@NTNU

Norwegian University of
Science and Technology

Preserving projection properties when
regular two-level designs are blocked

Yngvild Hamre

Master of Science in Physics and Mathematics
Submission date: June 2018
Supervisor: John Sglve Tyssedal, IMF

Norwegian University of Science and Technology
Department of Mathematical Sciences

Preface

This master thesis was written during the spring semester of 2018 as the com-
pletion of my Master of Science in Physics and Mathematics at the Norwegian
University of Science and Technology (NTNU). The subject code of the thesis is
TMA4905 Statistics, and it counts for 30 credits.

The objective of the thesis is to test different methods for dividing regular two-
level designs into two or more blocks. The methods are based on using blocks
known to be orthogonal on the main effects, but allow for partial confounding be-
tween the blocks and the interaction effects too see if higher projectivity can be
achieved by sacrificing orthogonality.

I would like to thank my supervisor, John Sglve Tyssedal, whose enthusiasm, pa-
tience and support were crucial for my understanding of the topic and motivation
for the writing. For that I am very grateful. I would also like thank my boyfriend
Kristian Hole-Drablgs for always taking the time to read drafts and discuss thesis-

related topics.

Abstract

Early on in an experimental investigation, it is often desirable to determine which
factors are to be considered active, i.e. influence the measured response, and
which factors are inert. When testing k different factors, there are in many cases
only a small subset of factors of size r < k which is active. Instead of thoroughly
investigating the entire k-dimensional factor space, one may instead explore the
active subspace of much lower dimensionality where the changes in measured
response is caused. But this can only be done if the initial screening enables dis-

covery of all possible active subset of size r.

An additional challenge in screening is introduced when experimental runs can-
not be performed under the same conditions. Then the design should be divided
into blocks with similar conditions. Performing experiments is often costly, thus
limiting the number of runs needed to gather the desired information may be an
important aspect of planning. In this thesis, the focus is to test different approaches
for efficient blocking of several 16-, 32- and 64-run two-level fractional factorial

designs, by utilising mirror image pairs and Hadamard matrices.

These methods were chosen as they yield candidate blocks which are orthogonal
to the main effects columns, but sometimes partially confounded with the interac-
tions. Preferable blocks are presented after evaluating the candidate blocks based
on their projectivity properties and Ds-efficiencies for all combinations of a given
number of active factors. Regular fractional factorial designs with good projection
properties were chosen as they are popular in industry, but the usual blocking pro-
cedure based on confounding blocks with higher-order interactions often results

in low projectivity.

iii

The main finding is that by allowing blocks to be partially confounded with in-
teractions, the projectivity was increased for all the designs which were tested,
compared to the recommended blocking based on confounding of interactions.
Using the suggested blocking thereby enables estimation of all effects for a higher
number of active factors than when using blocking based on confounding of in-
teractions. The drawback of allowing partial confounding between blocks and
interactions is that it results in higher standard deviations for the estimates of the

corresponding effects.

v

Samandrag

Nar ein skal planleggje eit eksperiment ynskjer ein ofte a finne ut tidleg i prosessen
kva faktorar som er aktive, dvs. paverkar responsen, og kva som er inaktive. Nar
ein testar k ulike faktorar vil det i mange hgve berre vere ei lita undergruppa med
r < k faktorar som er aktive. I staden for & undersgke heile det k-dimensjonale fak-
torrommet kan ein dé heller utforske det mykje mindre, aktive faktorrommet der
endringane i responsen vert fordrsaka. Det kan berre gjerast dersom innleiande
screening er tilrettelagt for & kunne oppdage alle moglege aktive undergrupper

med r faktorar.

Ei tilleggsutfordring ved screening oppstar nar alle enkeltforsgka i eit eksperi-
ment ikkje kan utfgrast under like tilhgve. D& ma eksperimentet delast inn i min-
dre blokker med same tilhgve i kvar. Det er ofte dyrt & gjennomfgre enkeltforsgk,
sa avgrensing av talet enkeltforsgk ein treng for & samle nok informasjon er ein
viktig del av planlegginga. I denne masteroppgava er fokuset pa 4 teste ulike fram-
gangsmatar for a dele design med 16, 32 og 64 enkeltforsgk inn i blokker ved a
nytte enkeltforsgkspegelbilete og Hadamardmatriser.

Desse metodane er valde fordi dei genererer blokker som er ortogonale pa hov-
udeffektane, men somme tider delvis konfunderte med interaksjonar. Tilradde
blokker vert presenterte etter at alle blokkene har vorte evaluerte pa bakgrunn av
projektivitetseigenskapar og Ds-effisiens for alle moglege kombinasjonar av eit
gitt tal aktive faktorar. Regulaere design er valde fordi dei er mykje nytta i in-
dustrien, men den vanlege maten & dele dei i blokker basert pa konfundering med

hggare-ordens interaksjonar gjev dei ofte 14g projektivitet.

Hovudfunnet i masteroppgéva er at hggare projektivitet enn ved konfundering av
interaksjonar vart oppnadd for alle regulere design som vart delt inn i blokker
med dei nye metodane. Dermed opnar dei tilradde blokkene for estimering av
alle effektar for fleire aktive faktorar. Ulempa med 4 tillate delvis konfundering
mellom blokker og interaksjonar er at det fgrer til stgrre standardavvik for estimata
av tilhgyrande effektar.

vi

Contents

Preface i
Abstract iii
Samandrag \4
1 Introduction 1
2 Theory 3
2.1 Experimental design 3
2.1.1 Two-level factorial designs 4

2.1.2 Fractional factorial designs 7

2.13 Blockingo 9

2.1.4 Evaluatingblocks oL 12

2.1.5 Combinatorial explosion 17

3 Blocking strategies 19
3.1 Using mirror image pairs oo it 20

3.1.1 Using the division into 2/ blocks for division into 2/*/ blocks 23

3.2 Blocking based ondoubling 25
3.2.1 Divisionintotwoblocks, 25

3.2.2 Divisioninto fourblocks oL 27

3.3 Blocking using Hadamard matrices 28

4 Results 31
4.1 16-rundesigns. 33
4.1.1 Blocking a2, % designusingMIP 34

4.1.2 Dividing a 2)! design into two blocks using HM 37

vii

4.1.2.1 Three active factors
4.1.2.2 Fouractivefactors

4.1.2.3 Estimating three two-factor interactions

42 32-rundesignso

421

422
423
424

425

4.2.6

Dividing a 2}8_1 !design into two blocks using the block-

ing of the 2?; fdesign
Dividing a 2}~ 1!

Dividing a 2}8_” design into four blocks using MIP

design into two blocks using MIP

Dividing a 2‘6,;1 design into two blocks using MIP
4.2.4.1 Threeactive factors
4242 Fouractivefactors
4243 Fiveactivefactors
4.2.44 Estimating three-factor interactions
4.2.4.5 Estimating two four-factor interactions
Dividing a 2‘6,;1 design into four blocks using MIP
4.25.1 Threeactive factors
4252 Fouractivefactors
4.2.5.3 Fiveactive factors
4.2.5.4 Utilising the division into two blocks for divi-
sion into fourblocks
Dividing a 2/, a 25,% and a 2),,* design into two and
four blocksusingHM
426.1 A 23‘7 2 design divided into two blocks
4262 A 2]‘7 2 design divided into four blocks
4.2.63 A 2% design divided into two blocks
4.2.6.4 A 2% design divided into four blocks
42.6.5 A2),*design divided into two blocks
42.6.6 A2),* design divided into four blocks

viii

43 64-rundesignso 82
4.3.1 Dividing a 2%—26 design into two blocks using the block-

ing of the 2}‘(}_” design 82
4.3.2 Dividing a 2;3’26 design into four blocks using the block-
ing of the 2}3’“ design, 83
4.3.3 Dividing a 2?,_2 design into two, four and eight blocks
using HM oL o 88
4.3.3.1 Two blocks, three active factors 89
4.3.3.2 Two blocks, four active factors 90
4.3.3.3 Four blocks, three active factors 90
4.3.3.4 Four blocks, four active factors 91
4.3.3.5 Eight blocks, three active factors 92
4.3.3.6 Eight blocks, four active factors 94
44 Summaryofresults oL 95
4.4.1 16 runs, three active factors, twoblocks 99
4.4.2 32 runs, three active factors, two and four blocks 99
4.4.3 64 runs, three active factors, two and four blocks 100
5 Evaluation of D,-efficiencies 103
5.1 Comparison using reactor dataexample 103
5.2 Evaluation of the preferred blockings for all designs 108
6 Concluding remarks 113
Bibliography 115
Appendix A 118
Appendix B: R code 144

iX

Chapter

Introduction

Design of experiments is a branch of statistics concerned with the procedure of
gathering data in a planned manner to accommodate the data analysis. The pio-
neering work was done by Ronald Fischer nearly hundred years ago, as a statisti-
cian at the Rothamsted Experimental Station, as described by Bodmer [1]. He was
employed there in 1919, and in the following years developed ideas on randomisa-
tion and design of experiments to facilitate agricultural investigations, ultimately
resulting the publishing of the book The Design of Experiments [2] in 1935.

During the Second World War, another key player entered the stage of statis-
tics. Having joined the army as a chemistry student whose job was to perform
experiments, George Box quickly figured out that he needed help from a statis-
tician to analyse the data. As no statisticians were available, he had to learn the
theory himself, even after having explained to his colonel that I once tried to
read a book about it by someone called R. A. Fisher but I didn’t understand it”,
as he mentioned in the 50th anniversary speech at the Statistics Department of the
University of Wisconsin, of which he was the founder [3]. Luckily, Box did not
give up on his efforts to master statistics and design of experiments, and made
numerous contributions to the field, starting what is often referred to as “’the sec-
ond era” for statistical experiment design. This meant stronger focus on industrial
experiments with more immediate responses and thereby possibilities for using

small, initial experiments to plan more extensive experiments. A contribution
from Box particularly relevant for this thesis is the notion of projectivity, which
he and Tyssedal introduced in [4].

The projectivity of a design is a measure of for how many factors all main ef-
fects and interactions can be estimated. Having good projectivity properties is
important in screening situations where higher-order effects are assumed to be im-
portant. Traditional blocking of designs using confounding of interactions often
destroys the projectivity properties of the designs, as interactions become con-
founded with block effects. Testing different blocks and comparing efficiencies
used to be tedious work, but the last decades increased computing power has en-
abled testing to an extent which was previously unimaginable. Thus it might
still be possible to find new blocking methods which accommodates estimation of
more higher-order effects than blocking by confounding of interactions.

The focus of this thesis is blocking of regular fractional factorial designs, as they
are widely used among experimenters. The emphasis is on testing if mirror image
pairs can be used to block the designs in a manner which preserves the projectivity
properties. Using mirror image pairs ensures that the block column is orthogonal
to the main effect columns. Doubling of the designs for which mirror image pair-
based blocking was successful is also tested, as a method to block designs with
twice as many factors and runs. For two-level designs not consisting of mirror
image pairs, another approach based on finding orthogonal columns known to be
orthogonal to the main effects is tested. The candidate blocks are then found using
Hadamard matrices.

Different blocks yielding the same projectivity are compared using Ds-efficiency,
a measure of how efficient the block is in terms of minimising the generalised
variance of the interesting parameter estimates. The theoretical background is
introduced in chapter 2, while the blocking strategies are presented in chapter
3. Results including a preferred blocking for each design can be found in chap-
ter 4, while chapter 5 is used to assess how much the standard deviations of the
estimated effects are affected by using blocks with different Ds-efficiencies. Con-
cluding remarks are given in chapter 6.

Chapter

Theory

The focus of this thesis is blocking of two-level fractional factorial designs, a sub-
group of regular two-level designs. After a brief introduction to experimental de-
sign, two-level factorial designs will therefore be the first subject of the following
theory. How to handle non-homogeneous experimental conditions by blocking is
then discussed, along with means of evaluating different properties of the designs.
Having knowledge about how the designs are created, why they are blocked and
how the blocks may be evaluated is crucial in order to test new blocking strategies,
which will be presented in chapter 3.

2.1 Experimental design

When conducting an experiment, the goal is to quantify the effect of one or more
factors on a response by testing different factor levels in a controlled manner. The
quality of the subsequent analysis is largely dependent on the experimental setup,
and the design should therefore be carefully planned before the experiment. By
doing so, valid and objective conclusions can be made and thereby new knowledge
acquired. The methodology is useful in a variety of areas, ranging from process
improvement in industry to marketing strategies for businesses.

Which experimental design to choose depends on the purpose of the experiment;
should the estimated effects be very precise, or should the experiment merely be
able to detect which factors seem to affect the response at all? Is there a large
cost attached to the number of experimental runs? Is there a limited batch of
raw material available, and does the experimental runs have to be performed in
different days? To find a suitable design for a given situation, it is important to
take all such questions into account and have a broad overview of different design
strategies.

2.1.1 Two-level factorial designs

Factorial experiments are experiments in which all combinations of the levels of
the factors are tested. A factor is an explanatory variable, for example the tem-
perature of the chemicals, whether the operator is a man or a woman, and so on.
The number of runs required depends on the number of levels for each factor.
For a factorial experiment with two factors, A and B, with a and b levels respec-
tively, the minimum number of runs is ab. Two-level factorial designs naturally
require the smallest number of runs to investigate a given number of factors and
are therefore commonly used in factor screening experiments. Testing all possi-
ble combinations of two levels for k factors require 2* runs, thus giving them the
name 2 factorial designs. For each additional factor investigated, the number of
runs doubles. To illustrate the concept, a 23 factorial design with the correspond-
ing response y is shown in table 2.1. The columns A, B and C denote the main
factors.

Tyssedal [5] defines the main effect of a factor as “the expected average response
when the factor is on the high level - expected average response when the factor
is at the low level”. The estimate of the main effect C can be found as y,¢c — yic,
where y,c and yj¢c are the responses for which C was at a high and a low level,

respectively. The estimate of the main effect of C for the design in table 2.1 thus
A 21423417419 _ 13414418417 _
becomes C = 7 —) =4.5.

Table 2.1: A 23 factorial design and corresponding response.

A B C vy
-1 -1 13
1 -1 -1 14
-1 1 -1 18
1 1 -1 17
-1 1 21
1 -1 1 23
-1 1 17
1 1 1 19

However, the response for a given level of factor C might differ depending on the
level of factor B. Then an interaction effect BC is present in the model. In [5],
Tyssedal defines the interaction between two factors as ”Half the main effect of a
factor when the other is on the high level - half the main effect of a factor when

the other factor is at its low level”. The interaction between B and C in the design
((17+19)7(18+17) B (21+23)7(13+14)) 4
2 2 -

in table 2.1 can be estimated as BC = %

In general, a design with k main factors has (i) +(kfl) + ...+ (¥) =2¢~1 possible
effects and interactions in the resulting model. In many cases, three-factor inter-
actions and higher are assumed to be negligible, but it is not the case in general.
They are for example important in many chemical processes. Significant interac-
tions may mask the significance of one or more of the main effects involved, but
this does not mean that the factor should not be included.

If the factors are quantitative, the preferred strategy is often to fit a first order
polynomial model of the form Y = XB + €, where Y is a n x 1 vector with re-
sponse variables, and X is a m X n design matrix with one column for each factor
and interaction, and an identity column; a column with ones for the intercept .
Thus m = k+ 1. B is a m x 1 vector of coefficients, one for the intercept, each
factor and interaction, and € is an error term with expectation zero and variance

o. A model including the factors A and B and the interaction between them can
for example be written as Y = X’ B = By + Baxa + B2Bs + Bapxaxs. Having such
a model allows for prediction of responses for factor values not included in the
experiment. The design matrix for the 23 factorial design in table 2.1 including
an identity column I and all interaction effects is shown in table 2.2. Note that the
column AB is given by A®B, where ® denotes the Hadamard product. As it is
common in the literature to omit the ® for simpler notation, that convention will
be used throughout the thesis.

Table 2.2: Design matrix for the 23 design including all interaction effecs.

I A B C AB AC BC ABC
1 -1 -1 -1 1 1 1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 1 1 -1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 -1 1 -1 1 -1 -1
1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1

A compact way to find the parameter estimates is to use the estimator B, which
is given by (X'X)7!XTY. The matrix X(X"X)~!X” is called “the hat ma-
trix”, H. The covariance of the estimator B is given by the covariance matrix
Var(B) = 62(X"X) ™!, where the diagonal elements are the variances, and the
off-diagonal elements are the covariances. For instance, 0> (XTX);1 is the vari-
ance of parameter estimate number i, and GZ(XTX)[;-I and GZ(XTX);1 are the
covariances between parameter estimate number i and j, as the matrix is symmet-
ric. In experimental designs, X is often chosen to have orthogonal columns, as
it minimises the joint confidence region containing the model regression coeffi-
cients, according to Montgomory in the book Design and Analysis of Experiments
[6]. Then all the off-diagonal elements of (X7 X)~!, the covariances, are zero. To
achieve orthogonality, it is common to re-code the two factor levels to -1 and 1,

where -1 is the low level and 1 is the high level. Then the parameter estimate [% is
half the main effect of factor A, as a factor change from the high to the low level
is equal to a change of two in x4.

As mentioned above, the experimenter chooses (X”X)~!, but ¢ has to be esti-
mated. When a 2¥ factorial experiment is replicated r — 1 times, yielding r values
for each level combination, this can easily be done. The estimated variance of
level combination i, s? is given by

r

—yi)i=1,2,.,2F (2.1)

where y;; is observation number j of the response using combination i. The overall
variance, 62, is then estimated with (r — 1)2" degrees of freedom as

12

=%, Z (2.2)

There also exists methods for estimating 6> when the experiment is not replicated.
One common approach is to assume that higher-order interaction effects are zero,
and then use these to estimate the variance, as discussed by Tyssedal [5].

2.1.2 Fractional factorial designs

In some situations, it may not be possible to complete all 2* runs of the experi-
ment. Then a fraction of the runs can be performed, at the cost of not being able
to estimate all effects. A half fraction of a 2% design is called a % = 2¢=1 design,

a quarter fraction is called a %—2 = 2K=2 design and so on. A 2¢77 design is created
by constructing a usual experiment with k — p factors, and letting the p last factors
be defined by p interaction effects. This is equivalent to writing out the entire 2¢
design and choosing the rows in which the entries of the interaction effects be-
tween the p last factors and the interactions used to define them are equal to 1.
If for example a half-faction of a 2 design is to be constructed, one may either

write out a 2% design and add a column C=AB or write out the entire 2% design
and choose the rows where ABC=1. In either case, I=ABC is called the defining
relation, and the relation C=AB is called the generator for the design.

Using an interaction column to define a new factor makes the interaction effect im-
possible to separate from the main effect of the new factor. This is a phenomenon
called aliasing. Aliasing between two effects means that their design columns are
identical, thus making it impossible to differentiate between their effects. Hence
using higher-order interaction effects which are assumed to be negligible to define
the new factors is recommended.

To clarify the procedure when p > 1, consider a case where one wants to in-
vestigate five factors in eight runs. Running a complete 2° experiment requires
32 runs, so a quarter-fraction has to be chosen, making it a 2>~ design. Many
textbooks include recommended choices of design generators. Montgomery [6]
recommends using AB=D and AC=E to define the last factors. Then the inter-
action effects AB and AC are not differentiable from the main effects D and E,
respectively. But it is not only the generators that are no longer indifferentiable
from other effects. As DB=ABB=A, BD and A are for instance aliased as well.
Note that BB is equal to I, a column vector of ones.

The alias structure, which effects that are indifferentiable, can easily be found
using the defining relation of the fractional design. The defining relation is de-
fined as “the set of all columns that are equal to the identity column” [6]. These
may also be referred to as words. If the design generators are D=AB and E=AC,
the defining relation is given as I=ABD=ACE=BCDE. Multiplying an effect with
the defining relation gives the alias structure for the effect. For example, A ABD
=BD, thus A and BD are aliased when D=AB and E=AC are the design genera-
tors. The entire alias structure for A is A=BD=CE=ABCDE.

As higher-order effects are often assumed to be negligible, it is preferable to have
a design with an alias structure that does not involve aliasing between any lower-
order interactions. The term resolution is often used to describe this aspect of the
alias structure. According to Montgomery [6], "a design is of resolution R if no

p-factor affect is aliased with another effect containing less than R — p factors”.
The usual notation for resolution is to use a Roman numeral. A resolution V de-
sign is for example a design in which no two-factor effect is aliased with another
effect containing less than three factors, thus no two-factor effect is aliased with
another two-factor effect, and no main effect is aliased with an effect containing
less than four factors. In general, the resolution is equal to the length of the short-
est word in the defining relation. In the example in the above paragraph, ABD and
ACE are the shortest words, making it a resolution III design. Then a two-factor
interaction effect is not aliased with any other effect containing less than 3-2 fac-
tors, i.e. two-factor effects are aliased with main effects, as shown.

Regular designs

Wu and Hamada [7] defines regular designs as designs for which “any two fac-
torial effects either can be estimated independently of each other or are fully
aliased”. This corresponds to all 2% factorial and 2¥~7 fractional factorial de-
signs, so all designs considered in the results section belong to this class. Such
designs require a number of runs that is always equal to a power of two, making
the run-size quite inflexible. Non-regular designs such as Plackett-Burman de-
signs are therefore also popular. They allow for effects to be correlated, and hence
often need a smaller number of runs to estimate effects. Regular designs are still
widespread due to being relatively easy to analyse and thoroughly studied in the
literature.

2.1.3 Blocking

Blocking is a design technique used to reduce the effect of nuisance factors on the
estimated effects of the different factor combinations. A nuisance factor is a factor
whose effect on the response is not interesting, but still likely to be present [6]. A
nuisance factor may be controlled or uncontrolled, known or unknown. Randomi-
sation is a measure against uncontrollable and unknown nuisance factors. If the
nuisance factor is known, but uncontrollable, it may be analysed statistically using
analysis of covariance. An unknown nuisance factor may hardly be controllable,
but the case of known and controllable can be dealt with using blocking.

Introducing a block factor is recommended whenever a known and controllable
nuisance factor is likely to systematically affect the result. This might for exam-
ple be different operators performing the trials or different batches of raw material
being used. If for instance two units are used when conducting the experiment,
and all high levels are tested on the first unit, whereas all low levels are tested
on the second unit, it will not be possible to separate the effect of the levels from
the variability between the units. By instead testing all combinations on each of
the units, the variability between units, i.e. the block effect, may be estimated.
This approach is called "Randomised complete block design”, where ”complete”
refers to the fact that all combinations are tested in each unit/block [6], and “’ran-
domised” to the combinations being randomised within each block. In general,
blocking represents a restriction on randomisation.

If the blocks are not large enough to contain all possible factor combinations
in one replicate of the experiment, the design technique “confounding” may be
used to ensure that all main effects and lower-order interaction effects can be es-
timated. Higher-order interaction effects then become confounded with blocks,
meaning that the higher-order interaction effects cannot be separated from the
block effects. This is the exact same phenomena as aliasing, and both terms are
common in the literature. The confounding technique is based on dividing the
runs into blocks based on the sign of one or more interaction effects. If the factors
are A, B and C, the interaction effect ABC can for example be used to define two
blocks by the runs for which ABC=-1 and ABC=1, respectively. The interaction
effect ABC is then called a block generator.

Table 2.3 shows a toy example with the 23 design mentioned above to illustrate
the concept. Block 1 is chosen naively by letting the first four rows belong to one
block, and the last four to the other, denoting them -1 and 1 respectively. The
blocking column is then equal to the column C, so the main effect becomes in-
differentiable from the block effect. A better choice of block is therefore Block
2, which is equal to the ABC-column. Then ABC is used as the block generator.
The effect of ABC can no longer be estimated, but as higher-order effects most
often are less likely to be active than lower-order effects, that is the best choice of
block generator. The design matrix in this case will consist of the columns I, A,

10

Table 2.3: Design matrix for the 2° design including all interaction effects, and two
candidate blocks.

I A B C AB AC BC ABC Block1l Block?2

1 -1 -1 -1 1 1 1 -1 -1 -1
1 1 -1 -1 -1 -1 1 1 -1 1
1 -1 1 -1 -1 1 -1 1 -1 1
1 1 1 -1 I -1 -1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1 1 1
1 1 -1 1 -1 1 -1 -1 1 -1
1 -1 1 1 -1 -1 1 -1 1 -1
1 1 1 1 1 1 1 1 1 1

B, C, AB, AC, BC and Block 2 from table 2.3, and the resulting linear model is
Y = Bo+PBa-A+Bp-B+Pc-C+Pap-AB+ Bac-AC + Bpc - BC + Bpiockz - Block2.
It is usually assumed that the interaction effects between the blocks and the main
and interaction effects are negligible. If the assumption is wrong, the error term
will include these interactions.

If the design is a fractional factorial, the blocking procedure is further compli-
cated. Now both the design generator and the block generator may introduce con-
founding. One way to proceed is then to look at the total number of clear effects,
as suggested by Wu and Hamada [7]. A two-factor interaction is for example de-
fined as clear if it is not confounded with any main effects, two-factor interactions
or blocks. They do however note that simply considering the total number of clear
effects may be too naive, as one for instance often will prefer having clear main
effects rather than clear two-factor interactions. The book includes tables of the
most common factorial designs and suggestions on how to block them using the
total number of clear effects-criterion. This will from now on be referred to as the
recommended blocking by confounding of interactions.

It also possible to use several blocks in an experiment. When for instance di-
viding the design into four blocks, they can be defined by using two columns

11

with the row combinations (-1,-1), (1,-1), (-1,1) and (1,1) to define the four dif-
ferent blocks. The interaction between them should also be included in the design
matrix, which in total yields three columns resulting in rows (-1,-1,1), (1,-1,-1),
(-1,1,-1) and (1,1,1). It is important to be sure that the block interaction is not con-
founded with any main or interaction effects. If for example both ABC and AC
are used for blocking, ACBAC=B, making the blocks undesirable. Suggestions
on how to divide fractional factorial designs in more than two blocks can be found
in Wu and Hamada [7] as well.

2.1.4 Evaluating blocks

When looking for an optimal blocking, one must reflect upon with respect to
which criteria the blocking should be optimal. Several different criteria have been
proposed, such as the total number of clear effects, as mentioned above. In this
thesis, the focus is on being able to estimate the maximum number of effects as
efficiently as possible for a given number of active factors. Then the notions of
projectivity and Ds-efficiency are useful.

Projectivity

When designing a screening experiment, it is important to consider whether higher-
order interactions are believed to be active. To be able to effectively communicate
whether the higher-order interactions can be estimated, Box and Tyssedal [4] de-
fined the projectivity of a two-level design as "A n x k design with n runs and k
factors each at two levels is said to be of projectivity P if the design contains a
complete 2P factorial in every possible subset of P out of the k factors, possibly
with some points replicated. The resulting design will then be called a (n, k, P)
screen”.

Investigating projectivity properties is particularly useful for screening designs, as
it guarantees the possibility to get unbiased estimates of all effects up to P-order
interactions when P or fewer factors are active. Knowing the projectivity prop-
erties makes it easier to find the smallest possible screening design for which the
active factors are detectable and the corresponding effects estimable. In addition,
for the set of active factors, replicated runs will have the same expected value, and

12

thus allow for model-independent estimation of the error variance. Another useful
property to be aware of when choosing design is that a regular fractional factorial
design of resolution R is of projectivity P = R— 1 [4].

The original definition of projectivity is rather strict, as it implies that the P-factor
interaction and lower must be estimable. If there are many active factors, one
might not be interested in the highest-order interactions, and rather prefer being
able to find all active factors. Then the generalised projectivity is a useful mea-
sure. It was introduced by Evangelaras and Koukouvinos in [8] as "a n X k design
with n runs and k factors each at two levels is said to be of generalized projectivity
Py, if for any selection of P columns of the design all factorial effects including
up to o-factor interactions are estimable”.

The projectivity of regular designs is well known, but unfortunately often not
preserved when the designs are blocked. In [9], Hussain and Tyssedal defines a
blocked design to be of projectivity P or Py "if, in addition to the intercept, all
factorial effects up to and including P-factor interaction or Q-factor interactions
are estimable respectively”. In this thesis, the notation (n,k,Pa,b) screen and
(n,k,P,b) screen will be used, where as before n is the number of runs and k is
the number of factors in the design. Py, is the number of columns of the design for
which all factorial effects including up to ¢-factor interactions are estimable no
matter which columns are chosen, and b is the number of blocks.

In some cases, the notation (n,k, Pa+a,b) screen will be used, where a denotes the
number of (& + 1)-interactions that were estimable. This is particularly relevant
for some of the designs where o < P. If for example all three-factor interactions
and two four-factor interactions are estimable when there are five active factors,
P=35,00 =3 and a = 2. Note that a (n,k, Py+4,b) screen by definition always is a
(n,k, Py, b) screen as well. Note also that the a (o + 1)-interactions can be freely
chosen, i.e. one may choose any a (o + 1)-interactions and estimate them. This
definition makes a = 0 for regular designs blocked by confounding of interactions,
as the (@ + 1)-interactions cannot be freely chosen for these. If for instance ABC
is the block generator, the interaction effect ABC can never be estimated, limiting
the projectivity to P = 2.

13

Projectivity in relation to fold-over and doubling
According to Tyssedal in [10], the foldover of a n X k design matrix X without a

column of ones for the intercept is given by X= (XX 11> ,

where 1 is an x 1 vector of ones. The resulting design X has dimensions n x (k -+
1) and can thereby accommodate k + 1 factors. This is a useful technique as it
guarantees the projectivity of the resulting design. Folding over a regular design
with an even resolution does not change the resolution and projectivity, but if the
resolution is odd, the foldover increases the resolution and thereby also the pro-
jectivity by one. If for example the design X has resolution III and projectivity
P =2, the foldover design has resolution IV, and thereby projectivity P = 3. This
happens because all words of length three are no longer present in X. Utilising
this property may for example be done if a small design of projectivity two has
been used to identify three active factors, and one wishes to add runs to make it
a projectivity P = 3 design in order to estimate the two-factor interaction effects
without confounding with the three-factor interaction effect.

Another design technique used to maintain the projectivity when increasing the
number of factors and runs in the design is doubling, a technique used to gener-
ate a new design D(X) with twice the number of rows and more than twice the
number of factors than the original design X. This is done by using the following
pattern:

bX)= (i —XX 11)

where D(X) is a n x (2k+ 1) matrix, and X is a n X k matrix, as before. The
useful property regarding projectivity is that if X is a (n, &, 3) screen, the doubling
D(X) is a (2n,2k,3) screen when the rightmost column with n 1” and n -1’s is
removed. Samset and Tyssedal notes in [11] that a defining relation of four fac-
tors always exists for doubled designs. Thus the projectivity of doubled designs
cannot exceed P = 3, as four active factors would possibly result in a main effect
being confounded with a three-factor interaction.

14

D-optimality and D;-efficiency

The columns of a 27 factorial design are always orthogonal. Thus blocks based on
confounding of interactions are orthogonal on all effects. It is however also possi-
ble to estimate effects when they are partially confounded with the block. Partial
confounding between two design columns means that the inner product between
them is non-zero, but smaller than the length of the columns. If the inner product
is zero, they are orthogonal, and if it is equal to the length of the columns, they are
confounded. Thus the further from zero, the stronger the partial confounding. The
inner product can be found by inspecting the X? X matrix, where an off-diagonal
element (X”X);; with a non-zero value shows the partial confounding between
the effect i and the effect j. This does in turn yield higher values of the diagonal
elements (X”X); ' and (XTX);jl, and thereby a higher estimate of the variances
of effect i and effect j than if there had been no partial confounding.

How should the preferred block be chosen in the case of partial confounding?
One of the most widely used criteria is D-optimality, as described in the book
Optimum Experimental Designs, with SAS by Atkinson, Donev and Tobias [12].
They define a D-optimal design Xp as the design which minimises the gener-
alised variance of the parameter estimates. The generalised variance is defined as
the determinant of the covariance matrix, according to Gupta [13]. The covariance
matrix of f3 is 62 (X”X)~!, so minimising its determinant equals maximising the
value of |X”X]|.

Evaluating the efficiency of a design X compared to the the optimal design Xp
T 1

(X X)|)7, where p is the

, . M(XpXp)|

number of parameters in the model. The D-efficiency is always between 0 and 1,

where 1 implies that the design X is D-optimal. The D-efficiency can thereby be

used to rank different candidate designs, and the one with the highest D-efficiency

is preferred.

can be done using the D-efficiency, which is given by (

The notion of D-optimality has its counterpart in Ds-optimality for designs for
which only some parameters are important to estimate precisely, for example if
block effects are included, but their estimated effects are not interesting. In [12],

15

they motivate the definition by writing the corresponding model as

E(Y)=fT(x)B=f{ (x)Bi+ f1 (x)Bz,

where B denotes the s parameters of interest, and the 3, are the remaining p — s
parameters. The corresponding information matrix can be written as

XX — xI'x; xTx,
O AXIx, XIx,/°
2] 2 4N

Let X! denote the covariance matrix for the least square estimate of B;, which
is given by the upper left submatrix of (X?X)~! with dimension s x s. The D
optimal design Xp, is the one for which the determinant of (X')~! is maximised.
An expression for this is found using linear algebra. According to Bibby, Kent
and Mardia in the book Multivariate Analysis [14], the inverse of a matrix A may

be partitioned as
1 Al2
Al — A A
A2 A2)

and if all the inverses exists, A!! = (A1 —AnARA)_1. Another useful prop-
erty of A is that

A A
‘A| = det (i 12> = |A22HA11 —A12A£21A21‘.
Ay Ax

Setting A = X'X, Ay = XIX(,A;p = XTX,, Ay = XIX,A2 = XIX; and
Al = X! yields

X! = ((X7X)) - (X[Xo) (X] Xo) (X3 X)) ™!
and thereby

(XD~ = [((XTX1) = (X[X0) (X3 X2) (X3 X1)) .

16

_ _ XX
As [XTX] = [XFX || (XTX1) — (XTX) (XTX2) 1 (XIX0)LL [(X) 71| = R

_1’ _ X'X|

Thus a Dy-optimal design maximises |(X") XX
2

This expression is then
used to define the corresponding D;-efficiency as

X7X| 11
[|‘x§x2‘ | K
n

D, = 2.3)
where s is the number of interesting effects, equal to the number of columns in
X, and 7 is the number of runs [9]. A design maximising the Ds-efficiency is said
to be D;-optimal. A useful property of the Ds-efficiency is that when all levels are
coded -1 and 1, the design has projectivity P = h if the Ds-efficiency is above 0
for every possible projection onto & dimensions [9]. If the D-efficiency is 1, all
columns in the design are orthogonally blocked.

2.1.5 Combinatorial explosion

Having established a criterion which can be used to evaluate blocks, it seems
straightforward to apply the criterion to all possible blocks to determine which
blocking is preferable. The problem is however that this becomes unfeasible when
the number of runs increases, as the number of possible blocks increases far more.
This phenomenon is known as a ”combinatorial explosion”, a rapid growth of a
problem due to complexity which increases with input.

When for instance blocking a n = 2¢-run design into two blocks, there are @
distinct possible blockings, as pairs of blocking arrangements are identical when
simply testing all combinations of 7 -1’s and ¢ +1’s. It is for example indifferent
whether runs 1 to ¢ are placed in the first block and runs (7 + 1) to 27 in the second
block, or runs 1 to ¢ in the second block and runs (7 + 1) to 27 in the first block.

2
Thus, when there are two runs in the design, there is only % = 1 distinct block-

32
ing. When there are 32 runs, there are (12—?):300540195 distinct blockings.

17

1e+16
I
[]

1e+08 1e+12
1
[]
.

log(Number of possible blockings)

1e+04
L]

1e+00
.

0 10 20 30 40 50 60
Number of runs in design

Figure 2.1: Illustration of the growth in number of possible blocks as the run size in-
creases. The number of runs is on the x-axis, and the logarithm of the number of possible
blocks on the y-axis.

Figure 2.1 shows a plot of the increase in possible combinations, where the num-
ber of runs is on the x-axis, and the natural logarithm of the number of combina-
tions is on the y-axis. As the number of possible blocks quickly becomes several
millions, testing all possible blocks in all cases is not feasible. Therefore, a central
part of this thesis is to test alternative approaches for generating candidate blocks
for large designs. Finding alternative approaches to the traditional blocking by
confounding of interactions is motivated by the potential to achieve better projec-
tivity properties. The methods for generating the blocks will be introduced in the
next section.

18

Chapter

Blocking strategies

As mentioned in section 2.1.3, blocking a regular design by confounding of inter-
actions leads to effects being aliased, and often lowers the resolution and thereby
also the projectivity of the design. Finding blocks which keep the main effects
and lower-order interactions not fully aliased and also maintain the projectivity of
the design is therefore important when higher-order interactions are assumed to
be active.

As an example to illustrate the loss of projectivity, consider the division of the
2?,’1 design in table 3.1 into two blocks using the recommended block generator
AB. The design is originally of projectivity P = 4, as all possible interactions can
be estimated if there are four active factors. When the two-factor interaction AB
is chosen as the block generator, the effects of interactions AB and CDE can no
longer be estimated separately from the block effect b. The projectivity is thus
reduced to P = 1, as only main effects are guaranteed to be estimable if two or
more factors are active. In section 4.1.2.1, it is found that a 2?,_1 design can be
divided into two blocks resulting in a (16,5, 3,2) screen if the block is allowed to
be partially confounded with the interactions.

Testing different blocks which are orthogonal to the main effects, but may be
partially confounded with the interaction effects, is the main focus of the results

19

Table 3.1: A 2°~! factorial design and the recommended block.

A B C D E=ABCD Block
-1 -1 -1 1 1
1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1
1 1 -1 -1 1 1
-1 1 -1 -1 1
1 -1 1 -1 1 -1
-1 1 -1 1 -1
1 1 1 -1 -1 1
-1 -1 1 -1 1
1 -1 -1 1 1 -1
-1 -1 1 1 -1
1 1 -1 1 -1 1
-1 1 1 1 1
1 -1 1 1 -1 -1
-1 1 1 -1 -1
1 1 1 1 1 1

section of this thesis. The challenging part is to find the candidate blocks. Three
different methods will therefore be introduced: Utilising mirror image pairs, dou-
bling designs for which the mirror image approach worked, and finally testing
other blocks known to be orthogonal to main effects by rearranging Hadamard
matrices.

3.1 Using mirror image pairs

A mirror image pair consists of two rows whose signs are opposite. An example
of a mirror image pair is the rows [-1,-1,1] and [1,1,-1]. The set of designs in
which all rows belong to mirror image pairs does for example include all factorial
designs which are not fractional, and all designs constructed by a full fold-over

20

Table 3.2: Design matrix for the 23 design including the three-factor interaction.

Row A B C ABC

1 -1 -1 -1 -1
2 1 -1 -1 1
3 -1 1 -1 1
4 1 1 -1 -1
5 -1 -1 1 1
6 1 -1 1 -1
7 -1 1 1 -1
8§ 1 1 1 1

of a smaller design. New factor columns may be added to the design without
ruining the mirror image pairs as long as the factor columns are defined by odd-
factor interactions. This is easily seen by considering the 23 factorial design and
its interactions, as shown in table 2.2. The two-factor interaction columns are
symmetric about the middle, so the signs are not opposite. This is because the
factors A-C are mirror image, and thus products of an even number of factors yield
columns with the same sign for both rows in a mirror image pair, destroying the
mirror image property. If only the columns A, B, C and ABC had been included
in the design matrix, it would have consisted of mirror image pairs. The resulting
design matrix can be found in table 3.2.

Jacroux introduced the idea of utilising mirror image pairs in [15]. The idea is to
allocate the rows belonging to a mirror image pair to the same block. For the de-
sign in table 3.2, this means that row 1 and 8 has to be in the same block, likewise
row 2 and 7, 3 and 6 and 4 and 5. Possible unique blockings are then (b1=(1,8,2,7),
b2=(3,6,4,5)), (b1=(1,8,3,6),b2=(2,7,4,5)) and (b1=(1,8,4,5), b2=(2,7,3,6)). Us-
ing this approach ensures that the block factor is orthogonal to the main effects,
so they can be estimated without any partial confounding. Jacroux got promising
results for resolution IV regular and non-regular designs. The idea was further
tested by Hussain and Tyssedal [9], who used mirror image pairs to block MinRe-
sIV designs.

21

The idea of utilising mirror image pairs to find candidate blockings is applica-

ble to any design consisting of such pairs. In general, a n = 2¢-run design with

t
¢ mirror image pairs can be divided into two blocks in (’5!2) distinct ways, as two

blockings arrangements are identical. Randomly dividing the 2¢ runs into two

2t
blocks yields (2’—,) possible blockings, % as many as when using mirror

image pairs. The fraction of the possible blockings that consists of mirror image
pair-blockings is shown in figure 3.1, where the log of the fraction is plotted as a
function of the run size. The fraction decreases substantially for each additional
run, showing that the mirror-image pair approach may be very useful for large
run sizes if the resulting blocks have high Ds-efficiencies. The idea is of course
applicable when a larger number of blocks than two is desired as well.

1e-23 1e-15 1e-07
-

log(Fraction of tested blocks)

1e-31

1e-39
-

T
10 20 30 40 50 60
Number of runs in design

Figure 3.1: Illustration of the fraction of mirror image pair blocks among all possible
blocks. The x-axis shows the number of runs in the design, and the y-axis the logarithm
of the fraction of mirror image pair-blocks among all possible blocks.

22

As the method has given promising results for other designs and substantially
reduces the number of blockings to be tested, it will be used for designs of size
284,215 and 287!, These designs were chosen as they consist of mirror image
pairs and have a high projectivity compared to other designs with the same number
of runs. The results can be found in sections 4.1.1, 4.2.2, 4.2.3, 4.2.4.1, 4.2.4.2,

42444245425.1 and 4.2.5.2.

3.1.1 Using the division into 2’ blocks for division into 2'*/ blocks

An idea which will be briefly tested in section 4.2.5.4 is to utilise the preferred
division of a 32-run design into two blocks based on mirror image pairs to divide
the same design into four blocks. This is done by dividing each block consisting
of eight mirror image pairs into two blocks of four mirror image pairs each. Each
block can be divided into @ = 35 different combinations of two blocks of four
mirror image pairs. This yields 35-35 = 1225 ways to make four blocks based on

each of the blocks used to divide the design into two blocks.

To clarify the procedure, a toy example is shown in table 3.3 below. The orig-
inal block defined by -1 is divided into two blocks defined by (b1,b2)=(-1,-1) and
(-1,1), while the original block defined by 1 is divided into two blocks defined
by (b1,62)=(1,-1) and (1,1). The rows corresponding to mirror image pair 1 are
placed in one block, the rows of mirror image pair 2 in another, and so on. As
each of the four resulting blocks contains one mirror image pair, each block could

2
be divided into (1—,) = 1 combination of four blocks. It was thereby only 1-1 =1
way to make four blocks based on the original blocking.

The general idea is to use a n = 2¢-run design with ¢ mirror image pairs divided
into 2/ blocks to divide the design into 2/*/ blocks, where i, j > 0, and 2!/ <.
This also requires that # is an integer. But in how many ways may this be done?
In [16], Kllogjeri and Kllogjeri found that if n = k- r, a set with n elements can be

23

Table 3.3: Toy example of using the original division into two blocks, shown in column
”Original block”, to divide mirror image pairs into four blocks, as defined by columns
”b1” and ’b2”. ”b1b2” is the interaction between the new blocks.

Mirror image pair Original block 51 52 b1b2

1 -1 -1 -1 1
2 1 1 -1 -1
3 -1 -1 1 -1
4 1 1 1 1
4 1 1 1 1
3 -1 1 -1
2 1 1 -1 -1
1 -1 -1 1

divided into k groups with r elements each in

ways. This formula can be used to find the number of ways each of the 2/ blocks
with L mirror pairs each can be divided into 2/ blocks with 5~ mirror image

i A 2i+j
pairs in each. Inserting n = %, k=2/and r = ﬁ into the formula yields the
expression

((%))
@17)

As this is the number of ways one block can be divided 2/ blocks, the expression
has to be multiplied with itself 2/ times to yield the number of ways to divide the
entire design into 2!/ blocks based on the division into 2/ blocks. This yields the
expression

24

3.2 Blocking based on doubling

As mentioned in section 2.1.4, doubling is a design technique in which one may
utilise a small design with projectivity P = 3 to guarantee a design twice the size
the same projectivity. Thus it seems reasonable to test if blocks which yield high
Ds-efficiencies and high projectivity for a small design X may be used to find
blocks which have similar properties for the doubled design D(X). To do this, a
closer look at the structure of the doubled matrix D(X) is required.

3.2.1 Division into two blocks

Let X denote a regular design of projectivity P = 3, with k orthogonal columns
and n runs. As all the columns of X are orthogonal, the doubled matrix D(X) has
orthogonal columns as well. Let B1 denote half the rows of X, and B2 the other
half, where the rows of B1 and B2 can be chosen in any order. The approach
chosen here is to let B1 include the rows of X for which the block entries are 1,
and B2 the rows of X for which the block entries are -1. Removing the rightmost
column with n 1’s and n -1’s, D(X) can be written as

Bl BI
B2 B2
PX)= g1 _p1
B2 B2

This is a matrix with 2k orthogonal columns and 2x runs. As the maximum pro-
jectivity of a doubled design is P = 3, this design cannot screen for more than
three active factors if all effects should be estimable. It is interesting to see if
defining B1 and B2 by the blocks which were suitable for X can be used to make
the division of D(X) into two blocks have D; > 0 for all combinations of three
active factors.

As interchanging the rows does not affect the orthogonality properties of D(X),
the important matter is in how many ways the blocks can be defined. For division

4
of four submatrices into two blocks, there are Q = 3 different ways to define

25

the blocks. Here, the blocks will be defined by letting the two first submatrices
of D(X), (B1,B1) and (B2, belong to one block, and the two last submatrices,
(B1,-B1) and (B2, -B2), to the other. This blocking will be called Dy, and can be
written as

B1 B1 -1

B2 B2 -1
D=

Bl1 -B1 1

B2 -B2 1

The block column with -1’s and 1’s is included to show that the first block is
defined by -1’s and the second block by 1’s. For the rest of the thesis, division of
doubled matrices will in general be tested by reordering the rows, and letting the
first n rows belong to the block with -1’s, and the last n rows to the block with 1’s.
In addition to Dy,

Bl Bl -1

Bl Bl -1
Dyr=

B2 B2 1

B2 -B2 1
and

Bl Bl -1

B2 -B2 -1
Ds3=

Bl Bl 1

B2 B2 1

also represents valid blockings of the 2n-run design matrix. This approach is
tested on a 2%, design and a 2J0~!! design, in sections 4.2.1 and 4.3.1 respec-

tively.

A useful observation before testing the different patterns Dy,D, and D3 is that
D makes two-factor interactions confounded with the block column. This is be-

26

cause the product of a column in B1 or B2 with itself yields a column of +1’s,
while a product of a column in B1 or B2 with the same column in -B1 or -B2
yields a column of -1’s. Thus all two-factor interactions based on columns in D
are confounded with the block column, making the Dy-efficiency equal to zero
when estimating more than main effects.

3.2.2 Division into four blocks

The same idea can be used to divide designs into four blocks. Similarly as the
division of a 2n-run, 2k-column design D(X) into two blocks based on the blocks
which were preferable for dividing a n-run, k-column design X into two blocks,
the doubled design D(X) may be divided into four blocks using the blocks which
were preferable for dividing X into four blocks. Let B1, B2, B3 and B4 denote
the rows of the X belonging to each of the four blocks. Removing the rightmost
column with n 1’s and n -1’s, the doubling of X may be written as

Bl Bl
B2 B2
B3 B3
B4 B4
DX)=|51 _p1
B2 B2
B3 —B3
B4 —B4

D(X) is now defined by eight submatrices, (B1 B1), (B2 B2) and so on, as in-
dicated by the above pattern. Each has 7 rows and 2k columns. To utilise the
original blocking of X, the division of D(X) into four blocks is done by pairing
the submatrices. Thus there are % = 105 ways to arrange the eight subma-
trices of D(X) into four blocks. The blockings are defined by rearranging the
order of the submatrices, and then letting the first quarter of the rows belong to
one block, the second quarter of the rows belong to the second block, and so on.

This is illustrated below, where two columns are used to define the blocks. The

27

combination (1,1) does for example correspond to the first block. Note that the
rows of D(X) have been shuffled.

B1 B1 1 1
B4 B4 1 1
B3 -B3 1 -1
B2 B2 1 -1

B3 B3 -1 1
B4 B4 -1 1
B2 -B2 -1 -1
B1 -B1 -1 -1

Recall that there are only three ways of reordering the submatrices when this
method was tested for division into two blocks, but for division into four blocks,
there are 105. Clearly, this method suffers from a combinatorial explosion when
the number of blocks increases. It may therefore not be feasible when dividing
large designs into many blocks. But if the candidate blocks have similar proper-
ties, it might still be more time-efficient than testing all possible blocks. If for
example 400 blocks are suitable for blocking X, and each of these yields the same
Dj-efficiences when using one of the 105 possible ways to divide D(X) into four
blocks, it is sufficient to test one block per arrangement. This largely decreases
the complexity. The method is tested for a 2}3’“ design in section 4.3.2.

3.3 Blocking using Hadamard matrices

If the design is not made up of mirror image pairs, another way of generating
columns which are orthogonal to the main effects must be used to find candidate
blocks. The orthogonality ensures that the block columns are not partially con-
founded with any main effects. Such columns can be obtained by using columns
found from a Hadamard matrix.

