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Abstract

This thesis examines dynamic motion control approaches and interaction control
approaches for underwater swimming manipulators (USMs). USMs are innovative
underwater vehicles with potential to increase efficiency and reduce costs of subsea
inspection, maintenance and repair. Dynamic motion control of USMs can be used for
USM inspection tasks, while interaction control must be considered for USM interac-
tion with the environment. To illustrate the performance of the different controllers,
a USM simulator is implemented with a complete control framework. An important
aspect when designing dynamic control approaches for USMs is uncertainty in model
knowledge. This is taken into account by the presented dynamic motion control ap-
proaches. For dynamic motion control, three control strategies are presented: adaptive
inverse dynamics control, the super-twisting algorithm with adaptive gains and non-
regressor-based adaptive control. The dynamic motion controllers are implemented
with the USM simulator. The stability properties of the controllers are analyzed and
their expected behaviour is compared to how they behave in simulations. The simula-
tions show that all the dynamic motion control approaches result in behaviour that
is in line with the theoretical analysis. The interaction control approaches presented
in the thesis are an impedance controller and a PI force controller with impedance
control. The simulator is extended to include interaction forces for the task of turning
a valve and the interaction controllers are implemented with the simulator. The simu-
lation results with the different interaction controllers are presented and the control
strategies are compared. Both interaction controllers perform well in the simulations.
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Sammendrag

Denne oppgaven undersøker dynamisk kontroll og interaksjonskontroll for svøm-
mende undervannsmanipulatorer (USMer). USMer er nyskapende undervannsfarkoster
med potensial til å øke effektiviteten og redusere kostnadene ved undervannsin-
speksjon, -vedlikehold og -reparasjon. Dynamisk kontroll kan brukes ved inspeksjon
med USMer, mens interaksjonskontroll må inkluderes for USM-interaksjon med om-
givelsene. For å illustrere ytelsen til de forskjellige kontrollmetodene, implementeres
en USM-simulator med et komplett rammeverk for kontroll. Et viktig aspekt ved
utforming av dynamiske kontrollmetoder for USMer er usikkerhet i modellen. Dette
er tatt med i betraktningen av de presenterte dynamiske kontrollmetodene. For dy-
namisk kontroll presenteres tre kontrollstrategier: adaptiv inversdynamikkontroll, en
«super-twisting» algoritme med adaptiv forsterkning og ikke-regressorbasert adap-
tiv kontroll. De dynamiske kontrollerne blir implementerte med USM-simulatoren.
Stabilitetsegenskapene til kontrollerne analyseres og deres forventede oppførsel blir
sammenlignet med hvordan de oppfører seg i simuleringer. Simuleringene viser at
alle de dynamiske kontrollerne gir resultater som er i tråd med den teoretiske analy-
sen. Interaksjonskontrollmetodene som presenteres i oppgaven er impedanskontroll
og PI-kraftkontroll med impedanskontroll. Simulatoren blir utvidet til å inkludere
interaksjonskreftene ved dreining av en ventil og interaksjonskontrollerne blir imple-
menterte med simulatoren. Simuleringsresultatene, med de forskjellige strategiene
for interaksjonskontroll, er presentert og kontrollstrategiene sammenlignes. Begge
interaksjonskontrollerne fungerer godt i simuleringene.
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Chapter 1

Introduction

1.1 Motivation

An increasing amount of oil and gas operations are performed subsea and the existing
subsea infrastructure is aging. As a result, the importance of subsea inspection, main-
tenance and repair (IMR) is increasing (Sverdrup-Thygeson et al.; 2016c). Most IMR
operations today are performed with the support of offshore vessels and remotely op-
erated underwater vehicle (ROV) systems which result in costly operations (Schjolberg
et al.; 2016). Therefore, increasing autonomy has great potential to increase efficiency
of IMR operations and thereby reduce costs (Schjolberg et al.; 2016).

The underwater swimming manipulator (USM) can replace the use of support
vessels and ROVs for carrying out inspections and light intervention tasks such as
cleaning and adjusting valves and chokes (Sverdrup-Thygeson et al.; 2016c). Its slender
shape gives the USM the possibility to access the most narrow parts of subsea instal-
lations inaccessible to most autonomous underwater vehicles (AUVs) and ROVs due
to their size (Sverdrup-Thygeson et al.; 2016b). In addition, the USM can work as a
torpedo-shaped AUV for locomotion (Kelasidi et al.; 2017). Hence, the USM provides
both efficient locomotion and service as a robot manipulator. As a result, the USM has
the potential to significantly reduce costs related to IMR (Sverdrup-Thygeson et al.;

1
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(a) Inspection and intervention. (b) Pipeline survey.

Figure 1.1: USRs performing inspection and intervention and pipeline survey.
(Sverdrup-Thygeson et al.; 2018)

2016c).
This thesis focuses on dynamic motion control of USMs for inspection and interven-

tion. Considerations such as uncertainties in the model knowledge must be taken into
account when designing dynamic control approaches for USMs. Hydrodynamic forces
on the USM are complex and highly nonlinear and therefore difficult to model. In this
thesis, different dynamic motion control strategies for USMs and how they deal with
uncertainties in the model are studied. For the USM to perform intervention tasks, the
control force exchanged with the environment must be investigated (Antonelli; 2014).
Modeling of interaction forces as well as interaction control for USM is investigated in
this thesis. Figure 1.1 shows possible applications of the USM. The figure illustrates
USRs, but USMs are even more appropriate for these tasks (Sverdrup-Thygeson et al.;
2018).

1.2 Background on AUVs for intervention tasks

Issues related to the use of ROVs for IMR operations are that they require a support
vessel, constant supervision and are limited by the attached tether (Sverdrup-Thygeson
et al.; 2018). Some of these challenges can be resolved by using AUVs and AUVs are
nowadays routinely used for survey missions (Ridao et al.; 2014). Most commercially
available AUVs are however not suited for subsea IMR operations (Sverdrup-Thygeson
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et al.; 2018). Recently, some research projects have focused on development of interac-
tion autonomous underwater vehicles (I-AUVs).

The first fully autonomous intervention at sea was performed by the ALIVE project
(Evans et al.; 2003)(Palomeras et al.; 2014). The goal of the ALIVE project is "to develop
an I-AUV capable of docking to a subsea structure which has not been specifically
modified for AUV use" (Evans et al.; 2003). Once docked to a subsea panel, the ma-
nipulator works as a fixed base manipulator and operates valves on the panel (Perrier
et al.; 2004). The ALIVE vehicle is shown in figure 1.2a.

The SAUVIM (Marani et al.; 2009) is an semi-autonomous intervention AUV (I-
AUV) equipped with a manipulator (figure 1.2b). The vehicle is much heavier than
the manipulator such that both systems behave practically decoupled. The SAUVIM
is in (Marani et al.; 2009) used for recovery of a submerged target without human
intervention, except for the initial decision of starting the operation, with promising
results.

The GIRONA 500 light weight I-AUV, shown in figure 1.2c, is a compact size I-AUV
lighter than previous I-AUVs (Ridao et al.; 2014). The I-AUV has capacity to reconfigure
for different tasks. In (Ridao et al.; 2014) the GIRONA 500 I-AUV is used for docking
and fixed-base manipulation, learning by demonstration for free-floating manipulation
and multipurpose manipulation for object recovery. In (Palomeras et al.; 2014), the
GIRONA 500 I-AUV is used for subsea panel docking followed by turning a valve and
plugging/unplugging a connector.

For the interested reader, (Ridao et al.; 2014) contains a summary of research
projects relevant to intervention AUVs.

Underwater Vehicle Manipulator Systems (UVMSs) are underwater vehicles with
one or more manipulators, i.e. a term describing both ROVs and AUVs equipped
with manipulators. The books (Antonelli; 2014) and (Antonelli; 2018) contain more
information on modeling and control of UVMSs.

An underwater swimming manipulator (USM) is an innovative underwater vehi-
cle that is a fusion between a conventional autonomous underwater vehicle and an
underwater snake robot (USR) (Sverdrup-Thygeson et al.; 2016c). The Eelume USM is
shown in figure 1.2d. USRs are biologically inspired robots that swim by mimicking
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(a) The ALIVE vehicle (Perrier et al.; 2004). (b) The SAUVIM (Marani et al.; 2009)

(c) The GIRONA I-AUV (Ridao et al.; 2014). (d) The Eelume USM (Courtesy of Eelume).

Figure 1.2: Examples of I-AUVs.
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the motion of eels (Kelasidi, Pettersen and Gravdahl; 2014). A USM is essentially a USR
equipped with thrusters (Borlaug and Pettersen; 2017). USMs can also be considered as
a special case of articulated I-AUVs. USMs are highly maneuverable and easy to deploy
and operate (Sverdrup-Thygeson et al.; 2018). Their slender and flexible body give
them the possibility to access areas difficult to access with other types of I-AUVs or
UVMSs such as tight spaces. The USM has the possibility to swim like a biological eel.
This is advantageous in case of thruster failure or in cases where thruster use is not
recommended (Sverdrup-Thygeson et al.; 2018). This can for example be when doing
inspection in an area where one wants to avoid sand whirling. "To realize operational
USMs for inspection and light intervention tasks, several theoretical problems such
as modeling, guidance, and control should be addressed " (Sverdrup-Thygeson et al.;
2018).

1.3 Problem description

This thesis addresses control of USMs. More specifically, it addresses control ap-
proaches for subsea inspection and intervention with underwater swimming manipu-
lators. This is done through the following steps:

• Design and investigate dynamic control approaches for observation with a
hovering robot.

• Verify the control approaches by creating a simulator for a floating-base manip-
ulator.

• Design a controller for manipulation tasks.

• Extend the simulator to model contact forces with the environment.

1.4 Background and Contributions

This thesis presents and compares the performance of dynamic motion control strate-
gies as well as interaction control strategies for USMs. The control strategies are tested
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in simulations and the results are compared to the expected theoretical performance.
Simulators have been implemented to model an underwater swimming manipulator
(USM) with and without external forces based on a Matlab script with a model of
the dynamic equations provided by PhD candidate Henrik Schmidt-Didlaukies. The
script includes all functions necessary to implement the dynamic equations and for
visualization of the USM. A summary of the main contributions of the thesis are:

• Implementation of a USM simulator in Simulink based on a Matlab script pro-
vided by Henrik Schmidt-Didlaukies (chapter 3).

• Implementation of thrust allocation (section 3.4.3).

• Implementation of differential inverse kinematics (section 3.4.2).

• Adaptation of three different dynamic motion controllers to be suitable for USMs.
Stability analyses of the dynamic motion controllers have been performed and
the controllers have been implemented (chapter 4).

• Modeling of interaction forces for the task of turning a valve (section 2.6).

• Extension of the simulator to include interaction forces (section 2.5/2.6).

• Design and implementation of two different interaction controllers for USMs
(chapter 5).

The provided implementation of the dynamic model was intended for Matlab, so
work was needed to adapt it to run in the Simulink environment. A complete control
framework has been implemented with the USM simulator in Simulink including
reference trajectory generation, inverse kinematics and thrust allocation in addition
to dynamic motion control. When implementing the inverse kinematics and thrust
allocation, functions from the provided script have been used to calculate the thrust
configuration matrix and the Jacobian Jb defined in section 2.3.5. In the implementation
of the dynamic motion controllers, some functions from the provided script have also
been utilized. Interaction controllers are then added to the control framework with
a simulator extended with interaction forces and moments. To include interaction



1.5. OUTLINE 7

forces, the function calculating the Jacobian Jb from the provided script has been used.
In addition to the script, PhD candidate Henrik Schmidt-Didlaukies provided a note
on the theoretical background of the model, and he has been available for questions
about the model and script.

The choice of controllers to investigate was done by studying literature and choos-
ing controllers that are relevant for USMs that were not too complex to implement
in the control framework. The adaptive inverse dynamics controller has been altered
for ease of implementation, and the non-regressor-based adaptive controller has been
altered to be relevant to USMs and for convenience in the stability analysis. The
super-twisting algorithm with adaptive gains presented in the thesis is based on the
super-twisting algorithm from my specialization project, but the sliding-surface is
altered so that the controller is suitable for USMs. For interaction control, the con-
trollers and modeling of interaction forces/moments are based on the article (Cataldi
and Antonelli; 2015). In the article, the controllers are applied to an underwater vehicle
manipulator system, while in this thesis they are applied to a USM.

Throughout the work on the thesis I have had discussions with my supervisor and
co-supervisors on what direction to take, about the different control strategies and
about how to best perform the stability analyses.

1.5 Outline

The thesis is divided into 6 chapters. After the introductory chapter, chapter 2
presents the modeling background for this thesis. Chapter 3 presents the structure
and implementation of the simulator as well as the model parameters used for the
simulations in the later chapters. In addition, chapter 3 presents the implemented
control framework. In chapter 4, different dynamic motion control strategies are
presented and simulation results for these controllers are presented and discussed.
Stability analyses of the controllers are also included in chapter 4. Interaction control
is presented in chapter 5. Chapter 5 also includes results of simulations with the
interaction controllers and a discussion of the results. Finally, chapter 6 contains
conclusions and suggestions for further work.
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Chapter 2

Modeling background

This chapter presents the modeling background for the thesis. First, the representa-
tion of position and orientation of a rigid body is presented. Then, the underwater
swimming manipulator (USM) description is defined and important aspects of USM
modeling is presented. Finally, modeling for interaction with the environment is
introduced.

2.1 Rigid body representation

Consider a rigid body in space. The rigid body has a body-fixed frame Σb attached
to it as shown in figure 2.1. The earth-fixed and inertial frame, ΣI , is defined with
the z-axis pointing upwards and is a right-handed coordinate system. This section
contains an introduction to the position and orientation representation of rigid bodies
used throughout the thesis.

9
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x
y

z

xy

z

Σb

ΣI

η1

Figure 2.1: A rigid body in space with reference frames.

2.1.1 Position representation

The position of a rigid body with respect to an earth-fixed and inertial frame ΣI , η1 is
shown in figure 2.1 and defined as

η1 = [x y z]⊤, (2.1)

where x , y, z (surge, sway, heave) are the coordinates of the origin of the body-fixed
frame, Σb , with respect to the inertial frame in x-, y- and z-direction respectively. The
linear velocity of the rigid body in the inertial frame is the time-derivative Ûη1 which
can be integrated to find η1.

It is also useful to define the linear velocity of the body-fixed frame of the rigid
body with respect to the inertial frame ΣI expressed in the body-fixed frame Σb . Call
this the body-fixed linear velocity (Antonelli; 2014):

ν1 = [u v w]⊤. (2.2)

The relationship between the linear velocity of the rigid body expressed in the
inertial frame and the body-fixed linear velocity is (Antonelli; 2014):

ν1 = RbI Ûη1, (2.3)

where RbI is the rotation matrix from the inertial frame to the body-fixed frame and
will be defined in section 2.1.2.
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2.1.2 Orientation representation

The orientation of a rigid body may be described by various representations (Chiaverini
and Siciliano; 1999). The Euler angle representation and unit quaternion representation
will be introduced in this section.

2.1.2.1 Euler angles

The Euler angle representations use three parameters to represent orientation and are
therefore minimal representations (Chiaverini and Siciliano; 1999). The orientation of
a rigid body can be defined by a vector of Euler angles (Antonelli; 2014) as

η2 = [ϕ θ ψ ]⊤. (2.4)

where ϕ, θ and ψ (roll, pitch, yaw) are the rotations around the x-, y- and z-axis of
the inertial frame respectively. There exists 12 possible different definitions of Euler
angles (Chiaverini and Siciliano; 1999). The XYZ representation will from now on
be used. The XYZ representation leads to the following rotation matrix RbI in (2.3)
(Chiaverini and Siciliano; 1999):

RbI = Rx (ϕ)Ry (θ )Rz (ψ ). (2.5)

where Rx , Ry and Rz are the matrices of the elementary rotations about three indepen-
dent axes of successive frames (Chiaverini and Siciliano; 1999). The rotation matrices
are defined as (Fossen; 2011):

Rx (ϕ) =


1 0 0

0 cϕ −sϕ

0 sϕ cϕ


, Ry (θ ) =


cθ 0 sθ

0 1 0

−sθ 0 cθ


, Rz (ψ ) =


cψ −sψ 0

sψ cψ 0

0 0 1


(2.6)

The abbreviations sϕ and cϕ are short for for sin(ϕ) and cos(ϕ) respectively.
The time derivative of the vector of Euler angles is Ûη2. The time derivative of the
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Euler angles does however not have a physical interpretation, but can be integrated to
get the Euler angles η2 (Antonelli; 2014).

As is done for the position representation, define ν2 as the vector of body-fixed
angular velocities. The body-fixed angular velocities are the angular velocities of the
body-fixed frame with respect to the inertial frame expressed in the body-fixed frame:

ν2 = [p q r ]⊤. (2.7)

The relationship between ν2 and Ûη2 is described by (Chiaverini and Siciliano; 1999):

ν2 = Jk,o(η2) Ûη2 (2.8)

where Jk,o(η2) is a proper Jacobian matrix described with the XYZ Euler angle con-
vention as (Chiaverini and Siciliano; 1999):

Jk,o(η2) =


1 0 sθ

0 cϕ −cθ sϕ

0 sϕ cθcϕ


, (2.9)

where ϕ and θ are the roll and pitch angles respectively (2.4). The inverse of the matrix
Jk,o(η2) is

J−1k,o(η2) =
1
cθ


cθ sθ sϕ −sθcϕ

0 cθcϕ cθ sϕ

0 −sϕ cϕ


. (2.10)

It can easily be seen that thematrix is singular for cosθ = 0 and hence the representation
is singular for pitch angles θ = ± π

2 . These singularities are called representation
singularities (Chiaverini and Siciliano; 1999).

2.1.2.2 Unit quaternions

While the Euler angle representations use 3 parameters to represent orientation, the
unit quaternion representation consists of 4 parameters and 1 norm constraint and
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is therefore non-minimal (Chiaverini and Siciliano; 1999). Using unit quaternions to
represent orientation avoids the problem of representation singularities (Antonelli;
2014).

The unit quaternion vector can be defined as (Egeland and Gravdahl; 2002)

p =


ηQ

ϵ

 , (2.11)

where
ηQ = cos

( β
2

)
(2.12)

is the real part of the quaternion, and

ϵ = [ϵ1, ϵ2, ϵ3]
⊤ = sin

( β
2

)
r (2.13)

are the imaginary parts of the quaternion. β is the rotation angle about the axis
described by r ∈ R3 (Chiaverini and Siciliano; 1999). Hence, every rotation is described
by one angle and one axis. The angle β is defined in β ∈ [−π ,π ] such that ηQ > 0
(Chiaverini and Siciliano; 1999). Remark: The quaternion is defined with the scalar
part as the first element of the vector as in (Egeland and Gravdahl; 2002), but opposite
from (Antonelli; 2014).

