
Path Following and Collision Avoidance
for an Underwater Swimming
Manipulator

Bjørn Håvard Hoffmann

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Problem Description

Increasing interests in subsea operations call for new and improved unmanned un-
derwater vehicles that can solve their tasks while being cost- and energy efficient as
well as highly maneuverable. The Underwater Swimming Manipulator (USM) is a
robotic system that shows potential in this regard. The system is a hybrid between the
biologically inspired Underwater Snake Robot (USR), a manipulator arm, and the more
classical Remote Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV).
The USM can be viewed as a multi-jointed free-floating manipulator with mounted
thrusters, which can move by using snake-like motion patterns, by thruster propulsion,
or a combination of the two. The robot’s multiarticulate body makes it redundant with
respect to many of the tasks it needs to perform, as is the case for most multi-jointed
manipulators. In addition, the thrusters provide even more freedom to solve a given
task. This flexibility is advantageous as it gives the robot excellent maneuverability,
but at the same time, the hyper-redundancy makes for a challenging control problem.

To make the USM fully autonomous controllers are needed for a wide range of
tasks. One of the most essential of these is for the robot to be able to move around
within its working environment, while not colliding with anything. The goal of this
project is to develop a path following and collision avoidance system that achieves
this for the novel USM.

1. Do a literature survey on path following and collision avoidance of unmanned
underwater vehicles, with a focus on hyper-redundant mechanisms.

2. Develop a control system for path following.

3. Develop a control system for collision avoidance.

4. Implement the control systems in MATLAB/Simulink.

5. Validate the control systems through simulations using Vortex Studio.

i

ii

Abstract

The Underwater Swimming Manipulator (USM) is a new type of autonomous unmanned
underwater vehicle that combines the highly maneuverable design of the biologically
inspired underwater snake robot (USR) with thruster actuators as typically used in more
traditional underwater vehicle designs. The USM resembles a submerged multiarticu-
late manipulator arm with thrusters, and can use joint actuation, thruster actuation,
or a combination of the two for motion. The thrusters increase the USM’s controllable
degrees of freedom (DOF), and by placing them strategically they can facilitate 6-DOF
rigid-body movement almost independently of the robot’s body shape. Together with
the long and slender body, this maneuverability enables the USM to gain access to
almost any area, that being the inside of shipwrecks or between the steel beams of
subsea structure protection cages, and can be utilized to solve complex tasks. One
of the most essential abilities of an autonomous mobile robot system is the ability to
safely navigate the environment. This thesis proposes controllers for path following
and collision avoidance that grants the USM this capability. Both controllers take
advantage of the USM’s unique design, with the path following controller using the
flexible body to improve path following accuracy and reduce energy consumption,
while the collision avoidance controller exploits the maneuverability of the robot to
enable movement in highly cluttered areas.

iii

Sammendrag

Den Svømmende undervannsmanipulatoren (USM) er ny type autonom ubemannet
undervannsfarkost som kombinerer det svært manøvrerbare designet til den biologisk
inspirerte undervanns slangeroboten (USR) med propellere som ofte brukes som fram-
driftsmiddel på mer tradisjonelle undervannsfarkoster. USMen ligner en flerleddet
manipulatorarm med monterte propellere, og kan bruke leddbevegelse, propellkraft
eller en kombinasjon av de to for å bevege seg. Propellene øker den styrbare fri-
hetsgraden (DOF) til USMen, og hvis de plasseres strategisk gir de roboten evnen til
bevegelse i seks dimensjoner nesten uavhengig av formen kroppen befinner seg i. Sam-
men med den lange og slanke formen til USMens kropp gir denne manøvrerbarheten
roboten tilgang til de fleste områder, det være seg innsiden av et skipsvrak eller mellom
stålbjelkene til en subsea struktur, og kan bruke til å løse komplekse oppgaver. En
av de mest grunnleggende egenskapene til autonome robotsystemer er deres evne
til å navigere området de opererer i. Denne oppgaven presenterer en banefølgings-
og en kollisjonsunngåelseskontroller som gir USMen denne ferdigheten. Begge kon-
trollerene drar nytte av robotens unike design, hvor banefølgingskontrolleren bruker
kroppsfleksibiliteten til å forbedre presisjonen og redusere energiforbruket, mens kol-
lisjonsunngåelseskontrolleren utnytter den ekstreme manøvrerbarheten slik at USMen
kan bevege seg i svært trange områder.

iv

Preface

This is the concluding work of myMaster of Science degree in Engineering Cybernetics
at The Norwegian University of Science and Technology. I would like to take the
opportunity to thankmy supervisor, Prof. Kristin Ytterstad Pettersen, for her invaluable
guidance, and for allowing me to take the work in the direction I found most interesting.
I would also like to express my gratitude towards my co-supervisor, Jørgen Sverdrup-
Thygeson, for supplyingmewith the necessarymaterial, and for the fruitful discussions
on the topics of path following and collision avoidance for the USM. Lastly, I would
like to thank my fellow students and friends for five great years at NTNU.

Information detailing background materials and help received for this thesis can
be found in chapter 1 under the section Background.

v

Contents

Abstract iii

Sammendrag iv

Preface v

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Underwater Swimming Manipulator 3
1.2 Problem Description . 5
1.3 Background . 6
1.4 Contribution . 7
1.5 Literature Review . 8

1.5.1 Inverse Kinematics . 8
1.5.2 Path Following . 9
1.5.3 Collision Avoidance . 10

1.6 Outline . 11

2 Kinematic Model 13
2.1 Definitions and Notation . 13

2.1.1 Reference Frames . 14
2.1.2 Homogeneous Transformations 14

vi

2.1.3 Position, Orientation and Velocities 15
2.2 Kinematics . 16

2.2.1 Forward Kinematics . 16
2.2.2 Differential Kinematics . 17

3 Motion Control System Framework 21
3.1 Overview . 22
3.2 Kinematic Control . 23

3.2.1 Closed-Loop Inverse Kinematics 23
3.2.2 Singularity-Robust Multiple Task Priority 25

3.3 Dynamic Control . 26
3.4 Thrust Allocation . 27

4 Path Following and Collision Avoidance 29
4.1 Path Following . 29

4.1.1 3D Line-of-Sight Waypoint Guidance 31
4.1.2 Configuration Controller . 36
4.1.3 Control Parameters . 43

4.2 Collision Avoidance . 44
4.2.1 Inverse Kinematics Collision Avoidance Controller 45
4.2.2 Control Parameters . 49

5 Implementation and Simulations 53
5.1 Simulation Model: Vortex . 53
5.2 Control System: MATLAB/Simulink 55
5.3 Simulation Study: Path Following . 55

5.3.1 Evaluation Criteria . 55
5.3.2 Scenario: Waypoint Navigation 56
5.3.3 Scenario: Spiral Path Docking 64

5.4 Simulation Study: Collision Avoidance 66
5.4.1 Scenario: Single Obstacle . 68
5.4.2 Scenario: Multiple Obstacles 73

vii

6 Conclusion 77
6.1 Results . 77
6.2 Future Work . 79

References 81

viii

List of Tables

5.1 Control parameters used for path following simulations 57
5.2 Comparison of the path following controller’s performance with and

without the configuration controller active 62

ix

List of Figures

1.1 Image of a typical AUV and ROV . 2
1.2 Image of a USM . 4

2.1 Kinematic model reference frames . 15

3.1 Motion Control Framework . 22
3.2 Kinematic redundancy in 2D . 25
3.3 Thruster allocation . 28

4.1 Path Following Controller . 31
4.2 Waypoint generated path . 32
4.3 Line-of-sight vector in 2D . 33
4.4 Line-of-sight vector in 3D . 34
4.5 Illustration of the desired orientation frame Fd 36
4.6 Illustration of fluid drag forces . 38
4.7 Illustration of how curving the robot can reduce hydrodynamic drag

forces . 39
4.8 Illustration of how the configuration controller works 40
4.9 Illustration of different mobile robot environments 44
4.10 Collision Avoidance Controller . 45
4.11 Illustration of how position norm tasks with nonzero desired distance

work . 47

x

4.12 Illustration showing how CA tasks are activated and deactivated . . . 50
4.13 Illustration showing the influence of the desired minimum obstacle

distance on the collision avoidance system 51

5.1 The USM model in Vortex. 54
5.2 Path following with the configuration controller disabled 58
5.3 Path following performance with the configuration controller disabled 60
5.4 Path following with the configuration controller enabled 62
5.5 Path following performance comparison 63
5.6 Illustration of spiral paths . 65
5.7 2D spiral path following . 66
5.8 3D spiral path following . 67
5.9 Image showing the defined collision avoidance points on the USM . . 68
5.10 Single obstacle collision avoidance . 70
5.11 The inverse kinematic gain’s effect on the collision avoidance system 72
5.12 Collision avoidance with an arbitrarily shaped obstacle 73
5.13 Collision avoidance in a cluttered environment 75
5.14 Time evolution of the USM’s motion during collision avoidance . . . 76

xi

Nomenclature

Abbreviations

AUV Autonomous Underwater Vehicle

CA Collision Avoidance

CAP Collision Avoidance Point

CC Configuration Controller

COM Center Of Mass

DOF Degrees Of Freedom

I-AUV Intervention Autonomous Underwater Vehicle

IMR Inspection, Maintenance and Repairs

LOS Line-Of-Sight

MCF/MCS Motion Control Framework/System

ROV Remotely Operated Vehicle

USM Underwater Swimming Manipulator

USR Underwater Snake Robot

xii

WLOS Waypoint Line-Of-Sight

Symbols

n Number of joints

nt Number of thrusters

Fi The USM joint frame i

FI Inertial frame

Fb The USM base frame

Fe The USM end-effector frame

Fr The USM rear-end frame

Ftj The USM thruster frame i

T c
a The homogeneous transformation matrix describing the pose of frame Fa

with respect to (wrt.) the frame Fc

Rca Rotation matrix describing the orientation of frame Fa wrt. frame Fc

Θac = [ϕ θ ψ]T Orientation of frame Fc wrt. frame Fa described using Euler
angles

paac = [xc yc zc]
T Position of frame Fc wrt. frame Fa described using the coordi-

nates of frame Fa

ηaac = [paac
T Θac

T]T Pose of Fc relative to Fa described in Fa

vc
ac = [uc vc wc]

T ∈ R3 Linear velocities of Fc wrt. Fa described in the body-fixed
frame Fc

ωc
ac = [pc qc rc]

T ∈ R3 Angular velocities of Fc wrt. Fa

q ∈ Rn The USM joint angles

xiii

Ûq ∈ Rn The USM joint velocities

V c
ac = [vc

ac
T ωc

ac
T
]T ∈ R6 Velocity of Fc wrt. Fa

ζ = [V c
ac

T ÛqT]T ∈ R6+n System velocities

ˆV c
ac ∈ R4×4 Matrix form (velocity twist) of the velocity vector V c

ac

AdT c
a ∈ R4×4 Adjoint map for the transformation T c

a

Jд,i ∈ R
6×(6+n) Geometric Jacobian describing the relationship between the velocities
of frame Fi and the system velocities ζ .

σ Task variable

JT Task Jacobian

J †T Pseudo-inverse

τc ∈ R6 Commanded forces and torques

x̃ = xr ef − x The tilde represents error variables

ut hr ∈ Rnt Vector containing the thrust magnitude for each separate thruster

d Shortest vector from the USM’s base frame to a line in space

l Vector describing a line in space

vLOS Line-of-sight vector

δ Look-ahead distance

Ac Cross-sectional area of an object

qt Unit quaternion

cf Curve factor

τCA,i Collision avoidance task for CAP i

xiv

σCA,i Collision avoidance task variable for CAP i

Ro,i Minimum desired distance to obstacles or CAP i

vn,i Vector from CAP i to the closest obstacle

vd ,i Vector from CAP i to a desired position

xv

xvi

Chapter 1

Introduction

This chapter will present the motivation behind this thesis and make the reader better
acquainted with the problem to be solved. Some parts of the complete control system
presented here are the result of previous research, and the distinction between this
material and that which belongs to the thesis will be made clear. A short literature
review is also given, where some existing knowledge relevant to the thesis’ contents
is presented.

1.1 Motivation

The ocean is a great resource that has been used by humans throughout history as
a means of transportation and as a source of food. In more recent days the ocean
is more relevant than ever, as we keep finding new ways to harvest its potential.
One of the most important technological contributions that have enabled us to make
new advancements on the ocean frontier has been the introduction of unmanned
underwater vehicles, as they have significantly improved our ability to go under the
surface, and in doing this help us solve a wide variety of tasks. These range from
scientific studies of marine lifeforms, mapping of the seafloor and monitoring the
impact of global warming to searching for shipwrecks, removing underwater mines

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Left: HUGIN AUV Right: Oceaneering ROV

and doing inspection and maintenance work on subsea oil installations. This diversity
in tasks and operational requirements has resulted in the development of a great
number of different unmanned underwater vehicles, both in shape and size. The
vehicles are often classified based on how they are operated, and the most common of
these classifications are remotely operated underwater vehicles (ROVs), autonomous
underwater vehicles (AUVs) and intervention autonomous underwater vehicles (I-
AUVs). The ROVs are, as the name implies, remotely controlled by an operator, often
through a tether connecting the robot with a surface ship. The AUVs, on the other
hand, are autonomous, usually working entirely on their own following predetermined
mission objectives or receiving high-level instructions during an operation from a
remote location.

One of the fields where unmanned underwater vehicles have proven to be very
useful is in the Norwegian oil industry. Extracting oil from the Norwegian continental
shelf requires many underwater operations, an in recent years there has been an
increasing focus on subsea installations where much of, or the entire, production is
moved underwater. This places new demands on the technology that is being used
and its capabilities. With production completely at the seafloor, many tasks that were
earlier done above the surface now has to be performed subsea, and several of these
tasks then fall into the hands of unmanned underwater vehicles.

Although the traditional ROVs and AUVs have been successful in performing the

1.1. MOTIVATION 3

required subsea tasks until now, the industry is starting to see the need for a new
generation of unmanned underwater vehicles that are more cost efficient and able to
solve the progressively more complicated tasks that arise. The different tasks needed
doing are largely inspection, maintenance, and repairs (IMR). For inspection, AUVs
such as the HUGIN (figure 1.1) are suitable, as they are often energy efficient and
can operate autonomously for long periods of time. Unfortunately, given their lack
of manipulators, they are not able to do any intervention tasks. There does exist
AUVs with manipulators, called intervention AUVs (I-AUVs), but they are often large
and have poor maneuverability, making them non-ideal for accessing the tight and
enclosed areas of subsea installations.

Here the ROVs are much better, as they are generally smaller, and have manipula-
tors and other tools needed to solve the tasks at hand. Still, their use is not without
problems. ROVs require a human operator that must be present on a surface ship
during the operation, which means large costs and long reaction times. Considering
the weaknesses of current day AUVs and ROVs, one could say that there is room
for a new kind of unmanned underwater vehicle that combines the autonomy and
energy efficiency of the AUV, with the maneuverability and intervening capabilities of
the ROV. The Underwater Swimming Manipulator (USM) is an unmanned underwater
vehicle design that tries to achieve just this.

