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reflects a general underestimation of the capacity in the NLFEAs.  
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SAMMENDRAG: 
Ikke-lineære elementanalyser (NLFEA) kan brukes til å forutsi den fysiske oppførselen til armerte 
betongkonstruksjoner. For å oppnå numeriske resultater i samsvar med den reelle fysiske oppførselen, er 
det ønskelig med en nøyaktig løsningsstrategi med lav modelleringsusikkerhet. Den numeriske løsnings-
strategien inneholder valg relatert til kinematisk kompatibilitet, materialmodeller og likevektsbetraktninger.  
 
I denne masteroppgaven er det etablert en løsningsstrategi for numerisk modellering av et generelt sett av 
armerte betongbjelker med utsparinger. Den valgte løsningsstrategien er etablert basert på nøye 
undersøkelser av utfallet fra flere NLFEAs, kjørt i en FEA-programvare kalt DIANA, versjon 10.2. De 
oppnådde numeriske resultatene ble sammenlignet med eksperimentelle resultater fra ulike 
referanseanalyser. Flere delmodeller for materialoppførselen til betongen ble undersøkt i detalj i en 
sensitivitetsstudie. Videre ble en rekke forskjellige elementstørrelser testet med sikte på å finne en optimal 
FE-diskretisering. 
 
Modelleringsusikkerheten, kvantifisert av en middelverdi mellom eksperimentell og numerisk kapasitet, 

θm=1.06 og en variasjonskoeffisient, Vθ =16.4%, ble oppnådd i dette studiet. De oppnådde verdiene er basert 
på analyser av åtte forskjellige bjelker modellert med den valgte løsningsstrategien, og gjenspeiler en 
generell undervurdering av den reelle kapasiteten i NLFEA. 
 
Vesentlige sensitiviteter knyttet til materialmodellene ble observert i dette studiet. Den valgte løsnings-
strategien kan betraktes som en grunnleggende prosedyre for å evaluere kapasiteten til slike bjelker, men 
bør likevel ledsages av grundige kontroller i etterkant. Disse kontrollene tar sikte på å oppdage mulige falske 
styrker, noe som resulterer i falsk kapasitet. Dette ble oppdaget i noen elementanalyser rapportert i denne 
oppgaven. 
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ABSTRACT
Non-linear finite element analyses (NLFEA) can be used to predict the physical behaviour
of reinforced concrete (RC) structures. However, in order to obtain numerical results in
compliance with the real physical behaviour of RC structures, an accurate solution strategy,
with a low modelling uncertainty, is desired. The numerical solution strategy contains
choices regarding kinematic compatibility, material models and force equilibrium.

In this Master’s Thesis, a solution strategy has been developed for a general set of reinforced
concrete beams with web openings. The selected solution strategy has been established
based on careful investigations of the outcome from several NLFEAs, run in a FEA software
called DIANA, version 10.2. The obtained numerical results were compared to experimental
results from different benchmark analyses. Three beams with different geometries have
been used to develop the solution strategy presented in this thesis. Additional results
obtained by the selected solution strategy for five supplementary beams are presented, with
the intention to validate its scope of application with respect to geometry. Several concrete
constitutive sub-models were investigated in detail in a sensitivity study. Furthermore,
a range of varying mesh densities were tested with the aim of finding an optimal FE
discretization for a general set of beams with openings. Other modelling choices are based
on recommendations from provided literature.

In this study, a modelling uncertainty of θ=1.06, and a coefficient of variation of Vθ=16.4%,
was achieved. The modelling uncertainty was quantified by a mean ratio of the experimental
to predicted numerical capacity. These values were based on NLFEAs of eight different
beams modelled according to the selected solution strategy. Compared to the experimental
results, this modelling uncertainty reflects a general underestimation of the capacity in the
NLFEAs.

Significant sensitivities related to the material models are observed and discussed in this
thesis. Consequently the selected solution strategy may not be able to obtain the realistic
failure mode and failure load for all concrete beams with web openings. The solution
strategy can be considered as an elementary procedure to evaluate the capacity for such
beams, and may be improved by use of more detailed sub-models for the dominant material
behaviours of the failure modes. However, as the failure modes may be difficult to predict
for beams with complex geometries, the NLFEAs should be accompanied by thorough post-
analysis checks. These checks aim to detect possible spurious strengths, resulting in false
capacity, as detected in some NLFEAs reported in this thesis.
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Sammendrag
Ikke-lineære elementanalyser (NLFEA) kan brukes til å forutsi den fysiske oppførselen til
armerte betongkonstruksjoner. For å oppnå numeriske resultater i samsvar med den reelle
fysiske oppførselen, er det ønskelig med en nøyaktig løsningsstrategi med lav modellerings-
usikkerhet. Den numeriske løsningsstrategien inneholder valg relatert til kinematisk kom-
patibilitet, materialmodeller og likevektsbetraktninger.

I denne masteroppgaven er det etablert en løsningsstrategi for numerisk modellering av et
generelt sett av armerte betongbjelker med utsparinger. Den valgte løsningsstrategien er
etablert basert på nøye undersøkelser av utfallet fra flere NLFEAs, kjørt i en FEA-programvare
kalt DIANA, versjon 10.2. De oppnådde numeriske resultatene ble sammenlignet med eksper-
imentelle resultater fra ulike referanseanalyser. Tre bjelker med forskjellige geometrier ble
brukt til å utvikle løsningsstrategien som presenteres i denne oppgaven. I tillegg presenteres
resultater oppnådd med den valgte løsningsstrategien for fem andre bjelker, med det for-
mål å validere anvendelsesområdet med hensyn til geometri. Flere konstitutive delmodeller
for betong ble undersøkt i detalj i en sensitivitetsstudie. Videre ble en rekke forskjellige
elementstørrelser testet med sikte på å finne en optimal FE-diskretisering for et generelt
sett av bjelker med åpninger. Andre modelleringsvalg er basert på anbefalinger gitt i littera-
turen.