28

In general, Hadamard matrices are square matrices of order n with all entries being
either -1 or 1, and mutually orthogonal rows and columns. In other words, matri-
ces with interesting properties regarding design of experiments. Hadamard matri-
ces apparently exist for n = 1,2 and n = 0 (mod 4), according to Peter Cameron in
[17]. The smallest order of which no Hadamard matrix has yet been found is 668.
Two Hadamard matrices are equivalent if one can be obtained by rearranging the
rows or the columns of the other, or by using negations. Up to order 12, there is
one Hadamard matrix up to equivalence for each order. The number of Hadamard
matrices up to equivalence of order n then increases, and a combinatorial explo-
sion happens for n = 32, according to Kharaghani and Tayfeh-Rezaie in [18].

A Hadamard matrix of size 2n can be made by arranging the Hadamard matrix
of size n, H, in the following pattern: g _HH. Note that this is almost the same pat-
tern that was used for doubling of designs in section 2.1.4. In general, all designs
generated using that pattern are not Hadamard matrices, but if X is a Hadamard
matrix, D(X) minus the rightmost column is a Hadamard matrix of size 2n. An
example of a Hadamard matrix of size 8 from the web page [19] can be found in

table 3.4.

Table 3.4: A Hadamard matrix of order eight.

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

As interchanging the rows of a Hadamard matrix does not change the orthogo-
nality properties, one may try to rearrange the rows to obtain some columns that

29

match a regular design. The remaining columns can then be used as candidate
blocks. This guarantees candidate blocks that are orthogonal on the main effects.
If a projectivity P = 2 is desired, all candidate blocks equal to two-factor inter-
actions must be removed, and likewise for higher projectivities. This approach
will be tested for a 2;‘7 2 2?; 3 and 2?‘7 4 design in section 4.2.6, and a 2?,72 design
in section 4.3.3. Blocking of a 2?‘7 ! design using a particularly good Hadamard

matrix of order 16 is tested in section 4.1.2.

30

Chapter

Results

As shown in the beginning of chapter 3, blocking by confounding of interactions
may lead to the blocked design having much lower projectivity than the original
design. Testing whether there exist strategies for blocking designs that maintain
the projectivity properties is therefore interesting. In this section, results from
applying the methods introduced in section 3 to regular two-level designs of dif-
ferent sizes are presented.

For the approach using mirror image pairs (MIP), a 2?; 4 a 2}8‘” and a 2‘6,71
design were tested, as well as the doublings of the 233\7 4 and the 2,13’“ design.
The reasons for choosing these designs will be more thoroughly explained in the
introduction of each section, but in short, they combine the desired properties of
high projectivity and ability to screen several factors. This makes the designs pop-
ular choices for screening in situations where it is important to be able to estimate
all interactions between the active factors.

For comparison with the designs blocked using the mirror image pair approach,
some designs not made up by mirror image pairs were blocked by using columns
from rearranged Hadamard matrices (HM), as they were orthogonal on the main
effects. A 2?,_1 design was blocked to test a 16-run design with higher projectivity
than the 233\7 # design. For comparison with the 32-run mirror image pair designs,

31

blocking of a 2];,%, a 28,3 and a 2);,* design were investigated. The 64-run design

considered was a 2?,_2 design.

In all cases, the interactions between the block effects and the main and interac-
tion effects were assumed to be negligible. As the projectivity of a design cannot
be increased by blocking, the original projectivity yielded an upper limit for the
number of active factors worth trying to screen for in each case.

For many of the blockings tested, there were partial confounding between block
effects and some interactions. The D,-efficiency was therefore used to assess how
much information was preserved using the new blocks, to enable the experimenter
to choose the most efficient blocking. For each design, an example blocking and
frequencies of the Ds-efficiencies when testing all combinations of active factors
are presented. The example blocking was chosen as the blocking having the high-
est minimum D;-efficiency among the blocks having high average D;-efficiencies.

For each blocking, one of the combinations of factors yielding the highest D;-
efficiency is also explicitly stated. The purpose of this is to ensure that the experi-
menter may allocate factors suspected to be active to the presented factor columns.
If it turns out that these are not the active factors, a high D;-efficiency will still be
ensured by the high minimum Dj-efficiency. This makes the blocking robust and
well suited for initial screening. Note that when presenting Ds-efficiencies, three
decimals are used as long as more are not needed to differentiate between results.
As a rule of thumb, Ds-efficiencies above 0.9 will be considered high, but when
the best blocks resulted in D,-efficiencies between 0.8 and 0.9, these are also pre-
sented.

The number of runs available for the experimenter is often limited, due to lack
of time or resources. A common question is therefore how much information
it is possible to extract from a given number of runs. To facilitate answering this
question, the results are ordered by the run size of the investigated designs, starting
with the 16-run designs 2;3‘7 *and 2?,’1, proceeding with the 32-run designs 2}3’“,
2?,;1 R 2]; 2, a 2?; 3 and 2?‘7 4, and ending with the 64-run designs D(Z}g_l !)=2;"%_26
and 2872,

32

In section 4.4, a summary of the results for all the designs are presented in ta-
bles 4.48 and 4.49. Designs with equal run-sizes which enable estimation of
all effects for the same number of active factors are also compared in terms of
minimum-, maximum- and average Ds-efficiencies. How much the partial con-
founding between interaction effects and blocks affects the parameter estimates
and their corresponding standard deviations is assessed in chapter 5.

Implementing the blocking strategies using R

The different blocking strategies were tested by implementing them in R, a pro-
gramming language popular for statistical computing [20]. It is an open-source
software with many useful embedded functions, but without any warranties. As
most functions used to produce the results in this thesis were either implemented
from scratch or easily verifiable, it is not believed to be worrying in this case, but
it is still important to be aware of.

The main focus when implementing the strategies was to ensure that all com-
binations of factors and all blockings were tested. The scripts used to generate
each result presented here in the results section can be found in Appendix B: R
code. Several functions are equal for all scripts, but they are nevertheless included
everywhere to make each code section possible to run independently.

4.1 16-run designs

The 16-run designs tested were a 253‘7 4 design and a 2?,71 design.

The 2?; 4 design was chosen as it is the 16-run design of projectivity P = 3 which
accommodates the highest number of screening factors. It consists of mirror im-
age pairs and was divided into two blocks by utilising these. The results for three
active factors can be found in section 4.1.1. Division into four blocks was also
tested, but as none of the candidate blocks yielded Dy > 0 for all combinations of
three active factors, the results are not included.

33

The 23’1 design was chosen as it is the 16-run design of projectivity P = 4 which
accommodates the highest number of screening factors. As the design does not
consist of mirror image pairs, it was divided into two blocks by reordering a
Hadamard matrix and by combining two-factor interactions. The results for three
and four active factors are presented in sections 4.1.2.1 and 4.1.2.2 respectively.

4.1.1 Blocking a 2}, * design using MIP

In this section, a 2?; 4 design of projectivity P = 3 is divided into two blocks us-
ing the mirror image pair approach. The best blocks found using this approach are
used to divide the doubling, a 2}8_” design, into two blocks in section 4.2.1. The
2?; 4 design is given in table 4.1. The columns A, B, C and D will be referred to
as the original factors, as they are not defined by three-factor interactions, unlike
E, F, G and H.

Traditional blocking of the design using confounding leads to a loss of projec-
tivity. In Wu and Hamada [7], the recommended way to block this design in two
blocks of size four is to use AB as the block generator. The block can be seen in
table 4.1. The block factor is not aliased with any main effects, but aliased with
the two-factor effects GH, CE and DF, as GH=ACDBCD=AB, CE=CABC=AB
and DF=DABD=AB. Thus traditional blocking guarantees only main effects to be
estimable without confounding, resulting in a (16, 8, 1,2) screen.

Clearly, finding a blocking which keeps the lower-order interactions unaliased
is desirable. This can be done by exploiting that the rows of the design make up
t = 5 mirror-image pairs. The pairs with row number 147, n—r, r € [0,r — 1] are
mirror images of each other. An approach to dividing the design into two blocks
is to let each block contain 5 mirror image pairs, as explained in section 3.1. As
the blocking arrangements with opposite signs are equivalent, there are @ =35
possible blocking arrangements separating the mirror image pairs into two blocks
for this design. The goal being to enable estimation of all effects when any three
out of the eight factors are active, blocks that were identical with two-factor inter-
action columns had to be removed.

34

Table 4.1: The 2?; 4 design, the recommended block generator (AB) and the preferred
block found in this section.

Row A B C D E=ABC F=ABD G=ACD H=BCD Recommended Preferred

block block

generator
1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
2 1 -1 -1 -1 1 1 1 -1 -1 1
3 -1 1 -1 -1 1 1 -1 1 -1 1
4 1 1 -1 -1 -1 -1 1 1 1 -1
5 -1 -1 1 -1 1 -1 1 1 1 1
6 1 -1 1 -1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 1 -1 -1 -1
8 1 1 1 -1 1 -1 -1 -1 1 -1
9 -1 -1 -1 1 -1 1 1 1 1 -1
0 1 -1 -1 1 1 -1 -1 1 -1 -1
1 -1 1 -1 1 1 -1 1 -1 -1 -1
2 1 1 -1 1 -1 1 -1 -1 1 1
13 -1 -1 1 1 1 1 -1 -1 1 -1
14 1 -1 1 1 -1 -1 1 -1 -1 1
5 -1 1 1 1 -1 -1 -1 1 -1 1
6 1 1 1 1 1 1 1 1 1 1

All two-factor interactions are aliased with either one of the six two-factor inter-
actions between the original factors, or the four-factor interaction ABCD includ-
ing all original factors. For instance AB=GH=CE=FD, and BG=DE=CF=AH. As
the factors have opposite signs in the upper and bottom half of the design, the
signs of interactions between an even number of factors are symmetrical about
the middle of the design. Thus they must have an equal number of 1 and -1 entries
in each half of the design, just as the candidate blocking columns. Therefore, each
even interaction was aliased with one of the 35 candidate blocks. Using one of
those blocks would lead to a two-factor effect being aliased with the block effect.
Thus, in total (3) + (}) = 7 of the candidate blocks were not suitable.

35

The remaining 28 blocks can be found in tables 6.1 and 6.2 in Appendix A. To
test if any of these blocks were better suited than the others for screening for three
active factors, the Ds-efficiency was calculated for all (g) = 56 possible combi-
nations of three active factors. All blocks were found to yield a D;-efficiency of
0.917 for 48 combinations, and a D;-efficiency of 1 for the remaining eight com-
binations, yielding a mean D;-efficiency of 0.929. Thus a high Ds-efficiency is
expected regardless of which three factors are active, making the blocks suitable
for screening. As none of the blocks yielded a higher average Ds-efficiency than
the others, the experimenter may choose any of the candidate blocks among the
28. As even the three-factor interaction is possible to estimate, using any of the
28 blocks makes the design a (16,3,3,2) screen.

In case of suspicion about which factors might be active, it is useful to know
if there are some factor combinations for which D; = 1 for all blocks. To test
this, the results using all blocks was stored for each combination. For each of
the 56 combinations, there were 24 blocks yielding Dy=0.917, as two of the two-
factor interactions were partially aliased with the block effect. The remaining
four blocks yielded D;=1. As there was no combination for which Dy = 1 for all
blocks, considering which block to use is important if there is any suspicion about
which factors may be active. Then a block that yields Ds=1 for that combination
should be chosen. The preferred block shown in table 4.1 yields Dy=1 when the
active factors are A, B and C. Thus if there are three factors suspected to be active,
they may be allocated to the design columns A, B and C in table 4.1.

The recommended block by confounding of interactions is also shown in table
4.1. Note that both blocks are symmetric about the middle of the design. The rec-
ommended block by confounding is symmetric because it is equal to a two-factor
interaction, and those are always symmetric in designs consisting of mirror-image
pairs, as explained in section 3.1. The recommended block is symmetric as the
rows belonging to one mirror image pair have to be in the same block, and the
rows of a mirror image pair are on opposite sides of the middle.

36

4.1.2 Dividing a 2?,’1 design into two blocks using HM

Insection4.1.1,a 25;‘7 4 design was divided into two blocks, resulting in a (16, 8,3, 2)
screen. Another design with 16 runs is the 23’1 design with projectivity P =4 and
resolution V. Thus the 2%,_1 design is able to screen for one more active factor than
the 28, # design if all interactions are to be estimated, but the number of screening
factors is lower. Which 16-run design to use thus depends on the number of fac-
tors the experimenter would like to investigate.

But can the projectivity of the 2%,71 design be maintained when the runs are di-
vided into two blocks? As the unblocked projectivity is P = 4, it is interesting
to test if any blocks may allow for estimation of higher-order interaction effects
when four factors are active. As the design does not consist of mirror image pairs,
blocks which are orthogonal to the main effects must be found otherwise.

The 23_1 design can be found in table 4.2. The columns of the design use the
same notation as the design in table 4.1. Thus P=AB is equal to the product of
column A and B in table 4.1. Usually, the columns of a 2?,_1 design would have
been chosen as column A-D in table 4.1, with the last column being defined as
E=ABCD. The design in table 4.2 can be rewritten to that form by rearranging
the rows. This can be seen in table 4.3. The representation in table 4.2 is used
in the rest of this section, as the columns A, C, D, H and P=P, were found in the
design H; presented by Box and Tyssedal in [21]. The H; design was made by in-
terchanging the rows of a Hadamard matrix, and thereby has orthogonal columns.
The first eight columns of H;, can be rearranged to a 2?; 4 design, while the four
columns J,, K,, L, and M, can be added to obtain a (16,12,3,1) screen. Thus
choosing the columns A, C, D, H and P,=P to make up the 23‘1 design leaves the
columns J;, K3, L, and M; as potential candidate blocks.

In addition to testing the columns from the article known to be orthogonal to the
main effects, all possible blocks were created. The blocks which were orthogo-
nal to all main effects, and only partially confounded with two-factor interactions,
were chosen for further investigation. These were the best possible blocks, as

16
none were orthogonal on all two-factor interactions. Of all (%,) = 6435 possible

37

Table 4.2: The 2‘5,*l design, the recommended block generator and the preferred block
when estimating three active factors.

A C D H=BCD P=AB Recommended Preferred
block generator block

1 -1 -1 -1 -1 1 1 1
2 1 -1 -1 -1 -1 -1 1
3 -1 -1 -1 1 -1 1 1
4 1 -1 -1 1 1 -1 -1
5 -1 1 -1 1 1 -1 1
6 1 1 -1 1 -1 1 -1
7 -1 1 -1 -1 -1 -1 -1
8 1 1 -1 -1 1 1 -1
9 -1 -1 1 1 1 1 -1
10 1 -1 1 1 -1 -1 -1
11 -1 -1 1 -1 -1 1 -1
12 1 -1 1 -1 1 -1 1
13 -1 1 1 -1 1 -1 -1
4 1 1 1 -1 -1 1 1
15 -1 1 1 1 -1 -1 1
16 1 1 1 1 1 1 1

ways to block the design, only 60 had these properties. All of them were partially
confounded with four of the (2) = 10 possible two-factor interactions.

At first, results from estimating all effects for three active factors will be presented
in section 4.1.2.1. Then results from trying to estimate as many two-factor inter-
actions as possible for four active factors are presented in section 4.1.2.2. That
section also introduces a method to generate the preferred blocks when four spe-
cific factors are suspected to be active. Section 4.1.2.3 presents the results from
estimating three two-factor interactions when four factors are active.

38

Table 4.3: The 2?,*' design, the recommended block generator and the preferred block
when estimating three active factors. Here the columns have been reordered to the usual
representation. The column names from the original order in table 4.2 are in parentheses.

A B(=C) C(=D) D(=H) E(=P)

Recommended Preferred

block generator block

1 -1 -1 -1 -1 1 1 1

2 1 -1 -1 -1 -1 -1 1

7 -1 1 -1 -1 -1 -1 -1

g8 1 1 -1 -1 1 1 -1

11 -1 -1 1 -1 -1 1 -1
12 1 -1 1 -1 1 -1 1
13 -1 1 1 -1 1 -1 -1
14 1 1 1 -1 -1 1 1
3 -1 -1 -1 1 -1 1 1

4 1 -1 -1 1 1 -1 -1

5 -1 1 -1 1 1 -1 1

6 1 1 -1 1 -1 1 -1

9 -1 -1 1 1 1 1 -1

10 1 -1 1 1 -1 -1 -1
15 -1 1 1 1 -1 -1 1
16 1 1 1 1 1 1 1

39

4.1.2.1 Three active factors

Among the 60 preferred blocks, all blocks were equally capable of estimating all
effects when three factors were active. There are (g) = 10 different combinations
of three factors. For each block, two of the combinations gave a Ds-efficiency of
1, while the remaining eight gave a Ds-efficiency of 0.917, yielding an average of
0.934. For each combination of three factors, there were 12 blocks yielding D=1,

and 48 blocks yielding D=0.917.

Thus a high D;-efficiency can be expected no matter which of the blocks is used
and which three factors are active, making the blocks suitable for screening. Using
any of the 60 blocks resulted in a (16,5,3,2) screen. If there is any suspicion about
which three factors might be active, the preferred block shown in table 4.2 can be
used. It yields Dy=1 when A, C and P are the active factors, so the suspected ac-
tive ones should be assigned to those design columns. The block is presented next
to the recommended block when using blocking by confounding for comparison.
They differ quite a bit, but are both symmetric across the middle of the design.

4.1.2.2 Four active factors

When four active factors are present, there are (g) = 6 two-factor interactions.

Each of the 60 blocks enabled estimation of all main effects and two-factor in-
teraction effects for four out of five possible combinations of four active factors,
with a Dy-efficiency of 0.939. For the combination of four active factors for which
all two-factor interaction effects were not estimable, there are six possible ways
to choose five out av six two-factor interactions. The block then enabled esti-
mation of all five two-factor interactions for four of the six combinations, with a
Ds-efficiency of 0.871. Two of the combinations could not be estimated as each
block can be written as a linear combination of four two-factor interactions. If all
four of these are included in the five two-factor interactions to be estimated, the
determinant of the design matrix becomes 0. Ensuring that these four factors are
not all included is sufficient to enable estimation of five two-factor interactions.
The section ”Generating the blocks” below introduces a method for generating
suitable blocks if there is a suspicion about which factors may be active.

40

Generating the blocks

All 60 blocks were made up of combinations of four two-factor interactions on the
form %(fa+ s+ fc— fp), where fa, f, fc and fp denotes different two-factor
interactions. They have the property that f4 fg = &(fcfp) is equal to a two-factor
interaction fr. The two-factor interaction fg might consist of any combination of
two factors among the columns A,C,D, P and H in table 4.2 and B in table 4.1 ex-
cept AB, AP and BP, as using the interaction AB = P, AP = AAB=Bor AAB=B
makes the two-factor interaction effect fr aliased with a main effect. This leaves
12 possible choices for fr. Having found the four factors that make up fz, they
can be combined into four different blocks b1,b,,b3 and b4 using the formulas
by =5 (fa+ fa+ fo—fo) b= 5(fa+fo— fe+ fp). by = 3 (fa— fo+ fe + fp)
and by = 3 (= fa + fa + fo + fp)-

Worked example

To clarify the procedure, assume for example that the experimenter suspects the
factors A, C, D and H to be active. To ensure that she is able to estimate all
two-factor interactions, she should choose a block which is not made up merely
by two-factor interactions combining A, C, D and H. Thus she chooses A, C,
D and P instead. Then the possible choices of fg are AC = ADCD = APCP,
AD = ACCD = APDP,CD = ACAD = CPDP, CP = ACAP = CDDP and DP =
ADAP = CDCP. As CP and AD, and DP and AC, respectively, are made up of the
same four two-factor interactions, these choices yield the same blocks. Choosing
Je =AC, fa =AD, fp =CD, fc = AP and fp = CP, it is sufficient to generate
one of the blocks by = (AD+CD+ AP —CP), b, = 1(AD+CD — AP +CP),
b3 = %4(AD—CD+AP+CP) or by = 3(—AD +CD+ AP+ CP). If the designer
is unlucky, and the active factors turn out to be A, C, D and P, she will not be able
to estimate all the two-factor interactions AD,CD, AP and CP at the same time, but
must choose one to leave out. The two last two-factor interactions, AC and DP,
are not used to define the blocks, and can always be estimated. Note that if any
other combination of factors than A, C, D, P is active, she will be able to estimate
all two-factor interactions.

41

The block resulting from choosing the formula § (AD + CD + AP — CP) is
-1,1,1,-1,-1, 1,-1,-1, -1, -1, 1, -1, 1, 1, 1

T When estimating all effects for three active factors, it yields a D;-efficiency of 1
for the combinations ACH and PDH, and 0.917 for the rest. If four factors are ac-
tive, as in the example, the Ds-efficiencies become more spread depending on the
active factors. The results when estimating five out of six two-factor interactions
are shown in table 4.4. "Rem. f1f2” means that all main effects and two-factor
interactions have been estimated except f1£2.

Table 4.4: D-efficiencies obtained for different combinations of four active factors for the
example block. All main effects and five out out six two-factor interactions are estimated
in each case. "Rem f1f2”” means that the two-factor interaction f1f2 was not estimated.

fl 2 f3 f4 Rem. Rem. Rem. Rem. Rem. Rem.
f1f2 f1f3 f1f4 213 214 f3f4

0.871 0 0.871 0.871 0 0.871
0.972 0.9332 0.933 0.972 0.933 0.933
0.972 0.972 0.933 0.933 0.933 0.933
0.933 0.972 0.933 0.972 0.933 0.933
0.972 0.933 0.933 0.972 0.933 0.933

A i i
o NeoNa-Ra-Ra"
gooan
TTT IO

As expected, the block performs badly when A, P, C and D are the active factors.
When AC or DP is removed, all the two-factor interactions that make up the block
remains, and the Ds-efficiency is 0. Another interesting observation is that when
any of the other combinations of four factors is active, two combinations of five
two-factor interactions yield a Ds-efficiency of 0.972, while the remaining four
yield a Dy-efficiency of 0.933. When for example A, P, C and H are active, the
Ds-efficiency is 0.972 when AP or CP is not included. These are the only two-
factor interactions for A,P,C and H which are used in the formula for the block.
The same pattern is repeated for the other combinations. It seems reasonable that
the Ds-efficiency is high when interactions that are partially confounded with the
block effect are not included. Note also that all six two-factor interactions could
have been estimated when APCH, APDH, ACDH or PCDH are the active factors,
with a Dy-efficiency of 0.933.

42

4.1.2.3 Estimating three two-factor interactions

As shown above, five out six two-factor combinations could not be estimated for
all combinations of four active factors. If any a two-factor interactions should
be estimable regardless of which four factors are active, a = 3 is the highest
number for which no combination yielded Dy = 0. Thus the blocked design is
a (16,5,4113,2) screen. No matter which combination of four active factors is ac-
tive, all main effects and three optional two-factor interactions were estimable.
All 60 blocks yielded the same frequencies of Ds-efficiencies, which can be found
in table 4.5. It shows the frequencies of different values for all 20 possible com-
binations of three two-factor interactions for the five combinations of four active
factors.

All blocks did for example have Dy = 1 for four combinations of two-factor inter-
actions for four out of five combinations of four active factors, thus the total in the
table is 16 for Dy = 1. The average D,-efficiency was 0.952 for all blocks. The
block [1,-1,1,1,-1,-1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1]7, which is also used in the
”Worked example” section above, yielded a Ds-efficiency of 1 among others when
the active factors were APCH, and the estimated two-factor interactions were AH,
PH and CH.

Table 4.5: Frequencies of the different Ds-values for all combinations of four active fac-
tors when blocking the 2?,_1 design, estimating all possible combinations of three out of
six two-factor interactions.

Dy-efficiency Occurences

1 16
0.9646786 52
0.9170040 28
0.8408964 4

43

Evaluation of results

Although the design is a (16,5,413,2) screen, this blocking approach might still
be preferable to the blocking by confounding of interactions. If the confounding
approach is applied, there will be one two-factor interaction which cannot be es-
timated in any case. Thus five out of six two-factor interactions can be estimated,
but there is no way to choose which these are. Using one of the blocks suggested
by the procedure presented in section 3.3 gives a % chance that all two-factor inter-
actions can be estimated, and if all are not estimable, four given combinations of
five two-factor interactions can be estimated, or three freely chosen. Hence there
is much greater flexibility, which is important when screening for active factors.

One important aspect which might be relevant for larger designs is that all four
candidate blocks from the H, design in the article were among the 60 preferred
blocks. When using larger designs, testing all blocks and looking for patterns
among the preferred blocks is not feasible. Then rearranging a Hadamard matrix
to form the design and choosing the remaining columns as blocking candidates
is a less work-intensive approach. Note however that the number of Hadamard-
matrices largely increases when the design size increases.

4.2 32-run designs

Blocking of five 32-run designs was tested: A 2}3’“ design , a 2‘6,71 design, a
2;‘72 design, a 25;‘73 design and a 2?‘74 design.

The 2}8_“ design was tested as it is the design of projectivity P = 3 with 32 runs
which can accommodate the highest numbers of factors, as all odd-numbered in-
teractions are used as design generators. The 2}3’“ design was blocked both by
utilising mirror image pairs and the blocking of the 2?; 4 design. Results from us-
ing mirror image pairs to divide the design into two blocks can be found in section
4.2.2, while results from using mirror image pairs to divide the designs into four
blocks are presented in section 4.2.3. Results from utilising the blocking of the
2?; % design can be found in section 4.2.1. In all cases, three active factors were
considered.

44

The 2‘6,;1 design was tested as it is the 32-run design of projectivity P = 4 which
can accommodate the highest numbers of factors. The design was divided into
two and four blocks by utilising mirror image pairs. Results for dividing the de-
sign in two blocks and considering three, four and five active factors can be found
in sections 4.2.4.1, 4.2.4.2, 42.4.4 and 4.2.4.5. Results from dividing the design
into four blocks and considering three, four and five active factors are presented
in sections 4.2.5.1, 4.2.5.2 and 4.2.5.3.

A2];% a2%3 and a 27, design were also blocked, to see if they yielded better
results than using a subset of the columns of the 2}3‘” design in the cases of 7,
8 and 9 active factors. As these designs do not consist of mirror image pairs, they
were blocked by rearranging Hadamard matrices. The results from dividing the
2}% design into two and four blocks can be found in sections 4.2.6.1 and 4.2.6.2,
while the results from dividing the 2?; 3 design into two and four blocks can be
found in sections 4.2.6.3 and 4.2.6.4. Finally, the results from dividing the 2?‘7 4
design into two and four blocks can be found in sections 4.2.6.5 and 4.2.6.6. In
all cases, three active factors were considered.

4.2.1 Dividing a 2}8’“design into two blocks using the blocking of
the 25 * design

Having found the best blocks using the mirror image pair strategy for the 2?; 4
design in section 4.1.1, they might be possible to exploit when blocking the dou-
bled design using the method explained in section 3.2.1. The doubling, a 2}‘(}_“
design, has projectivity P = 3. It is equal to the design which will later be blocked
using mirror image pairs in section 4.2.2. As 28 blocks yielded good results for
the 2?; % design, and there were three different patterns which might be used to de-
fine the new blocks, there were 84 candidate blocks for the design. As mentioned
in section 3.2.1, the D pattern cannot be used when estimating more than main
effects. The blocks originating from this pattern were therefore not interesting,
leaving 56 candidate blocks.

45

The remaining 56 blocks were tested for all (136) = 560 ways to choose three
active factors among the 16 screening factors. The blocks based on D, and D3
all yielded Dy > 0 for all combinations of three active factors, making the blocked
design a (32, 16,3,2) screen. Furthermore, they were equally good in terms of fre-
quencies of Ds-efficiencies. The average Ds-efficiency for all blocks was 0.970.
The frequencies of the different D;-efficiencies can be found in table 4.6. An ex-
ample of the design with corresponding preferred block b is presented in table 4.7.
The design was found using the pattern D, together with block 528 from table 6.2.
The resulting block yields Ds=1 for among others the three factors A, B and D.

Table 4.6: Frequencies of the different Dg-values when testing the preferred block for
the doubling of the 2}3‘7 4 design for all combinations of three active factors, estimating all
interactions.

Ds-efficiency Occurrences

1 208
0.965 256
0.917 96

As will be shown in the next section, a 32-run design with 16 factors can be
blocked with a slightly higher average Ds-efficiency and the same minimum D;-
efficiency using the mirror image pairs strategy. Thus the doubling approach pre-
sented here is not best method for finding blocks, but may be useful for larger
designs because of the scalability of the method. For instance, testing all combi-
nations of mirror image pairs cannot be done effectively for a 64-run design, and
then the doubling approach might be used to find candidate blocks instead. The
method can also be used when dividing into four or more blocks. That will be
tested in section 4.3.2.

46

Table 4.7: The 2}8* ' design arranged in one of the preferred blockings in section 4.2.1.

K L M N O P

J

I

A B C D E F G H

47

4.2.2 Dividing a 2;" " design into two blocks using MIP

The idea of using mirror image pairs to find candidate blocks which are orthogo-
nal to the main effects may be exploited for designs of any size, as long as they are
made up of mirror image pairs. The approach will here be tested for the 32-run
2}3‘” design in table 4.10, which is also shown with interchanged rows in table
4.2.2. In addition to being the doubling of the 2?; # design, this is the 32-run reg-
ular design of projectivity P = 3 which can be used to screen the highest number
of factors. This is because all odd-numbered interactions are used as design gen-
erators. The best blocks found in this section will be used to divide the doubling,
a 2327%% design, into two blocks in section 4.3.1.

There is no suggested block generator for this design in Wu and Hamada [7].
However, as all odd interactions are used as design generators, using a three-
factor interaction as block generator leads to confounding with a main effect, as
does using the five-factor interaction or a four-factor interaction. This can easily
be seen by multiplying the potential block generator with the defining relation of
the 216! design, =ABCF=ABDG=ABEH=...=ABCDEP. Using a two-factor in-
teraction as block generator is therefore a likely choice when using confounding
of interactions, as it keeps the main effects unaliased when there is assumed to be
no interactions between the block effects and the main effects. This choice nev-
ertheless yields projectivity P = 1, as a two-factor interaction is then confounded
with the block. As the projectivity of the original design is P = 3, it is interesting
to see if estimating all effects is possible if three out of 16 factors are active when
using the mirror-image blocking approach.

The design consists of 16 mirror image pairs, yielding (;@ = 6435 possible blocks
with eight mirror image pairs in each block. As for the 2?; 4 design, blocks which
are identical with interaction factors had to be removed to yield a Ds-efficiency
above 0. There are in total (}) + (3) = 15 symmetrical two- and four-factor inter-
action effects. This left 6420 candidate blocks, all yielding D; > 0 for all com-
bination of three active factors, making the blocked design a (32,16,3,2) screen.
There are in total (136) = 560 possible combinations of three active factors, so
3595200 combinations of blocks and active factors were tested.

48

Considering the different blocks, the average D;-efficiencies when testing all com-
binations of three active factors were in the range 0.967 to 0.971. The blocks
that had the lowest average D,-efficiency corresponded to the occurrences of D;-
efficiencies of 0.88. Removing these blocks removed the risk of getting the lowest
efficiency. Inspecting the dot product of the block columns with all the (126) =120
possible two-factor interactions revealed that these block effects were all strongly
partially confounded with eight of the two-factor interactions each. Strongly par-
tially confounded is here defined as having a dot product equal to 24, whereas a
completely confounded block effect has a product of 32.

The average D;-efficiencies after removing these blocks were between 0.970 and
0.971. Again considering the confounding with two-factor interactions, it was dis-
covered that the blocks having a dot product of 16 with 32 two-factor interactions
yielded the lowest average. This was the case for 420 blocks. The remaining 5040
blocks had a dot product of 16 with only 16 two-factor interactions each. Re-
moving the 420 worst blocks lead to all the remaining blocks having an average
Dy-efficiency of 0.971. All blocks had the same frequencies of different Dg-values,
which can be found in table 4.8. Considering each combination separately, they
had an equal number of blocks yielding each Ds-efficiency. The frequencies can
be found in table 4.9. Column b in table 4.10 shows one of the blocks, b. It has
D; =1 for among others the active factors A, B and I, so any factors suspected
to be active should be assigned to those columns when performing an experiment
using that block.

49

Table 4.8: Frequencies of the differ- Table 4.9: Frequencies of the different

ent Dg-values when testing the preferred Ds-values when testing all blocks for the
block for the 2}3’“ design for all com- 2}37“ design for each combinations of
binations of three active factors, estimat- three active factors, estimating all inter-
ing all interactions. actions.
Ds-efficiency Occurences Ds-efficiency Occurences
1 32 1 288

0.983 320 0.983 2880

0.965 64 0.965 576

0.943 128 0.943 1152

0.917 16 0.917 144

Comparison with the blocking based on doubling

In section 4.2.1, the 2}8_“ design was blocked by creating the design and corre-
sponding blocks based on doubling of the 233‘7 4 design and its preferred blocks.
The highest average Ds-efficiency obtained using that approach was 0.967, only
slightly lower than the highest average of 0.971 obtained when testing all blocks
based on mirror image pairs in this section. The minimum- and maximum D;-
values were equal in both cases. The number of blocks tested for the doubling
approach was 84, while the number of mirror image pair blocks tested was 6435.
Thus the doubling approach was much more efficient in terms of trials to find
the preferred block, and might be a useful method for larger designs despite not
necessarily finding a block yielding the highest average D;-efficiency.

50

Table 4.10: The 2]187” design and the preferred block in section 4.2.2.

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCDE b

F

-1

A B CDE

-1 -1 -1 -1 -1

I-1-1-1-1

-1

1 -1-1-1
I -1 -1 -1

1

1
-1 -1

1 -1 -1
I -1 -1
1 -1 -1
I -1-1

-1
-1

-1

1
-1

-1 -1

1
1
-1 -1 -1

-1
-1

1
1

-1 -1

1 -1 -1

-1 -1

1

-1 -1

-1 -1

1
1
1
1

-1 -1 -1 -1

1 -1
1 -1

I -1-1-1

-1

1 -1-1
I -1 -1

1
-1 -1

-1 -1

-1

1

-1 -1

1
1

-1 -1 -1

1 -1 -1

51

4.2.3 Dividing a 2}8’“ design into four blocks using MIP

Having found in section 4.2.2 that the 2113_“ design in table 4.10 could be di-
vided into two blocks yielding a (32,16,3,2) screen and high Ds-efficiencies, an
interesting question is whether the design can also be divided into four blocks and
maintain a high projectivity and high D;s-efficiencies. The four blocks are rep-
resented by two columns, where the row combinations (-1,-1), (-1,1), (1,-1) and
(1,1) denotes the four different blocks. When calculating the Dy-efficiency for a
design with four blocks, the interaction effect between the blocks is also included
in the design matrix. The best blocks found in this section will be used to block

the doubling, a 2;‘%_26 design, into four blocks in section 4.3.2.

There are (146)(4]‘;2)@ _ 2627625 possible ways to block the mirror image pairs
into four blocks when each block must contain both runs of a pair. Testing all
these blocks, 2098336 of them yielded an average D;-efficiency above 0 for all
the (136) = 560 possible combinations of three active factors, making the blocked
design a (32,16,3,4) screen. Among these, 715680 obtained the highest possible
minimum Djs-efficiency of 0.834. All of these had an average D;-efficiency be-
tween 0.905 and 0.909. 0.909 was also the highest average Ds-efficiency among
all blocks. As the averages were very equal, using any of these blocks ensures
good results. If one has a suspicion about which factors might be active, the 50400
of the blocks having the highest possible minimum Dj;-efficiency which also had
a max Ds-efficiency of 1 are the most suited.

One example is shown in table 4.11. The order of the rows in the correspond-
ing design matrix should be the same as for the 211‘6,’ll design in table 4.10. This
blocking yields Dy=1 when the factors A, B and C are active. Table 4.12 shows the
frequencies of the different Ds-efficiencies obtained when using this design. The
average Dy-efficiency using these blocks was 0.908, which is the highest among
the blocks having both the highest minimum and maximum Djs-efficiency, and
only marginally lower than the highest obtained average of 0.909.

52

Table 4.11: One of the preferred ways
to divide the 2}8711 design into four

blocks.

bl b2 bl1b2

-1 -1 1

-1 1

-1 -1 1

-1 -1

-1 1

1o -1 Table 4.12: Frequencies of the different
Lol 1 Dy-values when testing the preferred di-
bl ! vision into four blocks for the 2]5~!! de-
bl -1 sign for all combinations of three active
} i i factors, estimating all interactions.

1 1 1 -

1 -1 1 Dy-efficiency Occurrences

1 -1 -1 1 16

-1 -1 0.965 32

-1 1 -1 0.931 64

-1 -1 0.927 192

-1 -1 0.917 32

1 -1 -1 0.885 32

1 -1 -1 0.883 128

1 1 1 0.834 64

1 1 1

1 1 1

1 -1 -1

1 1 1

1 -1 -1

-1 -1

-1 -1 1

-1 -1

-1 -1 1

-1 -1 1

-1 -1 1

53

4.2.4 Dividing a 25, design into two blocks using MIP

The 2}8_“ design discussed in section 4.2.2 may be reduced to a regular 2‘6,71
design of projectivity P = 5 and resolution VI by removing all the factors defined
by three-factor design generators. The resulting design can be found in table 4.13.
This design also consists of 16 mirror image pairs. The most important difference
from the 2}8‘“ design is that screening for more than three active factors may
be possible, as no three-factor interactions are confounded with main effects in
this case. At first, the results from testing blocks in the case of three factors are
presented in section 4.2.4.1. Then the case of four active factors is presented in
section 4.2.4.2, until finally the case of five active factors is presented in section
4.2.4.3. The best blocks in the cases of three and four active factors will be used
to divide the design into four blocks in section 4.2.5.4.

54

Table 4.13: The 2?,;1 design, the recommended block generator (AB) and the preferred

block in the case of three, four and five active factors.

Preferred
block five

Preferred

block four

Preferred

block block three

A B C D E F=ABCDE Recommended

active
factors

active

factors

active
factors

generator,

ABC

55

4.2.4.1 Three active factors

Testing if the 2‘6,71 design yielded higher D;-efficiencies than the 2}‘(}_“ design

when divided into two blocks and used to screen for three active factors was done
by testing the 5040 blocks which were preferable for the 2}3’“ design. These
blocks were chosen as the rest were strongly partially confounded with two-factor
interactions, and thereby would be problematic for the 2‘6,;1 design as well. Test-
ing all 5040 blocks for all (g) = 20 possible combinations of three active factors
resulted in average Ds-efficiencies of either 0.971 or 0.972. The minimum D;-
efficiencies were either 0.917 or 0.943, so all blocks yielded a (32,6,3,2) screen.
720 of the blocks with the highest minimum Dy-values also yielded the highest
average value.

None of the blocks which obtained the highest minimum D;-efficiency and high-
est average Dy-efficiency yielded Dy = 1 for any combination of factors. As the
average D;-efficiencies were almost equal for all blocks, the advantage of being
able to allocate factors believed to be active to a combination with Dy = 1 without
risking a Dy-efficiency of 0.917 was prioritised. Thus one of the 1440 blocks with
the highest minimum Dj-efficiency which yielded a maximum Djy-efficiency of 1
was chosen as the preferred block. It can be seen along the recommended block
by confounding of interactions in table 4.13. Table 4.14 shows the frequencies of
different Ds-efficiencies when testing the block for all 20 combinations of three
active factors, estimating all interactions. The average D,-efficiency was 0.971,
and a Dy-efficiency of 1 is obtained when the active factors are A, B and C.

Table 4.14: Frequencies of the different D,-values when testing the preferred division
into two blocks for the 2‘6,71 design for all combinations of three active factors, estimating
all interactions.

Ds-efficiency Occurrences

1 2
0.983 10
0.965 2
0.943 6

56

4.2.4.2 Four active factors

The preferred blocks for four active factors were found by testing all (2) =15
combinations of four active factors for the 5040 blocks also tested in section
4.2.4.1. All blocks resulted in the same frequencies of Dj-efficiencies, which
can be found in table 4.15. The average D;-efficiency was 0.959, and the min-
imum Dy-efficiency was 0.917. Thus a reasonably good Dj-efficiency may be
expected for all combinations of four factors, as is desirable for screening. To see
if all blocks obtained the same D;-efficiency for each combination of four active
factors, the results using all blocks were stored for each combination. The fre-
quencies were equal, and can be found in table 4.16.

Table 4.16: Frequencies of the different
Ds-values when testing all preferred di-
visions into two blocks for each combi-
nation of four active factors, estimating
all interactions.

Table 4.15: Frequencies of the differ-
ent Ds-values when testing the preferred
block for all combinations of four active
factors, estimating all interactions.

Ds-efficiency Occurrences -
y Ds-efficiency Occurrences

8-32; ‘9‘ 0.982 1344
0017) 0.958 3024
' 0.917 672

As the 5040 blocks were equally good, one is here chosen for consideration. It
can be seen along the preferred block for three active factors in table 4.13. As
the Ds-efficiencies are all above 0, the resulting design is a (32,6,4,2) screen.
The highest Ds-efficiency of 0.982 is obtained when among others A, B, C and D
are the active factors. The D;-efficiencies for all the 15 different possible factor
combinations can be found in table 6.13 in Appendix A.

57

4.2.4.3 Five active factors

If there are five active factors among the six factors in the 2\6/71 design in table
4.13, it is not possible to estimate all effects when the design is blocked, as the
number of effects then exceeds the number of rows. But removing the five-factor
interaction, there are only 32 effects remaining. Testing all 5040 blocks used
in the previous sections revealed that estimating all effects up to the four-factor
interactions was not possible. For 720 blocks, it was however possible to estimate
two out of five four-factor interactions for all six possible combinations of five
active factors. In addition, each block enabled estimation of three out of five
four-factor interactions for two of the six possible combinations of five active
factors. The results when estimating all effects up to three-factor interactions for
five active factors are presented in section 4.2.4.4. The results when two four-
factor interactions are included can be found in section 4.2.4.5.

4.2.4.4 Estimating three-factor interactions

For all combinations of five active factors, all effects up to three-factor interac-
tions were estimable using any of the 5040 candidate blocks, making the blocked
design a (32,6,53,2) screen. 720 of these had both the highest minimum D;-
efficiency of 0.948 and the highest average Ds-efficiency of 0.958. The blocks
did however not have the highest maximum Djs-efficiency; the highest possible
was 0.982, whereas the highest for the 720 preferred blocks was 0.963. For each
block, the D;-efficiency was 0.948 for two combinations of five active factors, and
0.963 for the remaining four combinations of five active factors. For the block
shown in table 4.13, which will also be used as the example in the next section,
the D;s-efficiency was 0.963 for the combinations ABCDE, ABCDF, ABCEF and
BCDEFE

4.2.4.5 Estimating two four-factor interactions

For 720 of the 5040 candidate blocks, it was possible to estimate two out of five
four-factor interactions for all six possible combinations of five active factors. The
resulting blocked design is then a (32,6,53.,,2) screen. These 720 blocks could

58

estimate two out of five four-factor interactions with an average D;-efficiency of
0.939. For all blocks, the lowest Ds-efficiency was 0.906, and the highest D;-
efficiency 0.966. One of the blocks for which these results were obtained is
shown in table 4.13. Note that the same block was used when only considering
three-factor interactions. The number of combinations for which different D;-
efficiencies were obtained can be found in table 4.17. The occurrences sum to 60
as there are six ways to choose five active factors, and for each of them, there are
ten possible combinations of two out of five four-factor interactions. The highest
Djs-efficiency for this block is obtained for the combinations shown in table 4.18.

Table 4.17: Frequencies of the different Ds-values when testing the preferred blocking
of the 2?,;1 design for all combinations of five active factors, estimating two out of five
four-factor interactions.

Ds-efficiency Occurences

0.966 4
0.959 16
0.952 4
0.942 8
0.928 20
0.906 8

Table 4.18: The combinations yielding the highest Ds-efficiency for the preferred block
when dividing the 2‘6,71 design into two blocks and estimating all effects for the five active
factors up to the two four-factor interactions ~’Four factor interaction 1 and “Four factor
interaction 2”.

Active factors Four factor interaction 1 Four factor interaction 2

ABCDE ABCD ABCE
ABCDF ABCD BCDF
ABCEF ABCE BCEF
BCDEF BCDF BCEF

59

4.2.5 Dividing a 2?,71 design into four blocks using MIP

As the 2‘6,71 design discussed in section 4.2.4.2 could be divided into two blocks
in 5040 ways which guaranteed a D;-efficiency above 0.9 when screening for four
active factors and estimating all their effects, investigating the possibility of divi-
sion into even more blocks is interesting. The design was therefore divided into
four blocks, using the same method as in section 4.2.3. Thus there were more than
2.6 million possible blocks also in this case.

At first, it was tested whether the 28, design could be used to screen for three
active factors with higher Ds-efficiencies than the 2}8_” design tested in section
4.2.3 when divided into four blocks. The results are presented in section 4.2.5.1.
Then estimating all effects for four active factors is tested in section 4.2.5.2. As
it worked when dividing the design into two blocks, estimating up to three-factor
interactions for five active factors is tested in section 4.2.5.3. Since the resulting
D-efficiencies were rather low, estimation of additional four-factor interactions

was not tested.

4.2.5.1 Three active factors

Testing all the possible blocks, 2252640 were found to yield a minimum D;-
efficiency above O for all combinations of three active factors when estimating
all effects. The highest minimum Djy-efficiency was 0.875, which was obtained by
2880 blocks. The highest average Ds-efficiency among these was 0.908, while the
highest obtained average D;-efficiency among all the 2252640 blocks was 0.911.
Thus little is lost by choosing one of the blocks with the highest minimum D;-
efficiency to gain robustness. The maximum D;-efficiency among all blocks was
1, while the maximum D, among the 2880 preferred blocks was 0.949. Table 4.20
shows the frequencies of different Dy-efficiencies obtained for the block in table
4.19. The highest Dy-efficiencies was obtained among others for the combination
ABD of active factors.

60

4.2.5.2 Four active factors

Testing all blocks revealed that for the 1491840 blocks which had a Ds-efficiency
above 0 for all 15 possible combinations of four active factors, the average Ds-
efficiencies were between 0.861 and 0.870. The maximum Djs-efficiency was
0.924 for all blocks, but the minimum Djs-efficiencies were either 0.805 or 0.826.
Thus the 483840 blocks with a minimum Djs-efficiency of 0.826 were preferable.
The average D,-efficiencies for these blocks were 0.869 for 322560 of the blocks
and 0.870 for the remaining 161280 blocks. Although the results were very sim-
ilar for all blocks which could handle all combinations of four factors, 161280
were slightly better than the rest. One of these blocks are shown in table 4.21.
The Dy-efficiencies for different combinations of factors are shown in table 6.14
in Appendix A, while the frequencies of different Ds-efficiencies can be found in
table 4.22. The maximum is obtained when among others A, B, C and D are the
active factors. As the Ds-efficiency is above O for all combinations, the design is
a (32,6,4,4) screen.

4.2.5.3 Five active factors

In the case of five active factors, it was tested whether up to three-factor inter-
actions could be estimated, as it was possible when dividing the design into two
blocks. Testing all possible blocks, 1988160 enabled estimation of all effects
up to three-factor interactions, with average D;s-efficiencies between 0.82976 and
0.8660, making the blocked design a (32,6,53,4) screen.

The highest minimum D;-efficiency was 0.866, obtained by 1920 blocks. These
blocks obtained the same Ds-efficiency for all six combinations of five active fac-
tors. The maximum Djs-efficiency obtained among the 1988160 blocks with a
minimum D; above 0 was 0.954, but then a Ds-efficiency of 0.801 was obtained
for three of the six possible combinations of active factors. The 1920 blocks with
the highest minimum D;-efficiency were therefore preferred. One of the blocks
can be found in table 4.23. A frequency table is not included here, as the Ds-
efficiency was 0.866 for all combinations.

61

Table 4.19: One of the preferred ways
to divide the 2‘6,71 design into four
blocks when estimating all effects for
three active factors.

bl b2 blb2
-1 -1 1
-1 -1 1
-1 -1 1
1 -1 -1
1 -1 -1
-1 -1 1
1 1 1
1 1 Table 4.20: Frequencies of the different
-1 -1 D;-values when testing the preferred di-
-1 1 -1 vision into four blocks for the 2?,71 de-
1 1 1 sign for all combinations of three active
I -1 -1 factors, estimating all interactions.
1 1 1
i i '} Ds-efficiency Occurrences
-1 1 -1 0.949 8
-1 1 -1 0.885 6
-1 -1 0.875 6
1 -1 -1
1 1 1
1 -1 -1
1 1 1
-1 1 -1
-1 1 -1
1 1 1
1 1 1
-1 -1 1
| B | -1
1 -1 -1
-1 -1 1
-1 -1 1
-1 -1 1

62

Table 4.21: One of the preferred ways
to block the 29, design into four
blocks, estimating all interactions for
four active factors.

bl b2 blb2
-1 -1 1
-1 -1 1
-1 -1 1
1 -1 -1
-1 1 -1
-1l 1 Table 4.22: Frequencies of the Dj-
o -1 efficiencies obtained for the blocking in
1 1 1 table 4.21 when testing all combinations
-1 1 -1
of four active factors, estimating all in-
1 1 1 teractions.
1 -1 -1
1 -1 -1 -
11 1 Dy-efficiency Occurences
L1 1 0.924 2
i i i 0.890 4
1 | 1 0.871 1
1 -1 1 0.862 3
1 1 1 0.853 2
1 1 1 0.826 3
1 -1 -1
1 -1 -1
1 1 1
-1 1 -1
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 1 -1
-1 -1 1
-1 -1 1

-1 -1 1

63

Table 4.23: One of the preferred ways to block the 23}1 design into four blocks, estimat-
ing up to three-factor interactions for five active factors.

bl b2 bl1b2
-1 -1 1
-1 -1 1
-1 -1 1
1 -1 -1
-1 1 -1
-1 -1 1
1 1 1
1 1 1
-1 1 -1
1 -1 -1
-1 1 -1
I -1 -1
1 1 1
1 1 1
1 -1 -1
-1 1 -1
-1 1 -1
1 -1 -1
1 1 1
1 1 1
1 -1 -1
-1 1 -1
1 -1 -1
-1 1 -1
1 1 1
1 1 1
-1 -1 1
-1 1 -1
1 -1 -1
-1 -1 1
-1 -1 1
-1 -1 1

64

4.2.5.4 Utilising the division into two blocks for division into four blocks

Another approach to finding blocks than creating all combinations based on mir-
ror image pairs is to let the division into four blocks be based on the division into
two blocks, as explained in section 3.1.1. That is, to divide each block of eight
mirror image pairs into two blocks of four mirror image pairs each. Each block
can be divided into gi,) = 35 different combinations of two blocks of four mirror
image pairs. This yields 3535 = 1225 ways to make four blocks based on each
of the blocks which were preferred when dividing the design into two blocks. The
approach was tested in the case of three and four active factors.