1.1.1 The Underwater Swimming Manipulator

The USM is in general a robot consisting of a set of links that are connected together by
joints, similar to a standard multi-articulated manipulator arm. The links are commonly
cylinder-shaped and the joints revolute, but this is no requirement. What separates the
USM from a manipulator arm, however, is that it has a number of thrusters mounted
on its body. These thrusters can be placed both in the longitudinal and transversal
direction of the body. Figure 1.2 shows an example of a USM where the different
components can be seen.

The design is a mix between the biologically inspired underwater snake robot
(USR) and the more traditional AUV and ROV designs. By giving the USM a long,

4 CHAPTER 1. INTRODUCTION

Figure 1.2: The company Eelume’s USM. The links are the white modules, the joints
are hidden inside the black isolation material that can be seen between the links, and
longitudinal thrusters on the sides and transversal thrusters in tunnels can be seen in
orange.

slender and multi-articulated body it becomes highly maneuverable in a fashion similar
to real-life snakes. The robot’s ability to change its body shape is important, and the
shape of the USM will often be referred to as its configuration. A straight body is an
example of one configuration, while an s-shaped body is an example of a different
one. Both the form and flexibility of the robot gives it the ability to reach almost any
area, that being the inside of a pipe or the tight space between the steel beams of a
structural protection cage.

Although it is possible for the USM to navigate bymimicking snake motion patterns
alone, this solution does have its limitations. Navigating tight areas becomes difficult,
as the entire body must move to generate propulsive forces. Tasks such as dynamic
positioning and adjusting for underwater currents also becomes much harder when
the robot can only swim. That is why the slender and flexible snake design is combined
with traditional naval thrusters.

The thrusters allow for motion of the robot as a rigid body in six degrees of freedom
and opens up for a whole new range of maneuvers. If the task is to inspect a pipeline
over a long distance the USM can simply straighten its body and use the thrusters to
propel itself forward, obtaining a shape and properties similar to the submarine-shaped

1.2. PROBLEM DESCRIPTION 5

AUVs. When navigating enclosed areas it can use its flexible body to twist and avoid
obstacles, while using the thrusters for motion. If a tool is mounted at the end of the
USM, the thrusters can be used to keep the USM stationed while the body is used for
manipulations, giving the USM similar functionality as a mounted manipulator arm.

The flexible and maneuverable design of the USM is promising, and could poten-
tially offer a solution that can replace many of the AUVs and ROVs used for inspection
and light maintenance tasks today. However, many problems of both theoretical
and practical nature must be solved before such a robot can be realized. This thesis
addresses some of these by considering guidance and control of such a robot.

1.2 Problem Description

The USM is intended to be an autonomous vehicle. For the robot to be autonomous,
control algorithms must be developed for many different tasks, ranging from the
basic task of environment navigation to more specialized tasks like valve turning and
docking. Since the tasks are so different in nature the design of the resulting control
systems will inevitably be very different. However, common for them all is that if they
are to solve the tasks effectively they should all take the unique design of the USM
into consideration.

The multi-articulated body and many thrusters give the robot a large degree of
freedom, and can potentially be used to design effective control algorithms enabling
the robot to solve complex tasks. At the same time, this freedom is part of what makes
the control problem challenging, as there is no trivial way to resolve how to best
actuate the robot for it to achieve its goal at any given time. Should the robot move
by actuating its joints, should it use only the thrusters, or is the optimal solution a
combination of the two?

One of the most essential abilities of an autonomous mobile robot is its ability
to navigate its working environment. This is a complex problem that involves many
components: Sensors are needed to gather information about the environment, and
this data must be processed and used to build a map of the robot’s surroundings. Based
on the map a motion planning system can generate paths for the robot to follow. A path

6 CHAPTER 1. INTRODUCTION

following controller is needed to guide the robot along the desired path, and finally, a
motion controller is responsible for actually actuating the robot so that the desired
motion takes place. It is also often necessary with a collision avoidance controller that
makes sure that the robot does not collide with any obstacles when moving about its
environment, as collisions can lead to damage on both the robot itself and the object it
collides with.

This thesis considers the problem of navigation for the novel underwa-
ter swimming manipulator and presents controllers for path following and
collision avoidance as part of the solution to this task. The controllers are
designed to work in 3D, and have been implemented using Simulink/Matlab
and tested using the simulation environment Vortex.

1.3 Background

Path following and collision avoidance are tasks that are part of what is often called
the robot’s guidance system. The guidance system is responsible for controlling the
general motion of the robot, similarly to how the human mind decides on what the
body should do. The decisions made by the guidance system are parameterized as
some reference variables that are then sent to what is commonly called the motion
control system. The motion control system’s job is to carry out the orders given by the
guidance system by actually actuating the robot. In the human analogy, this is the same
as using our legs to actually cross the room after we have decided that is what we want
to do. Guidance laws can be discussed in a general sense without reference to a motion
control system, but what kind of motion that is feasible for a specific robotic system is
governed by its physical shape and actuators, and the motion control system’s ability
to utilize them. It thus makes more sense to discuss guidance systems in the context
of the robot and the motion control system they will be used with. Furthermore, if
the qualities of a guidance system are to be tested, either through simulations or by
real-world experiments, a motion control system is a prerequisite.

Ph.D. candidate Jørgen Sverdrup-Thygeson at the Institute of Engineering Cyber-
netics at NTNU has through his research looked at ways to effectively control a USM.

1.4. CONTRIBUTION 7

As a result, he has designed a framework for motion control of USMs. In addition to
having presented the theoretical aspects of the framework in his paper [31], he has
also implemented it in MATLAB/Simulink code. Furthermore, he has created a full 3D
simulation model of a USM in the simulation software Vortex, with which the motion
control framework can communicate. Together the MATLAB/Simulink motion control
framework and the Vortex simulation model enables the development and testing of
control algorithms through simulations. The framework and simulation model has
kindly been provided to the author for the work in this thesis, which would not have
been possible otherwise.

The details of the motion control framework (MCF) supplied by Jørgen Sverdrup-
Thygeson will be discussed in chapter 3. However, in order to better fit with the
guidance system developed in this thesis some parts of the MCF has been changed,
and thus the MCF will be briefly introduced in order to highlight these changes.
The framework written in MATLAB/Simulink consists of four parts: The Kinematic
controller, the dynamic controller, the thruster allocation module and the interface that
is used to communicate with the Vortex simulation software. The thruster allocation
module has been left untouched and is completely as provided by Sverdrup-Thygeson.
The forward kinematics in the kinematic controller has been modified, as different
body-fixed reference frames are used than in Sverdrup-Thygeson’s work. The inverse
kinematics in the kinematic controller has been completely rewritten, so as to be
compatible with the path following and collision avoidance guidance laws. A new
dynamic controller has also been created, albeit based on the linearization feedback
controller suggested in Sverdrup-Thygeson’s work [31]. Finally, the interface has been
extended to receive and process extra data from the Vortex simulation software, as
an additional measurement point has been added and one of the previously available
ones has been moved. The Vortex simulation model itself is unaltered.

1.4 Contribution

The main contributions of this thesis are the path following and collision avoidance
controllers developed for the novel underwater swimming manipulator. These are two

8 CHAPTER 1. INTRODUCTION

essential properties of an autonomous system and often serves as a basis for control
systems that perform more advanced tasks. Path following and collision avoidance
for the USM in a complete 3D environment has not been done before this thesis. The
different techniques employed to achieve path following and collision avoidance are,
when considered separately, not novel in nature. However, the USM is a robotic system
unlike most other, and the combination of methods used in this thesis has, to the
author’s best knowledge, not been used before.

1.5 Literature Review

The underwater swimming manipulator has traits that are similar to those of both
multiarticulate manipulator arms and traditional underwater vehicles. Manipulator
arms and underwater vehicles have been topics of research for many decades, and it is
thus natural to look into literature from these fields for inspiration when designing
control systems for the USM. When dealing with mobile robot systems collision
avoidance is also often of importance, as the robot system often navigates in cluttered
environments. This section will present some earlier research on these three topics,
that is relevant to the work presented this thesis.

1.5.1 Inverse Kinematics

Multiarticulate robotic arms have been used in the industry and for research purposes
for a long time, and as both the mechanisms themselves and their control algorithms
keep evolving their usage is ever more widespread. When considering control of
manipulator arms, kinematics and inverse kinematics are essential. As stated in [29],
the direct kinematic equations establish the functional relationship between the joint
variables and the end-effector position and orientation. The inverse kinematics problem
(IK problem) consists of the determination of the joint variables corresponding to a
given end-effector position and orientation. For most control problems it is desirable to
specify the task through end-effector position and orientation, velocity or acceleration.
Considering this the solution to the inverse kinematics problem is of fundamental

1.5. LITERATURE REVIEW 9

importance.
There exist many alternatives for trying to solve the IK problem [9], such as interval

methods [27], distance-based methods [26], neural networks [10], Bézier maps [34] and,
probably the most popular method, closed-loop inverse kinematics (CLIK) algorithms
[20]. The CLIK algorithms use a first-order Jacobian matrix [24] of the robot kinematics
that maps joint velocities into task space velocities, and inverts this matrix to find the
joint velocities that reduce the task error. One major advantage of the CLIK algorithms
is that they do not require any previous knowledge or learning process with the robot,
only the Jacobian matrix. The algorithms vary mainly in how they choose to compute
the inverse of the Jacobian, and how they deal with problems related to singularities.
A comprehensive list of the different CLIK methods can be found in [9].

Redundant manipulators are manipulators which have more degrees of freedom
than are needed to solve the given task. When this is the case it is often desirable to
use the extra degrees of freedom to solve some secondary tasks. This is commonly
done by projecting the gradient of a secondary task through the kernel of the Jacobian
matrix, so as not to affect the primary task [23]. This method has been extended to
handle both singularity issues [7] and multiple tasks [30], resulting in it being known
as the Singularity-Robust Multiple Task Priority (SRMTP) method. In [2] set-based
control is incorporated with the SRMTP method.

1.5.2 Path Following

Path following can be defined as the act of following a predefined path in space
independent of time. The same problem but with a temporal constraint is called
trajectory tracking. For both path following and trajectory tracking it is possible to
add spacial constraints which represent obstacles and other positional constraints,
should they be known in advance. To successfully achieve path following two things
are needed, a guidance law that determines how the vehicle should move and a motion
controller that makes the vehicle move accordingly.

The subject of guidance originated within the guided missile community, but
its principles are today used in many different applications where motion control is

10 CHAPTER 1. INTRODUCTION

needed. An overview of several classical guidance laws for both target tracking and
path following can be found in [4]. One of the most widely used methods for guidance
in path following controllers is the line-of-sight (LOS) guidance law (ch. 10, [12]).
Some reasons for the method’s popularity are that it is simple, intuitive, easy to tune
and, in the case of no environmental disturbances, provides nice path convergence
properties. Although the LOS guidance law, in theory, works for paths of any shape,
it is mainly used for straight line paths or paths with simple geometries. The LOS
method has also been extended with an integral effect to counter external disturbances
like ocean currents and wind [17], [3]. For paths of arbitrary shape, the Serret-Frenet
equations are often used as a guidance law [4], which has also seen extensions that
handle external disturbances [21].

1.5.3 Collision Avoidance

For most mobile robot systems it is desirable to avoid collisions with any obstacles in
the environment, as this can lead to damage to both the robot and the environment.
This process of avoiding obstacles is called collision avoidance and has been relevant
for as long as there have been mobile robots. In the literature, there are in general
two different approaches to collision avoidance, reactive algorithms, and deliberate
algorithms.

Reactive collision avoidance algorithms make decisions based on the current situa-
tion only, which enables them to react quickly to rapid changes in the environment.
However, the solutions they produce are often sub-optimal because the resulting future
state of the system is not taken into consideration. The reactive algorithms are often
implemented by using some guidance controller that steps in and steers the robot
safely away from an obstacle when needed [22]. Some examples of reactive algorithms
include velocity obstacles [11] and the dynamic window approach [13].

Deliberate algorithms use all available information accumulated about the envi-
ronment to make decisions that are optimal in a global sense. These algorithms are
thus often part of the motion planning system that generates the robots desired path.
Some examples of deliberate algorithms are the rapidly-exploring random trees [19],

1.6. OUTLINE 11

graph search algorithms such as A∗ [25] and constrained nonlinear optimization and
model predictive control [16]. The disadvantage of the deliberate algorithms is that
they are computationally heavy, and thus often not feasible for real-time usage.

To exploit their strengths and minimize their weaknesses reactive and deliberate
algorithms can be used together in a hierarchical structure. Together with other motion
control functions like path following, the complete system is then able to conduct
long-term planning to find optimal paths and react to rapid changes in the environment
or unpredicted events.

1.6 Outline

The rest of this thesis is structured in the following way: First, a kinematic model for
the USM is presented in chapter 2. Then the previously mentioned motion control
framework will be discussed in chapter 3. Chapter 4 introduces the path following
and collision avoidance controllers developed in this thesis, followed by some imple-
mentation details and simulation results demonstrating the controllers’ capabilities in
chapter 5. Finally, chapter 6 brings the thesis to an end with conclusions and some
suggestions for future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Kinematic Model

In this chapter, a kinematic model for a general USM will be presented. The model
is general, as it is valid for an arbitrary number of links, joints, and thrusters, and
the different components can be placed freely, assuming that the general structure
of a USM is kept. The model that is presented is a recollection of the model given in
[33], with some adjustments to notation. In addition, the differential kinematics of the
model will be derived.

2.1 Definitions and Notation

The multiarticulate body of the USM gives it properties similar to a manipulator arm.
Manipulator arms are mounted to a structure called a base, which can be both mobile
or stationary. By imagining a point on the USM as its base, and the rest of the robot as
a manipulator arm, one can adopt the same view for the USM. This view of the robot,
as a floating manipulator arm, enables the use of control methods used for manipulator
arms. The base also serves as a reference point on the robot for the position and
orientation (pose) of the rest of its body in space. For instance, if the base is chosen to
be the center of mass (COM) of the rearmost link of the USM, this link can be seen as
a floating base and the rest of the robot a manipulator arm. If, on the other hand, the

13

14 CHAPTER 2. KINEMATIC MODEL

base is chosen to be the COM of the center link of the USM, this link can be seen as a
floating base with two separate manipulator arms, one on each side. This difference is
also reflected in the kinematic model, as it depends on the choice of base.

2.1.1 Reference Frames

The USM consists ofn+1 links, connected byn actuated joints (see figure 2.1). Each link
is numbered from the tail and forward, indicated by the subscript i ∈ [0 . . .n]. Each
link has a link reference frame attached to its center of mass, denoted F̄i , with axes
that coincide with the principal axes of inertia of the link. A frame for the chosen base
of the USM is defined as Fb . In addition to the base frame, frames are defined for other
points of interest on the USM as well. One such point is the end-effector frame, Fe ,
located at the very end of the frontmost link, where one would likely mount a tool or a
camera. The joints have one degree of freedom and are numbered i ∈ [1 . . .n] such that
the links i and i − 1 are connected by joint i . The corresponding joint reference frames
are fixed to the center of the joints and denoted Fi . The USM can be equipped with
both longitudinal thrusters along its sides and transversal tunnel thrusters through
the links. There are a total ofm thrusters that are numbered by j ∈ [1 . . .m]. Their
position and orientation is described by the reference frames Ftj , where the thruster
force point of application is at the origin of the frame and the thrust vector lies along
the x-axis of the frame. The chosen inertial reference frame is denoted FI .