Modelleringsusikkerheten, kvantifisert av en middelverdi mellom eksperimentell og numerisk
kapasitet, θm = 1.06 og en variasjonskoeffisient, Vθ = 16.4%, ble oppnådd i dette studiet. De
oppnådde verdiene er basert på analyser av åtte forskjellige bjelker modellert med den val-
gte løsningsstrategien. Sammenlignet med eksperimentelle resultater, gjenspeiler dette en
generell undervurdering av kapasiteten i NLFEA.

Vesentlige sensitiviteter knyttet til materialmodellene ble observert i dette studiet. Følgelig
vil den valgte løsningsstrategien ikke nødvendigvis være i stand til å oppnå den realistiske
bruddmekansimen og lastkapasiteten for alle betongbjelker med utsparinger. Løsnings-
strategien kan betraktes som en grunnleggende prosedyre for å evaluere kapasiteten til
slike bjelker, og kan forbedres ved bruk av mer detaljerte delmodeller for å beskrive de
dominerende materielle oppførslene som inngår i bruddmekanismene. Det kan imidlertid
være vanskelig å forutsi bruddmekanismen for bjelker med komplekse geometrier. Derfor
bør de numeriske analysene være ledsaget av grundige kontroller. Disse kontrollene tar sikte
på å oppdage mulige falske styrker, noe som resulterer i falsk kapasitet. Dette ble oppdaget i
noen elementanalyser rapportert i denne oppgaven.
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1. Introduction
Reinforced concrete (RC) beams used in concrete structures often include web openings.
The purpose of these openings is to facilitate essential services such as ducts and pipes asso-
ciated with mechanical, electrical and sewer systems or network system access. These struc-
tural beam elements provide an effective way to utilize the space in structures. However,
openings disturb the load path from the applied load points to the supports. Consequently,
this may result in a decreased strength and serviceability of the beam.

A relatively large number of experimental studies on beams with web openings have been
conducted and published during the last decade. However, most of the existing code
provisions do not provide sufficient guidance regarding non-linear modelling of these
structural elements, which may be useful in order to understand and analyze its structural
behaviour.

Due to web openings, these beams contain so called discontinuity regions (D-regions), which
are characterized by nonlinear stress distributions. In those areas, the Bernoulli hypothesis
about plane sections remaining plane after bending is not valid. D-regions are typically
located in areas near concentrated loads, corners, openings etc.

The objective of this thesis is to come up with a general numerical solution strategy [Engen
et al., 2017b] that may be valid for a various selection of such RC beams with openings.
A non-linear finite element analysis (NLFEA) is used in order to determine the ultimate
capacity and failure mode. NLFEAs have been receiving increasing attention these days.
By use of fracture mechanics concepts used in conjunction with the finite element method,
NLFEA provides a tool to assess information about the realistic structural behaviour of RC
structures based on actual material properties. Compared to in a linear finite element
analysis (LFEA), the non-linear extension makes the NLFEA more time consuming, and it
demands many inputs regarding material non-linearities.

Challenges in NLFEAs are related to the many specifications regarding constitutive models,
finite element (FE) discretizations, numerical solution methods, convergence criteria etc.
Consequently, in order to generate accurate numerical models, careful considerations
regarding these selections are required. However, well established numerical models may
be advantageous in several situations, for example in strength analyses and establishment
of the causes of a structural failure. Unless explicitly modelled, software simulations do
not include material uncertainties and errors caused by devices, which may be crucial in
physical experiments.

Previous experimental studies on RC beams with different geometries and various number
of web openings enable comparison of numerical results with real physical results. Three
experimentally tested beams will be used as benchmarks in order to come up with a general
numerical solution strategy. Guidelines for Nonlinear Finite Element Analysis of Concrete
Structures, RTD 1016-1:2017 (DG) [Hendriks et al., 2017] and the European CEB-FIP Model
Code 2010 (fibMC2010) [Code, 2010a] provide guidance regarding specifications related to
the abstraction from mechanical models to numerical models.

The test specimens from the experiments will be implemented in a finite element analysis
(FEA) software called DIANA [DIANA FEA, 2018]. The results obtained in DIANA will be post-
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processed, in order to detect the failure modes for the numerical models. Results obtained
by the selected solution strategy and also results from a sensitivity study regarding some
modelling choices will be elaborated. In the end, the numerical modelling uncertainty will
be evaluated and discussed. Modelling uncertainty is an important aspect when it comes
to the validity of the NLFEA. It indicates how realistic the obtained numerical results are by
comparing the numerical response to the real capacity of the physical specimen.
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2. Method

2.1 Non-Linear Finite Element Analysis

FE modelling of physical structures is a process that consists of two distinct abstraction
steps: First the abstraction from physical structure to mechanical model and then from the
mechanical model to a finite element model.

For the last abstraction step, the finite element method (FEM) is used. The physical
behaviour for space- and time-dependent problems is usually expressed in terms of partial
differential equations (PDE) [COMSOL Inc]. These PDEs are solved by use of numerical
methods. FEM is used to compute these numerical approximations of the real solution.
The main principle is to subdivide a structure into finite elements that may be described by
simple linear equations. The relationship between the stiffness (K ), displacement (D) and
load (P ) in each finite element, is given as: [K ]{D}={P }. The simple equations that model
these finite elements are then assembled into a larger system of equations that models the
entire structure.

NLFEAs allow for simulation of the expected real non-linear structural behaviour of RC struc-
tures. For the complex non-linear material response of concrete the system of differential
equations is non-linear. The stiffness and load become functions of the displacement his-
tory: [K (D)]{D}={P (D)}. FEM solves the system of non-linear differential equations by use
of discretization techniques. Specifications regarding the solution strategy [Engen et al.,
2017b], which constitute constitutive relations, kinematic compatibility and force equilib-
rium, have to be carefully considered in order to obtain accurate results. Options and speci-
fications regarding the solution procedure in NLFEAs will be elaborated in this chapter.

2.1.1 Material Properties

The material properties should describe the physical state of materials in the structure.
Material models are derived from these properties, and constitute the material behaviour
in the FEA.

2.1.1.1 Concrete

According to DG, the concrete properties should be derived from provisions given in
fibMC2010. The most important material properties of concrete can be related to the
characteristic cylinder compressive strength, fck . Formulas for these material properties are
provided in DG, and listed in Table 2.1.
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Table 2.1: Material properties of concrete.