Testing three active factors

As the 5040 blocks that were tested for dividing the 2371 design into two blocks
yielded very similar results, they were all used to find divisions into four blocks.
Thus there where 6174000 blocks created this way. Some of these were dupli-
cates, as the blocks were still based on mirror image pairs, and only 2.6 million
unique blocks existed using the mirror image approach in section 4.2.5. To find
the best blocks using this method, all the 1225 combinations of four blocks were
tested for all the 5040 blocks. The new block yielding the highest average Ds-
efficiency and the new block yielding the highest minimum D;-efficiency was
stored for all 5040 blocks.

The highest average Dy-efficiencies were all in the range from 0.9095 to 0.9107.
The maximum value was 0.949 for 1097 blocks, and 0.965 for the remaining
3943. The minimum value differed a lot more, ranging from 0.813 to 0.865. Thus
it seemed like considering the blocks yielding the highest minimum values might
be advantageous.

Among the blocks obtaining the highest minimum D;-efficiency when testing all
combinations of three active factors, the minimum value ranged from 0.841 to
0.875, which was obtained for 630 blocks. The maximum value was between
0.949 and 1, while the average was in the range from 0.904 to 0.910. None of the
blocks with the highest minimum D;-efficiency obtained neither the highest max-
imum Dj-efficiency nor the highest average Ds-efficiency. All the blocks with the

65

highest minimum Djy-efficiency obtained a maximum Dj-efficiency of 0.949. The
highest average D;-efficiency obtained among them was 0.908, obtained by 260
blocks. These were the same numbers as obtained when testing all divisions into
four blocks using mirror image pairs in section 4.2.5.1. Thus the 260 preferred
blockings here are a subset of all the 2880 preferred blockings. As one of these
has already been presented in section 4.2.5.2, it will neither be repeated here, nor
in the summary of the results in tables 4.48 and 4.49 in section 4.4.

Testing four active factors

When aiming to estimate all effects for four active factors, the blocks were based
on the 5040 blocks which were preferred for division into two blocks in section
4.2.4.2. These were the same as when testing three active factors.

As when testing three active factors, the new block yielding the highest average
was stored for all the 5040 blocks. Among these, 4479 blocks had an average
of 0.87012, while the remaining 561 had an average D;-efficiency of 0.87005.
The blocks with the highest average D;-efficiency had a minimum Dj-efficiency
of 0.805 for one of the factor combinations. The blocks with the lowest average
Dy-efficiency had a minimum D;-efficiency of 0.826, and thus might be preferred
for robustness.

When instead the new block yielding the highest minimum value of Ds-efficiency
was stored for all 5040 blocks, the average D;-efficiency was found to be 0.870
for all blocks, but the lowest Ds-efficiency obtained for any factor combination for
each block was 0.826. Thus a higher minimum D;-efficiency was not obtained us-
ing this method, so the 561 blocks with the second-highest average D,-efficiency
and the highest minimum Djy-efficiency were preferable. These 561 blocks had
the exact same average and minimum D;-results as the best blocks found when
testing all possible blockings into four blocks, thus they are a subset of the best
possible blocks and will therefore not be further investigated.

Evaluation of method
When testing the method based on utilising the preferred division into two blocks,
an advantage was found: Each division into two blocks was able to create at least

66

one division into four blocks which yielded D > 0, both when testing three and
four active factors. This means that at most 1225 combinations had to be tested
to ensure finding a usable block, but yielding no guarantee of getting a high Ds-
efficiency. However, as 57% of all possible blocks were found to be usable in
section 4.2.5, it should not take too long when using the mirror image pairs ap-
proach either.

The disadvantage of utilising the preferred divisions into two blocks was having
to test more than twice the number of possible blockings based on mirror image
pairs in order to try all combinations, as some of the blocks based on the preferred
divisions into two blocks were duplicates. For larger design this method may nev-
ertheless be useful, as it might be impossible to test all possible blockings based
on mirror image pairs.

4.2.6 Dividing a 2},%, a 25,° and a 2,* design into two and four
blocks using HM

In sections 4.2.2,4.2.4,4.2.3 and 4.2.5, 32-run matrices with 16 and six factors re-
spectively where divided into two and four blocks using mirror image pairs. One
option when having more than six but less than 16 screening factors is to use a
subset of columns from the 2}8_” design. The results will then become the same
as in section 4.2.2. But is it possible to do better? The recommended design gen-
erators for the 2;‘7 2 2?; 3 and 2?‘7 4 designs all include one four-factor interaction
and one, two and three three-factor interactions, respectively. Thus the designs re-
sulting from choosing columns from the 2}8‘“ design are not the recommended
ones. The problem with using the recommended designs is that including a main
effect defined by a four-factor interaction destroys the mirror-image property.

In this section, the 23‘7 2, 2?; 3 and 2?‘7 # design will therefore be divided into two
and four blocks using blocks obtained by rearranging Hadamard matrices, as ex-
plained in section 3.3. Recall that Hadamard matrices are square matrices whose
columns are all orthogonal. The matrix found to yield good results for two blocks

in this section is the order 32 Hadamard matrix had.32.t1 from the web page A

67

Library of Hadamard Matrices [19], while had.32.t2 yielded good results for four
blocks. The matrices, from now on called M and M2, can be found in table 6.15,
6.16, 6.17 and 6.18 in Appendix A.

The approach tested for the designs was to interchange the rows of the Hadamard
matrices to generate the 2° design which was used to make the 27,2, 283 and 23,
designs by adding main effects based on the recommended design generators. The
remaining columns were then used as candidate blocks. When dividing into two
blocks, one column represented the block, while when dividing into four block,
two columns represented the blocking. Then their interaction was also included
in the design matrix. The reordered Hadamard columns were believed to be good
candidate blocks as they were all orthogonal to the columns of the 2°-design,
which can be found in tables 4.24 and 4.25. When implementing the method, the
identity column of the Hadamard matrix was removed, as it could neither be used
for blocking nor factors columns.

As one column was removed, there were (32!5)! = 20389320 ways to choose
the columns that should make up the factor columns A, B, C, D and E in the 23
design. Not all combinations could be sorted into the design. Hence implement-
ing the method, design columns were chosen at random until a combination which
could be sorted into the design was found. Some of the Hadamard matrices tested
were not arranged into the desired design even when running the script for a long
time, but it was not possible to know if they could have been had all combinations
been tested. After finding one for which the sorting could be performed, blocking
using the remaining columns were tested. This procedure was repeated until a
sorting which yielded the desired projectivity was found. Note that as all column
combinations which could be used to make up the factor columns were not tested,
it possibly exists combinations which yields better results than the ones presented
here.

68

Table 4.25: Last 16 rows of the 2° de-

sign.

Table 4.24; First 16 rows of the 2° de-

sign.

Row A B C D E

Row A B C D E

-1 1

19
20

22
23

1

-1

24
25

-1

-1

1

-1

27

28

12
13
14
15
16

-1-1

29

1

-1

30
31

-1

32

69

4.2.6.1 A 2], design divided into two blocks

In the case of two blocks, the matrix M was sorted to make the columns 11, 3, 4,
25 and 7 correspond to columns A, B, C, D and E in the 25 -design in table 4.24.
This was done be rearranging the rows in the order 32, 28, 9, 13, 16, 12, 25, 29,
23,19,2,6,7, 3,18, 22, 24, 20, 1, 5, 8, 4, 17, 21, 31, 27, 10, 14, 15, 11, 26 and
30. Then the factor F was defined as ABC, and G as ABDE. The resulting design
can be seen in table 4.27. The recommended blocking by confounding of inter-
actions for this design is to use ACD as block generator, resulting in a (32,7,2,2)
screen. Thus being able to estimate all effects for three active factors would be an
improvement.

Eight among the 26 columns of M not used to define main effects were not fully
aliased with any effects up to three-factor interactions, and four of these yielded
Dy > 0 for all combinations of three active factors, making the blocked design a
(32,7,3,2) screen. The four preferred blocks correspond to columns 26, 28, 30 and
32 in M, and can be found in columns b1,52,b3 and b4 in table 4.27. All four
blocks yielded the same frequencies of Ds-efficiencies when testing all (g) =35
combinations of three active factors, yielding a mean value of 0.982. The fre-
quencies can be found in table 4.26. Using block b1 yields Dy = 1 when the
active factors are among others B, D and E.

Table 4.26: D;-efficiencies when estimating all interactions for three active factor for the
2;‘; 2 design when using the preferred division into two blocks.

Ds-efficiency Occurences

1 23
0.965 8
0.917 4

70

2 design and the preferred blocks.

Vv

Table 4.27: The 2

b2 b3 b4

A B C D E F G bl

71

4.2.6.2 A 2], design divided into four blocks

In the case of four blocks, the 23‘7 2 design was made by rearranging the matrix
M2 in the order 32, 5, 13, 24, 30, 23, 15, 6, 12, 17, 25, 4, 10, 3, 27, 18, 16, 21,
29,8, 14,7, 31, 22,28, 1, 9, 20, 26, 19, 11 and 2. The columns 4, 8, 9, 2 and 31
were used to define A, B, C, D and E. As before, F was defined as ABC, and G
as ABDE. The recommended division into four blocks by confounding of interac-
tion is to use ACD and BCD as block generators, making the blocked design have
projectivity P = 1. Finding blocks which enable estimation of all effects for three
active factors was therefore desirable in this case as well.

The 20 columns of M2 not used to define main effects and not confounded with
two- or three-factor interactions were used as candidate blocks, by pairing them
and letting the rows (-1,-1), (1,-1), (-1,1) and (1,1) define the blocks. All (%) =
190 possible ways of defining four blocks were tested, and 40 of them yielded
D, > 0 for all (;) = 35 possible combinations of three active factors. Thus using
any of these thus results in a (32,7,3,4) screen. The minimum Dj-efficiencies ob-
tained for the blocks ranged from 0.841 to 0.917, and the average Ds-efficiencies
ranged from 0.919 to 0.939. All blockings obtained a maximum of 1. Four of
the blockings obtained both the highest minimum and the highest average. These
were given by the column combinations (11,25), (11,26), (12,25) and (12,26).
The columns can be found in table 4.29. The four preferred blockings obtained
the same Dy-frequencies, which can be found in table 4.28. Using the combina-
tion (11,25) to define the blocks yields Ds;=1 when the active factors are among
others D, E and G.

Table 4.28: Ds-efficiencies when estimating all interactions for three active factors for
the 2;‘7 2 design when using the preferred division into four blocks.

Ds-efficiency Occurences

1 7
0.931 14
0.917 14

72

2 design and the columns used to define the preferred divisions into

|4

Table 4.29: The 2},

four blocks.

11 12 25 26

F G

A B C D E

73

4.2.6.3 A 253 design divided into two blocks

The 233‘7 3 design was obtained by rearranging M in the order 32, 8, 30, 6, 21, 13,
15,23,3,27,1,25,10, 18, 20, 12, 11, 19, 9, 17, 2, 26, 28, 4, 24, 16, 22, 14, 29, 5,
7 and 31. The columns 29, 7, 25, 14 and 26 were used to define factors A, B, C,
D and E, respectively. F was defined by ABC, G by ABD and H by ACDE. The
resulting design matrix can be found in table 4.31. The recommended blocking
by confounding of interactions for this design is to use ABE as block generator,
yielding a (32,8,2,2) screen. Thus being able to estimate all effects for three active
factors would be an improvement here as well.

When testing the 26 columns of M not used in the design, eight were found not
to be fully aliased with any effects up to three-factor interactions, and therefore
chosen as candidate blocks. Four of these yielded D; > 0 for all (g) = 56 com-
binations of three active factors when estimating all effects, thus resulting in a
(32,8,3,2) screen. The blocks can be found in columns b1, 52,53 and b4 alongside
the design in table 4.31. They are based on columns 2, 4, 6 and 8 of M. All four
blocks obtained the same frequencies of Ds-efficiencies when testing all possible
combinations of three active factors, and thus the same average D,-efficiency of
0.981. The frequencies are presented in table 4.30. Using block b1 yields Dy = 1
among others when E, D and F are the active factors.

Table 4.30: Ds-efficiencies when estimating all interactions for three active factors for
the 2?; 3 design when using the preferred division into two blocks.

Ds-efficiency Occurences

1 36
0.965 13
0.917 7

74

3 design and the preferred blocks.

Vv

Table 4.31: The 23

b2 b3 b4

A B C D E F G H bl

75

4.2.6.4 A 253 design divided into four blocks

Considering four blocks instead, the 2?; 3 design was made by rearranging M2 in
the order 32, 4, 5, 25, 30, 18, 3, 15, 12, 24, 17, 13, 10, 6, 23, 27, 28, 8, 1, 29, 26,
22,7, 11, 16, 20, 21, 9, 14, 2, 19 and 31. The columns 3, 7, 29, 4 and 15 were
used to define factors A, B, C, D and E, respectively. As before, F was defined
by ABC, G by ABD and H by ACDE. The resulting design matrix is the same
as shown in table 4.31. The recommended block generators for division into four
blocks are AC and AD. They make P = 2 and P = 3 impossible, thus being able
to estimate all effects for three active factors was the goal also in this section.

The 20 columns not confounded with main or interaction effects were used to
define the candidate blockings, just as in section 4.2.6.2. Among the resulting 190
possible ways to define four blocks, 32 yielded Dy > 0 for all (g) = 56 combi-
nations of three active factors. Using these blockings thereby yield a (32,8,3,4)
screen. The minimum Djy-efficiencies were in the range from 0.841 to 0.853, and
the average D;s-efficiencies in the range from 0.915 to 0.929. All maximum D;-
efficiencies were 1. Among the candidate blocks, 16 obtained both the highest
minimum and the highest average D,-efficiency. They were given by the column
combinations (9,19), (9,23), (10,19), (10,23), (11,31), (11,32), (12,31), (12,32),
(13,25), (13,26), (14,25), (14,26), (18,25), (18,26), (22,25) and (22,26). The
columns are shown in table 4.33. All combinations resulted in the same frequen-
cies of Ds-efficiencies, which can be found in table 4.32. Using the columns 9 and
19 to define the blocks yields Dy=1 among others when the active factors are A, B
and D.

Table 4.32: Ds-efficiencies when estimating all interactions for three active factors for
the 2?; 3 design when using the preferred division into four blocks.

Ds-efficiency Occurences

1 10
0.931 16
0.917 24
0.853 6

76

Table 4.33: The columns used to define the preferred divisions into four blocks for the

2873 design shown in table 4.31.

32

19 22 23 25 26 31

10 11 12 13 14 18

9

77

4.2.6.5 A2, design divided into two blocks

The 2?‘7 4 design was generated by arranging the rows of M in the order 32, 22,
28, 18, 20, 26, 24, 30, 16, 6, 12, 2, 4, 10, 8, 14, 9, 3, 13, 7, 5, 15, 1, 11, 25, 19,
29, 23,21, 31, 17 and 27, and letting columns 17, 18, 23, 6 and 25 correspond to
the design columns A, B, C, D and E. The factors F, G, H and I were defined by
the design generators ABC, ABD, ACD and BCDE. The recommended blocking
by confounding of interactions for this design is to use the block generator AB,
which results in a (32,9,1,2) screen. Thus being able to estimate all effects for all
combinations of two or three active factors would be an improvement.

Among the 26 remaining columns of M, eight were not fully aliased with any
effects up to three-factor interactions. These were number 10, 12, 14, 16, 26, 28,
30 and 32. They can be found in columns b1,52,b3, b4, b5, b6, b7 and b8 in table
4.35. All eight blocks yielded D > 0 for all (g) =84 possible combinations of
three active factors, making the blocked design a (32,9,3,2) screen. The average
Dy-efficiency for all blocks was 0.982, and they all obtained the same frequencies
of Ds-values, which can be found in table 4.34. The block b1 yields Dy = 1 when
used for among others the active factors D, E and G.

Table 4.34: Ds-efficiencies when estimating all interactions for three active factors for
the 2?‘7 4 design when using the preferred block.

Ds-efficiency Occurences

1 52
0.965 24
0.917 8

78

design and the preferred blocks.

Vv

Table 4.35: The 2)

b2 b3 b4 b5 b6 b7 b8

bl

I

A B C D E F G H

79

4.2.6.6 A 2),* design divided into four blocks

When considering four blocks, the 2?‘7 # design was made by rearranging the rows
of M2 in the order 32, 17, 1, 16, 22, 21, 11, 12, 18, 31, 15, 2, 28, 27, 5, 6, 26, 23,
7,10, 20, 19, 13, 14, 24, 25, 9, 8, 30, 29, 3, and 4. The columns 4, 32, 31, 16 and
3 were used to define factors A, B, C, D and E. As in section 4.2.6.5, the factors F,
G, H and I were defined by the design generators ABC, ABD, ACD and BCDE.
The recommended way to divide the design into four blocks using confounding
of interactions is to use the design generators AB and AC. The resulting blocked
design has P = 1. Testing whether all effects could be estimated for three active
factors when using other blocks was therefore interesting.

The 12 columns that were not confounded with any main or two- or three-factor in-
teraction effects were used to define the candidate blockings. Testing all (122) =066
possible candidate blockings, 12 of them were found to yield Dy > 0 for all
(g) = 84 combinations of three active factors. Using any of these 12 blockings
thus results in a (32,9,3,4) screen. The minimum D;-efficiencies were in the range
from 0.841 to 0.853, while the average Dy-efficiencies were in the range from
0.916 to 0.925. All the maximum Djy-efficiencies were 1. The four blockings
yielding both the highest minimum value and the highest maximum value were
found using the column combinations (11,25), (11,26), (12,25) and (12,26). The
columns can be found along with the design in table 4.37. Using any of these
combinations to block the design yielded the same D,-frequencies, which can be
found in table 4.36. Using the combination (11,25) yields Ds=1 among others
when D, E and I are the active factors.

Table 4.36: Ds-efficiencies when estimating all interactions for three active factors for
the 2?‘7 # design when using the preferred divisions into four blocks.

Ds-efficiency Occurences

1 8
0.931 40
0.917 28
0.853 8

80

4 design and the columns used to define the preferred divisions into

|4

Table 4.37: The 2),

four blocks.

26

12 25

11

I

A B C D E F G H

81

4.3 64-run designs

The 64-run designs which were blocked were a 2}7"2,_26 design and a 2?,_2 design.
The 2?3’26 design was chosen as it is the doubling of the 2}3’“ design. The re-
sults for dividing the design into two blocks are presented in section 4.3.1, while
the results for division into four blocks are presented in section 4.3.2. In both
cases, three active factors were considered.

The 23’2 design was chosen as it has projectivity P = 4 and can be generated
using the columns of the doubling of the Hadamard matrices which yielded good
results for the 32-run 23\7 2, 2?; 3 and 2?‘7 4 designs. Division into two, four and
eight blocks was tested, each for both three and four active factors. The results for
division into two blocks can be found in sections 4.3.3.1 and 4.3.3.2. The results
for division into four blocks are presented in sections 4.3.3.3 and 4.3.3.4, and the

results for division into eight blocks can be found in sections 4.3.3.5 and 4.3.3.6.

4.3.1 Dividing a 2%’26 design into two blocks using the blocking of
the 2}8_” design

Using the idea introduced in section 3.2.2, a 64-run design was created by dou-
bling the 32-run 2}‘6,*“ design found in table 4.10 in section 4.2.2. This resulted
in a 2;’3_26 design with projectivity P = 3 and resolution IV. No recommended
blocking by confounding of interactions was found in the literature for this de-

sign, so the goal was to obtain a blocking with projectivity P = 3.

The blocking was done in the same manner as in section 4.2.1, testing all 5040
blocks that worked for the 2}3711 design. The blocks generated using patterns
D, and D3 yielded a Dg-efficiency above 0 when estimating all effects for all
(332) =4960 possible combinations of three active factors, making the resulting
blocked design a (64,32,3,2) screen. The first pattern, D5, yielded an average
Dy-efficiency of 0.98651. For the second, D3, the average was slightly higher, at
0.98653. Both patterns yielded a minimum Dj;-efficiency of 0.917 and a maximum
Ds-efficiency of 1 when testing all blocks for all combinations of three active fac-

tors. Having the highest average, D3 was chosen for further consideration. All

82

blocks found using that pattern yielded the same frequencies of Ds-efficiencies,
which can be found in table 4.38.

An example of blocking can be found by creating factors based on B1 and B2
in table 6.3 and 6.4 in Appendix A, using pattern D3, and letting the first 32 rows
belong to one block, and the last 32 to the other. B1 and B2 were found using the
example block from section 4.2.2, [1, 1,1,1,1,1,—-1,-1,1,—-1,1,—1,—1,—1,
-1,-1,-1,-1,-1,-1,-1,1,—1,1,—1,—1,1,1,1,1,1, 1]T. B1 was chosen as
the rows of the matrix in table 4.10 for which the corresponding block entry was
1, and B2 as the rows for which the corresponding block entry was -1. The result-
ing design matrix can be found in table 6.5, 6.6, 6.7 and 6.8 in Appendix A. The
preferred block yields Dy=1 when the three first factors, A, B and C, are active.

Table 4.38: Frequencies of the different Ds-values when testing the preferred block for
the doubling of the 2113_“ design for all combinations of three active factors, estimating
all interactions.

Ds-efficiency Occurences

1 1600
0.992 1536
0.983 896
0.965 384
0.954 512
0.917 32

4.3.2 Dividing a 2;"%_26 design into four blocks using the blocking of
the 2}‘(}*“ design

Similarly as the division of the 2;‘%_26 design into two blocks based on the prefer-
able blocking of the 2}8’“ design into two blocks, the 2?3’26 design was divided
into four blocks using the preferable division of the 2}8_1 ! design into four blocks.
The idea is described in section 3.2.2, and will be repeated shortly here for easier

83

referencing to the best block. As before, B1, B2, B3 and B4 denote the subma-
trices of the 32-run design matrix belonging to each of the four blocks. A 64-run
matrix may be constructed as any matrix including each row of

a Bl Bl
b B2 B2
¢ B3 B3
D= d B4 B4
e Bl —Bl1
f B2 —B2
g B3 —B3
h B4 —B4

The letters in the first column are the names that will be used for the submatri-
ces (B1B1), (B2 B2) and so on. The rows in submatrix ¢ must always be in the
same block, likewise with the rows in submatrix b, and so on. The blocks are
defined by reordering the submatrices a,b,c,d,e, f,g and h, and letting the first
16 rows belong to one block, the next 16 rows belong to the second block and
so on. As in section 4.2.3, the blocks are represented by two columns, where the
combinations (1,1), (1,-1), (-1,1) and (-1,-1) denotes the four different blocks.
cad : GG - :

As explained in section 3.2.2, there are ~2=2=2 = 105 ways to divide the eight sub-
matrices of D into four blocks. For dividing the 2}8’“ design into four blocks,
there were the 40320 equally good blocks, as they all had the highest average
among the 50400 blocks having the highest minimum D;-efficiency for all com-
binations of three active factors. This yields over 4 million potential candidate
blocks.

When testing division into two blocks, all the best blocks for the 16-run design
gave the same results when used to define two blocks for the 32-run design. The
different combinations of the rows of the 32-run matrix, D, and D3, did however
yield different results. Thus it seemed reasonable to test all 105 possible ways to
arrange D into four blocks for a subset of all the 40320 candidate blocks. 10 of

84

the preferred blockings for division into four blocks in section 4.2.3 was chosen
for testing, trying to estimate all effects for all (332) =4960 possible combinations
of three active factors. 96 among the 105 blocking arrangements yielded Ds > 0
for all combinations, making the blocked design a (64,32,3,4) screen when using
any of them. The nine blocking arrangements not yielding D > 0 for all combi-
nations were the combinations in which the submatrices abcd were placed in two
blocks, and efgh in the two other blocks. Then two-factor interactions became
confounded with the block columns, just as when using pattern D; for division
into two blocks, as explained in section 3.2.1.

The minimum Dj-efficiencies for the 96 ways of blocking yielding Dy > 0 for
all combinations of three active factors ranged from 0.834 to 0.913, and the aver-
ages ranged from 0.958 to 0.960. All obtained a maximum D;-efficiency of 1. The
four blocking arrangements that obtained the highest minimum D;-efficiency also
obtained the highest average D;-efficiency, and were therefore preferred. These
were adhcg fbe, adhegbcf, afhegdbc and ahg fedbc, with the first two subma-
trices in the first block, the next two submatrices in the second block, and so on.
These results were equal for all 10 divisions into four blocks from section 4.2.3
that were used to define the new blocks. The preferred blocking from section
4.2.3 was chosen for further investigation, using it to define B1, B2, B3 and B4,
as shown in table 4.41

An example of occurrences of Ds-frequencies is shown in table 4.39. The re-
sult is obtained using combination adhcg fbe to define the new blocks. Block one
with a and b is defined by (1,1), block two with % and ¢ by (1,-1), block three with
g and f by (-1,1) and block four with » and e by (-1,-1). The matrix in table 4.40
illustrates the pattern, and shows how the first % of the design matrix belongs to
the block defined by (-1,-1) and so on. Note that the interaction effect between
the block columns is also included when calculating the Ds-efficiency, despite not
being included below. Tables 6.9, 6.10, 6.11 and 6.12 in Appendix A show the
design matrix written out. Note that D;=1 when A, B and C are the active factors.

85

Table 4.39: Frequencies of the different
Ds-values when testing the preferred di-
vision into four blocks for the doubling
of the 21137“ design for all combinations
of three active factors, estimating all in-
teractions.

Ds-efficiency Occurences

1 256

0.992 128

0.984 256

0.983 256

0.976 64 Table 4.40: The pattern used to define
0.975 192 the preferred division into four blocks.
0.975 192

0.974 128 a Bl Bl -1 -1
0.967 128 d B4 B4 -1 -1
0.967 128 h B4 —-B4 1 -1
0.967 256 c B3 B3 1 -1
0.965 448 g B3 —B3 -1 1
0.959 64 f B2 —-B2 -1 1
0.958 384 b B2 B2 1 1
0.957 64 e Bl —Bl 1 1
0.956 128

0.954 64

0.949 512

0.947 128

0.946 256

0.940 128

0.938 192

0.930 128

0.928 128

0.927 128

0.917 32

0.913 192

86

Table 4.41: One of the preferred ways to define B1, B2, B3 and B4.

bl b2 Db1b2 Part
-1 -1 1 B4
-1 -1 1 B4
-1 -1 1 B4
-101 -1 B3
-1 -1 1 B4
-11 -1 B3
1 -1 -1 B2
1 1 1 B1
1 -1 -1 B2
1 1 1 B1
1 1 1 B1
1 1 1 B1
1 -1 -1 B2
1 -1 -1 B2
-1 -1 B3
-1 -1 B3
-11 -1 B3
-11 -1 B3
1 -1 -1 B2
1 -1 -1 B2
1 1 1 B1
1 1 1 B1
1 1 1 B1
1 -1 -1 B2
1 1 1 B1
1 -1 -1 B2
-11 -1 B3
-1 -1 1 B4
-11 -1 B3
-1 -1 1 B4
-1 -1 1 B4
-1 -1 1 B4

87

4.3.3 Dividing a 2?,*2 design into two, four and eight blocks using HM

In this section, division of a 23’2 design into two, four and eight blocks is tested.
The design can be found in tables 6.21 and 6.22. It has projectivity P = 4 prior to
blocking. Division into two blocks by the recommended confounding of interac-
tions using ACE as block generator yields a (64,8,2,2) screen, just as division into
four blocks using the recommended generators ACE and BDE. Division into eight
blocks using the recommended block generators ADE, BDE and ACDEEF yields
a (64,8,1,8) screen. Is it possible to do better in terms of projectivity? To enable
comparison with the 64-run 23272 design in section 4.3.1, the divisions into two
and four blocks will be tested for all combinations of both three and four active
factors. As the 32-run designs could be divided into four blocks with eight rows
each, testing whether the 64-run 2‘8/_2 design could be divided into eight blocks
with eight rows each was also interesting.

Since testing all possible ways to block the design was not feasible, finding rea-
sonably good candidate blocks was crucial. As rearranging Hadamard matri-
ces worked well for the 32-run designs in section 4.2.6, the doubling of these
Hadamard matrices were utilised for the 23’2 design. For division into two blocks,
a 64 x 64 matrix R was created by doubling the 32-run matrix M from section
4.2.6 as described in section 2.1.4. For division into four blocks, a 64 x 64 matrix
R2 was created by doubling the 32-run matrix M2. For division into eight blocks,
the doubling of the Hadamard matrix had.32.t3 from [19] was found to yield good
results. The matrix matrix had.32.t3 will from now on be referred to as M3, and
can be found in table 6.19 and 6.20 in Appendix A. Its doubling will be denoted
R3. As M, M2 and M3 are Hadamard matrices, their doublings R, R2 and R3
are also Hadamard matrices, and thus consist of orthogonal columns. For both R,
R2 and R3, the column with ones was removed, as it could neither be reordered
to represent a factor nor a block.

To generate the 2?,_2 design, the rows of the Hadamard matrices were first in-
terchanged to generate the standard 2° design with six factors A, B, C, D, E and F.
The 2?,_2 design with projectivity P = 3 and resolution V was obtained by setting
G=ABCD and H=ABEF, as suggested by Wu and Hamada [7]. As the columns

88

which were not used in the design are orthogonal to the design columns, they are
interesting candidate blocks. Using any of these columns to define blocks ensures
that all main effects are not even partially confounded with them.

4.3.3.1 Two blocks, three active factors

Using the columns 10, 45, 37, 5, 53 and 32 of R to find the design columns A, B,
C, D, E and F respectively, the rows of the matrix has to be in the order 64, 52, 59,
55, 61, 49, 62, 50, 26, 22, 29, 17, 27, 23, 28, 24, 37, 41, 34, 46, 40, 44, 39, 43, 3,
15,8, 12,2, 14,1, 13, 11, 7, 16, 4, 10, 6, 9, 5, 45, 33, 42, 38, 48, 36, 47, 35, 18,
30, 21, 25, 19, 31, 20, 32, 56, 60, 51, 63, 53, 57, 54 and 58. Testing the remaining
57 columns as blocks, 32 of them yielded a D;-efficiency above O when testing all
effects for all (g) =56 possible combinations of three active factors. The resulting
design is a (64,8,3,2) screen.

Eight of the blocks obtained a minimum Djy-efficiency of 0.917, while the re-
maining 24 obtained a minimum of 0.965. The average value was in the range
from 0.984 to 0.992 for all 32 blocks. The 12 blocks obtaining the highest min-
imum Dj-efficiency, highest average Ds-efficiency and a maximum Djs-efficiency
of 1 were regarded as the best. These correspond to columns 9, 10, 11, 12, 13,
14, 15, 16, 50, 52, 54 and 56 in R. They all obtained the same frequencies of
Dy-efficiencies when testing all combinations of three active factors, as shown in
table 4.42. The blocks can be found along with the design matrix in columns b1,
b2, b3, b4, b5, b6, b, b8, b9, b10, b11 and 12 in the tables 6.21 and 6.22 in Ap-
pendix A. The block b1 yields Ds=1 among other when D, E and F are the active
factors.

Table 4.42: Dg-efficiencies when estimating all interactions for three active factors for
the 2?,’2 design when using the preferred block.

Ds-efficiency Occurences

1 44
0.965 12

&9

4.3.3.2 Two blocks, four active factors

Using the same columns of R as in the above section to define the design columns,
the remaining 57 columns were now tested as blocks for all (i) =70 possible
combinations of four active factors. 24 of them yielded D; > 0 when estimating
all effects for all combinations, thereby making the resulting design a (64,8,4,2)
screen. They all had a maximum Dj-efficiency of 1 and a minimum of 0.958. 12
of them obtained the highest average Dy-efficiency of 0.986. These corresponded
to the columns 9, 10, 11, 12, 13, 14, 15, 16, 50, 52, 54 and 56 of R, just as the best
blocks in the case of three active factors. Using the block b1 yields Dg=1 among
other when B, D, E and F are the active factors. When testing all combinations,
the four preferred blocks obtained the same frequencies of Ds-efficiencies. The
frequency table can be found in table 4.43.

Table 4.43: D,-efficiencies when estimating all interactions for four active factors for the
2?,’2 design when using the preferred block.

Ds-efficiency Occurences

1 33
0.982 25
0.958 12

4.3.3.3 Four blocks, three active factors

As the matrix M2 yielded good results for dividing 32-run designs in four blocks,
the doubling R2 was used to divide the 2?,72 design into four blocks. To generate
the design, the rows of R2 were sorted in the order 64, 52, 22, 26, 21, 59, 29,
51, 14, 2, 40, 44, 39, 9, 47, 1, 53, 57, 31, 19, 32, 50, 24, 58, 7, 11, 45, 33, 46,
4, 38, 12, 60, 56, 18, 30, 17, 63, 25, 55, 10, 6, 36, 48, 35, 13, 43, 5, 49, 61, 27,
23, 28, 54, 20, 62, 3, 15, 41, 37, 42, 8, 34 and 16. The columns 21, 28, 34, 24,
9 and 12 were used to define the factors A, B, C, D, E and F. The remaining 57
columns were used to find candidate blocks, by testing all (527) = 1596 combina-
tion of two columns, and using the combinations (-1,-1), (-1,1), (1,-1) and (1,1)

90

to define the four blocks. The interaction effect was also included in the design
matrix. Among the 1596 candidate blockings, 432 yielded D, > 0 for all (g) =56
possible combinations of three active factors. Using any of these thus results in a
(64,8,3,4) screen. The minimum D;-efficiencies ranged from 0.834 to 0.931, while
the average D;-efficiencies ranged from 0.940 to 0.982. All blockings obtained a
maximum Djs-efficiency of 1. 20 of the blockings obtained both the highest min-
imum value and the highest average. These were given by the column combina-
tions (13,26), (13,40), (13,59), (13,60), (14,36), (14,40), (14,59), (14,60), (15,33),
(15,37), (15,47), (15,48), (16,33), (16,37), (16,47), (16,48), (33,47), (33,48), (37,47),
and (37,48). The columns can be found in tables 6.23 and 6.24 in Appendix A,
and the corresponding design can be found in table 6.21 and 6.22 in Appendix A.
All the combinations obtained the same frequencies of D;-efficiencies when tested
for all combinations. They can be found in table 4.44. When using columns 13
and 26 to define the blocks, Dy;=1 among others when D, E and F are the active
factors.

Table 4.44: D-efficiencies when estimating all interactions for three active factors for
the 23‘2 design when using the preferred division into four blocks.

Ds-efficiency Occurences

1 30
0.965 21
0.931 5

4.3.3.4 Four blocks, four active factors

The 1596 candidate blockings were tested also for the case of four active factors.
192 of them yielded D; > 0 for all (i) = 70 possible combinations of four ac-
tive factors. These were a subset of the 432 blocks which yielded good results
for three active factors. The resulting design when using one of the blocking is a
(64,8,4,4) screen. The minimum D;-efficiencies were in the range from 0.862 to
0.917, while the average D;-efficiencies were in the range from 0.947 to 0.966.
The maximum was 1 for all blockings.

91

20 of the blockings obtained both the highest minimum and the highest average.
These were given by the same column combinations as in section 4.3.3.3. These
20 preferred blockings yielded the same frequencies of Ds-efficiencies when tested
for all combinations of four active factors. They can be found in table 4.45. When
using columns 13 and 26 to define the blocks, Dy=1 was obtained among others
when C, E, F and H were the active factors.

Table 4.45: D,-efficiencies when estimating all interactions for four active factors for the
2?,’2 design when using the preferred division into four blocks.

Ds-efficiency Occurences

1 12
0.965 39
0.958 13
0.924 4
0.917 2

4.3.3.5 Eight blocks, three active factors

In the case of eight blocks, the matrices R and R2 was not sorted into a combi-
nation yielding good blocks when running the script for quite a time. It might
very well be possible that they could have yielded the desired results if the script
had been run even longer, but as the doubling of the Hadamard matrix M3, R3,
yielded the desired result immediately, it was chosen for further consideration.

The design was generated by sorting the rows of R3 in the order 64, 45, 60, 41,
11, 26, 15, 30, 63, 44, 12, 31, 25, 14, 46, 57, 47, 62, 43, 58, 28, 9, 32, 13, 48, 59,
27, 16, 10, 29, 61, 42, 49, 36, 53, 40, 6, 23, 2, 19, 50, 37, 5, 18, 24, 3, 35, 56, 34,
51, 38,55, 21, 8, 17, 4, 33, 54, 22, 1, 7, 20, 52 and 39. The columns 62, 34, 39,
33, 22 and 5 were used to define the main factors A, B, C, D, E and F.

92

The candidate blockings were found as all (537) = 29260 possible combinations of
the 57 columns not used to define the main effects. The row combinations (-1,-
1,-1), (-1,-1,1), (-1,1,-1), (1,-1,-1), (1,1,-1), (1,-1,1), (-1,1,1) and (1,1,1) defined
the eight different blocks. The two- and three-factor interaction effects between
them were also included in the design matrix. Thus there were seven columns
representing the blocking. Testing all 29260 candidate blockings, 4752 of them
obtained D, > 0 for all the (g):56 possible combinations of three active factors.
Using any of these blockings thereby results in a (64,8,3,8) screen. The minimum
Dys-efficiencies for the 4752 blockings ranged from 0.581 to 0.853, while the av-
erages ranged from 0.847 to 0.921 and the maximums from 0.917 to 1.

The blockings with the highest minimum D;-efficiency did not obtain the highest
average, but the eight of them obtained and average of 0.918 and a maximum of
1, and were therefore preferred. The blockings were defined by the column com-
binations (18,20,51), (18,20,59), (18,28,51), (18,28,59), (20,26,51), (20,26,59),
(26,28,51) and (26,28,59). The columns can be found in tables 6.25 and 6.26 in
Appendix A. They all obtained the same D;-frequencies when tested for all com-
binations of three active factors. The frequencies are shown in table 4.46. When
the columns 18, 20 and 51 are used to define the blocking, D;=1 when the active
factors are A, D and E.

Table 4.46: D;-efficiencies when estimating all interactions for three active factors for
the 2?,*2 design when using the preferred division into eight blocks.

Ds-efficiency Occurences

1 1
0.931 37
0.917 10
0.866 2
0.853 6

93

4.3.3.6 Eight blocks, four active factors

The same 29260 blockings that were tested for three active factors in section
4.3.3.5 were also tested for all (i) = 70 possible combinations of four active
factors. 352 of the blockings yielded Dy > 0 for all combinations, making the
resulting design a (64,8,4,8)-screen. The minimum Djs-efficiencies ranged from
0.695 to 0.808, and the averages ranged from 0.872 to 0.889. All the maximums
were 0.917. Among the blockings with the highest minimum Djy-efficiency, none
obtained the highest average.

The best average obtained by the blockings with the highest minimum D;-efficiency
was 0.889, which was obtained by the same eight blocking that were preferred in
section 4.3.3.5. Thus those were therefore preferred here as well. They all yielded
the same frequencies of Ds-efficiences when tested for all possible combinations
of four active factors. The frequencies can be found in table 4.47. When the
columns 18, 20 and 51 defines the blocking, D;=0.917 among others when the
active factors are A, D E and F.

Table 4.47: D,-efficiencies when estimating all interactions for four active factors for the
25‘2 design when using the preferred division into eight blocks.

Ds-efficiency Occurences

0.917 7
0.891 30
0.885 20
0.881 7
0.878 4
0.862 1
0.808 1

94

4.4 Summary of results

The goal of testing different blocking methods was to find blocks which yielded
higher projectivity than traditional blocking using confounding of interactions
without compromising the D;-efficiency substantially. To evaluate the results, a
summary for all designs is presented in table 4.48 and 4.49. Table 4.48 shows
the minimum, maximum and average D;-efficiency obtained when estimating
as many effects as indicated by the ”Screen” column. Note that the notation
(n,k, Py*,b) indicates that the Dy-efficiencies were found when estimating up to
« interactions for P factors, but the design can be used to screen for more factors
((n,k, Py+4,b) is not considered more than (n,k, Py,b) in this case). This is typi-
cally relevant when fewer active factors than possible were tested for comparison
with other designs.

An average D;s-efficiency above 0.9 was obtained for all blockings except three.
An average below 0.9 was obtained for the 2?,71 design divided into four blocks
when estimating all effects for four factors, and up to three-factor interactions for
five active factors, and for the 2?,72 design divided into eight blocks when estimat-
ing all effects for four factors. The minimum Dj-efficiencies were above 0.8 in all
cases, and above 0.9 in all except nine cases, eight of which where for division
into four or more blocks. Hence all the suggested blockings are quite efficient. It
is however important to remember that the motivation for increasing the projec-
tivity is to be able to find active effects. The ability to do so does not only depend
on the effect columns not being fully aliased, but also the standard deviations of
the effect estimates being low enough to determine significance. How much the
standard deviations of the estimates are affected by using blocks with different
Dy-efficiencies will be investigated in chapter 5.

95

Table 4.48: Summary of the results for all the designs tested.

Design Section Strategy Screen Max D; Min Dy Mean Dy
284 4.1.1 Mirror image (16,8,3,2) 1 0917 0.929
257! 4.1.2.1 Hadamard+All (16,5,3,2) 1 0917 0.934
257! 4.1.2.3 Hadamard+All (16,5,4,.3,2) 1 0.841 0.952
20571 421 Doubling (32,16,3,2) 1 0917 0.970
21137“ 4.2.2 Mirror image (32,16,3,2) 1 0.917 0.971
206711 423 Mirror image (32,16,3,4) 1 0.834 0.908
2371 4.2.4.1 Mirror image (32,6,3*%,2) 1 0.943 0971
26! 4242 Mirrorimage (32,6,4,2) 0982 0917 0.959
26! 4244 Mirrorimage (32,6,53,2) 0.963 0948 0.958
26! 4245 Mirrorimage (32,6,53:2,2) 0966 0.906 0.939
26! 42.5.1 Mirrorimage (32,6,3*4) 0949 0.875 0.908
26! 42.5.2 Mirrorimage (32,6,4,4) 0.924 0.826 0.870
26! 4253 Mirrorimage (32,6,53,4) 0.866 0.866 0.866
202 42.6.1 Hadamard (32,7,3,2) 1 0917 0.982
2152 42.6.2 Hadamard (32,7,3,4) 1 0917 0.939
283 42.63 Hadamard (32,8,3,2) 1 0917 0.981
2873 42.64 Hadamard (32,8,3,4) 1 0.853 0.929
2 42.6.5 Hadamard (32,9,3,2) 1 0917 0.982
25! 42.6.6 Hadamard (32,9,3,4) 1 0.853 0.925
232726 431 Doubling (64,32,3,2) 1 0917 0.987
232726 432 Doubling (64,32,3,4) 1 0913 0.960
282 433.1 Hadamard (64,8,3%2) 1 0.965 0.992
282 4332 Hadamard (64,8,4,2) 1 0.958 0.986
2872 4333 Hadamard (64,83%4) 1 0931 0.982
282 4334 Hadamard (64,8,4,4) 1 0917 0.966
2872 4335 Hadamard (64,8,3%8) 1 0.853 0.918
282 433.6 Hadamard (64,8,4,8) 0917 0.808 0.889

96

Table 4.49 is used to assess the screening properties of the designs. The column
”Screen” shows the screening properties when using the recommended blocking
in the corresponding section. The column “Recommended blocks generator(s)”
shows the block generator(s) recommended by Wu and Hamada [7]. For the de-
signs with more than nine factors, recommended block generators were not found
in the literature. The column “Screen 2” shows the screening properties when us-
ing the recommended block generator(s).

Note that the extended screening definition (n,k,Pa+a,b) was not explored for
Screen 2, so the (n,k,P,b) definition is better suited for comparison. It should
also be noted that the projectivity is a rather strict measure when using the rec-
ommended blocks by confounding of interactions. The projectivity is for example
P =1 even if only one among many two-factor interactions cannot be estimated.
To exemplify, the only two-factor interaction which cannot be estimated when us-
ing the recommended block by confounding of interactions for the 2?,_1 design
is AB, as it is the block generator. Having that in mind, it can be seen that the
projectivity is increased for all designs when using the approaches tested in this
thesis instead of the recommended blocking by confounding of interactions.

97

Table 4.49: Summary of the results for all the designs tested. The column ’Screen” shows
the screening property when using the recommended blocking in the corresponding sec-
tion. The column “Screen 2” shows the screening property when using the recommended
block generator(s).

Design Section Strategy Screen Recommended block Screen 2
generator(s)
2874 4.1.1 Mirror image (16,8,3,2) AB (16,8,1,2)
257" 4.1.2.1 Hadamard+All (16,5,3,2) AB (165,1,2)
257" 4123 Hadamard+All (16,5,4143,2) AB (16,5,1,2)
2161 421 Doubling (32,16,3,2) Unknown Unknown
2113_ 11 422 Mirror image (32,16,3,2) Unknown Unknown
21511 423 Mirrorimage (32,16,3,4) Unknown Unknown
25;' 4241 Mirrorimage (32,6,3%2) ABC (32,6,2,2)
26,1 4242 Mirror image (32,6,4,2) ABC (32,6,2,2)
2?,71 4244 Mirror image (32,6,53,2) ABC (32,6,2,2)
26,1 4245 Mirrorimage (32,6,5342,2) ABC (32,6,2,2)

2?,71 425.1 Mirror image (32,6,3%,4) B1=ACD, B2=BCD (32,6,1,4)
26,1 4252 Mirror image (32,64.4) BI=ACD, B2=BCD (32,6,1,4)
2?,71 4253 Mirror image (32,6,53,4) B1=ACD, B2=BCD, (32,6,1,4)

217F 4261 Hadamard (32,7,3,2) ACD (32,7,2,2)
2;‘72 4.2.6.2 Hadamard (32,7,34) B1=ACD, B2=BCD (36,7,1,4)
250 4263 Hadamard (32.8,3,2) ABE (32.822)
2873 4264 Hadamard (32,8,3.4) BI=AC, B2=AD (36,8,1,4)
20t 4265 Hadamard (32,9,3,2) AB (32,9.1,2)
2?‘74 4.2.6.6 Hadamard (32,9,3,4) B1=AB, B2=AC (36,9,1,4)
232726 43.1 Doubling (64,32,3,2) Unknown Unknown
232726 432 Doubling (64,32,3,4) Unknown Unknown
2872 4331 Hadamard (64,8,3%,2) ACE (64,822)
2872 4332 Hadamard (64,8,4,2) ACE (64,8,22)
2872 4333 Hadamard (64.8,3%4) BI=ACE, B2=BDF (64,8,2,4)
282 4334 Hadamard (64,8,44) BI=ACE, B2=BDF (64.8,2,4)
2872 4335 Hadamard (64,8,3%*.8) BI1=ADF, B2=BDF, (64,8,1,8)
B3=ACDEF
2872 4336 Hadamard (64,84.8) BI1=ADF, B2=BDF, (64,8,1,8)
B3=ACDEF

98

So which designs are preferable for different run sizes? In most cases, it depends
on how many factors are believed to be active. If it is important to get low standard
deviations for the estimates, a high minimum D,-efficiency may be prioritised over
being able to screen many factors. A short evaluation of the designs with equal
run sizes capable of estimating the same number of active factors is given below.

4.4.1 16 runs, three active factors, two blocks

The 16-run designs tested were a 22;‘7 “and a 2371 design, blocked using the mirror
image pairs approach and rearranging a Hadamard matrix, respectively. The 233‘7 4
design could be used to screen eight factors, and for three active factors, all effects
were estimable. The 23! design could be used to screen five factors, and as for
the 2?; 4 design, all effects were estimable when there were three active factors.
The minimum D;s-values were equal, as were the maximum Dg-values. The 2?,’1
design obtained a slightly higher average D;-efficiency, making it preferable if it
is sufficient to screen five factors.