2.1.2 Homogeneous Transformations

The body-fixed reference frames defined in the previous section represents the position
and orientation of different parts of the USM in space, and together they represent
the entire robot. One way to describe the relationship between the different frames
is through homogeneous transformation matrices. As an example, the pose of the
base frame Fb with respect to the inertial frame FI is given by the homogeneous
transformation matrix

T I
b =


RIb pIIb

0 1

 ∈ SE(3) (2.1)

2.1. DEFINITIONS AND NOTATION 15

Figure 2.1: Illustration showing the different reference frames used in the kinematic
model for a USM with 5 links, n = 4 joints, a gripper tool, and with the base defined as
the COM of the rearmost link. Thrusters and thruster frames are not visualized.

where RIb ∈ SO(3) is the rotation matrix describing the orientation of the base frame
with respect to the inertial frame and pIIb is the vector from the origin of FI to the
origin of Fb described in the coordinates of frame FI . Note: For ease of notation the
superscript on the transnational vectors will only be used if the vector is described in
a coordinate system other than the inertial frame, i.e. pIb = pIIb .

2.1.3 Position, Orientation and Velocities

The position and orientation of a frame Fc in space relative some inertial frame Fa is
described by its pose

ηaac = [paac
T ηo

T]T (2.2)

where paac = [xc yc zc]
T are the cartesian coordinates of the origin of frame Fc with

respect to frame Fa described in frame Fa , and ηo describes the orientation of the frame.
The contents of ηo depends on how the rotation is parameterized. For instance, by
using Euler angles ηo ∈ R3×1, while using unit quaternions would result in ηo ∈ R4×1.
In this thesis Euler angles are used, implying that ηo = [ϕ θ ψ]T , representing the
frame’s rotation about the x , y and z-axis of the inertial frame respectively. In this
thesis the name convention found in marine craft literature will be adopted, implying
that the Euler angles ϕ, θ , andψ are called roll, pitch and yaw.

16 CHAPTER 2. KINEMATIC MODEL

The linear and angular velocities of a frame Fc with respect to a frame Fa are
described by

vc
ac =


uc

vc

wc


∈ R3, ωc

ac =


pc

qc

rc


∈ R3 (2.3)

respectively. The linear velocities, along the x , y and z axis, are called surge, sway
and heave, while the angular velocities p, q and r are referred to as roll, pitch and yaw
rates.

In addition to describing the pose and velocities of independent frames, it is neces-
sary to define variables that describe the system velocity, i.e. the velocities of the USM.
By choosing the base frame as a reference frame for the USM, the system velocities
can be described by

ζ =


V b
I b

Ûq

 ∈ R6+n , V b
I b =


vb
I b

ωb
I b

 (2.4)

wherevb
I b

andωb
I b

are the body-fixed linear and angular velocities of the base of the
USM with respect to the inertial frame, as described above, and Ûq is the vector of joint
velocities.

2.2 Kinematics

2.2.1 Forward Kinematics

In this thesis, it is assumed that the homogeneous transformation between the inertial
frame and the base frame, T I

b , is known. In addition, assuming that the dimensions of
the USM and the joint angles q are known, the transformation matrices between joint
i and joint i − 1 and its inverse [14] are known and given as

T i−1
i (qi) =


Ri−1
i (qi) pi−1(i−1)i

0 1

 , T i−1
i

−1
(qi) =


Ri−1
i

T
(qi) −Ri−1

i
T
(qi)pi−1(i−1)i

0 1

 (2.5)

2.2. KINEMATICS 17

Through consecutive transformations the transformation from the inertial frame to
any of the frames can be found by

T I
i (q1 . . .qi) = T

I
bT

b
1 (q1)T

1
2 (q2) . . .T

i−1
i (qi) =


RIi (q1 . . .qi) pI i

0 1

 (2.6)

These transformation matrices are used to represent the forward kinematics of the
USM. It should also be noted that they are time-dependent, as both the base pose and
joint angles are time-varying. For notational convenience the explicit dependence on
q will often be omitted, i.e. T I

i ≜ T
I
i (q1 . . .qi).

2.2.2 Differential Kinematics

The forward kinematics provides a mapping from the joint angles to a set of variables
that describe the pose of the robot. For instance, the relationship between the joint
angles and the pose of the end-effector relative to the base frame can be described by
the transformation matrix T b

e , where information about orientation and position is
found within the matrix in Rbe and pbbe . A more general way of describing this mapping
is

ηbbe = k(q) (2.7)

where the vector ηb
be

is some chosen representation of the USM’s end-effector pose,
and q are the joint angles. Usually, when designing control algorithms for robots
moving in Euclidean space it is desirable to specify control tasks in terms of the robot’s
pose, not in terms of the joint angles. In order to do this the inverse mapping k−1(q)
is needed. Unfortunately the mapping k(q) is in general not invertible. A common
solution to this problem is to solve the inverse kinematics at the differential level,
giving rise to differential kinematics. The differential kinematics thus describe the
relationship between the velocities of a part of the USM, for instance the end-effector,
and the joint velocities.

The differential kinematics is found by differentiating the forward kinematics, i.e

18 CHAPTER 2. KINEMATIC MODEL

the homogeneous transformation matrix, which results in

ÛT I
b = V̂

b
IbT

I
b ⇒ V̂ b

Ib = T
I
b
−1 ÛT I

b (2.8)

where V̂ b
Ib is the matrix form of the body-fixed base frame velocities, called the velocity

twist of V b
Ib , and given as

V̂ b
Ib =


ω̂b
Ib vbIb

0 0

 (2.9)

where ω̂b
Ib is the skew-symmetric matrix of ωb

Ib .

The velocity twist of a link i with respect to the inertial frame FI can then be
expressed in frame Fi by

V̂ i
I i = T

I
i
−1 ÛT I

i (2.10)

= (T I
bT

b
i)

−1(ÛT I
bT

b
i +T

I
b
ÛT b
i) (2.11)

= T b
i
−1
V̂ b
IbT

b
i + V̂

i
bi (2.12)

This expression can be written in coordinate form as

V i
I i = Ad−1

T b
i
V b
Ib +V

i
bi (2.13)

whereAd−1
T b
i
is the adjoint map for the transformationT b

i [14]. V i
I i describes the velocity

of link i with respect to the inertial frame, described in frame i . For the homogeneous
transformation matrix the adjoint map and its inverse are given by

AdT b
a
=


Rba p̂bbaR

b
a

0 Rba

 , Ad−1
T b
a
=


Rba

T
−Rba

T
p̂bba

0 Rba
T

 (2.14)

By following the same steps as above, the body-fixed velocity of the end-effector frame
Fe is found to be

V e
I e = Ad−1

T b
e
V b
Ib +V

e
be (2.15)

2.2. KINEMATICS 19

In order to complete the equations 2.13 and 2.15 expressions must be found for V i
bi

and V e
be , the relative link and end-effector velocities with respect to the base. These

relative velocities are linked to the joint velocities through a linear mapping by the
Jacobian [29]

V i
bi = Ad−1

T b
i
Ji Ûq (2.16)

V e
be = Ad−1

T b
e
Je Ûq (2.17)

where the link Jacobian Ji and the end-effector Jacobian Je are given by

Ji (q) = [AdT b
1
(q)X 1

1 . . .AdT b
i
(q)X i

i , 06×(n−i)] (2.18)

Je (q) = [AdT b
1
(q)X 1

1 . . .AdT b
n
(q)Xn

n] (2.19)

and X i
i are the joint twist coordinate vectors given by either X i

i = [0, 0, 0, 0, 0, 1]T or
X i
i = [0, 0, 0, 0, 1, 0]T depending on whether the joint rotates about the z-axis or the

y-axis of frame Fi . Finally the differential kinematics are found by inserting 2.16 and
2.17 into 2.13 and 2.15:

V i
I i = Jд,i (q)ζ , Jд,i (q) = [Ad−1

T b
i
,Ad−1

T b
i
Ji] ∈ R

6×(6+n) (2.20)

V e
I e = Jд,e (q)ζ , Jд,e (q) = [Ad−1

T b
e
,Ad−1

T b
e
Je] ∈ R

6×(6+n) (2.21)

Jд,i and Jд,e are the geometric Jacobians, and maps the body-fixed base velocities and
joint velocities to the linear and angular velocities of each link and the end-effector
respectively.

20 CHAPTER 2. KINEMATIC MODEL

Chapter 3

Motion Control System
Framework

The goal of this thesis is to develop control systems for path following and collision
avoidance for the USM. Both collision avoidance and path following are tasks that
are often handled by guidance systems that guide the motion of the robot to achieve
the desired behavior. It is the responsibility of the motion control system to actuate
the robot to create the desired motion. The motion control system thus directly
influences any guidance system, as it defines what kind of maneuvers that are possible.
The USM is a complex robot with its many thrusters and multiarticulate body, and
designing an effective motion control system that can be used to fully utilize the robot’s
maneuverability is not trivial.

In the paper A control framework for biologically inspired underwater swimming
manipulators equipped with thrusters [31] Sverdrup-Thygeson et al. presents a motion
control system framework for the USM. This framework has been used as a basis for
the motion control system used together with guidance systems to create the path
following and collision avoidance controllers presented in this thesis. This chapter
will thus introduce the framework and its components. The material in this chapter is

21

22 CHAPTER 3. MOTION CONTROL SYSTEM FRAMEWORK

based mainly on the results in the above-mentioned paper, as well as a more recent
paper from the same author [14].

3.1 Overview

The motion control framework draws inspiration from typical guidance, control and
allocation systems that have previously been used for both underwater and surface
vessels. Figure 3.1 shows the components of the motion control system suggested by
Sverdrup-Thygeson for the USM.

USMKinematic Control Dynamic Control Thrust Allocation

Input

Output

Motion Control System

Figure 3.1: Motion Control Framework

The main responsibility of each component is:

• Kinematic Control: Based on a given task the kinematic controller calculates
reference joint velocities and reference linear and angular velocities for the
base of the USM. A typical task could be to move the end-effector to a desired
position.

• Dynamic Control: Takes the reference linear and angular base velocities from
the Kinematic Control block and calculates general forces needed to achieve
these velocities.

3.2. KINEMATIC CONTROL 23

• Thrust Allocation: Calculates the required thruster actuation that is needed from
each separate thruster in order to generate forces equal to the reference forces,
while taking the robot’s configuration into consideration.

• USM: The Underwater Swimming Manipulator represented as the real physical
robot or a simulation model.

The following sections will discuss the different components of the motion control
system in closer detail.

3.2 Kinematic Control

The kinematics describe the position and orientation of both the entire robot and
its individual parts with respect to each other. Kinematic control is thus of much
interest, as it can be used to control the shape of the USM’s body. Since the USM can be
viewed as a floating base manipulator arm it is natural to look at methods developed
for control of land-based manipulator arms for inspiration, when determining how to
do the kinematic control. A popular control method from this field is the closed-loop
inverse kinematics algorithm (CLIK) and is the one that has been adopted in the USM
control framework.

3.2.1 Closed-Loop Inverse Kinematics

The forward kinematics of the USM are given by its kinematic model and describes the
robot’s pose and configuration in space given the joint angles. As mentioned in chapter
2 it is desirable to have the inverse relation, the inverse kinematics, when controlling
the robot, such that a desired pose in space can be used as an input, and the required
joint angles and base position is given as control references. Such a relationship was
found on a velocity level through the differential kinematics and were given by a
mapping through the geometric Jacobian (equations 2.20, 2.21).

In addition to having the inverse kinematics for the USM, the control tasks them-
selves must be defined. Typical control tasks might be controlling the orientation of

24 CHAPTER 3. MOTION CONTROL SYSTEM FRAMEWORK

the end-effector, the position of the base, or keeping a minimum distance to an obstacle.
A more comprehensive list of possible control tasks can be found in [1]. The different
tasks are defined by task variables, which in general are given as

σ = σ (η, q) (3.1)

where η represents the pose of the robot’s base and q are the joint angles. In same way
as for the differential kinematics it is possible to find a Jacobian that relates the task
derivative to the system velocity

Ûσ = JT(η, q)ζ (3.2)

where JT is the corresponding task Jacobian.

With the proper task Jacobian, the reference system velocities ζr can be found sim-
ply by inverting the mapping 3.2. A common way to do this is to use the pseudoinverse
of the task Jacobian, resulting in

ζr = JT† Ûσd , JT† = JTT(JTJ
T
T)

−1 (3.3)

where Ûσd are the desired task velocities. The velocities can then be numerically
integrated in order to get the reference position and joint angles. Unfortunately the
integration often leads to drifting because of numerical errors. To remedy this it is
common to instead define an error variable to obtain a closed-loop version of the
algorithm:

σ̃ = σd − σ

Û̃σ = Ûσd − JTζ

ζr = JT†(Ûσd − Û̃σ)

The closed-loop inverse kinematics algorithm is found by making a small alteration to
the above equation

ζr = JT†(Ûσd − K Û̃σ) (3.4)

3.2. KINEMATIC CONTROL 25

where K is chosen as a positive definite, and often symmetric, matrix to assure asymp-
totic stability in the error variable [29].

3.2.2 Singularity-Robust Multiple Task Priority

A common property of manipulator arms is redundancy. A manipulator arm is said
to be redundant if it has more degrees of freedom than are needed to solve the task
at hand. Figure 3.2 shows a redundant manipulator arm in 2D. Here the task is to
position the end-effector, a task with a dimensionality of two, while the manipulator
arm has three rotational joints, i.e. three degrees of freedom. The result of this extra
degree of freedom is that there is an infinite number of solutions to the positioning
task. Three possible solutions are shown in the figure 3.2.

Figure 3.2: Kinematic redundancy in 2D

The extra degrees of freedom in a redundant manipulator can be exploited by
defining secondary kinematic tasks for the robot to solve. There are several ways to do
this, but in the framework presented here, this is done by using the singularity-robust
multiple task priority (SRMTP) method [30]. This leads to an extension of the CLIK

26 CHAPTER 3. MOTION CONTROL SYSTEM FRAMEWORK

algorithm given in equation 3.4, which now becomes

ζr = J1†(Ûσ1,d − K1 Û̃σ1) + N1J2†(Ûσ2,d − K2 Û̃σ2) + · · · + N12..(k−1)Jk†(Ûσk,d − Kk Û̃σk) (3.5)

where k is the number of tasks, Ji is the i-th task Jacobian, Ni = (I − Ji † Ji) is the
null space of Ji and N12..(k−1) is the null space of the combined jacobians, i.e. the null
space of J12..(k−1) = [JT1 JT2 ... J

T
k−1]

T . The prioritization of the tasks is strict and given
by their indices, where i = 1 is the top prioritized task.

3.3 Dynamic Control

The dynamic controller receives velocity references from the kinematic control module
and calculates general forces based on these. In theory, the system designer could
choose any controller for this purpose. However, there is currently no 3D analytical
model available for the USM, limiting the possible choices. In [33] Sverdrup-Thygeson
proposes to use a state-feedback linearization controller

τc = M11(q)a
b + n(RIb ,q, ζ) (3.6)

where τc is the vector of commanded generalized forces and moments, M11(q) is part
of the system inertia matrix, n(RIb ,q, ζ) is the nonlinear feedback linearization matrix
and ab is the commanded body-fixed acceleration vector given by

ab = ÛV b
Ib − KpṼ

b
Ib − KI

∫ t

0
Ṽ b
Ibdτ (3.7)

The nonlinear feedback linearization matrix is not known, as this requires model
knowledge of the system. However, Sverdrup-Thygeson argues that the linearizing
term can be ignored when the robot moves at low velocities, as its influence then will
be small.