Parameter Unit
Characteristic Cylinder Compressive Strength fck N/mm2

Mean Compressive Strength fcm = fck + ∆ f N/mm2

Mean Tensile Strength (for ≤ C50) fctm = 0.3 f 2/3
ck N/mm2

Mean Tensile Strength (for > C50) fctm = 2.12ln(1+( fcm/10)) N/mm2

Fracture Energy GF = 73 f 0.18
cm Nmm/mm2

Compressive Fracture Energy GC = 250 GF Nmm/mm2

(Initial) Poisson’s Ratio ν = 0.15 -

∆ f = 8 N/mm2.

2.1.1.2 Steel

Reinforcement

Characteristics for the most important material responses of the reinforcement are listed in
Table 2.2.

Table 2.2: Material properties of reinforcement.

Parameter Unit
Yield Strength fy N/mm2

Characteristic Yield Strength fyk N/mm2

Tensile Strength ft N/mm2

Mean Yield Strength fym = fyk + 10 N/mm2

Mean Tensile Strength ftm N/mm2

Mean Yield Strain εym = fym

Es
-

Mean Ultimate Strain εum = ( ftm − fym)

Ehar
+εym -

Young’s Modulus of Elasticity Es N/mm2

Hardening Modulus Ehar =0.02Es N/mm2

Poisson’s Ratio ν = 0.3 -

The formula for the mean ultimate strain of the reinforcement, as shown in Eq. (2.1), is based
on the curve in Figure 2.1 from fibMC2010.

εum = ( ftm − fym)

Ehar
+εym (2.1)
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Figure 2.1: Stress-strain relationship for reinforcement steel bars [Code, 2010a].

2.1.2 Constitutive Models

In FEAs, material models, also called constitutive models, specify the constitutive behaviour
of the materials in the structure by simplified abstractions of the true material behaviour.

2.1.2.1 Material Model for Concrete

According to DG, a total strain-based rotating crack or fixed crack model is preferred.

Total strain crack models describe the tensile and compressive behaviour of a material based
on stress-strain relationships [Hendriks et al., 2017]. The stress is evaluated in the crack
directions. Local strains are transformed to global strains by a transformation matrix. For a
rotating crack model, this strain transformation matrix depends on the current strain vector,
which means that the stress-strain relationship keeps updating with the strain vector. For
a fixed crack model on the other hand, the strain transformation matrix is given by the
incipient cracking, and is not updated for changed crack direction. Consequently, for a
rotating crack model the planes of the cracks are rotating, while for fixed crack models, the
planes are fixed in the a direction determined by the initial cracking direction [Du and CHEN,
2012]. Therefore, spurious stress-locking often occurs in fixed crack models, which results
overestimation of the realistic failure load. Rotating crack models usually results in a lower
failure load because it does not suffer as much from spurious stress locking.

Linear Elastic Properties
According to DG an isotropic linear-elastic material model based on the Young’s modulus
and Poisson’s ratio should be used for concrete modelling. The Poisson’s is assumed equal to
0.15, irrespective of the concrete strength [Hendriks et al., 2017].

Tensile Behaviour
Several tension softening (TS) functions could be used to describe the tensile behaviour of
concrete. The softening curves are based on the fracture energy of the material and the
crack-band width of the finite element.

An exponential TS curve is recommended [Hendriks et al., 2017]. This behaviour function
shows an exponential softening behaviour after crack initiation. The area under the stress-
strain curve constitutes the fracture energy, GF , divided by the equivalent length, heq ,
also called crack-band width. After complete softening, when virtually no stresses are

5



transmitted, the crack is considered as fully open. The principal tensile strain at this point
varies for the different TS approaches and for different crack-band widths.

Compressive Behaviour
According to DG, the compressive strength in a numerical concrete model should be
limited. Hence the compressive behaviour should be modelled by a function that fulfills this
recommendation. A parabolic compressive behaviour function, where the softening branch
is based on the compressive fracture energy, GC , is recommended [Hendriks et al., 2017].
By use of this function, the material gets fully softened in compression at a certain strain
value.

Shear Behaviour
In concrete structures, the shear stiffness is usually reduced after cracking. FEA softwares
usually provide different Shear Retention Models, where the shear retention indicates how
much shear stiffness that is retained. The elastic shear modulus is reduced differently for the
different shear retention models.

Tension-Compression Interaction
For concrete subjected to lateral tensile stresses, the strength and ductility is reduced.
Lateral cracking also influence the material strength. Therefore the tension-compression
interaction should be taken into account when the structure is subjected to a multi-axial
stress state [Hendriks et al., 2017]. Several interaction models are available in the literature.
Some of the models only provide reduction of the compressive strength, while others reduce
both the compressive strength and the peak compressive strain.

Poisson’s Ratio Reduction Model
The ratio between lateral strains and longitudinal strains decrease when the concrete
cracks. Therefore the Poisson’s ratio should be reduced as the damage caused by cracking
increases.

Stress Confinement Model
Concrete subjected to compressive stress shows a pressure-dependent behaviour. Isotropic
compressive stress results in an increased strength and ductility. Compression-compression
interaction is an important feature in order to model confinement effects [Hendriks et al.,
2017]. However, DG specifies that it is conservative to neglect this effect. Therefore, it is not
specified any specifications regarding choice of model.

2.1.2.2 Material Model for Reinforcement

DG recommends an elasto-plastic material model for the reinforcement, where the elastic
limit is equal to the yield strength of the steel. The post-yield behaviour is known as
hardening, and improve the stability of the analysis [Hendriks et al., 2017].

2.1.2.3 Model for Concrete-Reinforcement Interaction

Bond-slip between Reinforcement and Concrete
DG recommends to use embedded reinforcement, which entails that slip between reinforce-
ment and concrete is ignored.

6



Tension Stiffening
Tension stiffening describes the increase in tensile stiffness of reinforcement bars embedded
in concrete compared to plain reinforcement bars alone. The TS model for the concrete
material specifies the amount of added contribution of tensile stiffness to the reinforcement
bars. DG suggests that if the average crack spacing, lav , in the concrete is smaller than the
equivalent length, heq , the amount of released energy, GF , should be increased by a factor,
ncr , as given in Eq. (2.3). ncr is equal to the number of cracks within a single element, given
by Eq. (2.4). lav could be calculated according to Eq. (2.2), where this length is referred to as
Sr,max . If Sr,max<heq , the unmodified tensile fracture energy, GF , can be used to determine
the tension softening relation.