4.4.2 32 runs, three active factors, two and four blocks

Division into two blocks

The 32-run designs tested which could be used to estimate all effects for three
active factors were a 25,1, a 2];%, a 28,3, a 2, * and a 2]~ ! design. The 2)5!!
design was blocked using the mirror image pairs approach and doubling of the
blockings that were preferred for the 2%7 4 design. The best result was obtained
using the mirror image-strategy, yielding a (32,16,3,2) screen with a minimum
Dys-efficiency of 0.917, maximum of 1 and average of 0.971. The 2‘6,;1 design
was blocked using the mirror image approach, resulting in a (32,6,4,2) screen.
The minimum D; efficiency when estimating all effects for three active factors
was 0.943, the maximum was 1 and the average 0.971. The 2}; 2, 253‘7 3 and 2?‘7 4
designs were blocked using a Hadamard matrix. They all achieved projectivity
P =3, with a minimum Dj-efficiency of 0.917, maximum of 1, and very similar
averages of 0.982 for the 2;‘7 2 and 2?‘7 * designs and 0.981 for the 2?; 3 design.

99

As the average and maximum Djy-efficiencies were quite similar for all five de-
signs, the 2‘6,71 design is preferable if six or fewer factors are to be screened, as it
has a higher minimum Djy-efficiency. In addition, it can be used to screen for up
to five active factors when up to three-factor interactions are to be estimated, thus
enabling discovery of more active factors than the other designs. If seven, eight
or nine factors are to be screened, a slightly higher average is obtained using the
2;‘7 2, 25;‘7 3 or 2?‘7 4 design instead of a subset of columns from the 2}3‘“ design,
but the difference is negligible.

Division into four blocks

The same 32-run designs which were divided into two blocks were also divided
into four blocks. The 2]5~!! design divided into the recommended blocks resulted
in a (32,16,3,4) screen, obtaining a minimum Dj-efficiency of 0.824, a maximum
of 1 and an average of 0.908,. When the 28, ! design was divided into four blocks
and used to screen for three active factors, the average Dy-efficiency was also
0.908, but the minimum was 0.875 and the maximum was 0.949. The correspond-
ing results for dividing the 2;‘7 2 design into four blocks was a minimum of 0.917,
a maximum of 1 and an average of 0.939. The 2?; 3 design obtained a minimum
of 0.853, a maximum of 1 and an average of 0.929. The 2?; 3 divided into four
blocks also obtained a minimum of 0.853 and a maximum of 1, but a slightly
lower average of 0.925.

As the 27\7 2 design obtained the highest average and minimum value, and a max-
imum Djs-efficiency of 1, it is preferable if it is sufficient to screen up to seven
factors. If more than seven factors are to be screened, the smallest design accom-
modating all factors is recommendable, as the 2?; 3 design is slightly better than

the 2?‘7 % design, which is better than the 21187” design.

4.4.3 64 runs, three active factors, two and four blocks

Division into two blocks

The two 64-run designs tested were a 2?,’2 design blocked using columns orthog-
onal to the main effects found by rearranging a Hadamard matrix, and a 2;"%_26
design blocked by utilising the doubling of a 2;5~'! design blocked using the mir-

100

ror image pairs approach. The 2?‘%’26 design can include 32 screening factors, and

the preferred block yielded a minimum Djy-efficiency of 0.917, a maximum of 1,
and an average of 0.987. The 2?,’2 design on the other hand, can only be used to
screen eight factors, and the preferred block yielded a minimum value of 0.965, a
maximum of 1 and an average of 0.992. Thus a higher minimum value is ensured
using the 2?,’2 design, at the cost of being able to screen only eight factors instead
of 32. An advantage of the 2‘8/_2 design is that it enables screening of four active
factors using the same blocks as for three active factors.

Division into four blocks

The 64-run designs which were divided into two blocks were also divided into
four blocks. The 2;77%° design obtained a minimum of 0.913, a maximum of 1
and an average D;-efficiency of 0.960 when three factors were active. The 2?,_2
design obtained a minimum of 0.931, a maximum of 1 and an average of 0.982 for
threee active factors, making it preferable if it is sufficient to screen eight factors.
Another advantage of the 2?,72 design is that some of the preferred blockings in
the case of three active factors also enables estimation of all effects for four active
factors.

101

Chapter

Evaluation of D-efficiencies

Obtaining high D;-efficiencies for as many active factors as possible was the aim
of the results section. But how much is the estimation of effects affected by using
blocks with different D;-efficiencies? To investigate this, an example with reac-
tor data from Box, Hunter and Hunter [22] is used to illustrate the differences in
parameter estimates and standard deviations when using a block with Dy < 1 com-
pared to a block with Dy = 1. The results are presented in section 5.1. In section
5.2, the standard deviations are found and compared when the active factors yield
the lowest and highest Ds-efficiencies for the preferred block for all designs.

5.1 Comparison using reactor data example

Box, Hunter and Hunter [22] includes a widely used example of a 2> factorial
design used to analyse reactor data, and the corresponding 2%,71 design using
ABCDE as the design generator. The focus in this section will be on the 2?,’1
design, whose five factors and corresponding levels can be found in table 5.1. The
response was the percentage which had reacted.

In section 4.1.2.1, it was shown how the 2?,’1 design could be divided into two
blocks resulting in a (16,5,3,2) screen. To check how the results would have been
affected if the reactor experiment had been blocked, one block yielding a Dj-

103

Table 5.1: The factors and levels used in the reactor example.

Letter Variable -1 1

A Feed rate (liters/min) 10 15
B Catalyst (%) 1 2

C Agitation rate (rpm) 100 120
D Temperature (°C) 140 180
E Concentration (%) 3 6

efficiency of 1 and one block yielding a Ds-efficiency of 0.917 when B, D and E
are the active factors were tested. The factor columns and the blocks can be found
in table 5.2. The table also includes the responses. To introduce a block effect, the
response in the block with 1’s was increased by five and the response in the block
with -1’s was decreased by five when analysing the data. The resulting responses
can be found in the columns ”D,=1 response” and ”D;=0.917 response”.

The models tested had the same explanatory variables except for the block effect,
namely B, D, E, BD, BE, DE, BDE. The model including the block with D=1
had the ”D,=1 response”, and the model including the block with D;=0.917 had
the ”"D;=0.917 response”. The resulting parameter estimates and corresponding
standard deviations can be found in table 5.3. As the block with Dg=1 was orthog-
onal to all effects, the parameter estimates were equal to the estimates in the book
(except for the estimate for BDE, which was not included there). All the parame-
ter estimates had the same standard deviation when using the D;=1 block. When
using the block with D;=0.917, the parameter estimates were different from the
original ones for the interactions which were partially confounded with the block,
namely BE and DE. The parameter estimates for these effects were slightly lower
than the original estimates, while the estimated block effect was higher than for
the orthogonal block. As the estimators for the effects of BE an DE are unbiased
despite the partial confounding, this result happened by chance. The standard de-
viations were higher for all parameter estimates when using the Dy = 0.917-block
than when using the Dy = 1 block. This is because the design with the Dy =0.917-
block utilised less information due to the partially confounded columns. For the

104

Table 5.2: The factors, the different blocks being tested and the response from the reactor
example. The columns ”Dg=1 response” and ”"D;=0.917 response” shows the responses
when a block effect is introduced.

B D E D=1 D;=0.917 Response D=1 D=0.917
block block response response

-1 1 1 1 56 61 61
-1 -1 -1 -1 -1 53 48 48
I -1 -1 1 1 63 68 68
1 -1 1 -1 -1 65 60 60
-1 -1 -1 1 1 53 58 58
-1 1 -1 -1 55 50 50
1 -1 1 1 -1 67 72 62
1 -1 -1 -1 1 61 56 66
-1 -1 -1 -1 69 64 64
-1 1 1 1 45 50 50
1 1 1 1 1 78 83 83
1 1 -1 -1 -1 93 88 88
-1 1 -1 1 49 44 54
-1 -1 1 -1 60 65 55
1 1 -1 1 1 95 100 100
1 1 1 -1 -1 82 77 77

105

Table 5.3: Parameter estimates when using blocks with different Ds-efficiencies.

Effect Dg=1 estimate D;=0.917 Estimate Dg=1 Std.dev D =0.917 Std.dev

K 65.2500 65.2500 0.71183 0.74926
B 10.2500 10.2500 0.71183 0.74926
D 6.1250 6.1250 0.71183 0.74926
E -3.1250 -3.1250 0.71183 0.74926
BD 5.3750 5.3750 0.71183 0.74926
BE 0.6250 0.5625 0.71183 0.91765
DE -4.7500 -4.6875 0.71183 0.91765
BDE 0.2500 0.2500 0.71183 0.74926
Block 4.3750 4.8750 0.71183 1.05961

Dy = 0.917-block, interactions orthogonal to the block had equal standard devia-
tions, while interactions with the same degree of confounding with the block, BE
and DE, had the same higher standard deviation. The standard deviation of the
corresponding estimates was 8:2}‘;% = 1.22474 times as large as the standard de-
viation of the estimates for the orthogonal effects. The block effect had the highest
standard deviation, é:giggé = 1.41427 times as large as the standard deviation of

the orthogonal effects.

This ratio can also be found by inspecting (X” X)~!, where X was the design ma-
trix with the Dy = 0.917 block. (X”X)~! can be found in table 5.4. As explained
in section 2.1.1, the covariance matrix of the regression coefficients is given by
02(XTX)~!, and the variance of coefficient nr. i can be found as 6%(X7X); .
The ratio of the standard deviation of coefficient i divided by the standard devi-

Yy ser— —1

ation of coefficient j is thereby CX), (X% . Note that for the es-
\/GZ(XTX);; \/ (X"X);}

timated standard deviations, 62 replaces o2, but as it cancels in the expression,

it does not affect the final result. The ratio of the standard deviation of the par-

tially confounded interactions divided by the standard deviation of the orthogonal

: : v0.09375 _ :
interactions was m—1.22474, as found previously.

106

Table 5.4: (X”X)~! for the example design, with the D;=0.917 block.

K B D E BD BE DE BDE Block

K 0.0625 0 0 0 0 0 0 0 0

B 0 0.0625 0 0 0 0 0 0 0

D 0 0 0.0625 0 0 0 0 0 0

E 0 0 0 0.0625 0 0 0 0 0

BD 0 0 0 0 0.0625 0 0 0 0

BE 0 0 0 0 0 0.0938 -0.0313 0 0.0625
DE 0 0 0 0 0 -0.0313 0.0938 0 -0.0625
BDE | 0 0 0 0 0 0 0 0.0625 0
Block | 0 0 0 0 0 0.0625 -0.0625 0 0.1250

Failing to block when needed

The estimates for BE and DE became slightly altered when a block with which
they were partially confounded was used. But what would have happened to the
estimates if there was a block effect present, but the experimenter had failed to
adjust for it by introducing a blocking column? To test this, the model with
”D,=0.917 response” as response was fitted without block as an explanatory vari-
ables. Then the block effect of size five was no longer accounted for. The esti-
mates for the effects in orthogonal columns were the same as before, but BE and
DE changed. The estimate of BE was now -1.8750, and the estimate of DE was -
2.2500. The total change in estimates was |(0.5625 — (—1.8750))| +|(—4.6875 —
(—2.2500))| = 4.8750, exactly the size of the previously estimated block effect.
Thus when the block is not taken into account, its effect is captured by the partially
confounded interactions instead, making their estimates wrong. The standard de-
viations of all the estimates for the model not including the block effect was 1.406,
almost twice as high as the standard deviations of the estimates for the orthogo-
nal effects for the model including the block effect. Failing to block thereby also
decreases the chances of discovering significant effects.

107

5.2 Evaluation of the preferred blockings for all designs

Having seen in the previous section that partial confounding between interactions
and blocks leads to higher standard deviations, a closer look at the effect of partial
confounding is interesting. For all designs which were tested in section 4, the D;-
efficiency reflects the degree of partial confounding between interaction effects
and blocks, as only blocks which were orthogonal to the main effects columns
were chosen. The preferred blockings yielded different D;-efficiencies for differ-
ent combinations of active factors. The question of interest is then to quantify how
much different D;-efficiencies, and thereby different partial confoundings, affect
the standard deviation of the estimates. To do so, the preferred blockings of all
designs were tested for the combinations of active factors yielding the highest and
lowest Ds-efficiency. The results can be found in table 5.5.

The column ”Max Dy shows the highest obtained Ds-efficiency when using the
preferred block in the corresponding section, while the column "Min D;” shows
the lowest obtained Dj-efficiency. To the right of these columns, "Max eff.” shows
the highest standard deviation of any main or interaction effect i divided by the

max((X7X);")

min((XTX);jl)
for the combinations of active factors yielding the maximum and minimum D;-
efficiencies, respectively.

smallest standard deviation of any main or interaction effect j,

For many blocks, there are interactions with different degrees of partial confound-
ing with the block. The maximum value of the standard deviation of a block effect
is then obtained by the block column that has the strongest partial confounding
with an interaction effect column. ”"Max block” shows the highest standard devi-
ation of any block effect b divided by the smallest standard deviation of any main

. . ./ max((XTX)il) 2 ”) 1)
or interaction effect j, W As for "Max eff.”, the "Max block” to the

right of "Max D, shows the ratio when using the combination yielding the high-
est obtained D;s-efficiency, and the "Max block” to the right of "Min D;” shows
the ratio when using the combination yielding the lowest obtained Ds-efficiency.

108

Table 5.5: The ratios "Max D" =

max((X7X); 1)

min((X7X) ;')
combination yielding the highest and lowest Ds-efficiencies, for all preferred blockings.

and "Max block”=

max((XTX),,!)

min((X7X) ;')

for the

Design Section Proj. Max Max Max Min Dy Max eff. Max block
Dy eff. block

2874 411 (1683,2) 1 1 1 0917 12247 14142
2071 4121 (16532) 1 1 1 0917 12247 14142
2071 4123 (1654143.2) |1 1 1 0.841 14142 2
20671 421 (32,16,3,2) 1 1 1 0917 12247 14142
20671 422 (32,16,3,2) 1 1 1 0917 12247 14142
206710 423 (32,1634) 1 1 1 0.834 1.3904 1.5275
25,1 4241 (32,63%2) 1 1 1 0.943 1.1832 1.2649
2001 4242 (32,64.2) 0.982 1.0408 1.1547 0917 14142 2
25,1 4244 (32,6,55,2) 0963 1.2910 1.6330 0.948 14142 2
25,1 4245 (32,6,53422) 0966 1.2910 1.6330 0.906 2.2361 4
25,1 4251 (32,63%4) 0949 1.0742 1.0742 0875 14771 1.3817
20,1 4252 (32,64.4) 0.924 12910 1.4142 0.826 1.7321 2.2361
25,1 4253 (32,6,53,4) 0.866 1.8257 2.4495 0.866 1.8257 2.4495
2157 4261 (32,73,2) 1 1 1 0917 12247 14142
217 4262 (32,7,34) 1 1 1 0917 12247 14142
283 4263 (32832 1 1 1 0917 12247 14142
287 4264 (32834 1 1 1 0853 12247 14142
20,4 4265 (32932) 1 1 1 0917 12247 14142
2t 4266 (32934 1 1 1 0853 12247 14142
2507 431 (643232) 1 1 1 0917 12247 14142
232726 432 (643234) 1 1 1 0913 1.1704 12163
2872 4331 (64.8,3%2) 1 1 1 0.965 1.1547 1.1547
2872 4332 (64.84,2) 1 1 1 0.958 1.2247 1.4142
2872 4333 (64.83%4) 1 1 1 0.931 1.1547 1.1547
2872 4334 (64.84.4) 1 1 1 0917 12247 14142
2872 4335 (64.8,3%8) 1 1 1 0.853 12247 14142
2872 4336 (64.8,4.8) 0917 1.2247 1.4142 0.808 1.5492 1.5492

109

The ratios "Max eff.” and "Max block” for the combination yielding the lowest
Ds-efficiency, as shown in column eight and nine, can be interpreted as the mag-
nitude of the increase in standard deviation for the block and the interaction with
the strongest partial confounding. For example considering the 2?; 4 design with
a minimum Djs-efficiency of 0.917, the standard deviation was 22% higher for
the strongest partially confounded interaction than for the orthogonal ones. An
increase of 22% makes the confidence interval of the parameter estimate 22%
wider. Clearly, checking the maximum ratio of the standard deviations is useful
when being sure to determine the significant interactions is important.

An interesting observation is that the highest "Max eff.” for the 2‘6,71 design when
using it as a (32,6,5342,2) screen was 2.236, thus the standard deviation of the
interaction with the strongest partial confounding was 123.6% higher than the
standard deviation of the orthogonal ones. This is a surprisingly large difference,
as the minimum Dj-efficiency was 0.906, just below the D;-efficiency which lead
to a 22% increase for the 2%7 4 design. The reason is that the (32,6,53.,,2) screen
has a lot more columns. Thus the effect of one strongly partially confounded
effect on the overall Ds-efficiency is not very large, but the ability to determine
whether the effect is significant is nevertheless very limited due to the increased
standard deviation. Hence it might be useful to investigate how much the standard
deviations increases when using blocks which are partially confounded with in-
teraction effects even when the D;s-efficiency is high, particularly for large designs.

Despite the Ds-efficiency decreasing with the number and strength of partial con-
foundings between interactions and blocks, there was no one-to-one correspon-
dence between the Ds-efficiency and the standard deviation ratios. The standard
deviation ratios were for example equal for some designs for the combination of
active factors yielding a Ds-efficiency of 0.917, among others the 2}3‘7 4 design used
as a (16,8,3,2) screen, the 2113_“ design used as a (32,16,3,2) screen and the 2;‘72
design used as a (32,7,3,2) screen. For these designs, the (XTX) matrices had
the same structure: Two, and only two, columns were partially confounded with
the block column and had a dot product with the block column whose absolute
value was half the value of the dot product of the block with itself. Dy = 0.917
was however also obtained for the 2‘6,71 design when used as a (32,6,4,2) screen.

110

This design did not yield the same standard deviation ratios as the others, as it had
several interactions with weak partial confounding with the block.

In addition to the existence of designs with different standard deviation ratios
yielding the same minimum Djs-efficiency, there were also designs with the same
standard deviation ratios and different minimum D;-efficiencies. The 2‘6,;1 design
did for example have a "Max eff.” of 1.4142 for the minimum Ds-combination
both when estimating all effects for four active factors and when estimating up
to three-factor interactions for five active factors. The minimum Ds-efficiencies
were however 0.917 and 0.948, respectively.

The overall impression after evaluating the standard deviation ratios for all de-
signs is that the D-efficiency is a good measure of the efficiency with which the
parameter estimates are found. Its limitation lies in not indicating whether stan-
dard deviations become very large for the partially confounded interactions. This
highlights the importance of choosing blocks which are orthogonal to the main
effects, as their estimates are then guaranteed the lowest possible standard devia-
tion. The experimenter is recommended to check the (X X)~! matrix herself if
being able to determine the significance of all interactions is important.

111

Chapter

Concluding remarks

In this thesis, the main idea was to allow for partial confounding between blocks
and interaction effects to possibly achieve better projectivity properties than when
using orthogonal blocks based on confounding of interactions. The methods
used to find candidate blocks were utilising mirror image pairs and rearranging
Hadamard matrices. These were tested on a number of 16-, and 32- and 64-run
designs which have good projectivity properties and accommodate a high number
of screening factors. Both blocking approaches were found to give better projec-
tivity properties for the blocked designs than the confounding approach, without
substantially decreasing the Ds-efficiencies.

Utilising mirror image pairs proved to be an interesting approach as the blocks
made up of mirror image pairs amounted for only a small fraction of all the possi-
ble blocks for the different run sizes, but many of them nevertheless yielded good
projectivity properties and D;-efficiencies for the designs tested. The method is
easily scaled for designs of any run size, as long as the designs consist of mirror
image pairs. The number of candidate blocks does however increase substantially
with the run size, so testing all possible blocks based on mirror image pairs is
not feasible for large designs. Then one might consider using the approach of
doubling a smaller design which has been divided into blocks, and using them
to define the new blocks. A disadvantage of basing the division into blocks on

113

mirror image pairs is that it limits the number of screening factors which may be
included in the design, as all design generators must have an odd number of letters.

Rearranging Hadamard matrices imposes no such limitation on the number of
screening factors, and also yielded good projectivity properties and Ds-efficiencies
for the designs tested. An advantage of rearranging Hadamard matrices is that the
number of candidate blocks generated from one matrix is relatively low, yet most
of the candidate blocks tested yielded the desired projectivity properties and high
Ds-efficiences. The disadvantage of this method is that the number of possible
ways to rearrange a Hadamard matrix strongly increases with its size, making it
impossible to know whether the best possible block has been found. As some of
the matrices tested were not arranged into the desired design even when testing
different ways of ordering the rows for a long time, it would have been interest-
ing to investigate which Hadamard matrices can be rearranged to match different
designs, and if the Hadamard matrix columns used as design columns could have
been chosen in a more planned manner. These questions are particularly impor-
tant for large designs, as the number of Hadamard matrices drastically increases
for order 32 and above. Note also that the Hadamard matrix approach was only
tested when the designs did not consist of mirror image pairs. Another interest-
ing issue is therefore whether rearranging Hadamard matrices would have yielded
better results for the designs which were blocked using mirror image pairs.

After testing the blocking methods, the preferred blocks were evaluated in terms
of their impact on the standard deviations of the partially confounded effects. The
most interesting observation was that the amount by which the standard devia-
tions increased could not be found merely by considering the Dy-efficiency. This
was particularly relevant for one of the large designs when more than three fac-
tors were allowed to be active, as the total number of screening factor in that case
masked the effect of a strongly partially confounded effect on the Ds-efficiency.
A general advise when choosing blocks is therefore to investigate both the D;-
efficiencies and the diagonal of (X”X)~! when obtaining low standard deviations
for the estimated effects is important for the screening. A question for further re-
search could be which blocks to prefer if an upper bound is defined for the increase
in the standard deviations of the estimated effects.

114

Bibliography

[1]

[4]

[5]
[6]

[7]

Bodmer, W., “RA Fisher, statistician and geneticist extraordinary: a personal
view,” International Journal of Epidemiology, vol. 32, no. 6, pp. 938-942,
2003.

Fisher, R., The Design of Experiments. 1935. Edinburgh: Oliver and Boyd,
1935.

Box, G., “An Accidental Statistician,” 6 2010, speech held at the
50th anniversay of the Statistics Department of the University of
Wisconsin. [Online]. Available: http://www.stat.wisc.edu/~yandell/stat/
50-year/Box_George.html

Box, G. and Tyssedal, J., “Projective Properties of Certain Orthogonal Ar-
rays,” Biometrika, vol. 83, no. 4, pp. 950-955, 1996.

Tyssedal, J., “Design of Experiments,” NTNU.
Montgomery, D., Design and Analysis of Experiments, 7th edition.

Hamada, M. and Wu, J., Planning, Analysis, and Parameter Design Opti-
mization. Wiley, 2000.

115

http://www.stat.wisc.edu/~yandell/stat/50-year/Box_George.html
http://www.stat.wisc.edu/~yandell/stat/50-year/Box_George.html

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Evangelaras, H. and Koukouvinos, C., “On generalized projectivity of two-
level screening designs,” Statistics & Probability Letters, vol. 68, no. 4, pp.
429-434, 2004.

Hussain, S. and Tyssedal, J., “Projection Properties of Blocked Non-regular
Two-level Designs,” Quality and Reliability Engineering International,
vol. 32, no. §, pp. 3011-3021.

Tyssedal, J., “Projectivity in Experimental Designs,” Encyclopedia of Statis-
tics in Quality and Reliability, 2008.

Samset, O. and Tyssedal, J., “Two-Level Designs with Good Projection
Properties,” 1999.

Atkinson, A., Donev, A. and Tobias, R., Optimum Experimental Designs,
with SAS. Oxford Statistical Science Series, 2007.

Gupta, A., “Generalized Variance,” Encyclopedia of Statistical Sciences,
2006.

Bibby, J., Kent, J. and Mardia, K., Multivariate Analysis. Academic press,
1979.

Jacroux, M., “Blocking in two-level non-regular fractional factorial designs,”
Journal of Statistical Planning and Inference, vol. 139, no. 3, pp. 1215—
1220, 20009.

Kllogjeri, A. and Kllogjeri, P, “Partition of a Set with N Elements into K
Blocks with Number of Elements in Accordance with the Composition of
Number N As a Sum of Any K Natural Summands (Another Representation
of Stirling Number),” International Journal of Advanced Computing, vol. 46,
pp- 2051-845, 08 2013.

Cameron, P., “Hadamard matrices,” http://www.maths.qmul.ac.uk/
~Isoicher/designtheory.org/library/encyc/topics/had.pdf, accessed: 2018-
10-05.

116

http://www.maths.qmul.ac.uk/~lsoicher/designtheory.org/library/encyc/topics/had.pdf
http://www.maths.qmul.ac.uk/~lsoicher/designtheory.org/library/encyc/topics/had.pdf

[18] Hadi, K. and Tayfeh-Rezaie, B., “Hadamard Matrices of Order 32,” Journal
of Combinatorial Designs, vol. 21, no. 5, pp. 212-221.

[19] Sloane, N., “A Library of Hadamard Matrices,” http://neilsloane.com/
hadamard/, accessed: 2018-10-05.

[20] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2018. [Online].
Available: https://www.R-project.org/

[21] Box, G. and Tyssedal, J, “Sixteen Run Designs of High Projectivity for Fac-
tor Screening,” Communications in Statistics - Simulation and Computation,
vol. 30, no. 2, pp. 217-228, 2001.

[22] Box, G., Hunter, J. and Hunter, W., Statistics for experimenters. John Wiley
Sons, 1978.

117

http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
https://www.R-project.org/

Appendix A

Table 6.1: Blocks 1-14 of the candidates for blocking the 2?; 4 design in section 4.1.1.

b12 b13 bl4

b2 b3 b4 b5 b6 b7 b8 b9 b10 bll

bl

118

Table 6.2: Blocks 15-28 of the candidates for blocking the 25, # design in section 4.1.1.

b22 b23 b24 b25 b26 bH27 b28

b15 b16 b17 b18 b19 bH20 D21

119

Table 6.3: The submatrix B1 used to define the design matrix in section 4.3.1.

120

Table 6.4: The submatrix B2 used to define the design matrix in section 4.3.1.

121

Table 6.5: Upper left submatrix of the design matrix in section 4.3.1 arranged in the

preferred order.

K L M N O P

J

A B C D E F G H 1

Row

10
11

12
13
14
15
16
17
18
19
20
21

-1

-1

-1

-1

22
23

24
25

-1

-1

26
27

28

-1

29 -1
30 -1
31 -

32

122

Table 6.6: Lower left submatrix of the design matrix in section 4.3.1 arranged in the

preferred order.

J KX L M N O P

G

F

Row A B C D E

33

34
33

36
37
38

-1

-1

-1

-1
-1

39
40
41

42

43

44

46

-1

47

48

-1

49

50
51

52

54
55

56

58

-1

59
60

-1

62

64

123

Table 6.7: Upper right submatrix of the design matrix in section 4.3.1 arranged in the

preferred order.

J2 K2 L2 M2 N2 02 P2

12

E2 F2 G2 H2

D2

Row A2 B2 C2

10

11

12

14
15
16
17

19

21

22

23

25

26
27

29

30
31

32

124

Table 6.8: Lower right submatrix of the design matrix in section 4.3.1 arranged in the

preferred order.

J2. K2 12 M2 N2 02 P2

H2 12

G2

D2 E2 F2

B2 C2

Row A2
33
34
35

37
38
39

11

13
14
15
16
17
18
19
20
21

22
23

24

26
27

28

30
31

32

125

Table 6.9: Upper left submatrix of the design matrix in section 4.3.2 arranged in the

preferred order.

K L M N O P

J

A B C D E F G H 1

Row

-1

-1

10
11

12
13
14
15
16

-1

18
19
20
21

-1
-1

-1

22
23

24
25

-1
-1

-1

26

28

-1

29
30
31

32

126

Table 6.10: Lower left submatrix of the design matrix in section 4.3.2 arranged in the

preferred order.

J KX L M N O P

G

F

Row A B C D E

33

34
35

36 -1 -1

37
38

-1

39
40
41

42

43

44

46

-1

47

49

50
51

52

54
55

56 -1 -1

57
58

-1

59
60

62
63

-1 -1

64

127

Table 6.11: Upper right submatrix of the design matrix in section 4.3.2 arranged in the

preferred order.

E2 F2 G2 H2 12 J2 K2 L2 M2 N2 O2 P2

D2

Row A2 B2 C2

10

11

12
13
14

16
17
18
19
20

22

23

24
25

28

29

30
31

32

128

Table 6.12: Lower right submatrix of the design matrix in section 4.3.2 arranged in the

preferred order.

J2. K2 12 M2 N2 02 P2

12

H2

G2

D2 E2 F2

B2 C2

Row A2
33
34
35

37
38
39
40

4

43

45

46

47

48

50
51

53
54

55

56
57

58

59
60

62
63

129

Table 6.13: D;-efficiencies when estimating all interactions for four active factors when
using the preferred division into two blocks for the 2?,;1 design in section 4.2.4.2.

Active factors Ds-efficiency

ABCD 0.982
ABCE 0.958
ABCF 0.958
ABDE 0.958
ABDF 0.958
ABEF 0.982
ACDE 0.917
ACDF 0.982
ACEF 0.958
ADEF 0.958
BCDE 0.917
BCDF 0.982
BCEF 0.958
BDEF 0.958
CDEF 0.958

130

Table 6.14: D;-efficiencies for the blocks in table 4.21 for all combinations of four active
factors for the 2‘6,71 design in section 4.2.5.2.

Active factors Dy-efficiency

ABCD 0.924
ABCE 0.890
ABCF 0.871
ABDE 0.826
ABDF 0.862
ABEF 0.862
ACDE 0.890
ACDF 0.853
ACEF 0.853
ADEF 0.862
BCDE 0.826
BCDF 0.890
BCEF 0.924
BDEF 0.826
CDEF 0.890

131

Table 6.15: First 16 columns of the matrix M in section 4.2.6

9 10 11 12 13 14 15 16

8

1

Row

11

13

17

21

25

29

31

132

Table 6.16: Last 16 columns of the matrix M in section 4.2.6

22 23 24 25 26 27 28 29 30 31 32

19 20 21

18

17

Row

10

11

12

13
14

15
16

18
19
20

-1

-1
-1

-1

22

-1

24

-1

26

28

-1 -1

-1

29
30

-1

32

133

Table 6.17: First 16 columns of the matrix M2 in section 4.2.6

9 10 11 12 13 14 15 16

8

1

Row

11

13

17

21

25

29

31

134

Table 6.18: Last 16 columns of the matrix M2 in section 4.2.6

22 23 24 25 26 27 28 29 30 31 32

19 20 21

18

17

Row

10

11

12

13
14

15
16

18
19
20

-1

-1
-1

-1

22

-1

24

-1

26

28

-1 -1

-1

29
30

-1

32

135

Table 6.19: First 16 columns of the matrix M3 in section 4.2.6

9 10 11 12 13 14 15 16

8

1

Row

10

11

17

21

25

26

136

Table 6.20: Last 16 columns of the matrix M3 in section 4.2.6

22 23 24 25 26 27 28 29 30 31 32

19 20 21

18

17

Row

10

11

12

13
14

15
16

18
19
20

-1

-1
-1

-1

22

-1

24

-1 -1

26

-1
-1

29
30
31

-1

32

137

Table 6.21: The first 32 rows of the 2%,*2 design and the preferred blocks from section

4.3.3.

Row A B C D E F G H bl b2 b3 b4 b5 b6 b7 b8 b9 b10 b1l D12

-1 -1 1 -1

1
1
-1

1
-1
-1

1
-1
-1
-1
-1

1
-1
-1
-1

1
-1
-1

1

1

1-1-1-1-1-1-1-1

-1

I -1-1-1-1-1-1
1

2
3
4
5

141 -1

-1

1-1-1-1-1-1-1

I-1-1-1-1

1
-1

1
-1

1
1
1
1
-1

1
1
-1
-1
1
1
-1
-1
1
1

1

-1

1

I-1-1-1-1
1 -1 -1 -1
1 -1-1-1

-1 -1
1
-1

1
1

-1

1
1
9 -1 -1 -1

10

1
1
1

1
-1

-1
-1

I -1-1-1-1

-1
-1

1 -1
-1

-1

-1
-1

1

1-1-1-1

1-1-1
I -1 -1

-1

1

1
1

1 -1-1

1
1

1
1

-1 -1

1
-1

11 -1
12
13
14
15
16

1

1
1
-1
-1

1
-1

-1
-1
-1
-1

I -1-1-1

1 -1 -1

-1 -1

1

1

1

1
1
1
1

17 -1 -1 -1 -1

1
1

r-1-1-1-1
1-1-1-1-1

1 -1 -1

-1

1

1

-1 1-1-111-1-111-1-1
1
1
-1

1

1
1
1
1

1
1
-1

I -1 -1
I -1 -1

1 -1-1-1
1

18

1 -1 -1 -1 -1

1
-1

1
-1
-1

1 -1 -1
1 -1-1

19 -1
20

1

-1

1

I -1 -1

1

1

I -1-1-1

-1

1
1
1
1

21 -1 -1
-1 -1 -1

22
23

-1

1
-1

-1
-1
-1

-1
-1

1
-1

1
-1
-1
-1

1

1
-1
-1

1
1
-1

1
1
-1

1
-1
-1

-1
-1
-1

I -1-1-1 -1
I -1-1-1
1

-1
1
1

24
25

1
-1

11

-1

1 -1-1

26

1
1

1
-1
-1
-1

-1
-1

1 -1-1-1

1

1
1
1
1

-1

28

-1
-1
1

1 -1

-1
-1

1 -1 1 -1

1
1

29 -1 -1
30

1 -1 -1

1
-1

1
1

I -1 -1

1 -1-1

-1

1

1

1

31 -1
32

138

Table 6.22: The last 32 rows of the 2?,*2 design and the preferred block from section

4.3.3.

Row A B C D EF G H bl b2 b3 b4 b5 b6 b7 b8 b9 b10 b1l b12

1
1
-1
1

-1
1
-1
-1
1
-1

1 -1

33 -1 -1 -1 -1 -1 1

-1 1 1 -1 -1 -1
1 1 -1 -1

1

-1
1

1
1

34 1-1-1-1-11-1

35
36

I -1-1-11-1
I -1-1-11

-1

1 -1
1-1-11-1-1

I -1-11

1

37 -1 -1

1
1

1
1

1 -1

38
39 -1

-1
-1

-1
-1

1
-1

-1
-1

1
1

-1
1

-1

1
-1
-1

1
1
1
-1

1-1-11

1
1

-1

1-1-11-1-1

1
41 -1 -1 -1

40
42

1 -11-1-1

1 -11

1 -1

1

1

1

1-1-1

-1
-1
1
1
1

1

1

43 -1
44

-1
-1

1
-1

-1
-1

-1
-1

1
-1

1
-1
-1

-1
-1
-1

1
-1

1 -11-1-1

1 -11

1

-1

-1

1 -1

45 -1 -1

1
1

1
-1

1
1

1 -11-1

46 1 -1

-1 1 -1

-1

1 1 -11-1

47 -1
48

-1 1 -1 -1 1 -1

1
-1

I 1
1
-1

1

1

1

49 -1 -1 -1 -1

11-1-1
11-1-1

1

50 1 -1-1-1

51 -1
52

-1 -1
-1

1

1

I -1 -1
1 -1 -1

-1

-1

1

1

1

1r1-11-1-1-1-1
1 1 -1 -1
1 1

-1
-1
-1
-1

1
1
1
1

53 -1 -1

1
1

1 -1

54
55 -1

-1

1
-1
-1
-1

-1
-1

-1
-1
-1

1
-1

1
-1
1
1

-1

-1

-1
-1

1
-1

-1

1

-1
-1
-1

1
1

1 11-1
-1 -1 -1
1 -1

56
57
58

-1
-1

1
-1

1
1

1
1

11-1
1

1
1

1

1

1-1-1

-1
-1
1
1
1

1

59 -1
60

-1 1

1

I1-1
1

1
1
1
1

1 -1 -1 -1 -1

1
-1

1
-1

61 -1 -1

-1
1

1
-1

11-1-1
11-1-1

62 1 -1

I 1 -1 -1

-1

1

1

63 -1
64

139

Table 6.23: The first 32 rows of the columns used to define the preferred division into

four blocks for the 282 design in sections 4.3.3.3 and 4.3.3.4.

Row 13 14 15 16 26 33 36 37 40 47 48 59 60

-1 1 -1

-1
-1

1
1
-1

1

-1
-1

-1

-1

1
1

1

-1 -1 1 -1 -1

-1

3 -1

-1
-1

1 -1 -1 1 -1 -1
-1 -1
1

1
1

1

-1
-1
-1
-1

-1
-1
-1
-1

-1
1
1

-1

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21

-1

I -1 -1 1
-1

-1

1
-1

1 1-1-111-1-11-1-1

-1

-1 -1-1-1 111 1-1-1-1-1

-1

-1 -1 -1 -1

1
1
-1

1
-1
1
-1
1
-1
1
-1
1
1
-1
1
-1
1
-1

-1

1

1

-1

-1
-1

-1

-1
-1
-1

1
-1
-1
-1

-1
-1
-1

1
-1

-1
1
-1
-1
1

1
-1
-1
-1

1
1
-1

-1

-1
-1
1
1
1

1
-1

1

-1
-1

-1
-1

1
-1

22

1
-1
-1

23 -1
24

1
-1

-1

-1
-1
-1

-1

1

-1

25 -1

-1
-1

-1 1
-1

26
27

1

-1 -1 1 -1

-1

1

1
-1

28

-1
-1

101 -1 -1 1
-1 -1 -1

1
1

-1
-1

29
30

-1

1

1

-1 -1 1 -1 -1

1

1 -1

-1

32

140

Table 6.24: The last 32 rows of the columns used to define the preferred division into

four blocks for the 252 design in sections 4.3.3.3 and 4.3.3.4.

Row 13 14 15 16 26 33 36 37 40 47 48 59 60

-1

1
-1

-1

1
-1

1
-1

1
1

1
-1

-1

1
-1
1
-1
1
-1
1
-1
-1
1

33
34
35
36
37
38
39
40
41

1

1
-1

-1 -1
-1

1
-1

1
-1
-1

1

1

1
-1

-1 -1

1
-1
1

-1
1
1

1
-1

-1
-1

1
1
-1
-1
-1
-1

1
-1

-1 -1 1 -1

-1

1
1
1

-1

-1

-1

1
1

-1
-1
-1

-1

42

1 -1 -
1 -1

1

1
-1

43

-1

1

1

-1 -1

1
-1
1

1
-1
-1

44
45

-1

-1

1

1
-1

-1 1 1 -1 -1 -1

1

46

-1 -1-1-1-1-1-111-1-1
-1 -1 -1 -1 -1 -1 -1

1

1

48

1
-1

1
1
-1
-1

49

1
-1
-1

-1

50
51

-1 1 1-1-1-1 1 -1

1
-1

-1

52
53
54
55
56
57

-1 -1

-1

1
1

-1 -1

1

-1
-1
-1

1

1
-1

-1

1
-1
-1
-1

1
-1
-1
-1

-1

-1

1
-1
-1

1
-1
-1

-1
-1

-1
-1

1
-1

-1

1
-1
-1
-1
-1

1

1
-1

-1
-1

-1
-1

-1

-1
-1

1 1 -1
-1 -1 -1

-1
-1

1
-1

59 -1 1 1 -1 -1 1
60 -1
61 -1

-1

-1

1
-1

1
-1

-1
-1

-1
-1
1

-1

1 -1 -1

1

1

1

62 1
63 -1

1

64

141

Table 6.25: The first 32 rows of the columns used to define the preferred division into

eight blocks for the 2‘8,_2 design in sections 4.3.3.5 and 4.3.3.6.

Row 18 20 26 28 51 59

1 -1

1

-1

-1
-1

1411
-1

1

5

1

7

-1 -1

1

11

1 -1 -1 -1

1

12

-1 -1

14

-1
1

1
-1

1
1

-1
-1

16
17
18
19

-1

-1

1 -1

-1

-1 -1 -1 -1

21

-1

-1
-1

-1
-1
-1
-1

23 -1 -1 -1

24
25

1
1
-1

1
1
-1
-1
-1

-1
-1
-1
-1
-1

26
27

-1

-1
-1
-1

-1
-1
1

-1
-1
-1

28

1
1

1
-1

29

-1

30

-1 1 -1

32

142

Table 6.26: The last 32 rows of the columns used to define the preferred division into

eight blocks for the 23‘2 design in sections 4.3.3.3 and 4.3.3.4.

Row 18 20 26 28 51 59

1
-1

1 -1
-1

-1

33

-1

34

-1

-1
-1
-1
-1

-1
-1
-1
-1
-1
-1

36 -1 -1
-1

37
38

1
1
-1

1
-1

-1

1
1
1
1

1
-1
-1

39
40
41

-1

-1

1

-1

43

1
-1
-1
-1
-1

44
45

-1
-1

-1

-1

1 -1
-1

1
-1
-1

46

47

48

-1 -1
-1

1
-1

49

1 1 -1

50
51

-1
-1

1
1
1
1

1
-1
-1
-1

-1

54
55

-1

-1

1
-1
-1

56
57

-1
-1

-1
-1

1
1
-1

1
-1
-1

59 -1

60
61

-1

1
1

-1 -1

1

62

64

143

Appendix B: R code

Code for section 4.1.1: Blocking a 2?; * design using MIP

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=2xfactors)
for(i in 1: (factors)) {
vect=numeric (2°1)
vect [1: (27 (i-1))]1=-1
vect [((27(1i-1))+1):(271)]1=1
design[,i]=rep (vect,times=(n/(271)))
}
int=factors-1
combins=combn (factors, int)
for(j in l:ncol (combins)) {
design(, (4+7)]=design|[,combins[1l, j]]*design[, combins[2, j]]x*
design|, combins[3, j]]
}

design

#fac=#number of factors in design

fac=4

#fac2=#number of factors in design, w. combos
fac2=2xfac

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("a","B","C","D","E","F","G", "H")

144

#Function which takes in n, the number of columns,
#and m, the number of ones.
#It makes all possible rows with m ones and n-m zeroes
#It is later used to make all possible blocks
combinator <- function(n, m) {
index <- combn (seq_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) x n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix(result, ncol = n, nrow = nrow(index), byrow = TRUE)

#Generate the blocks
perm=t (combinator (8, 4))
perml=2+perm([,1:35]-1

#num=number of possible divisions into two blocks
num=ncol (combn (m, (m/2))) /2

#Generate all possible blocks
allblocks=matrix (data=NA, nrow=n, ncol=num)
#colnames (blocks)<-cbind ("bl", "b2", "b3")
for(i in 1:num) {
for(j in 1l:m) {
allblocks[j,i]=perml[j, 1]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1i]

#Function which generates all possible interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
#Make column for constant
inter=t (t (rep(l,nrow(mat))))
resc=matrix (data=NA, nrow=nrow (mat),ncol=92)
colnam=numeric (92)
for(i in l:ncol (mat)) {

145

resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1i]
}
for(j in l:ncol (interact2)) {
resc|, j+8]=resc[,interact2[1l, j]]l+*resc[,interact2[2, j]]
colnam[j+8]=(paste(colnam[interact2[1l, j]],colnam[interact2[2,
311,
collapse = "))
}
for(j in l:ncol (interact3)) {
resc[, j+8+ncol (interact2)]=resc|, interact3[1, J]]~*
resc|,interact3[2,j]]*resc[,interact3[3, j]]
colnam[j+8+ncol (interact?2)]=(paste(colnam[interact3[1, 11,
colnam[interact3([2,j]],colnam[interact3[3,j]], collapse = '’)
)
}
colnames (resc)=colnam
resc

#test: All possible interactions from the design

test=Generator?2 (design)

#test2=cbind (test,allblocks)

#testinter: The two-factor interactions

testinter=test[, 9:36]

#unitestinter: The unique two-factor interactions

unitestinter=unique (testinter, MARGIN=2)

#Indexes of the blocks which are equal to two-factor interactions

badindex=which (duplicated (cbind (unitestinter,allblocks),MARGIN=2)
)

-ncol (unitestinter)

#Removes the blocks found to be equal with two-factor
interactions
goodblocks=allblocks [, -badindex]

#Combins: Vector with interesting combinations
#Let int be the number of factors of interest
int=3

combins=combn (fac2, int)

146

#Generate design matrix identity column and all the interaction
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
#The two- and three-factor interactions
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
#Make column for constant
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (7)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact?2)) {
res=cbind(res, resl[,interact2[1l, jl]l+*resl[,interact2[2,J11)
colnam[j+t4]=(paste(colnam[l+interact2[1, 311,
colnam[l+interact2(2, 311,
collapse = ""))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1, jl]l*resl[,interact3[2, 1]
xresl[,interact3[3,311)
colnam[j+4+ncol (interact2)]=(paste (colnam[l+interact3[1, j]]
colnam[l+interact3[2,j]],colnam[l+interact3[3,J]], collapse
")
}
colnames (res)=colnam
res

#Function to calculate Ds-efficiency when there is one block
Ds=function (comb) {

b=ncol (comb)

s=b-1

n=nrow (comb)

S

I4

147

o 9

detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n

Ds

#Does different blocks yield different Ds
#for the different combinations of active factors?
#num: The number of blocks tested
num=ncol (goodblocks)
#resultsl: vector with all Ds-efficiences obtained
#resultsl=numeric (num*ncol (combins))
resultsl=matrix(nrow = ncol (combins),ncol=num)
#Iterating over combinations
for(i in 1l:ncol (combins)) {

#Iterating over blocks

for(j in 1:num) {

matrise=cbind (combGenerator (design, combins([,i]),goodblocks](, j
1)

resultsl[i, j]=Ds (matrise)

}
min (resultsl)
max (resultsl)

#Which unique Ds-values are obtained?
uni=unique (as.vector (resultsl))
#Print the values and how many blocks obtained
#them for each combination
for(i in l:length(uni)) {
print (unifi])
print (unique ((rowSums (abs (resultsl-uni[i])<0.000001))))
}

#Finding the Ds-values for each block, testing all combinations
#results2=numeric (num*ncol (combins))
results2=matrix (nrow = num,ncol=ncol (combins))
#Iterating over combinations
for(i in 1:num) {
#Iterating over blocks
for(j in l:ncol (combins)) {

148

matrise=cbind (combGenerator (design, combins|[, j]),goodblocks|[, i
1)
results2([i, j]=Ds (matrise)
}
}

min (results?)
max (results?)