3.4. THRUST ALLOCATION 27

3.4 Thrust Allocation

In order to actually generate the forces calculated by the dynamic controller, the
thrusters must be correctly actuated. The pose of each individual thruster relative to
the base depends on the USM’s configuration, implying that even if the total reference
force vector is constant for a period of time, the corresponding thruster actuation will
still change if the robot’s configuration changes. A scenario like this is depicted in
figure 3.3. The USM’s actuator forces τ (q) are described by

τ (q) =


τb (q)

τq(q)

 =

T (q) 06×n

0n×m In×n



uthr

uq

 (3.8)

there τb (q) are the base forces and torques, τq(q) = uq are the joint torques,uthr are the
thruster forces, andT (q) is the thruster configuration matrix (TCM) that translates the
thruster forces into forces and torques acting on the base. In chapter 2 a linear mapping
between the link frame and system velocities was found through the geometric Jacobian
(2.20). In a similar manner, the geometric Jacobians for the thruster frames that maps
the forces and moments from the thruster frames to the base frame can be found, and
using these the total force and torque experienced by the base frame can be expressed
as

τ (q) =
m∑
j=1

JTд,tjτtj (3.9)

where τtj = [1 01×5]
Tuthr, j and uthr, j is the scalar force applied by thruster j . The base

forces and torques τb are those of interest, and can be extracted from τ by applying
the selection matrix H = [I6×6 06×n]

τb (q) = Hτ (q) =
m∑
j=1

H JTд,tjτtj =
m∑
j=1

(Ad−1
T b
tj
)Tτtj =

m∑
j=1

Bj (q)uthr, j (3.10)

28 CHAPTER 3. MOTION CONTROL SYSTEM FRAMEWORK

where the definition of Jд,tj found in 2.20 has been used, and

Bj (q) ≜ (Ad−1
T b
tj
)T


1

05×1

 =


Rbtj
T 0

p̂bbtjR
b
tj
T

Rbtj
T




1

05×1

 (3.11)

By comparing equations 3.8 and 3.10 it can be seen that the thruster configuration
matrix can be expressed as the horizontal concatenation of the column vectors Bj (q)

T (q) = [B1 B2 ... Bm] (3.12)

Given a vector τc of commanded forces and moments the thruster configuration
matrix can be used to calculate the required thruster forces ut hr to achieve this by

ut hr = T
†(q)τc (3.13)

where T † = TT (TTT + λ2I)−1 is the damped pseudoinverse of T (q). This solution
corresponds to minimizing the norm of the thruster efforts and the norm of the
deviation from the thrust command, with the damping part taking care of any possible
problems with a singular thruster configuration matrix. For more details the reader is
referred to [31].

Figure 3.3: Two situations where the commanded virtual force vector (purple) is
the same, but the resulting thruster actuation (orange) differ because of the USM’s
configuration.

Chapter 4

Path Following and Collision
Avoidance

This chapter presents the main results of this thesis, namely the path following and
collision avoidance controllers developed for the new and innovative underwater
swimming manipulator. Both path following and collision avoidance are well-known
control problems, for which there exist much research and many good solutions.
However, a solution to these problems for the USM has never been presented before
this thesis. The first section will present the path following controller, followed by the
collision avoidance controller in the second section. Simulations demonstrating the
controllers’ capabilities are shown in the next chapter.

4.1 Path Following

When designing a path following control system for the USM there are two main
challenges to address. Firstly, the USM is an underwater vessel, meaning that its
working environment is 3D. The path following controller should thus have the ability
to follow 3D paths. Secondly, in contrast to traditional underwater vehicles, the USM

29

30 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

has a flexible body. If possible, this flexibility should be utilized to improve the robot’s
path following capabilities.

The problem of 3D path following for underwater vehicles has been solved numer-
ous times before, although mainly for vessels with single rigid bodies. The USM has the
ability to continuously change its body shape by actuating its joints. However, when
considering a single instant in time the body shape is constant. The USM can thus be
seen as a rigid body with the ability to change its shape from one time instant to the
next. With this perspective, the previously developed methods for path following can
be applied to the USM as well, as long as the method is general enough to work for a
vessel of arbitrary shape. The approach taken to the path following control system
developed in this thesis has thus been to design a guidance system consisting of two
parts: One that guides the USM along its desired path irrespective of its shape, and
one that controls the shape of the USM.

The kinematic model and motion control system for the USM is influenced by the
choice of base frame. Where the base frame is placed on the robot’s body is important,
as the configuration of the robot is controlled relative to the base frame. For instance,
if the base frame is placed in the center of mass of the rearmost link on the USM, this
link can be viewed as a rigid body vessel and the rest of the USM can be viewed as an
attached manipulator arm that can be configured as desired. For the path following
controller, the base has been placed in the COM of the center link. The links in front
of and the links behind the center link are thus viewed as two separate manipulator
arms, one in each direction. By achieving path following for the base frame the center
of the robot will follow the desired path, and the body can be shaped symmetrically
about this point.

Figure 4.1 shows the complete path following controller. The waypoint line-of-
sight (WLOS) controller is the part of the system responsible for the actual path
following, while the configuration controller manages the shape of the USM. It can
also be observed that some alterations have been done to the original motion control
framework presented in chapter 3, namely that the dynamic controller no longer
receives reference velocities from the kinematic controller, but directly from the
guidance system.

4.1. PATH FOLLOWING 31

Dynamic Control USM

Kinematic Control

Thrust Allocation

Output

Configuration Control

WLOS
Waypoints

Guidance System Motion Control System

Path Following Controller

Figure 4.1: Illustration of the general structure of the path following controller. Notice
that the motion control system has been lightly altered to fit with the guidance system.

4.1.1 3D Line-of-Sight Waypoint Guidance

The path following method adopted in this thesis is a modified version of the waypoint
line-of-sight (WLOS) guidance algorithm. This is a well-known algorithm often used
in naval guidance systems for surface vessels [12]. In this algorithm the desired path is
a series of connected straight line segments, meaning that the path following controller
only needs to handle straight lines. Each line segment is defined by two points in space
called waypoints, and each subsequent line segment shares a common waypoint. In
other words, the entire path can be defined by a series of waypoints with straight lines
drawn from one waypoint to the next. The advantages of the WLOS method is that it is
simple, intuitive and easy to tune. In addition, it can also be used to generate paths of
more complex shapes by placing waypoints close together. The process of generating
the path is called motion planning and is something that will not be addressed in this
thesis, as the path will be assumed given by some higher level control entity in the
control system. Figure 4.2 shows an example of a waypoint-generated path.

TheWLOS guidance law supplies themotion control systemwith control references
that guide the base frame Fb of the USM along a given straight-line path in 3D. The
method was originally developed with vessels that are underactuated in mind, such

32 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

-190

-185

-50

-180

-175

z

-170

-165

50

x

0

y

0
50 -50

-50

0

50

x

-50 0 50
y

-190

-185

-180

-175

-170

-165

z

500

x

-50

Figure 4.2: A path in 3D space defined by a set of waypoints. Left: 3-D plot. Middle:
Path projected onto the xy-plane. Right: Path projected onto the xz-plane.

as surface ships, where only forward velocity and yaw rate can be controlled. In this
case, the velocity vector can only be controlled by either adjusting the speed of the
vessel, which affects the velocity vector’s magnitude, or by adjusting the yaw angle,
which influences its direction. The line-of-sight (LOS) guidance system determines
a desired direction vector termed the LOS vector, that if followed will lead to path
following. Based on the difference between the current velocity vector and the LOS
vector the desired yaw rate can be found. There are different guidance strategies for
the forward velocity, but it has been proven that the LOS guidance law will lead to
path following as long as the velocity is kept larger than some nonzero value. A simple
but effective guidance law for the velocity is thus to keep it at a constant reference
value. The desired yaw rate and velocity are sent as reference variables to the motion
control system.

In 3D the principle is the same. The LOS guidance system determines the LOS
vector, and reference variables are found based on the difference between the LOS
vector and the current velocity vector. Since the velocity vector is no longer in a plane
but in 3D space, a representation of orientation in 3D space must be used instead of a
single angle, such as a rotation matrix or unit quaternions.

In general the LOS vector can be found by using regular vector geometry. Given
the position of the USM base frame origin as the vector pI b , and a desired straight line
path given by l = a + cn, the shortest vector, d , from the base frame to the line can be
found as

d = (a − pI b) − [(a − pI b)
Tn]n (4.1)

4.1. PATH FOLLOWING 33

where a is some arbitrary point on the line, n is a unit vector pointing along the line
and c is a constant. Using this the LOS vectorv is defined as

vLOS ≜ d + ∆n (4.2)

where ∆ is a control parameter called the look-ahead distance. Figure 4.3 and 4.4 shows
the LOS vector in 2D and 3D space respectively.

Figure 4.3: Illustration showing the LOS vector in 2D.

For the 2D case the desired yaw angle is determined by the LOS guidance law [4]

ψd = atan(
d(t)

∆
) (4.3)

where the LOS vector is represented by d(t) and ∆. This is illustrated in figure 4.3.
From this a desired yaw rate can be found as rr ef ≜ rr = ψd −ψ , which is the reference
sent to the motion control system.

In 3D the orientation of the LOS vector, and thus the desired base frame orientation,
cannot be represented by a single angle. There are several ways to represent the
orientation of a vector in 3D space, but in this thesis, rotation matrices are used. To
represent the desired base frame orientation a new frame, Fd , is defined, with an
origin identical to the base frame and with its x-axis lying along the LOS vector. The
orientation of the new frame relative to the inertial frame is represented by the rotation
matrix RId . Figure 4.5 (a) illustrates the desired orientation frame and the LOS vector.

34 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

Figure 4.4: Illustration showing the LOS vector in 3D. The red vector is the LOS vector,
the blue vector is d , the purple vector is ∆n and the green vector is pIIb .

4.1. PATH FOLLOWING 35

The desired orientation matrix RId is determined through the use of passive intrinsic
XZY Euler angles. By defining the elemental rotations as Rx (ϕ), Ry (θ), and Rz (ψ), the
rotation matrix can be given as

RId = Rx (ϕ)Rz (ψ)Ry (θ) (4.4)

The LOS vector is used to find the Euler angles. The x-axis of Fd lies along the LOS
vector, implying that the x-axis rotation, roll, can be chosen freely. In this thesis, the
roll angle is chosen such that the USM’s base frame desired roll angle is zero at all
times. The USM’s base frame is defined with its z-axis pointing downwards when the
robot is upright, which means that a roll angle of zero degrees is given by a rotation of
ϕ = π around the inertial x-axis. This first elemental rotation gives a new frame with
the axes x1, y1 and z1. After the initial rotation around the x-axis, the yaw angle,ψ , is
found by projecting the LOS vector onto the new xy-plane and finding the angle of
rotation between the new x1-axis and the projected vector. Using this angle a rotation
is done around the z1-axis. Finally, the pitch angle, θ , is found as the angle between the
x2-axis and the LOS vector. The intermediate frames used in this process are visualized
in figure 4.5 (b).

The attitude deviation between the base frame and the desired frame can now be
found by using the rotation matrix, and is expressed as

R̃ = RIb
T
RId (4.5)

The reference roll, pitch and yaw rates, pr , qr and rr , are found by extracting the Euler
angles from R̃.

A guidance law for surge speed has not been investigated in this thesis, and its
reference value has thus simply been set to a constant nonzero value ur . The output
of the WLOS guidance system that is sent to the dynamic controller in the motion
control system is

V I
I b,r e f = [ur vr wr pr qr rr]

T (4.6)

where the heave and sway reference velocities vr , and wr are zero, and the other

36 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

(a)

YY
Y

XX

-1

ZZ
-1

Z

-0.5

1

X

Y

0

0

Z

0.5

0.5

X

Z

X

0

1

Y

-0.5
1-1

(b)

Figure 4.5: Illustration showing a LOS vector that gives Euler angles ϕ = π ,ψ = − π
4 ,

and θ = pi
4 for the desired base orientation. (a) Inertial frame in black, USM base frame

in blue, and desired orientation frame in red. (b) Inertial frame in black, frame x1y1z1
after the first rotation in green, x2y2z2 after two rotations in magenta, and the desired
orientation frame after all three rotations in red.

variables are determined as described above.

4.1.2 Configuration Controller

The fact that the WLOS guidance system manages to steer the USM’s base frame along
a desired path independent of the body’s configuration means that the body shape
remains free to use for other purposes. For instance, if a USM is tasked with inspecting
a pipeline by following a path parallel to the pipe while using a camera mounted on the
end-effector, it can simply turn the end-effector with the camera towards the pipeline
without this affecting the path following. If the USM does not have any other task
than path following the body configuration can be used to improve the path following
performance.

For path following it is desirable to have fast path convergence and to minimize
the path deviation. For autonomous systems, energy consumption is also of interest, as
lowering the energy consumption leads to longer operational times. If the configuration
of the USM could be used to reduce path deviation, improve path convergence and

4.1. PATH FOLLOWING 37

reduce energy consumption, this would be a significant enhancement to the path
following controller. Unfortunately, there are no obvious answers to how the robot
configuration should be adapted to achieve these objectives.

One possible way to gain some insight into how the configuration could be used is
by considering the physics of the robot system. For most marine crafts the hydrody-
namic drag force is the main source of energy loss. Changing the body shape of the
USM to minimize the drag force would thus most likely lead to a reduction in energy
consumption. The hydrodynamic forces could also be used to more accurately control
the motion of the USM in the same way that ships and airplanes use rudders and other
control surfaces for steering.

The body shape’s influence on hydrodynamic drag forces

The hydrodynamic drag force an object experiences when subject to a fluid flow is the
sum of the drag force resulting from skin friction drag and pressure drag [6]. The skin
friction drag force is a result of the fluid moving along the surface of the object, and
can be compared to the regular surface friction between rigid bodies. The pressure
drag force comes from the fluid hitting the surface of the object, similar to how a ball
hitting a wall exerts a force on the wall. To minimize the total drag force both types of
drag must be considered. However, for an object like the USM with a long and slender
body, the pressure drag is dominant of the two, and should be prioritized when finding
ways to reduce the drag.

Two determining factors for the total fluid drag force that an object experiences are
the cross-sectional area,Ac , and angle of attack, α , of the fluid flow. The cross-sectional
area represents how much fluid that hits the object’s surface, while the angle of attack
gives an indication of how much of the fluid that exerts pressure force and how much
exerts skin friction force. Reducing the cross-sectional area reduces the amount of fluid
that affects the object, thus resulting in a reduction of the total drag force. Decreasing
the angle of attack leads to more skin friction drag and less pressure drag, meaning
that the total fluid drag force in most cases is reduced. This is illustrated in figure 4.6.