The unit quaternion has unit length. Hence, the unit quaternion satisfy the relation
(Egeland and Gravdahl; 2002):

p⊤p = η2Q + ϵ
⊤ϵ = 1. (2.14)

The quaternion propagation equations give the relationship between the body-
fixed angular velocity ν2 and the time derivative of the quaternion. The quaternion
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propagation equations are defined as (Antonelli; 2014):

ÛηQ = −
1
2ϵ

⊤ν2,

Ûϵ =
1
2ηQν2 +

1
2S(ϵ)ν2.

(2.15)

S(λ) is the skew-symmetric cross-product operator defined as (Fossen; 2011)

S(λ) = −S⊤(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0


, λ =


λ1

λ2

λ3


. (2.16)

such that λ × a = S(λ)a. The quaternion propagation equation (2.15) can be written in
matrix form as:


ÛηQ

Ûϵ

 = Jk,oq(p)ν2 =
1
2



−ϵ1 −ϵ2 −ϵ3

ηQ −ϵ3 ϵ2

ϵ3 ηQ −ϵ1

−ϵ2 ϵ1 ηQ


ν2. (2.17)

It can be seen that J⊤k,oq Jk,oq = 0.25I3 and equation (2.17) can therefore be rewritten
on a form similar to that with Euler angles in equation (2.8) (Antonelli; 2014):

ν2 = 4J⊤k,oq(p)

ÛηQ

Ûϵ

 . (2.18)

The unit quaternion vector p has unit length. Numerical integration of the time
derivative of the quaternion from (2.17) may cause the resulting quaternion norm
to deviate from unity (Fossen; 2011). A nonlinear feedback term may therefore be
included in (2.17): 

ÛηQ

Ûϵ

 = Jk,oq(p)ν2,+
γ

2 (1 − p⊤p)p (2.19)
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where γ ≥ 0 (Fossen; 2011).

2.2 Underwater swimming manipulator description

An underwater swimming manipulator (USM) can be considered as a free-floating,
fully submerged serial chain robot manipulator with thrusters attached to the links
(Sverdrup-Thygeson et al.; 2016a). Properties of the USM will be defined in the follow-
ing.

The USM consists of n + 1 rigid cylindrical links interconnected by n motorized
joints and is equipped withm thrusters (Sverdrup-Thygeson et al.; 2016a). Figure 2.2
shows an example USM with n + 1 links, n joints and an end-effector mounted on the
head link. The end-effector is the part of the USM that interacts with the environment.
For different types of tasks, different end-effectors can be mounted on the USM.

Tail

Head
ΣI xeeΣee

xb0

x
n−1

xnxI

zI zn

zn−1

zb0

zee

yI

yb0

yn

yee

yn−1

Σbn

Σbn−1

Σb0

qn−1

qn

Link 0

Lin
k n
­1 

Link n 

Figure 2.2: A general USM representation.

The links are numbered 0 to n where link 0 is the tail, or base, link and link n is
the head link of the USM as shown in figure 2.2. The links have circular cross-sections
and centroids placed on the x-axis of the link’s body fixed frame (Schmidt-Didlaukies;
2018). Joints are numbered 1 to n where joint i , i = 1...n, interconnects link i and link
i − 1. All joints are revolute with 1 DOF and can therefore be described by a single
joint variable qi where qi is the joint angle of link i . The joints shown in figure 2.2 are
y-revolute with examples of joint angles marked qn and qn−1 in the figure.
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The following reference frames will be referred to when considering the USM. All
frames are shown in figure 2.2 and all frames have y-axes (green) pointing into the
plane such that the coordinate systems are right-handed.

• Earth-fixed and inertial frame, ΣI . From now on referred to as the inertial frame.

• Body-fixed frame of link i , Σbi . All links have a body-fixed frame attached to
them. The body-fixed frame of link i is fixed to the center line of the link on the
side closest to the tail. The x-axis of the body-fixed frame points along the center
line of the cylinder as shown in figure 2.2. Σbi is referred to as the body-frame
of link i .

• The body-fixed base frame Σb0 . From now on referred to as the base frame Σb .

• The end-effector frame Σee . An additional frame is located at the tip of the
end-effector as shown in figure 2.2.

The joint i coincides with the the origin of the body-frame of link i . In figure 2.2
the length of the joints are extended to show the generalized variable qi .

Thruster j on link i has a thrust direction βt,i, j and a point of attack rt,i, j expressed
in the body frame of link i associated with it. The position and orientation of the
thrusters relative to the base of the USM is dependent on the joint angles q (Schmidt-
Didlaukies; 2018).

The motion of the USM can be described by the body-fixed linear and angular
velocity of the base-frame Σb , which from now on will be denoted by ν1 and ν2
respectively, as well as the joint angular velocities Ûq. These are collected in a vector ζ :

ζ =


ν1

ν2

Ûq


∈ R6+n . (2.20)

The position and orientation of the base-frame Σb with respect to the inertial frame
ΣI is denoted by η1 and η2, respectively. These are collected in the vector η = [η⊤1 ,η

⊤
2 ]

⊤.
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The frame Σee is attached to the tip of the end-effector. The position and orientation
of the end-effector-frame Σee with respect to the inertial frame ΣI is denoted by
ηee = [η⊤1,ee ,η

⊤
2,ee ]

⊤.

2.3 Kinematic modeling

Kinematic modeling is the description of the USMs motion without considering the
forces that cause the motion (de Wit et al.; 2012). Direct kinematics can be used to
describe the end-effector motion with respect to the motion of the joints and base.
Inverse kinematics is the opposite, to find the base and joint motion that correspond
to a desired end-effector motion (de Wit et al.; 2012). Hence, kinematics consists of the
transformation between configuration space and task space or vice versa.

2.3.1 Configuration space and task space

Consider some task to be executed. The task is as usually and most conveniently
described by the position and orientation of the end-effector (de Wit et al.; 2012).
The position and orientation of the end-effector can be described in the task space as
ηee = [η⊤2,ee ,η

⊤
1,ee ]

⊤. The dimension of the task space depends on the geometry of the
task, but may not be larger than 6 (de Wit et al.; 2012), that is, three degrees of freedom
(DOF) to specify position and three DOF to specify orientation.

The configuration space is the space in which the complete and unambiguous
configuration of the USM is described. All joints have 1 DOF and the configuration of
the USM can be described by n joint variables and 6 variables to specify orientation
and rotation of the base. The dimension of the configuration space is therefore 6 + n
(n number of joints). While the tasks are described in task space, a manipulator is
naturally actuated in the configuration space (Siciliano and Khatib; 2007).

2.3.2 Kinematic redundancy

Kinematic redundancy is a relative term. It arises when a manipulator has more
degrees of freedom (DOF) than what is required to execute a given task (Siciliano and
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Khatib; 2007). Hence, when the dimension of the configuration space is larger than
the dimension of the task space. If the task space has 6 DOFs, a manipulator with 7 or
more DOF is kinematically redundant. However, a manipulator with only 6 DOF may
also be kinematically redundant if the dimension of the task space is less than 6. A
USM is therefore kinematically redundant because of the 6 DOF of the base as well as
the n>0 DOF provided by the joints. The Jacobian will therefore always have full rank
(Siciliano and Khatib; 2007).

2.3.3 Direct kinematics

The position and orientation of the end-effector ηee can be completely described as a
function of the base position and orientation η and joint variables q (Antonelli; 2014).
This relationship is called the direct kinematics:

ηee = k(η,q). (2.21)

The function k(η,q) is nonlinear may be very complex (Antonelli; 2014).

2.3.4 Differential kinematics

A task is as previously mentioned usually described by desired positions and orienta-
tions of the end-effector ηee . Inverse kinematics consists of finding desired base and
joint trajectories that give the desired end-effector trajectory. This essentially means
to find the inverse of equation 2.21.

The function k(η,q) in equation (2.21) is however invertible only in certain cases.
Therefore, differential kinematics may be used to calculate the desired base and joint
trajectories instead. The differential kinematics equation can be obtained by taking
the time derivative of equation (2.21). This results in a linear mapping between
configuration space velocities and the task space velocities (Siciliano and Khatib; 2007):

Ûηee = J (R
I
ee ,q)ζ . (2.22)

where J (RIee ,q) ∈ R6×(6+n). The linearity of this mapping makes it useful for solving
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the inverse kinematics problem (de Wit et al.; 2012).

2.3.5 Jacobians

In the differential kinematics equation (2.22), the base and joint velocities are related
to the time derivative of end-effector position and orientation through the Jacobian.
Depending on how the time-derivatives of the end-effector position and orientation is
described, different Jacobians can be defined.

First, consider the body-fixed linear and angular velocities of the end-effector, ν1,ee
and ν2,ee . The Jacobian Jb (q) that gives the body fixed velocities from the base and
joint velocities ζ is Jb (q) (Schmidt-Didlaukies; 2018):

ν1,ee

ν2,ee

 = Jb (q)ζ . (2.23)

The body-fixed linear and angular velocities of any link i , ν1,bi and ν2,bi , is related to ζ
through the Jacobien Jb,i : 

ν1,bi

ν2,bi

 = Jb,i (q)ζ . (2.24)

These Jacobians are available in the provided Matlab script defining the USM model in
this thesis.

As a task is usually described by desired positions and orientations in the inertial
frame ηee , it is useful to define the Jacobian J (RIee ,q) that relates the time derivative
of position and orientation in the inertial frame Ûηee to the base and joint velocities ζ .
Equation (2.3) and (2.8) describes the relations between ν1 and Ûη1 and ν2 and Ûη2 of a
rigid-body respectively. These are used to define a Jacobian J (RIee ,q):

Ûηee =


Ûη1,ee

Ûη2,ee

 =

RIee 03×3
03×3 J−1k,o(η2,ee )

 Jb (q)ζ = J (RIee ,q)ζ (2.25)

It is also useful to define a Jacobian Jω (R
I
ee ,q) that relates the linear and angular
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velocities of the end-effector in the inertial frame to the base and joint velocities ζ :
Ûη1,ee

ωee

 =

RIee 03×3
03×3 RIee

 Jb (q)ζ = Jω (RIee ,q)ζ . (2.26)

ωee = RIeeν2,ee is the angular velocity of the end-effector frame with respect to the
inertial frame expressed in the inertial frame.

2.3.6 Kinematic singularities

A kinematic singularity arises at configurations where the Jacobian is rank deficient
(Siciliano and Khatib; 2007). At a kinematic singularity the mobility of a manipulator is
reduced and infinite solutions to the inverse kinematics problems might exist. Close to
a kinematic singularity small velocities in task space may correspond to large velocities
in the configuration space (Antonelli; 2014).

2.4 Dynamic modeling

The USM is considered as free floating serial chain manipulator. The equations of
motion are therefore structurally similar to those of underwater vehicle manipulator
systems (UVMSs) presented in (Antonelli; 2018). The vector ζ was defined in 2.20. The
model used in the modeling of a USM in this thesis is based on (Schmidt-Didlaukies;
2018). The equations of motion (EOMs) can be written as:

M(q) Ûζ +C(q, ζ )ζ + D(q, ζ )ζ + д(q,η) = τ (2.27)

where:
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M(q) ∈ R(6+n)×(6+n) is the inertia matrix including added mass terms,

C(q, ζ )ζ ∈ R6+n is the vector of Coriolis and centripetal terms,

D(q, ζ )ζ ∈ R6+n is the vector of hydrodynamic damping terms,

д(q,RIB ) ∈ R6+n is the vector of gravity and buoyancy effects,

τ ∈ R6+n is the vector of generalized forces and torques.
The derivation of the matrices may be found in (Schmidt-Didlaukies; 2018).

2.4.1 Generalized forces and torques

The generalized forces and torques τ that are applied to the USM are provided by
joint motors and thrusters. The vector of generalized forces and torques τ can be
divided into joint torques τ J and generalized forces and torques from thrusters τT
(Schmidt-Didlaukies; 2018):

τ = τ J + τT = BuT +


06×1
u J

 (2.28)

where uT is the thruster control input and u J is the joint control input.

2.4.2 Thrusters

The USM is equipped with thrusters. As opposed to conventional underwater robots,
the position of the thrusters relative to the base is dependent on the joint angles
(Sverdrup-Thygeson et al.; 2018). The thrusters provide generalized forces and mo-
ments, τT ∈ R6+n , that act on the USM. The thruster forces, τT , affect the position and
orientation of the base as well as the joint angles. The control input uT ∈ Rm is applied
to the thrusters to achieve the desired force and moments on the base, while joints
angles are controlled by the joint motors. The thruster forces τT corresponding to a
control input uT depend on structural variables of the thrusters as well as the density
of water (Antonelli; 2014). The relationship between the thruster forces τT and the
control input uT is as a result highly nonlinear (Antonelli; 2018). The relationship can
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however be simplified to a linear relationship:

τT = BuT (2.29)

where B ∈ R(6+n)×m withm thrusters and n joints is the Thrust Configuration Matrix
(TCM) (Schmidt-Didlaukies; 2018). The TCM is assumed to be constant Schmidt-
Didlaukies (2018).

The derivation of B is presented in the following. Each link has a matrix associated
with it to describe how the thrusters excert forces and torques on that link. Call this
matrix Bi ∈ R6×mi wheremi is the number of thrusters of link i . The matrix Bi is found
from the thrust direction βt,i, j and the point of attack rt,i, j on the jth thruster of link i
expressed in the frame of link i . Bi can then be written as (Schmidt-Didlaukies; 2018):

Bi =


βt,i,1 ... βt,i,mi

rt,i,1 × βt,i,1 ... rt,i,mi × βt,i,mi

 (2.30)

The forces and torques on link i , τi ∈ R6, provided by the control input on the thrusters
on link i , ui ∈ Rmi , is (Antonelli; 2018):

τi = Biui (2.31)

The forces and torques on link i translates to forces and torques on the base as well as
joint torques through the transpose of the body Jacobian Jb,i (q):

τT ,i = J
⊤
b,iτi (2.32)

τT ,i are the generalized forces and torques on the USM from the thrusters on link i .
The forces and torques on the base and joints from all the thrusters can therefore be
expressed as:

τT = But =
[
Jb,1(q)

⊤B1 Jb,2(q)
⊤B2 ... Jb,n(q)

⊤Bn
]
ut (2.33)

where B it the total TCM.
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2.4.3 Hydrodynamic forces

The hydrodynamic forces induced by motion of the USM in water are complex and
highly nonlinear (Kelasidi, Pettersen, Gravdahl and Liljebäck; 2014). Several assump-
tions are therefore made in the modeling of hydrodynamic forces. In the modeling of
hydrodynamic forces according to the model in (Schmidt-Didlaukies; 2018), the follow-
ing assumptions are made. The cross-flow principle is taken to be valid and the acting
forces are assumed to be given by an expression resembling that of Morison (Morison;
1950)(Schmidt-Didlaukies; 2018). In addition, no current effects are considered in this
thesis.

First, the drag forces experienced by a cylindrical link i are presented. Call the
linear drag forces on link i dL,i . The linear drag forces on link i are given as (Schmidt-
Didlaukies; 2018):

dL,i = DL,i


ν1,i

ν2,i

 , (2.34)

where

DL,i = ρπrliCd,Lvr ef



αi 0 0 0 0 0

0 1 0 0 0 1
2li

0 0 1 0 − 1
2li 0

0 0 0 γir
2 0 0

0 0 − 1
2li 0 1

3l
2
i 0

0 1
2li 0 0 0 1

3l
2
i


. (2.35)

Cd,L is the linear drag coefficient, ρ is the density of water, r is the radius of the link
and li is the length of the link i . vr ef , αi , and γi are constants.

In addition to the linear drag forces, nonlinear drag forces are included in the
model. The nonlinear drag forces in surge d1,N ,i and yaw d4,N ,i on link i are given as

d1,N ,i = −
1
2ρπr

2Cd,1 |ν1,i |ν1,i , (2.36)
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and
d4,N ,i = −

1
2ρπr

4liCd,4 |ν4,i |ν4,i (2.37)

respectively (Schmidt-Didlaukies; 2018). Cd,1 is the nonlinear drag coefficient in surge
and Cd,4 is the nonlinear drag coefficient in roll. Note that current velocity is assumed
to be zero in this thesis. The remaining nonlinear drag forces are calculated as in
(McMillan et al.; 1995). The total drag forces on link i is the sum of the linear and
nonlinear drag forces:

di = dL,i + dN ,i . (2.38)

In the modeling of hydrodynamic forces, the drag coefficients are chosen as in
(Schmidt-Didlaukies; 2018):

Cd,1 = 0.2, Cd,4 = 0.1, Cd,C = 0.2, Cd,L = 0.1. (2.39)

Cd,L is the linear cross-sectional drag coefficient, Cd,C is the nonlinear crossflow
drag coefficient and Cd,1 and Cd,4 are the nonlinear drag coefficient in surge and roll
respectively.

The hydrodynamic damping matrix can be found from (Schmidt-Didlaukies; 2018)

D(q, ζ ) =
n∑
i=0

Jb,i (q)
⊤Di (q, ζ )Jb,i (q), (2.40)

where Di (q, ζ ) is the hydrodynamic damping matrix of link i and Jb,i is defined in
(2.24). The total hydrodynamic damping forces D(q, ζ )ζ can therefore be written as:

D(q, ζ )ζ =
n∑
i=0

Jb,i (q)
⊤Di (q, ζ )Jb,i (q)ζ

=

n∑
i=0

Jb,i (q)
⊤Di (q, ζ )


ν1,bi

ν2,bi

 =
n∑
i=0

Jb,i (q)
⊤di

(2.41)

where di are the total drag forces on link i (2.38).
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2.4.4 Properties of the dynamic model

The dynamic model (2.27) has some important properties that will be used in the
stability analyses of the dynamic motion controllers in chapter 4.

Property 2.1 (Antonelli; 2014, p. 56)
The inertia matrix is symmetric, positive definite. Moreover, it satisfies:

λmin(M) ≤ ∥M ∥ ≤ λmax (M), (2.42)

where λmin(M) and λmax (M) are the minimum and maximum eigenvalues of M.

Property 2.2 (Antonelli; 2014, p. 57)
The matrix N (q, ζ ) = ÛM(q) − 2C(q, ζ ) is skew-symmetric for a particular choice of
parametrization C(q, ζ ) i.e.

z⊤N (q, ζ )z = 0 (2.43)

for any (6 + n) × 1 vector z.

Property 2.3 (Antonelli; 2014, p. 57)
The matrix C(q, ζ ) satisfies

| |C(a,b)c | | ≤ c0∥b∥∥c ∥ (2.44)

for some bounded c0.