#Print the values and how many combinations
#for which each block obtained them
for(i in l:length(uni)) {
print (uni[i])
print (unique ((rowSums (abs (results2-uni[i])<0.000001))))

#Print the unique average Ds-values
print (unique (rowMeans (results2)))

#The preferred block
prefblock=goodblocks [, 1]

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (design, combins|[,1]),prefblock)

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)]1)) /sqrt (min(diagonal[l: (len-1)
1)))

print (sgrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

matrise0917=cbind (combGenerator (design, combins|[,2]),prefblock)

diagonal2=diag(solve (t (matrise0917) %$x%matrise0917))

print (sgrt (max (diagonal2[l: (len-1)]))/sqgrt (min(diagonal2[1l: (len
-11)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.1.2.1: Dividing a 2?,_1 design into two blocks using
HM, three active factors

149

#The factors in the design

A=c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
rp2=c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1)
c=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
p=c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
Hi=c(-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1)

#fac=#number of factors in design

fac=5

#n=number of rows in total design

n=16

design=cbind(A,P2,C,D,H)

colnames (design)<-cbind("aA","p2","C","D","H")

#The blocks suggested in the article

Jj2=c(1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1)
k2=c(-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1)
2=c¢(-1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1)
v2=c(-1,-1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1)

originalblocks=unique (cbind(J2,K2,L2,M2),MARGIN=2)
#Checking that they are valid blocks
colSums (originalblocks)

#Function which takes in n, the number of columns,
#and m, the number of ones.
#It makes all possible rows with m ones and n-m zeroes
#It is later used to make all possible blocks
combinator <- function(n, m) {
index <- combn (seq_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) x n
result <- rep(0, nrow(index) =x n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

#Make the blocks

perm=t (combinator (16, 8))
perml=2+perm-1
blocks=perml

150

#makes all effects up to three-factor interactions
Generator2=function (mat) {

interact2=combn (ncol (mat), 2)

interact3=combn (ncol (mat), 3)

resc=matrix (data=NA, nrow=nrow (mat),ncol=

(ncol (mat) +ncol (interact?2) +ncol (interact3)))

colnam=numeric ((ncol (mat)+ncol (interact?2)+ncol (interact3)))

for(i in l:ncol (mat)) {
resc[,i]=mat[,i]
colnam[i]=colnames (mat) [i]

}

for(j in l:ncol (interact2)) {
resc[, j+tncol (mat)]=resc[,interact2[1, 3]]+
resc[,interact2[2,3]]
colnam[j+tncol (mat)]=(paste (colnam[interact2[1l,]jl],
colnam[interact2([2, j]], collapse = ""))

}

for(j in l:ncol (interact3)) {
resc[, j+tncol (mat) +ncol (interact2)]=resc|[, interact3[1, jl1~*
resc[,interact3[2, j]]*resc[,interact3[3, jl]
colnam[j+tncol (mat) +ncol (interact2)]=
(paste (colnam[interact3[1, 311,
colnam[interact3([2, j]],colnam[interact3([3, j]], collapse = '")

)

}

colnames (resc)=colnam

resc

#Make these, and use to check for orthogonality
test=Generator?2 (design)
sums=numeric (ncol (blocks))

#Choose the blocks which are orthogonal on the design columns
#And have the least amount of partial confounding
for(r in l:ncol (blocks)) {
sums [r]=sum(t (blocks [, r]%$+x%design==0))
}
indeks=which ((abs (sums-5)<0.00001))
blocks=blocks [, c(indeks)]

151

testinter=test[,6:15]

testsum=t (testinter) %$*%blocks
totalsum=colSums (abs (testsum)==8)
indekser=which (totalsum==4)
blocks=blocks [, c(indekser)]

#Remove blocks that are equal (signs switched)
nullern=numeric (60)
for(t in 1:(0.5+ncol (blocks))) {
lookat=blocks|[, t]
rest=blocks [, (t+1) :ncol (blocks)]
print (lookat)
rest=rest+lookat
if (any (colSums (abs (rest))==0)==TRUE) {
nullern[t]=(t+which (colSums (abs (rest))==0))

}
blocks=blocks[,-nullern]

#new number of blocks
num=ncol (blocks)
#Function to make the design matrix
combGeneratorBasic=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep (l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (7)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]]l*resl[,interact2[2,]J11)
colnam[j+length (interest)+1]=(paste(colnam[l+interact2(1,3]],
colnam[l+interact2[2,j]], collapse = "'))
}

for(j in l:ncol (interact3)) {

152

res=cbind(res, resl[,interact3[1, j]l]*resl[,interact3[2,J]]~*

resl[,interact3[3,73]1])

colnam[j+l+length (interest) +ncol (interact2)]=

colnam[l+interact3[1,3]],
colnam[l+interact3([2, 311,
colnam[l+interact3([3,jl], collapse = ''))
}
colnames (res)=colnam
res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b])%$*%Scomb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Vector with interesting combinations
combins=combn (5, 3)
results=matrix (nrow = num,ncol = ncol (combins))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterer over combinations
for(j in l:ncol (combins)) {
matrise=cbind (combGeneratorBasic (design,
combins|[, j]),blocks[,1])
results([i, j]=Ds (matrise)

}

#Which unique Ds-values are obtained?
uni=unique (as.vector (results))

#Print the values and how many blocks obtained them for each

combination

153

for(i in l:length(uni)) {
print (unifi])
print (unique ((colSums (abs (results-uni[i])<0.000001))))

#Print the values and how many combinations for which
#each block obtained them
for(i in l:length(uni)) {

print (uni[i])

print (unique ((rowSums (abs (results-uni[i])<0.000001))))

#Print the unique average Ds-values
print (unique (rowMeans (results)))

#The preferred block
prefblock=blocks[, 2]

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGeneratorBasic (design,combins([,1]),prefblock)

diagonal=diag(solve (t (matrisel) $+%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)]1))/sqrt (min(diagonal[l: (len-1)
1))

print (sgrt (diagonal[len]) /sqgrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matrise0917=cbind (combGeneratorBasic (design, combins[,2]),
prefblock)

diagonal2=diag(solve (t (matrise0917) $+x%matrise0917))

print (sgrt (max (diagonal2[1l: (len-1)1]))/sqgrt (min(diagonal2[1l: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

#Are the original blocks preserved?

which (apply (blocks, 2, identical, originalblocks([,1]))

which (apply (blocks, 2, identical, -originalblocks[,2]))

which (apply (blocks, 2, identical, -originalblocks|[,3]))
((2 41)

which (apply (blocks, , 1ldentical, -originalblocks],)

154

#Check pref block for 4 active factors; which is equal?
which (apply (blocks, 2, identical, c¢(1,-1, 1, 1,-1,-1, 1,-1,
-1,-1,-1, 1,-1, 1, 1, 1)))

#Find the factors for which Ds=1

results[28,]

cbind (combGeneratorBasic (design, combins|[,5]),blocks[,28])
cbind (combGeneratorBasic (design, combins[,9]),blocks([,28])

Code for section 4.1.2.2 and 4.1.2.3: Dividing a 2?,’1 design into two
blocks using HM, four active factors

#The factors in the design

A=c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)
p2=c(1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1)
¢=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)
p=c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)
g=c(-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1)

#fac=#number of factors in design

fac=5

#n=number of rows in total design

n=16

design=cbind(A,P2,C,D,H)

colnames (design) <-cbind ("A","P2","C","D", "H")

#The blocks suggested in the article

J2=c(1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1)
k2=c(-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1)
L2=c(-1,-1,1,-1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1)
mM2=c(-1,-1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1)

originalblocks=unique (cbind (J2,K2,L2,M2),MARGIN=2)
#Checking that they are valid blocks
colSums (originalblocks)

#The different combinations of four active factors
combins=combn (5, 4)

#Function which takes in n, the number of columns, and m,
#the number of ones.
#It makes all possible rows with m ones and n-m zeroes

155

#It is later used to make all possible blocks
combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seq_len(ncol(index)) - 1) * n
result <- rep(0, nrow(index) * n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

#Makes the blocks

perm=t (combinator (16, 8))
perml=2xperm—-1
blocks=perml

#Makes all possible effects up to three-factor effects
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact?)+ncol (interact3)))
colnam=numeric ((ncol (mat)+ncol (interact?2) +ncol (interact3)))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}

for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc|[, interact2[1l, j]]*resc[, interact2[2,j
11

colnam[j+ncol (mat)]=(paste(colnam[interact2[1,3]],

colnam[interact2[2,3j]], collapse = ""))

}

for(j in l:ncol (interact3)) {
resc[, jtncol (mat) +ncol (interact2)]=resc|[,interact3[1, j]]1~*
resc[,interact3[2, j]]*resc[,interact3[3, 1]

colnam[j+ncol (mat)+ncol (interact2)]=(paste (colnam[interact3
(1,311,
colnam[interact3[2,j]],colnam[interact3[3,j]], collapse = '")

)
}

colnames (resc)=colnam
resc

156

#Check orthogonality
test=Generator2 (design)
sums=numeric (ncol (blocks))
for(r in 1l:ncol (blocks)) {

sums [r]=sum(t (blocks [, r]%*%design==0))
}
indeks=which ((abs (sums—-5)<0.00001))
blocks=blocks [, c(indeks)]
#Choose to ones with the least partial confounding
testinter=test[,6:15]
testsum=t (testinter) %$*%blocks
totalsum=colSums (abs (testsum)==8)
indekser=which (totalsum==4)
blocks=blocks [, c(indekser)]

#Fjerner blokker som er like, bare at alle fortegn er motsatt
nullern=numeric (60)
for(t in 1:(0.5+*ncol (blocks))) {
lookat=blocks|[, t]
rest=blocks [, (t+1) :ncol (blocks)]
rest=rest+lookat
if (any (colSums (abs (rest))==0)==TRUE) {
nullern[t]=(t+which (colSums (abs (rest))==0))
}

}
blocks=blocks[,-nullern]

#Number of blocks
num=ncol (blocks)

#Makes design matrix
combGenerator=function (mat, interest, combfac) {
interact2=combn (length (interest), 2)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (7)
colnam[1]="K"

157

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl [, interact2[1l, j]l]l*resl[,interact2[2,]J11)
colnam[j+l+length (interest)]=(paste(colnam[l+interact2(1,3j]],
colnam[l+interact2[2,3j]], collapse = ""))

}

if (combfac([1]1>0){

res=res|[, - (l+length (interest) +combfac)]

colnam=colnam[-(l+length (interest) +combfac)]

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Combfac: Which two-factor interactions should be removed?
combfac=combn (6, 1)

#Testing how it goes for all combinations of 4 out of 5 factors,
#estimating all two-factor interactions
results=matrix (nrow=num,ncol=ncol (combins))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations of four active factors
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins[, j],0),blocks[,1])
results[i, j]=Ds (matrise)

158

unique (as.vector (results))

#How many are zero for each block?
rowSums (results==0)

#How many are 0.9389 for each block?
rowSums (results>0.9389)

#Testing how it goes for all combinations of 4 out of 5 factors,
#estimating 5 two-factor interactions
results3t=numeric (num+ncol (combins))
rest<- rep (0, num)
k=0
#res0[j,1] 1s two if combination j (f.ex. ACDH) gives DS=0
#for 2 out of six possible combinations of
#5 two-factor interactions for block 1
#The column sum of res0O gives the number of combinations with Ds
=0

#for this block, for all combinatons of factors
resOt=matrix (data=0,nrow=ncol (combins),ncol=num)
res87t=matrix (data=0,nrow=ncol (combins),ncol=num)
res93t=matrix (data=0,nrow=ncol (combins),ncol=num)
res97t=matrix (data=0,nrow=ncol (combins),ncol=num)
#Iterating over blocks
for(i in 1:num) {

#Iterating over combinations of four active factors

for(j in l:ncol (combins)) {

#Iterating over combinations of two-factor interactions

included
for(f in 1l:ncol (combfac)) {
k=k+1
matriset=cbind (combGenerator (design, combins|[, j],combfacl[,f]),
blocks[,11])

results3t[k]=Ds (matriset)

if ((abs (results3t[k]-0)<0.0000001)==TRUE) {
resOt[j,1]=resOt[j,1]+1

}

if ((abs (results3t[k]-0.8705506)<0.0000001)==TRUE) {
res87t[J,1]=res87t[j,1]+1

159

if ((abs (results3t[k]-0.9716417)<0.0000001)==TRUE) {
res97t[J,1]=res97t[j,1]+1

}

if ((abs(results3t[k]-0.9330330)<0.0000001)==TRUE) {
res93t[J,1]=res93t[j,1]+1

}

#Observe: All get trouble for one combination of four active
factors,

#then 2 of 6 combinations of 5 two-factor interactions

#cannot be estimated

colSums (res0Ot)

colSums (res0t==2)

#For the combos with Ds=0 for two, the other 4 yield Ds=0.87:

colSums (resOt+res87t)

#make result for thesis with the example 0.5 (AD+CD+AP-CP)
blokka=0.5% (design|, 1] xdesign([,4]+design[, 3] +design[,4]+
design|[,1l]xdesign([, 2]~
design([, 2] xdesignl(,3])
results3t2=numeric (length (combfac) *ncol (combins))
rest2<- rep (0, num)
k=0
restm=matrix (data=0,nrow=ncol (combins),ncol=ncol (combfac))
for(j in l:ncol (combins)) {
for(f in 1l:ncol (combfac)) {
k=k+1
matriset2=cbind (combGenerator (design, combins|[, j],
combfac[, f]),blokka)
results3t2[k]=Ds (matriset?2)
restm[j, £]=Ds (matriset2)

print (restm)

#Test for only three present two-factor interactions
results3tt=numeric (numxncol (combins))
restt<- rep (0, num)

160

k=0
combfac2=combn (6, 3)

#resO0[j,1] 1s two if combination j (f.ex. ACDH) gives DS=0 for 2

out

#of six possible combinations of 5 two-factor interactions for

block i

#The column sum of resO gives the number of combinations with Ds

=0 for
#this block, for all combinatons of factors
resltt=matrix (data=0,nrow=ncol (combins),ncol=num)
res96tt=matrix (data=0, nrow=ncol (combins), ncol=num)
res84tt=matrix (data=0, nrow=ncol (combins), ncol=num)
res92tt=matrix (data=0, nrow=ncol (combins), ncol=num)
#Iterating over blocks
for(i in 1:num) {

#Iterating over combinations of four active factors

for(j in l:ncol (combins)) {

#Iterating over combinations of two-factor interactions

included
for(f in 1l:ncol (combfac2)) {
k=k+1

matrisett=cbind (combGenerator (design, combins|[, j],

combfac2[,f]),blocks[,1i])

results3tt[k]=Ds (matrisett)

if ((abs (results3tt[k]-1)<0.0000001)==TRUE) {
resltt[]j,i]l=resltt[j,1]+1

}

if ((abs (results3tt[k]-0.9646786)<0.0000001)==TRUE) {

res96tt[j,1]=res96tt[j,i]+1
}

if ((abs (results3tt[k]-0.8408964)<0.0000001)==TRUE) {

res84tt[j,1]=res84tt[j,i]+1
}

if ((abs (results3tt[k]-0.9170040)<0.0000001)==TRUE) {

res92tt[Jj,1i]=res92tt[j,i]1+1

colSums (res84tt)

161

colSums (resltt)

colSums (res9o6tt)

colSums (res92tt)

#Average Ds
(0.9170040%28+0.8408964x4+52%0.9646786+16x1.0000000) /100

#Example for thesis of Ds=1 combinations for the preferred block
cbind (combGenerator (design, combins([,2],combfac2[,2]),blokka)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (design, combins[, 2], combfac2[,2]),
blokka)

diagonal=diag(solve (t (matrisel) %$*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)]))/sqrt (min(diagonal[l: (len-1)
1)))

print (sqrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matrisemin=cbind (combGenerator (design, combins([, 1], combfac2([,3]),
blokka)

diagonal2=diag(solve (t (matrisemin) %$*%matrisemin))

print (sqrt (max (diagonal2[1: (len—-1)]))/sgrt (min(diagonal2[l: (len
-1

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

#Are the original blocks preserved?

which (apply (blocks, 2, identical, originalblocks[,1]1))
which (apply (blocks, 2, identical, -originalblocks|[,2]))
which (apply (blocks, 2, identical, -originalblocks][,3]))
which (apply (blocks, 2, identical, -originalblocks[,4]))

Code for section 4.2.1: Dividing a 2}8*”design into two blocks using

the blocking of the 28—+ design

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=2xfactors)
for(i in 1: (factors)) {
vect=numeric (271)

162

vect[1l: (27 (i-1))]1=-1
vect [((27 (i-1))+1):(2"71i)]1=1
design[,i]=rep(vect,times=(n/(271)))
}
int=factors-1
combins=combn (factors, int)
for(j in l:ncol (combins)) {
design(, (4+3)]=design|[,combins[1l, j]]+*design[, combins[2, j]]~*
design[, combins([3, 1]
colnam=colnames (mat) [interact]
}

design

#fac=#number of factors in design

fac=4

#fac2=#number of factors in design, w. combos

fac2=2xfac

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design)<-cbind("aA","B","C","D","E","F","G","H")

#Function which takes in n, the number of columns, and m, the
number of ones.
#It makes all possible rows with m ones and n-m zeroes
#It is later used to make all possible blocks
combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) x n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

#Generate the blocks
perm=t (combinator (8, 4))
perml=2xperm([,1:35]-1

163

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Generate all possible blocks
allblocks=matrix (data=NA, nrow=n,ncol=num)
for (i in 1:num) {

for(j in 1l:m){
allblocks[j,i]=perml[]j, i]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1i]

#Remove the blocks equal to two-factor interactions,
#as found in the 16-run script
goodblocks=allblocks[,-c(1,10,15,21,24,28,29)]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=3

combins=combn (fac2, int)

#Generate design matrix
#Include up to three-factor interactions
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
#Make column for constant
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (7)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[1i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

164

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])
colnam[j+4]=(paste(colnam[l+interact2[1, 1],
colnam[l+interact2(2,3]],
collapse = ""))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, jl]l*resl[,interact3([2,J]]~*
resl[,interact3[3,J11)
colnam[j+4+ncol (interact?2)]=(paste(colnam[l+interact3[1,]j]l],
colnam[l+interact3[2,j]],colnam[l+interact3([3,J]], collapse =

"))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#combin2: Which three factors are active
combin2=combn (16, 3)
num=ncol (goodblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combin2))
#Iterating over blocks
for (i in 1:num) {
#Iterer over combinations
for(j in l:ncol (combin2)) {
Bl=design[which (goodblocks[,1i]==1),]
B2=design([which (goodblocks|[,i]==-1),]
#Sjekk en kombinasjon av BIBl osv at a time,
#by commenting out the other
stormatrise=rbind(cbind(B1,Bl),cbind(B1l,-Bl),

165

cbind (B2,B2),cbind (B2, -B2))

stormatrise=rbind(cbind(B1l,Bl),cbind(B2,B2),

cbind(B1,-Bl),cbind (B2, -B2))

stormatrise=rbind(cbind(B1l,B1l),cbind(B2,-B2),

cbind(B1,-B1l),cbind(B2,B2))

colnames (stormatrise) <-cbind("a","B","c","p","g","r","G",
"H","I","J","K","L","M","N","O","P")
blokk=c(rep(l,16),rep(-1,16))
StorDs=cbind (combGenerator (stormatrise, combin2([, j]),blokk)
results3([i, j]=Ds (StorDs)

#Find which blocks yield Ds>0 for all combinations

indekser=which (rowSums (results3==0)==0)

#Find min and max for each block

mini=numeric (length (which (rowSums (results3==0)==0)))
maxi=numeric (length (which (rowSums (results3==0)==0)))
#Find frequencies of Ds-values for all blocks

a=rep (1, 3)

for(r in l:length(which (rowSums (results3==0)==0))) {

mini[r]=min(results3[indekser(r],])
maxi[r]=max (results3[indekser[r],])
a=rbind(a, (table(results3[indekser([r],])))

a=al[-1,]

#Use block nr. 28 as example in thesis:

Bl=design|[which (goodblocks[,28]==1),]

B2=design[which (goodblocks[,28]==-1),]
stormatrise=rbind(cbind (B1,B1l),cbind(B1,-B1l),

cbind (B2,B2),cbind (B2, -B2))

colnames (stormatrise)<-cbind("a","B","c","p","g","g","Gg", """, "1",
"g", "K","L","M", "N","O", "P")

blokk=c(rep(l,16),rep(-1,16))

#Look at results3[,28] to see that combin2[,1]

#yields Ds=0.917, combin2[,2] yields Ds=1

Dsl=cbind (combGenerator (stormatrise, combin2[,2]),blokk)
Ds0917=cbind (combGenerator (stormatrise, combin2[,1]),blokk)

#Find SD ratios: For best Ds

166

diagonal=diag(solve (t (Dsl)%*%Dsl))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/sqrt (min(diagonal[l: (len-1)
1))

print (sgrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

diagonal2=diag(solve (t (Ds0917)%+%Ds0917))

print (sqrt (max (diagonal2[1l: (len—-1)]))/sgrt (min(diagonal2[l: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.2: Dividing a 2}3‘“ design into two blocks using

MIP

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=16)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1: (27 (i-1))]1=-1
vect [((27(1i-1))+1):(271)1=1
design[,i]=rep(vect,times=(n/(271)))
}
int=fac-2
combins=combn (factors, int)
for(j in l:ncol (combins)) {
design[, (5+7)]=design|[, combins[1l, j]]+*design|[, combins[2, j]]x*
design[, combins[3, j]]
}
design[, 5+ncol (combins)+1]=design[, 1] xdesign(, 2] xdesign[, 3] ~*
design(,4]+design[, 5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

167

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac, n)

colnames (design) <-cbind("A","B","C","D","E","F", "G", "®H","1","J",
"KM, "L", "M", "N","O","P")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seq_len(ncol(index)) - 1) * n
result <- rep(0, nrow(index) * n)
result[index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[,1l: (ncol (perm)/2)]-1

allblocks=matrix (data=NA, nrow=n,ncol=num)
for(i in 1:num) {
for(j in 1l:m) {
allblocks[j,1i]=perml[j, 1]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=3

combins=combn (fac2, int)

#Function that generates all main effects and two-factor
interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)

168

resc=matrix (data=NA, nrow=nrow (mat),ncol=136)
colnam=numeric (136)
for(i in l:ncol (mat)) {
resc[,i]=mat[,i]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact2)) {
resc|, j+16]=resc[,interact2[1l, j]]*resc[,interact2[2, j]]
colnam[j+16]=(paste(colnam[interact2[1, 11,
colnam[interact2[2,]j11],
collapse = ""))
}
colnames (resc)=colnam
resc

#Remove bad blocks, see thesis for argumentation
doubletrouble=Generator?2 (design)
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,]) %*%
Generator2 (design))==24)>0))]
allblocks=allblocks [, -c (which (rowSums (abs (t (allblocks[,]) %*
Generator?2 (design))==16)==32))]
allblocks=allblocks[, -c (which (rowSums (abs (t (allblocks[,]) %*
Generator?2 (design))==32)>0)) 1]

oe

o

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
#Make column for constant
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA, nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1l]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

169

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2[2,J11)
colnam[j+4]=(paste(colnam[l+interact2[1, 11,
colnam[l+interact2[2,3j]], collapse = "'))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1, jl]x*
resl[,interact3[2, j]l]l*resl[,interact3[3,3]1])
colnam[j+7]=
(paste (colnam[l+interact3[1,3jl],
colnam[l+interact3[2, j]],
colnam[l+interact3[3,Jj]], collapse = ""))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Checking for each combination
num=ncol (allblocks)
results=matrix (data=NA, ncol=num, nrow=ncol (combins))
#Iterating over combinations
for(i in 1l:ncol (combins)) {

#Iterer over blocks

for(j in 1l:num) {

matrise=cbind (combGenerator (design, combins[,i]),allblocks],

1

results[i, j]=Ds (matrise)

}

min (results)

J

170

max (results)

#Which unique Ds-values are obtained?
uni=unique (as.vector (results))
#Print the values and how many blocks obtained
#them for each combination
for(i in l:length(uni)) {
print (uni[i])
print (unique ((rowSums (abs (results-uni[i])<0.000001))))

#Checking for each block
num=ncol (allblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combins))
#Iterating over combinations
for(i in 1:num) {

#Iterer over blocks

for(j in l:ncol (combins)) {

matrise=cbind (combGenerator (design, combins|[, j]),allblocks|[, 1
1)

results3[i, j]=Ds (matrise)

}
min (results3)
max (results3)

#Print the values and how many combinations
#for which each block obtained them
for(i in l:length(uni)) {
print (uni[i])
print (unique ((rowSums (abs (results3-uni[i])<0.000001))))

#Print the unique average Ds-values
print (unique (rowMeans (results3)))

#The preferred block
prefblock=allblocks|[,1]
#Find min and max Ds

171

resr=numeric (ncol (combins))

for(r in 1l:ncol (combins)) {
matriset=cbind (combGenerator (design, combins|,r]),prefblock)
resr[r]=Ds (matriset)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds
matrisel=cbind (combGenerator (design, combins|[,which.max (resr)]),
prefblock)

diagonal=diag(solve (t (matrisel) %$*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/

sgrt (min (diagonal[l: (len-1)1])))

print (sqrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matrise0917=cbind (combGenerator (design

,combins[,which.min(resr)]),prefblock)

diagonal2=diag(solve (t (matrise0917) $+x%matrise0917))

print (sqrt (max (diagonal2[1l: (len—-1)]))/sgrt (min(diagonal2[l: (len
-1

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.3: Dividing a 2}8_“ design into four blocks using
MIP

library (svMisc)
#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA,nrow=n,ncol=16)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1l: (27 (i-1))]=-1
vect [((27 (i-1))+1):(271i)]1=1
design[,i]=rep(vect,times=(n/(271)))
}
int=fac-2
combins=combn (factors, int)
for(j in l:ncol (combins)) {

172

design(, (5+7)]=design[, combins[1l, j]]*design[, combins[2, j]]*
design[, combins[3, j]]
}
design(, 5+ncol (combins)+1]=design[, 1] +xdesign[, 2] xdesign[, 3] *
design(,4]+design[, 5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("aA","B","C","D","E","F", "G","H",
"Iv, Mg, "K', "L", "M", "N","O", "P")

#Make all possible blocks
whole=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
choicel=combn (15, 3)
choice=combn (11, 3)
second=matrix (data=NA,nrow=8,ncol=ncol (choice) xncol (choicel))
for(i in l:ncol (choicel)) {
first=c (1, l1+choicel[,1i])
rest=setdiff (whole, first)
for(j in l:ncol (choice))
second[, (i-1) *ncol (choice)+j]=c(first,c(rest[1l2],
rest [c(choice[,]])]))
}
choice3=combn (7, 3)
third=matrix (data=NA, nrow=12,ncol=ncol (choice) *
ncol (choicel) *ncol (choice3))
for(k in 1l:ncol (second)) {
resten=setdiff (whole, second[,k])
for(r in 1l:ncol (choice3)) {
third[, (k=1) *ncol (choice3)+r]=c(second[,k],c(resten([8],
resten[c (choice3[,r])]))

173

}

final=matrix (data=NA,nrow = 16,ncol=ncol (third))

for(t in l:ncol (third)) {
final[,t]l=c(third[,t],setdiff (whole,third[,t]))

bl=matrix (data=NA,nrow=32,ncol (final))
b2=matrix (data=NA,nrow=32,ncol (final))
for(j in l:ncol(final)) {

bl[final[l:4,3],3]l=c(-1,- l, 1,-1)
b2[final(l:4,3],3j]l=c(-1,-1,-1,-1)
bl[final[5:8,3],3j]l=c(-1,-1,-1,-1)
b2[final[5:8,3],3l=c(1,1,1,1)
bl[final[9:12,3],3]l=c(1,1,1,1)
b2[final[9:12,3],3]l=c(-1,-1,-1,-1)
bl[final[13:16,3],Jjl=c(1,1,1,1)
b2[final[13:16, 3], jl=c(1,1,1,1)

for(k in 17:32) {
bl[k,3j]l=bl[32-k+1, 3]
b2k, 31=b2[32-k+1, J]

#Let int be the number of factors of interest
int=3
combins=combn (ncol (design), int)

Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}

for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc|[,interact2[1l, j]]*resc[,interact2[2,]

1]

174

colnam[j+ncol (mat)]=(paste (colnam[interact2[1l,]jl],
colnam[interact2[2,3j]], collapse = ""))

}

colnames (resc)=colnam

resc

combGenerator=function (mat, interest) {

interact2=combn (length (interest), 2)

interact3=combn (length (interest), 3)

#Make column for constant

inter=t (t (rep(l,nrow(mat))))

res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))

colnam=numeric (8)

colnam[1l]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1, jl]l*resl[,interact2[2,J11)
colnam[j+t4]=(paste(colnam[l+interact2[1, 311,
colnam[l+interact2[2,j]], collapse = ""))

}

for(j in l:ncol (interact3)) {
res=cbind(res,resl[,interact3[1l, jl]l*resl[,interact3([2,J]]1~*
resl[,interact3[3,J11)
colnam[j+7]=(paste(colnam[l+interact3[1, 311,
colnam[l+interact3[2,3jl11,
colnam[l+interact3[3,3j]], collapse = '"))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
#Note: s=b-3 as there are three columns corresponding to blocks

175

s=b-3

n=nrow (comb)

detX=abs (det (t (comb) $*%comb))

detXb=abs (det (t (comb[,c (b-2,b-1,b)])%$*%comb[,c(b-2,b-1,b)]))
Ds=((detX/detXb) " (1/s))/n

Ds

blokl=bl
blok2=b2
blokl2=blokl*blok2
num=ncol (bl)
nullindeks=numeric (num)
maxnull=numeric (num)
minnull=numeric (num)
aver=numeric (num)
for (i in 1:num) {
progress (i,max.value = num)
results3=ncol (combins)
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins|[, j1),
blokl[,i],blok2[,1i],blok12[,1])
results3[j]=Ds (matrise)
}
if ((length (which (results3==0))==0)==TRUE) {
nullindeks[1]=1
aver [i]=mean (results3)
maxnull[i]=max (results3)
minnull[i]=min (results3)

save.image ("d32alledblokker.RData")
#O0Overview of the minimums obtained
sort (unique (minnull))

#Finding blocks with min Ds above 0
godeindekser=which (minnull>0)

#How many have min Ds above 07?
length (godeindekser)

176

#How many achieve the highest possible min Ds?
indekser=which (minnull>0.834)

#Overview of unique max Ds
sort (unique (maxnull))

#Overview of unique averages

sort (unique (aver))

#Averages obtained for the ones with the highest min Ds
sort (unique (aver[indekser]))

#How many with the highest min Ds also obtains the max Ds

#for one combination

length (indekser [which (maxnull [indekser]>0.99999999)1])

besteindekser=indekser[which (maxnull [indekser]>0.99999999)]

#Finding the ones with highest min, highest max and highest
average

besteindekser [which (aver[indekser [which (maxnull [indekser]>

0.99999999)11>0.908206)]

#block 6064 is chosen as the preferred

#Finding Ds-values for the preferred block
bestres=numeric (ncol (combins))
for(r in l:ncol (combins)) {
matrisei=cbind (combGenerator (design,combins[,r]),blokl[,6064],
blok2[,6064],blokl2[,6064])
bestres|[r]=Ds (matrisei)
}
#Frequency table
table (bestres)

#Examples with min and max Ds

Dsmax=cbind (combGenerator (design, combins [, which.max (bestres)]),
blokl[,6064],blok2[,6064],blokl12[,6064])
Dsmin=cbind (combGenerator (design, combins[,which.min (bestres)]),

blokl[,6064],blok2[,6064],blokl2[,6064])

#Finding the SD-ratios
#For one of the combinations yielding the highest Ds
diagonal=diag(solve (t (Dsmax) $*%$Dsmax))

177

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-3)])) /sqrt (min(diagonal[l: (len-3)
1)))

print (sgrt (max (diagonal[(len-3) :1len]))/

sgrt (min (diagonal[l: (len-3)1])))

#For one of the combinations yielding the lowest Ds

diagonal2=diag(solve (t (Dsmin) $*%Dsmin))

print (sqrt (max (diagonal2[1l: (len-3)]))/sgrt (min(diagonal2[l: (len
-3)1)))

print (sgrt (max (diagonal2[(len-3) :1len]))/sqgrt (min(diagonal2[1l: (len
-3)1)))

Code for section 4.2.4.1: Dividing a 2‘6,;1 design into two blocks using
MIP, three active factors

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (2°1)
vect[1: (27 (i-1))]1=-1
vect [((27(1-1))+1):(271)1=1
design[,i]=rep(vect,times=(n/(271)))
}
design|[, 6]=design(, 1] xdesign[, 2] *design[, 3] *design[, 4] «design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design)<-cbind("A","B","C","D","E","F")

178

#num=number of combinations
num=ncol (combn (m, (m/2))) /2

#Make all possible blocks
combinator <- function(n, m) {
index <- combn(seq_len(n), m)
index <- t(index) + (seqg_len(ncol (index)) - 1) % n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix(result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2«perm[, 1: (ncol (perm)/2)]1-1

allblocks=matrix (data=NA, nrow=n, ncol=num)
for(i in 1:num) {
for(j in 1l:m) {
allblocks[j,i]l=perml[j,1i]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=3

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact2)))
colnam=numeric (ncol (mat)+ncol (interact2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]

179

colnam[i]=colnames (mat) [1]

}

for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc([,interact2[1l, j]11x*
resc|,interact2[2, 3]]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1,3jl],
colnam[interact2[2,3]], collapse = ""))

}
colnames (resc)=colnam
resc

#Makes design matrix
combGenerator=function (mat, interest) {

interact2=combn (length (interest), 2)

interact3=combn (length (interest), 3)

inter=t (t (rep(l,nrow (mat))))

res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))

colnam=numeric (8)

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[1]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2[2,]J11)
colnam[j+l+length (interest)]=(paste(colnam[l+interact2(1,3]],
colnam[l+interact2[2,j]], collapse = "'))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl [, interact3[1l, j]]*resl[,interact3[2,J]]*
resl[,interact3[3,]J11)
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3([1,j]],colnam[l+interact3[2,3]],
colnam[l+interact3[3,jl], collapse = ""))

}

colnames (res)=colnam

res

180

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b])%*x%comb[,b])
Ds=((detX/detXb) "~ (1/s))/n
Ds

#Remove confounded and strongly partially confounded blocks
trouble=Generator2 (design)
allblocks=allblocks[, -c(which (rowSums (abs (t (allblocks[,])%*%

Generator2 (design))==24)>0))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,])%*%
Generator2 (design))==16)==4))]

allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks|[,])%*%
Generator?2 (design))==32)>0)) 1]

#Checking for each block
#num is now number of blocks
num=ncol (allblocks)
results33=matrix (data=NA,nrow = ncol (allblocks),ncol=ncol (combins
))
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins|[, j]),allblocks|[, i
1)

results33[i, jl=Ds (matrise)

#Which minimums and maximums are obtained?
unique (apply (results33, 1, FUN=min))
unique (apply (results33, 1, FUN=max))

#What are the different averages?

unique (rowMeans (results33))

181

goodmin=which (apply (results33, 1, FUN=min)>min(results33))
goodmax=which (apply (results33, 1, FUN=max)==max (results33))
goodmean=which (rowMeans (results33)>0.97159)

#None of the blocks with the best means have the best max
sum ((duplicated(c (goodmean, goodmax))))

sum ((duplicated (c (goodmin, goodmax))))

res=numeric (20)

#Number 12 is chosen as example to artice

prefblock=allblocks[,12]

for(r in 1l:ncol (combins)) {
matriset=cbind (combGenerator (design, combins[,r]),prefblock)
res[r]=(Ds (matriset))

}

#Find average

mean (res)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (design, combins|[,which.max (res)]),
prefblock)

diagonal=diag(solve (t (matrisel) %$*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/

sgrt (min (diagonal[l: (len-1)1)))

print (sgrt (diagonal[len])/

sqgqrt (min (diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (design, combins[,which.min(res)]),
prefblock)

diagonal2=diag (solve (t (matrise0) %$x%matrise0))

print (sgrt (max (diagonal2[1l: (len-1)1))/

sgrt (min (diagonal2[l: (len-1)1)))

print (sqrt (diagonal2[len])/

sqgqrt (min (diagonal2[1l: (len-1)1)))

Code for section 4.2.4.2: Dividing a 2‘6,71 design into two blocks using
MIP, four active factors

182

#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1l: (27 (i-1))]1=-1
vect [((27(i-1))+1):(271)]=1
design[,i]=rep(vect,times=(n/(271)))
}
design([, 6]=design(,1l]*design[, 2] *design[, 3] *design[, 4] *«design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("A","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2))) /2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) x n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2«perm[, 1: (ncol (perm) /2)]-1

183

allblocks=matrix (data=NA, nrow=n,ncol=num)
for (i in 1:num) {
for(j in 1l:m) {
allblocks[j,il=perml[j,1i]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=4

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact?)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}

for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc|[,interact2[1, 3] 1%
resc|,interact2(2, 3]]
colnam[j+ncol (mat)]=(paste(colnam[interact2[1,3]],
colnam[interact2[2, j]],collapse = ''))

}
colnames (resc)=colnam
resc

#Remove confounded and strongly partially confounded blocks
trouble=Generator2 (design)
allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks[,])%*%
Generator2 (design))==24)>0))]
allblocks=allblocks [, —c (which (rowSums (abs (t (allblocks/[,]) %*

o°

184

Generator?2 (design))==16)==4))]
allblocks=allblocks[, —c(which (rowSums (abs (t (allblocks[,])%*%
Generator?2 (design))==32)>0))]

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA, nrow=nrow (mat),ncol=length (interest))
colnam=numeric (16)
colnam[1]="K"
for(i in l:length(interest)) {

}

res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

for(j in l:ncol (interact2)) {

}

res=cbind(res,resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])
colnam[j+1l+length (interest)]=(paste(colnam[l+interact2[1, jl11],
colnam[l+interact2([2,j]], collapse = '"))

for(j in l:ncol (interact3)) {

}

res=cbind(res, resl[,interact3[1, j]]*resl[,interact3[2, j]]*
resl[,interact3[3,73]1])
colnam[j+1l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3[1l, j]],colnam[l+interact3(2,3]],
colnam[l+interact3[3,j]l], collapse = "'))

for(j in l:ncol (interact4)) {

res=cbind(res,resl[,interact4[1l, jl]l*resl[,interact4([2,]]]~*
resl[,interact4[3, jl]l*resl[,interact4[4,3]])
colnam[j+tl+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste (colnam[l+interact4[1l, j]],colnam[l+interact4([2,]]],
colnam[l+interact4[3, jl1],colnam[l+interact4[4, j]1],collapse =

")

185

colnames (res)=colnam
res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Checking for each block
#num is now number of blocks
num=ncol (allblocks)
results33=matrix (data=NA,nrow = ncol (allblocks),ncol=ncol (combins
))
#Iterating over blocks
for(i in 1l:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins[, j]),allblocks][, i
1)

results33[i, j]=Ds (matrise)

#Check frequencies for each combination
frek=table (results33[,1])
for(i in 2:15) {
frek=cbind (frek, table (results33[,1]))
}
#+1 because the first is not duplicated per definition
sum(duplicated (frek,MARGIN=2))+1-15

#Check frequencies for each block
frek2=table (results33[1,1]1)
for (i in 2:num) {

186

frek2=cbind (frek2,table (results33[i,]))

}
sum (duplicated (frek2,MARGIN=2))+1-5040

#Which minimums and maximums are obtained?
unique (apply (results33, 1, FUN=min))
unique (apply (results33, 1, FUN=max))

#What are the different averages?

unique (rowMeans (results33))

#Example for article

res=numeric (15)

prefblock=allblocks|[,1]

for(r in 1l:ncol (combins)) {
matriset=cbind (combGenerator (design,combins[,r]),prefblock)
res[r]=(Ds (matriset))

#Find average
mean (res)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (design, combins|[,which.max (res)]),
prefblock)

diagonal=diag(solve (t (matrisel) $+%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/

sgrt (min (diagonal[l: (len-1)1)))

print (sqrt (diagonal[len])/

sgrt (min (diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (design, combins|[,which.min(res)]),
prefblock)

diagonal2=diag(solve (t (matrisel) $*x%matrise0))

print (sgrt (max (diagonal2[1l: (len-1)]))/sqgrt (min (diagonal2[1l: (len
-1)1)))

print (sgrt (diagonal2[len])/sqrt (min (diagonal2([1l: (len-1)1)))

187

Code for section 4.2.4.4: Dividing a 2?,;1 design into two blocks using
MIP, five active factors, estimating up to three-factor interactions

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1l: (27 (i-1))]=-1
vect [((27 (i-1))+1):(271)]1=1
design[, i]=rep (vect, times=(n/(271)))
}
design(, 6]=design[,1l]+design[,2]*design[,3]*design[,4]*design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design)<-cbind ("A","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2))) /2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn(seq_len(n), m)
index <- t(index) + (seq_len(ncol(index)) - 1) * n
result <- rep(0, nrow(index) * n)
result[index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))

188

perml=2«perm[, 1: (ncol (perm) /2)]1-1

allblocks=matrix (data=NA, nrow=n, ncol=num)
for (i in 1:num) {
for(j in 1l:m){
allblocks[j,i]l=perml[j,1i]
}
for(k in (m+1) :n) {
allblocks[k,i]=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=5

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in 1l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact?2)) {
resc[, jtncol (mat)]=resc(, interact2[1, j]]*resc[, interact2[2,]
11
colnam[j+ncol (mat)]=(paste(colnam[interact2[1,3]],
colnam[interact2([2, j]], collapse = ""))
}
colnames (resc)=colnam
resc

#Remove confounded and strongly partially confounded blocks
trouble=Generator2 (design)

189

oe

allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks|[,]) %*

Generator2 (design))==24)>0))]
allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks[,])%*%
Generator?2 (design))==16)==4))]

o\

allblocks=allblocks [, —c (which (rowSums (abs (t (allblocks/[,]) %*
Generator?2 (design))==32)>0))]

#Make design matrix
combGenerator=function (mat, interest, combfac) {

interact2=combn (length (interest), 2)

interact3=combn (length (interest), 3)

interact4=combn (length (interest), 4)

inter=t (t (rep(l,nrow(mat))))

res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))

colnam=numeric (16)

colnam[1l]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2[2,J11)
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1l,]jl],
colnam[l+interact2[2,3j]], collapse = ""))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, jl]l+*resl[,interact3[2,J]]1~*
resl[,interact3[3,J11)
colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3([1l, jl],colnam[l+interact3([2,3]],
colnam[l+interact3[3,3j]], collapse = '"))

}

for(j in l:ncol (interactd)) {
res=cbind(res, resl [, interact4[1l, j]l]*resl[,interact4[2, 1]+
resl[,interact4[3, jl]l*resl[,interact4[4, j]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste (colnam[l+interact4([1l, j]],colnam[l+interact4([2,3]],
colnam[l+interact4[3, j]],colnam[l+interact4[4, j]],collapse =

"))

190

}

#Removing the four-factor interactions not to be estimated
res=res|,-(l+length (interest)+ncol (interact2)+

ncol (interact3) +combfac)]
colnam=colnam|[- (l+length (interest) +ncol (interact?2) +

ncol (interact3) +combfac)]

colnames (res)=colnam

res

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %*%comb[,b])
Ds=((detX/detXb) "~ (1/s))/n
Ds

#Combfac: Remove all four-factor interactions
combfac=combn (5, 5)

num=ncol (allblocks)
meanres=matrix (data=NA, nrow=ncol (allblocks),
ncol=ncol (combfac) xncol (combins))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterer over combinations
for(j in l:ncol (combins)) {
for(f in 1l:ncol (combfac)) {
matrise=cbind (combGenerator (design, combins|[, j],
combfac[,f]),allblocks[,1])
meanres[i, ((j-1)*ncol (combfac)+f)]=Ds (matrise)

191

#How many blocks yield ds>0 for all combinations?
length (which (rowSums (meanres==0)==0))
unique (rowMeans (meanres [which (rowSums (meanres==0)==0),]))

mini=numeric (length (which (rowSums (meanres==0) 0)
maxi=numeric (length (which (rowSums (meanres==0)==0)
for(w in l:length(which (rowSums (meanres==0)==0)))
mini[w]=min (meanres[which (rowSums (meanres==0)==
maxi[w]=max (meanres[which (rowSums (meanres==

o O O

#Results for the blocks with the highest min Ds
bestmean=meanres[which (mini>0.94),]

#They all have the same mean

unique (rowMeans (bestmean))

#compare best max and max for max min Ds
max (maxi)
max (maxi[which (mini>0.94)1])

#Check frequencies for each block

frek2=table (bestmean[1,])

for(i in 2:nrow (bestmean)) {
frek2=cbind (frek2, table (bestmean[i,]))

}

sum(duplicated (frek2,MARGIN=2)) +1-nrow (bestmean)

#Choosing example block, block number 6 in allblocks
prefblock=allblocks][, 6]

#Frequency table

table (meanres[6,])

#Finding the combos yielding the highest Ds

which (meanres[6,]1>0.962)

#Finding the SD-ratios
#For one of the combinations yielding the highest Ds
matrisel=cbind (combGenerator (design,combins|[,1], combfac[,1]),

192

prefblock)

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/sqrt (min(diagonal[l: (len-1)
1))

print (sgrt (diagonal[len]) /sqgrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (design, combins[, 5], combfac[,1]),
prefblock)

diagonal2=diag(solve (t (matrisel) %$*%matrise0))

print (sqrt (max (diagonal2[1l: (len—-1)]))/sgrt (min(diagonal2[l: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.4.5: Dividing a 2‘6,;1 design into two blocks using
MIP, five active factors, estimating two four-factor interactions

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA, nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (2°1)
vect[1l: (27 (i-1))]1=-
vect [((27(i-1))+1):(2"71i)]1=1
design[, i]=rep (vect, times=(n/(271)))
}
design(, 6]=design[,l]*design[,2]*design[,3]*design[,4]*design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

193

colnames (design) <—cbind("A", an, "C", "D", "E", "Emy

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn(seqg_len(n), m)
index <- t(index) + (seq_len(ncol (index)) — 1) * n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix(result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[,1l: (ncol (perm)/2)]1-1

allblocks=matrix (data=NA, nrow=n, ncol=num)
for (i in 1:num) {
for(j in 1:m) {
allblocks[j,il=perml[j,1i]
}
for(k in (m+1) :n){
allblocks[k,i]l=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=5

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {

interact2=combn (ncol (mat), 2)

resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (

interact2)))
colnam=numeric (ncol (mat)+ncol (interact2))
for(i in 1l:ncol (mat)) {
resc[,i]=mat[, 1]

194

colnam[i]=colnames (mat) [i]
}
for(j in l:ncol (interact2)) {
resc[, jtncol (mat)]=resc([, interact2[1, j]]*resc[, interact2[2,]
1]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1l,]jl],
colnam[interact2[2,]]], collapse = "7))
}
colnames (resc)=colnam
resc

#Remove confounded and strongly partially confounded blocks
trouble=Generator2 (design)
allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks[,])%*%

Generator2 (design))==24)>0))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks|[,])%*%
Generator?2 (design))==16)==4))]

o

allblocks=allblocks [, —-c (which (rowSums (abs (t (allblocks[,]) %*
Generator?2 (design))==32)>0))]

#Make design matrix
combGenerator=function (mat, interest, combfac) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (16)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact?2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2[2,J11)
colnam[jt+l+length (interest)]=(paste(colnam[l+interact2[1l, jl1],
colnam[l+interact2[2,j]], collapse = "'))

195

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1, j]]*resl[,interact3[2, 1]+
resl[,interact3[3,]J11)
colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3([1l, jl],colnam[l+interact3([2, 311,
colnam[l+interact3[3,jl], collapse = ""))

}

for(j in l:ncol (interact4d)) {
res=cbind(res,resl [, interact4[1l, j]]*resl[,interact4[2,]]]~*
resl[,interact4[3,J]]*resl[,interactd[4,3]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste(colnam[l+interact4([1l, j]],colnam[l+interact4[2,3]],
colnam[l+interact4[3,j]],colnam[l+interact4[4,J]],collapse =

"))
}

#Removing the four-factor interactions not to be estimated
res=res|[,-(l+length (interest) +ncol (interact2) +

ncol (interact3) +combfac)]
colnam=colnam[- (l+length (interest) ++ncol (interact2) +

ncol (interact3) +combfac)]

colnames (res)=colnam

res

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Combfac: Removing 3 out of 5 four-factor interactions
combfac=combn (5, 3)

196

num=ncol (allblocks)
meanres=matrix (data=NA, nrow=ncol (allblocks),ncol=ncol (combfac) *
ncol (combins))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
for(f in l:ncol (combfac)) {
k=k+1
matrise=cbind (combGenerator (design, combins(, j],combfac[,f]),
allblocks([,1i])
meanres|[i, ((j—-1) *ncol (combfac)+f)]=Ds (matrise)

#How many blocks handle all combos of two four-factor
interactions?

length (which (rowSums (meanres==0)==0))

unique (rowMeans (meanres [which (rowSums (meanres==0)==0),]))

#Finding max and min values

mini=numeric (length (which (rowSums (meanres==0)==0)))

maxi=numeric (length (which (rowSums (meanres==0)==0)))

for(w in l:length(which (rowSums (meanres==0)==0))) {
mini[w]=min (meanres[which (rowSums (meanres==0)==0) [w],])
maxi[w]=max (meanres [which (rowSums (meanres==0)==0) [w],])

unique (mini)
unique (maxi)

bestindeks=which (rowSums (meanres==0)==0)
bestblocks=allblocks|[,bestindeks]

#Choosing example block, block number 6 in allblocks
prefblock=bestblocks[,1]

#Frequency table

table (meanres[6,])

#Finding the combos yielding the highest Ds

197

which (meanres[6,]1>0.9655)

#Ensuring results

matrisel=cbind (combGenerator (design, combins[,1],combfac[,10]),
prefblock)

matrise2=cbind (combGenerator (design, combins|[, 2], combfacl[,7]),
prefblock)

matrise3=cbind (combGenerator (design, combins|[,3],combfacl[,7]),
prefblock)

matrised=cbind (combGenerator (design, combins|[, 6], combfac[,6]),
prefblock)

Ds (matrisel)

Ds (matrise?2)

Ds (matrise3)

Ds (matrised)

#Print four-factor interactions yielding the highest Ds

print (matrisel[1,27:28])

print (matrise2[1,27:28])

print (matrise3[1,27:28])

print (matrise4[1,27:28])

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

diagonal=diag(solve (t (matrisel) $+x%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)]))/sqrt (min(diagonal[l: (len-1)
1)))

print (sgrt (diagonal[len]) /sqgrt (min(diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (design, combins[,1],combfac[,1]),
prefblock)

diagonal2=diag (solve (t (matrise0) %$x%matrise0))

print (sgrt (max (diagonal2[1l: (len-1)1]))/sqgrt (min(diagonal2[1l: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.5.1: Dividing a 2‘6,71 design into four blocks using
MIP, three active factors

library (svMisc)

198

#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA, nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1: (27 (1i-1))]1=-1
vect [((27(i-1))+1):(2"71i)]1=1
design[,i]l=rep (vect,times=(n/(271)))
}
design[, 6]=design[,l]*design[,2]*design[,3]~design[,4]*design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("aA","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seq_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) % n
result <- rep(0, nrow(index) =* n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2xperm[,1l: (ncol (perm)/2)]1-1

199

allblocks=matrix (data=NA, nrow=n,ncol=num)
for(i in 1:num) {
for(j in 1l:m) {
allblocks[j,i]l=perml[j, 1]
}
for(k in (m+1) :n){
allblocks[k,i]=allblocks[n-k+1,1]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=3

combins=combn (6, 3)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in l:ncol (mat)) {
resc[,i]l=mat [, 1]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact2)) {

resc[, j+tncol (mat)]=resc[, interact2[1l, j]l]*resc[,interact2[2,j
11

colnam[j+ncol (mat)]=(paste(colnam[interact2[1, j]],

colnam[interact2[2,3]], collapse = ""))

}
colnames (resc)=colnam
resc

#Remove bad blocks

trouble=Generator?2 (design)
allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks[,])%*%
trouble)==24)>0))]

200

allblocks=allblocks|[,-c(which (rowSums (abs (t (allblocks|[,]) %*
trouble)==16)==4))]
allblocks=allblocks [, -c (which (rowSums (abs (t (allblocks[,]) %*
trouble)==32)>0))]

oe

oe

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA, nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}

for(j in l:ncol (interact2)) {

res=cbind(res,resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])

colnam[j+1l+length (interest)]=(paste(colnam[l+interact2[1, jl11],

colnam[l+interact2([2,j]], collapse = '"))