Imagine a situation where the desired path is parallel with the body of the USM, but
some distance away. This scenario can be seen in figure 4.7. Following the commands

38 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

Figure 4.6: Illustration showing how the fluid flow over an object can result in different
types of hydrodynamic drag forces. The blue vectors represent fluid flow. Left: The
fluid hits the object at a ninety degrees angle of attack, and the object experiences
only pressure drag force. Right: The fluid flow velocity component is decomposed to
show the part of the fluid flow that contributes to frictional drag force (red vector) and
which part contributes to pressure drag force (orange).

of the WLOS guidance system, the USM will start rotating its body towards the path in
order to align its base frame with the LOS vector. Assume first that the USM keeps its
body straight at all times. During rotation, this body shape has a large cross-sectional
area and a ninety degrees angle of attack, which results in a large frictional force. One
way to decrease the drag force is by curving the USM such that both ends point towards
the desired path. As can be seen from figure 4.7, doing this both reduces the cross-
sectional area and the angle of attack for large parts of the body. It is thus conceivable
to assume that such a maneuver will reduce the total drag force experienced by the
USM.

The USM’s body shape can also be used to steer its trajectory. This can be done
by using the front and rear part of the body in the same way as a ship uses a rudder
to steer. By applying this form of steering it is not necessary to use the transversal
thrusters to turn the robot. It might thus be possible to achieve more precise path
following by using both the body shape and the thrusters to steer. In addition, in some
cases it might be desirable to disable the use of transversal thrusters, possibly losing
some accuracy in the path following, but saving power from the reduced thruster
actuation. Bending the USM towards its desired path, as in figure 4.7, is how the front

4.1. PATH FOLLOWING 39

Desired path

Figure 4.7: Illustration showing how the USM experience less hydrodynamic drag by
curving its body. Blue vectors represent fluid flow, and the orange vectors represent
thruster force/moment. Both situations show a single instant in time when the robot
starts rotating. In this depiction it is assumed that all base linear velocities are zero, i.e.
there is only rotational motion.

and rear part of the USM would be used as rudders to steer the robot towards the
path. This curving of the USM’s body thus both reduces the hydrodynamic drag force
and contributes to steering the robot in the right direction, and with that shows great
potential when it comes to improving the path following controller.

Configuration Guidance Law

Based on the observations made regarding the system’s hydrodynamics, the configu-
ration controller has been designed to curve the robot towards its desired path, as this
is likely to reduce drag and improve the steering accuracy. This bending of the robot
is achieved by using the inverse kinematics controller to solve two separate problems,
one for the front part and one for the rear part of the USM. The kinematic tasks are to
position the front and rear of the robot at desired reference points, pf ,d and pr,d , in
space. These points are calculated based on the difference in orientation between the
LOS vector and the x-axis of the base frame.

40 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

Let the base frame’s x-axis unit vector be represented by e1 = [1 0 0]T , and let γ
be the angle between the LOS vector and e1. By taking the cross product of the two
vectors and normalizing the result a unit quaternion describing the rotation between
e1 and the LOS vector can be found as

k = cross(e1,v) (4.7)

k̄ =
k

| |k | |22
(4.8)

qt = [cos(
cf γ

2) sin(
cf γ

2)k̄
T
]T (4.9)

where | |k | |22 is the euclidean norm of k , qt ∈ R4×1 is a unit quaternion and cf is a
control parameter called the curve factor. The desired position of the front of the
robot is then found by rotating a point on the base frame x-axis, described by the
vectorwf = Lf e1 where Lf is some constant, using the quaternion. The curve factor
determines how far the vectorwf should be rotated. If cf = 1 the vector will be rotated
to align with the LOS vector. The desired position for the rear is found in a similar
manner by rotating the vectorwr = −Lre1 with the same quaternion but in the other
direction, i.e. qt = [−cf γ k̄T]T .

Figure 4.8: Left: The USM in a straight configuration. Right: The configuration
controller makes the robot bend. The red vector is the LOS vector, the base frame
is shown by the black vectors, and the green vectors are the vectors that are rotated
using the quaternion.

4.1. PATH FOLLOWING 41

Configuration Control

The kinematic controller is used to make the rear and front end of the USM follow
their references, pf ,d and pr,d . As the references are position coordinates it is natural
to use position as a kinematic task variable. For the front end of the USM, or what has
previously been called the end-effector, such a kinematic task can be described as

σpos,e = ηe = [xe ye ze]
T (4.10)

where xe , ye and ze are the coordinates of the end-effector given in the inertial frame.
To successfully implement the CLIK algorithm described in chapter 3 the task Jacobian
given by the relation Ûσ = JTζ is required. The task Jacobian is easily found by making
the realization that the derivative of the task variable simply is the linear velocity of
the end-effector

Ûσpos,e = [ue ve we]
T = V I

I e (1 : 3) (4.11)

where the indexing (1 : 3) means the first three rows of the column vector V I
I e . The

geometric Jacobian for the end-effector was determined in chapter 2 (eq. 2.21), and
gives the relationshipV I

I e = Jд,e (q)ζ . By comparing this relationship with the equation
above it can be seen that the task Jacobian can be expressed as

Ûσpos,e = JTζ = Jд,e (1 : 3)ζ ≜ Jpos,eζ (4.12)

where Jpos,e ∈ R3×(6+n) is called the position Jacobian for the end-effector. A task and
task Jacobian for positioning the rear end of the USM can be found in a similar manner,
assuming that the geometric Jacobian Jд,r describing the relationship between the rear
velocities and system velocities is known.

The task Jacobians describe the relationship between the task variable and the
system velocities. The system velocities also include the base velocities, meaning that
any solution found by the CLIK algorithm for positioning the end-effector will include
not only the required joint angles but also the reference base velocities needed to
move the entire robot in a way that helps with the positioning task. In the case of the
configuration controller, this is undesirable, as the WLOS guidance system takes care

42 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

of the motion of the base, while the configuration controller is intended to alter the
shape of the USM’s body by actuating the joints, and not influence the base velocities.

One way to handle this is simply to discard the reference base velocities found
by the CLIK algorithm and only use the joint velocity references. This is however
sub-optimal, as the CLIK algorithm will assume that the base can be moved as part
of its solution, thus not using the joint actuation optimally. A better way to solve the
problem is simply to remove the base velocities from the equation 4.12, such that the
task Jacobian instead is given by

Ûσpos,e = JT Ûq = Jpos,e (:, 7 : (7 + n))ζ (7 : (7 + n)) (4.13)

where JT ∈ R3×n simply is the the last n columns of Jpos,e and Ûq is the joint velocities.
The CLIK algorithm will then try to solve the positioning problem using the joints
only, most likely using the joints in a more optimal way.

With the two task Jacobians, one for the positioning of the end-effector and one for
the positioning of the rear, the kinematics controller solves the two separate inverse
kinematics problems using the CLIK algorithm 3.5 presented in chapter 3

Ûqr e f ,e = JT ,e
†(Ûσe,d − KIK,e Û̃σe) (4.14)

Ûqr e f ,r = JT ,r
†(Ûσr,d − KIK,r Û̃σr) (4.15)

where Ûqr e f ,e contains the reference joint velocities for the joints between the base
and the end-effector and Ûqr e f ,r contains the reference joint velocities for the joints
between the base and the rear of the USM. The joint velocities are integrated to get
joint position references, which are sent to the joint controller. In this thesis the joint
controller is assumed to be an internal part of the mechanism in each joint, and thus
not discussed. This assumption also coincides with the workings of the simulation
software that has been used. The result is simply that all the joint angles follow their
reference values with a very small time delay.

4.1. PATH FOLLOWING 43

4.1.3 Control Parameters

The path following control system has a total of six control parameters that can be
tuned to get the desired behavior. The control parameters are found in both the
guidance system and in the motion control framework. Both the structure of the
control system and the system dynamics leads to coupling effects between some of the
parameters. This fact makes the system difficult to tune, and little effort has been put
into finding optimal values for the control parameters in this thesis.

The WLOS guidance system contains a single control parameter, the look-ahead
distance ∆. The effect of this parameter can best be understood by looking at figure 4.3.
By having a small ∆ the angle between the LOS vector and the vector d will be small,
resulting in the USM making aggressive turns towards the path. This can lead to fast
path convergence, but also increases the risk of overshooting the path. Decreasing
the look-ahead distance can be compared to increasing the proportional gain of a PID
controller.

The configuration controller is tuned by adjusting the curve factor cf . With a curve
factor of cf = 1 the USM tries to align the end-effector with the LOS vector, and with
a cf = 0 the USM will keep its body straight. Because the curve factor influences how
much the front and rear part of the USM is moved relative to the base, it indirectly
influences the motion of the base frame. For instance, rotating the front part towards
the desired path will generate a reactive hydrodynamic force that rotates the base in
the opposite direction. The changes in body configuration should thus not be too large,
as they will affect the WLOS controller’s ability to successfully do path following.
Through simulations and tuning by trial and error, it has been found that the curve
factor should not exceed c f = 0.5.

In the kinematic controller, there are the two inverse kinematic gain matrices,
KIK,e and KIK,r . These gain matrices work in a similar way to the proportional gain
in a PID controller. Having a large gain will result in fast joint actuation, but will also
influence the base more because of the kinematic coupling between the base and the
rest of the body.

The dynamic controller can be compared to a PD controller and contains the usual

44 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

proportional and derivative gains KP and KD . They are most easily chosen as diagonal
matrices, with one diagonal entry for each of the six base frame velocity variables. The
dynamic controller generates force references, and the resulting thruster actuation
can thus be controlled by scaling the gains in the dynamic controller.

4.2 Collision Avoidance

Collision avoidance (CA) is an integral part of any mobile autonomous system, as
collisions can lead to damage to both robot and environment. One major challenge
for collision avoidance systems is their dependence on the environment. An effective
CA system for a robot that works in an environment with large single-body obstacles
will certainly be very different than that for a robot whose job is to find the center of a
maze without hitting the walls. If a robot works in an environment with very different
types of obstacles the CA system must either be flexible enough to handle the different
situations, or it must use different solutions based on the situation.

Figure 4.9: Illustration of two types of environments with obstacles of very different
geometric nature.

The USM will need to handle collision avoidance in very different types of envi-
ronments. As for most naval vessels, it will spend much time traversing open waters,
which are areas where there are few other objects relative to the size of the area.
Typical examples of these sort of situations are like when the USM moves from its
docking station to a subsea oil structure, or when it is doing inspection work following
a pipeline. Most of the time this means avoiding a few objects in an otherwise open
space.

4.2. COLLISION AVOIDANCE 45

In addition, the USM needs to be capable of collision avoidance in cluttered and
confined spaces, like when it is traversing the structural steel cage of a subsea gas
compressor, moving within a cave or exploring the insides of a sunken ship. In this
case, there are many obstacles to consider simultaneously, while the USM has less room
to maneuver in, making it a difficult problem to solve. These type of environments
are perhaps especially interesting, considering the fact that one of the USM’s main
advantages is its flexibility body and its resulting ability to move in tightly enclosed
areas that would otherwise be unavailable.

This thesis presents a reactive collision avoidance system that is mainly designed
for maneuvering in confined spaces and to take advantage of the USM’s flexibility.
Although designed for cluttered environments, the CA system is general enough to
handle any type of obstacles and environments.

USMKinematic Control Dynamic Control Thrust Allocation

Active tasks

Output

Motion Control SystemGuidance System

Kinematic tasks

manager

Collision Avoidance Controller

Distance to

obstacles

Figure 4.10: Illustration of the general structure of the collision avoidance controller.

4.2.1 Inverse Kinematics Collision Avoidance Controller

It has previously been mentioned that the USM can be viewed as a floating base
manipulator arm, and the method of using inverse kinematics to control these types
of redundant robotic systems has been discussed in chapter 3, as well as earlier in
this chapter in regards to the configuration controller. The ability to define multiple
kinematic tasks and solve them in a prioritized order to exploit the robot’s redundancy

46 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

makes the inverse kinematics an ideal method for implementing collision avoidance.
Being based on inverse kinematics control, the collision avoidance system works

by defining kinematic tasks that when solved ensure both collision avoidance and
motion towards a goal point. Kinematic tasks are defined for points. Assuming that all
the kinematic tasks are satisfied, collision avoidance is still only guaranteed for the
points where they are defined. Adding more points will, in theory, ensure CA for a
larger part of the robot, but at the same time, this will decrease the redundancy of each
point, reducing the probability of the system being able to satisfy all the kinematic
tasks. To implement CA for the entire robot, kinematic tasks are thus defined for points
strategically placed along the USM’s body, called collision avoidance points (CAPs). For
instance, considering a USM with five modules three CAPs could be placed, one at the
end-effector, one at the USM center of mass and one at the end of its tail.

Kinematic Tasks for Collision Avoidance

The type of kinematic task used to implement collision avoidance in this thesis is the
position norm task. This task is simply to control the norm between a point on the
USM, one of the defined CAPs, and a point po in space, which can be described as

σn =
√
(po − pCAP)

T (po − pCAP) ∈ R
1 (4.16)

where pCAP and po is the position coordinates of the CAP and the point respectively,
given in the inertial frame. To determine the task Jacobian the time derivative of the
task variable is taken and found to be

Ûσn =
(po − pCAP)

T

| |po − pCAP | |
2
2

ÛpCAP (4.17)

The derivative of the CAP position can be recognized as the derivative of a positioning
task, and by using equation 4.11 and 4.12 it is seen that ÛpCAP = Ûσpos = Jposζ , which
implies that

Ûσn =
(po − pCAP)

T

| |po − pCAP | |
2
2
Jposζ = Jnζ (4.18)

4.2. COLLISION AVOIDANCE 47

The position norm task can be used to achieve much of the behavior desired in a
collision avoidance system, as it enables the creation of both attractive and repulsive
action. By defining a task where the desired position norm is zero, the resulting inverse
kinematics solution will move the CAP towards the point po , trying to reach that exact
position. If instead, the desired norm is nonzero, the IKs will try to keep the given
distance from the point po . This means that as long as the norm is less than the desired
norm, the IK will push the CAP away from po . Figure 4.11 illustrates how the position
norm task with a nonzero desired norm affects the system in three different situations.

Figure 4.11: Illustration showing how a position norm task σn with a nonzero desired
norm σd affects the system in three different cases. The green line represents the USM,
and the three dots along it the CAPs. The black lines are distance norms, and the red
vector shows in which direction the IK solution will try to move the CAP.

The Collision Avoidance Algorithm

The collision avoidance algorithm uses CAPs and their defined position norm tasks to
achieve collision avoidance. For each CAP i a collision avoidance task τCA,i is defined,
which is a position norm task with a nonzero desired position norm. The norm for
these tasks is the norm between the CAP and the closest obstacle surface point. In
addition, at least one directional task τD,i is defined for one of the CAPs, which is a
position norm task with a desired norm equal to zero. The directional task is used to

48 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

maneuver the USM in the right direction so that the robot manages to not only avoid
a collision but also to pass the obstacle(s).

Since a CA task will pull its CAP towards the closest obstacle if the CAP is further
away from the obstacle than the desired minimum distance, as can be seen in figure
4.11, it is important to use the task only when needed. Let T be the set of all the
position norm tasks that at some point during operation could be needed. At each
time step the collision avoidance algorithm determines which of the tasks in T that
are needed, and in which priority they should be solved. These tasks are called active
tasks, and are defined by the set A ⊆ T .