Property 2.4 (Antonelli; 2014, p. 57)
The matrix D(q, ζ ) is positive definite.

D(q, Ûq) > 0 (2.45)
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Property 2.5 (Siciliano and Khatib; 2007, p. 134)
The gravity vector д(q) satisfies

| |д(q,η)| | ≤ д0 (2.46)

for some bounded constant д0.

2.5 Contact with the environment

For a USM to successfully perform a manipulation task, it must handle the interaction
between the USM and the environment (Siciliano et al.; 2008). The interaction of the
USM with the environment can be described by the contact force at the end-effector.
Define the forces and moments applied by the end-effector expressed in the inertial
frame as:

hee =


fee

µee

 (2.47)

where fee ∈ R3 are the linear forces at the end-effector and µee ∈ R3 are the moments
at the end-effector. hee are the forces and torques exerted by the end-effector of
the environment (Siciliano et al.; 2008). The forces and torques experienced by the
end-effector is therefore −hee . The force exerted by the end-effector on the valve in
x-direction hee,x when the end-effector pushes on a valve is illustrated in figure 2.3.

When forces and moments are applied to the tip of the manipulator, the forces
and moments propagate through the entire structure and affects the position and
orientation of the base as well as the joint angles. The transpose of the Jacobian is
used to describe how the contact forces affect the base and joints of the USM. The
contact forces can be included in the EOM of the USM (2.27) as (Antonelli; 2014):

M(q) Ûζ +C(q, ζ )ζ + D(q, ζ )ζ + д(q,RIee ) = τ − J⊤ω (q,R
I
ee )hee (2.48)
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ΣI

xI

zI

yI

f
ee,x

Figure 2.3: An example of force exerted by the end-effector.

where Jω (q,RIee ) is defined in (2.26).

2.6 Interaction forces and moments

Modeling of interaction forces are based on (Antonelli; 2014) and (Cataldi and Antonelli;
2015). The thesis focuses on control and quite simple models for interaction forces are
considered to be sufficient. The interaction forces and moments considered are for the
operation of turning a valve. Both linear interaction forces and moments are included
in the modeling of interaction forces for the operation of turning a valve.

2.6.1 Interaction moment

To turn a valve, the end-effector must apply moment around the axis of rotation of the
valve. The valve has an object-fixed frame Σob j attached to it as shown in figure 2.4. It
is assumed that the x-axis of the object fixed frame is the axis of rotation and that it
is aligned with the x-axis of the end-effector frame while turning the valve. It is also
assumed that the x-axis of the object frame is aligned with the x-axis of the inertial
frame. The moment applied by the end-effector causes a rotation as shown in figure
2.4.

The valve is modeled by the equation (Cataldi and Antonelli; 2015):

hv = Jv Ûωv + kµωv (2.49)
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xobj

zobj

yobj
ωvhv

ΣI xI

zI

yI

Figure 2.4: An example of moment exerted by the end-effector.

where Jv is the inertia around the axis of rotation, kµ is the viscosity coefficient, ωv
is the angular velocity of the object fixed frame with respect to the inertial frame
and Ûωv is its time derivative. The moment provided by the end-effector is hv . The
end-effector frame and the object fixed frame are coinciding throughout the task so
that for a rotation about the x-axis ωv = ωee,x . The vector of moments applied by
the the end-effector when turning the valve about the x-axis expressed in the inertial
frame is therefore given by µee = [hv , 0, 0]⊤.

2.6.2 Linear interaction force

In addition to the moment applied to the USM while turning the valve, a linear force
is modeled that works in positive xob j direction. It is assumed that the x-axis of the
end-effector frame is aligned with the x-axis of the object frame. If a valve is assumed
to be mounted on a wall or a subsea panel, the end-effector will exert a force in the
positive xob j direction when attempting to move past the valve. The force exerted by
the end-effector is visualized in figure 2.3. The yz plane in the object frame is modeled
as a frictionless and elastically compliant plane for simplicity. The force exerted by the
end-effector expressed in the inertial frame can then be described by (Antonelli; 2014):
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fee,x =


k(x − xv ) if x ≥ xv

0 if x < xv
(2.50)

where x is the position of the end-effector expressed in the inertial frame and xv is
the x-coordinate of the valve position expressed in the inertial frame. k is a positive
stiffness constant.
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Chapter 3

Model and Simulator
Implementation

This chapter presents the model used in the simulations in the thesis as well as
background on how the simulator is implemented. Implementation of the control
framework is presented and considerations that must be taken into account when
designing control strategies for USMs are discussed.

3.1 Simulation model

Figure 3.1 shows a visual representation of the USM model that is used in the simula-
tions in this thesis. The USM model is based on the Matlab script provided by PhD
candidate Henrik Schmidt-Didlaukies. The USM consists of 9 rigid links and 8 revolute
joints and has a total ofm = 10 thrusters. The USM has a total length of 4.08m and
total weight of 126.06kд.

The USM consists of 3 different types of links shown by color coding in figure 3.1.
Table 3.1 summarize the properties of the link types. In figure 3.1, only the body-fixed
frame of the base link and link 4 is shown for readability, but all links have body-fixed
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Figure 3.1: The USM model used for simulations.

frames associated with them. Note that all y-axes (in green) point into the plane to
give right-handed coordinate systems. The end-effector frame is located at the end of
the head link as shown in the figure. The position and orientation of the end-effector
frame is what will be specified as the input to the control framework.

Joints are either y- or z-revolute about the body-fixed axis of the previous link.
The rotation axis of each joint is indicated at the bottom of figure 3.1. The type 2 links
are short with small mass and no drag associated with them. Type 2 links and the two
joints on each side of the type 2 links model joints with 2 DOFs i.e. joints that can
rotate about two axes.

Table 3.1: Link properties

Length [m] Mass [kg] No. of thrusters Thruster directions

Type 1 0.75 23.56 2 y & z
Type 2 0.02 0.10 0 -
Type 3 1.00 31.42 2 z & z
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3.2 Simulation model for interaction

For USM interaction with the environment an end-effector is added to the model
presented above (section 3.1).

For this thesis the task will be to rotate a valve, and the end-effector is therefore
a gripper. To model this, a type 2 link is added to the head on the USM as shown in
figure 3.2. This results in a quite small end-effector of length 2 cm and weight 100g.
The end-effector should for the task of turning a valve be able to rotate around the
body-fixed x-axis of the previous link. The joint between link 8 and link 9 is therefore
implemented as an x-revolute joint.

Link0 Link2

Link3

Link4

Link5

Link6

Link7

Link8

Link1 Link9

y
xΣee

z

Figure 3.2: The USM with an end-effector used for interaction.

3.3 Implementation of the model

The script provided by PhD candidate Henrik Schmidt-Didlaukies is intended for
Matlab. Modifications to the script have therefore been done when adapting it to
Simulink. Examples of modifications that have been done are that the code has script
changed to no longer include function handles in class definitions and functions no
longer have a variable number of inputs or outputs.

The resulting script is implemented as a simulator in Simulink. The Simulink block
that is shown in figure 3.3 contains the simulator. The available outputs from the
simulator are ζ , the joint angles q, the position of the base frame η1 and the orientation
of the base frame represented by quaternions = pb0 . In addition, the derivative of these
values are collected in the output x_dot. The inputs to the simulator are the thrust uT
and the joint torque u J .

Additional equations can be implemented to get additional outputs of the simulator.
The differential kinematics equation (2.25) is implemented to calculate Ûη1,ee and Ûη2,ee
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and the results are integrated to get η1,ee and η2,ee . The Euler angles η2,ee is converted
to quaternions pee when needed. The angular velocity of the end-effector in the inertial
frame ωee is found by implementing equation (2.26).

Figure 3.3: The implemented simulator in Simulink.

For simulations with interaction control, the simulator has been extended to include
interaction forces (2.48). To do this, the term −J⊤ω (q,R

I
ee )hee is added to the model

from (Schmidt-Didlaukies; 2018). The simulator is implemented such that the term
−J⊤ω (q,R

I
ee )hee is only active when the end-effector is in close proximity to the valve

position. The simulations in this thesis is based on the operation of turning a valve. For
this operation both interaction moments and linear interaction forces are modeled as
presented in section 2.6.2 and 2.6.1 respectively. A force measurement is implemented
in the simulator by creating an output hee .

Two different solvers are used for the simulations in Simulink, namely ode45 and
ode15s. The solver ode45 is used for simulations with the super-twisting algorithm
with adaptive gains and the non-regressor-based adaptive controller. In the remaining
simulations, with adaptive inverse dynamics control and both force controllers, the
solver ode15s is used. The relative tolerance is set to 10−3 and all other parameters are
set to auto.
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3.4 Control framework

A control framework has been implemented to test the performance of the dynamic mo-
tion controllers and interaction controllers this thesis. An overview of the implemented
control framework for the USM is shown in figure 3.4.

Reference
trajectory
generation

Inverse
kinematics

Dynamic Motion
Controller Thrust allocationr ζdη̇ee,d

ζ

q

τc u

η,q
η,q

Figure 3.4: The implemented control framework for control of the USM.

The reference trajectory generation block is used to create a smooth reference trajec-
tory ηee,d from the reference trajectory r . The reference values r may be for example
predefined desired head-link positions or an operator specifying the desired motion of
the head-link. Reference trajectory generation is elaborated on in section 3.4.1.

The Inverse Kinematics (IK) block calculates the desired desired base and joint
velocities ζd from the time derivative of the end-effector pose Ûηee,d . To do this, the
block requires the base position and orientation as well as the joint angles of the
USM. Inverse kinematics is done by differential kinematics inversion and is further
elaborated on in section 3.4.2.

The Dynamic motion controller (DC) computes the commanded generalized forces
and torques, or commanded torques, τc which is the base and joint forces/torques
required to achieve the desired velocities ζd (Sverdrup-Thygeson et al.; 2016a). Dynamic
motion control is presented in chapter 4.

The Thrust Allocation (TA) block computes the control input to be applied to the
thrusters, uT , that will give the desired forces and moments on the base, τc,T . The
joint torques computed by the dynamic motion controller are directly applied to the
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USM. The desired forces and moments on the base must however be achieved with
the thrusters. Thrust allocation is further elaborated on in section 3.4.3.

3.4.1 Reference trajectory generation

The reference trajectory generation block provides smooth states to the control frame-
work. This is done do avoid problems with derivatives in the simulation. The desired
states ηee,d can be expressed by a MIMO mass-damper-spring system (Fossen; 2011):

Md Üηee,d + Dd Ûηee,d +Gdηee,d = Gdr (3.1)

where Md , Dd and Gд are positive design matrices. The output of the reference
trajectory generation block is the acceleration Üηee,d which is integrated to give the
input to the IK block Ûηee,d .

3.4.2 Differential kinematics inversion

The goal of the IK block is to compute the desired base and joint velocities ζd from
desired end-effector position and orientation time-derivatives Ûηee . This is done using
differential kinematics inversion. The output of the differential kinematics inversion is
the input to the dynamic controller.

Differential kinematics inversion is done using the expression for the differential
kinematics in equation (2.22) with the Jacobian J (RIee ,q) defined in (2.25). The Jaco-
bian Jb (q) and the rotation matrix RIee is available from the provided code, while the
J−1k,o(η2,ee ) is implemented as in equation (2.10).

A solution to the differential kinematics inversion problem is to use the pseudoin-
verse of the Jacobian:

ζd = J (R
I
ee ,q)

† Ûηee,d . (3.2)

The pseudoinverse of a Jacobian, J , is denoted J †. The use of a pseudoinverse for
differential kinematics inversion is simple and suitable for initial simulations and
concept verification (Sverdrup-Thygeson et al.; 2016a). If the Jacobian J is full rank
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the pseudoinverse can be calculated as (de Wit et al.; 2012):

J † = J⊤
(
J J⊤

)−1
. (3.3)

This corresponds finding the minimal value of E = 1
2ζ

⊤
d ζd that satisfy equation (3.2)

(Sverdrup-Thygeson et al.; 2018).
In some cases it is relevant to prioritize minimization of some degrees of free-

dom more than others in the minimization. This can be done using the weighted
pseudoinverse (Antonelli; 2018). The weighted pseudoinverse is calculated as:

J †W =W
−1 J⊤

(
JW −1 J⊤

)−1
, (3.4)

which minimizes the value of E = 1
2ζ

⊤
d Wζd that satisfy equation (3.2) (Antonelli; 2018).

W ∈ R(6+n)×(6+n) is a diagonal matrix that can be designed to prioritize the use of
certain control inputs (Sverdrup-Thygeson et al.; 2016a).

For the interaction control part of the thesis, a weighted pseudoinverse is imple-
mented in the inverse kinematics block, while for the dynamic motion controller a
regular pseudoinverse is used. With these approaches to the inverse kinematics prob-
lem, kinematic singularities are not addressed. The focus of the thesis is on dynamic
control, and methods to avoid singularities in the kinematic control layer is therefore
not included.

3.4.3 Thrust allocation

The objective of the thrusters is to control the position and orientation of the base, while
the motorized joints control the joint angles. The output of the dynamic controller are
the desired forces and torques τc . τc contains the desired forces and torques on the
base τc,T ∈ R6 and the desired joint torques τc, J ∈ Rn . While the desired joint torques
τc, J = [01×6,u⊤J ]

⊤ is used directly as control input, the forces and torques on the base
must be achieved with use of the thrusters. Thrust allocation consists of finding the
control input uT ∈ Rm on the thrusters that will give the desired forces and torques
τc,T on the base.
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Divide the matrix B into one part that describes the effect of thrusters on the base
position and orientation Bb and one part that describes the effect of thrusters on joints,
B J .

B =


Bb

B J

 (3.5)

with Bb ∈ R6×m the first 6 rows of B and B J ∈ Rn×m the last n rows of B. The resulting
forces and torques on the base from the control input is described through the following
relationship:

τT = BbuT (3.6)

Hence, equation (3.6) gives the forces and torques on the base from a certain control
input on the thrustersuT without including the torques on the joints from the thrusters.
A simple method for calculating the control input to be applied to the thrusters is a
pseudoinverse (Sverdrup-Thygeson et al.; 2016a):

uT = B†

bτc,T . (3.7)

where B†

b = B⊤
b

(
BbB

⊤
b

)−1. This corresponds to minimizing the value of E = 1
2u

⊤
TuT that

satisfy (3.7). Hence, it corresponds finding the combination of the smallest absolute
values of thruster control inputs that give the desired forces and torques on the base.

3.4.4 Use of Euler angles and unit quaternions

While Euler angles is a more intuitive representation of orientation, unit quaternions
avoids problems of representation singularities. Both Euler angles and unit quater-
nions are used to represent orientation in the simulations. The input to the control
framework ηee,d use Euler angles as orientation representation because this makes
the desired end-effector trajectory more intuitive. The presented dynamic motion con-
trollers use quaternions to represent orientation to avoid problems with representation
singularities.
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3.4.5 Control considerations

USMs are similar to underwater vehicle manipulator systems (UVMSs). In fact, USMs
can be considered a special case of UVMSs. UVMSs are AUVs or ROVs equipped
with a manipulator in order to perform complex underwater tasks. Quite a lot of
literature exists about dynamic control of UVMS which is relevant for control of
USMs. There are however some important differences between the UVMSs and USMs
that must be considered when applying UVMS controllers to USMs. The UVMSs has
thrusters only on the base while the USM has thrusters on the links. As opposed to
UVMS, the position and orientation of the thrusters relative to the base of the USM are
configuration dependent (Sverdrup-Thygeson et al.; 2016a). Also, the UVMSs consists
of a heavier base and a manipulator attached to it. Manipulator motion therefore has
less effect on the base of the manipulator for UVMS than for USM where motion of
joints has much more effect on the base position and orientation. In some cases, the
manipulator and vehicle can be considered to be decoupled for UVMS (Ridao et al.;
2014), but this cannot be done for USMs. Avoidance of representation singularities are
more important for a USM because for UVMSs the pitch angle of the vehicle is usually
restricted (Sverdrup-Thygeson et al.; 2016a).

The EOMs of USMs and UVMSs are structurally similar to that of ground fixed
manipulators, but for underwater applications there are usually larger uncertainties
in the model knowledge. Hydrodynamic forces on rigid bodies moving in water are
complex and highly nonlinear (Kelasidi, Pettersen, Gravdahl and Liljebäck; 2014) and
the knowledge of hydrodynamic forces is therefore usually poor. In addition, the
mathematical model may be more complex for UVMSs and USMs than for regular
robot manipulators and the bandwidth of the sensors’ readings may be low (Antonelli;
2014). In addition, USMs and UVMSs may be difficult to control due to poor thruster
performance (Antonelli; 2014). In practice there are limits to how much force/torque
the thrusters and joint motors can apply and how fast they respond to a commanded
input. These challenges must be taken into account when designing controllers for
USMs. Saturation and time delays are however disregarded in this thesis.
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Chapter 4

Dynamic motion control

In this chapter, three dynamic motion control strategies are presented. First, some
general background for dynamic motion control is presented. Then, adaptive inverse
dynamics control (AIDC), the super-twisting algorithm with adaptive gains (STA) and
non-regressor-based adaptive control (NRAC) are presented with stability analyses.
Finally, simulation results with the controllers are presented and discussed.

4.1 Dynamic motion control background

The objective of the dynamic controller is to compute the forces and torques τc , required
to make the USM follow a desired trajectory ζd . The books (Antonelli; 2014) and
(Antonelli; 2018) give overviews of dynamic control for UVMSs. Litterature relevant
to this chapter will be presented in the following.

The adaptive inverse dynamics controller (AIDC) presented in this chapter is based
on (Antonelli and Chiaverini; 1998) and (Antonelli; 2014) where the AIDC is applied to
a UVMS. This controller is again based on adaptive controllers for robot manipulators
presented in (Ortega and Spong; 1988) and (Slotine and Li; 1987). In (Antonelli et al.;
2001), a similar controller is applied to control only an AUV without a manipulator.
Furthermore, (Antonelli et al.; 2004) presents an adaptive tracking control algorithm
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that reduces computational burden and simplifies application to UVMSs with a large
number of links.

The super-twisting algorithm (STA) was first introduced in (LEVANT; 1993). In
(Hamerlain; 2013) the STA is applied to the PUMA 560 robot manipulator and compared
to the conventional sliding mode controller. In the article it is concluded that the
super-twisting algorithm gives better performance than the conventional sliding mode
controller. (Lee and Choi; 2000a) use a multilayer neural network as a compensator
for a conventional sliding mode controller and apply the controller to a submerged
manipulator with large model uncertainties.