Sr,max = k3c +k1k2k4
φ

ρp,e f f
(2.2)

Table 2.3: Factors included in the formula for the crack spacing.

k1 0.8 for high-bond bars
1.6 for plain bars

k2 0.5 for pure bending
1.0 for pure tension

k3 3.4 (recommended value)
k4 0.425 (recommended value)

GRC
F = ncr GF (2.3)

ncr = max(1,
heq

Sr,max
) (2.4)

2.1.3 Finite Element Discretization

2.1.3.1 Mesh Order

According to DG, quadratic mesh order is recommended. Linear interpolation for the dis-
placement field will show locking behaviour in certain cases. Quadratic elements can de-
scribe more deformation modes and complex failure modes such as shear failure [Hendriks
et al., 2017].

2.1.3.2 Mesh Type

Regarding element type, either quadratic/hexagonal or triangular/tetrahedron can be used
in 2D or 3D modelling respectively. 8-node quadrilateral elements are recommended for 2D
structures and 20-node hexahedral elements for 3D structures [Hendriks et al., 2017].
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2.1.3.3 Mesh Density

According to FEA theory, FE models with a fine mesh yield highly accurate results compared
to FE models with a coarse mesh [COMSOL Inc]. In order to ensure that the constitutive
model does not exhibit an undetected snap-back in the stress-strain relationship, and such
that a considerably smooth stress field can be calculated, the maximum element size should
limited. According to DG, the maximum element size of a regular 2D beam should be limited
to the smallest value of L/50 and H/6, where L is the span length and H is the height of the
beam. It is not given any restrictions regarding the minimum element size, but this will be
limited by the computational time. However, DG does not include recommendations for
beams with web openings.

2.1.3.4 Equivalent Length

The equivalent length is an essential parameter in constitutive models [Hendriks et al., 2017].
heq is related to the dimension of the finite elements and the direction of the cracks. It
describes a softening stress-strain relationship. For quadratic quadrilateral elements with
a square shape and with a crack direction along one of the diagonals, the estimated crack-
band width would be heq =p

2h. For the same square elements with a crack along one of the
element edges, heq = h [Hendriks et al., 2017].

2.1.3.5 Integration Scheme

Both reduced (2x2) and full (3x3) integration scheme can be used in FEAs. Reduced
integration scheme may introduce spurious non-zero energy modes when the stiffness of
the element becomes small due to extensive cracking [Hendriks et al., 2017].

2.1.4 Numerical Analysis

2.1.4.1 Load Application

FEM solves the system of non-linear PDEs by use of discretization strategies. Time dis-
cretization strategies usually have the form of an incremental-iterative solution scheme,
where the load or displacement is applied in several incremental steps and the structural
response for each step is computed from the equilibrium conditions. Load Control Method
(LCM) works well as long as the load increases monotonically. However, after the peak on
the Load Displacement Curve (LDC), the solution may diverge. Further increase in the load
cannot be resisted by the structure. With Displacement Control Method (DCM) on the other
hand, the initial descending part of the LDC can be traced as long as the displacement in-
crease monotonically. Many researchers conclude that DCM is the most efficient algorithm
if there is no snap-back behaviour, meaning if the displacement is non-monotonic during
tracing of the equilibrium path.
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2.1.4.2 Equilibrium Iteration

Equilibrium between internal and external forces could be achieved by use of several
different iterative procedures. According to DG, The Newton Raphson Method (NRM) is
sufficiently accurate and efficient, hence it is the most commonly used procedure to perform
equilibrium iterations. Several types of NRMs are available, where the stiffness matrix is
updated differently. Two of these methods were considered for these NLFEAs, Regular
Newton Raphson Method (RNRM) and Modified Newton Raphson Method (MNRM).

In RNRM, the stiffness relation is updated once per iteration within each incremental step.
Hence, the stiffness matrix needs to be established in every iteration, which may be very time
consuming [TNO DIANA, 2010a].

In MNRM, the stiffness relation is only updated once per incremental step. The tangential
stiffness from the first iteration is used throughout the entire increment. Consequently the
convergence rate could be poor for this method, especially when the load is close to the
failure load [H.Zheng and L.G.Tham, 2005].

2.1.4.3 Convergence Criteria

To determine equilibrium it is necessary with suitable convergence criteria. According to
DG, energy-norm combined with force-norm is preferred. In order to achieve convergence
in an incremental step, the iteration method needs to at least fulfill one of the specified
convergence criteria within the specified allowable number of iterations.
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2.2 Benchmark Analyses

The aim of the work reported in this thesis was to come up with a general numerical solution
strategy for finite element modelling of reinforced concrete beams with web openings. In
order to come up with an accurate numerical solution strategy, three benchmark tests
enabled comparison of the numerical response with a real physical response. This section
presents specifications regarding test setup, material parameters and experimental results
from the selected benchmark analyses. The numerical approaches of the selected test
specimens are presented later.

2.2.1 Case Study 1

The paper Structural behaviour of reinforced-concrete continuous deep beams with web
openings [Yang and Ashour] contains test results of ten RC continuous deep beams with web
openings. Case Study 1 presents a numerical approach to the experimental results for one of
the tested beam specimen, 6IT1, which was used as a benchmark analysis in order to come
up with- and verify a numerical solution strategy. This section presents the experimental test
setup, material parameters and test results for 6IT1. Results from the numerical modelling
of 6IT1 will be presented in Sec. 3.1.1.

2.2.1.1 Experimental Setup

The geometry of 6IT1 is shown in Figure 2.2 and details of geometrical dimensions are listed
in Table 2.4. Figures 2.3 and 2.4 illustrate the reinforcement arrangement in the beam.

This section explains how the experimental setup was arranged. A more detailed explana-
tion, which includes information about the instruments used in the test, is found in the ex-
perimental report. Figure 2.5 was provided in the report, and illustrates the experimental
test setup.