The tasks in the active set are sent to the inverse kinematics controller. As with
the path following controller the inverse kinematics problem must be split into a front
part and rear part since the base frame has been chosen to be in the center link. Active
tasks for CAPs from the base and forward are solved as one problem for the front part
of the USM, while the rest of the tasks, which belong to CAPs behind the base, are
solved as another. Both problems are solved according to the SRMTP method (eq. 3.5),
but the base reference velocities are only used from the solution to the first problem.
This means that for the rear IK problem only the joint velocities need to be considered,
as in equation 4.14.

To make sure that the USM moves towards its goal the directional task is always
active and part of the active tasks set. The collision avoidance tasks, however, are
activated only when a collision is plausible and deactivated when it is safe to say that
a collision will not happen.

The CA tasks are activated if their norm becomes smaller than the desired value,
meaning that the CAP is closer to the obstacle than desired. This can be expressed as

τCA,i (t) ∈ A i f σCA,i (t) < Ro,i (4.19)

where Ro,i is a chosen minimum desired distance to an obstacle for CAP i . When a CA
task is activated it is desirable to keep it active until it is safe to say that the obstacle
has been passed. This is achieved by comparing the direction to the obstacle with
the direction to the desired goal position. When the minimum desired distance to the

4.2. COLLISION AVOIDANCE 49

obstacle is achieved, and the obstacle is no longer in the way of the desired travel
trajectory, the CA task is deactivated. This can be expressed as

τCA,i (t) < A i f σCA,i (t) >= Ro,i and vn,i
Tvd ,i >= 0 (4.20)

wherevn,i is the vector between the CAP and the closest obstacle surface point, and
vd ,i is the vector between the CAP and the desired position.

Figure 4.12 depicts how the collision avoidance tasks are activated and deactivated
according to the rules presented in equations 4.19 and 4.20. The figure illustrates a
scenario where a directional task is defined for CAP 1 with the red point as the desired
position, and one collision avoidance task is defined for each of the three CAPs. The
task set is thus T = {τD,1 τCA,1 τCA,2 τCA,3}. At the first time instant none of the CA
tasks are activated, as all the CAPs are further away from the obstacle than the distance
Ro , and the active set is simply At1 = {τD,1}. In the second time instant, the first
CAP has come closer to the obstacle than desired, and the CA task has been activated,
trying to push the CAP directly outwards from the obstacle to a distance Ro as shown
by the red vector. At the same time, the directional task tries to move the CAP towards
the desired position. The active task set is now At2 = {τCA,1 τD,1}. By the SRMTP
method, where the CA task is given top priority, the CAP is allowed to move towards
the goal as long as the distance to the obstacle is increasing towards Ro , resulting in
the circular motion. In the third time instant CAP 1 has reached the desired distance
from the obstacle but is still active as the obstacle is still in the way of the CA. In other
words, if the CAP were to move directly towards the goal, it would start decreasing
the distance to the obstacle again. Furthermore it can be seen that the CA task of the
second CAP has also been activated, and the active task set is At3 = {τCA,1 τCA,2 τD,1}.
In the final time instant the CA task of CAP 1 is deactivated, as the obstacle has been
successfully passed according to the defined rules 4.20, and At4 = {τCA,2 τD,1}.

4.2.2 Control Parameters

The control parameters for the collision avoidance control system are the inverse
kinematic gains for the kinematic tasks and the minimum desired distance to an

50 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

Inactive CA task

Active CA task

Figure 4.12: Illustration that shows when collision avoidance tasks are active.

obstacle. The control parameters greatly influence each other. By increasing the IK
gains larger reference velocities will be generated by the IK controller, and assuming
that the dynamic controller is able to track the references, this means that the USM
can do fast maneuvers. When the USM can react quickly the safety margins can be
reduced, or in other words, the minimum desired obstacle distance can be reduced.
However, these fast maneuvers lead to high thruster actuation, which is undesirable
with respect to energy consumption and material fatigue. With smaller IK gains a
lower energy consumption is achieved, but the minimum distance to obstacles should
be increased in order to be sure that there won’t be any collision.

In addition to the coupling between the control parameters themselves, their choice
should also be influenced by the velocities at which the USM moves. If the USM is
moving with a high velocity it is likely that large IK gains or a wide safety radius
are needed to avoid a collision. Likewise, if the USM is moving slowly it might be
sufficient with a very small obstacle distance or low IK gains.

Because of the coupling between the control parameters and their dependence on
the velocity of the robot it would be advantageous with a control mechanism that

4.2. COLLISION AVOIDANCE 51

adapts the control parameters based on the situation. If the USM is in open waters
moving at a high speed the minimum desired distance to an obstacle can be made large,
so that the robot has time to adjust for any obstacle without having to actuate the
thrusters too much. If the USM is about to enter a cluttered area with many obstacles
the velocity can be lowered to allow for maneuvers closer to the obstacles. In addition,
the IK gains might be increased, enabling the USM to move very close to the obstacles
and utilize the available space. Methods for such adaptive parameter control has not
been investigated and is left for future research.

Figure 4.13: Illustration showing how the desired minimum obstacle distance can
influence the behavior of the collision avoidance system. In the left scenario, the USM
will try to avoid the left and right obstacle, although they are not really in the way. In
the right scenario, the USM will only try to avoid the front obstacle, which is in the
path and should correctly be avoided. However, if the velocity of the USM is large
and the IK gains are small it might not apply enough power to steer away before a
collision occurs, because of the short reaction distance.

52 CHAPTER 4. PATH FOLLOWING AND COLLISION AVOIDANCE

Chapter 5

Implementation and
Simulations

Simulations have been used to test and validate the path following and collision
avoidance controllers developed in this thesis. The USM and its dynamics have been
modeled and simulated in the simulation software Vortex, while the control system
has been implemented using Matlab/Simulink. This chapter will first briefly introduce
the simulation setup before several simulation cases demonstrating the performance
of the controllers are presented.

5.1 Simulation Model: Vortex

In order to obtain accurate simulation results when testing the guidance and control
system, it is essential to have a good model of the system. The underwater swimming
manipulator and its many degrees of freedom make it difficult to model, especially
considering the complex hydrodynamics that arises for such a mechanism. Analytical
models for both the USM [32] and its relative, the underwater snake robot [18], has
been developed for control purposes, but are so far limited to motion in the plane. A

53

54 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

different approach to modeling the USM is to use modeling and simulation software
and is the approach taken in this thesis. The simulation software that has been used to
model the USM and its dynamics is called Vortex.

Vortex is a software created by CM labs [8] that provides a 3D environment with
realistic physics suitable for both modeling and simulating various mechanisms. In ad-
dition to providing a dynamics engine for land-based mechanisms, Vortex also supports
marine simulations through the use of computational fluid dynamics (CFD) to simulate
hydrodynamic forces. The hydrodynamic forces that are calculated by Vortex are the
nonlinear drag force and added mass effect. The software runs simulations in real
time, which limits the complexity of the CFDs employed because of the computational
restraints. However, the detailed geometry of the robot is taken into consideration
when determining the hydrodynamic force, and its accuracy is thus still quite good. In
[15] it was shown that, by proper tuning of fluid parameters, it is possible to create
a Vortex model of a USR that is accurate enough to give simulation results that are
comparatively similar to those collected from experiments using the real world robot.
Considering this it is not unreasonable to conclude that a model of the USM in Vortex
is a decent representation of the robot to be used for simulation purposes. An image
of the Vortex model of the USM can be seen in figure 5.1.

Figure 5.1: The USM model in Vortex.

5.2. CONTROL SYSTEM: MATLAB/SIMULINK 55

5.2 Control System: MATLAB/Simulink

MATLAB/Simulink has been used to design the control system used in simulations.
Simulink is a well known graphical programming environment by MathWorks for
modeling, simulating and analysing dynamical systems. Simulink is tightly linked
with the programming language MATLAB, which can be used to script Simulink.

The reason for using MATLAB/Simulink is two-fold. Firstly, the program is familiar
to the author and widely used in the automatic control community. Secondly, the
Vortex software facilitates direct two-way communication with Simulink, making it
the easiest tool to integrate with Vortex. The Vortex model can read control inputs
from the Simulink model and send simulation outputs to the Simulink model in real
time. Since the simulation state data is sent to Simulink it can be processed, stored
and analysed directly using Matlab.

All control systems rely on measurements of different state variables. Using a
simulation environment like Vortex means that all system states are available. The
states that are needed in the control systems developed in this thesis are the joint angles,
base position and orientation and base velocities, and are thus sent from Vortex to
Simulink. Based on this, position, orientation and velocity of other points on the USM
can be calculated by using the kinematic model, but for simplicity, this information
has also been extracted directly from Vortex for the end-effector and rear of the USM.

5.3 Simulation Study: Path Following

One of the main goals of this thesis has been to develop a path following controller
for the USM, and the resulting system was presented in the previous chapter. In
this section, the performance of the path following controller will be investigated by
applying the controller to different path following scenarios.

5.3.1 Evaluation Criteria

As the goal of this section is to analyse the performance of the path following controller,
it is important to establish the criteria on which the performance will be evaluated.

56 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

With the main objective of the controller being path following, it is, of course, essential
that the USM manages to follow the path without large deviations. An important
metric for the path following controller’s performance is thus path deviation.

A second performance metric that is almost equally as important is the energy
consumption. Energy consumption directly influences the robot’s operational time
and is very important for the cost efficiency of the robot. The USM’s main energy
consumption comes from thruster actuation. When doing path following it is thus
desirable for the USM to have as low thruster actuation as possible, while at the same
time managing to accurately follow the desired path.

To achieve both minimal path deviation and energy consumption is not possible,
as the two optimization objectives are adverse. Perfect path following requires fast and
precise movements, which can only be achieved through extensive thruster actuation.
However, the right use of the USM’s body shape does help improve the performance
with respect to both criteria, as will be shown by the simulations in this section.

5.3.2 Scenario: Waypoint Navigation

The first scenario was created specifically to test the capabilities and limitations of
the path following control system. Waypoints were thus chosen to create a path that
would test all the qualities of the controller:

• The path is 3D.

• The path has long straight segments to test the controller’s ability to converge
to a steady state.

• The path has wide turns which are the most likely encountered in a real-world
operation.

• The path has narrow turns, including a change of direction, to test the controller’s
peak performance.

The control system is modular, consisting of the 3D line-of-sight waypoint guidance
controller (WLOS) and the configuration controller. TheWLOS controller is designed to

5.3. SIMULATION STUDY: PATH FOLLOWING 57

be able to achieve path following regardless of the configuration of the USM, assuming
that the configuration maintains a required number of degrees of freedom. To highlight
this simulations have been run both with and without the configuration controller
active.

The control parameters that have been used are identical for all path following
simulations and can be seen in table 5.1. The inverse kinematics gain KIK has been
used for both kinematic tasks, i.e. positioning the front and rear of the USM.

Table 5.1: Control parameters used for path following simulations.

Parameter Description Value

∆ Look-ahead distance 3
cf Curve factor 0.3
KIK Inverse kinematics gain diaд([0.5 0.5 0.5])
KP Proportional gain diaд([0.5 0.5 0.5 0.13 0.12 0.12])
KD Derivative gain diaд([0 0 0 0.13 0.13 0.13])

Case: Disabled Configuration Controller

In the first case that will be presented the configuration controller was disabled, and
the USM’s configuration set to be straight, i.e. all the joint angles are zero throughout
the entire simulation. In this setting, the USM resembles a submarine shaped AUV,
and can only use its thrusters to navigate.

The simulation result can be seen in figure 5.2, where the red and green points
are the base frame starting and end point, the blue points are the waypoints, the
orange lines are the desired path and the blue line is the actual base trajectory. The
waypoints are used to define the desired path and direction of movement along the
path, so the controller will not try to directly reach the waypoints. Because of this, the
first waypoint is never reached. Additionally, the last waypoint is not reached simply
because the simulation was terminated before the USM had traveled far enough along
the path.

58 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

-185
10

5

-180

0

z

0

y

-10

x

-5 -20

-175

-30-10
-40-15

-40 -30 -20 -10 0

x

-15

-10

-5

0

5

10

y

-40 -30 -20 -10 0

x

-185

-184

-183

-182

-181

-180

-179

-178

-177

-176

-175

z

Figure 5.2: Path following with the configuration controller disabled. The red and green
points are the base frame starting and end point, the blue points are the waypoints,
the orange lines are the desired path and the blue line is the actual base trajectory.

5.3. SIMULATION STUDY: PATH FOLLOWING 59

It is obvious from figure 5.2 that the USM manages to converge to and follow
the path, which shows that the proposed WLOS controller works as intended. To
get a better sense of the controller’s performance the path deviation and thruster
actuation can be studied. Figure 5.3 contains plots of the two evaluation criteria, with
(a) showing the path deviation, (b) the individual thruster actuation and (c) the total
thruster actuation, which is the sum of each individual thruster actuation.

The path deviation in (a) is best understood in context with the trajectory shown
in figure 5.2. The USM starts some distance away from the desired path, which can
easily be recognized as a large path deviation in 5.3 (a). As the USM moves towards
the desired path the deviation decreases, reaches zero and then increases again. This
first increase in path deviation is the overshoot that can be seen in 5.2 as the USM
first hits the path. After the overshoot, the path deviation decreases towards zero
until another large increase in deviation occurs. This pattern repeats itself, where
the second increase is the overshoot after the first turn, the third and fourth increase
is because of the following two turns, and the last and largest increase comes from
the 180 degrees turn. After the last turn, the USM manages to converge to a path
deviation of less than 1cm, which can be regarded as almost perfect path following
when considering the fact that the radius of the robot’s body is approximately 8.5cm.
NB: Before each turn overshoot there is a small "spike" in the path deviation. This is
when the USM transitions from one path segment to the next, and is a result of the
path deviation being calculated as the shortest distance to the path.

Similarly, looking at the thruster actuation in figure 5.3 (b) and (c) the same phases
of the trajectory can easily be identified. During turns, the thruster actuation increases
proportionally with how sharp the turn is, and at the end of the simulation when the
USM has converged to the path the thruster actuation stays at a low even level to keep
the forward velocity. Looking at the individual thruster actuation in (b) it is also easy
to see the that the thruster allocation system tries to optimize the thruster actuation.
During the turns, which happens in a xy-plane, the front, and back horizontal thrusters
are mainly used. This is the optimal approach, as these thrusters will generate the
largest torque forces around the base origin.

60 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

0 50 100 150 200 250 300

0

1

2

3

4

5

6

(a) Path deviation calculated as the smallest distance to the path at each time instant.

(b) The actuation of the seven different thrusters. There is a saturation limit at ±40 Newton.

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

(c) The total thruster actuation of all thrusters added together.

Figure 5.3: Path deviation and thruster actuation for the trajectory shown in figure 5.2.

5.3. SIMULATION STUDY: PATH FOLLOWING 61

Case: Active Configuration Controller

One of the USM’s advantages to more traditional AUV and ROVs is its highly ma-
neuverable and flexible body. This agility can be used to access narrow and hard to
reach areas, but it is also proposed in this thesis that the body shape can be used to
improve the robot’s path following capabilities. The configuration controller is an
attempt at accomplishing this. Its effect on the USM’s path following performance is
investigated by running a simulation with the same path as before, but this time with
the configuration controller active, and comparing the results with the first simulation.