}

for(j in l:ncol (interact3)) {

res=cbind(res, resl[,interact3[1l, j]l]*resl[,interact3[2,J]]~*

resl[,interact3[3,73]1])
colnam[j+1l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3[1l, j]],colnam[l+interact3(2,3]],
colnam[l+interact3[3,j]l], collapse = "'))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)

201

detX=det (t (comb) $*%comb)

detXb=det (t (comb[,c (b-2,b-1,b)])%*x%comb[,c(b-2,b-1,b)])
=((detX/detXb) " (1/s))/n

Ds

#Make all possible blocks
whole=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
choicel=combn (15, 3)
choice=combn (11, 3)
second=matrix (data=NA, nrow=8, ncol=ncol (choice) xncol (choicel))
for(i in 1l:ncol (choicel)) {
first=c (1, l+choicell[,1i])
rest=setdiff (whole, first)
for(j in l:ncol (choice))
second[, (i-1) *ncol (choice)+j]l=c(first,c(rest[12],
rest [c(choicel[,]J]1)1]1))
}
choice3=combn (7, 3)
third=matrix (data=NA, nrow=12,ncol=ncol (choice) *ncol (choicel) *
ncol (choice3))
for(k in 1l:ncol (second)) {
resten=setdiff (whole, second[,k])
for(r in 1l:ncol (choice3)) {
third[, (k—=1) *xncol (choice3)+r]=
c(second[,k],c(resten[8], resten[c(choice3[,r])]1))

}

final=matrix (data=NA,nrow = 16,ncol=ncol (third))

for(t in l:ncol(third)) {
final[,t]=c(third[,t],setdiff (whole,third[,t]))

bl=matrix (data=NA,nrow=32,ncol (final))
b2=matrix (data=NA,nrow=32,ncol (final))
for(j in l:ncol(final)) {

bl[finall[l 4,j] jl=c(-1,- l, 1,-1)

[final[1l: i1, 31=c (- 1, 1,-1,-1)

1[final[5: 8,j]:]=c(-1,-1,-1,-1)
[final[5:8,3],3]l=c(1,1,1,1)

202

bl[final[9:12,73],3j]l=c(1,1,1,1)
b2[final[9:12,3j],3jl=c(-1,-1,-1,-1)
bl[final[13:16,3],3]l=c(1,1,1,1)
b2[final[13:16,3],Jjl=c(1,1,1,1)
for(k in 17:32){
bl[k,jl1=bl[32-k+1,]
b2k, Jl1=b2[32-k+1, 3]

blokl=bl
blok2=b2
blokl2=bloklxblok2
num=ncol (blokl)
allres=matrix (data=NA, nrow=num,ncol=ncol (combins))
nullindeks=numeric (num)
maxnull=numeric (num)
minnull=numeric (num)
aver=numeric (num)
k=0
for (i in 1:num) {
results3=ncol (combins)
for(j in l:ncol (combins)) {
k=k+1
progress (k,max.value = num*ncol (combins))
matrise=cbind (combGenerator (design, combins|[, j]),
blokl[,i],blok2[,i],blok12[,1i])
allres([i, j]=Ds (matrise)

sort (unique (rowSums (allres[which (rowSums (allres==0)==0),1)/20))
meanres=rowSums (allres [which (rowSums (allres==0)==0),1) /20

#How many have Ds>0 for all combinations?

length (meanres)

mini=apply(allres,1l,min)

#Which is the largest min obtained?

sort (unique (mini))

#How many obtained that?

meanresmini=rowSums (allres[which (mini>0.87),1) /20

203

length (meanresmini)

#What is the max obtained among these, and in general?
maxi=apply(allres, 1, max)

sort (unique (maxi))
maximini=apply(allres[which(mini>0.87),],1,max)

unique (maximini)

#What is the best and worst average obtained?

max (meanres)

min (meanres)

minimeanres=rowSums (allres[which (mini>0.87),1)/20
unique (minimeanres)

#Example for thesis

resr=numeric (ncol (combins))

for(r in 1l:ncol (combins)) {
matriset=cbind (combGenerator (design, combins(,r]),
blokl[,16244],blok2[,16244],blok12[,16244])
resr[r]=Ds (matriset)

}

table (resr)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds
Dsmax=cbind (combGenerator (design, combins [, which.max (resr)]),
blokl[,16244],blok2[,16244],blok12[,162447)
diagonal=diag(solve (t (Dsmax) $*%Dsmax))

len=length (diagonal)

print (sgrt (max (diagonal([l: (len-3)]1))/
sqrt (min (diagonal[l: (len-3)1])))
print (sgrt (max (diagonal[(len-3) :len]))/

sqgrt (min (diagonal[l: (len-3)1]1)))

#For one of the combinations yielding the lowest Ds
Dsmin=cbind (combGenerator (design, combins[,which.min(resr)]),
blokl[,16244],blok2[,16244],blok12[,16244])
diagonal2=diag(solve (t (Dsmin) $*%Dsmin))

print (sgrt (max (diagonal2[l: (len-3)1))/

sqrt (min (diagonal2[1l: (len-3)1]1)))

print (sgrt (max (diagonal2([(len-3) :1len]))/

sgrt (min (diagonal2[l: (len-3)1)))

204

save.image ("testeAlledblokker3ct.RData")

Code for section 4.2.5.1: Dividing a 2‘6,;1 design into four blocks using

MIP, four active factors

library (svMisc)

#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA, nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1: (27 (i-1))]=-1
vect [((27 (i-1))+1):(271)]=1
design[,i]=rep (vect,times=(n/(271)))

}

design([, 6]=design(,1l]*design[,2]*design[, 3] *design[, 4] *design

[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design)<-cbind("aA","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2))) /2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seq_len(n), m)
index <- t(index) + (seqg_len(ncol(index)) - 1) % n

205

result <- rep(0, nrow(index) =x n)
result [index] <- 1
matrix(result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[,1l: (ncol (perm)/2)]1-1

allblocks=matrix (data=NA, nrow=n,ncol=num)
for (i in 1:num) {
for(j in 1l:m) {
allblocks[j,i]l=perml[j,1i]
}
for(k in (m+1) :n){
allblocks[k,i]=allblocks[n-k+1,1]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=4

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact2)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1i]
}

for(j in l:ncol (interact2)) {

resc|, j+tncol (mat)]=resc|[,interact2[1, 7]]+
resc|,interact2[2, 3]]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1,3j]l],
colnam[interact2[2,j]], collapse = '"))

206

colnames (resc)=colnam
resc

#Remove bad blocks

trouble=Generator?2 (design)
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks[,])%*%
trouble)==24)>0))]
allblocks=allblocks [, -c (which (rowSums (abs (t (allblocks[,]) %*
trouble)==16)==4))]
allblocks=allblocks[, —c (which (rowSums (abs (t (allblocks[,]) %*
trouble)==32)>0))]

oe

o

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA, nrow=nrow (mat),ncol=length(interest))
colnam=numeric (16)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}
for(j in l:ncol (interact2)) {
res=cbind(res,resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, 1],
colnam[l+interact2[2,3]], collapse = ""))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]]*resl[,interact3[2,J]]~*
resl[,interact3[3,3]1])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3[1l, j]],colnam[l+interact3([2,Jjl],
colnam[l+interact3[3,j]], collapse = "'))

207

}

for(j in l:ncol (interactd)) {
res=cbind(res, resl[,interact4[1l, j]]*resl[,interact4[2,]]]~*
resl[,interact4[3, jl]l*resl[,interact4[4,3]])
colnam[Jj+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste(colnam[l+interact4[1l, j]],colnam[l+interact4 (2, 3j]],
colnam[l+interact4[3, j]],colnam[l+interact4[4, j]],collapse =

"))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,c(b-2,b-1,b)])%*%comb[,c (b-2,b-1,b) 1)
Ds=((detX/detXb) " (1/s))/n
Ds

#Make all possible blocks
whole=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
choicel=combn (15, 3)
choice=combn (11, 3)
second=matrix (data=NA, nrow=8, ncol=ncol (choice) xncol (choicel))
for(i in 1l:ncol (choicel)) {
first=c (1, l+choicell[,i])
rest=setdiff (whole, first)
for(j in l:ncol (choice))
second[, (i-1) *ncol (choice)+j]l=c(first,c(rest[12],
rest [c(choice[,]J]1)1))
}
choice3=combn (7, 3)
third=matrix (data=NA,nrow=12,ncol=ncol (choice)*xncol (choicel) *
ncol (choice3))
for(k in 1l:ncol (second)) {
resten=setdiff (whole, second[,k])

208

for(r in 1l:ncol (choice3)) {

third[, (k-1) *ncol (choice3)+r]=c(second[,k],c(resten[8],

resten[c (choice3[,r])]1))

}

final=matrix (data=NA,nrow = 16,ncol=ncol (third))

for(t in l:ncol(third)) {
final[,t]=c(third[,t],setdiff (whole,third[,t]))

bl=matrix (data=NA,nrow=32,ncol (final))
b2=matrix (data=NA,nrow=32,ncol (final))
for(j in l:ncol(final)) {

bl[final([l:4,3],3]l=c(-1,-1,-1,-1)
final[l:4,3j],3j]=c(-1,-1,-1,-1)
final[5:8,3],3jl=c(-1,-1,-1,-1)

b2 [
bl[
b2[final[5:8, 31, 3]=c(1,1,1,1)
bl[final[9:12,73],3j]l=c(1,1,1,1)
b2[final[9:12,3]1,3jl=c(-1,-1,-1,-1)
bl[final[13:16,3],3l=c(1,1,1,1)
b2[final[13:16,3],Jjl=c(1,1,1,1)
for(k in 17:32){
bl[k,jl=bl[32-k+1, 3]
b2k, Jl1=b2[32-k+1, 7]

blokl=bl
blok2=b2
blokl2=blokl*blok2
num=ncol (blokl)
allres=matrix (data=NA, nrow=num,ncol=ncol (combins))
nullindeks=numeric (num)
maxnull=numeric (num)
minnull=numeric (num)
aver=numeric (num)
k=0

for(i in 1:num) {

209

results3=ncol (combins)

for(j in l:ncol (combins)) {

k=k+1

progress (k,max.value = numxncol (combins))
matrise=cbind (combGenerator (design, combins[, j1),
blokl[,i],blok2[,1i],blokl2[,1])
allres([i, j]=Ds (matrise)

sort (unique (rowSums (allres [which (rowSums (allres==0)==0),]1)/15))
meanres=rowSums (allres [which (rowSums (allres==0)==0),]) /15
#How many Ds>0 for all combs?

length (meanres)

#What are they?

sort (unique (meanres))

#look at all good results
allgoodres=allres|[which (rowSums (allres==0)==0),]

#What are the max and mins for all blocks?

mini=apply (allgoodres, 1, min)

unique (mini)

maxi=apply (allgoodres, l,max)

max (meanres)

unique (maxi)

#How many obtain the highest min?
length (which (mini>0.82))

#What averages did they obtain?
table (meanres [which (mini>0.82)1])

#Example for thesis

resr=numeric (ncol (combins))

for(r in l:ncol (combins)) {
matriset=cbind (combGenerator (design, combins[,r]),
blokl([,5855],blok2[,5855],blok12[,5855])
resr[r]=Ds (matriset)

}

table (resr)

210

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

Dsmax=cbind (combGenerator (design, combins[,which.max (resr)]),

blokl[,5855],blok2[,5855],blok12[,5855])

diagonal=diag(solve (t (Dsmax) $*%$Dsmax))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len—-3)])) /sqrt (min(diagonal[l: (len-3)
1)))

print (sqrt (max (diagonal[(len-3) :1len])) /sqgrt (min(diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds
Dsmin=cbind (combGenerator (design, combins[,which.min (resr)]),
blokl[,5855],blok2[,5855],blok12[,5855])
diagonal2=diag(solve (t (Dsmin) %$*%Dsmin))

print (sgrt (max (diagonal2[1l: (len-3)1))/

sgrt (min (diagonal2[l: (len-3)1])))

print (sgrt (max (diagonal2[(len-3) :1len]))/

sgqrt (min (diagonal2[1l: (len-3)1)))

save.image ("testeAlledblokker.RData")

Code for section 4.2.5.1: Dividing a 2‘6,;1 design into four blocks using
MIP, five active factors

library (svMisc)

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (2°1)
vect[1: (27 (1i-1))]=-
vect [((27(i-1))+1):(271i)]1=1
design[, i]=rep (vect, times=(n/(271)))
}
design|[, 6]=design(,1]*design[,2]*design[, 3] *design[,4]+design
[,5]
design

211

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("aA","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seq_len(ncol(index)) — 1) * n
result <- rep(0, nrow(index) =* n)
result[index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[,1l: (ncol (perm)/2)]-1

allblocks=matrix (data=NA, nrow=n,ncol=num)
for(i in 1:num) {
for(j in 1:m) {
allblocks[j,1i]=perml[j, 1]
}
for(k in (m+1) :n) {
allblocks[k,i]l=allblocks[n-k+1,1i]

#Vector with interesting combinations
#Let int be the number of factors of interest
int=5

212

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact2))
for(i in 1l:ncol (mat)) {
resc[,i]=mat[,i]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact2)) {
resc[, j+tncol (mat)]=resc[,interact2[1, 3]]+
resc[,interact2[2, j]]

colnam[j+tncol (mat)]=(paste (colnam[interact2[1l,]jl],
colnam[interact2(2,3]],
collapse = '"))

}
colnames (resc)=colnam
resc

#Remove bad blocks

trouble=Generator?2 (design)
allblocks=allblocks[, -c(which (rowSums (abs (t (allblocks[,])%*%
trouble)==24)>0))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,])%*%
trouble)==16)==4))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,])%*%
trouble)==32)>0))]

#Make design matrix
combGenerator=function (mat, interest, combfac) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(1l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (16)

213

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat[,interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1,jl],
colnam[l+interact2[2,3]], collapse = ""))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]]*resl[,interact3[2,]]]*
resl[,interact3([3,731])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3[1l,j]],colnam[l+interact3([2,3j]],
colnam[l+interact3[3,3j]], collapse = ""))

}

for(j in l:ncol (interact4d)) {
res=cbind(res, resl[,interact4[1l, jl]l*resl[,interact4d[2,]]]~*
resl[,interact4[3, jl]l*resl[,interact4[4,3]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste (colnam[l+interact4([1l, j]l],colnam[l+interactd([2,3]],
colnam[l+interact4[3, j]l],colnam[l+interact4[4, j]1],collapse =

"))

}

#Removing the four-factor interactions not to be estimated

res=res|[, - (l+length (interest) +ncol (interact2) +

ncol (interact3) +combfac)]

colnam=colnam[- (l+length (interest) +ncol (interact?2) +

ncol (interact3) +combfac)]

colnames (res)=colnam

res

colnames (res)=colnam

res

#Combfac: Remove all four—-factor interactions
combfac=combn (5, 5)

214

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,c (b-2,b-1,b)])%$*%comb[,c (b-2,b-1,b)])
Ds=((detX/detXb) "~ (1/s))/n
Ds

#Make all possible blocks
whole=c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
choicel=combn (15, 3)
choice=combn (11, 3)
second=matrix (data=NA,nrow=8,ncol=ncol (choice) »xncol (choicel))
for(i in l:ncol (choicel)) {
first=c (1, 1+choicel[,1i])
rest=setdiff (whole, first)
for(j in l:ncol (choice))
second[, (i-1) *ncol (choice)+j]=c(first,c(rest[12],
rest [c(choicel[,J1)1))
}
choice3=combn (7, 3)
third=matrix (data=NA, nrow=12,ncol=ncol (choice) *
ncol (choicel) *ncol (choice3))
for(k in 1l:ncol (second)) {
resten=setdiff (whole, second[,k])
for(r in 1l:ncol (choice3)) {
third[, (k=1) *ncol (choice3)+r]=c(second[,k],c(resten([8],
resten[c (choice3[,r])]1))

}

final=matrix (data=NA,nrow = 16,ncol=ncol (third))

for(t in l:ncol (third)) {
final[,t]=c(third[,t],setdiff (whole,third[,t]))

bl=matrix (data=NA,nrow=32,ncol (final))
b2=matrix (data=NA,nrow=32,ncol (final))

215

for(j in l:ncol(final)) {

bl[final[l:4,3],3]=c(-1,-1,-1,-1)
b2[finalll:4,31,3]=c(-1,-1,-1,-1)
bl[final[5:8,3],3]=c(-1,-1,-1,-1)
b2[final[5:8,3],3]=c(1,1,1,1)
bl[final[9:12,3],3]=c(1,1,1,1)
b2[final[9:12,3],3l=c(-1,-1,-1,-1)
bl[final[13:16,3],3]l=c(1,1,1,1)

b2 [final[13:16,31,3]=c(1,1,1,1)

for(k in 17:32) {
bl[k,j]l=bl[32-k+1, 3]
b2k, 31=b2[32-k+1, J]

blokl=bl
blok2=b2
blokl2=blokl+blok2
num=ncol (blokl)
allres=matrix (data=NA, nrow=num,ncol=ncol (combins))
nullindeks=numeric (num)
maxnull=numeric (num)
minnull=numeric (num)
aver=numeric (num)
k=0
for(i in 1:num) {
results3=ncol (combins)
for(j in l:ncol (combins)) {
for(f in 1l:ncol (combfac)) {
k=k+1
progress (k,max.value = num*ncol (combins))
matrise=cbind (combGenerator (design, combins(, j],combfac[,f])

blokl[,i],blok2[,i],blok12[,1i])
allres([i, j]=Ds (matrise)

save.image ("testeAlledblokker5fak3int .RData")

216

sort (unique (rowSums (allres [which (rowSums (allres==0)==0),]1)/6))
goodres=allres[which (rowSums (allres==0)==0),]

meanres=rowSums (allres[which (rowSums (allres==0)==0),1)/6

#How many have Ds>0 for all combinations?

length (meanres)

mini=apply(allres,1l,min)

#Which is the largest min obtained?

sort (unique (mini))

#How many obtained that?

meanresmini=rowSums (allres[which (mini>0.86),1)/6
length (meanresmini)

#What is the max obtained among these, and in general?
maxi=apply (goodres, 1, max)

sort (unique (maxi))
maximini=apply(allres[which(mini>0.86),]1,1,max)

unique (maximini)

#Best results

bestres=allres[which (mini>0.86),]

#Are they all equal?

sum (duplicated (t (bestres), MARGIN=2))

#How are the results when the highest max is obtained?
apply (goodres[which (maxi>0.953),]1,1,table)

#Example for thesis
resr=numeric (ncol (combins))
for(r in 1l:ncol (combins)) {
for(j in l:ncol (combfac)) {
matriset=cbind (combGenerator (design, combins[,r],combfacl[, j]),
blok1l[,13695],blok2[,13695],blok12[,13695])
resr[r]=Ds (matriset)
}
}
table (resr)

#Finding the SD-ratios

#As all are equal, one is enough

Dsmax=cbind (combGenerator (design, combins|[,which.max (resr)],
combfac[,1]),blokl1[,13695],blok2[,13695],blok12[,13695])
diagonal=diag(solve (t (Dsmax) $*%$Dsmax))

len=length (diagonal)

217

print (sgrt (max (diagonal[l: (len—-3)]))/sqrt (min(diagonal[l: (len-3)
1)))

print (sqrt (max (diagonal[(len-3) :1len])) /sqgrt (min (diagonal[l: (len
-3)1)))

Code for section 4.2.5.4: Utilising the division into two blocks for divi-
sion into fours blocks, three active factors

library (svMisc)

#Function making the design columns
designGenerator<-function (factors,n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (2°1)
vect [1: (27 (i-1))]1=-1
vect [((27(i-1))+1):(271)]1=1
design[,i]=rep (vect,times=(n/(271)))
}
design|[, 6]=design(, 1] xdesign[, 2] «design[, 3] *design[,4]*design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design)<-cbind("aA","B","C","D","E", "F")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seq_len(n), m)

218

index <- t(index) + (seqg_len(ncol(index)) - 1) % n

result <- rep(0, nrow(index) =* n)

result[index] <- 1

matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[, 1l: (ncol (perm)/2)]-1

allblocks=matrix (data=NA, nrow=n, ncol=num)
for(i in 1:num) {
for(j in 1l:m){
allblocks[j,i]l=perml[j,1i]
}
for(k in (m+1) :n) {
allblocks[k,i]l=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=4

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact?2)) {
resc[, jtncol (mat)]=resc|[, interact2[1l, 3] 1~
resc|,interact2[2, 3]]
colnam[j+ncol (mat)]=(paste(colnam[interact2[1,3]],
colnam[interact2[2,Jj]],collapse = ""))
}

colnames (resc)=colnam

resc

#Remove bad blocks

trouble=Generator2 (design)
allblocks=allblocks [, —-c(which (rowSums (abs (t (allblocks|[,]) %*
trouble)==24)>0))]
allblocks=allblocks [, —c (which (rowSums (abs (t (allblocks/[,]) %*
trouble)==16)==4))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks/[,]) %*
trouble)==32)>0))]

o°

o\°

oe

#Int=number of factors of interest
#Combins: All combinations of them
int=3

combins=combn (6, int)

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat[,interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l+*resl[,interact2(2,]3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl],
colnam[l+interact2[2,3]], collapse = ""))
}
for(j in l:ncol (interact3)) {
res=cbind(res,resl[,interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3[3,731])

220

colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3[1l, j]],colnam[l+interact3([2,]J]],
colnam[l+interact3[3,3j]], collapse = "'))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,c(b-2,b-1,b)])%*%comb[,c (b-2,b-1,b)1)
Ds=((detX/detXb) " (1/s))/n
Ds

#Make all possible blocks based on one block
blokkerd4<—-function (indeks) {
kombiner=combn (8,4) [,1:35]
blokkl=matrix (nrow = 8,ncol=ncol (kombiner))
for(i in 1l:ncol (kombiner)) {
blokkl[1:4,i]=indeks[c (kombiner([,1i])]
blokkl1l[5:8,1i]=setdiff (indeks,blokkl[1:4,1])
}
blokkl

blokkerd_2<-function (blokk) {
test=which (blokk==-1) [1:8]
test2=which (blokk==1) [1:8]
bll=blokkerd (test)
bl2=blokkerd (test2)
k=0
bl3=matrix (data=NA,nrow = 16,ncol=ncol (bll)*ncol (bl2))
for(i in l:ncol(bll)) {
for(j in l:ncol (b1l2)) {
k=k+1
bl3[,k]l=rbind(b1l1[,i],b12[, 3])

221

bl=matrix (data=NA,nrow=32,ncol (b1l3))
b2=matrix (data=NA,nrow=32,ncol (b1l3))
for(j in l:ncol (b1l3)) {

1[(bl3[1:4,3],3]l=c(-1,-1,-1,-1)
b2[b13[1:4,j] 3]=c (- 1,—1,—1,—1)
bl[bl13[5:8,3],3l=c(-1,-1,-1,-1)
b2 [b13[5:8,31,3]=c(1,1,1,1)
bl[b13[9:12,73],3]=c(1,1,1,1)
b2[b13[9:12,j],j]— c(-1,-1,-1,-1)

1[b13[13:16,3],3]1=c(1,1,1,1)
b2[b13[13.16,j], 1=c(1,1,1,1)

for(k in 17:32){
bl[k,jl=bl[32-k+1, 5]
b2k, jl1=b2[32-k+1, 7]

}
return (rbind(bl,b2))

numbr=ncol (allblocks)
notrouble=matrix (data=NA, nrow=numbr, ncol=1225)
meanres=matrix (data=NA, nrow=numbr,ncol=21)
meanres2=matrix (data=NA, nrow=numbr,ncol=21)
for(r in l:ncol (allblocks)) {
progress (r,max.value =ncol (allblocks))
blokl=blokkerd4_2 (allblocks|[,r])[1:32,]
blok2=blokkerd_2 (allblocks|[,r]) [33:64,]
blokl2=blokl*blok2
num=ncol (blokl)
results3_2=matrix (data=NA, nrow =20,ncol=num)
res=numeric (num)
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins([, j]),blokl[
blok2[,1],blok12([,1i])
results3_2[j,1]=Ds (matrise)

Ii]l

222

}

#meanres: store largest mean

meanres[r,]=c((results3_2[,which(colSums (results3_2==0)==0)])
[,which.max (colSums (results3_2[,which (colSums (results3_2==0)

==0)1))1,

which.max (colSums (results3_2[,which (colSums (results3_2==0)==

DN

#meanres2: largest min

meanres2[r,]=c((results3_2[,which (colSums (results3_2==
[,which.max (apply (results3_2[,which (colSums (results3_2==0)=

1,2,min)) 1,

which.max (apply (results3_2[,which(colSums (results3_2==0)==0)

1,2,min)))

mini=numeric (nrow (meanres)
maxi=numeric (nrow (meanres)
mini2=numeric (nrow (meanres
maxiZ2=numeric (nrow (meanres
for(k in l:nrow (meanres)) {
mini[k]=min (meanres[k,1:20])
maxi[k]=max (meanres[k,1:20])
mini2 [k]=min (meanres2[k,1:20])
maxi2[k]=max (meanres2[k,1:20])

)

)
)
)
))

#How many have each max and min?
table (maxi)
table (mini)
table (maxi2)
table (miniZ2)

#How are the mean values distributed?
means=rowMeans (meanres[,1:20])

table (means)

minmeans=rowMeans (meanres2[,1:20])
table (minmeans)

)

)
)

save.image ("factorialDesign3fourblocksUsing2blocking3act.RData")

223

Code for section 4.2.5.4: Dividing a 2‘6,;1 design into four blocks using
the division into two blocks, four active factors

library (svMisc)

#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA,nrow=n,ncol=6)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1: (27 (i-1))]1=-1
vect [((27 (i-1))+1):(271)]=1
design[,i]=rep(vect,times=(n/(271)))
}
design|[, 6]=design(, 1] xdesign[, 2] *design[,3]*design[, 4] ~design
[,5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("A","B","C","D","E","F")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

#Making all possible blocks
combinator <- function(n, m) {
index <- combn (seqg_len(n), m)
index <- t(index) + (seq_len(ncol(index)) - 1) % n
result <- rep(0, nrow(index) * n)
result[index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

224

perm=t (combinator (16, 8))
perml=2«perm[, 1: (ncol (perm) /2)]1-1

allblocks=matrix (data=NA, nrow=n, ncol=num)
for(i in 1:num) {
for(j in 1l:m){
allblocks[j,i]l=perml[j,1i]
}
for(k in (m+1) :n){
allblocks[k,i]=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=4

combins=combn (6, int)

#Make all effects up to two-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact?2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [i]
}
for(j in l:ncol (interact2)) {
resc|, j+tncol (mat)]=resc|[,interact2[1l, j]]*resc[,interact2[2, J
1]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1, j]], colnam|
interact2(2,3j11,
collapse = ""))
}
colnames (resc)=colnam
resc

225

#Remove bad blocks

trouble=Generator?2 (design)
allblocks=allblocks [, —c (which (rowSums (abs (t (allblocks/[,]) %*
trouble)==24)>0))]
allblocks=allblocks [, —-c(which (rowSums (abs (t (allblocks|[,]) %*
trouble)==16)==4))]
allblocks=allblocks [, —-c(which (rowSums (abs (t (allblocks|[,]) %*
trouble)==32)>0))]

o\

oe

o°

#Int=number of factors of interest
#Combins: All combinations of them
int=4

combins=combn (6, int)

#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest),4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (16)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1l, jl],
colnam[l+interact2[2,3]], collapse = ""))
}
for(j in l:ncol (interact3)) {
res=cbind(res,resl[,interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3[3,731])

226

colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3[1l, j]],colnam[l+interact3([2,]J]],
colnam[l+interact3[3,3j]], collapse = "'))

}

for(j in l:ncol (interactd)) {
res=cbind(res, resl[,interact4[1l, jl]l*resl[,interact4[2,J]]~*
resl[,interact4[3, jl]l*resl[,interact4d[4,3]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste(colnam[l+interact4[1l, j]],colnam[l+interact4([2,]]],
colnam[l+interact4[3, j]1],colnam[l+interact4[4, j]],collapse =

"))
}

colnames (res)=colnam
res

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,c (b-2,b-1,b)])%*%comb[,c(b-2,b-1,b)])
Ds=((detX/detXb) " (1/s))/n
Ds

#Make all possible blocks based on one block
blokkerd<-function (indeks) {
kombiner=combn (8,4) [,1:35]
blokkl=matrix (nrow = 8,ncol=ncol (kombiner))
for(i in 1l:ncol (kombiner)) {
blokkl[1:4,1i]l=indeks[c (kombiner[,1])]
blokkl[5:8,i]=setdiff (indeks,blokkl[1:4,1])
}
blokkl

blokkerd4d 2<-function (blokk) {
test=which (blokk==-1) [1:8]
test2=which (blokk==1) [1:8]
bll=blokker4d (test)

227

bl2=blokkerd (test2)
k=0
bl3=matrix (data=NA,nrow = 16,ncol=ncol (bll)*ncol (bl2))
for(i in l:ncol(bll)) {
for(j in l:ncol(bl2)) {
k=k+1
bl3[,k]=rbind(bl1[,1i],b1l2[, j])

bl=matrix (data=NA,nrow=32,ncol (bl3))
b2=matrix (data=NA,nrow=32,ncol (bl3))
for(j in l:ncol (bl3)) {

:12,31,3]l=c(-1,-1,-1,
bl([bl13[13:16,3],3]l=c(1,1,1,1)
b2 [b13[13:16,3],3]l=c(1,1,1,1)
for(k in 17:32) {
bl[k,jl=bl[32-k+1, 3]
b2k, 31=b2[32-k+1, J]

-1)

bl[bl3[1:4,3],3l=c(-1,-1,-1,-1)
b2[bl3([1:4,3],3]l=c(-1,-1,-1,-1)
bl[bl3[5:8,3],3l=c(-1,-1,-1,-1)
b2[bl3[5:8,73],3]l=c(1,1,1,1)
bl[bl3[9:12,3],3]=c(1,1,1,1)

[[9

[[

}
return (rbind(bl,b2))

}

numbr=ncol (allblocks)
notrouble=matrix (data=NA, nrow=numbr, ncol=1225)
meanres=matrix (data=NA, nrow=numbr, ncol=16)
meanres2=matrix (data=NA, nrow=numbr,ncol=16)
for(r in l:ncol (allblocks)) {
blokl=blokkerd_2 (allblocks([,r])[1:32,]
blok2=blokkerd4_2 (allblocks|[,r]) [33:64,]
blokl2=bloklxblok2
num=ncol (blokl)
results3_2=matrix (data=NA,nrow = 15,ncol=num)
#Iterating over blocks
for (i in 1:num) {

228

#Iterating over combinations
for(j in l:ncol (combins)) {
matrise=cbind (combGenerator (design, combins|[, j]),blokl[,i],
blok2[,i],blok12[,1i])
results3_2[j,i]=results3[k]
}
}

#meanres: store largest mean

meanres[r,]=c ((results3_2[,which(colSums (results3_2==0)==0)])

[,which.max (colSums (results3_2[,which (colSums (results3_2==0)==0)
1)1,

which.max (colSums (results3_2[,which (colSums (results3_2==0)==0)1]1))
)

#meanres2: largest min

meanres2[r,]=c((results3_2[,which (colSums (results3_2==0)==0)1)

=0)1,

[,which.max (apply (results3_2[,which (colSums (results3_2==0)=
2,min)) 1],
which.max (apply (results3_2[,which (colSums (results3_2==0)==0)1],

2,min)))

}
mini=numeric (nrow (meanres)
mini2=numeric (nrow (meanres

)
)

)
maxi=numeric (nrow (meanres))
)
)

maxiZ2=numeric (nrow (meanres

for(k in l:nrow (meanres)) {
mini[k]=min (meanres[k,1:15])
maxi[k]=max (meanres[k,1:15])
mini2[k]=min (meanres2[k,1:15])
maxi2[k]=max (meanres2[k,1:15])

#How many have each max and min?
table (maxi)

table (mini)

table (maxi2)

table (miniZ2)

#How are the mean values distributed?
means=rowMeans (meanres[,1:15])
table (means)

229

minmeans=rowMeans (meanres2[,1:15])
table (minmeans)
save.image ("factorialDesign3fourblocksUsing2blocking.RData")

Code for section 4.2.6.1: A 23‘7 2 design, two blocks

install.packages ("xtable")
library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
install.packages ("pracma")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {

interact2=combn (length (interest), 2)

interact3=combn (length (interest), 3)

inter=t (t (rep (l,nrow(mat))))

res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))

colnam=numeric (8)

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[1]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, 311,
colnam[l+interact2[2,3j]], collapse = "'))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl [, interact3[1l, j]]*resl[,interact3[2,J]]~*
resl[,interact3[3,73]1])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3([1l,j]],colnam[l+interact3([2,3j]],
colnam[l+interact3[3,3jl], collapse = ""))

}

colnames (res)=colnam

230

res

#Make all effects up to three-factor interactions
Generator3=function (mat) {

interact2=combn (ncol (mat), 2)

interact3=combn (ncol (mat), 3)

resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+

ncol (interact?) +ncol (interact3)))

colnam=numeric (ncol (mat)+ncol (interact?2) +ncol (interact3))

for(i in l:ncol (mat)) {
resc[,i]=mat[,i]
colnam[i]=colnames (mat) [i]

}

for(j in l:ncol (interact2)) {
resc[, jtncol (mat)]=resc|[,interact2[1l, 3] 1~
resc|,interact2[2, 3]]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1l,]jl],
colnam[interact2[2,j]], collapse = '"))

}

for(j in l:ncol (interact3)) {
resc[, jtncol (mat) +ncol (interact2)]=resc|[,interact3[1, j]11~*
resc[,interact3[2, j]]*resc[,interact3[3, j]]
colnam[j+ncol (mat) +ncol (interact2)]=
(paste(colnam[interact3[1l, j]],colnam[interact3[2,]j]],
colnam[interact3[3,3j]], collapse = "'))

}

colnames (resc)=colnam

resc

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b])%$*%Scomb[,b])
Ds=((detX/detXb) "~ (1/s))/n
Ds

231

c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

matrix (data=
1! 1/ ll ll lr lr 1! 1/ ll ll lr lr 17_11 11_11 ll_ll ll_ll ll_ll ll_ll ll_ll ll

hadaml

-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1, -1,

-1,1,1,,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,

-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,

1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,

1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,1,

_llll_ll_llll_ll1111_1111_11_1!ll_llllll_llll_ll_llll_llllllll
_11_11_11_11lrllllll_ll_lr_lr_lr 1r lr lr 11_17_11_11_1/ 1/ 11 lr lr_lr

711711711 1/ 1/ 11711711 11711 11 11711 11711711 11711 lr l,,l, 11711711 1/

-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,

71171111 1! lllrllllll 1,71’71,71,71,71,71,71,71,1,71, llill 1171171/

i,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,
1!_11_111!ll_ll_ll_ll_ll1!11_1!_1Ill1!llll_ll_ll1!11_1!_ll_11_11
i,1,-1,-1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,

-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,

1!1/1/ll1!ll_ll_ll_ll_ll_ll_ll_ll_ll1!llllllll_llll_ll_llllll_ll
-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1,
-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,

1!1/ll_ll_ll1!_11_11ll_llll_llll_llllll_llll_llll_llll_ll_llll_ll
i,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,1,11,1,11,1,1,1,1,11,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,

_llll_llll_llll_ll_ll11_1!11_1!11_171!_111!_1117_11ll_llllllll_ll

71! ll 11711711 1! 11711711 1! 11711711711711 ll 11711711 1! 11711711 1! 11711

_ll llllll_l!_ll llll_ll_llll ll_ll_ll1/ll_ll_ll11_1!1111_11_171111

-1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,

_11_11_11111111 ll_ll_ll_ll_ll1!1/1/1/ll_ll11_11_1!11_1!1111_1111_1!

-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,

i,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,

11_11_11 ll_ll 1/ ll_ll ll_ll_ll 11_11 1/ 11_11_11 11 11_11 ll_ll_ll ll_ll lr lr

71/ 11711711 1/ 1/ ll ll ll 11 1/ 1/ ll71171171I7117117117]-!71[71[71[71!71[71!

_11_11_11111111 1!1!1/1/1/ll_llll_ll11_11_1!11_1!ll_llll_llllll_ll_ll

i,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,

232

-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,
-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,1,
i,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,
-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,

llll_ll ll_l/_ll ll ll_ll l/ 1I_l/_ll_1l_ll 1/ 11_1r_l/ lr 1/ 1, ll_ll_ll_l/
_ll lr 11 1/ 11_11_11 11 11_11_11_11_11 1/ 1/ 11_11_11 11_11 11_11 11_11 1/ 11_11

1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,
1) ,nrow=32,ncol=32)

dmatrise=hadaml[,2:32]

int=3

fac=7

combins=combn (factors, int)

best=0
it=0
#while (best<0.1) {
valid2=FALSE
while (valid2==FALSE) {
it=it+1
valid=FALSE
while (valid==FALSE) {
indeksliste=numeric (5)
sortmatrise=dmatrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),ncol=
ncol (sortmatrise))
indekser=c (32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:5){
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the
#subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all

233

#the subcolumns sum to zero
shuff=seq(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where
#the subcolmnsum is not zero
badshuff=rep (0, 31)
badshuffmat=matrix (data=NA,nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
sorted by.
#Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit, sortmatrisel[((v-1)*
indekser[i]+1) : (v+¥indekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup,
#to check if all subcolumns in each column sum to zero
for(t in 1:31) {
if ((sum(colSums (designsplit) [seqg(from=t,
to=(31%(-1+(32/indekser[i]))+t),by=31)]1>0)>0)) {
#save the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[1]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {
#Radindekser is the indices of the rows to be
included in the subcolumn,
#Sort sortmatrises indices to make -1 come first, then 1
radindekser=(k—-1) xrindekser[i]+order (sortmatrise[((k—-1) %

234

indekser[i]+1) : (kxindekser[i]),shuffliter]],
decreasing= FALSE)
#Iterate to everything is ok

while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,

shuff[iter]]))>0){
iter=iter+1

radindekser=(k-1) rindekser[i]+order (sortmatrise[((k-1) *

indekser[i]+1) : (kxindekser[i]),shuffliter]],
decreasing = FALSE)

}

indeksliste[i]=shuff[iter]

for(r in l:length(radindekser)) {
nymatrise[((k—1) xindekser[i]+r),]=
sortmatrise[radindekser[r],]

}

sortmatrise[((k-1) *indekser[i]+1) : (kxindekser[i]), 1=

nymatrise[((k-1) *indekser[i]+1) : (kxindekser[i]),]

}
valid=sum(is.na (indeksliste))<1
print (indeksliste)

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrisel[,3]x*
designmatrise([, 4] *designmatrise([,5])

designmatrise=cbind (designmatrise,designmatrisel[,2]x*
designmatrise[, 4] xdesignmatrise[, 5] xdesignmatrise[,1])
colnames (designmatrise)=c("E","D","C","B","A","F","G")
blokker=sortmatrise[, -indeksliste]

ending=ncol (blokker)

trouble=Generator3 (designmatrise)

print (rowSums (abs (t (blokker ([,]) xtrouble)==32))
valid2=sum (rowSums (abs (t (blokker[,])%+x%trouble)==32)==0)
if(valid2>0) {
goodblocks=blokker[,which (rowSums (abs (t (blokker[,]) %$x*
trouble)==32)==0)]

num=ncol (goodblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combins))
k=0

#Iterating over blocks

oe

235

for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins(, j]),
goodblocks|[,1])
print (stormatrise)
results3[i, jl=Ds(stormatrise)

braindekser=which (rowSums (results3==0)==0)
best=max (rowSums (results3 [braindekser,]) /ncol (combins))

}

rowMeans (results3[braindekser, 1)
mini=apply (results3[braindekser,], 1, min)
maxi=apply (results3[braindekser,], 1, max)
max (maxi)

max (mini)

#In what order was the matrix sorted?
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

}

print (rekkef)

sort (unique (rowMeans (results3[braindekser,])))
#Which columns were good blocks?

which (duplicated (cbind (goodblocks|[,braindekser],
sortmatrise),MARGIN=2))-length (braindekser) +1
#(+1 for the removed column)

#Which columns make up the design matrix?
print (indeksliste+l)

#Frequencies

for(i in l:length(braindekser)) {

236

print (table (results3[braindekser[i],]))

}

printmat=cbind (designmatrise[,5],designmatrise[,4],designmatrise
[,31,

designmatrise([,2],designmatrise[,1],designmatrisel[, 6],

designmatrise[, 7], goodblocks|[,braindekser])

colnames (printmat)=c ("A","B","C","D", "E", "F", "G", "bl", "b2", "b3", "
ba"™)

xtable (printmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (designmatrise,

combins[,which.max (results3[5,]1)]),go0odblocks[,5])

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/sqrt (min(diagonal[l: (len-1)
1)))

print (sqrt (diagonal([len]) /sqgrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (designmatrise,

combins[,which.min(results3[5,])]),goodblocks[,5])

diagonal2=diag(solve (t (matrisel) %$*%matrise0))

print (sgrt (max (diagonal2[1l: (len-1)]))/sgrt (min(diagonal2[1: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.6.4: A 2;‘7 2 design, four blocks

install.packages ("xtable")
library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
install.packages ("pracma")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions

combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)

237

inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact?2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2[2,]311])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1l,jl],
colnam[l+interact2[2,3j]], collapse = "'))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]l]l*resl[,interact3[2,J]]~*
resl[,interact3[3,J11)
colnam[j+l+length (interest) +ncol (interact2)]=(paste (colnam[1l+
interact3[1l,jl],colnam[l+interact3([2,J]],colnam[1l+
interact3[3,j]], collapse = '"))
}
colnames (res)=colnam
res

#Make all effects up to three-factor interactions
Generator3=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact?2)+ncol (interact3)))
colnam=numeric (ncol (mat)+ncol (interact?2) +ncol (interact3))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact2)) {
resc[, jtncol (mat)]=resc|[, interact2([1l, j]]*resc[, interact2[2,j
11

colnam[j+ncol (mat)]=(paste(colnam[interact2([1l, j]],colnam|[

238

=""))

collapse

interact2[2, 311,

}

for(j in l:ncol (interact3)) {

resc[,interact3[1, j]]*resc

resc[, jtncol (mat) +ncol (interact?2)]

[,interact3[2, j]l]*resc[,interact3[3,3]]
colnam[j+ncol (mat) +ncol (interact2)]=(paste(colnam[interact3

colnam[interact3[3, 311,

[1,3]],colnam[interact3([2,3]],

I!))

collapse

}

colnam

colnames (resc)

resc

function (comb) {

b

Ds

ncol (comb)

b-3

nrow (comb)

n=
detX

det (t (comb) $*x%comb)

det (t (comb[,c(b-2,b-1,b)])%$x%comb[,c(b-2,b-1,b)])

detXb

((detX/detXb) " (1/s))/n

Ds=

Ds

C(ll1’llllllllll1lllllllllllllllllllllIllllll

matrix (data=

hadam2

i1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,

11_1!11_1!ll_llll_llll_lll!_ll ll_ll1!l!_ll_llllll_ll_llllll_ll_ll
i,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,

111111 ll_ll_ll_ll_ll1!111111_11_1!_11_111I 111711_17_11_11_111111

i,1,-1,-1,-1,-1,

i,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,11,1,-1,1,

-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1, -1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,

i,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,
-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,11,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,
i,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,
-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,

1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,
71/ llill 11711 11711711 11711 11711 11711 11 11711 11711 11711 11711711 ll
_ll 11_11 lr_lr lr 11_11 lr_lr ll_ll_ll ll ll_ll_ll 11_11 1/ ll_ll_ll 1/ 1/

239

-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,1,
i,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1, 1,
i,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,
-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,
-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,
-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,
-1,1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,
-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,1,1,-1, -1,
1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,
-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,
-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,
1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,1,
-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,

1!11_1!_11llll_ll1!111111_11_1!_11_1111llllll_ll_ll_ll_ll_ll_ll

i,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,
1711_17_1117171111111117171111111!1!1!1/11_11_17_11_11_11_17_11

=32)

32,ncol

1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1),nrow=

dmatrise
int=3

hadam2[,2:32]

7

combins

fac

combn (fac, int)

=0

best

#while (best<0.1) {
braindekser

it=0

=NULL

while (length (braindekser)==0) {

it+1

it
valid

FALSE

FALSE) {

while(valid

numeric (5)
dmatrise

indeksliste
sortmatrise

ncol (

nrow (sortmatrise),ncol=

matrix (data=, nrow

sortmatrise))

nymatrise

240

indekser=c(32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for (i in 1:5) {
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
the subcolumns sum to zero
shuff=seqg(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where the
subcolmnsum is not zero
badshuff=rep (0, 31)
badshuffmat=matrix (data=NA,nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit, sortmatrise[((v-1)xindekser
[1]+1) : (vxindekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit([,-1]
#Go through all columns in the original setup, to check if
all subcolumns in each column sum to zero
for(t in 1:31) {
if ((sum(colSums (designsplit) [seq(from=t,to=(31* (-1+(32/
indekser[i]))+t),by=31)1>0)>0)) {
#ace the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
1f (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)

241

first=shuff[l]

iter=1

#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {

#Radindekser is the indices of the rows to be included in
the subcolumn, Sort sortmatrises indices to make -1
come first, then 1
radindekser=(k—-1) xrindekser[i]+order (sortmatrise[((k—-1) %
indekser[i]+1) : (kxindekser[i]),shuffl[iter]],
decreasing = FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,
shuffliter]]))>0) {
iter=iter+l
radindekser=(k-1) xindekser[i]+order (sortmatrise[((k-1) *
indekser[i]+1) : (kxindekser[i]),shuffliter]],
decreasing = FALSE)
}
indeksliste[i]l=shuff[iter]
for(r in l:length(radindekser)) {
nymatrise[((k—1) xindekser[i]+r),]=sortmatrise|
radindekser([r],]
}
sortmatrise[((k-1) xindekser[i]+1) : (k*indekser[i]), 1=
nymatrise[((k—1) *indekser[i]+1) : (kxindekser[i]),]

valid=sum(is.na (indeksliste))<1
print (indeksliste)
#Add one to make it correspond to matrix in thesis (because

of removed column)

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrise[,3]~*

designmatrise[, 4] designmatrise([,5])

designmatrise=cbind(designmatrise,designmatrisel[,2]*

designmatrise([, 4] xdesignmatrise[, 5] *xdesignmatrise[,1])

colnames (designmatrise)=c("E","D","C","B","A", "F","G")
blokker=sortmatrise[, —-indeksliste]
ending=ncol (blokker)

242

trouble=Generator3 (designmatrise)

#print (rowSums (abs (t (blokker ([,]) $*%trouble)==32))
valid2=sum (rowSums (abs (t (blokker[,]) %$*%trouble)==32)==0)
if(valid2>0) {

goodblocks=blokker[,which (rowSums (abs (t (blokker[,]) %$*%trouble

)==32)==0)]
num=ncol (goodblocks)
blockcomb=combn (num, 2)
results3=matrix (data=NA,nrow=ncol (blockcomb), ncol=ncol (
combins))
k=0
#Iterating over blocks
for(i in 1l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1

stormatrise=cbind (combGenerator (designmatrise, combins|[, J
1) ,g00dblocks[,blockcomb[1l,i]],goodblocks[,blockcomb

[2,1]],g00odblocks[,blockcomb[l,1]]*goodblocks](,
blockcomb[2,1]])

i print (stormatrise)

results3[i, j]=Ds(stormatrise)

braindekser=which (rowSums (results3==0)==0)

bestres=results3[braindekser,]

bestmeans=rowMeans (results3[braindekser,])

mini=apply (results3[braindekser,], 1, min)

maxi=apply (results3|[braindekser,], 1, max)

max (maxi)

max (mini)

which (bestmeans>0.939)

which (min>0.917)

bestcomb=which (bestmeans>0.939)

#Which combins were good blocks? +1 because of removed row of
matrix

bestcombreal=braindekser [bestcomb]

243

which (duplicated (cbind (goodblocks[,blockcomb[l,bestcombreal[1]]],
sortmatrise),MARGIN=2))

which (duplicated (cbind (goodblocks[,blockcomb[2,bestcombreal [1]]],
sortmatrise) ,MARGIN=2))

which (duplicated (cbind (goodblocks|[,blockcomb[l,bestcombreal([2]]],
sortmatrise) ,MARGIN=2))

which (duplicated (cbind (goodblocks[,blockcomb[2,bestcombreal [2]]],
sortmatrise),MARGIN=2))

which (duplicated (cbind (goodblocks[,blockcomb[1l,bestcombreal [3]]],
sortmatrise),MARGIN=2))

which (duplicated (cbind (goodblocks|[,blockcomb[2,bestcombreal [3]]],
sortmatrise),MARGIN=2))

which (duplicated (cbind (goodblocks[,blockcomb[l,bestcombreal[4]]1],
sortmatrise),MARGIN=2))

which (duplicated (cbind (goodblocks|[,blockcomb[2,bestcombreal [4]]],
sortmatrise) ,MARGIN=2))

#In what order was the matrix sorted?
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

}

print (rekkef)

sort (unique (rowMeans (results3[braindekser,]1)))
#Which columns make up the design matrix?
print (indeksliste+l)

printmat=cbind (designmatrise[,5],designmatrise[,4],designmatrise
[,3],designmatrise[,2],designmatrise[,1],designmatrisel[, 6],
designmatrise([, 7], sortmatrise[,c(10,11,24,25)])

colnames (printmat)=c ("A","B","C","D","E","F", "G","11", 12", "25", "
26")

xtable (printmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=stormatrise=cbind (combGenerator (designmatrise, combins

244

[,5]),g0odblocks[,blockcomb[1,14]],goodblocks[,blockcomb
[2,14]],g00odblocks[,blockcomb[1l,14]]*goodblocks[,blockcomb
[2,14]1])

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sqrt (max (diagonal[l: (len-3)]))/sgrt (min(diagonal[l: (len-3)
1))

print (sgrt (max (diagonal[(len-3) :1len]))/sqrt (min (diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds

matriseO=stormatrise=cbind (combGenerator (designmatrise,combins
[,2]),g00dblocks[,blockcomb[1l,14]],goodblocks[,blockcomb
[2,14]],g0odblocks[,blockcomb[1l,14]]*goodblocks[,blockcomb
[2,14]1])

diagonal2=diag(solve (t (matrisel) $+%matrise0))

print (sgrt (max (diagonal2[l: (len-3)]))/sqgrt (min(diagonal2[l: (len

-3)1)))
print (sgrt (max (diagonal2[(len-3) :len])) /sqrt (min (diagonal2([1l: (len
-3)1)))

save.image ("cyclic64_hadamard_72_4blocks.RData")

Code for section 4.2.6.1: A 2%, design, two blocks

install.packages ("xtable")
library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
install.packages ("pracma")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)

245

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat[,interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1,jl],
colnam[l+interact2[2,J]], collapse = "))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]l]*resl[,interact3[2, j]]
«resl[,interact3[3,3]11])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste (colnam[l+interact3([1l,j]],colnam[l+interact3([2,3j]],
colnam[l+interact3[3,3j]], collapse = ""))

}

colnames (res)=colnam

res

#Make all effects up to three-factor interactions
Generator3=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact2) +ncol (interact3)))
colnam=numeric (ncol (mat)+ncol (interact?2)+ncol (interact3))
for(i in l:ncol (mat)) {
resc[,i]l=mat [, 1]
colnam[i]=colnames (mat) [1]
}
for(j in l:ncol (interact2)) {
resc[, j+tncol (mat)]=resc[, interact2[1l, j]l]*resc[,interact2[2,J
1]
colnam[j+ncol (mat)]=(paste (colnam[interact2[1,]j]l],
colnam[interact2[2,3]], collapse = ""))
}
for(j in l:ncol (interact3)) {
resc[, j+tncol (mat) +ncol (interact2)]=resc|[, interact3[1, jl1x*

246

(paste (colnam[interact3[1l, j]],colnam[interact3[2,]j]],

resc[,interact3[2, j]]*resc[,interact3[3, 1]
colnam[interact3[3, 311,

colnam[j+ncol (mat)+ncol (interact2)]

=""))

collapse

}

colnam

colnames (resc)

resc

function (comb) {

b

Ds

det (t (comb) $*%comb)

ncol (comb)

=b-1
=nrow (comb)
detX

n

det (t (comb[,b])%*x%comb[,Db])

detXb

((detX/detXb) " (1/s))/n

Ds=

Ds

c(1,

matrix (data=
lllllllllllllllllllll!1/11_1!11_1!ll_llll_llll_lll!_llll_llll

hadaml

-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1, -1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1, -1,
-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1, -1,

ll 11711711 ll llillill ll ll ll 1! 11711711711711 ll ll ll llillillillill

1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,1,

-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,
711711711711 ll 1/ 1! llillillillill ll ll ll 11711711711711 1! ll ll l’,l,

-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,

_171!11_1!11_17_1I ll_lllll!_ll llllllllllll llll_ll_ll_ll_ll_ll_ll

-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,

i,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,
i,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,
ll 1/711711 ll 11 11711 11 1/ 1171/ 11711711 11 1/711711 llill lr 11711711 ll lr

_ll 11_11_11 1/ ll_ll_ll 11_11 1/ 1/ lr lr ll_ll_ll_ll_ll_ll_ll_ll_ll 1/ 1/

111111 ll1!ll_l!_ll_ll_ll_l!_ll_ll_llllllll 171!_111!_11_1111 11_11
-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,1,

-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,

1/1/11_11_1111_17_1717_1117_11 17_11 lll!_ll 17_11 11_1111_11_1111_17
i,-1,1,-1,1,1,-1,1,-1,1,-1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,

247

_1111_1111_1/11_11_1111_1711_1711_1711_1717_1117_1117_11111711_17
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,
_11111711_17_111117_11_111111_11_111111_11_1111_111111_11_171111

-1,-1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,
_11_11_11_111!1/1/11_11_17_11_111!lr1!1111_1111_17_1117_111111

-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,
1,-1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,11,1,-1,-1,-1,
1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,
-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,
i,1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,
-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,
-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,

-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,

lrll_lrl/_lr_ll ll_ll 1117_11 11_11_1/11 1! lll!llllll 1! 11_11_11_11
71171171I71171171171I71I71171171I71I711llllllllllllllllllill

ll_ll1!_1I_llll_llll_llll_ll1/1I_11_1!11_1!11_1I1!11_1!11
-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,

71! llill 117117111111 11711711111171/7]-!71!71! 111171171111 1!