A STA with adaptive gains is proposed in (Shtessel et al.; 2010). The super-twisting
algorithm with adaptive gains drives the sliding variable to zero with a disturbance ϕ
bounded by ϕ ≤ δ |s |1/2 where δ is bounded and unknown. In (Borlaug and Pettersen;
2017) this algorithm is used for trajectory tracking of a USMs center of mass in 2D with
an observer for the states. (Shtessel et al.; 2011) and (Shtessel et al.; 2012) presents a
super-twisting algorithmwith adaptive gains very similar to (Shtessel et al.; 2010). Both
articles show that the sliding variable is driven to zero with additive and multiplicative
perturbations with unknown boundaries without overestimating the gains.

In (Sarkar et al.; 1999) the non-regressor-based adaptive controller developed in
(Yuh; 1996) is extended to UVMS. The NRAC is similarly applied to a manipulator on a
mobile platform in (Lee and Yuh; 1999). In (Yuh and Nie; 2000) the NRAC is applied to
an AUV without manipulator and (Zhao and Yuh; 2005) the NRAC with a disturbance
observer is presented.

Other work on dynamic control for underwater vehicles that can be mentioned
are approaches based on neural networks such as (Lee and Choi; 2000b) and (Pandian
and Sakagami; 2010).

All the controllers presented in this section are adaptive controllers. The idea of
adaptive control is to modify some parameters online to adapt the controller to un-
known parameters (Antonelli; 2014). The AIDC estimates uncertain model parameters,
the gains of the STA increase until they become large enough to overcome disturbances
and NRAC estimates parameters define by unknown bounds on system matrices.
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4.1.1 Implementation background

The dynamic motion controllers presented in this chapter use, in addition to ζd , the
desired base position, η1,d , the desired base orientation represented with quaternions,
pd , and the desired joint angles qd to calculate τc . These values are calculated from ζd .
The base position is calculated using relation (2.3), the desired base quaternions are
calculated using the quaternion propagation equation (2.17) and integration of (2.19)
and the desired joint angles are calculated by integration of the last n entries of ζd .

The control framework for the controllers presented in this section is shown in
figure 3.4. A desired reference trajectory r is smoothened by the reference trajectory
generation block to give Ûηee . The inverse kinematics block give the desired values
ζd that is used in the dynamic motion controllers presented in this section. The time
derivative of ζd is taken to find Ûζd which is also used by some of the dynamic motion
controllers. The output of the dynamic motion controllers is the commanded torque
τc .

4.1.2 Model transformation

Recall the EOMs of the USM:

M(q) Ûζ +C(q, ζ )ζ + D(q, ζ )ζ + д(q,η) = τ . (4.1)

The equation (4.1) will be rewritten for convenience in the presentation of the con-
trollers. The generalized forces τ in equation (4.1) can be written as

τ = BuT +


06×1
u J

 (4.2)
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where uT is the thruster control input and u J is the joint torque control input. This
can further be written as

τ =

 B
06×n
In



uT

u J

 =

Bb 06×n
B J In



B†

bτc,T

τc, J

 =


I6 06×n
B JB

†

b In



τc,T

τc, J

 = Btotτc .

(4.3)
with Btot ∈ R(6+n)×(6+n) and Bb and B J was defined in section 3.4.3.

For the stability analyses in this section it is useful to express Ûζ as:

Ûζ = M−1(q)
(
Btotτc −C(q, ζ )ζ − D(q, ζ )ζ − д(q,η)

)
. (4.4)

4.1.3 Orientation error representation

The controllers in this section use feedback of the orientation represented by quater-
nions to avoid representation singularities. The orientation error representation using
quaternions is found as follows (Antonelli; 2018). Call the rotation matrix necessary
to align the desired base orientation and the bare frame R̃. The quaternion error p̃
equivalent to R̃ can be computed by p̃ = pd ∗ p−1 which can be written as (Antonelli;
2018):

η̃Q =ηQ,dηQ + ϵ
⊤
d ϵ,

ϵ̃ =ηQϵd − ηQ,dϵ + S(ϵ)ϵd .
(4.5)

The quaternion propagation equation can be written in terms of the quaternion errors
in matrix form similarly to (2.15):

Û̃ηQ

Û̃ϵ

 =


−ϵ̃⊤

η̃Q I3 + S(ϵ̃)

 ν̃2 = Jk,oq(z)ν̃2. (4.6)

4.2 Adaptive inverse dynamics control

Inverse dynamics control is a model-based control strategy. The idea is to cancel
nonlinear terms with a nonlinear state feedback and decouple the dynamics of the
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USM (de Wit et al.; 2012). Nonlinearities are compensated for by adding the nonlinear
terms to the control input (de Wit et al.; 2012). The following inverse dynamics
controller gives a stable system:

τc = B†
tot [KDs

′ +M(q) Ûζr +C(q, ζ )ζr + D(q, ζ )ζr + д(q,η)]. (4.7)

with KD , s ′ and ζr defined in section 4.2.1. A stability analysis of this controller (4.7)
is included in the appendix A.3. This inverse dynamics controller relies on exact
cancellation of nonlinear terms. It therefore requires that the model parameters are
exactly known. However, a challenge with control of USMs is uncertainty in the
model knowledge and the inverse dynamics controller (4.7) is therefore not suitable
for control of USMs. Instead, the controller (4.7) is modified to give an adaptive inverse
dynamics controller. For adaptive inverse dynamics control the computational model
used for inverse dynamics control is adapted online to the dynamic model of the USM
(Siciliano et al.; 2008). The true control parameters are replaced with estimates of the
parameters and the estimates are updated by an update law.

Adaptive inverse dynamics control requires linearity in parameters. The dynamics
of the USM (4.1) can be written as (Antonelli; 2014):

M(q) Ûζ +C(q, ζ )ζ + D(q, ζ )ζ + д(q,η) = ϕ(q,RIb , ζ ,
Ûζ )θ . (4.8)

This property holds for rigid bodies moving in space. For underwater rigid bodies it
depends on the representation of the hydrodynamic terms (Antonelli; 2014). The vector
θ ∈ Rnθ includes nθ parameters of the dynamic system and the matrix ϕ(q,RIb , ζ , Ûζ ) ∈
R(6+n)×nθ is called the regressor matrix. For a single rigid body the number of dynamic
parameters nθ can be greater than 100 (Antonelli; 2014), but can be reduced when there
are known symmetry properties. For UVMSs the vehicle and manipulator dynamics
can in some cases be considered decoupled to simplify the regressor matrix (Antonelli;
2018), but this is not a valid assumption for USMs.
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4.2.1 Control law and adaption

The adaptive inverse control law for UVMS is presented in (Antonelli and Chiaverini;
1998) is given as follows:

τc = B†
tot [KDs

′ + ϕ(q,RIb , ζ , ζr ,
Ûζr )θ̂ ], (4.9)

with Û̂
θ = K−1

θ ϕ⊤(q,RIb , ζ , ζr ,
Ûζr )s . The gain matrices KD and Kθ as well as ζr , s and s ′

are defined below.

The system in (4.8) is complex and the controller (4.9) will be simplified in the
following. Hydrodynamic forces on the USM are complex and nonlinear and therefore
difficult to model (Kelasidi, Pettersen, Gravdahl and Liljebäck; 2014). The mass and
gravity forces are however easier to model correctly. Hydrostatics are also easier to
model because the volume of the USM is known. In addition, added mass effects are less
significant for slow, steady motion. Based of this, it will in the following be assumed
that the parameters ofM(q),C(q, ζ ) and д(q,η) are known and that only parameters of
D(q, ζ ) are unknown. The control law (4.9) will therefore be modified to the following:

τc = B†
tot [KDs

′ +M(q) Ûζr +C(q, ζ )ζr + д(q,η) + ϕ(q, ζ , ζr )θ̂ ] (4.10)

where the update law for the estimates θ̂ is obtained from

Û̂
θ = K−1

θ ϕ⊤(q, ζ , ζr )s . (4.11)

with Kθ > 0 and KD > 0. With θ̂ = θ the expression ϕ(q, ζ , ζr )θ̂ equals D(q, ζ )ζr such
that the controller (4.10) equals the original controller (4.7). The error variable s is
defined as

s =


sp

so

sq


=


ν̃1

ν̃2

Û̃q


+ Λ


RbI η̃1

ϵ̃

q̃


= ζd − ζ + Λỹ = ζ̃ + Λỹ, (4.12)

where ν̃1 = ν1,d − ν1, ν̃1 = ν2,d − ν2, η̃1 = ηd − η, q̃ = qd − q and ϵ̃ is the quaternion
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error defined in (4.5). The variable s ′ and ζr are defined as:

s ′ = s + K−1
D KP ỹ = ζ̃ + (Λ + K

−1
D KP )ỹ, (4.13)

and
ζr = ζd + Λỹ. (4.14)

The remaining parameters of the controller are defined as:

Λ =


λp I3 03×3 03×n
03×3 λoI3 03×n
0n×3 0n×3 Λq


, Λq ∈ Rn×n , Λ > 0 (4.15)

and

KP =


kp I3 03×3 03×n
03×3 koI3 03×n
0n×3 0n×3 Kq


, Kq ∈ Rn×n , KP > 0. (4.16)

4.2.2 The regressor matrix

The goal is to create an adaptive inverse dynamics controller (4.10) that estimates the
inverse dynamics controller in (4.7) when the drag coefficients are Cd1, Cd4, CdC and
CdL are unknown. The unknown parameters are collected in a vector θ :

θ =



Cd1

Cd4

CdC

CdL


(4.17)

The hydrodynamic forces in the original controller (4.7), D(q, ζ )ζr , can then be written
as ϕ(q, ζ , ζr )θ . The hydrodynamic damping matrix expression D(q, ζ ) was stated in
(2.40). Taking into account νbi ,r = Jb,1(q)ζr (2.24), the expression for D(q, ζ )ζr may be
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written as:

D(q, ζ )ζr =
n∑
i=0

Jb,i (q)
⊤Di (q, ζ )Jb,i (q)ζr

=

n∑
i=0

Jb,i (q)
⊤Di (q, ζ )


ν1,bi ,r

ν2,bi ,r

 =
n∑
i=0

Jb,i (q)
⊤di,r ,

(4.18)

where

di,r = Di (q, ζ )


ν1,bi ,r

ν2,bi ,r

 ∈ R6 (4.19)

is the vector of drag forces associated with link i (2.38).
The vector of drag forces on link i , di,r , is calculated based on the hydrodynamic

forces presented in section 2.4.3. From the equations of the drag vector, the drag
coefficients may be factorized out such that

di,r = Di (q, ζ , ζr )θ , (4.20)

which leads to an expression for the regressor matrix ϕ(q, ζ , ζr ):

D(q, ζ )ζr =
n∑
i=0

Jb,i (q)
⊤Di (q, ζ , ζr )θ =

(
n∑
i=0

Jb,i (q)
⊤Di (q, ζ , ζr )

)
θ = ϕ(q, ζ , ζr )θ .

(4.21)

4.2.3 Stability analysis

In this section, a stability analysis of the system with τc defined in (4.10) will be
performed.

Consider the Lyapunov function candidate suggested in (Antonelli and Chiaverini;
1998):

V =
1
2s

⊤M(q)s +
1
2 θ̃

⊤Kθ θ̃ +
1
2kpη̃

⊤
1 η̃1 + koz̃

⊤z̃ +
1
2 q̃

⊤Kqq̃ (4.22)

where z̃ = [1 − η̃ − ϵ̃⊤]⊤ and θ̃ = θ − θ̂ . V has the property V ≥ 0 because kp > 0,
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ko > 0 and Kθ , Kq andM(q) are positive definite. The positive definiteness ofM(q) is
provided by property 2.1. The variable s is defined in (4.12). The time derivative of
(4.22) is

ÛV =
1
2s

⊤ ÛMs + s⊤M Ûs + θ̃⊤Kθ
Û̃
θ + kpη̃

⊤
1
Û̃η1 + 2koz̃⊤ Û̃z + q̃⊤Kq Û̃q. (4.23)

Rewrite the expression using the relation Û̃η1 = RIb0ν̃1 (2.3) and that
Û̃z = −Ûz = −Jk,oq(z)ν̃2

(4.6).

ÛV =
1
2s

⊤ ÛMs + s⊤M Ûs + θ̃⊤Kθ
Û̃
θ + kpη̃

⊤
1 R

I
b ν̃1 − 2koz̃⊤ Jk,oq(z)ν̃2 + q̃⊤Kq Û̃q (4.24)

Now, consider the expression for Ûs

Ûs =
Û̃
ζ + Λ Û̃y = Ûζd − Ûζ + Λ Û̃y. (4.25)

Rewrite the expression for Ûs using the expression for Ûζ found from the dynamics
equation (4.4) and the fact that Ûζd = Ûζr − Λ Û̃y.

Ûs = Ûζr −M−1(q)
(
Btotτc −C(q, ζ )ζ − D(q, ζ )ζ − д(q,η)

)
. (4.26)

Write Ûs as a function of ζr . To do this, notice that ζd = ζr −Λỹ (4.14) and s = ζd −ζ +Λỹ.
Combine these to get ζ = ζr − s which can be substituted into Ûs (4.26). Substitute
the resulting expression into the derivative ÛV (4.24). Remark: In the following the
arguments of the system matrices will be omitted for better readability.

ÛV = s⊤[M Ûζr+Cζr+Dζr+д−Btotτc ]−s
⊤Ds−θ̃⊤Kθ

Û̂
θ+kpη̃

⊤
1 R

I
b ν̃1 − 2koz̃⊤ Jk,oq(z)ν̃2 + q̃⊤Kq Û̃q︸                                           ︷︷                                           ︸

ÛV1
(4.27)

The term 1
2s

⊤ ÛMs − s⊤Cs disappears as a result of property 2.2. It is assumed that the
dynamic parameters in θ are constant such that Û̃θ = Ûθ −

Û̂
θ = −

Û̂
θ .

Now, the last three terms of (4.27), ÛV1 will be considered. The variable s can be
divided into a position, orientation and angle component respectively, s = [s⊤p , s

⊤
o , s

⊤
q ]

⊤
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(4.12). Observe from the definition of s (4.12) and the definition of Λ (4.15) that ν̃1, ν̃2
and Û̃q can be written as

ν̃1 = sp − λpR
b
I η̃1,

ν̃2 = so − λoϵ̃,

Û̃q = sq − Λqq̃.

(4.28)

Using this disassembly of s , the last three terms of (4.27), ÛV1 can then be written as:

ÛV1 = kpη̃
⊤
1 R

I
bsp − kpλpη̃

⊤
1 η̃ + koϵ̃

⊤so − koλoϵ̃
⊤ϵ̃ + q̃⊤Kqsq − q̃⊤KqΛqq̃ (4.29)

because z̃⊤ Jk,oq(z) = −ϵ⊤ (from equation (4.6)). The terms that include sp , so and sq
can be collected in a term s⊤KP ỹ with KP defined in (4.16). The expression for ÛV (4.27)
can therefore be written as:

ÛV = s⊤[M Ûζr+Cζr+Dζr+д−Btotτc+KP ỹ]−s
⊤Ds−θ̃⊤Kθ

Û̂
θ−kpλpη̃

⊤
1 η̃1−koλoϵ̃

⊤ϵ̃−q̃⊤KqΛqq̃

(4.30)
Plug in the control input τc (4.10) and the estimate update law Û̂

θ (4.11) and replace
D(q, ζ )ζr = ϕ(q, ζ , ζr )θ (4.21) and s ′ = s + K−1

D KP ỹ (4.13):

ÛV =s⊤[M Ûζr +Cζr + ϕ(q, ζ , ζr )θ + д − KD (s + K
−1
D KP ỹ) −M Ûζr −Cζr − д − ϕ(q, ζ , ζr )θ̂

+ KP ỹ] − s⊤Ds − θ̃⊤ϕ⊤(q, ζ , ζr )s − kpλpη̃
⊤
1 η̃1 − koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃

=s⊤[ϕ(q, ζ , ζr )θ − KDs − ϕ(q, ζ , ζr )θ̂ − ϕ(q, ζ , ζr )θ̃ ] − s⊤Ds − kpλpη̃
⊤
1 η̃1

− koλoϵ̃
⊤ϵ̃ − q̃⊤KqΛqq̃.

(4.31)
Using the fact that θ̃ = θ − θ̂ , this results in:

ÛV = −s⊤(KD + D)s − kpλpη̃
⊤
1 η̃1 − koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃ ≤ 0. (4.32)

which is negative semi-definite over the state space {ỹ, s, θ̃ } (Antonelli and Chiaverini;
1998). Property 2.4 provides D>0. Notice that θ̃ is not included in the expression (4.32).
According to Barbalat’s Lemma (Lemma A.1), since
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• V is lower bounded,

• ÛV ≤ 0 and

• ÛV is uniformly continuous then

limt→∞
ÛV (ỹ, s, θ̃ ) = 0. Therefore, limt→∞ ỹ = 0 and limt→∞ s = 0. The state θ̃ is

only guaranteed to be bounded (Antonelli and Chiaverini; 1998). The controller (4.10)
therefore gives a stable system (definition A.1).

4.3 Super-twisting algorithm with adaptive gains

The super-twisting algorithm is a second-order sliding mode control algorithm. In
this section, it is shown how the STA with adaptive gains can be applied to the USM
presented in chapter 3. Sliding mode control is a nonlinear control strategy in which
the states reach a sliding surface and slide towards the origin along the surface. Sliding
mode control can give stability even with disturbances. The design of a sliding mode
controller consists of designing a sliding-surface and a control input such that the
sliding surface is reached in finite time.

Slidingmode control is a robust and versatile control algorithm that give asymptotic
stability of the tracking error even with little knowledge of the model parameters
and unmodeled dynamics (de Wit et al.; 2012). Sliding mode control produces a
discontinuous controller (Khalil; 2002). The main drawback of sliding mode control
is that the control input will have high frequency components. The high frequency
switching in control signal is called chattering. Chattering arises from imperfections
in switching devices and delays (Khalil; 2002). Ideally the state should begin sliding
along the trajectory as soon as it reaches the surface, but if the switching is delayed the
state goes a bit past the sliding surface before the switch. This causes a zig-zag motion
(oscillation) in the control input. Chattering in the control input may cause wear of the
mechanical parts and reduce the lifetime (de Wit et al.; 2012). The chattering problem
may be reduced by using saturation control or a higher order sliding mode controller
such as the super-twisting algorithm (Shtessel et al.; 2010).
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The super-twisting algorithm is one of the most powerful second-order sliding
mode algorithms (Borlaug and Pettersen; 2017). It does not completely remove chatter-
ing, but attenuates it. For the super-twisting algorithm one needs to know boundaries
on the disturbance gradient (Shtessel et al.; 2011) and conservative upper bounds must
be used. This results in gains that are larger than necessary. Using adaptive gains in
the super twisting algorithm will make the gains as small as possible while still large
enough to maintain sliding (Borlaug and Pettersen; 2017).