Table 2.4: 6IT1. Dimensions of geometry.

Concrete Beam
Height H 600 mm
Total length Ltot 1790 mm
Span length L 720 mm
Width B 160 mm
Opening height 60 mm
Opening width 90 mm

Support and load plates
Thickness 40 mm
Length 150 mm
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Figure 2.2: 6IT1. Geometrical dimensions given in mm. Modelling tool [Autodesk Inc.,
2018].

Figure 2.3: 6IT1. Rebar configurations. Nominal cover of 35 mm. Modelling tool
[Autodesk Inc., 2018].
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Figure 2.4: 6IT1. Rebar- and concrete cross section. Dimensions in mm. Modelling tool
[Autodesk Inc., 2018].

Figure 2.5: 6IT1. Loading and instrumentation arrangements for test setup. Figure from
report [Yang and Ashour].

The beam was tested to failure under a symmetrical two-point top loading system with a
loading rate of 30 kN/min. The two exterior end supports were designed to allow horizontal
and rotational movements, whereas the intermediate support prevented horizontal move-
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ment but allowed rotation. 150 mm wide steel plates were provided at the points of load-
ing and support, in order to prevent premature crushing or bearing failure. The beam was
preloaded up to a total load of 150 kN before testing, in order to assure a similar loading
distribution to supports. This loading did not produce any cracks.

Some uncertainties regarding the numerical modelling of 6IT1 may have affected the
numerical results. The numerical model of 6IT1 was not preloaded. Another discrepancy
between the experimental and numerical models may have been the concrete cover. The
report does not state the concrete cover in the tested specimen. For the NLFEAs of 6IT1
the cover was modelled according to Figures 2.3 and 2.4. The reinforcement configurations
are modelled according to an assumed nominal cover of 35 mm, and hence not necessarily
identical as in the experimental setup.

2.2.1.2 Material Parameters

The mean compressive strength of the concrete was given in the paper [Yang and Ashour].
This value was based on tests of cylinders with concrete from the same batch, that were
cast simultaneously with the beams. However, it is not stated how many cylinders that were
tested. The rest of the concrete parameters are calculated based on this value.

Regarding the steel, only the yield strength for the rebars were provided in the report. Values
for the Young’s modulus of the rebars and the steel plates were assumed. So was the yield
strength of the steel plates.

All material parameters used in the NLFEAs of 6IT1 are listed in Table 2.5.

Table 2.5: 6IT1. Material parameters.

Concrete parameters
Mean Compressive Strength fcm 68.2 N/mm2

Mean Tensile Strength fctm=2.12ln(1+( fcm/10)) 4.35 N/mm2

Fracture Energy GF =0.073 f 0.18
cm 0.15 N/mm

Compressive Fracture Energy GC =250GF 39.03 N/mm
Young’s Modulus of Elasticity Ec 39000 N/mm2

Poisson’s Ratio ν 0.15
Reinforcement parameters

Diameter: 19 mm
Yield Strength fy 560 N/mm2

Young’s Modulus of Elasticity Es 210000 N/mm2

Steel plate parameters
Yield Strength fy 355 N/mm2

Young’s Modulus of Elasticity Esteel 210000 N/mm2
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2.2.1.3 Experimental Results

The experimental LDC is given in Figure 2.6.

Figure 2.6: 6IT1. Experimental LDC.

The failure mode was characterized by a failure plane that formed along diagonal concrete
struts joining the edges of the load plates and opening corners opposite to the load points, AE
and CF in Figure 2.5. Figure 2.7 shows the crack pattern and at what load the different cracks
occurred. Based on this, the first visible crack appeared after 610 kN was applied. Most
cracks were concentrated at corners of openings. After the first diagonal crack appeared at
web opening corners, the deflection of the beam sharply increased. This constituted the first
horizontal plateau in the LDC which is shown in Figure 2.6. The reported failure load is 2199
kN.

Figure 2.7: 6IT1. Experimental crack pattern. The numbers indicate the total applied
load in kN for when the specific cracks occurred. Figure from the report [Yang and
Ashour].
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2.2.2 Case Study 2

The experimental result in this case study is collected from the paper Influence of Inclined
Web Reinforcement on Reinforced Concrete Deep Beams with Openings [Yang et al., 2007]. The
paper contains test results of 15 RC deep beams with various sized web openings and various
amount of reinforcement. Case Study 2 presents a numerical approach to the experimental
result for one of the tested beam specimen, T1-0, which was used as a benchmark analysis
in order to come up with- and verify a numerical solution strategy. This section presents the
test setup, material parameters and experimental results for T1-0. Numerical results will be
presented in Sec. 3.2.1.

2.2.2.1 Experimental Setup

This section explains how the experimental setup was arranged. A more detailed explana-
tion, which includes information about the instruments used in the test, is found in the ex-
perimental report.

T1-0 contains two small web openings and no inclined reinforcement. The beam is exposed
to two point loads in the top of the beam, shown in Figure 2.8. It is a statically determined
system with two supports in the bottom of the beam, one hinge and one roller. The geometry
of the beam was given in the paper and is summarized in Table 2.6. It contains both vertical
and horizontal shear reinforcement, in addition to rebars in the tensile and compressive
zones, shown in Figures 2.9 and 2.10. The main longitudinal reinforcement in the bottom of
the beam is cast into a steel plate at each beam end.

The main longitudinal bars were cast into a steel plate in each end of the beam. The beam
was tested to failure under a symmetrical two-point top loading system with a loading rate
of 20 kN/minute using a 3000 kN capacity universal testing machine. Both supports were
designed to allow rotational movement. The vertical deflections were measured by 50 mm
capacity linear variable differential transducers mounted at the bottom face at midspan. To
observe the crack development the beam sides were whitewashed.

Table 2.6: T1-0. Dimensions of geometry.

Concrete Beam
Height H 600 mm
Total length Ltot 1200 mm
Span length L 900 mm
Width B 160 mm
Opening height 60 mm
Opening length 75 mm

Support and load plates
Thickness 50 mm
Length 100 mm
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Figure 2.8: T1-0. Geometrical dimensions given in mm. Modelling tool [Autodesk Inc.,
2018].

