching in the absence of NaCl, the constant, a1, was equal to zero in water and
6.5 mg/dm3 of MnO2, indicating that only copper was extracted. The values of a1 and a2 increased
with the manganese dioxide dosage, which resulted in a higher extraction of silver.

Table 1. Calculated values of the empirical constants a1 (Equation (17)) and a2 (Equation (18)),
and ultimate dissolutions of copper XCu and silver XAg.

MnO2, g/dm3 No NaCl 1 M NaCl

a1 R2 XCu XAg a2 R2 XCu XAg

0 0 - 0.00 0.00 1.33 0.990 0.01 0.00
6.5 0 - 0.60 0.00 2.28 0.750 0.66 0.29
13.0 0.054 0.975 0.81 0.21 4.01 0.997 0.82 0.53
19.5 0.096 0.965 0.84 0.36 3.97 0.999 0.86 0.53

3.2. Effect of Acid Concentration

A series of experiments were performed to evaluate the effects of sulphuric acid concentration
on the dissolution of copper and silver. The acid concentration varied from 0 to 1.5 M, while other
conditions were kept constant (80 ◦C, with 1 M NaCl and 13 g/dm3 MnO2). As seen from Figure 5,
there was no dissolution of the copper and silver in water. The leaching rates of copper and silver
increased with an increase in the sulphuric acid concentration. The low concentrations of H2SO4 were
not effective for copper and silver dissolution. Extraction of the copper and silver was significant at
acid concentrations higher than 0.5 M, and further increases in the acid concentration only slightly
improved the extraction of silver and copper. This indicates that hydrogen ions were involved
in the leaching process and that the dissolution rates of copper and silver phases depended on
the hydrogen ion strength, which had created more oxidizing conditions potentially favouring the
proposed galvanic reactions.
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13.5 g/dm3 MnO2, 30 g/dm3 SMS, 300 rpm, leaching time 24 h).
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3.3. Effect of Temperature

Temperature has a pronounced effect on the dissolution of metals from sulphides in the presence
of sulphuric acid. The effect of temperature was studied in 1 M H2SO4, 1 M NaCl, 13.5 g/dm3 MnO2

over the range 30–80 ◦C. The results are shown in Figures 6 and 7. As seen, the extraction of copper
and silver was very low at 30 ◦C. At low temperatures, the dissolution of chalcopyrite, and, thus,
isocubanite, was prevented by the formation of passivation species on the surface [25]. Dutrizac and
MacDonald [5] observed that, in the acidified ferric sulphate solution, the presence of NaCl accelerated
the dissolution of chalcopyrite at temperatures above 50 ◦C. However, at lower temperatures, it may
have an inhibiting effect. Furthermore, an increase in temperature could have favoured the forward
reaction of the galvanic systems (both primary and secondary oxidation reactions) that resulted in an
accelerated dissolution of both metals. After 24 h, the dissolution of copper and silver increased from
20 to 82% and from 10 to 53%, respectively, as temperature increased from 30 to 80 ◦C. Such results
emphasize the dependence of the copper and silver dissolution from the SMS on temperature under
the investigated conditions.
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Figure 6. Effect of temperature on the dissolution of copper (a) and silver (b) (1 M H2SO4, 1 M NaCl,
13.5 g/dm3 MnO2, 30 g/dm3 SMS, 300 rpm).

Temperature dependence can be used to estimate the apparent activation energy for the dissolution
of copper and silver phases, and, thus, to determine the dominant leaching mechanism under the
investigated conditions. The activation energy can be derived from the relationship between the
dissolution kinetic rate constant and the temperature (Arrhenius plot). Several models have been
developed to describe the leaching kinetics and among them the Elovich equation was found to
successfully describe the dissolution kinetics of copper and silver from the investigated SMS sample.
The Elovich equation is expressed as [39–41]:

dXM/dt = k· exp(−β·XM) (19)

where XM is the extracted fraction (dissolution) of the metal and t is the leaching time. The constant, k,
represents the initial kinetic rate (h−1), while β is a measure of resistive forces that slows down the
dissolution rate from an initial value to its maximum at XM = 1 [40]. When integrated, with respect to
time, Equation (19) has the form:

XM =
1
β
· ln(β·k·t + 1) (20)
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Figure 7. Influence of temperature on the ultimate dissolution of copper (a) and silver (b) after 24 h
(1 M H2SO4, 1 M NaCl, 13.5 g/dm3 MnO2, 30 g/dm3 SMS, 300 rpm).

Figure 6 shows that the experimental points fitted well to the Elovich equation. The empirical
constants, k and β, were calculated using the Sigma Plot software package. For all tests, the lowest
value of the determination coefficient was 0.97, while the error in the dissolution kinetics of copper
and silver was obtained with the 95% confidence interval. As seen from Figure 8, there was a good
correlation between the experimental and calculated values of copper and silver dissolution at different
temperatures. It confirms the suitability of the Elovich equation for the description of sulphuric acid
leaching of copper and silver phases from the SMS under the investigated conditions.
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Figure 8. Comparison of the calculated (Equation (20)) and experimental values of fraction of Cu
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The Arrhenius equation, used to calculate the apparent activation energy, Ea (J·mol−1), of the
copper and silver phases’ leaching, has the form:

k = A· exp
(
− Ea

R·T

)
(21)

where A is the pre-exponential factor, R is the universal gas constant (8.314 J·mol−1·K−1), and T is the
absolute temperature (K). The values of ln k were plotted against 1000/T, that is the Arrhenius plot
shown in Figure 9, and the apparent activation energies were found to be 91 J·mol−1, with R2 = 0.97
for copper and 101 J·mol−1, with R2 = 0.84 for silver.Minerals 2018, 8, x FOR PEER REVIEW  12 of 14 
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The relatively high values of the apparent activation energies suggests that electrochemical
reactions were mainly responsible for the dissolution of copper [42] and silver from the seafloor massive
sulphides during sulphuric acid leaching in the presence of manganese dioxide and sodium chloride.

4. Conclusions

It was shown that the dissolution of the SMS was mainly due to galvanic interactions between the
primary marine minerals of the SMS and manganese dioxide. The results clearly indicate that deep-sea
manganese nodules could be used as an oxidant for the leaching of seafloor massive sulphides from
the Loki’s Castle area at the Artic Mid-Ocean Ridge. For such a system, no artificial introduction of
either air or oxygen is needed. Addition of chloride ions also had a positive effect on the leaching rate
and efficiency of copper and silver. Due to the reduced accessibility of freshwater in some countries
and the high costs of hydrochloric acid, the mixed sulphate-chloride systems offer the possibility of
economical leaching, particularly where seawater is easily available.
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