4.3.1 Sliding surface

The choice of sliding surface is based on (Antonelli; 2018) and the following sliding
surface is used for the controller.

s =


RbI η̃1

ϵ̃

q̃


+ λ


ν̃1

ν̃2

Û̃q


= ỹ + λζ̃ (4.33)

where λ > 0. When the sliding surface s = 0 the equation leads to

ỹ = −λζ (4.34)

which describes the motion of the states on the sliding surface. This can be written as


η̃1

ϵ̃

q̃


= −λ


Û̃η

2
η̃q

Û̃ϵ

Û̃q



Û̃η

Û̃ϵ

Û̃q


= −λ−1


η̃1
η̃q
2 ϵ̃

q̃


(4.35)

using the relations (2.3) and (2.17). It can easily be shown that the system slides towards
ỹ = 0 when the sliding surface is reached. Consider the positive definite function:

V =
1
2λỹ

⊤ỹ (4.36)
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with time derivative
ÛV = λỹ⊤ Û̃y. (4.37)

Substituting for ỹ from (4.35)

ÛV = −η̃⊤η̃ − q̃⊤q̃ −
η̃q

2 ϵ̃
⊤ϵ̃ ≤ 0 (4.38)

ÛV < 0 for all ỹ , 0 as long as η̃q ≥ 0. The quaternion error is defined in [−π ,π ] and
η̃q is therefore greater or equal to zero. Using theorem A.1 the system will therefore,
when at the sliding surface, the slide asymptotically towards ỹ = 0 (Antonelli; 2014).
The rate of convergence is decided by λ.

4.3.2 Super-twisting algorithm

The super-twisting algorithm with adaptive gains proposed in (Shtessel et al.; 2010)
can be written in the following form (Borlaug and Pettersen; 2017):

uST ,i = −αi |si |
1/2sдn(si ) +vi

Ûvi = −
βi
2 sдn(si )

(4.39)

for i = 1, 2...(6 + n) where uST ,i , si , vi , αi and βi and are the i’th elements of the
vectors uST , s , v , α and β respectively. This is a second order sliding mode control
algorithm. The sign function switches the the sign of the first term ofuST from positive
to negative instantly at s = 0 as s goes from s < 0 to s > 0. Chattering is not eliminated
but attenuated, as the algorithm contains a discontinuous function under the integral
(Shtessel et al.; 2010). The adaptive gains αi and βi are given below. How these are
derived is shown in the stability analysis in the section 4.3.4.

Ûαi =


ω1,i

√
γ1,i
2 , if si , 0

0, if si = 0
and βi = 2ϵαi + λ + 4ϵ2 (4.40)

for i = 1, 2...(6 + n) where ωi , γi and ϵ are positive constants. Note that the ϵ defined
here is a design parameter of the STA, not the imaginary parts of the quaternion. With
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these gains the sliding surface s = 0 will be reached, for any initial conditions, in finite
time with super-twisting sliding mode control (Shtessel et al.; 2010). This is shown in
section 4.3.4.

For implementation purposes the update law for the adaptive gain α is implemented
with a small boundary on the sliding surface (Borlaug and Pettersen; 2017). The update
law for the adaptive gain αi is for implementation purposes expressed as:

Ûαi =


ω1,i

√
γ1,i
2 , if si > αm

0, if |si | ≤ αm
(4.41)

where αm is a small positive constant (Borlaug and Pettersen; 2017).

4.3.3 Control design

The objective the super-twisting algorithm is to drive s and Ûs to zero in finite time.
To achieve this, one wants to choose the commanded torque τc such that Ûs = uST

(Borlaug and Pettersen; 2017). To find the commanded torque τc to achieve this, take
the derivative of the sliding surface s (4.33) and substitute Ûζ from the system dynamics
((4.4)).

Ûs = Û̃y + λ( Ûζd − Ûζ )

= Û̃y + λ( Ûζd −M−1(q)(Btotτc −C(q, ζ )ζ − D(q, ζ )ζ − д(q,η)) = uST
(4.42)

The commanded torque τc should cancel all the terms such that Ûs = uST . Rewrite the
second line of equation (4.42) to find the required τc :

τc = B†
tot

[
M(q)λ−1(λζd + Û̃y − uST ) +C(q, ζ )ζ + D(q, ζ )ζ + д(q,η)

]
(4.43)

If the model parameters are exactly known such that it is possible to use this expression
(4.43), Ûs = uST is achieved. However, it is not a realistic to have exact knowledge of
the parameters of a USM. Assume that the term D(q, ζ )ζ is unknown. Then it is not
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possible to use the control input in (4.43). Instead, consider the control input

τc = B†
tot

[
M(q)λ−1(λζd + Û̃y − uST ) +C(q, ζ )ζ + д(q,η)

]
(4.44)

The resulting derivative of the sliding variable is then:

Ûs = uST + λM
−1(q)D(q, ζ )ζ (4.45)

The stability proof in section 4.3.4 shows that the super-twisting algorithm drives the
sliding variable to zero, even with disturbances or unknown dynamics.

4.3.3.1 Disturbances

Assume that there are some disturbances/uncertainties that enter the state equation
at the same point as the control input such that such that Ûs is not exactly equal to
uST . Call the disturbance on the ith input ϕi (q, ζ ) and assume that the initial value is
0. Assume that | Ûϕ(q, ζ )| is bounded by some constant L. It will be assumed that this
holds for the drag forces because intuitively drag forces cannot change infinitely fast.
The derivative of the sliding surface then becomes Ûs = uST + ϕ(q, ζ ) . It will be shown
in section 4.3.4 that the sliding surface s = 0 is reached in finite time even with this
disturbance.

Shtessel et al. (2010) shows that the sliding surface is reached in finite time with
disturbance/uncertainties Φ(x , t) when the uncertainties are bounded by |Φ(x , t)| ≤

δ |s |1/2 where δ is an unknown constant. This means that the disturbance vanishes
when the sliding surface is reached and will not be included in the following stability
proof.

4.3.4 Stability analysis

The following stability analysis is based on (Shtessel et al.; 2011) and (Shtessel et al.;
2010). It will be shown that the sliding surface s = 0 is reached in finite time with the
choice of adaptive gains (4.40) and the choice of the commanded torque expression
(4.45).
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Write the system (4.39) in the following form:


Ûsi = uST ,i = −αi |si |

1/2sдn(si ) +vi

Ûvi = −
βi
2 sдn(si ) +

Ûϕi (q, ζ )
(4.46)

with the gains defined in (4.40). In the stability analysis, begin by considering only
state i . The stability proof holds for all states i = 1...(6 + n). Define z = [z1, z2]

⊤ =

[|si |
1/2sдn(si ),vi ]

⊤. With this z, equation (4.46) can be rewritten as an equation in z

through the following steps. First, find the derivative of z1 and insert Ûsi from equation
(4.46)(Shtessel et al.; 2010).

Ûz1 =
sisдn(si )Ûsi

2|si |3/2

Ûz1 =
sisдn(si )

(
− αi |si |

1/2sдn(si ) +vi )

2|si |3/2

Ûz1 =(
−αisдn(si )

2 +
vi

2|si |1/2
)

(4.47)

Observe that |z1 | = |s |1/2 and express Ûz in terms of z1 and z2.


Ûz1 =

1
|z1 |

(
−αi
2 z1 +

1
2z2)

)
Ûz2 = −

βi
2 |z1 |z1 +

Ûϕi (q, ζ )
(4.48)

Equation (4.48) can be written in matrix form as


Ûz1

Ûz2

 =
1

2|z1 |


−αi 1

−βi 0



z1

z2

 +
1

2|z1 |


0

2|z1 |

 Ûϕi (q, ζ ) = A(z1)z +G(z1) Ûϕi (q, ζ ) (4.49)

where αi and βi are the adaptive gains. If z1, z2 reach zero in finite time, then si and vi
reach zero in finite time and hence Ûsi also reaches zero in finite time.
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Write Ûϕi (q, ζ ) as (Shtessel et al.; 2012)

Ûϕi (q, ζ ) =
1
2ρ(q, ζ )sдn(si ) =

1
2ρ(q, ζ )

z1
|z1 |

(4.50)

which implies that ρ(q, ζ ) = 2 Ûϕi (q, ζ , t)sдn(si ) and |ρ(q, ζ )| ≤ 2L (Shtessel et al.; 2012).
Equation 4.49 can then be written as

Ûz1

Ûz2

 =
1

2|z1 |


−αi 1

−(βi − ρ(q, ζ )) 0



z1

z2

 = A(z1,q, ζ )z (4.51)

Now, a stability analysis of the system (4.49) is performed to show that z1, z2 reach
zero in finite time and hence that s, Ûs reach zero in finite time. The following Lyapunov
function candidate is proposed (Shtessel et al.; 2011).

V (z,αi , βi ) =V0(z) +
1
2γ1

(αi − α
∗
i )

2 +
1
2γ2

(βi − β∗i )
2

V0(z) =(λ + 4ϵ2)z21 + z22 − 4ϵz1z2 = z⊤Pz

(4.52)

α∗
i and β∗i are constants and P is defined as (Shtessel et al.; 2011):

P =


λ + 4ϵ2 −2ϵ

−2ϵ 1

 , λ > 0, ϵ > 0, α∗
i > 0, β∗i > 0 (4.53)

P is positive definite for λ > 0 and any ϵ . The time derivative of the Lyapunov function
(4.52) is:

ÛV (z,αi , βi ) = Ûz⊤Pz + z⊤P Ûz +
1
γ1

(αi − α
∗
i ) Ûαi +

1
γ2

(βi − β∗i )
Ûβi (4.54)

Consider only the derivative of V0.

ÛV0 = Ûz
⊤Pz + z⊤P Ûz = (A(z1)z)

⊤Pz + z⊤PA(z1)z

=z⊤A(z1)
⊤Pz + z⊤PA(z1)z = z⊤(A(z1)

⊤P + PA(z1))z
(4.55)
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Substitute values for P and A to get

ÛV0 = −
1

2|z1 |
z⊤


2λαi + 4ϵ(2ϵαi − βi ) + 4ϵρ(q, ζ ) βi − 2αiϵ − λ − 4ϵ2 − ρ(q, ζ )

βi − 2αiϵ − λ − 4ϵ2 − ρ(q, ζ ) 4ϵ

 z
≤ −

1
2|z1 |

z⊤Q̃z

(4.56)
where

Q̃ =


2λαi + 4ϵ(2ϵαi − βi ) − 8ϵL βi − 2αiϵ − λ − 4ϵ2 − 2L

βi − 2αiϵ − λ − 4ϵ2 − 2L 4ϵ

 (4.57)

Q̃ must be positive definite. αi and βi are therefore designed to make Q̃ positive definite
with a minimum eigenvalue of 2ϵ . Substitute the gain βi = 2ϵαi + λ + 4ϵ2 (4.40).

Q̃ =


2λαi − 4ϵ(λ + 4ϵ2) − 8ϵL −2L

−2L 4ϵ

 (4.58)

An αi that assures positive definite Q̃ with a minimum eigenvalue of 2ϵ is found as
follows (Shtessel et al.; 2011):

4ϵ(2λαi − 4ϵ(λ + 4ϵ2) − 8ϵL − 2ϵ) − 4L2 > 0

αi >
L2

2λϵ +
2ϵ(λ + 4ϵ2) + 4ϵL + ϵ

λ

(4.59)

With these conditions on αi and βi it can be shown that

ÛV0 ≤ rV 1/2
0 where r =

ϵλ1/2min(P)

λmax (P)
. (4.60)

The minimum eigenvalue of Q̃ is 2ϵ the bound on ÛV0 can be found from

ÛV0 ≤ −
1

2|z1 |
z⊤Q̃z ≤ −

2ϵ
2|z1 |

z⊤z = −
ϵ

|z1 |
| |z | |2 (4.61)
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where | |z | |2 = z21 + z
2
2 = |si | + z

2
2 . The bounds on V0 = z⊤Pz can be expressed with the

eigenvalues
λmin(P)| |z | |

2 ≤ z⊤Pz ≤ λmax (P)| |z | |
2 (4.62)

|z1 | = |si |
1/2 ≤ ||z | | ≤

V 1/2
0

λ1/2min(P)
(4.63)

and finally the bound on ÛV0 (4.60) is found.

Now, consider the complete derivative of the Lyapunov function (4.54). Bounds
on the derivative of the Lyapunov function are found with the same method as in
(Shtessel et al.; 2010):

ÛV (z,αi , βi ) ≤ − rV 1/2
0 +

1
γ1

(αi − α
∗
i ) Ûαi +

1
γ2

(βi − β∗i )
Ûβi

= − rV 1/2
0 −

ω1
√
2γ1

|αi − α
∗
i | −

ω2
√
2γ2

|βi − β∗i | +
1
γ1

(αi − α
∗
i ) Ûαi

+
1
γ2

(βi − β∗i )
Ûβi +

ω1
√
2γ1

|αi − α
∗
i | +

ω2
√
2γ2

|βi − β∗i |

(4.64)

Using the fact that (x2 +y2 + z2)1/2 ≤ |x | + |y | + |z | (Shtessel et al.; 2010), the following
bound on the first part of the right-hand-side of (4.64) is derived

− rV 1/2
0 −

ω1
√
2γ1

|αi − α
∗
i | −

ω2
√
2γ2

|βi − β∗i | ≤ −µ
√
V (z,αi , βi ) (4.65)

for µ =min(r ,ω1,ω2) (Shtessel et al.; 2011). This results in the following bound on the
complete derivative of the Lyapunov function.

ÛV (z,αi , βi ) ≤ −µ
√
V (z,αi , βi )+

1
γ1

(αi−α
∗
i ) Ûαi+

1
γ2

(βi−β
∗
i )

Ûβi+
ω1
√
2γ1

|αi−α
∗
i |+

ω2
√
2γ2

|βi−β
∗
i |

(4.66)

Assume that αi and βi (4.40) are bounded such that is is always possible to find
constants α∗

i and β∗i such that αi −α∗
i < 0 and βi − β∗i < 0. That αi and βi are bounded
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will be shown later. Then, the last four terms of (4.66) is equal zero if

Ûαi = ω1

√
γ1
2

Ûβi = ω2

√
γ2
2 (4.67)

because −|αi − α∗
i | = (αi − α

∗
i ) and −|βi − β∗i | = (βi − β

∗
i ). This Ûα (4.67) is the adaptive

gain Ûαi presented in (4.40).

Consider βi defined in (4.40). The derivative of βi is Ûβi = 2ϵ Ûαi . Therefore, ϵ must
take on the following value to make the last four terms of (4.66) is equal zero.

ϵ =
ω2
2ω1

√
γ2
γ1

(4.68)

These conditions result in

ÛV (z,αi , βi ) ≤ −µ
√
V (z,αi , βi ). (4.69)

It then remains to show that αi and βi are bounded and that the sliding surface is
reached in finite time. First, consider the adaptive gains. The expression for α can be
written as (Shtessel et al.; 2010)

αi =


αi (0) + ω1

√
γ1
2 t 0 ≤ t ≤ tr

αi (0) + ω1

√
γ1
2 tr t > tr

(4.70)

where tr finite reaching time. Therefore, αi is bounded. In addition, βi is a function of
αi and is therefore bounded when αi is bounded.

The condition on αi , the inequality (4.59), is reached in finite time because αi
increases linearly with time and the right-hand side of the inequality is bounded (L is
some bounded constant). When the inequality holds, the control law drives the sliding
variable si and Ûsi to zero in the finite reaching time given by

tr ≤
2V 1/2(t0)

µ
(4.71)
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which is found from the inequality (4.69) (Shtessel et al.; 2010). As soon as the sliding
surface is reached the state ỹi , i = 1...(6 + n), approaches zero with exponential
dynamics (Antonelli; 2014) shown in section 4.3.1.

4.4 Non-regressor-based adaptive controller

The AIDC presented in section 4.2 is based on linearity in parameters (equation 4.8)
and the computational requirement increases with the number of unknown system
parameters (Antonelli; 2014). While the previous AIDC presented in section 4.2 is based
on the regressor matrix which requires knowledge of the structure model matrices,
the non-regressor-based adaptive controller (NRAC) requires only information about
number of inputs and outputs as well knowledge of existence of bounds on the system
matrices (Zhao and Yuh; 2005). The NRAC presented in this section is based on the
bound estimation method (Sarkar et al.; 1999). The controller estimates and updates
parameters defined by unknown bounds of the model matrices. The controller adjust
the gains based on the performance of the system performance rather than knowledge
of the dynamic model (Sarkar et al.; 1999).

The non-regressor-based controller for UVMSs in (Sarkar et al.; 1999) is based on
the assumtion that the vehicle and the manipulator are decoupled. They therefore
consider two subsystems with different bandwidth. The vehicle is heavier and slower
than the faster and lighter manipulator subsystem. For the USM, this assumption does
not hold. Therefore, a new controller similar to that of (Sarkar et al.; 1999) is developed
and applied to the USM.

4.4.1 Control design

Instead of considering two separate subsystems, a controller is developed based on Ûζd ,
ζ , a position error variable ỹ and its derivative Û̃y. The developed controller is based on
these variables to give an give advantage in the stability analysis of the controller. The
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proposed control law is given as follows:

τc = B†
tot

[
K1 Ûζd + K2ζ + K3κ + K4 Û̃y + K5ỹ

]
=

5∑
i=1

Kiϕi . (4.72)

where ϕ3 = κ > 0 is a constant and ϕ1 = Ûζd , ϕ2 = ζ , ϕ4 = Û̃y and ϕ5 = ỹ. It will be
shown that the control law (4.72) drives the error variable s to zero. The error variable
ỹ is defined as:

ỹ =


RbI (η1,d − η1)

ηQϵd − ηQ,dϵ + S(ϵ)ϵd

qd − q


=


RbI η̃1

ϵ̃

q̃


. (4.73)

The time derivative of the error variable ỹ can be expressed as:

Û̃y =


RbI

Û̃η + ÛRBI η̃

Û̃ϵ

Û̃q


=


ν̃1 + ÛRBI η̃

(η̃Q I3 + S(ϵ))ν̃2

Û̃q


. (4.74)

The rotation matrix RbI is included to give the position error in the body frame. The
gains matrices Ki are defined as:

Ki =
θ̂isϕ

⊤
i

∥s∥∥ϕi ∥
(4.75)

where
s = ζ̃ + σỹ, σ ∈ R1, σ > 0 (4.76)

with ζ̃ = ζd − ζ and
Û̂
θi = fi ∥s∥∥ϕi ∥. (4.77)
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K3 ∈ R6+n is a vector and K1, K2, K4 and K5 ∈ R(6+n)×(6+n) are matrices. ∥x ∥ is the
euclidean norm and defined as in (Khalil; 2002) with x ∈ Rn :

∥x ∥ =
√
(∥x1∥2 + ... + ∥xn ∥2) =

√
x⊤x . (4.78)

It will be shown that the control input (4.72) stabilizes the error variable asymptotically
to zero.