Figure 2.9: T1-0. Rebar configurations. Nominal cover of 25 mm. Modelling tool
[Autodesk Inc., 2018].
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Figure 2.10: T1-0. Rebar- and concrete cross section. Dimensions in mm. Modelling tool
[Autodesk Inc., 2018].

Some uncertainties regarding the numerical modelling of T1-0 may have affected the
numerical results. The covers of the reinforcement were not given in the paper for T1-0. The
reinforcement configurations are modelled according to an assumed nominal cover of 25
mm and 50 mm, and hence not necessarily identical as in the experiment. The rebar shapes
are drawn according to [CEN, 2003]. Many assumptions had to be done regarding spacing of
vertical and horizontal bars as well, where the arrangement is given in Figure 2.9.

2.2.2.2 Material Parameters

The mean compressive strength of the concrete was given in the paper. However, the Young’s
modulus was not stated, hence this value was requested by email, and received personally by
the main researcher of the experimental study. All reinforcement properties and steel plate
properties were given except the mean ultimate strain for the rebars. The yield strain for ø6-
bars was obtained by a 0.2% offset method, and the value was given in the report [Yang et al.,
2007]. The material parameters are summarized in Table 2.7.
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Table 2.7: T1-0. Material parameters.

Concrete parameters
Mean Compressive Strength fcm 55.8 N/mm2

Mean Tensile Strength fctm=2.12ln(1+( fcm/10)) 3.99 N/mm2

Fracture Energy GF =0.073 f 0.18
cm 0.15 N/mm

Compressive Fracture Energy GC =250GF 37.64 N/mm
Young’s Modulus of Elasticity Ec 32400 N/mm2

Poisson’s Ratio ν 0.15
Reinforcement parameters

Diameter: 6 mm
Mean Yield Strength* fym 483 N/mm2

Mean Yield Strain εym,ø6 4.40·10−3

Mean Tensile Strength ftm 549 N/mm2

Mean Ultimate Strain εum,ø6 =
( ftm − fym)

Ehar
+εym,ø6 2.10·10−2

Young’s Modulus of Elasticity Es 199000 N/mm2

Nominal Hardening Modulus Ehar =0.02Es 3980 N/mm2

Diameter: 10 mm
Mean Yield Strength fym 408 N/mm2

Mean Yield Strain εym,ø10 2.10·10−3

Mean Tensile Strength ftm 548 N/mm2

Mean Ultimate Strain εum,ø10 =
( ftm − fym)

Ehar
+εym,ø10 3.80·10−2

Young’s Modulus of Elasticity Es 195000 N/mm2

Nominal Hardening Modulus Ehar =0.02Es 3900 N/mm2

Diameter: 19 mm
Mean Yield Strength fym 803 N/mm2

Mean Yield Strain εym,ø19 4.10·10−3

Mean Tensile Strength ftm 898 N/mm2

Mean Ultimate Strain εum,ø19 =
( ftm − fym)

Ehar
+εym,19 2.86·10−2

Young’s Modulus of Elasticity Es 194000 N/mm2

Nominal Hardening Modulus Ehar =0.02Es 3880 N/mm2

Steel plate parameters
Young’s Modulus of Elasticity Esteel 210000 N/mm2

Yield Strength fy 500 N/mm2
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2.2.2.3 Experimental Results

Figure 2.11 shows the experimental LDC. The peak load is 1452 kN, where 726 kN is equally
applied to each load plate.

Figure 2.11: T1-0. Experimental LDC.

The experimental crack observations in T1-0 are collected from the experimental report. The
first cracks were observed in the corners of the web openings, as shown in Figure 2.12. The
first crack appeared on the left side when the total applied load was 326.6 kN. At a load of
350 kN the first cracks appeared at the right opening. The first flexural cracks at midspan
were observed at a load of 359 kN. Diagonal cracks were formed through the beam height,
from the opening corners to the edges of the load- and support plates. The failure mode
was characterized by shear failure. The crack pattern was not completely symmetrical. The
researchers argued that the beam could have been disturbed by an imperfection in the
geometry, loading or the material.

Figure 2.12: T1-0. Experimental crack pattern. The numbers indicate the total load in
kN for when the specific cracks occurred. [Yang et al., 2007].
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2.2.3 Case Study 3

The paper Flexural Behaviour and Strength of Reinforced Concrete Beams with Multiple
Transverse Openings [Aykac et al., 2014] contains experimental test results of 10 rectangular
reinforced concrete beams with and without multiple web openings. The difference in the
RC beam configurations were mainly based on effects of opening geometry (circular vs.
rectangular), stirrups in posts between openings, diagonal reinforcement around openings,
and the effect of longitudinal reinforcement with respect to the flexible behaviour of the
beams. Case Study 3 presents a numerical approach to the experimental results for one
of the tested beam specimen, RCxcb, which was used as a benchmark analysis in order
to come up with- and verify a numerical solution strategy. Out of the 10 test specimens
presented in the paper, this specimen was the one that resisted the highest ultimate load, and
exhibited greater ductility than the reference beam without openings. This section presents
the experimental test setup, material parameters and test results for RCxcb. Results from the
numerical modelling of this beam specimen will be presented in Sec. 3.3.1.

2.2.3.1 Experimental Setup

Details of geometrical dimensions of RCxcb are listed in Table 2.8. Aspects of geometry,
reinforcement configuration and loading conditions are illustrated in Figures 2.13, 2.14, 2.15,
2.16 and 2.17. Numerical specifications regarding the boundary conditions are based on
assumptions, and further described in Sec. 2.3.3.5 and Sec. 3.3.2.1. The reinforcement
configurations are modelled according to a guessed nominal cover of 25 mm, and hence
not necessarily identical to the real cover in the physical model. The bar shapes are drawn
according to the Norwegian Standard [CEN, 2003].

The physical test specimen was exposed to a loading scheme characterized by evenly
distributed loading. In order to approach a similar loading condition for the numerical
model, a six-point bending regime was adapted. To receive a more realistic bending regime,
the secondary spreader beam was modelled in DIANA. The presence of multiple openings
was assumed to help distribute stress concentrations around openings to the entire beam
length [Aykac et al., 2014]. Due to this, the authors pursued a more ductile flexural failure
mode.