Figure 5.4 shows the two trajectories for the base origin, with the configuration
controller disabled in blue and with the configuration controller active in red. Looking
closely at the respective trajectories it seems like that activating the configuration
controller might yield performance improvements. The effect of the configuration
controller can better be seen by inspecting the path deviation and total thruster
actuation shown in figure 5.5. From the path deviation plot in (a) it can easily be seen
that using the configuration controller improves the path following accuracy. Drawing
conclusions from the thruster actuation plot in (b) is harder, as the two graphs are very
similar in nature. The magnitude of the thruster actuation seems to be identical in
both cases, but looking closer it can be observed that the spikes in thruster actuation
are shorter in time with the configuration controller active.

The total accumulative path deviation and thruster actuation can be found by
calculating the area under the curves in figure 5.5. The resulting numbers can be seen
in table 5.2. From these values, it can be calculated that by using the configuration
controller there is approximately a 20 percent decrease in path deviation and a 15
percent decrease in thruster actuation. This is a substantial amount, especially con-
sidering thruster actuation and the resulting energy conservation. This shows that
actively using the flexibility of the USM during path following can lead to significant
performance improvements.

62 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

-185
10

5

-180

0

z

0

y

-10

x

-5 -20

-175

-30-10
-40-15

-40 -30 -20 -10 0

x

-185

-184

-183

-182

-181

-180

-179

-178

-177

-176

-175

z

-40 -30 -20 -10 0

x

-15

-10

-5

0

5

10

y

Figure 5.4: Desired path and actual trajectory of the base origin viewed in 3D, xy-plane
and xz-plane respectively.

Table 5.2: The accumulated path deviation and thruster actuation, with the configura-
tion controller (CC) disabled and active.

Performance Metric CC disabled CC active active/disabled [%]

Path deviation 162.3 130.6 80.5
Thruster actuation 2811.7 2403.9 85.5

5.3. SIMULATION STUDY: PATH FOLLOWING 63

0 50 100 150 200 250 300

0

1

2

3

4

5

6

C. C. disabled

C. C. active

(a) Path deviation calculated as the smallest distance to the path at each time instant.

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

C. C. disabled

C. C. active

(b) The total thruster actuation of all thrusters added together.

Figure 5.5: Performance metrics.

64 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

5.3.3 Scenario: Spiral Path Docking

In the first simulation scenario, the path following controller was tested on a path
constructed specifically to assess its capabilities. In this scenario, the applicability of
the controller will be tested on a path inspired by a possible real-world task for the
USM. One of the ideas associated with the autonomous USM for use in the subsea
oil industry is to build a docking station for the robot on the seafloor. This docking
station will be used to recharge the USM and serve as a base of operations. In order to
dock, the robot must navigate into a tube on the station.

In the paper Spiral path planning for docking of underactuated vehicles with limited
FOV [28] a method for performing the docking procedure is presented. The method
proposed finds a spiral path to follow into the docking station, that always fulfills two
important properties: The docking station is always within the field of view (FOV) of
the onboard sensor, and there is no curvature on the path when it reaches the docking
station. This path planning method has been used to generate spiral paths that the
path following controller will be tested on.

Case: Planar Spiral Path

The path planning method in [28] was used to generate two different planar spiral
paths. The path following controller developed in this thesis can only follow paths
consisting of straight line segments defined by a set of waypoints. The spiral paths
thus had to be converted to waypoints, which was done simply by sampling points
along the spiral paths. The points were sampled evenly spaced with respect to the
radius from the docking station to the spiral path. Figure 5.6 shows the two spiral
paths and the generated waypoints, where in both cases the docking station is located
in the origin with its opening pointing along the positive x-axis.

The simulation results can be seen in figure 5.7. In (a) the initial conditions of
the USM are: base position aligned with the first waypoint at (x ,y) = (20,−20), body
straight and parallel with the y-axis, with the end-effector pointing in the positive
y-direction. It can be seen that the base of the USM follows the spiral path closely
without problems.

5.3. SIMULATION STUDY: PATH FOLLOWING 65

0

30

60

90

120

150

180

210

240

270

300

330

0

10

20

30

(a) Spiral path 1.

0

30

60

90

120

150

180

210

240

270

300

330

0

10

20

30

(b) Spiral path 2.

Figure 5.6: Planned spiral paths with generated waypoints superimposed.

For the second spiral path, with results shown in figure 5.7 (b), the USM’s base
starting position is at (x ,y) = (−20, 20), with its front pointing in the direction parallel
with the positive x-axis. Also for this case, the USM’s base follows the spiral path quite
closely. Notable deviation can only be seen along the last part of the spiral, where the
curvature of the spiral is at its largest.

These results are obtained without any alterations to the path following controller,
showing that even though the controller is designed for following simple straight line
segments, these can be connected together to create more complex paths that can be
followed without large path deviations.

Case: 3D Spiral Path

As the path following controller is a full 3D controller it should be able to follow 3D
spiral paths as well. Similarly, as before, a planar spiral path is found by the path
planning algorithm found in [28], and waypoints are generated along the spiral. The 3D
spiral is then created by offsetting the waypoints in the z-direction. This distribution in
the z-direction is done uniformly in a chosen interval defined by the z-coordinate of the

66 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

-5 0 5 10 15 20 25 30

x

-30

-25

-20

-15

-10

-5

0

5

y

(a)

-20 -10 0 10

x

-5

0

5

10

15

20

25

y

(b)

Figure 5.7: Desired path, waypoints and actual base trajectory results.

starting position of the USM and the z-coordinate of the docking station. This process
does not preserve the properties of the planar spiral path, but this is not of interest in
this case, as the extension to 3D is simply to test the path following controller’s 3D
capabilities following a complex path.

The simulation results can be seen in figure 5.8, where the path is a 3D extension
of the spiral path used previously, shown in figure 5.2 (b). The starting position of the
USM’s base is again (x ,y) = (−20, 20) with a starting depth of z = −170 and its front
pointing in a direction parallel to the xy-plane in the positive x-direction. The position
and depth of the docking station is (x ,y, z) = (0, 0,−180). Examining the figure it can
be observed that the path following controller guides the base of the USM along the
path without large path deviations, also in 3D.

5.4 Simulation Study: Collision Avoidance

To develop a collision avoidance control system for the USM has been the second
main goal of this thesis, and the resulting collision avoidance algorithm was presented
in chapter 4.2. Similarly, as for the path following system, the collision avoidance

5.4. SIMULATION STUDY: COLLISION AVOIDANCE 67

-185
25

-180

20
15

-175z

15 10
5

-170

y

10 0

x

-5

-165

5 -10
-150

-20-5 -25

-20 -10 0 10

x

-5

0

5

10

15

20

25

y

-20 -10 0 10

x

-185

-180

-175

-170

-165

z

Figure 5.8: Desired path and actual trajectory of the base origin viewed in 3D, xy-plane
and xz-plane respectively.

68 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

algorithm will be validated through simulations.
In all simulations in this section, it is purely the collision avoidance system that is

tested. In other words, the collision avoidance controller is assumed to be active at
all times, and the desired position of the robot is assumed given by some higher level
control entity. Furthermore, three collision avoidance points (CAPs) have been defined
for the USM, one at the end-effector, one in the COM of the center link and one at the
rear of the tail, illustrated by the red dots in figure 5.9. These CAPs will be given the
subscripts e , b and r respectively when referenced. For instance, when talking about
the collision avoidance task belonging the end-effector CAP the notation used is τCA,e .

Figure 5.9: Illustration showing the defined collision avoidance points (CAPs) for the
USM during simulations.

5.4.1 Scenario: Single Obstacle

To best demonstrate how the collision avoidance controller works, and how the control
parameters influence its behavior, simulations have been done with a single obstacle of
a simple shape. Three different cases will be used to highlight the system’s properties.
In the first case, the effect of adding collision avoidance tasks to additional CAPs is
shown, the influence of the control parameters is more closely inspected in the second
case, and in the third and final case, the system’s ability to handle arbitrarily shaped
obstacles is demonstrated.

Case: Adding Collision Avoidance Tasks

In the first case, two simulations are run in identical environments, where the only
difference between them is the number of CA tasks that have been defined for the

5.4. SIMULATION STUDY: COLLISION AVOIDANCE 69

USM. For the first simulation, only a single CA task has been defined for the end-
effector CAP. In the second simulation, a CA task has been defined for each of the
three CAPs. In addition, for both simulations a directional task is defined for the end-
effector, to create the forward motion. The two task sets are thus Ta = {τCA,e τD,e }

and Tb = {τCA,e τCA,b τCA,r τD,e } respectively.

The two simulations are shown in figure 5.10, where (a) shows the simulation with
task set Ta and (b) with Tb . The starting point of the three CAPs on the USM can be
seen as the blue, green and orange dot for the end-effector, base, and rear respectively,
and the lines of the same color shows their trajectories. The minimum desired distance
to the obstacle for all CA tasks is Ro = 1, and is visually represented as the green circle
around the cylinder. The inverse kinematic gains are set to one for all tasks, and the
desired position of the end-effector is shown as the red dot.

In both simulations it can be seen that the USM moves in a straight line towards
the goal position until the end-effector comes closer to the obstacle than desired, i.e
σCA,e < Ro . When this happens the CA task for the end-effector is activated and
included in the inverse kinematics solution with the highest priority. The effect can
easily be seen, as the end-effector clearly stops its movement towards the obstacle, and
then starts moving away from it towards the desired distance. Since the directional
task is active as well reference velocities are generated that move the end-effector
towards the goal position but don’t contradict the CA task, resulting in the circular
movement around the obstacle.

There are no collisions in either of the two simulations, but in (a) this is purely
coincidental, and it can be observed that the rear is much closer to the obstacle than
desired when it passes. The effect of adding collision avoidance tasks for the base and
rear CAPs can clearly be seen by comparing (a) and (b). In (b) the CA tasks are activated
when the CAPs come too close and keep the desired distance from the obstacle. In
addition, it should be observed that this has no large influence on the path of the
end-effector, which is a result of the robot’s high level of redundancy.

70 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

-30-25-20-15-10-50

x

-15

-10

-5

0

5

10

15

y

-190

-185

-180

-30

z
-175

-10

-170

-20

y x

0
-10

10
0

(a) Two tasks defined: One CA task and one directional task for the end-effector (blue).

-30-25-20-15-10-50

x

-15

-10

-5

0

5

10

15

y

-190

-185

-180

-30

z

-175

-10

-170

-20

y x

0
-10

10
0

(b) Four tasks defined: One CA for each of the three CAPs and one directional task for the
end-effector (blue).

Figure 5.10: Collision avoidance with a single obstacle. Ro = 1, KCA = 1, Kdir = 1

5.4. SIMULATION STUDY: COLLISION AVOIDANCE 71

Case: Effect of the Control Parameters

In this case two identical simulations has again been run, but nowwith different inverse
kinematic gains. The setup is similar to the previous case, withT = {τCA,eτCA,bτCA,rτD,e },
Ro = 2 andKdir = 1. The two simulations can be seen in figure 5.11, where the left part
of the figure shows the first simulation with KCA = 0.1 and the right part of the figure
shows the second one with KCA = 2. To avoid cluttering the plot only the trajectory
of the end-effector CAP is shown.

The influence of the inverse kinematics gains can clearly be seen by inspecting
figure 5.11. In both simulations, the USM moves with the same velocity towards the
obstacle. As expected a high gain leads to a faster response when the CA task is
activated, and there is a small overshoot of the minimum desired distance before it is
corrected. The closest distance to the obstacle is 0.99 and 1.54 meters for the low and
high gain cases respectively. By having a larger CA task gain the desired minimum
distance to obstacles can be reduced while maintaining the same level of assurance
that no collision will occur. With the high gain, the minimum desired distance could
be set to Ro = 0.5, and a collision would still not happen for this specific scenario.

Case: Arbitrary Obstacle Shape

In the preceding simulations, a cylinder-shaped obstacle has been used, and the move-
ment of the robot has been in the plane, resulting in the interpretation of the obstacle
as a circle. The collision avoidance algorithm does however not put any requirements
on the shape of obstacles, all it needs to function is the distance to the surface of the
obstacle.

To demonstrate this a simulation similar to the previous ones has been conducted,
where the upright cylinder has been replaced by a randomly shaped obstacle that has
been created by connecting two box shapes and one cylinder shape. The parameters
for the simulation are T = {τCA,e τCA,b τCA,r τD,e }, Ro = 1, Kdir = 1 and KIK,i = 1.

The results can be seen in figure 5.12, where (a) shows the obstacle and trajectories
in 2D and 3D, while (b) shows the distance from the CAPs to the obstacle. The
USM avoids the obstacle and reaches its goal position, while all the CAPs keep their

72 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

-30-25-20-15-10-50

x

-15

-10

-5

0

5

10

15

y

-30-25-20-15-10-50

x

-15

-10

-5

0

5

10

15

y

(a) Trajectory of the end-effector CAP. In the left plotKCA,e = 0.1 and in the right plotKCA,e = 2,

0 10 20 30 40 50 60 70 80

Time [s]

0

1

2

3

0 20 40 60 80 100

Time [s]

0

1

2

3

(b) Distance from the end-effector CAP to the obstacle. The dotted line is the minimum desired
distance.

Figure 5.11: Collision avoidance with a single obstacle. The red part of the line
illustrates when the CA task is active. Parameters: Ro = 2, Kdir = 1.

5.4. SIMULATION STUDY: COLLISION AVOIDANCE 73

minimum desired distance to the obstacle.

-30-25-20-15-10-50

x

-15

-10

-5

0

5

10

15

y

-190

-185

-180

-10 -30

z

-175

-170

-20

y

0

x

-10
10

0

(a) Bird’s eye view and a 3D view of the obstacle, goal position and CAP trajectories.

0 10 20 30 40 50 60 70 80 90

Time [s]

0

1

2

3

0 10 20 30 40 50 60 70 80 90

Time [s]

0

1

2

3

0 10 20 30 40 50 60 70 80 90

Time [s]

0

1

2

3

(b) Distance from the CAPs to the obstacle. The dotted line is the minimum desired distance.

Figure 5.12: Collision avoidance with a single randomly shaped obstacle. Parameters:
Ro,i = 1, Kdir,e = 1.

5.4.2 Scenario: Multiple Obstacles

One of the main design goals for the collision avoidance system developed in this
thesis has been to make it functional in tight and enclosed areas. This entails using
the flexibility and maneuverability of the USM, enabling it to enter spaces that would

74 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

not otherwise be possible. The system is to a large extent able to achieve this, which
will be demonstrated through simulations where the USM moves through an obstacle
course so narrow that it must bend its body to get through.

The obstacle course was created by connecting several cylinder-shaped objects
together in a small area of space. Figure 5.13 shows a simulation with the obstacle
course. Looking at figure (b) it can be seen that the structure consists of five vertical
cylinders and three horizontal ones. Each cylinder has a diameter of one meter. The
vertical cylinders are placed close together in a radius of one meter from the central one.
The three horizontal cylinders are placed at different altitudes, but all within a range of
two meters on the z-axis. The task set for the simulation is T = {τCA,e τCA,b τCA,r τD,e },
the desired minimum distance from any obstacle is set to Ro = 0.5 for all three CAPs
and the gains are KCA,i = 2 and Kdir,e = 1.