-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,

=32)

32,ncol

hadaml[,2:32]

1,-1,1,-1,1),nrow

dmatrise

combn (factors, int)

int=3
fac=8
combins

=0

best
it

FALSE

#Valid2 is true if a blocking yielding Ds>0 for all combinations
#is found

valid2
while (valid2==FALSE) {

it+1

it
valid

FALSE

#valid is true if the 2°5 can be made

while(valid

FALSE) {

numeric (5)
dmatrise

indeksliste
sortmatrise

=nrow (sortmatrise),

=matrix (data=, nrow
ncol (sortmatrise))

nymatrise
ncol

248

indekser=c(32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for (i in 1:5) {
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the
#subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
#the subcolumns sum to zero
shuff=seqg(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where the
#subcolumnsum is not zero
badshuff=rep (0, 31)
badshuffmat=matrix (data=NA, nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
#sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser([i]
designsplit=cbind(designsplit,
sortmatrise[((v-1) *indekser[i]+1) : (v+¥indekser[i]),])
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup,
#to check if all
#subcolumns in each column sum to zero
for(t in 1:31) {
if ((sum(colSums (designsplit) [seq(from=t,
to=(31%(-1+(32/indekser[i]))+t),by=31)1>0)>0)) {
#Save the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum (badindeks)>0) {
shuff=shuff[-badindeks]

249

}
shuff=sample (shuff)
first=shuff[l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {
#Radindekser is the indices of the rows to be included in
#the subcolumn, Sort sortmatrises indices to make -1 come
first, then 1
radindekser=(k—-1) rindekser[i]+order (sortmatrise[((k-1) %
indekser[i]+1) : (kxindekser[i]),shuff[iter]], decreasing =
FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,
shuff[iter]]))>0) {
iter=iter+l
radindekser=(k—-1) rindekser[i]+order (sortmatrise[((k—-1) %
indekser[i]+1) : (kxindekser[i]),shuffliter]], decreasing
= FALSE)
}
indeksliste[i]=shuff[iter]
for(r in l:length(radindekser)) {
nymatrise[((k-1) *indekser[i]+r), 1=
sortmatrise[radindekser|[r],]
}
sortmatrise[((k-1) *indekser[i]+1) : (k*indekser[i]), 1=
nymatrise[((k—1) *indekser[i]+1) : (kxindekser[i]),]

}

valid=sum(is.na (indeksliste))<1

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrisel[, 3] *
designmatrise([, 4] xdesignmatrisel[,5])
designmatrise=cbind(designmatrise,designmatrisel[,2]*
designmatrise[, 4] xdesignmatrise([,5])
designmatrise=cbind(designmatrise,designmatrise[,5]~*
designmatrise[, 3] xdesignmatrise([, 2] xrdesignmatrise[,1])
colnames (designmatrise)=c("E","D",6"C","B","A", "F", "G","H")
blokker=sortmatrise[, —indeksliste]

250

ending=ncol (blokker)
trouble=Generator3 (designmatrise)
valid2=sum (rowSums (abs (t (blokker[,]) %$*%trouble)==32)==0)
if(valid2>0) {
goodblocks=blokker[,which (rowSums (abs (t (blokker[,]) %*%
trouble)==32)==0)]
num=ncol (goodblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combins))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins(, j
1)y
goodblocks|[,1])
results3[i, j]=Ds (stormatrise)

braindekser=which (rowSums (results3==0)==0)
best=max (rowSums (results3[braindekser,]) /ncol (combins))

}

#Find the order in which the matrix was sorted
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

#In what order was the matrix sorted?

print (rekkef)

unique (rowMeans (results3[braindekser, 1))

#Which columns were good blocks?

which (duplicated (cbind (goodblocks[,braindekser],
sortmatrise), MARGIN=2)) -

251

length (braindekser)+1 #(+1 for the removed column)
#Which columns make up the design matrix?

print (indeksliste+l)

#Frequencies

for(i in l:length(braindekser)) {

print (table (results3[braindekser[i],]))

}

printmat=cbind(designmatrise([,5],designmatrisel, 4],
designmatrisel[, 3],
designmatrise[,2],designmatrise[,1],designmatrisel[, 6],
designmatrisel[, 7],
designmatrise[, 8], goodblocks|[,braindekser])

colnames (printmat)=c ("aA","B","C","D", "E", "F", "G", "H",
"b1l", "b2", "b3","b4")

xtable (printmat, digits = 0)
smallprintmat=cbind(designmatrise[, 6],designmatrisel,5],
designmatrise([,4],designmatrise[,3],designmatrisel[,2],
designmatrise[,1])

colnames (smallprintmat)=c("A","B","C","D","E","F")
xtable (smallprintmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (designmatrise,

combins[,which.max (results3[1,])]),go0odblocks[,1])

diagonal=diag(solve (t (matrisel) %$*x%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)]1))/sqrt (min(diagonal[l: (len-1)
1)))

print (sqrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (designmatrise,

combins|[,which.min (results3[1,])]),go0odblocks[,1])

diagonal2=diag(solve (t (matrisel) $*%matrise0))

print (sqrt (max (diagonal2[1l: (len—-1)]))/sgrt (min(diagonal2[l: (len
-1

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.1: A 2}, design, four blocks

252

install.packages ("xtable")
library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
install.packages ("pracma")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1l]="K"
for(i in 1l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact?2)) {
res=cbind (res, resl[,interact2[1, jl]l+*resl[,interact2[2,J11)
colnam[j+tl+length (interest)]=(paste(colnam[l+interact2[1l, jl11],
colnam[l+interact2[2,j]], collapse = "'))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, jl]l*resl[,interact3([2,J]]1~*
resl[,interact3[3,J11)
colnam[jt+l+length (interest) +ncol (interact2)]=(paste (colnam[1l+
interact3([1l,jl],colnam[l+interact3([2,J]],colnam[1l+
interact3[3,3]], collapse = ""))
}
colnames (res)=colnam
res

#Make all effects up to three-factor interactions
Generator3=function (mat) {
interact2=combn (ncol (mat), 2)

253

interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact?2)+ncol (interact3)))
colnam=numeric (ncol (mat)+ncol (interact2) +ncol (interact3))
for(i in l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [i]
}

for(j in l:ncol (interact2)) {

resc[, j+ncol (mat)]=resc[, interact2[1, j]]+resc(, interact2(2, j
1]

colnam[j+ncol (mat)]=(paste(colnam[interact2[1l, j]],colnam[
interact2([2,3j]], collapse = ""))

}
for(j in l:ncol (interact3)) {
resc[, jtncol (mat) +ncol (interact2) J=resc|[,interact3[1l, j]]*resc
[,interact3[2, j]l]l*resc[,interact3[3, J]]
colnam[j+ncol (mat)+ncol (interact2)]=(paste(colnam[interact3
[1,3]],colnam[interact3[2,3]], colnam[interact3([3,3]],
collapse = "))
}
colnames (resc)=colnam
resc

Ds=function (comb) {
b=ncol (comb)
s=b-3
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,c (b-2,b-1,b)])%*%comb[,c (b-2,b-1,b) 1)
Ds=((detX/detXb) " (1/s))/n
Ds

hadam2=-matrix(data=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,1,1,1,

i,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
i,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,
i,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,

254

1111 1! 11_11_11_17_1117111111_11_17_11_1/ 1! 111711_17_11_11_11111/

,1,-1,-1,-1,-1,

i,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,

-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1, -1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,
1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,
-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,
1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,
-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,
1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,
-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,1,
1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,
1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,
1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,
-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,
-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,
-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,
-1,1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1, -1,
-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,
-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,1,1,-1, -1,
1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,
-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,
-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,
1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,1,
-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,

11_1!_lll!ll_ll1!ll_l!1/ll_ll_ll1!_1I_llll_ll_llllll_llllll_ll
i,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,

=32)

32,ncol

1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1),nrow=

dmatrise
int

hadam2[,2:32]

=3

combn (fac, int)

fac=8
combins

255

best
it=0
#whi
brai
whil

it

-0

le (best<0.1) {

ndekser=NULL

e (length (braindekser)==0) {
=it+1

valid=FALSE
while (valid==FALSE) {

indeksliste=numeric (5)
sortmatrise=dmatrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),ncol=ncol (
sortmatrise))
indekser=c(32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seg(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:5){
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
the subcolumns sum to zero
shuff=seq(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where the
subcolmnsum is not zero
badshuff=rep (0, 31)
badshuffmat=matrix (data=NA,nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit, sortmatrise[((v-1)*indekser
[1]+1) : (vxindekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup, to check if
all subcolumns in each column sum to zero
for(t in 1:31){

256

if ((sum(colSums (designsplit) [seq(from=t,to=(31* (-1+(32/
indekser[i]))+t),by=31)1>0)>0)) {
#ace the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {
#Radindekser is the indices of the rows to be included in
the subcolumn, Sort sortmatrises indices to make -1
come first, then 1
radindekser=(k—-1) xindekser[i]+order (sortmatrise[((k—-1) %
indekser[i]+1) : (kxindekser[i]),shuff[iter]],
decreasing = FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,
shuffl[iter]]))>0) {
iter=iter+l
radindekser=(k-1) rindekser[i]+order (sortmatrise[((k—-1) *
indekser[i]+1) : (kxindekser[i]),shuffliter]],
decreasing = FALSE)
}
indeksliste[i]l=shuff[iter]
for(r in l:length(radindekser)) {
nymatrise[((k—1) *indekser[i]+r),]=sortmatrise]|
radindekser[r],]
}
sortmatrise[((k-1) *indekser[i]+1) : (kxindekser[i]), 1=
nymatrise[((k—1) xindekser[i]+1) : (kxindekser[i]),]

}
valid=sum(is.na (indeksliste))<1
print (indeksliste)

257

#Add one to make it correspond to matrix in thesis (because
of removed column)

designmatrise=sortmatrisel, indeksliste]
designmatrise=cbind(designmatrise,designmatrisel[, 3] *
designmatrise[, 4] xdesignmatrise([,5])
designmatrise=cbind(designmatrise,designmatrise[,2]~*
designmatrise[, 4] designmatrise([,5])
designmatrise=cbind(designmatrise,designmatrise[,5] *
designmatrise([, 3] xdesignmatrise([, 2] *designmatrise[,1])
colnames (designmatrise)=c("E","D","C","B","A", "F","G","H")
blokker=sortmatrise[, -indeksliste]
ending=ncol (blokker)
trouble=Generator3 (designmatrise)
#print (rowSums (abs (t (blokker([,])%$*x%trouble)==32))
valid2=sum (rowSums (abs (t (blokker[,])%$*%trouble)==32)==0)
if (valid2>0) {
goodblocks=blokker[,which (rowSums (abs (t (blokker[,])%$x%trouble
)==32)==0)]
num=ncol (goodblocks)
blockcomb=combn (num, 2)
results3=matrix (data=NA,nrow=ncol (blockcomb), ncol=ncol (
combins))
k=0
#Iterating over blocks
for(i in 1l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins|, j
1) ,go0odblocks[,blockcomb[l,i]],goodblocks[,blockcomb
[2,1]],goodblocks[,blockcomb[1l,1i]]+*goodblocks]|,
blockcomb[2,1]1])
print (stormatrise)
results3[i, j]=Ds(stormatrise)

braindekser=which (rowSums (results3==0)==0)

258

bestres=results3[braindekser,]

bestmeans=rowMeans (results3[braindekser,])

mini=apply (results3[braindekser,], 1, min)

maxi=apply (results3([braindekser,], 1, max)

max (maxi)

max (mini)

print (sort (unique (mini)))

print (sort (unique (bestmeans)))

print (sort (unique (maxi)))

which (bestmeans>0.9288)

which (mini>0.853)

bestcomb=which (bestmeans>0.9288)

#Which combins were good blocks? +1 because of removed row of
matrix

bestcombreal=braindekser [bestcomb]

for(i in 1l:length (bestcombreal)) {

print (cat ("Current _,comb:_ ", 1))

print (which (duplicated (cbind (goodblocks[,blockcomb[1l,bestcombreal
[1i]1]],sortmatrise), MARGIN=2)))

print (which (duplicated (cbind (goodblocks|[,blockcomb|[2,bestcombreal
[1]1]],sortmatrise), MARGIN=2)))

#Print frequencies

for(i in l:nrow(bestres[bestcomb,])) {
print (table (bestres[bestcomb,] [i,]1))
}

#In what order was the matrix sorted?
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=3

}
print (rekkef)
sort (unique (rowMeans (results3[braindekser,]1)))

259

#Which columns make up the design matrix?
print (indeksliste+1)

printmat=cbind (designmatrise[,5],designmatrise[,4],designmatrise
[,3],designmatrise[,2],designmatrise[,1],designmatrisel[, 6],
designmatrise[,7],designmatrise([, 8], sortmatrisel[, (c
(9,10,11,12,13,14,18,19,22,23,25,26,31,32)-1)1)

colnames (printmat)=c("A","B","Cc","p","g","g","Gg", """, "9","10","11
mowiam, my3m, m4r, 18", "19mn, 22", 23", "5 "oe", "31","32")

xtable (printmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=stormatrise=cbind (combGenerator (designmatrise, combins
[,27]),g00dblocks[,blockcomb[1l,8]],goodblocks[,blockcomb
[2,8]],g00dblocks[,blockcomb[1l,8]]*goodblocks[,blockcomb
[2,811)

diagonal=diag(solve (t (matrisel) %$*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-3)]))/sqrt (min(diagonal[l: (len-3)
1)))

print (sgrt (max (diagonal[(len-3) :1len]))/sqgrt (min (diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds

matriseO=stormatrise=cbind (combGenerator (designmatrise, combins
[,1]),goodblocks[,blockcomb[1l,8]],goodblocks[,blockcomb[2,8]],
goodblocks|[,blockcomb[1l,8]]*goodblocks[,blockcomb[2,8]])

diagonal2=diag (solve (t (matrisel) %$x%matrise0))

print (sgrt (max (diagonal2[1l: (len-3)1]))/sqgrt (min(diagonal2[1l: (len
-3)1)))

print (sgrt (max (diagonal2[(len-3) :1len])) /sgrt (min (diagonal2[1l: (len
-3)1)))

save.image ("cyclic32_hadamard_83_4blocks.RData")

Code for section 4.2.6.5: A 2,* design, two blocks

install.packages ("pracma")
library (pracma)
#Defining some functions at first

260

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {

interact2=combn (length (interest), 2)

interact3=combn (length (interest), 3)

inter=t (t (rep(l,nrow(mat))))

res=inter

resl=matrix (data=NA, nrow=nrow (mat),ncol=length(interest))

colnam=numeric (8)

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

}

for(j in l:ncol (interact2)) {
res=cbind(res,resl[,interact2[1l, j]l]l*resl[,interact2([2,73]1])
colnam[j+1l+length (interest)]=(paste(colnam[l+interact2[1, jl1]1,
colnam[l+interact2[2,j]], collapse = ''))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]l]*resl[,interact3[2,J]]~*
resl[,interact3[3,3]1])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3[1l, j]],colnam[l+interact3(2,3]],
colnam[l+interact3([3,j]l], collapse = "'))

}

colnames (res)=colnam

res

#Make effects up to four—-factor interactions
combGenerator2=function (mat, interest) {
interact2=combn (length (interest), 2)
inter=t (t (rep(1l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (7)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])

261

resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl],
colnam[l+interact2[2,3]], collapse = ""))

}

colnames (res)=colnam

res

#Make all effects up to three-factor interactions
Generator3=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+
ncol (interact?)+ncol (interact3)))
colnam=numeric (ncol (mat)+ncol (interact?2) +ncol (interact3))
for(i in 1l:ncol (mat)) {
resc[,i]=mat[, 1]
colnam[i]=colnames (mat) [1]
}

for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc|[, interact2([1l, j]]*resc[, interact2[2,j
11

colnam[j+ncol (mat)]=(paste(colnam[interact2[1,3]],

colnam[interact2[2,j]], collapse = ""))

}

for(j in l:ncol (interact3)) {
resc[, jtncol (mat) +ncol (interact2)]=resc|[,interact3[1, j]]1~*
resc[,interact3[2, j]]*resc[,interact3[3, 1]
colnam[j+ncol (mat)+ncol (interact?2)]=
(paste(colnam[interact3[1l, j]],colnam[interact3(2, j]1],
colnam[interact3([3,j]], collapse = ""))

}

colnames (resc)=colnam

resc

262

#Make all effects up to three-factor interactions
Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact2)))
colnam=numeric (ncol (mat)+ncol (interact2))
for(i in l:ncol (mat)) {
resc[,i]=mat[, i]
colnam[i]=colnames (mat) [i]
}
for(j in l:ncol (interact2)) {

resc[, jtncol (mat)]=resc([, interact2[1l, j]]*resc[, interact2[2,]
1]

colnam[j+ncol (mat)]=(paste (colnam[interact2[1l,]jl],

colnam[interact2[2,]]], collapse = "7))

}

colnames (resc)=colnam
resc

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b])%$*%comb[,b])
=((detX/detXb) " (1/s))/n
Ds

hadaml=matrix (data=c(1,
1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,

1,1,1,1,1,1,1,1,1,1,1,1, ’ ’ ’
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1, - 1 -1,1,1,-1,
_171711_17_111717 1,-1,1,1,-1,-1,1,1,-1 111111 1, 111111_11
-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,- 1,*1,1,1, i,-1,1,1,-1,-1,
i1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,
llllllll_ll_ll_ll 1117111111_11_ y —1,-1,1,-1,1,-1,- 1111 171111
-1,1,-1,-1,1,-1,1,1,-1,11,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,
-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,11,1,1,-1,-1,-1,-1,1,1,1,1,-1,

263

-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,

-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,1,11,1,1,1,-1,-1,-1,-1,-1,-1,

-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,

1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,
i,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,
1!ll_ll_llll1!11_1!1/1/ll_ll11_11_111!11_1!_111I_11llll_ll_llllll

-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,

lr 11 1/ 1/ 1/ ll711711711711711711711711 lr 11 1/ 1/ 11711 11711711 1/ 11711
_llll_llllll_ll_llllll_llll_ll_ll1/11_11_1!ll_llllll_ll_llllllll
-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,

i,1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,
ll_ll1!_1I1I1!_111!_111I_11llllllllllllllllllllllllllllllll_ll_ll
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,

-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,

_ll llll_ll_llll 11_11_111111_11_11_11_11 llll_ll_llll 11_11_111111_11

-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,

_ll_llllll_ll_llllll_llllll ll1!_1I_11_11_1!llllllll_ll_ll_l!_ll_ll

-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,

1!1/1/ll_ll_ll_ll_lllll!_ll_llll llllll_ll_ll_ll_llllllll 11_11_11

llillill 11711 1! 11711 11711711 11711 11 11711711 ll 1’71, llillill 11711 ll ll

_ll 11_11_111111 llllllllllll ll_11_11_1!_ll_ll_ll_ll_ll_ll_ll_ll_ll_ll

-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,

i,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,

_11_1111 11_11_111111_11_17111111 11_11_111/11_11_1711_17_111711_1717

_11_11 ll ll_ll_ll 11_11 11_11 1/ 11_11_11 11_11 lr ll_ll_ll lr ll_ll ll_ll lr lr

ll 1171171171/71171171171/711 1/ 1/ 1/ 11711711711711 lr ll 1/ 1/ ll ll lr llill

-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,

i,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,11,1,1,1,-1,-1,-1,

264

_lr1!1/1/11_11_111111_11_17_11_1111 1’l!_ll_ll11_1117_1111_111111_11

ll_ll ll_ll_ll lr 1I_ll 11_11 lr_lr ll_ll_ll ll_ll ll_ll
1) ,nrow=32,ncol=32)
dmatrise=hadaml[,2:32]

int=3
fac=9
combins=combn (factors, int)

best=0
it=0
#while (best<0.1) {
valid2=FALSE
while (valid2==FALSE) {
it=it+1
valid=FALSE
while (valid==FALSE) {
indeksliste=numeric (5)
sortmatrise=dmatrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),
ncol=ncol (sortmatrise))
indekser=c (32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seq(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:5){
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the
#subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
#the subcolumns sum to zero
shuff=seqg(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where
#the subcolumnsum is not zero
badshuff=rep (0,31)
badshuffmat=matrix (data=NA,nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {

265

#designsplit is a matrix with the subcolumns which
#are sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser([i]
designsplit=cbind(designsplit, sortmatrise[((v-1) *
indekser[i]+1) : (v¥indekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup,
#to check if all subcolumns in each column sum to zero
for(t in 1:31) {
if ((sum(colSums (designsplit) [seq(from=t,
to=(31%(-1+(32/indekser[i]))+t),by=31)1>0)>0)) {
#save the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
1f (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[1l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {
#Radindekser is the indices of
#the rows to be included
#in the subcolumn.
#Sort sortmatrises indices to make -1
#come first
radindekser=(k-1) xindekser[i]+
order (sortmatrise[((k-1) *
indekser[i]+1) : (kxindekser[i]),
shuff[iter]], decreasing = FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise]
radindekser, shuff[iter]]))>0) {
iter=iter+1l
radindekser=(k-1) xindekser[i]+order (

266

sortmatrise[((k-1) %
indekser[i]+1) : (kxindekser[i]),
shuff[iter]],decreasing = FALSE)

}

indeksliste[i]=shuff[iter]

for(r in l:length(radindekser)) {
nymatrise[((k—-1) xindekser[i]+r),]=
sortmatrise[radindekser([r],]

}

sortmatrise[((k-1) xindekser[i]+1) : (kxindekser[i]), 1=

nymatrise[((k-1) *indekser[i]+1) : (kxindekser[i]),]

}
valid=sum(is.na (indeksliste))<1
print (indeksliste)

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrisel[,3]x*
designmatrise([, 4] *designmatrise([,5])
designmatrise=cbind (designmatrise,designmatrisel[,2]*
designmatrise[, 4] xdesignmatrise[,5])
designmatrise=cbind(designmatrise,designmatrise[,5]*
designmatrise[, 3] *xdesignmatrisel[,2])
designmatrise=cbind(designmatrise,designmatrisel[,4]*
designmatrise([, 3] *designmatrise([, 2] xdesignmatrisel[,1])
colnames (designmatrise)=c("E","D","C","B","A","F",""G", "H","I")
blokker=sortmatrise[, —-indeksliste]
ending=ncol (blokker)
trouble=Generator3 (designmatrise)
valid2=sum (rowSums (abs (t (blokker[,])%+x%trouble)==32)==0)
if(valid2>0) {
goodblocks=blokker[,which (rowSums (abs (t (blokker([,]) %$x%
trouble)==32)==0)]
num=ncol (goodblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combins))
k=0
#Iterating over blocks
for (i in 1:num) {

#Iterating over combinations

for(j in l:ncol (combins)) {

267

k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins|(, jl),
goodblocks|[,i])

results3[i, j]=Ds(stormatrise)

braindekser=which (rowSums (results3==0)==0)
best=max (rowSums (results3[braindekser,]) /ncol (combins))

}

rowMeans (results3[braindekser, 1)
mini=apply (results3[braindekser,], 1, min)
maxi=apply (results3[braindekser,], 1, max)
max (maxi)

max (mini)

#In what order was the matrix sorted?
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

}
print (rekkef)
sort (unique (rowMeans (results3[braindekser,])))
#Which columns were good blocks?
which (duplicated (cbind (goodblocks|[,braindekser], sortmatrise),
MARGIN=2)) -
length (braindekser)+1 #(+1 for the removed column)
#Which columns make up the design matrix?
print (indeksliste+l)
#Frequencies
for(i in l:length(braindekser)) {
print (table (results3[braindekser[i],]))
}

printmat=cbind(designmatrise([,5],designmatrisel, 4],

268

designmatrisel[, 3],
designmatrise([,2],designmatrise[,1],designmatrisel[, 6],
designmatrisel(, 7],

designmatrise[,8],designmatrise([, 9],goodblocks[,braindekser])
colnames (printmat)=c("A","B","C","D","E","F","G", "H","I", "b1",
"p2", "b3", "b4", "b5", "b6", "b7", "b8")

xtable (printmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (designmatrise,

combins|[,which.max (results3[1,]1)]),goodblocks[,1])

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sqrt (max (diagonal[l: (len-1)1]))/sgrt (min(diagonal[l: (len-1)
1))

print (sgrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (designmatrise,

combins|[,which.min(results3[1,]1)]),goodblocks[,1])

diagonal2=diag(solve (t (matrisel) $+%matrise0))

print (sgrt (max (diagonal2[l: (len-1)]))/sqgrt (min(diagonal2[1l: (len
-1)1)))

print (sgrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1)))

Code for section 4.2.6.6: A 27, design, four blocks

install.packages ("xtable")
library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
install.packages ("pracma")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions

combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))

269

res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat[,interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl],
colnam[l+interact2[2,j]], collapse = ""))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl [, interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3([3,73]1])
colnam[j+l+length (interest) +ncol (interact2)]=(paste (colnam|[1l+
interact3[1,j]],colnam[l+interact3[2,j]],colnam[1+
interact3([3,3j]], collapse = '"))
}
colnames (res)=colnam
res

#Make all effects up to three-factor interactions
Generator3=function (mat) {
interact2=combn (ncol (mat), 2)
interact3=combn (ncol (mat), 3)
resc=matrix (data=NA, nrow=nrow (mat),ncol=(ncol (mat)+ncol (
interact?2)+ncol (interact3)))
colnam=numeric (ncol (mat)+ncol (interact?2) +ncol (interact3))
for(i in l:ncol (mat)) {
resc[,i]l=mat [, 1]
colnam[i]=colnames (mat) [1]
}

for(j in l:ncol (interact2)) {

resc[, j+tncol (mat)]=resc[, interact2[1l, j]l]*resc[,interact2[2,j
1]

colnam[j+ncol (mat)]=(paste(colnam[interact2[1l, j]],colnam[
interact2[2,3j]], collapse = '7))

270

for(j in l:ncol (interact3)) {

}

resc|,interact3[1, j]]*resc

resc[, jtncol (mat) +ncol (interact?2)]

[,interact3[2, j]]*resc[,interact3[3,j]]
colnam[j+ncol (mat) +ncol (interact2)]=(paste (colnam[interact3

colnam[interact3[3, 311,

[1,3]],colnam[interact3([2,3]],

collapse = "))

}

colnam

colnames (resc)

resc

det (t (comb) $*%comb)

ncol (comb)

=function (comb) {

=nrow (comb)

detX

detXb=det (t (comb[,c(b-2,b-1,b)])%*%comb[,c(b-2,b-1,b)])

b
n

Ds

((detX/detXb) "~ (1/s))/n

Ds=

Ds

c(1,1,1,1,1,1%,1,1,1,1,1,1,1,1,1,1,1,1,,1,1,1,

matrix (data=

hadam2

i,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,
i,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,
i1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,

ll 1/ 1! ll ll ll ll 1/ 1! ll llill 11711 11711 11711 11711 11711 11711 11711 l’,l,
1,1,-1,-1,-1,-1,

11_1711_17_11 ll_ll lll!_ll 11_11_1111_111111_1111

-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,
i1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,
-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,11,1,1,1,
i,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,
-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,

i,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,
-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,11,1,-1,-1,-1,1,

271

-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
i,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1, 1,
1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,
-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,
-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,
-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,
-1,1,1,-1,1,-1,-1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1, -1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,
-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,1,1,1,-1, -1,
i,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,
-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,
-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,
1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,1,
-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,

1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,

i,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,
i,1,-1,-1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,

1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,

=32)

32,ncol

i,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1),nrow=

dmatrise
int

hadam2 [, 2:32]

=3

=combn (fac, int)

fac=9
combins

=0

best

NULL

#while (best<0.1) {
braindekser

it=0

==0) {

while (length (braindekser)

it+1

it
valid

FALSE

FALSE) {

while(valid

numeric(5)

dmatrise
matrix (data=,nrow

sortmatrise))

indekser

indeksliste
sortmatrise

ncol (

nrow (sortmatrise),ncol=

nymatrise

c(32,16,8,4,2)

272

#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 32, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:5){
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
the subcolumns sum to zero
shuff=seq(from = 1, to = 31, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where the
subcolmnsum is not zero
badshuff=rep (0, 31)
badshuffmat=matrix (data=NA, nrow =(32/indekser[i]),ncol=31)
#V iterates over the same numbers as k
for(v in 1:(32/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit, sortmatrise[((v-1)+indekser
[1]1+1) : (vxindekser[i]),])
}
#Remove the column with zeroes used when initialising
designsplit=designsplit ([, -1]
#Go through all columns in the original setup, to check if
all subcolumns in each column sum to zero
for(t in 1:31){
if ((sum(colSums (designsplit) [seq(from=t,to=(31* (-1+(32/
indekser[i]))+t),by=31)1>0)>0)) {
#ace the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum (badindeks)>0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[1l]

273

iter=1
#Find row indices based on the first ok shuff
for(k in 1:(32/indekser[i])) {
#Radindekser is the indices of the rows to be included in
the subcolumn, Sort sortmatrises indices to make -1
come first, then 1
radindekser=(k-1) rindekser[i]+order (sortmatrise[((k-1) %
indekser[i]+1) : (k#indekser[i]),shuffliter]],
decreasing = FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,

shuff[iter]]))>0) {
iter=iter+l
radindekser=(k—-1) rindekser[i]+order (sortmatrise[((k—-1) %

indekser[i]+1) : (kxindekser[i]),shuff[iter]],
decreasing = FALSE)

}

indeksliste[i]=shuff[iter]

for(r in l:length(radindekser)) {

nymatrise[((k-1) xindekser[i]+r),]=sortmatrise]

radindekser|[r],]

}

sortmatrise[((k-1) *indekser[i]+1) : (k*indekser[i]), 1=

nymatrise[((k—1) *indekser[i]+1) : (kxindekser[i]),]

}

valid=sum(is.na (indeksliste))<1

print (indeksliste)

#Add one to make it correspond to matrix in thesis (because
of removed column)

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrise[, 3] *
designmatrise([, 4] xdesignmatrise([,5])
designmatrise=cbind(designmatrise,designmatrisel[,2]*
designmatrise[, 4] *designmatrise([,5])
designmatrise=cbind(designmatrise,designmatrise[,5]~*
designmatrise[, 3] xdesignmatrise([,2])
designmatrise=cbind(designmatrise,designmatrisel[,4]*
designmatrise([, 3] xdesignmatrise[, 2] *designmatrise[,1])

274

colnames (designmatrise)=c("E","D",6"C","B","A", "F", "G","H","I")
blokker=sortmatrise[, —indeksliste]
ending=ncol (blokker)
trouble=Generator3 (designmatrise)
#print (rowSums (abs (t (blokker ([,]) $*x%trouble)==32))
valid2=sum (rowSums (abs (t (blokker[,]) %$*%trouble)==32)==0)
if(valid2>0) {
goodblocks=blokker[,which (rowSums (abs (t (blokker[,]) %$*%trouble
)==32)==0)]
num=ncol (goodblocks)
blockcomb=combn (num, 2)
results3=matrix (data=NA,nrow=ncol (blockcomb), ncol=ncol (
combins))
k=0
#Iterating over blocks
for(i in 1l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins|[, J
1) ,g00dblocks[,blockcomb[1l,i]],goodblocks[,blockcomb
[2,1]],g00odblocks[,blockcomb[l,1]]*goodblocks](,
blockcomb[2,1]1]1)
i print (stormatrise)
results3[i, j]=Ds (stormatrise)

braindekser=which (rowSums (results3==0)==0)

bestres=results3[braindekser,]
bestmeans=rowMeans (results3[braindekser,])
mini=apply (results3[braindekser,], 1, min)
maxi=apply (results3|[braindekser,], 1, max)
print (sort (unique (mini)))

print (sort (unique (bestmeans)))

print (sort (unique (maxi)))

which (bestmeans>0.925)

which (mini>0.853)

275

bestcomb=which (bestmeans>0.925)
#Which combins were good blocks? +1 because of removed row of
matrix
bestcombreal=braindekser [bestcomb]
for(i in 1l:length (bestcombreal)) {
print (cat ("Current _comb: ", 1))
print (which (duplicated (cbind (goodblocks[,blockcombl1,
bestcombreal[i]]], sortmatrise), MARGIN=2)))
print (which (duplicated (cbind (goodblocks|[,blockcomb[2,
bestcombreal[i]]], sortmatrise), MARGIN=2)))

#Print frequencies
for(i in l:nrow (bestres[bestcomb,])) {
print (table (bestres[bestcomb,] [i,]1))

#In what order was the matrix sorted?
rekkef=numeric (nrow (dmatrise))
for(i in l:nrow(dmatrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (dmatrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

}

print (rekkef)

sort (unique (rowMeans (results3[braindekser,])))
#Which columns make up the design matrix?
print (indeksliste+l)

printmat=cbind(designmatrise([,5],designmatrise[,4],designmatrise
[,3],designmatrise[,2],designmatrise[,1],designmatrisel[, 6],
designmatrise[,7],designmatrise[, 8],designmatrisel[, 9],
sortmatrisel[, (c(11,12,25,26)-1)1)

colnames (printmat)=c ("A","B","C","D","E","F","G","H","I","11","12
", m25m","26M)

xtable (printmat, digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=stormatrise=cbind(combGenerator (designmatrise, combins

276

[,7]),go0odblocks[,blockcomb[1l,25]],goodblocks[,blockcomb
[2,25]],g00dblocks[,blockcomb[1l,25]]*goodblocks[,blockcomb
[2,25]])

diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sqrt (max (diagonal[l: (len-3)]))/sgrt (min(diagonal[l: (len-3)
1))

print (sgrt (max (diagonal[(len-3) :1len]))/sqrt (min (diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds

matriseO=stormatrise=cbind (combGenerator (designmatrise,combins
[,58]),goodblocks[,blockcomb[1l,25]],goodblocks[,blockcomb
[2,25]],g00dblocks[,blockcomb[1l,25]]*goodblocks[,blockcomb
[2,25]])

diagonal2=diag(solve (t (matrisel) $+%matrise0))

print (sgrt (max (diagonal2[l: (len-3)]))/sqgrt (min(diagonal2[l: (len

-3)1)))
print (sgrt (max (diagonal2[(len-3) :len])) /sqrt (min (diagonal2([1l: (len
-3)1)))

save.image ("cyclic32_hadamard_94_4blocks.RData")

Code for section 4.3.1: Dividing a 2;"%_26

the blocking of the 2'9~!! design

design into two blocks using

library (svMisc)

#Function making the design columns
designGenerator<-function (factors, n) {
design=matrix (data=NA,nrow=n,ncol=16)
for(i in 1: (factors)) {
vect=numeric (271)
vect[1: (27 (i-1))]1=-1
vect [((27 (1i-1))+1):(2"71i)]1=1
design[,i]=rep(vect,times=(n/(271)))
}
int=fac-2
combins=combn (factors, int)
for(j in l:ncol (combins)) {

277

design(, (5+7)]=design[, combins([1l, j]]*design[,combins[2, j]]*
design[, combins([3, j]]
}
design([, 5+ncol (combins)+1]=design[,1l]*xdesign([, 2] xdesign([, 3] ~*
design[,4]+design[, 5]
design

#fac=#number of factors in design

fac=5

#fac2=#number of factors in design, w. combos
fac2=16

#n=number of rows in total design

n=2"fac

#m=mirror image pairs

m=n/2

design=designGenerator (fac,n)

colnames (design) <-cbind("aA","B","C","D","E","F", "G", "H","1","J",
"KM, "L","M","N","O","P")

#num=number of combinations
num=ncol (combn (m, (m/2)))/2

combinator <- function(n, m) {
index <- combn (seq_len(n), m)
index <- t(index) + (seg_len(ncol(index)) - 1) * n
result <- rep(0, nrow(index) =x n)
result [index] <- 1
matrix (result, ncol = n, nrow = nrow(index), byrow = TRUE)

perm=t (combinator (16, 8))
perml=2+perm[,1: (ncol (perm)/2)]1-1

allblocks=matrix (data=NA, nrow=n,ncol=num)
for(i in 1:num) {
for(j in 1l:m){
allblocks[j,il=perml[j,1i]
}

for(k in (m+1) :n) {

278

allblocks[k,i]=allblocks[n-k+1,1i]

#Vector with interesting combinations

#Let int be the number of factors of interest
int=3

combins=combn (fac2, int)

Generator2=function (mat) {
interact2=combn (ncol (mat), 2)
resc=matrix (data=NA, nrow=nrow (mat),ncol=136)
colnam=numeric (136)
for(i in l:ncol (mat)) {
resc[,i]=mat[, i]
colnam[i]=colnames (mat) [i]
}
for(j in l:ncol (interact2)) {
resc[, jtl6]=resc[,interact2[1l, jl]l*resc[,interact2([2, j]]
colnam[j+16]=(paste(colnam[interact2[1l, j]],colnam[interact?2
(2,311,
collapse = "))
}
colnames (resc)=colnam
resc

#Remove bad blocks
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,])%*%
Generator?2 (design))==24)>0))1]
allblocks=allblocks [, —c(which (rowSums (abs (t (allblocks[,])%*
Generator2 (design))==16)==32))]
allblocks=allblocks [, -c(which (rowSums (abs (t (allblocks([,])%*%
Generator2 (design))==32)>0))]
#Generate design matrix
#Let interest be a vector with the factors of interest
#Let mat be the design matrix
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
#Make column for constant

o\

279

inter=t (t (rep(l,nrow(mat))))

res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))

colnam=numeric (8)

colnam[1]="K"

for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

}

for(j in l:ncol (interact?2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2[2,]311])
colnam[j+4]=(paste(colnam[l+interact2[1, 11,
colnam[l+interact2[2,j]],collapse = ''))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, jl]l*resl[,interact3[2,J]]~*
resl[,interact3[3,J11)
colnam[j+7]=(paste(colnam[l+interact3[1, j11,
colnam[l+interact3[2,3jl1],
colnam[l+interact3[3,3j]], collapse = '"))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*%comb[,b])
Ds=((detX/detXb) " (1/s))/n
Ds

#Testing pattern D2

goodblocks=allblocks

combin2=combn (32, 3)

num=ncol (goodblocks)
results3=matrix (data=NA, nrow=num, ncol=ncol (combin2))

280

k=0
blokk=c(rep(1l,32),rep(-1,32))
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combin2)) {
k=k+1
Bl=design[which (goodblocks|[,i]==1),]
B2=design([which (goodblocks[,i]==-1),]
stormatrise=rbind(cbind(B1,Bl),cbind(B1l,-B1l),cbind(B2,B2),
cbind (B2, -B2))
colnames (stormatrise)<-cbind("A","B","C","D","E","F",
"G", "H","I","J",
"K","L","M","N","O","P", "A2","B2","C2", "D2", "E2", "F2", "G2",
"H2","I2","J2", "K2",""L2", "M2", "N2", "02", "P2")
StorDs=cbind (combGenerator (stormatrise, combin2[, j]),blokk)
results3[i, j]=Ds (StorDs)

indekserl=which (rowSums (results3==0)==0)

minil=numeric (length (which (rowSums (results3==0)==0)))

maxil=numeric (length (which (rowSums (results3==0)==0)))

al=rep(1l,6)

for(r in l:length(which (rowSums (results3==0)==0))) {
minil[r]=min (results3[indekserl([r],])
maxil[r]=max (results3[indekserl([r],])
al=rbind(al,table (results3[indekserl[r], 1))

}

al=all[-1,]

#Finding average Ds

unique (rowMeans (results3))

#Finding minimums

unique (apply (results3, 1, FUN=min))

#Finding maximums

unique (apply (results3, 1, FUN=max))

#Testing pattern D3
results33=matrix (data=NA, nrow=num,ncol=ncol (combin2))
k=0

#Iterating over combinations

281

for(i in 1:num) {
#Iterating over blocks
for(j in l:ncol (combin2)) {

progress (k,max.value = num*ncol (combin2))
Bl=design[which (goodblocks[,i]==1),]
B2=design[which (goodblocks|[,i]==-1),]

stormatrise=rbind(cbind(B1,Bl),cbind(B2,-B2),
cbind(B1,-B1l),cbind(B2,B2))

colnames (stormatrise)<-cbind("A","B","Cc","p","g","F","Gg",
"g","I","g", "g","L","M","N","O","P","A2","B2", "C2","D2",
"E2","F2","G2", "H2",""12","Jg2", "K2",""L.2","M2", "N2","02", "P2")
StorDs=cbind (combGenerator (stormatrise, combin2[, j]),blokk)
(StorDs[1,1)

results33[i, j]=Ds (StorDs)

indekser3=which (rowSums (results33==0)==0)
a3=rep(l,6)
mini3=numeric (length (which (rowSums (results33==
maxi3=numeric (length (which (rowSums (results33==
for(r in l:length(which (rowSums (results33==0)==
mini3[r]=min(results33[indekser3[r],])
maxi3[r]=max (results33[indekser3[r],])
a3=rbind (a3, table (results33[indekser3[r],]))

o — —

}

a3=a3[-1,]

#Finding average Ds

unique (rowMeans (results33))

#Finding minimums

unique (apply (results33, 1, FUN=min))
#Finding maximums

unique (apply (results33, 1, FUN=max))
#Finding frequencies
unique (t (a3) ,MARGIN=2)

#Use block nr 1 as example in thesis!

#Example to thesis
Bl=design[which (goodblocks[,1]==1),]

282

B2=design|[which (goodblocks[,1]==-1),]

stormatrise=rbind (cbind(B1,B1l),cbind (B2,-B2),

cbind(B1,-Bl),cbind(B2,B2))

colnames (Stormatrise) <-Cbi1’ld("A", "B", "C", IIDII, "Ell, llFll, "GII, "Hll, llIll,
"J",

"g","L","M","N","O","P", "AD ", "BZ", HCZH, "D2", "EZ", "FZ", "G2 ", le2", n
I2ll

4
"J2", "KZ", "L2|l, "M2||, IIN2", "02", ||P2")

Dsl=cbind (combGenerator (stormatrise,
combin2[,which.max (results33[1,]1)]),blokk)
Ds0917=cbind (combGenerator (stormatrise,
combin2[,which.min (results33[1,]1)]),blokk)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

diagonal=diag(solve (t (Dsl)%$%%Dsl))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/sqrt (min(diagonal[l: (len-1)
1)))

print (sgrt (diagonal[len]) /sqrt (min(diagonal[l: (len-1)1])))

#For one of the combinations yielding the lowest Ds

diagonal2=diag(solve (t (Ds0917)%%%Ds0917))

print (sgrt (max (diagonal2[1l: (len-1)]))/sqgrt (min(diagonal2[1l: (len
-1)1)))

print (sgrt (diagonal2[len])/sqgrt (min(diagonal2[1l: (len-1)1)))

#Save results
save.image ("design32testermetode.RData")

Code for section 4.3.2: Dividing a 2?‘%_26 design into four blocks using
the blocking of the 2/5!! design

load ("~ /compulsory_3/Markov/d32alledblokker.RData")

#finner gode blokker: HU+FFFif mulig min ds)

indekser=which (minnull>0.834)

#Finner indeks til de som har HU+FFFig min og maks
testindeks=indekser [which (maxnull [indekser]>0.99999999)]

#Finner de medHHU+FFFif gj.snitt (NB: ikke riktig indeks her, ref.

283

til indeks i indeks....)