For implementation purposes, the gain matrices Ki should not be used directly as
it will give large control inputs near ∥s∥∥ϕi ∥ = 0 (Sarkar et al.; 1999). The gains (4.75)
are therefore implemented as:

Ki =


θ̂i sϕ⊤

i
∥s ∥ ∥ϕi ∥

, if ∥s∥∥ϕi ∥ > δi
θ̂i sϕ⊤

i
δi
, if ∥s∥∥ϕi ∥ ≤ δi

(4.79)

4.4.2 Stability analysis

TheNRAC is based on the bound estimationmethod. The systemmatrices will therefore
be assumed to be bounded as is done in (Sarkar et al.; 1999) by the following constants:

(i) ∥M ∥ ≤ β1,

(ii) ∥C + D∥ ≤ β2

(iii) ∥д∥ ≤ β3,

(iv) ∥M−1∥ ≤ α ,

(v) λmin(M
−1) > γ ,

(4.80)

where βi , α and γ are positive constants (Sarkar et al.; 1999). The bounds (i) and (iii)
follows from property 2.1 and 2.5 respectively. Property (iv) and (v) follows from the
fact that M is symmetric positive definite and the inverse of a symmetric positive
definite matrix is symmetric positive definite. Finally, assumption (ii) can be justified
based on property 2.3 with the idea that ζ cannot be infinitely large and that the
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hydrodynamic forces cannot be infinitely large in a real system. It will in this section
be presented how to estimate:

θi =
αβi
γ

(4.81)

where β4 = β5 = µ
α with µ > σ . α , γ , β1, β2 and β3 from (4.80).

Consider the following Lyapunov function candidate proposed in (Sarkar et al.;
1999):

V =
1
2s

⊤s +
1
2

5∑
i=1

1
fi
γ (θi − θ̂i )

2. (4.82)

The time derivative of V is:

ÛV = s⊤
Û̃
ζ + σs⊤ Û̃y −

5∑
i=1

1
fi
γ (θi − θ̂i )

Û̂
θ1. (4.83)

In order to find an expression for Û̃
ζ , the expression for Ûζ from the dynamics (4.4) is

used. The resulting expression is written as a sum for convenience:

Û̃
ζ = Ûζd − Ûζ = Ûζd −M−1

(
Btotτc −Cζ − Dζ − д

)
= Ûζd −M−1

(
K1 Ûζd + K2ζ + K3κ + K4 Û̃y + K5ỹ −Cζ − Dζ − д

)
= M−1(M − K1) Ûζd +M

−1(C + D − K2)ζ +M
−1(

1
κ
д − K3)κ −M−1K4 Û̃y −M−1K5ỹ

= M−1
5∑
i=1

(Pi − Ki )ϕi

(4.84)
where P1 = M , P2 = C + D, P3 = 1

κд and P4 = P5 = 0. The complete derivative of the
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Lyapunov function candidate (4.82) can then be written as:

ÛV = s⊤M−1
5∑
i=1

(Pi − Ki )ϕi + σs
⊤ Û̃y −

5∑
i=1

1
fi
γ (θi − θ̂i )

Û̂
θi

=

(
s⊤M−1

5∑
i=1

Piϕi −
5∑
i=1

1
fi
γθi

Û̂
θi + σs

⊤ Û̃y

)
︸                                              ︷︷                                              ︸

ÛV1

+

( 5∑
i=1

1
fi
γθ̂i

Û̂
θi − s⊤M−1

5∑
i=1

Kiϕi

)
︸                                     ︷︷                                     ︸

ÛV2
(4.85)

The expressions in the brackets will be considered separately and it will be shown
that both ÛV1 ≤ 0 and ÛV2 ≤ 0. First, consider the expression in the first bracket, ÛV1.
Substitute θi from (4.81) and Û̂

θi from (4.77). ÛV1 can then be written as:

ÛV1 = s
⊤M−1

3∑
i=1

Piϕi −
3∑
i=1

αβ ∥s∥∥ϕi ∥ − µ∥s ∥∥ỹ∥ − µ∥s∥∥ Û̃y∥ + σs⊤ Û̃y (4.86)

Due the fact that s⊤ Û̃y ≤ ∥s ∥∥ Û̃y∥ and the previously stated bounds on the matrices
(4.80), it can be shown that ÛV1 ≤ 0 when µ > σ :

ÛV1 ≤
3∑
i=1

(∥M−1∥∥Pi ∥ − αβi )∥s∥∥ϕi ∥ + (σ − µ)∥s∥∥ Û̃y∥ − µ∥s∥∥ỹ∥ ≤ 0. (4.87)

Consider the expression in the second bracket. Using the expression for the euclidean
norm (4.78) and the bound onM−1 (4.80) it can be shown that ÛV2 ≤ 0:

ÛV2 =
5∑
i=1

γθ̂i ∥s∥∥ϕi ∥ − s⊤M−1
5∑
i=1

θ̂isϕ
⊤
i ϕi

∥s∥∥ϕi ∥
=

5∑
i=1

(
γ −

s⊤M−1s

s⊤s

)
∥s ∥∥ϕi ∥θ̂i

≤

5∑
i=1

(
γ − λmin(M

−1)
)
∥s ∥∥ϕi ∥θ̂i ≤ 0.

(4.88)

This results in ÛV = ÛV1 + ÛV2 < 0 for all s , 0 with the unknown bounds on the matrices
(4.80). To elaborate this, consider the case when s , 0. In this case, either ζ̃ or ỹ or
both must be not equal to zero from the definition of s . Consider the last two terms of
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(4.87) with µ > σ :
ÛV1,1 = (σ − µ)∥s ∥∥ Û̃y∥ − µ∥s∥∥ỹ∥ (4.89)

If ỹ = 0, then ζ̃ , 0. From the expression of Û̃y (4.74) it can be seen that Û̃y , 0 when
ζ̃ , 0. Therefore, ÛV1,1 < 0 when ζ̃ , 0. If ỹ , 0 then ÛV1,1 is also strictly less than
zero. Therefore ÛV < 0 for all s , 0. As V < 0 for all s , 0 it can be concluded based
on theorem A.1 that with the control law τc (4.72), the error s will asymptotically
converge to zero (Sarkar et al.; 1999). Unmodeled dynamics can easily be included in
the stability proof as is done in (Sarkar et al.; 1999).

For the non-regressor based adaptive controller the condition ζ̃ = −σỹ is reached
asymptotically. This is different than for the STA where the condition ζ̃ = −σỹ is
reached in finite time.

4.5 Simulations and Discussion

Simulations with the controllers presented above have been done to demonstrate the
performance of the controllers. The simulation results are presented in this section.
The control framework is implemented as in figure 3.4 with the reference trajectory
generation block, inverse kinematics block and thrust allocation block implemented
as explained in section 3.4.1, 3.4.2 and 3.4.3 respectively. The difference between the
simulations is only the dynamic controllers.

In the simulations, the input is a trajectory of desired end-effector positions and
orientations ηee,d for the end-effector of the USM to follow. This can be related to a
situation in which the USM has a camera mounted in its head link and is to make the
camera follow a certain trajectory. The initial and final configuration of the USM is
shown in figure 4.1a and 4.1b respectively. The trajectory begins in the origin of the
inertial frame with zero rotation and ends in the position η1,ee = [2, 0, 3]⊤ with rotation
η2,ee = [0, 0,−0.5]⊤. In the initial configuration, the joint angles of the z-revolute
joints are π

4 and the joint angles of the y-revolute joints are 0.
It is assumed in all simulations that the joint motors and thrusters are able to apply

exactly the calculated control input u J and uT .
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(a) Initial configuration. (b) Final configuration.

Figure 4.1: Visualization of the initial and final configuration of the USM from simula-
tions. Initial end-effector position and orientation is ηee = [0, 0, 0, 0, 0, 0]⊤ and final
end-effector position and orientation is ηee = [2, 0, 3, 0, 0,−0.5]⊤.

4.5.1 Adaptive inverse dynamics control

In section 4.2.3 it was shown that the system with the adaptive inverse dynamics
controller (AIDC) gives states ỹ and s that go to zero. Asymptotic stability was not
shown as the state θ̃ = θ − θ̂ is only guaranteed to be bounded. The computational
requirement for the AIDC is quite large as it requires computation of system matrices
and the regressor matrix.

The solver used for simulations with the AIDC is ode15s with relative tolerance
10−3. The gains matrices used in the simulation are chosen to give good simulation
results as

KD = 500I14
KP = blockdiaд{I3, I3, 30I8},

Kθ = 10−3 × diaд{1, 0.01, 0.1, 100} and

Λ = blockdiaд{40I3, 40I3, 40I8}.

(4.90)

These matrices satisfy the required conditions on the gains presented in 4.2.1.
The resulting end-effector positions and orientations ηee are shown in figure

4.2. The figure shows that the AIDC gives great tracking of the desired end-effector
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traejctory in the simulation. It was assumed in the development of the controller as well
as in the simulations that the model is completely known except for the hydrodynamic
damping terms D(q, ζ )ζ . When this is the case, the AIDC performs very well. For
applications with a real USM, it is not very likely that one has exact knowledge of the
model except hydrodynamic damping terms and this will affect the performance of the
controllers. Added mass effects are, although less significant for slow steady motion,
for example difficult to model accurately.

Figure 4.3 shows the time evolution of the error variable s = ζ̃ + Λỹ. All error
variables si , i = 1...14, converge to zero as expected. The errors before convergence in
the simulations are small, in order of magnitude 10−4 to 10−5. The initial oscillations
in the error originate from the oscillations in the estimate θ̂ evident in figure 4.5.

Figure 4.4 shows the time evolution of the error variable ỹ. It is evident that the ỹ
approaches zeros as expected from the stability analysis.

While it was shown that the values of s and ỹ converge to zero, it was shown
that the estimate error θ̃ will only be bounded. With the presented AIDC, estimate
vector θ̂ contains the estimated drag coefficients. The estimated drag coefficients with
their actual values are shown in figure 4.5. The figure contains both the estimates
when the actual drag coefficients are the original drag coefficients from the model,
θ = [0.2, 0.1, 0.8, 0.1]⊤, and the estimates when drag coefficients in the model are
changed to θ = [0.5, 0.5, 0.5, 0.5]⊤. The figure shows that the drag coefficients do not
converge completely to the actual values, but the errors θ̃ are bounded as expected.
Initially, the estimated drag coefficients in θ̂ are zero such that the term ϕ(q, ζ , ζr )θ̂

is zero. The estimate ϕ(q, ζ , ζr )θ̂ is supposed to model the hydrodynamic damping
term D(q, ζ )ζr . When the estimate is zero, no hydrodynamic damping is included in
the controller. As soon as the USM begins to move, the estimates reach θ̂ , 0 which
introduces hydrodynamic damping terms in the controller. Changing the gain matrix
Kθ changes the rate of change of the estimates θ̂ .

It is also interesting to look at how the estimate ϕ(q, ζ , ζr )θ̂ evolves over time.
Figure 4.6 shows the estimate ϕ(q, ζ , ζr )θ̂ with the value of D(q, ζ )ζr . Even though
the drag coefficients do not reach their actual values, the estimate of D(q, ζ )ζr is very
similar to the actual values of D(q, ζ )ζr as seen from the figure. The blue lines in the
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figure shows the values of ϕ(q, ζ , ζr )θ̂ when the actual value of the estimates θ are
[0.2, 0.1, 0.8, 0.1]⊤. The green line is when the actual values are [0.5, 0.5, 0.5, 0.5]⊤.
The case where the actual values are 0.5 are included to show that the controller
gives good estimates of D(q, ζ )ζr with different values of the drag coefficients. If
ϕ(q, ζ , ζr )θ̂ = D(q, ζ )ζr the controller is stable as is shown in the stability analysis in
appendix A.3. As seen from the figure, the estimated values follow the actual values
which shows intuitively why the controller works. There are some small oscillations
in the values of ϕ(q, ζ , ζr )θ̂ initially resulting from the oscillations on θ̂ , but these
disappear fast.

To summarize, the AIDC shows expected behaviour in simulation and seem to be
suitable for dynamic motion control for USMs. Practical considerations such as limited
knowledge of the system matrices M, C and g and the computational complexity of
the AIDC has however not been taken into account in the simulations.
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Figure 4.2: AIDC - The time evolution of ηee with ηee,d . The x,y and z positions of
the end-effector, η1,ee , are collected in the first subplot. The roll ϕ, pitch θ and yawψ ,
η2,ee , are collected in the second subplot.
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Figure 4.3: AIDC - The time evolution of the error variable s = ζ̃ + Λỹ. si , i=1...14,
is the i’th variable of the vector s . The plots in yellow are the errors associated with
the joints while the blue, red and green are the errors associated with the x,y and z
position/orientation respectively.
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Figure 4.4: AIDC - The time evolution of the error variable ỹ. ỹi , i=1...14, is the
i’th variable of the vector ỹ. The plots in yellow are the errors associated with the
joints while the blue, red and green are the errors associated with the x,y and z
position/orientation respectively.
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Figure 4.5: AIDC - The time evolution of estimated drag coefficients θ̂ with the actual
values of the drag coefficients θ . The blue lines show the actual and estimated drag
coefficients when θ = [0.2, 0.1, 0.8, 0.1]⊤ and the green lines show the actual end
estimated drag coefficients when θ = [0.5, 0.5, 0.5, 0.5]⊤.
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4.5.2 Super-twisting algorithm with adaptive gains

In chapter 4 it was shown that the sliding surface s is reached in finite time with the
super-twisting algorithm with adaptive gains with unknown hydrodynamic forces.
When the sliding surface is reached, the error variable ỹ converges to zero.

The solver used for simulations with the STA is ode45 with relative tolerance 10−3.
The tuneable parameters of the STA are λ, γ , ϵ and αm . These are chosen as follows to
give satisfactory results:

λ = 15, γ = 1, ωi = 0.5, ϵ = 1, and αm = 0.02. (4.91)

Figure 4.7 shows the end-effector positions and orientations, ηee , from the simula-
tion with the STA with adaptive gains. The figure shows good tracking performance,
but some initial oscillations are evident. The oscillations does however disappear
quite quickly. In plot of Euler angles at the bottom of figure 4.7, the initial oscillations
disappear after about 15 seconds and for the positions in the first plot of figure 4.7 the
oscillations disappear even sooner.

Figure 4.8 shows the behaviour of the sliding surface s = ỹ + λζ̃ over time. As soon
as the desired ηee,d , 0, the error variables si become quite large and oscillating. The
error does however become smaller quickly. After about 15 seconds, all si are within
the bound |s |i < αm and stays within the bound throughout the simulation. The bound
αm is shown by the black dashed line in the figure. The sliding surface |s |i < αm is
therefore reached in finite time as expected from the stability analysis. Quite a lot of
chattering can be observed in the error signal resulting from the discontinuity of the
controller.

Figure 4.9 shows the error variable ỹ. It can be seen from the figure that all ỹi
converges to zero as expected from the stability analysis. The expected sliding along
the sliding surface is especially evident in for example the plot of ỹ9. When the sliding
surface is reached after about 15 seconds, the larger oscillations stop and the variable
slides towards zero.

Consider the control input on joints u J and thrusters uT shown in figure 4.10
and figure 4.11 respectively. The control input from the adaptive inverse dynamics
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controller (AIDC) is plotted together with the control input for the STA. The control
input for the STA is dominated by chattering, but its trend is similar to that of the
AIDC. In the simulations it is assumed that the calculated control input is exactly what
is applied to the USM. The control input from the STA is characterized by chattering
and large values. It is not realistic that the joint motors and the thrusters will be able to
provide this desired input. A saturation block was added to the control input to avoid
too large thrust in joint torques in the model. If too large control inputs are applied
to real joints and thrusters this may break the joints and thrusters. In addition, the
chattering in the input signal may in a real system cause high heat loss, low control
accuracy and cause wear on moving mechanical parts (Khalil; 2002). In that sense, the
control input from the AIDC is better than the control input from the STA. One of the
traits of the STA is that it attenuates chattering, but the attenuation of chattering is
limited in this simulation. Smoothing the input signals could be done, but that would
cause some, if not all, the relevant information in the to be lost. Attempts were made
to change the gains to give smoother control inputs, but better performance was not
achieved.

Figure 4.12 shows the adaptive gains α1 and β1. All αi and βi show similar behavior
and only the gains for i = 1 is shown in the figure for readability. The gains stop
increasing when the sliding surface |si | < αm is reached. By comparing figure 4.12 and
4.8 it can be seen that when |s |i < αm , the gains are constant. The gains are at this
point large enough to overcome the unknown disturbances.

In summary, the STA with adaptive gains give good tracking of the end-effector
trajectory with ỹ → 0, but the resulting control input is characterized by chattering
that may damage the USM.
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Figure 4.7: STA - The time evolution of ηee with ηee,d . The x,y and z positions of the
end-effector, η1,ee , are collected in the first subplot. The roll ϕ, pitch θ and yaw ψ ,
η2,ee , are collected in the second subplot.
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Figure 4.9: STA - The time evolution of the error variable ỹ. ỹi , i=1...14, is the i’th vari-
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Figure 4.10: STA - The time evolution of applied joint torque u J from the STA with
applied joint torque u J from the AIDC.
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Figure 4.11: STA - The time evolution of thruster control input uT from the STA with
thruster control input uT from the AIDC.
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Figure 4.12: STA - The time evolution of the adaptive gains α1 and β1. All the adaptive
gains αi and βi , i = 1...14 show similar behavior and only α1 and βi is included for
readability.

4.5.3 Non-regressor-based adaptive control

It was shown in chapter 4 that the non-regressor-based adaptive controller (NRAC)
drives the error variable s asymptotically to zero.

The solver used for simulations with the NRAC is ode45 with relative tolerance
10−3. The parameters that must be specified for the controllers are σ , f and κ. The
values of these are chosen to give good simulation results as:

σ = 30,

f = [100, 50, 50, 200, 100]⊤,

κ = 0.15.

(4.92)

The end-effector position and orientation is shown in figure 4.13. It can be seen
from the plots that the there are some oscillations in the end-effector position and
orientation initially, but after about 20 seconds these become unnoticeable for all
positions and orientations in the plot. After the initial oscillations, the end-effector
follows its desired trajectory well.