The USM approaches the structure in a straight line when end-effector CAP en-
counters a horizontal cylinder. It moves upward in order to pass above it, but soon
encounters a vertical cylinder. The USM then moves to the left to navigate around
the newly encountered vertical cylinder. However, upon performing that maneuver a
second horizontal cylinder is met, resulting in the USM having to move downward
to go underneath it. Lastly a maneuver to the right is need to avoid a second vertical
cylinder, and the USM stays above the third horizontal cylinder, until at last it can
move freely towards its goal position. The distances to the closest obstacle can be seen
for each CAP throughout the simulation in figure 5.13 (g). At no point in time does a
collision occur for any of the CAPs, although there are times when some of the CAPs
are fairly close.

5.4. SIMULATION STUDY: COLLISION AVOIDANCE 75

(a) 3D view. (b) Top view. (c) Side view.

(d) Closeup: 3D view. (e) Closeup: Top view. (f) Closeup: Side view.

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

(g) CAP distances to obstacle.

Figure 5.13: Collision avoidance in a tight and cluttered area with multiple obstacles.
Parameters: Ro,i = 0.5, KCA,i = 2, Kdir,e = 1.

76 CHAPTER 5. IMPLEMENTATION AND SIMULATIONS

(a) t = 19

(b) t = 28

(c) t = 32

(d) t = 35

Figure 5.14: The figure shows snapshots of the simulation from figure 5.13. A simplifi-
cation of the USM has been drawn as the CAPs with lines between them. Each instant
in time is shown from three different viewpoints, identical with the viewpoints in 5.13
(d), (e) and (f).

Chapter 6

Conclusion

This thesis has presented path following and collision avoidance controllers for the
novel USM robot. The control systems were presented in chapter 4 and validated by
simulations in chapter 5. This chapter will summarize the main results of this thesis,
and discuss some thoughts on future extensions and improvements to the systems.

6.1 Results

Path following for autonomous underwater vehicles is a problem that has been solved
many times for a number of different vessel designs. The main difference between
earlier underwater vehicles and the USM is that the USM has a flexible body, giving it
the ability to change its shape. However, at a given instant in time the shape of the
USM is constant, and the robot can be considered as a rigid body in the same way as
most other underwater vehicles. In addition, being a highly actuated system the USM
enjoy 6-DOF movement in almost all possible body shapes.

The approach taken to designing the path following controller in this thesis was
thus to view the USM as a rigid body with the ability to change its shape. Path following
was solved using methods for rigid bodies, while the novel shape-shifting ability was
utilized to optimize the path following with respect to some desired properties. A 3D

77

78 CHAPTER 6. CONCLUSION

line-of-sight controller was created for the path following, while a controller termed
the configuration controller was created to manage the shape of the USM. When path
following is the robot’s sole objective it makes sense to optimize the task by minimizing
path deviation and energy consumption. The configuration controller was designed to
achieve this by shaping the USM’s body to reduce hydrodynamic drag.

The simulation results in section 5.3 shows that the path following controller tracks
paths with good accuracy, both simple straight line paths with turns and more complex
paths like the spiral. The effect of the configuration controller was investigated by
comparing simulations with the configuration controller activated in one case and
deactivated in another. It was found that by using the configuration controller both
thruster usage and path deviation decreased, implying that the controller does improve
the USM’s path following capabilities. For the path and control parameters used in
the comparing simulations, the decrease was approximately 15% in thruster actuation
and almost 20% in path deviation, which is a significant improvement. The numbers
can, of course, be less prominent for other paths or control parameters, but the large
improvement does serve as a testimony to the configuration controller’s effect, and to
the usage of the USM’s body shape to optimize task execution in general.

The collision avoidance controller developed in this thesis has been designed with
the novel properties of the USM inmind, namely the flexibility of the body and themany
degrees of freedom. To this end, the algorithm has been designed for environments
where these properties are most needed, in enclosed spaces with many obstacles and
little room for movement. The important observation was made that the USM can
be viewed as a floating manipulator arm, and as such well-known inverse kinematics
control methods from the field of land-based manipulator arms were applicable. These
methods are suitable for control when the USM is moving in cluttered environments, as
they take advantage of the robot’s available redundancy and enables solving complex
tasks by considering multiple simple tasks simultaneously.

The collision avoidance controller presented in this thesis uses inverse kinematics
to control points on the USM’s body called collision avoidance points. The CAPs are
chosen strategically, in the hope that by assuring collision avoidance of all the CAPs,
no part of the robot will collide. A number of inverse kinematic tasks are defined for

6.2. FUTURE WORK 79

the CAPs, and the collision avoidance controller works by activating the tasks when
needed. The SRMTP scheme is used to solve the active IK tasks in a prioritized order.

Several simulations have been run to test the proposed CA system, both with a
single obstacle and with multiple obstacles creating a tight and cluttered environment.
The simulations show that the CA system successfully avoids collisions for the CAPs,
even in narrow and confined spaces. This shows the potential of the method, and also
demonstrates the ability of the USM to reach locations inaccessible for other vehicle
designs.

6.2 Future Work

For the USM to be fully autonomous control systems are needed for a wide range of
different tasks. This thesis has proposed a solution for path following and collision
avoidance, which are essential building blocks for any autonomous mobile robotic
system. Natural extensions to this system are motion planning algorithms that generate
paths, algorithms for processing sensor data from cameras or sonars, localization and
mapping, controllers for specific tasks like pipe monitoring and many more. However,
the path following and collision avoidance controllers do have their limitations, and
some suggestions for improvements to these specifically will now be suggested.

The biggest drawback with the path following controller is that it is not designed
to handle any form of external disturbances like ocean currents. One way to remedy
this is by extending the 3D line-of-sight guidance law with integral effect, enabling it
to deal with constant irrotational ocean currents [5]. In the presence of currents, it
is likely that the USM’s configuration should be used differently to optimize for the
desired properties, and the configuration controller would also need to be extended to
handle this situation.

The collision avoidance controller works well but does not have any form of higher
level guidance. To avoid collisions all CA tasks are given priority above the positioning
task in the SRMTP scheme. This means that situations can arise where there is no
solution available through the null space of the collision avoidance tasks that bring the
USM closer to its desired position, effectively locking the robot in space and resulting

80 CHAPTER 6. CONCLUSION

in it never reaching its goal. An algorithm for handling these situations should be
developed to make the system more robust.

Several improvements can be made to the inverse kinematics solver. For instance,
a set-based SRMTP method is proposed in [2], where it is argued that including all the
tasks in the inverse kinematics solution does not always yield the optimal solution, and
an algorithm for finding the optimal solution that still does not break any constraints
is proposed. Another possible improvement could be a mechanism to better prioritize
CA tasks, as it in certain situations might be advantageous to for instance prioritize
CA of the base CAP over the end-effector CAP. As mentioned in the discussion of
control parameters for the CA system, having a mechanism that actively adapts the
parameters can also potentially lead to great performance improvements.

References

[1] Antonelli, G. [2014]. Underwater Robots, Vol. 96, third edit edn, Springer.

[2] Antonelli, G., Moe, S. and Pettersen, K. Y. [2015]. Incorporating set-based control
within the singularity-robust multiple task-priority inverse kinematics, 2015 23rd
Mediterranean Conference on Control and Automation (MED) pp. 1132–1137.

[3] Børhaug, E., Pavlov, A. and Pettersen, K. Y. [2008]. Integral LOS control for
path following of underactuated marine surface vessels in the presence of con-
stant ocean currents, Proceedings of the IEEE Conference on Decision and Control
pp. 4984–4991.

[4] Breivik, M. and Fossen, T. I. [2008]. Guidance laws for planar motion control,
Proceedings of the IEEE Conference on Decision and Control pp. 570–577.

[5] Caharija, W., Pettersen, K. Y., Bibuli, M., Calado, P., Zereik, E., Braga, J., Gravdahl,
J. T., Sørensen, A. J., Milovanović, M. and Bruzzone, G. [2016]. Integral line-of-
sight guidance and control of underactuated marine vehicles: Theory, simulations
and experiments, IEEE Transactions on Control Systems Technology 24(5): 1623–
1642.

[6] Cengel, Y. A. and Cimbala, J. M. [2006]. Fluid Mechanics: Fundamentals and
Applications, 1st edn, McGraw-Hill.

[7] Chiaverini, S. [1997]. Singularity-robust task-priority redundancy resolution for

81

82 REFERENCES

real-time kinematic control of robot manipulators, IEEE Transactions on Robotics
and Automation 13(3): 398–410.

[8] CM Labs Webpage [2017].
URL: https://www.cm-labs.com/

[9] Colome, A. and Torras, C. [2015]. Closed-loop inverse kinematics for redundant
robots: Comparative assessment and two enhancements, IEEE/ASME Transactions
on Mechatronics 20(2): 944–955.

[10] De Angulo, V. R. and Torras, C. [1997]. Self-calibration of a space robot, IEEE
Transactions on Neural Networks 8(4): 951–963.

[11] Fiorini, P. and Shiller, Z. [1998]. Motion planning in dynamic environments using
velocity obstacles, International Journal of Robotics Research 17(7): 760–772.

[12] Fossen, T. I. [2002]. Marine Control Systems: Guidance, Navigation and Control of
Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trondheim.

[13] Fox, D., Burgard, W. and Thrun, S. [1997]. The dynamic window approach to
collision avoidance, IEEE Robotics Automation Magazine 4(March): 23–33.

[14] From, P. J., Gravdahl, J. T. and Pettersen, K. Y. [2014]. Vehicle-Manipulator Systems:
Modeling for Simulation, Analysis, and Control, Springer.

[15] Hoffmann, B. H. [2017]. Modelling of the Underwater Snake Robot Mamba with
and without Added Effectors.

[16] Johansen, T. A., Perez, T. and Cristofaro, A. [2016]. Ship Collision Avoidance and
COLREGS Compliance Using Simulation-Based Control Behavior Selection With
Predictive Hazard Assessment, IEEE Transactions on Intelligent Transportation
Systems 17(12): 3407–3422.

[17] Kelasidi, E., Liljebäck, P., Pettersen, K. Y. and Gravdahl, J. T. [2017]. Integral
Line-of-sight Guidance for Path Following Control of Underwater Snake Robots:
Theory and Experiments, IEEE Transactions on Robotics 33(3): 610–628.

REFERENCES 83

[18] Kelasidi, E., Pettersen, K. Y., Gravdahl, J. T., Strømsøyen, S. and Sørensen, A. J.
[2017]. Modeling and Propulsion Methods of Underwater Snake Robots, 2017
IEEE Conference on Control Technology and Applications (CCTA) .

[19] LaValle, S. M. [1998]. Rapidly-Exploring Random Trees: A New Tool for Path
Planning.

[20] Maciejewski, A. a. and Klein, C. a. [1985]. Obstacle Avoidance for Kinematically
Redundant Manipulators in Dynamically Varying Environments, The Interna-
tional Journal of Robotics Research 4(3): 109–117.

[21] Moe, S., Caharija, W., Pettersen, K. Y. and Schjolberg, I. [2014]. Path Following of
Underactuated Marine Underwater Vehicles in the Presence of Unknown Ocean
Currents, Proc. 33rd International Conference on Offshore Mechanics and Arctic
Engineering 7(2): 1–10.

[22] Moe, S. and Pettersen, K. Y. [2016]. Set-Based Line-of-Sight (LOS) Path Following
with Collision Avoidance for Underactuated Unmanned Surface Vessel, 2016 24th
Mediterranean Conference on Control and Automation (MED) pp. 402–409.

[23] Nakamura, Y. and Hanafusa, H. [1987]. Task-Priority Based Redundancy Control
of Robot Manipulators, The International Journal of Robotics Research 6(2): 3–15.

[24] Orin, D. E. and Schrader, W. W. [1984]. Efficient Conputation of the Jacobian for
Robot Manipulators, International Journal of Robotics Research (IJRR) 3(4): 66–75.

[25] Peter E. Hart, Nils J. Nilsson and Bertram Raphael [1968]. Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics 4(2): 100–107.

[26] Porta, J., Ros, L. and Thomas, F. [2005]. Inverse kinematics by distance matrix
completion, Proceedings of CK2005, 12th International Workshop on Computa-
tional Kinematics pp. 1–9.

84 REFERENCES

[27] Rao, R. S., Asaithambi, A. and Agrawal, S. K. [1998]. Inverse Kinematic Solution
of Robot Manipulators Using Interval Analysis, Journal of Mechanical Design
120(1): 147.

[28] Sans-Muntadas, A., Kelasidi, E., Pettersen, K. Y. and Brekke, E. [2017]. Spiral
path planning for docking of underactuated vehicles with limited FOV, 2017 IEEE
Conference on Control Technology and Applications (CCTA) (August): 732–739.

[29] Sanz, P. [2009]. Robotics: Modeling, Planning, and Control, Vol. 16, Springer.

[30] Siciliano, B. and Slotine, J.-J. E. [1991]. The General Framework for Managing
Multiple Tasks in High Redundant Robotic Systems, Fifth International Confer-
ence on Advanced Robotics, 1991. ’Robots in Unstructured Environments’, 91 ICAR
pp. 1211 – 1216 vol.2.

[31] Sverdrup-Thygeson, J., Kelasidi, E., Pettersen, K. Y. and Gravdahl, J. T. [2016a]. A
control framework for biologically inspired underwater swimming manipulators
equipped with thrusters, IFAC-PapersOnLine 49(23): 89–96.

[32] Sverdrup-Thygeson, J., Kelasidi, E., Pettersen, K. Y. and Gravdahl, J. T. [2016b].
Modeling of underwater swimming manipulators, IFAC-PapersOnLine 49(23): 81–
88.

[33] Sverdrup-Thygeson, J., Kelasidi, E., Pettersen, K. Y. and Gravdahl, J. T. [2017].
The Underwater Swimming Manipulator: A Bioinspired Solution for Subsea
Operations, IEEE Journal of Oceanic Engineering pp. 1–16.

[34] Ulbrich, S., De Angulot, V. R., Asfour, T., Torras, C. and Dillmann, R. [2009]. Rapid
learning of humanoid body schemas with kinematic bézier maps, 9th IEEE-RAS
International Conference on Humanoid Robots, HUMANOIDS09 pp. 431–438.

	Abstract
	Sammendrag
	Preface
	Introduction
	Motivation
	The Underwater Swimming Manipulator

	Problem Description
	Background
	Contribution
	Literature Review
	Inverse Kinematics
	Path Following
	Collision Avoidance

	Outline

	Kinematic Model
	Definitions and Notation
	Reference Frames
	Homogeneous Transformations
	Position, Orientation and Velocities

	Kinematics
	Forward Kinematics
	Differential Kinematics

	Motion Control System Framework
	Overview
	Kinematic Control
	Closed-Loop Inverse Kinematics
	Singularity-Robust Multiple Task Priority

	Dynamic Control
	Thrust Allocation

	Path Following and Collision Avoidance
	Path Following
	3D Line-of-Sight Waypoint Guidance
	Configuration Controller
	Control Parameters

	Collision Avoidance
	Inverse Kinematics Collision Avoidance Controller
	Control Parameters

	Implementation and Simulations
	Simulation Model: Vortex
	Control System: MATLAB/Simulink
	Simulation Study: Path Following
	Evaluation Criteria
	Scenario: Waypoint Navigation
	Scenario: Spiral Path Docking

	Simulation Study: Collision Avoidance
	Scenario: Single Obstacle
	Scenario: Multiple Obstacles

	Conclusion
	Results
	Future Work

	References