Table 2.8: RCxcb. Dimensions of geometry.

Beam
Height H 400 mm
Length Ltot 4000 mm
Span length L 3800 mm
Width B 150mm
Number of web openings 12
Diameter of web openings 200 mm

Support and load plates
Thickness 40 mm
Length of support plates 200 mm
Width 150 mm
Length of load plates 100 mm
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Figure 2.13: RCxcb. Geometrical dimensions given in mm. Modelling tool [Autodesk
Inc., 2018].

Figure 2.14: RCxcb. Geometrical dimensions given in mm. Modelling tool [Autodesk
Inc., 2018].
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Figure 2.15: RCxcb. Rebar configurations. Nominal cover of 25 mm. Modelling tool
[Autodesk Inc., 2018].

Figure 2.16: RCxcb. Rebar- and concrete cross section. Dimensions in mm. Modelling
tool [Autodesk Inc., 2018].
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(a) Test setup of experimental program. (b) Experimental reinforcement details.

Figure 2.17: RCxcb. Loading and instrumentation arrangements for test setup, and
reinforcement details. Figure from report [Aykac et al., 2014].
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2.2.3.2 Material parameters

The concrete and reinforcement properties are listed in Table 2.9. The parameters for ø4
stirrups and ø6 bars are based on assumptions, with data collected from a report by Mancini
[Mancini, 2017]. The non-prestressed ø10 cables are based on same properties as ø10
bars.

Table 2.9: RCxcb. Material parameters.

Concrete parameters
Mean Compressive Strength fcm 26.1 N/mm2

Mean Tensile Strength fctm = 0.30 · f
2
3

ck 2.07 N/mm2

Fracture Energy GF =0.073 f 0.18
cm 0.13 N/mm

Compressive Fracture Energy GC =250GF 32.83 N/mm
Young’s Modulus of Elasticity Ec 30290 N/mm2

Poisson’s Ratio ν 0.15
Reinforcement parameters

Diameter: 4 mm
Mean Yield Strength fym 520 N/mm2

Mean Tensile Strength ftm 710 N/mm2

Mean Yield Strain εym,ø4 2.60·10−3

Mean Ultimate Strain εum,ø4 =
( ftm − fym)

Ehar
+εym,ø4 5·10−2

Young’s Modulus of Elasticity Es 200000 N/mm2

Diameter: 6 mm
Mean Yield Strength fym 520 N/mm2

Mean Tensile Strength ftm 710 N/mm2

Mean Yield Strain εym,ø6 2.60·10−3

Mean Ultimate Strain εum,ø6 =
( ftm − fym)

Ehar
+εym,ø6 5·10−2

Young’s Modulus of Elasticity Es 200000 N/mm2

Diameter: 10 mm
Mean Yield Strength fym 476 N/mm2

Mean Tensile Strength ftm 695.7 N/mm2

Mean Yield Strain εym,ø10 =
fym

Es
2.38·10−3

Mean Ultimate Strain εum,ø10 =
( ftm − fym)

Ehar
+εym,ø10 5.73·10−2

Young’s Modulus of Elasticity Es 200000 N/mm2

Diameter: 12mm
Mean Yield Strength fym 550.5 N/mm2

Mean Tensile Strength ftm 646 N/mm2

Mean Yield Strain εym,ø12 2.75·10−3

Mean Ultimate Strain εum,ø12 =
( ftm − fym)

Ehar
+εym,ø12 2.66·10−2

Young’s Modulus of Elasticity Es 200000 N/mm2

Steel plate/beam parameters
Young’s Modulus of Elasticity Esteel 210000 N/mm2

Yield Strength fy 355 N/mm2

24



2.2.3.3 Experimental Results

The failure of RCxcb was caused by concrete crushing in upper centered core and buckling
of longitudinal main compression reinforcement, after yielding of tension reinforcement.
It was stated by the authors that the shear cracks initiated in the chords* and posts** at
the beginning of loading did not widen nor propagate in further stages of loading. The
flexural cracks at the central part of the beam controlled the behaviour. The LDC from the
experiment, as shown in Figure 2.18, indicates a ductile failure more. The long flatten plateau
before ultimate failure, indicates that the concrete material capacity was fully utilized early
in certain critical regions, and that reinforcement contributed to the resistance in the
remaining deflection branch. The reported failure load is 284 kN.

* chords = area over/under openings in the beam.
** posts = area between openings in the beam.

Figure 2.18: RCxcb. Experimental LDC.

25



2.3 Numerical Solution Strategy

The main objective of the numerical case studies was to come up with a general solution
strategy for numerical modelling of deep beams with web openings, to be used for assess-
ment of their failure modes and ultimate load capacities. The main differences between the
beams from the case studies were shear span-to-overall depth, number of web openings and
degree of static indeterminacy. This section will provide information regarding the consti-
tutive relations, kinematic compatibility and force equilibrium that constituted our selected
solution procedure.

2.3.1 FEA Software

The FEAs are conducted by use of the FEA software, DIANA 10.2. The software provides
complex material models that can be implemented into non-linear finite element models by
specification of solution strategy and material parameters. Mean values were used to model
the material strengths in DIANA.

2.3.2 Units

In DIANA, the consistent set of units was defined by millimeters (mm) and Newton (N).

2.3.3 Selected Solution Strategy

Recommendations from DG were used to define a solution strategy for numerical modelling
of the test specimens listed in Table 3.1. The parameters that constituted the selected
solution strategy are listed in Table 2.10.

Table 2.10: Adapted Solution Strategy.