#Lagre de med HU+FFFRE snitt

testindeks=testindeks[which (aver[indekser[which (maxnull [indekser
1>0.99999999)11>0.908206)]

#Lager alle mulige blokker
whole2=c(1,2,3,4,5,6,7,8)
#first=cbind (1, combn (15, 3)+1)
choicel2=combn (7,1)
choice22=combn (5,1)
second2=matrix (data=NA, nrow=4,ncol=ncol (choice22) *xncol (choicel2))
#first=matris (data=na)
for(i in 1l:ncol (choicel2)) {
first2=c (1, l1+choicel2[,1])
rest2=setdiff (whole2, first2)
for(j in l:ncol(choice22))
second2[, (i-1) »xncol (choice22)+jl=c(first2,c(rest2[6],rest2[c(
choice22[,31)1))
}
choice32=combn (3,1)
third2=matrix (data=NA,nrow=6,ncol=ncol (choice22) *ncol (choicel?2) x
ncol (choice32))
for(k in 1l:ncol (second2)) {
resten2=setdiff (whole2, second2[,k])
for(r in 1l:ncol (choice32)) {
third2[, (k—=1) xncol (choice32)+r]=c(second2[,k],c(resten2[4],
resten2[c(choice32[,r])]1))
print(third[, (k-1)*ncol (choice3)+r])

}

final2=matrix (data=NA,nrow = 8,ncol=ncol (third2))

for(t in l:ncol (third2)) {
final2[,t]l=c(third2[,t],setdiff (whole2,third2[,t]))

library (svMisc)
meanvals=numeric (ncol (final2))
goodblokl=blokl [, testindeks]
goodblok2=blok2 [, testindeks]
goodblokl2=goodbloklxgoodblok2
combin2=combn (32, 3)

284

num=10
results3=matrix (data=NA, nrow=num, ncol=ncol (combin2))
k=0

blokkl=c(rep(1l,32),rep(-1,32))
blokk2=c(rep(1l,16),rep(-1,16),rep(l,16),rep(-1,16))
blokkl2=blokklx*blokk2

minimat=matrix (nrow=num,ncol = ncol (final2))
maximat=matrix (nrow=num,ncol = ncol (final2))
avermat=matrix (nrow=num,ncol = ncol (final2))

#Iterer over kombinasjoner
for(r in l:ncol(final2)) {
progress (r,max.value = ncol (final2))
#r=27
for(i in 1:num) {
#Iterer over blokker
Bl=design[which (goodblokl[,i]==1 & goodblok2[,i]==1),]
B2=design[which (goodblokl[,i]==1 & goodblok2[,i]==-1),]
B3=design[which (goodblokl[,i]==-1 & goodblok2[,i]l==1),]
B4=design[which (goodblokl[,i]==-1 & goodblok2[,i]==-1),]
allrows=rbind(cbind (B1l,Bl),cbind(Bl, -Bl),cbind(B2,B2),cbind (B2
,-B2),cbind (B3,B3),cbind (B3, -B3),cbind (B4,B4), cbind (B4, -B4))
stormatrise=rbind(allrows [((final2[1l,r]-1)*8+1):(8xfinal2([1,r])
,1,allrows[((final2([2,r]-1)*8+1): (8*xfinal2[2,r]),],allrows
[((final2[3,r]-1)*8+1) : (8xfinal2[3,r]),]1,allrows[((final2[4,
r]-1)*8+1) : (8+xfinal2([4,r]),]1,allrows[((final2[5,r]-1) *8+1)
:(8xfinal2[5,r]),],allrows[((final2[6,r]-1)*8+1) : (8xfinal?2
[6,r]),],allrows[((final2[7,r]-1)*8+1): (8xfinal2[7,xr]),],
allrows[((final2[8,r]-1)*8+1):(8xfinal2[8,r]),])
colnames (stormatrise)<-cbind("a","B","c","p","g", """, "G","H", "I
wL Mg, MRM, LY, MMM, N, O, "PY, "A2Y, "B2", "C2", "D2", "E2", "F2",
"G2","H2","12","Jg2", "K2","L2", "M2", "N2", "0o2", "P2")
for(j in l:ncol (combin2)) {
StorDs=cbind (combGenerator (stormatrise, combin2[, j]),blokkl,
blokk2,blokk12)
results3[i, jl=Ds (StorDs)
}
minimat [i, r]=min(results3[i,])
avermat [1, r]=mean (results3[i,])
maximat [i, r=max (results3[i,])]

285

#How many yields Ds>0 for all combinations?
length (which (minimat [1,1>0))

table (minimat [1,])

#How are the averages then?

table (avermat [1,which (minimat[2,]>0)1])
which (avermat[1,]1>0.959606)

which (minimat[1,]1>0.9126)

#Find the good results

r=36

i=1

results36=numeric (ncol (combin2))
#Iterer over blokker
Bl=design[which (goodblokl[,i]==1 & goodblok2[,i]==1),]
B2=design[which (goodblokl[,i]==1 & goodblok2[,i]==-1),]
B3=design[which (goodblokl[,i]==-1 & goodblok2[,i]==1),]
B4=design[which (goodblokl[,i]==-1 & goodblok2[,i]==-1),]
allrows=rbind (cbind(B1,Bl),cbind(Bl,-Bl),cbind(B2,B2),cbind (B2

,—B2),cbind (B3,B3),cbind (B3, -B3),cbind (B4,B4),cbind (B4, -B4))
stormatrise=rbind(allrows [((final2[1l,r]-1)*8+1): (8xfinal2[1,r])
,1,allrows[((final2([2,r]-1)*8+1): (8xfinal2[2,r]),],allrows
[((final2[3,r]-1)*8+1) : (8+xfinal2[3,r]),1,allrows[((final2[4,
r]-1)*8+41):(8+«final2[4,r]),],allrows[((final2[5,r]-1) *8+1)
:(8xfinal2[5,r]),],allrows|[((final2[6,r]-1)*8+1) : (8xfinal?2
[6,r]),],allrows[((final2[7,r]-1)*8+1):(8xfinal2(7,xr]),],
allrows[((final2[8,r]-1)*8+1): (8+«final2[8,r]),])
colnames (stormatrise)<-cbind("a","","c","p","g","g","G","H", "1
m,mgw, WRM, "L, UMM, "N","O","P","A2","B2","C2","D2", "E2", "F2",
"G2","H2","12","Jg2", "g2","L2","M2", "N2","0O2", "P2")
for(j in l:ncol (combin2)) {
StorDs=cbind (combGenerator (stormatrise,combin2([, j]),blokkl,
blokk2,blokk12)
results36[j]=Ds (StorDs)

#T11 artikkel:
table (results36)

286

Dsmax=cbind (combGenerator (stormatrise, combin2[,which.max (
results36)]),blokkl,blokk2,blokkl2)

Dsmin=cbind (combGenerator (stormatrise, combin2[,which.min (
results36)]),blokkl,blokk2,blokkl12)

#For one of the combinations yielding the highest Ds

diagonal=diag(solve (t (Dsmax) $*%$Dsmax))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-3)])) /sqrt (min(diagonal[l: (len-3)
1)))

print (sqrt (max (diagonal[(len-3) :1len])) /sqgrt (min(diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds
diagonal2=diag(solve (t (Dsmin)%$*%Dsmin))
print (sgrt (max (diagonal2[l: (len-3)]))/sqgrt (min(diagonal2[l: (len

-3)1)))
print (sgrt (max (diagonal2[(len-3) :1len])) /sqrt (min (diagonal2([1l: (len
-3)1)))

save.image ("d32alled4blokkertestermetode.RData")

Code for section 4.3.3.1 and 4.3.3.2: Dividing a 2?,_2 design into two
blocks using HM

library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)

287

colnam[1]="K"
for(i in l:length(interest)) {

}

res=cbind(res,mat[,interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

for(j in l:ncol (interact2)) {

}

res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1,jl],
colnam[l+interact2([2,j]], collapse = "'"))

for(j in l:ncol (interact3)) {

}

res=cbind(res,resl[,interact3[1l, j]]l*resl[,interact3[2,3j]]~*
resl[,interact3([3,731])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3([1, j]],colnam[l+interact3[2,3]],
colnam[l+interact3[3,3j]], collapse = ""))

for(j in l:ncol (interact4d)) {

}

res=cbind(res, resl[,interact4[1l, jl]l*resl[,interact4d[2,]]]~*
resl[,interact4[3, jl]l*resl[,interact4[4,3]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)]=
(paste (colnam[l+interact4([1l, j]l],colnam[l+interactd([2,3]],
colnam[l+interact4[3, j]l],colnam[l+interact4[4, j]1],collapse =

II))

colnames (res)=colnam
res

#Make effects up to three-factor interactions
combGenerator3=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep (l,nrow(mat))))
res=inter

resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)

colnam[1]="K"

for(i in l:length(interest)) {

res=cbind(res,mat[,interest[1]])

288

resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]

}

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl1]1,
colnam[l+interact2[2,j]], collapse = ''))

}

for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3[3,3]1])
colnam[j+l+length (interest) +ncol (interact2)]=
(paste(colnam[l+interact3[1l, j]],colnam[l+interact3[2, j]],
colnam[l+interact3[3,j]], collapse = "'))

}

colnames (res)=colnam

res

Ds=function (comb) {
b=ncol (comb)
s=b-1
n=nrow (comb)
detX=det (t (comb) $*%comb)
detXb=det (t (comb[,b]) %$*x%comb[,b])

=((detX/detXb) " (1/s))/n

Ds

#Generate the design
hadaml=matrix (data=c(1,
1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,

i,1,1,1,1,1,1,1,1,1,1,1, P , ,
-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,
-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,11,1,-1,-1,1,1,-1,-1,
,1,-1,-1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,
i,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,1,-1,-1,1,-1,1,1,
-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,
-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,

289

-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,

-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,1,1,11,1,1,1,-1,-1,-1,-1,-1,-1,

-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,-1,

1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,
i,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,
1!ll_ll_llll1!11_1!1/1/ll_ll11_11_111!11_1!_111I_11llll_ll_llllll

-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,

lr 11 1/ 1/ 1/ ll711711711711711711711711 lr 11 1/ 1/ 11711 11711711 1/ 11711
_llll_llllll_ll_llllll_llll_ll_ll1/11_11_1!ll_llllll_ll_llllllll
-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,

i,1,1,-1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,
ll_ll1!_1I1I1!_111!_111I_11llllllllllllllllllllllllllllllll_ll_ll
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,

-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,

_ll llll_ll_llll 11_11_111111_11_11_11_11 llll_ll_llll 11_11_111111_11

-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,

_ll_llllll_ll_llllll_llllll ll1!_1I_11_11_1!llllllll_ll_ll_l!_ll_ll

-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,

1!1/1/ll_ll_ll_ll_lllll!_ll_llll llllll_ll_ll_ll_llllllll 11_11_11

llillill 11711 1! 11711 11711711 11711 11 11711711 ll 1’71, llillill 11711 ll ll

_ll 11_11_111111 llllllllllll ll_11_11_1!_ll_ll_ll_ll_ll_ll_ll_ll_ll_ll

-1,-1,-1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,

i,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,

_11_1111 11_11_111111_11_17111111 11_11_111/11_11_1711_17_111711_1717

_11_11 ll ll_ll_ll 11_11 11_11 1/ 11_11_11 11_11 lr ll_ll_ll lr ll_ll ll_ll lr lr

ll 1171171171/71171171171/711 1/ 1/ 1/ 11711711711711 lr ll 1/ 1/ ll ll lr llill

-1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,

i,1,-1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,11,1,1,1,-1,-1,-1,

290

_lr1!1/1/11_11_111111_11_17_11_1111 1’l!_ll_ll11_1117_1111_111111_11

ll_ll ll_ll_ll lr 1I_ll 11_11 lr_lr ll_ll_ll ll_ll ll_ll
1) ,nrow=32,ncol=32)
dmatrise=hadaml

matrise=rbind(cbind (dmatrise,dmatrise),cbind(dmatrise, -dmatrise))
matrise=matrisel[,2:64]

int=4

fac=8

combins=combn (fac, int)

combins3=combn (fac, 3)

#In the loop, a design yielding good results for four active
factors is found
best=0
it=0
while (best<0.95) {
it=it+1
valid=FALSE
#print (it)
while (valid==FALSE) {
indeksliste=numeric (6)
sortmatrise=matrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),ncol=ncol (
sortmatrise))
indekser=c(64,32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seq(from = 1, to = 64, by = 1)
#Iterate through all indices (=make columns for the 6 factors)
for(i in 1:6) {
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
#the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
#the subcolumns sum to zero
shuff=seqg(from = 1, to = 63, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where
#the subcolumnsum is not zero
badshuff=rep (0, 63)
badshuffmat=matrix (data=NA,nrow =(64/indekser[i]),ncol=63)

291

#V iterates over the same numbers as k
for(v in 1:(64/indekser([i])) {
#designsplit is a matrix with the subcolumns which are sorted
by.
#Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind (designsplit, sortmatrise[((v-1) *
indekser[i]+1) : (vxindekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup,
#to check i1if all subcolumns in each column sum to zero
for(t in 1:63) {
if ((sum(colSums (designsplit) [seq(from=t,
to=(63%(-1+(64/indekser[i]))+t),by=63)1>0)>0)) {
#save the trouble-making indices
badshuff[t]=t
}
}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(64/indekser[i])) {
#Radindekser is the indices of the rows to be included in

the
#subcolumn, Sort sortmatrises indices to make -1 come first
radindekser=(k-1) xindekser[i]+order (sortmatrise[((k-1) *
indekser[i]+1) : (kxindekser[i]),shuff[iter]], decreasing =
FALSE)

#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,
shuff[iter]]))>0) {

iter=iter+1l

radindekser=(k—-1) rindekser[i]+order (sortmatrise[((k—-1) *

292

indekser[i]+1) : (kxindekser[i]),shuffliter]], decreasing =
FALSE)
}
indeksliste[i]l=shuff[iter]
for(r in l:length(radindekser)) {
nymatrise[((k—1) *indekser[i]+r),]=sortmatrise[radindekser|[r
1,1
}
sortmatrise[((k-1) xindekser[i]+1) : (kxindekser[i]), 1=
nymatrise[((k-1)xindekser[i]+1) : (kxindekser[i]),]

}

valid=sum(is.na (indeksliste))<1

}

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrise[,3]~*
designmatrise[, 4] designmatrise[, 5] rdesignmatrise[,6])
designmatrise=cbind(designmatrise,designmatrise[,1]*
designmatrise([, 2] xdesignmatrise([, 5] *designmatrisel[,6])
colnames (designmatrise)=c("F","g","D","Cc","B","A","G","H")
blokker=sortmatrise[, —-indeksliste]

num=ncol (blokker)
results3=matrix (data=NA, nrow=num,ncol=ncol (combins))
k=0
#Iterating over blocks
for (i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins)) {
k=k+1
stormatrise=cbind (combGenerator (designmatrise, combins(, j1),
blokker([,i])
results3[i, j]=Ds(stormatrise)

braindekser=which (rowSums (results3==0)==0)
mini=apply (results3, 1, min)

best=max (mini)

print (best)

293

#Finding min and max obtained for each block
mini=apply (results3, 1, min)

maxi=apply (results3, 1, max)

table (mini)

table (maxi)

#Find unique means for the blocks

rmeans= (rowMeans (results3))

print (sort (unique (rowMeans (results3[braindekser,]))))

#Find the order in which the matrix was sorted
rekkef=numeric (nrow (matrise))
for(i in l:nrow(matrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (matrise[i,], sortmatrise([]j,])==TRUE) {
rekkef[i]=]
}
}
}
print (rekkef)

sort (unique (rowMeans (results3[braindekser,]1)))

table (rowMeans (results3[braindekser,]))
bestindekser=braindekser [which (rowMeans (results3[braindekser,])>
0.986)]

#Which columns were good blocks?

which (duplicated (cbind (blokker[,bestindekser], sortmatrise),
MARGIN=2))-length (bestindekser)+1 #(+1 for the removed column)
#Which columns make up the design matrix?

print (indeksliste+1)

#Frequencies

apply (results3[bestindekser,],1,table)
printmat=cbind(designmatrise([, 6],designmatrisel[, 5],
designmatrisel[, 4],
designmatrise[,3],designmatrise([,2],designmatrise[,1],
designmatrisel[, 7],

designmatrise([,8],blokker[,bestindekser])

colnames (printmat)=c ("A","B","C","D","E","F","G","H", "b1", "b2",
"b3", "b4", "b5", "be", "b7", "b8", "b9", "b10", "b11l", "b12")

xtable (printmat[1:32,], digits = 0)

294

xtable (printmat [33:64,], digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds
matrisel=cbind (combGenerator (designmatrise,
combins[,which.max (results3[bestindekser[1],])1),
blokker[,bestindekser[1]])
diagonal=diag(solve (t (matrisel) $*%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-1)1))/

sgrt (min (diagonal[l: (len-1)1])))

print (sqrt (diagonal([len]) /sqgrt (min(diagonal[l: (len-1)1)))

#For one of the combinations yielding the lowest Ds
matriseO=cbind (combGenerator (designmatrise,
combins[,which.min (results3[bestindekser[1]1,]1)1),
blokker[,bestindekser[1]])
diagonal2=diag(solve (t (matrisel) $*x%matrise0))

print (sgrt (max (diagonal2[1l: (len-1)1))/

sgrt (min (diagonal2[l: (len-1)1)))

print (sqrt (diagonal2[len]) /sqgrt (min(diagonal2[1l: (len-1)1])))

#Checking for three active factors
results33=matrix (data=NA, nrow=num, ncol=ncol (combins3))
k=0
#Iterating over blocks
for(i in 1:num) {
#Iterating over combinations
for(j in l:ncol (combins3)) {
k=k+1
stormatrise3=cbind (combGenerator3 (designmatrise,
combins3[, j]),blokker[,i])
results33[i, j]=Ds(stormatrise3)

#Finding min and max obtained for each block
mini3=apply (results33[braindekser3,], 1, min)
maxi3=apply (results33[braindekser3,], 1, max)
table (mini3)
table (maxi3)

295

bestindekser3=braindekser3[which (mini3>0.92)]
sort (unique (rowMeans (results33[braindekser3,]1)))
table (rowMeans (results33[bestindekser3,]))
allerbestindekser3=bestindekser3[which (rowMeans (
results33[bestindekser3,])>0.992)]

apply (results33[allerbestindekser3,],1,table)

#Which columns were good blocks?

which (duplicated (cbind (blokker[,allerbestindekser3],
sortmatrise),MARGIN=2)) -

length(allerbestindekser3)+1 # (+1 for the removed column)
#Which columns make up the design matrix?

print (indeksliste+l)

#Frequencies

apply (results33[allerbestindekser3,],1,table)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds
matrisel3=cbind (combGenerator3 (designmatrise,
combins3[,which.max (results33[allerbestindekser3[1],1)]),
blokker[,allerbestindekser3[1]])
diagonal3=diag(solve (t (matrisel3) %$*%matrisel3))
len3=length (diagonal3l)

print (sgrt (max (diagonal3[1l: (len3-1)1))/

sgrt (min (diagonal3[1l: (len3-1)1)))

print (sgrt (diagonal3[len3])/

sqgqrt (min (diagonal3[1l: (len3-1)1])))

#For one of the combinations yielding the lowest Ds
matrise03=cbind (combGenerator3 (designmatrise,
combins3[,which.min(results33[allerbestindekser3[1],1)]),
blokker[,allerbestindekser3[1]])
diagonal23=diag (solve (t (matrise03) %$*%

matrise03))

print (sgrt (max (diagonal23([1: (len3-1)1))/

sqgqrt (min (diagonal23[1: (len3-1)1)))

print (sgrt (diagonal23[len3])/

sqrt (min (diagonal23[1: (len3-1)1)))

296

Code for section 4.3.3.3 and 4.3.3.4: Dividing a 2} ? design into four
blocks using HM

library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]
}
for(j in l:ncol (interact?2)) {
res=cbind(res, resl[,interact2[1l, jl]*resl[,interact2[2,J11)
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1l,3j]],
colnam[l+interact2[2,j]], collapse = "'))
}
for(j in l:ncol (interact3)) {
res=cbind(res,resl[,interact3[1l, jl]l*resl[,interact3([2,J]]1~*
resl[,interact3[3,J11)

colnam[j+l+length (interest) +ncol (interact2)]=(paste (colnam[1l+
interact3([1l,jl],colnam[l+interact3([2,j]],colnam[1l+
interact3[3,3J]], collapse = '7))

}
for(j in l:ncol (interact4d)) {
res=cbind(res, resl[,interact4[1l, j]l]*resl[,interact4[2,J]]~*
resl[,interact4[3,j]]*resl[,interactd[4,3]])
colnam[j+1l+length (interest) +ncol (interact2) +ncol (interact3)
]=(paste(colnam[l+interact4[1l, j]],colnam[l+interactd[2, j

297

ll,colnam[l+interact4[3,j]],colnam[l+interact4[4,]j]],
collapse = ""))

}

colnames (res)=colnam

res

#Make effects up to three-factor interactions
combGenerator3=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat[,interest[i]])
resl[,i]=mat [, interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2(2,73]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl],
colnam[l+interact2[2,j]], collapse = ''))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl [, interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3([3,731])
colnam[j+l+length (interest) +ncol (interact2)]=(paste (colnam|[1l+
interact3[1l,j]],colnam[l+interact3[2, j]],colnam[1l+
interact3([3,3jl], collapse = '7))
}
colnames (res)=colnam
res

Ds=function (comb) {
b=ncol (comb)

298

nrow (comb)

n=
detX

det (t (comb) $*%comb)

det (t (comb[,c (b-2,b-1,b)])%$*%comb[,c (b-2,b-1,b)])

detXb

((detX/detXb) " (1/s))/n

Ds=

Ds

c(1,1,1,1,1,1%,1,1,1,1,1,1,1,1,1,1,1,1,,1,1,1,

matrix (data=

hadam?2

i,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,
t1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,
i1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,

1/ 11 11 lr lr 1/ 1/ 11 11 lr lr_lr lr_lr lr_lr 11_11 11_1111_1111_1111_1111_17
1111_11_17_11_11

11_1711_11_11 ll_llllll_ll 11_11_1111_111111_1111

-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,
i1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,
-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,11,1,1,1,1,1,-1,-1,
-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,11,1,1,1,
1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,
-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,1,1,-1,1,-1,1,1,1,-1,-1,-1,

1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,
-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,
-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,
-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,1,

11_1!_ll_ll1!l!ll_ll_lllll!ll_ll_ll_ll1/ll_ll_ll_llllllll_ll_l!
_ll_ll lr lr 1! 11_11_11_11_11 1/ 1/ lr lr 11_11 11_11_11 ll_ll 1/ ll_ll ll_ll

-1,1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,1,-1,-1,-1,
-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,
-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,

-1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,
_171711_1711_17_11171711111111171711_17_11_11_11_17_11_11_11_17

i,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,-1,-1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,
i,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,
,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,1,1,1,11,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,
-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1%,1,1,1,1,-1,-1,-1,-1,1,1,-1,

i,-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,
,1,-1,-1,1,1,1,1,1,1,1,11,1,11,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,

299

_1117 1! ’ -1 _11 1711 1/ ’ 1!

1,-1, 1 1 1,-1,-1,1, , 1,1,1,-1,-1,
1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,-1,-1,-1,1,1,1,
-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,1,
1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,
-1,-1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,
1,-1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,1,
-1,-1,1,1,1,-1,-1,1,-1,-1,1,- 1 -1,1,1,-1,1,1,-1,1,1,-1,-1,-1,1,
1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,1,1) ,nrow=32, ncol=32)

dmatrise=hadam2

matrise=rbind (cbind (dmatrise,dmatrise), cbind(dmatrise, -dmatrise))
matrise=matrise[,2:64]

int=4

fac=8

combins=combn (fac, int)

combins3=combn (fac, 3)

#In the loop, a design yielding good results for four active
factors is found
best=0
it=0
braindekser=NULL
while (length (braindekser)<1) {
it=it+1
valid=FALSE
#print (it)
while (valid==FALSE) {
indeksliste=numeric (6)
sortmatrise=matrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),ncol=ncol (
sortmatrise))
indekser=c(64,32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 64, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:6) {
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
the subcolumns sum to zero

300

shuff=seqg(from = 1, to = 63, by = 1)

designsplit=numeric (indekser[i])

#Badshuff saves the indices for the columns where the
subcolmnsum is not zero

badshuff=rep (0, 63)

badshuffmat=matrix (data=NA,nrow =(64/indekser[i]),ncol=63)
#V iterates over the same numbers as k
for(v in 1:(64/indekser[i])) {

#designsplit is a matrix with the subcolumns which are
sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit,sortmatrise[((v-1)+indekser
[1]41) : (vxindekser[i]),])
}
#Remove the column with zeroes used when initialising
designsplit=designsplit([,-1]
#Go through all columns in the original setup, to check if
all subcolumns in each column sum to zero
for(t in 1:63) {
if ((sum(colSums (designsplit) [seq(from=t,to=(63* (-1+(64/
indekser[i]))+t),by=63)1>0)>0)) {
#ace the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
if (sum (badindeks)>0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[1l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(64/indekser[i])) {
#Radindekser is the indices of the rows to be included in
the subcolumn, Sort sortmatrises indices to make -1
come first, then 1
radindekser=(k-1) rindekser[i]+order (sortmatrise[((k-1) *
indekser[i]+1) : (kxindekser[i]),shuffliter]],
decreasing = FALSE)

301

#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,
shuff[iter]]))>0) {
iter=iter+l
radindekser=(k—-1) xindekser[i]+order (sortmatrise[((k—-1) %
indekser[i]+1) : (kxindekser[i]),shuff[iter]],
decreasing = FALSE)
}
indeksliste[i]=shuff[iter]
for(r in l:length(radindekser)) {
nymatrise[((k-1) xindekser[i]+r),]=sortmatrise]
radindekser|[r],]
}
sortmatrise[((k-1) *indekser[i]+1) : (k*indekser[i]), 1=
nymatrise[((k—1) *indekser[i]+1) : (kxindekser[i]),]

}

valid=sum(is.na (indeksliste))<1

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrisel[, 3] *
designmatrise([, 4] xdesignmatrise[, 5] *designmatrisel[,6])
designmatrise=cbind(designmatrise,designmatrise[,1]*
designmatrise[, 2] xdesignmatrise[, 5] xdesignmatrise[, 6])
colnames (designmatrise)=c("F","g","D","C","B","A","G","H")
blokker=sortmatrise[, -indeksliste]

num=ncol (blokker)
blockcomb=combn (num, 2)
results3=matrix (data=NA, nrow=ncol (blockcomb), ncol=ncol (combins)
)
#Iterating over blocks
for(i in 1l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins)) {
stormatrise=cbind (combGenerator (designmatrise, combins|[, j]),
blokker[,blockcomb[1l,i]],blokker[,blockcomb([2,1i]],
blokker[,blockcomb[1l,1i]]+*blokker[,blockcomb[2,i]])
results3[i, j]=Ds(stormatrise)

302

braindekser=which (rowSums (results3==0)==0)

#Finding min and max obtained for each block
mini=apply (results3|[braindekser,], 1, min)

maxi=apply (results3[braindekser,], 1, max)

sort (unique (mini))

sort (unique (maxi))

table (mini)

table (maxi)

#Find unique means for the blocks

print (sort (unique (rowMeans (results3[braindekser,]))))

#Find the order in which the matrix was sorted
rekkef=numeric (nrow (matrise))
for(i in l:nrow(matrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (matrise[i,], sortmatrise[],])==TRUE) {
rekkef[i]=]

}
print (rekkef)

sort (unique (rowMeans (results3[braindekser,])))

rmeans=rowMeans (results3[braindekser,])

which (rmeans>0.965)

godmini=braindekser [which (mini>0.917)]

table (rowMeans (results3[braindekser, 1))
bestindekser=godmini [which (rowMeans (results3[godmini,])>0.965)]

for(i in l:length (bestindekser)) {
print (cat ("Current _comb: ", 1))

print (which (duplicated(cbind (blokker[,blockcomb[1l,bestindekser|

i]]],sortmatrise), MARGIN=2)))

print (which (duplicated (cbind (blokker[,blockcomb[2,bestindekser|

i]]],sortmatrise), MARGIN=2)))

303

#Which columns make up the design matrix?
print (indeksliste+l)

#Frequencies

apply (results3[bestindekser,],1,table)

printmat=sortmatrisel(, (c(13,14,15,16,26,33,36,37,40,47,48,59,60)
-1)]

COlnameS (printmat):c("l?)", "14", "15", "16", "26", "33", "36", "37", "40"
, "47", "48", ll59ll, "60")

xtable (printmat[1:32,], digits = 0)

xtable (printmat [33:64,], digits = 0)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (designmatrise, combins[,5]),blokker[,
blockcomb[1,487]],blokker[,blockcomb[2,487]],blokker][,
blockcomb[1,487]]+blokker[,blockcomb[2,487]1])

diagonal=diag(solve (t (matrisel) $+«%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-3)]))/sqrt (min(diagonal[l: (len-3)
1))

print (sgrt (max (diagonal[(len-3) :1len]))/sqrt (min (diagonal[l: (len
-3)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (designmatrise, combins[, 9]),blokker|[,
blockcomb[1,487]],blokker[,blockcomb[2,487]],blokker][,
blockcomb[1,487]]+blokker[,blockcomb[2,487]1])

diagonal2=diag(solve (t (matrise0) %$x%matrise0))

print (sgrt (max (diagonal2[1l: (len-3)1]))/sqgrt (min(diagonal2[1l: (len
-3)1)))

print (sgrt (max (diagonal2[(len-3) :1len])) /sgrt (min(diagonal2[1l: (len
-3)1)))

#Checking for three active factors
results33=matrix (data=NA, nrow=ncol (blockcomb),ncol=ncol (combins3)
)

#Iterating over blocks

304

for(i in 1l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins3)) {
stormatrise3=cbind (combGenerator3 (designmatrise, combins3|[, j])
,blokker[,blockcomb[l,i]],blokker[,blockcomb[2,1i]],blokker
[,blockcomb[1l,i]]*blokker[,blockcomb([2,i]])
results33[i, j]=Ds(stormatrise3)

}

braindekser3=which (rowSums (results33==0)==0)

#Finding min and max obtained for each block

mini3=apply (results33[braindekser3,], 1, min)

maxi3=apply (results33[braindekser3,], 1, max)

sort (unique (mini3))

table (mini3)

table (maxi3)

bestindekser3=braindekser3[which (mini3>0.93)]

sort (unique (rowMeans (results33[braindekser3, 1)))

table (rowMeans (results33[bestindekser3, 1))

allerbestindekser3=bestindekser3[which (rowMeans (results33[
bestindekser3,]1)>0.98)]

for(i in l:length(allerbestindekser3)) {
print (cat ("Current _comb: ", 1))
print (which (duplicated(cbind (blokker[,blockcomb(1,
allerbestindekser3[i]]], sortmatrise),MARGIN=2)))
print (which (duplicated(cbind (blokker[,blockcomb[2,
allerbestindekser3[i]]], sortmatrise), MARGIN=2)))

apply (results33[allerbestindekser3,],1,table)
#Which columns make up the design matrix?
print (indeksliste+l)

#Frequencies

apply (results33[allerbestindekser3,],1,table)

#Finding the SD-ratios

#For one of the combinations yielding the highest Ds

matrisel3=cbind (combGenerator3 (designmatrise, combins3[,1]),
blokker[,blockcomb[1,487]],blokker[,blockcomb[2,487]],blokker

305

[,blockcomb[1,487]]+blokker[,blockcomb[2,487]])
diagonal3=diag(solve (t (matrisel3) $+%matrisel3))
len3=length (diagonal3)
print (sgrt (max (diagonal3[1: (len3-3)]))/sqgrt (min (diagonal3[1l: (len3

-3)1)))
print (sqrt (max (diagonal3 [(1len3-3) :1en3])) /sgrt (min (diagonal3[1: (
len3-3)1)))

#For one of the combinations yielding the lowest Ds

matrise03=cbind (combGenerator3 (designmatrise,combins3[,2]),
blokker[,blockcomb([1,487]],blokker[,blockcomb[2,487]],blokker
[,blockcomb[1,487]]+blokker[,blockcomb[2,487]])

diagonal23=diag (solve (t (matrise03) $xSmatrise03))

print (sgrt (max (diagonal23[1l: (len3-3)]))/sqgrt (min(diagonal23[1: (
len3-3)1)))

print (sgrt (max (diagonal23[(len3-3) :1en3])) /sqgrt (min (diagonal23
[1:(len3-3)1)))

save.image ("cyclic64_hadamard_4blocks.RData")

Code for section 4.3.3.5 and 4.3.3.6: Dividing a 2?,_2 design into eight
blocks using HM

library (xtable)

options (xtable.floating = FALSE)
options (xtable.timestamp = "")
library (pracma)

#Defining some functions at first

#Make effects up to four-factor interactions
combGenerator=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
interact4=combn (length (interest), 4)
inter=t (t (rep(l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])

306

resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[1]]
}
for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, jl]l*resl[,interact2([2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1, jl1]1,
colnam[l+interact2[2,j]], collapse = '"))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl[,interact3[1l, j]]*resl[,interact3[2,]]]~*
resl[,interact3[3,3]1])
colnam[j+1l+length (interest) +ncol (interact2)]=(paste (colnam[1l+
interact3[1,j]],colnam[l+interact3[2,j]],colnam[1l+
interact3[3,3jl]], collapse = "))
}
for(j in l:ncol (interact4d)) {
res=cbind(res, resl[,interact4[1l, jl]l*resl[,interact4([2,]]]~*
resl[,interact4[3, jl]l*resl[,interact4[4,3]])
colnam[j+l+length (interest) +ncol (interact2) +ncol (interact3)
]=(paste (colnam[l+interact4[1l, j]],colnam[l+interactd[2, j
]1,colnam[l+interact4[3,j]l],colnam[l+interactd4 (4, j]],
collapse = '7))
}
colnames (res)=colnam
res

#Make effects up to three-factor interactions
combGenerator3=function (mat, interest) {
interact2=combn (length (interest), 2)
interact3=combn (length (interest), 3)
inter=t (t (rep(1l,nrow(mat))))
res=inter
resl=matrix (data=NA,nrow=nrow (mat),ncol=length (interest))
colnam=numeric (8)
colnam[1]="K"
for(i in l:length(interest)) {
res=cbind(res,mat [, interest[i]])
resl[,i]=mat[,interest[i]]
colnam[i+l]=colnames (mat) [interest[i]]

307

for(j in l:ncol (interact2)) {
res=cbind(res, resl[,interact2[1l, j]l]l*resl[,interact2([2,3]1])
colnam[j+l+length (interest)]=(paste(colnam[l+interact2[1,jl],
colnam[l+interact2[2,j]], collapse = "))
}
for(j in l:ncol (interact3)) {
res=cbind(res, resl [, interact3[1l, j]]*resl[,interact3[2, 1]~
resl[,interact3([3,731])
colnam[j+l+length (interest) +ncol (interact2)]=(paste (colnam[1l+
interact3[1, j]],colnam[l+interact3[2, j]],colnam[1+
interact3[3,3j]], collapse = '"))
}
colnames (res)=colnam
res

Ds8=function (comb) {

b=ncol (comb)

#Note: s=b-3 as there are three columns corresponding to blocks

s=b-7

n=nrow (comb)

detX=abs (det (t (comb) $*%comb))

detXb=abs (det (t (comb[,c (b-6,b-5,b-4,b-3,b-2,b-1,b)])%*%comb [, c(
b-6,b-5,b-4, b—3 b—2 b—l,b)]))
=((detX/detXb) " (1/s)

Ds

hadam3=-matrix(data=c(1,
i,1,1,1,1,1,1,1,1,1,1,1,-1,1,-1,1,-1,1,-

1,1,1,1,-1,-1,-1,-1,
i,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1
i,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,
-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,
-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,
-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,
i,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,
-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,1,-1,-1,1,
-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,
-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,1,1,1,11,1,1,1,-1,-1,-1,-1,-1,

308

-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,

-1,1,-1,-1,-1,-1,-1,1,1,1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1,

1,1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,
-1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,

-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,1,-1,-1,-1,

-1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,

-1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,
1,-1,1,1,-1,-1,1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,-1,

111111_11_11_11_11 lll!_llllll_llll_ll_llll 11_11_1111_111111_11
-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,-1,1, -1,

1/ 1/ 1/ ll lr 1! 1/ 1/ 1/ ll lr 1! 1/ 1/ 1/ 11711711711711711711711711711711

-1,-1,-1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,-1,
1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,1, 1,
-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,-1,
-1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,
-1,1,-1,1,-1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1, -1,
-1,-1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,-1,1,1,-1,
-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,1,-1,1,1,
-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,

1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,
11_1711_17_1111_11 ll_llllll_ll ll_ll1!lllllllllllll!_ll_ll_ll

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,11,1,1,-1,1,

_ll lr_lr 11_11_11_11_11_11 lr lr 1/ 11_11 11_11 11_11 11_11 1! 1/ 1/ 1/ 1/

-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,
-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,
_ll ll_ll ll_ll lr ll_ll_ll 1/ ll_ll ll_ll ll_ll 11_11 11_11 1/ 1/ lr ll_ll

-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,
-1,1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,
1,-1,1,-1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1, -1,
-1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,

i,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,1,

=32)

-1,1),nrow=32,ncol

dmatrise

hadam3

rbind (cbind (dmatrise,dmatrise), cbind (dmatrise, -dmatrise))

matrisel[,2:64]

matrise
matrise
int=4

fac=8

combn (fac, int)

combins

combn (fac, 3)

combins3

309

#In the loop, a design yielding good results for four active

factors is found

best=0

it=0

braindekser=NULL
while (length (braindekser)<1) {
it=it+1
valid=FALSE
#print (it)
while (valid==FALSE) {

indeksliste=numeric (6)
sortmatrise=matrise
nymatrise=matrix (data=,nrow=nrow (sortmatrise),ncol=ncol (
sortmatrise))
indekser=c(64,32,16,8,4,2)
#Shuff saves all possible columns indices
shuff=seqg(from = 1, to = 64, by = 1)
#Iterate through all indices (=make columns for the 6 factors
)
for(i in 1:6){
#k goes from 1 to 1, 1 to 2, 1 to 4 and so on, divides into
the subcolumns which should be sorted in a certain way
#Shuff is used to save the indices of the columns where all
the subcolumns sum to zero
shuff=seq(from = 1, to = 63, by = 1)
designsplit=numeric (indekser[i])
#Badshuff saves the indices for the columns where the
subcolmnsum is not zero
badshuff=rep (0, 63)
badshuffmat=matrix (data=NA,nrow =(64/indekser([i]),ncol=63)
#V iterates over the same numbers as k
for(v in 1:(64/indekser[i])) {
#designsplit is a matrix with the subcolumns which are
sorted by. Here taken directly from sortmatrise
#It contains all subcolumns of size 64/indekser[i]
designsplit=cbind(designsplit, sortmatrise[((v-1) rindekser
[1]4+1) : (vxindekser[i]), 1)
}
#Remove the column with zeroes used when initialising
designsplit=designsplit[,-1]
#Go through all columns in the original setup, to check if

310

all subcolumns in each column sum to zero
for(t in 1:63){
if ((sum(colSums (designsplit) [seq(from=t,to=(63* (-1+(64/
indekser[i]))+t),by=63)1>0)>0)) {
#ace the trouble-making indices
badshuff[t]=t

}
badindeks=badshuff
#Remove the bad columns from the vector to be tested
1f (sum(badindeks) >0) {
shuff=shuff[-badindeks]
}
shuff=sample (shuff)
first=shuff[1l]
iter=1
#Find row indices based on the first ok shuff
for(k in 1:(64/indekser[i])) {
#Radindekser is the indices of the rows to be included in
the subcolumn, Sort sortmatrises indices to make -1
come first, then 1
radindekser=(k-1) rindekser[i]+order (sortmatrise[((k-1) *
indekser[i]+1) : (kxindekser[i]),shuff[iter]],
decreasing = FALSE)
#Iterate to everything is ok
while (length (shuff)>iter&abs (sum(sortmatrise[radindekser,

shuff[iter]]))>0) {
iter=iter+1
radindekser=(k-1) rindekser[i]+order (sortmatrise[((k—-1) *
indekser[i]+1) : (k*indekser[i]),shuffliter]],

decreasing = FALSE)

}

indeksliste[i]=shuff[iter]

for(r in 1l:length(radindekser)) {

nymatrise[((k-1) *indekser[i]+r),]=sortmatrise]

radindekser([r],]

}

sortmatrise[((k—-1)xindekser[i]+1) : (kxindekser[i]),]=

nymatrise[((k—-1) *indekser[i]+1) : (kxindekser[i]),]

311

valid=sum(is.na (indeksliste))<1

designmatrise=sortmatrise[, indeksliste]
designmatrise=cbind(designmatrise,designmatrise[,3]~*
designmatrise[,4]«designmatrise[, 5] rdesignmatrisel[,6])
designmatrise=cbind(designmatrise,designmatrise[,1]*
designmatrise([, 2] xdesignmatrise([, 5] *designmatrisel[,6])
colnames (designmatrise)=c("F","g","D","Cc","B","A","G","H")
blokker=sortmatrise[, -indeksliste]

num=ncol (blokker)
blockcomb=combn (num, 3)
results3=matrix (data=NA,nrow=ncol (blockcomb),ncol=ncol (combins)
)
#Iterating over blocks
for(i in l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins)) {
blokkl=blokker[,blockcomb[1l,1i]]
blokk2=blokker[,blockcomb[2,1i]]
blokk3=blokker[,blockcomb[3,i]]
blokkl2=blokkl*blokk?2
blokk1l3=blokkl*blokk3
blokk23=blokk2+blokk3
blokkl23=blokkl*blokk2xblokk3
stormatrise=cbind (combGenerator (designmatrise, combins|[, jl),
blokkl,blokk2,blokk3,blokkl2,blokk23,blokkl3,blokk123)
results3[i, j]=Ds8 (stormatrise)

braindekser=which (rowSums (results3==0)==0)
print (indeksliste)

#Finding min and max obtained for each block
mini=apply (results3[braindekser,], 1, min)
maxi=apply (results3[braindekser,], 1, max)
sort (unique (mini))

sort (unique (maxi))

312

table (mini)

table (maxi)

#Find unique means for the blocks

print (sort (unique (rowMeans (results3[braindekser,]1))))

#Find the order in which the matrix was sorted
rekkef=numeric (nrow (matrise))
for(i in l:nrow(matrise)) {
for(j in 1: nrow(sortmatrise)) {
if (identical (matrise[i,], sortmatrise[j,])==TRUE) {
rekkef[i]=]

}
print (rekkef)

sort (unique (rowMeans (results3 [braindekser,])))
godmini=braindekser [which (mini>0.807)]

table (rowMeans (results3[godmini,]))
bestindekser=godmini [which (rowMeans (results3[godmini,])>0.888)]

for(i in l:length (bestindekser)) {
print (cat ("Current _comb: ", 1))
print (which (duplicated (cbind (blokker[,blockcomb[1l,bestindekser|
i]]],sortmatrise), MARGIN=2)))
print (which (duplicated(cbind (blokker[,blockcomb[2,bestindekser|
i]1]1,sortmatrise),MARGIN=2)))

#Which columns make up the design matrix?
print (indeksliste+1)

#Frequencies

apply (results3[bestindekser,],1,table)

#Print columns used for blocks
printmat=sortmatrise[, (c(18,20,26,28,51,59)-1)]
colnames (printmat)=c("18","20","26","28","51","59")
xtable (printmat[1:32,], digits = 0)

xtable (printmat [33:64,], digits = 0)

313

#Finding the SD-ratios

blokkerl=blokker[,blockcomb[1l,bestindekser[1]]]

blokker2=blokker[,blockcomb[2,bestindekser[1]]]

blokker3=blokker[,blockcomb[3,bestindekser([1]]]

blokkl2=blokkl*blokk2

blokkl3=blokkl*blokk3

blokk23=blokk2+blokk3

blokkl23=blokkl*blokk2xblokk3

#For one of the combinations yielding the highest Ds

matrisel=cbind (combGenerator (designmatrise, combins([,3]),blokkl,
blokk2,blokk3,blokkl2,blokk23,blokk13,blokkl23)

diagonal=diag(solve (t (matrisel) $*«%matrisel))

len=length (diagonal)

print (sgrt (max (diagonal[l: (len-7)]1)) /sqrt (min(diagonal[l: (len-7)
1)))

print (sgrt (max (diagonal[(len-7) :1len]))/sqrt (min (diagonal[l: (len
-7)1)))

#For one of the combinations yielding the lowest Ds

matriseO=cbind (combGenerator (designmatrise, combins[,67]),blokkl,
blokk2,blokk3,blokkl2,blokk23,blokkl13,blokk123)

diagonal2=diag(solve (t (matrisel) $*%matrise0))

print (sqrt (max (diagonal2[1: (len-7)]))/sgrt (min(diagonal2[l: (len
-7 1)))

print (sgrt (max (diagonal2[(len-7) :1len]))/sqrt (min(diagonal2[1l: (len
=-7)1)))

#Checking for 3 active factors
results33=matrix (data=NA, nrow=ncol (blockcomb),ncol=ncol (combins3)
)
#Iterating over blocks
for(i in l:ncol (blockcomb)) {
#Iterating over combinations
for(j in l:ncol (combins3)) {
blokkl=blokker[,blockcomb([1l,i]]
blokk2=blokker[,blockcomb([2,1i]]
blokk3=blokker[,blockcomb[3,1i]]
blokkl2=blokklx*blokk2
blokkl3=blokkl*blokk3
blokk23=blokk2x+blokk3

314

blokkl23=blokkl+blokk2+blokk3

stormatrise3=cbind (combGenerator3 (designmatrise, combins3[, j])
,blokkl,blokk2,blokk3,blokkl2,blokk23,blokkl13,blokkl123)

results33[i, j]=Ds8 (stormatrise3)

braindekser3=which (rowSums (results33==0)==0)

#Finding min and max obtained for each block

mini3=apply (results33[braindekser3,], 1, min)

maxi3=apply (results33[braindekser3,], 1, max)

sort (unique (mini3))

table (mini3)

table (maxi3)

bestindekser3=braindekser3[which (mini3>0.853)]

sort (unique (rowMeans (results33 [braindekser3,])

table (rowMeans (results33[bestindekser3, 1))

allerbestindekser3=bestindekser3[which (rowMeans (results33[
bestindekser3,]1)>0.918)]

))

for(i in l:length(allerbestindekser3)) {

print (cat ("Current_comb: ", 1))

print (which (duplicated(cbind (blokker[,blockcomb[1,
allerbestindekser3[i]]], sortmatrise), MARGIN=2)))

print (which (duplicated(cbind (blokker[,blockcomb[2,
allerbestindekser3[i]]], sortmatrise),MARGIN=2)))

print (which (duplicated(cbind (blokker[,blockcomb]|[3,
allerbestindekser3[i]]], sortmatrise), MARGIN=2)))

#Which columns make up the design matrix?
print (indeksliste+1)

#Frequencies

apply (results33[allerbestindekser3,],1,table)

#Finding the SD-ratios
blokkerl=blokker[,blockcomb[l,allerbestindekser3[1]1]]
blokker2=blokker[,blockcomb[2,allerbestindekser3[1]]]
blokker3=blokker[,blockcomb[3,allerbestindekser3[1]]]
blokkl2=blokkl*blokk2

315

blokkl3=blokkl+blokk3

blokk23=blokk2+blokk3

blokkl23=blokkl+blokk2*blokk3

#For one of the combinations yielding the highest Ds

matrisel3=cbind (combGenerator3 (designmatrise, combins3|[,24]),
blokkl,blokk2,blokk3,blokkl2,blokk23,blokkl3,blokkl123)

diagonal3=diag(solve (t (matrisel3) $+x%matriselld))

len3=length (diagonal3)

print (sgrt (max (diagonal3[1: (len3-7)]))/sqgrt (min (diagonal3[1: (len3
-71)))

print (sgrt (max (diagonal3 [(len3-7) :1en3])) /sqgrt (min (diagonal3[1: (
len3-7)1)))

#For one of the combinations yielding the lowest Ds

matrise03=cbind (combGenerator3 (designmatrise, combins3[,3]),blokkl
,blokk2,blokk3,blokkl2,blokk23,blokkl13,blokkl123)

diagonal23=diag(solve (t (matrise03) %$*%matrise03))

print (sqrt (max (diagonal23[1: (len3-7)]))/sqgrt (min (diagonal23[1: (
len3-7)1)))

print (sgrt (max (diagonal23[(len3-7) :1en3])) /sqgrt (min (diagonal23
[1:(1len3-7)1)))

save.image ("cyclic64_hadamard_8blocks_4act")

316

	Preface
	Abstract
	Samandrag
	Introduction
	Theory
	Experimental design
	Two-level factorial designs
	Fractional factorial designs
	Blocking
	Evaluating blocks
	Combinatorial explosion

	Blocking strategies
	Using mirror image pairs
	Using the division into 2i blocks for division into 2i+j blocks

	Blocking based on doubling
	Division into two blocks
	Division into four blocks

	Blocking using Hadamard matrices

	Results
	16-run designs
	Blocking a 28-4IV design using MIP
	Dividing a 25-1V design into two blocks using HM
	Three active factors
	Four active factors
	Estimating three two-factor interactions

	32-run designs
	Dividing a 216-11IVdesign into two blocks using the blocking of the 28-4IV design
	Dividing a 216-11IV design into two blocks using MIP
	Dividing a 216-11IV design into four blocks using MIP
	Dividing a 26-1VI design into two blocks using MIP
	Three active factors
	Four active factors
	Five active factors
	Estimating three-factor interactions
	Estimating two four-factor interactions

	Dividing a 26-1VI design into four blocks using MIP
	Three active factors
	Four active factors
	Five active factors
	Utilising the division into two blocks for division into four blocks

	Dividing a 27-2IV, a 28-3IV and a 29-4IV design into two and four blocks using HM
	A 27-2IV design divided into two blocks
	A 27-2IV design divided into four blocks
	A 28-3IV design divided into two blocks
	A 28-3IV design divided into four blocks
	A 29-4IV design divided into two blocks
	A 29-4IV design divided into four blocks

	64-run designs
	Dividing a 232-26IV design into two blocks using the blocking of the 216-11IV design
	Dividing a 232-26IV design into four blocks using the blocking of the 216-11IV design
	Dividing a 28-2V design into two, four and eight blocks using HM
	Two blocks, three active factors
	Two blocks, four active factors
	Four blocks, three active factors
	Four blocks, four active factors
	Eight blocks, three active factors
	Eight blocks, four active factors

	Summary of results
	16 runs, three active factors, two blocks
	32 runs, three active factors, two and four blocks
	64 runs, three active factors, two and four blocks

	Evaluation of Ds-efficiencies
	Comparison using reactor data example
	Evaluation of the preferred blockings for all designs

	Concluding remarks
	Bibliography
	Appendix A
	Appendix B: R code