The time evolution of error variable s = ζ̃ + σỹ is shown in figure 4.14. The error
oscillates initially, but approaches to zero after about 22 seconds. The initial values
of the estimates are zero. Hence, the gains Ki are initially zero which leads to zero
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control input. As soon as the error variables s,ϕi , 0, the estimates begin to increase
until they are large enough to model the unknown bounds of the system matrices.
The behaviour of the error variable s is therefore as expected - larger error initially,
but approach zero when the estimates are large enough. The time evolution of the
estimates θ̂ is show in figure 4.15. All the estimates increase rapidly as soon as s , 0
and are steady or slowly increasing after about 22 seconds.

The error variable s will as shown in the stability analysis in section 4.4 approach
zero, but the stability analysis does not show that ỹ goes to zero. Figure 4.16 shows
the time evolution of ỹ. The figure shows that ỹ approaches zero in the simulations.
When both ỹ = 0 and s = 0, ζ̃ must be zero from the definition of the error variable s .
In section 4.3.1 it was shown that in the system ζ̃ = −σỹ, the states converge to zero.
Hence, when the variable s = 0, the states ζ̃ and ỹ converges to zero. The difference
between the stability proof with the STA and the NRAC is that for the STA it was
shown that the sliding surface σ is reached in finite time, while for the NRAC it was
shown that the error variable s approach zero asymptotically. In the simulations, the
s ≈ 0 after about 22 seconds. Therefore, the ỹ and ζ̃ also approaches zero.

Figure 4.17 and 4.18 shows the control input on thrusters, uT , and control input
on joints, u J , respectively. The figures also include the control input on joints and
thrusters from the AIDC for comparison. From the figures, it can be seen that the
control input has oscillations initially but stabilizes after about 25 seconds in the
simulation. At this point, the error variable ỹ also stops oscillation. After this, the
control input is similar to that from the AIDC. Initially, the estimates θ̂ are too small
which cause the initial oscillation. When the values of θ̂ are large enough, the errors
and hence the control inputs are stabilized. Consider a case when the initial value of the
estimates are not equal to zero. Figures 4.17 and 4.18 also includes an example where
the initial values of the estimates are equal or slightly less than the final estimated
values in figure 4.15, θ̂ = [1, 2, 50, 2, 2]⊤. In this case, the resulting control inputs are
smooth. The end-effector also shows great tracking of the desired trajectory in this
case. Therefore, if one has an idea of the bounds of the system matrices, a possibility
is to use these as the initial values of the estimates in the NRAC.

To summarize, the NRAC gives good tracking of the end-effector trajectory and
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the error variable s converges to zero. The NRAC requires a limited amount of prior
knowledge of the system and is therefore attractive for its simplicity and computational
efficiency (Sarkar et al.; 1999), but give undesirable initial oscillations of the control
input when the initial estimate is θ̂ = [0, 0, 0, 0, 0]. In general, it was observed in
the simulations that the performance of the NRAC is sensitive to small changes of
the tuneable parameters and therefore harder to work with than the two previous
controllers.
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Figure 4.13: NRAC - The time evolution of ηee with ηee,d . The x,y and z positions of
the end-effector, η1,ee , are collected in the first subplot. The roll ϕ, pitch θ and yawψ ,
η2,ee , are collected in the second subplot.
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Figure 4.14: NRAC - The time evolution of the error variable s = ζ̃ + Λỹ. si , i=1...14,
is the i’th variable of the vector s . The plots in yellow are the errors associated with
the joints while the blue, red and green are the errors associated with the x,y and z
position/orientation respectively.
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Figure 4.16: NRAC - The time evolution of the error variable ỹ. ỹi , i=1...14, is the
i’th variable of the vector ỹ. The plots in yellow are the errors associated with the
joints while the blue, red and green are the errors associated with the x,y and z
position/orientation respectively.
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Figure 4.17: NRAC - The time evolution of applied joint torque u J from the NRAC
with initial values of the estimates θ̂ = [0, 0, 0, 0, 0]⊤ and θ̂ = [1, 2, 50, 2, 2]⊤. Applied
joint torque u J from the AIDC is included in the plot.
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Figure 4.18: NRAC - The time evolution of thruster control input uT from the NRAC
with initial values of the estimates θ̂ = [0, 0, 0, 0, 0]⊤ and θ̂ = [1, 2, 50, 2, 2]⊤. Applied
joint torque uT from the AIDC is included in the plot.



Chapter 5

Interaction control

In this chapter, interaction control for USMs is presented. After an introduction to
interaction control, the task that will be considered is presented. Then, two interaction
control schemes, namely impedance control (IC) and PI force control with impedance
control (FC) is presented. Finally, simulation results with the interaction controllers
are presented and discussed.

5.1 Interaction control background

For a USM to perform a completely autonomous mission, the force exchanged between
the USM and the environment should be considered (Antonelli; 2014). The interaction
can be described by the contact force at the end-effector of the USM (Siciliano et al.;
2008). High values of contact forces are in general undesirable as it can damage the
USM and/or the manipulated object. Examples of relevant tasks for the USM are
turning valves on subsea panels or plugging/unplugging connectors (Palomeras et al.;
2014). The contact force is most conveniently described in task space. In interaction
with the environment, the paths that can be followed by the USM are constrained by
the environment. Motion controllers only give successful execution of interaction tasks
if the task is accurately planned (Siciliano et al.; 2008). There are usually limitations of
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knowledge of the USM model and environment. This leads to planning errors which
cause contact forces. These contact forces leads to deviations from the end-effector
trajectory and potentially build up of interaction force (Siciliano et al.; 2008).

The choice of interaction controller depends on the task to be performed, the
required control accuracy and availability of force measurements (Siciliano et al.; 2008).
If force measurements are available, these can be used in the controller. Force/moment
sensor readings are however usually corrupted by noise (Antonelli; 2018). Interaction
control strategies can be grouped into two categories, namely indirect force control and
direct force control (Siciliano et al.; 2008). Indirect force control achieves force control
through motion control without an explicit closure of a force feedback loop (Siciliano
et al.; 2008) while direct force control contains a force feedback loop so that the contact
force can be controlled to a desired value (Siciliano et al.; 2008). Some interaction
control schemes are introduced in the following.

Stiffness control is an indirect force control strategy which consists of assigning a
desired stiffness at the end-effector, and the apparent stiffness at the end effector is
controlled (Salisbury; 1980). It is obtained by using a suitable position control scheme
when the end-effector is in contact with the environment (Antonelli; 2014). Impedance
control is also an indirect force control approach in which the goal is to achieve a
desired mechanical impedance at the end-effector (Hogan; 1984; Siciliano et al.; 2008).
Hybrid force/position control allows for position and force constraints to be satisfied
simultaneously (Raibert and Craig; 1981). With hybrid force/position control the
end-effector motion and contact forces are split up into two decoupled subproblems
(Siciliano and Khatib; 2007). While these control schemes requires detailed knowledge
of the geometric features of the environment, a parallel force control force/position
controller overcomes this limitation (Antonelli; 2014).

The controllers presented in depth in this section are based on the work in (Cataldi
and Antonelli; 2015). The article presents two control schemes for UVMS interaction
with the environment. In the article, an impedance controller is applied when the task
is to a turn a valve task and a PI force controller with impedance control is applied to
a push a button task. In the article the controllers are applied to a UVMS. This chapter
presents how both controllers can be applied to a USM performing a turn a valve task.
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The impedance controller presented in this section is an indirect force control scheme,
while the PI force controller presented in this section is a direct force control scheme.

The article (Chiaverini et al.; 1999) and the book (Siciliano and Khatib; 2007)
contains overviews of different interaction control schemes for robot manipulators.
The book (Antonelli; 2014) gives an overview of interaction control of UVMSs. The
authors in (Ferretti et al.; 1997) present an explicit force control strategy with an outer
force control loop. The idea is to apply force without affecting the trajectory tracking.
In (Antonelli; 2014) two different versions of the scheme presented in (Ferretti et al.;
1997) is presented. A hybrid impedance control approach that achieves force/position
control of redundant manipulators is presented in (Oh et al.; 1998). In (Cui and Yuh;
2003) a force control scheme for UVMS based on a non-regressor-based adaptive
controller similar to that in section 4.4 is presented. The controller in (Cui and Yuh;
2003) combines adaptive impedance control with hybrid force/position control with
fuzzy switching.

Finally, recall the implemented model for the USM in contact with the environment:

M(q) Ûζ +C(q, ζ )ζ + D(q, ζ )ζ + д(q,η) = τ − J⊤ω (q,R
I
B )hee (5.1)

5.2 Task description - turn a valve

The objective of the USM is to turn a valve by 45 degrees. Figure 5.1 shows a visual
example of a manipulator and a valve. A gripper is mounted on the head-link of the
USM. It is assumed that the end-effector has already gripped the valve and that the
end-effector frame Σee is perfectly aligned with the object frame Σob j at the beginning
of the task. It is also assumed that the end-effector frame Σee and the object frame
Σob j has no rotation with respect to the inertial frame initially, i.e η2,ee = [0, 0, 0]⊤ and
η2,ob j = [0, 0, 0]⊤.

The valve rotates about the axis xob j as shown in figure 5.1 which is aligned with
the end-effector x-axis xee . The rotation of the valve expressed in world frame is
therefore equal to the rotation of the end-effector frame expressed in the inertial
frame. Hence, the task is completed when the end-effector has reached a rotation of
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xobj

zobj

yobj
ωv

xee

zeeyee

Figure 5.1: Visualization of the task of turning a valve. The object frame Σob j and the
end-effector frame Σee is included in the figure.

45 degrees.
An important aspect of interaction control is to avoid too much contact force and

hence avoid stress on the USM as well as the valve (Siciliano et al.; 2008). In a real
situation it might occur that external disturbances such as current cause the USM to
lose contact with the valve (Antonelli; 2018). In the following, loss of contact is not
taken account and it is assumed that the USM has gripped the valve throughout the
trajectory.

5.3 Impedance control

The goal of impedance control is to achieve a desired dynamic behaviour for the end-
effector (Siciliano and Khatib; 2007). The impedance control scheme implemented for
the USM to turn a valve is based on (Cataldi and Antonelli; 2015). The objective of the
controller is to obtain a desired end-effector impedance (Cataldi and Antonelli; 2015).
It is an indirect force control scheme as the interaction force is not directly regulated.

The control structure for impedance control is shown in figure 5.2. The control
structure consists of an internal and an external loop as shown in figure 5.2. The
internal loop is the same as the loop marked in gray in figure 3.4. The external loop
controls the interaction force with the environment while the internal loop contains
the inverse kinamatics, dynamic control and thrust allocation.
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Figure 5.2: The control framework for impedance control. The internal loop is the
same as the area marked in gray in figure 3.4.

5.3.1 Control design

The control law used for impedance control is (Cataldi and Antonelli; 2015):

ηee,d = KS η̃ee + KDṽee + KI

∫ t

t0
η̃ee (σ )dσ , (5.2)

which is differentiated with respect to time to give the input to the internal loop Ûηee,d .
The error variables η̃ee is defined as:

η̃ee =


η∗ee,1,d − ηee,1

ϵ̃

 , (5.3)

where ϵ̃ was defined in (4.5) with pd found from converting the Euler angles of η∗ee,d
to quaternions. The error variable ṽee is defined as:

ṽee =


Ûη∗ee,1,d − Ûηee,1

ωee,d − ωee

 , (5.4)

where ωee is the angular velocity of the end-effector expressed in the inertial frame
and Ûη∗ee,1,d is the time derivative of the first three entries of the input to the impedance
controller as shown in figure 5.2.

KS , KD and KI ∈ R6×6 are the stiffness, damping and integral gain matrices re-
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spectively. The integral term in the control law (5.2) is added to remove steady state
error. In addition, consider a controller without the integral term with the desired
objective to turn a valve by a certain amount at a constant velocity. The valve will
begin to turn when ηee,d becomes large enough so that the applied force overcomes
the friction required to begin to turn the valve. If KS and KD are too small, the valve
may never turn. When the valve does not turn, the error variables η̃ee and ṽee reach a
constant value after some time. If these values of the error variables does not make the
applied force large enough to overcome the friction, the valve will never turn. When
the integral term is added, the applied force will increase and make the applied force
large enough, and overcome the problem. If the valve is stuck, this will however cause
a problem with a large build up of force that can damage the USM, the valve or both.

5.4 PI force control with impedance control

Consider the case in which a force sensor is mounted on the end-effector in order
to measure contact forces and moments. Assume measurements of the forces and
moments applied by the end-effector in the inertial frame hee are available. While
desired end-effector positions and orientations, η∗ee,d , is the input to the impedance
controller, the input to the PI force controller is the desired force to be exerted by the
end-effector hee,d (Cataldi and Antonelli; 2015).

5.4.1 Control design

The control structure is shown in figure 3.4. The control structure for the PI force
controller also consists of an internal loop with inverse kinematics, dynamic motion
control and thrust allocation and an external loop charged with controlling the inter-
action force with the environment as shown in figure 5.3. The Proportional Integral
(PI) action is used to stabilize the force error (Cataldi and Antonelli (2015)):

η∗ee,d = KP h̃ee + KI

∫ t

t0
h̃ee (σ )dσ (5.5)
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where h̃ee = hee,d − hee . KP ∈ R6×6 and KI ∈ R6×6 are the proportional and integral
gain matrices respectively.

hee are the forces and moments measured by the force sensor and is usually char-
acterized by strong noise (Cataldi and Antonelli; 2015). Its derivative Ûhee is therefore
usually useless and the derivative is therefore not included in the force controller.
Damping is instead provided by the impedance controller presented in the previous
section.

The loop containing the PI force controller is added outside the impedance con-
troller from section 5.3 as shown in figure 5.3

IK DC TA
ζd

ζ

η, q

τc u

Internal Loop

IC
η∗

ee,d η̇
ee,dPI Force Control

hee,d
ηee hee,m

Figure 5.3: The control framework for PI force control with impedance control. The
internal loop is the same as the area marked in gray in figure 3.4 and the IC block is
the same as the impedance control block in figure 5.2.

Consider the situation where the valve is stuck and not possible to turn. With only
the impedance controller, the input is end-effector position and orientation. Therefore,
the longer the valve is not turning, the more force will be applied by the end-effector
because of the integral term and the increasing η̃ee . Eventually, with too much force,
either the valve, the USM or both might break. The input to the force controller is
however the desired exerted force. As the PI force controller controls the force applied
by the end-effector and not the position and orientation of the end-effector. The force
will therefore not build up to a value large enough to damage the USM or the valve
when the valve is stuck if the input hee,d is chosen appropriately.
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5.5 Simulations and Discussion

Simulations have been performed to test the performance of the interaction controllers
introduced above. The simulation results are presented in this section.

The interaction forces’ effect on the USM were modeled by equation (5.1). The task
considered in this section is to turn a valve at least 45 degrees. One can think of this as
a closed valve that is to be opened by the USM. When the valve has rotated 45 degrees,
the valve is opened, but may still rotate further. It is assumed that the end-effector has
already gripped the valve at the beginning of the simulation so that the end-effector
frame Σee and the object frame Σob j is coinciding.

The interaction moment exerted by the end-effector from the valve is modeled by
(2.49). The inertia about the x-axis is chosen as Jv = 3 and the viscosity coefficient is
chosen as kµ for the simulations. It is assumed that the angular velocity of the valve
about the x-axis of the inertial frame equals the angular velocity of the of the end-
effector about the x-axis of the inertial frame, ωv,x = ωee,x because the end-effector
has gripped the valve. The linear interaction forces exerted by the end-effector is
modeled by equation (2.50) with k=20. The position of the valve is in the origin of the
inertial frame [0, 0, 0]⊤.

The objective is to achieve rotation of the valve, and hence the end-effector frame,
about the x-axis of the inertial frame. The initial configuration and final configuration
of the USMwhen turning a valve is shown in figure 5.4. Joint 9 of the USM is x-revolute
and the the valve rotation can therefore be achieved by rotating only the last joint.
The final configuration (figure 5.4b) therefore looks similar to the initial configuration
(figure 5.4a), but with rotation of the end-effector. For the simulations, a weighted
pseudoinverse (3.4) is implemented with the weight matrix W:

W = blockdiaд{I3, I3, I8, 0.1}. (5.6)

This is done to prioritize rotation of the last link (end-effector). When minimizing the
value of E = 1

2ζdWζd , thisW prioritizes velocity of the last joint. The USM therefore
remains almost unmoving except for the last link. In this case, the thrusters have to
compensate for the force applied by the end-effector to keep the USM in position.
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(a) Initial configuration. (b) Final configuration.

Figure 5.4: Initial and final configuration of the USM in space for turning a valve. Initial
end-effector position and orientation is η = [0, 0, 0, 0, 0, 0]⊤ and final end-effector
position and orientation is η = [0, 0, 0, π4 , 0, 0]

⊤ for turning a valve π
4 radians.

Figure 5.5 shows an example of the interaction forces and moments experienced
by the end-effector during the task of turning the valve with impedance control. The
force to the end-effector in x-direction work in the negative x-direction which is
expected. The moment experienced by the end-effector around the x-axis work in the
opposite direction of the motion which is also as expected. The forces and moments
are smoothed by a low pass filter in the simulations to avoid too sudden changes in
the forces/moments and hence avoid simulation problems. The force in the x-direction
is a function of how much the end-effector moves beyond the position of the valve
(2.50). In the simulations, the end-effector only moves past the valve by a tiny amount
and the force is therefore very small. The moment experienced by the end-effector has
a maximum absolute value of 6Nm with the values chosen for Jv and kµ . Comparing
this to the plots of joint torques in the previous chapter (figure 4.18 and 4.10), if can be
seen that 6Nm is about what is applied to joint 3 in the simulations in the previous
chapter. This is quite small for turning a valve, but will be considered sufficient for
testing of the controllers.

With an external moment working in the opposite direction of the rotation, intu-
itively more force from the thrusters and more joint torque is required than without
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Figure 5.5: The time evolution of the forces and torques applied to the end-effector by
the valve expressed in the inertial frame when turning the valve. The figure shows
the force from simulations with impedance control, but the results are similar for
impedance and force control.
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the external torque. Figure 5.6 shows applied thrust to the USM when turning a valve
and when only rotating the end-effector. Figure 5.7 shows the applied joint torque in
the same two cases. It can be seen from these figures that the absolute value of thrust
and joint torque are larger for turning the valve than for only turning the end-effector
which is expected. These plots show the thrust and joint torque using the impedance
controller, but the results are similar for both controllers presented in this section.

The adaptive inverse dynamics controller gives great results for motion control
as was shown in section 4.5.1. The controller is tested for the turn a valve operation.
The resulting end-effector position and orientation is shown in figure 5.8. It is evident
that using only the adaptive inverse dynamics controller is not sufficient for the turn a
valve operation.

The interaction controllers presented in this chapter are based on an internal loop
with inverse kinematics, dynamic control and thrust allocation. The adaptive controller
is used as the motion controller for both the following simulations.
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Figure 5.6: The time evolution of thruster control input uT on each thruster with and
without external force when rotation the end-effector.
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Figure 5.7: The time evolution of applied joint torqueu J on each joint with and without
external force when rotating the end-effector.
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Figure 5.8: The time evolution of ηee with ηee,d when only the AIDC is used to turn
a valve. The x,y and z positions of the end-effector, η1,ee , are collected in the first
subplot. The roll ϕ in the second subplot and pitch θ and yawψ are collected in the
third subplot.
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5.5.1 Impedance control

The input to the impedance control law are the desired end-effector positions and
orientations. The desired the end-effector trajectory is a rotation of π4 rad about the x-
axis of the inertial frame. The input is therefore a trajectory starting in [0, 0, 0, 0, 0, 0]⊤

and ending in [0, 0, 0, π4 , 0, 0]
⊤ such that the valve will be rotated π

4 radians. The
trajectory is generated through the reference trajectory generation block presented in
section 3.4.

The solver used for simulations is ode15s with relative tolerance 10−3. The stiffness,
damping and integral gain matrices are chosen to give good simulation results as:

KS = diaд{30, 30, 30, 6, 6, 6},

KD = diaд{1, 1, 1, 0.2, 0.2, 0.2},

KI = diaд{4, 4, 4, 3, 3, 3}.

(5.7)

The resulting time evolution of valve angles is shown in figure 5.9. The figure
shows that the impedance controller achieves the objective of rotating the valve by π

4
radians. The forces and moments experiences by the end-effector when turning the
valve is shown in figure (5.5). The forces and moments exerted by the end-effector are
the equal, but oposite forces of those in figure 5.5.
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Figure 5.9: IC - The time evolution of the valve angle with a line at π
4 radians for

reference.
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The desired end-effector positions and orientations η∗ee,d are closely traced by the
end-effector as seen in figure 5.10. The x-rotation is presented in a separate subplot
so that the errors in the rotations about the y and z-axis can be noticed in the third
plot. The roll of the end-effector follows its desired trajectory closely. It can easily
be seen by comparing figure 5.8 and 5.10 that adding an external impedance control
loop to the internal loop gives much better results than with only the AIDC. In the
simulations with the impedance controller there is some error in order of magnitude
10−5 (compared to 10−1 for AIDC) in the z-position as seen from the first subplot in
figure 5.10. The error does however seem to converge to zero from the plot. After
about 72 seconds, the force is no longer constant and the absolute value of the force
decreases after this point. This causes the changes in z-direction and pitch and yaw at
about 72 seconds. The errors in the rotation about the y- and z-axis are in the order of
magnitude 10−5 (compared to 10−2 for AIDC) and the error in rotation also seems to
converge to zero in the simulations.

For the impedance controller the desired force is not specified, only the desired
end-effector positions and rotations. The goal is to achieve a desired impedance at
the end-effector. It is not necessary to measure force/moment at the end-effector, and
the impedance controller may be a good option if measurements of force/moment at
the end-effector are not available. As the integrator term is included, the force at the
end-effector will eventually become large enough to rotate the valve. If however the
valve is stuck, for example rusted, the force applied to the valve may become too large
and potentially brake either the valve or the USM/end-effector or both.

The impedance controller gives satisfactory results in these simulations, but is a
simple control algorithm. As the control setup with the impedance controller consists
of an external loop and an internal loop that is equal to the motion control loop (figure
5.2). More sophisticated interaction control strategies may be easily adopted (Cataldi
and Antonelli; 2015).
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Figure 5.10: IC - The time evolution of ηee with η∗ee,d when turning a valve. The x,y
and z positions of the end-effector, η1,ee , are collected in the first subplot. The roll ϕ in
the second subplot and pitch θ and yawψ are collected in the third subplot.
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5.5.2 PI force control with impedance control

In the simulations with the PI force controller with impedance control it is assumed
that measurements of the interaction forces and moments at the end-effector in the
inertial frame are available. The PI force controller with impedance control presented
in section 5.4 is implemented. In practice, this means that a PI force control block
is added in front of the impedance control block from the previous section. Figure
5.3 shows an overview of the control framework. The solver used for simulations is
ode15s with relative tolerance 10−3. The impedance control gains are chosen as in
(5.7). The gains in the PI force controller are chosen to give satisfactory results as:

KP = diaд{0.77, 0.77, 0.77, 0.15, 0.15, 0.15}, and

KI = diaд{0.48, 0.48, 0.48, 0.29, 0.29, 0.29}.
(5.8)

The force/moment errors h̃ee in y and z-direction and about the y- and z-axis are
always zero because the input trajectory is zero in these directions and no external
force is modeled in these directions. The entries of the gain matrices corresponding to
these states may therefore be any value.

The input to the controller is the desired forces and torques hee,d to be applied
by the end-effector. The desired forces and torques are generated to give a similar
trajectory of that of only the impedance controller. The desired forces and torques
are therefore generated from the desired end-effector position η∗ee,d from the previous
section. This gives a smooth force trajectory that avoids problems in the simulations.

For the simulations with PI force control with impedance control, the objective is
defined as to rotate the valve at least 45 degrees. It is assumed that the valve is opened
when it has reached 45 degrees, but can still be rotated by some amount. The desired
force trajectory is therefore such that it increases smoothly until it reaches a constant
force. Then, when the end-effector has reached the desired rotation, the desired force
goes smoothly down to zero. Therefore, it keeps rotating a while after π

4 radians.
Figure 5.11 shows that the objective of rotating the valve at least π

4 radians is
achieved. It can be seen that once the valve has rotated π

4 radians, the rotation rate
slows down and reach a constant value of about 0.85 radians.
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Figure 5.11: FC - The time evolution of the valve angle with a line at π
4 radians for

reference.

The force in x-direction of the inertial frame applied by the end-effector hee,m(1)
together with the desired force in x-direction of the inertial frame at the end effector
hee,d (1) is shown in the first plot of figure 5.12. It can be seen that the error in the force
in the x-direction is very small, of magnitude 10−5N . This is because the end-effector
barely moves past the position of the valve in x-direction. The second plot of figure
5.12 shows the moment exerted by the end effector about the x-axis of the inertial
frame hee,m(4) with the desired torque about the x-axis of the inertial frame hee,d (4).
The applied torque follows its desired value closely throughout the trajectory.

Figure 5.13 shows the end-effector positions and orientations ηee . The end-effector
position and orientation is not defined by the user, but the desired values plotted in
the figure are the inputs to the IC block, η∗ee,d (see fig 5.3). The errors in positions
and orientations are as can be seen from figure 5.13 small and the desired rotation
about the x-axis, ϕ, is followed closely. η∗ee,d is the output of the PI-force controller
and it is therefore interesting to look at the desired values. The small shift of desired
x-positions comes from the small errors in force in x-direction (5.12). The integral
term in the controller (5.12) gives this negative desired x-position.

The PI force controller with impedance control gives satisfactory results in simula-
tions. The advantage of the PI force controller with impedance control over the IC is
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that it does not cause build up of force as can happen for the impedance controller
when the valve is stuck.
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Figure 5.12: FC - The time evolution of the force in x-direction exerted by the end-
effectorhee,m(1)with the desired valuehee,d (1) and the torque about the x-axis exerted
by the end-effector hee,m(4) with the desired value hee,d (4).
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Figure 5.13: FC - The time evolution of ηee with η∗ee,d when turning a valve. The x,y
and z positions of the end-effector, η1,ee , are collected in the first subplot. The roll ϕ in
the second subplot and pitch θ and yawψ are collected in the third subplot.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has presented dynamic motion control approaches as well as interaction
control approaches for underwater swimming manipulators (USMs). The dynamic
motion control approaches presented in the thesis are adaptive inverse dynamics
control (AIDC), the super-twisting algorithm with adaptive gains (STA) and non-
regressor-based adaptive control (NRAC). The dynamic motion control algorithms have
been implemented with a USM simulator. The stability properties of the controllers
have been analyzed and their expected behaviour has been compared to how they
behave in simulations. The interaction control approaches presented in the thesis
are an impedance controller (IC) and a PI force controller with impedance control
(FC). The interaction controllers have been implemented in a simulator that includes
interaction force and the controllers have been compared.

The AIDC requires knowledge of the model structure. It does not guarantee
asymptotic stability, but guarantees bounded states. The super-twisting algorithm is a
discontinuous controller and gives chattering in the control input. The implemented
STA requires some model knowledge, but gives finite time convergence of the sliding
variable s even with disturbances. The NRAC requires only a limited amount of
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knowledge of the system and is attractive for its simplicity and computational efficiency.
Asymptotic convergence of the error variable s has been shown for the NRAC.

All the implemented dynamic motion controllers give good tracking of a desired
end-effector trajectory in simulations. The differences between the controllers are
most evident in the control input. While the AIDC gives a smooth control input, the
control input from the STA is characterized by chattering that may damage the USM.
The NRAC gives rapid oscillations initially in control input, but the oscillations can be
reduced by choosing nonzero initial values of the estimates θ̂ .

Both the interaction controllers perform well in the simulations. The impedance
controller gives good tracking of the desired end-effector position and orientation.
With the FC, the force exerted by the end-effector follows the desired force trajectory
well. The IC can be used when no force measurements are present, while the FC
requires a force sensor. Both the interaction controllers are added as an external loop
and more sophisticated interaction control schemes may therefore easily be adopted.

6.2 Recommendations for further work

A relevant continuation of the work in this thesis is to test the controllers on real
USMs. Before applying the controllers to a real USM, the controllers can be tested in
a simulator that includes modeling of thruster and joint dynamics and modeling of
saturation and delays to give more realistic simulations.

The pseudoinverse used for differential inverse kinematics used in the control
framework is sufficient for initial simulations and concept verification. A recommen-
dation for further work is therefore to implement more advanced kinematic control
algorithms that provides for example singularity avoidance. More advanced thrust
allocation algorithms could be implemented such as algorithms in (Fossen et al.; 2009).
It is also interesting to look at the power consumption of the USM for different control
approaches.

In the thesis it was shown that the AIDC where only the drag forces are unknown
gives good results in simulations. A complete AIDC where all unknown parameters of
the model is estimated should be implemented as is done for UVMSs in (Antonelli and



6.2. RECOMMENDATIONS FOR FURTHER WORK 113

Chiaverini; 1998). Other motion controllers can also be implemented for USMs and
compared to the results in this thesis. Examples of suggested control strategies are
strategies based on neural networks and controllers that are not divided into separate
kinematic and dynamic control parts.

Interaction control should be investigated further. More complex control strategies
should be implemented and compared to the simple interaction control strategies in this
thesis. To make the simulations with the interaction controllers more realistic, noise
can be added to the force measurement. In addition, the simulator can be extended
with more realistic modeling of interaction forces and constraints. Loss of contact
while performing the task should also be taken into account.
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Appendix A

Stability and definitions

The stability of the controllers presented in this project is analyzed. The definitions
and theorems needed for the stability analyses are presented here.

A.1 Positive definiteness

The following is taken from (Khalil; 2002). A functionV (x) is said to be positive definite
if V (x) satisfies V (0) = 0 and V (x) > 0 for all x , 0. If the function satisfies V (x) ≥ 0
for all x , 0 it is said to be positive semidefinite. The functionV (x) is negative definite
or positive semidefinite if −V (x) is positive definite or negative definite respectively. If
V (x) = x⊤Px is positive definite (or positive semidefinite), then the matrix P is positive
definite (or positive semidefinite). Equally the matrix P is positive definite (or positive
semidefinite) if all the eigenvalues of P are positive (or nonnegative).

A.2 Stability

Consider the system
Ûx = f (x) (A.1)
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where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn (Khalil
(2002)). First, define stability and asymptotic stability.

Definition A.1 (Definition 4.1, Khalil (2002)) The equilibrium point x = 0 of (A.1)
is

• stable if, for each ϵ > 0, there exists a δ = δ (ϵ) > 0 such that

| |x(0)| | < δ ⇒ ||x(t)| | < ϵ, ∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

| |x(0)| | < δ ⇒ lim
t→∞

x(t) = 0

Lyapunov’s direct method is a method for establishing stability and asymptotic
stability. Lyapunov’s direct method is given in the following theorem.

Theorem A.1 (Lyapunov’s Direct method, Theorem A.1 Fossen (2011)) Let xebe the
equilibrium point of Ûx = f (x),x(0) = x0 and assume that f (x) is locally Lipschitz in x .
Let V : Rn → R+ be a continuous differentiable function V(x) satisfying:

(i) V (x) > 0 (positive definite) and V (0) = 0 (A.2)

(ii) ÛV (x) =
δV (x)

δx
f (x) ≤ −W (x) ≤ 0 (A.3)

(iii) V (x) → ∞ as | |x | | → ∞ (radially unbounded) (A.4)

Then the equilibrium of point xe is globally stable isW (x) ≥ 0 (positive semi-definite)
and globally asymptotically stable isW (x) > 0 (positive definite) for all x , 0.

Lemma A.1 (Barbalat’s Lemma, Lemma A.1 Fossen (2011)) Let ϕ : R+ → R be a
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uniformly continuous function and suppose that limt→∞

∫ t
0 ϕ(τ )dτ exists and is finite;

then
lim
t→∞

ϕ(t) = 0 (A.5)

Barbalat’s lemma only guarantees global convergence. If there exists a uniform contin-
uous function V : Rn × R+ → R satisfying:

(i) V (x , t) ≥ 0 (A.6)

(ii) ÛV (x , t) ≤ 0 (A.7)

(iii) ÛV (x , t) is uniformly continuous (A.8)

Then, according to Barbalat’s lemma limt→∞
ÛV (x , t) = 0.

A.3 Inverse dynamics control stability analysis

This section contains the stability analysis of the controller:

τc = B†
tot [KDs

′ +M(q) Ûζr +C(q, ζ )ζr +C(q, ζ )ζr + д(q,η)]. (A.9)

with KD > 0,
s ′ = ζ̃ + (Λ + K−1

D KP )ỹ, (A.10)

ζr = ζd + Λỹ, (A.11)

Λ =


λp I3 03×3 03×n
03×3 λoI3 03×n
0n×3 0n×3 Λq


, Λq ∈ Rn×n , Λ > 0, (A.12)
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and

KP =


kp I3 03×3 03×n
03×3 koI3 03×n
0n×3 0n×3 Kq


, Kq ∈ Rn×n , KP > 0. (A.13)

The stability analysis presented here is similar to that of the adaptive inverse dynamics
controller presented in section 4.2, but without the estimates θ̂ .

Define the error variable s:

s =


sp

so

sq


=


ν̃1

ν̃2

Û̃q


+ Λ


RBI η̃1

ϵ̃

q̃


= ζd − ζ + Λỹ = ζ̃ + Λỹ. (A.14)

Consider the Lyapunov function candidate suggested in (Antonelli; 2014):

V =
1
2s

⊤M(q)s +
1
2kpη̃

⊤
1 η̃1 + koz̃

⊤z̃ +
1
2 q̃

⊤Kqq̃ (A.15)

where z̃ = [1 − η̃ − ϵ̃⊤]⊤. V has the property V ≥ 0 because kp > 0, ko > 0 and
Kq and M(q) are positive definite. The positive definiteness of M(q) is provided by
property 2.1. The time derivative of (A.15) is

ÛV =
1
2s

⊤ ÛMs + s⊤M Ûs + kpη̃
⊤
1
Û̃η1 + 2koz̃⊤ Û̃z + q̃⊤Kq Û̃q. (A.16)

Rewrite the expression using the relation Û̃η = RIBν̃1 and that Û̃z = −Ûz = −Jk,oq(z)ν̃2:

ÛV =
1
2s

⊤ ÛMs + s⊤M Ûs + kpη̃
⊤
1 R

I
Bν̃1 − 2koz̃⊤ Jk,oq(z)ν̃2 + q̃⊤Kq Û̃q. (A.17)

Now, consider the expression for Ûs

Ûs =
Û̃
ζ + Λ Û̃y = Ûζd − Ûζ + Λ Û̃y. (A.18)

Rewrite the expression for Ûs using the expression for Ûζ found from the dynamics
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equation (4.4) and the fact that Ûζd = Ûζr − Λ Û̃y.

Ûs = Ûζr −M−1(q)
(
Btotτc −C(q, ζ )ζ − D(q, ζ )ζ − д(q,η)

)
. (A.19)

Write Ûs as a function of ζr . To do this, notice that ζd = ζr −Λỹ (A.11) and s = ζd −ζ +Λỹ.
Combine these to get ζ = ζr − s which can be substituted into Ûs (A.19). Substitute
the resulting expression into the derivative ÛV (A.17). Remark: In the following the
arguments of the system matrices will be omitted for better readability.

ÛV = s⊤[M Ûζr +Cζr +Dζr + д − Btotτc ] − s⊤Ds + kpη̃
⊤
1 R

I
Bν̃1 − 2koz̃⊤ Jk,oq(z)ν̃2 + q̃⊤Kq Û̃q︸                                            ︷︷                                            ︸

ÛV1
(A.20)

The term 1
2s

⊤ ÛMs − s⊤Cs disappears because of property 2.2. It has been shown in
section 4.2 that the last part of the derivative of the Lyapunov function A.20 can be
written as. Using this disassembly of s , the last three terms of (4.27), ÛV1 can then be
written as:

ÛV1 = kpη̃
⊤
1 R

I
Bsp − kpλpη̃

⊤
1 η̃ + koϵ̃

⊤so − koλoϵ̃
⊤ϵ̃ + q̃⊤Kqsq − q̃⊤KqΛqq̃ (A.21)

The terms that include sp , so and sq can be collected in a term s⊤KP ỹ with KP defined
in (A.13). The expression for ÛV (4.27) can therefore be written as:

ÛV = s⊤[M Ûζr +Cζr +Dζr +д−Btotτc +KP ỹ] − s⊤Ds −kpλpη̃
⊤
1 η̃1 −koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃

(A.22)
Plug in the control input τc (4.10) and replace s ′ = s + K−1

D KP ỹ.

ÛV =s⊤[M Ûζr +Cζr + Dζr + д − KD (s + K
−1
D KP ỹ) −M Ûζr −Cζr − д − Dζr

+ KP ỹ] − s⊤Ds − kpλpη̃
⊤
1 η̃1 − koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃

= − s⊤KDs − s⊤Ds − kpλpη̃
⊤
1 η̃1 − koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃.

(A.23)
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This results in:

ÛV = −s⊤(KD + D)s − kpλpη̃
⊤
1 η̃1 − koλoϵ̃

⊤ϵ̃ − q̃⊤KqΛqq̃ ≤ 0. (A.24)

From theorem A.1 it can be concluded that the controller gives an asymptotically stable
system.
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