Concrete
Finite Element
Element Type Plane Stress Element CQ16M
Mesh Density H/12
Interpolation Scheme Quadratic
Integration Scheme Full (3x3 point Gauss)
Constitutive Modelling
Material Model Total strain based fixed crack model
Crack Bandwidth (2D elem.)

p
A

Shear Retention Model Damage based
Tension Softening Model MC2010
Compressive Behavior Function Parabolic
Reduction of Compressive
Strength due to lateral cracking Yes
Reduction Model Vecchio & Collins 1993
Stress Confinement Model Selby & Vecchio
Poisson’s ratio Reduction Model Damage based
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Material Parameters
Mean Compressive Strength fcm

Mean Tensile Strength (≤C50) fctm=0.3 fck
2/3

Mean Tensile Strength (≥C50) fctm=2.12ln(1+( fcm/10))
Fracture Energy GF = 0.073 f 0.18

cm
Compressive Fracture Energy GC = 250GF

Linear Material Parameters
Young’s Modulus of Elasticity Ec

Reinforcement Steel
Finite Element
Embedded Reinforcement Yes
Interpolation Scheme Quadratic
Integration Scheme Reduced (2 points)
Constitutive Model
Material Model Von Mises Elastic Plastic Model Ehar =0.02Es

Linear Material Parameters
Young’s Modulus of Elasticity Es

Steel plates
Finite Element
Interpolation Scheme Quadratic
Integration Scheme Full
Constitutive Model
Material Model Tresca Plasticity Model

Loading, Iteration and Convergence Criterion
Loading Displacement Controlled
Load Steps 0.01
Equilibrium Iteration RNRM
Maximum Number of Iterations 40
Line Searches per Iteration 10
Force Norm 0.01
Energy Norm 0.001

2.3.3.1 FEA Discretization

Discretization Strategy and Incremental Technique
Time discretization strategy, with the form of incremental-iterative solution scheme, was
used to solve the non-linear PDEs in the case studies. Direct DCM was the selected
incremental technique. With this method, deformation was prescribed incrementally and
the structural response for each step was computed from the equilibrium conditions by use
of the selected iterative procedure, which in this case was RNRM.
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Finite Elements
In FEAs, the accuracy of the results are affected by the mesh density. As shown in Table 2.10,
the adapted solution strategy operated with plane stress quadratic elements, referred to as
CQ16M in DIANA. The selected mesh density was the height of the beam, H , divided by
12.

Figure 2.19: Topology of eight-node quadrilateral isoparametric plane stress element
CQ16M [DIANA FEA, 2018].

Equivalent Length
A default crack-band width is generated in DIANA. For quadratic quadrilateral 2D elements,
the crack-band width is considered

p
A, where A is the total area of the element.

For the strain values that constituted upper and lower bounds in contour plots used to
present results from the post-process investigations, it was assumed that the elements were
squares (h ·h). Consequently

p
A = h, and the crack-band width was considered to be equal

to the element height, h.

2.3.3.2 Constitutive Model for Concrete

Total strain based fixed crack model was the selected concrete material model for the
numerical solution procedure. In reality, the principal stress direction in concrete exposed
to loading, rotates significantly after crack initiation. Consequently a disadvantage with the
fixed crack model is that it may result in a FE model that suffers from spurious stress-locking,
due to the fact that this rotation of the principal stress direction is neglected [Hendriks et al.,
2017]. This may result in a considerable overestimation of the failure load for this specific
constitutive model.

Linear-elastic Properties
The Young’s modulus was based on the characteristic cylinder compressive strength of the
material, and defined according to Eurocode NS-EN-1992-1-1 (EC2) CEN [2004]. Initial
cracking due to creep, shrinkage and such were neglected.

Tensile Behaviour
How the concrete material in numerical models behaves in tension is usually specified
by a base function. For a total strain based crack model, DIANA provides predefined TS
functions. For the selected solution strategy a TS approach according to Paragraph 5.1.8.2 in
fibMC2010 [Code, 2010b] was chosen. This approach is referred to as MC2010 throughout
this thesis.
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The stress-strain curve of MC2010, as shown in Figure 2.20, is characterized by specific strain
values. For the evaluation of the fracture zone, the peak strain, εpeak , indicating that the
tensile strength is reached, can be estimated to 1.50·10−4 [Code, 2010b]. At this strain level
cracks arise. Complete softening, at the point when the tensile strength is reduced to zero, is
characterized by a strain value that depends on the fracture energy, GF , the tensile strength,
fctm , and the equivalent length, heq . This strain value is referred to as εu , and characterize
fully open cracks.

Figure 2.20: MC2010 stress-strain curve [DIANA FEA, 2018].

For evaluation of the tensile behaviour, an output file from DIANA regarding crack status was
considered. Following information was provided in this output file [TNO DIANA, 2010b], and
is discussed in Sec. 4:

• No crack: If no cracks were initiated yet.

• Open: For cracks on the fully open loading branch.

• Closed: For fully closed cracks. The material was now elastic in compression.

• Active: For cracks on the partially open loading branch.

• Inactive: For cracks on the fully open unloading branch.

Compressive Behaviour
The compressive behaviour of concrete may be specified by a number of different prede-
fined and user-defined curves in DIANA. According to DG, the compressive behavior should
be modelled such that the maximum compressive stress is limited. Parabolic stress strain
diagram with softening branch is recommended. Therefore, this was the selected compres-
sive behaviour function for the numerical solution strategy. The compressive softening is a
function of the compressive fracture energy, GC , which is based on the tensile fracture en-
ergy value, GF . The parabolic diagram, as shown in Figure 2.21, can be used to model this.
αc is the principal compressive strain value at the stage when the concrete starts to soften in
compression, i.e when it starts to crush, while αu is the strain value at when it is completely
softened. At this stage, the compressive capacity is fully utilized.
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Figure 2.21: Parabolic stress-strain curve [DIANA FEA, 2018].

Shear Retention Model
After crack initiation, the shear stiffness is reduced. DIANA explicitly evaluates the shear
retention behaviour for total strain based fixed crack models. According to DG, it is
recommended to use a variable shear retention model, in which the shear stiffness is
gradually reduced to zero. The selected solution strategy included a Damage based shear
retention model, in which the shear retention was based on the material damage due to
cracking. For this model, the shear capacity is reduced to zero when the concrete gets
sufficiently damaged.

Tension-Compression Interaction
DIANA provides several interaction models for reduction of the compressive strength due to
lateral cracking. For the selected solution strategy, this reduction was modelled according to
Vecchio & Collins 1993 [?]. The reduction factor for this model develops as shown in Figure
2.22.

Figure 2.22: Vecchio & Collins reduction factor [DIANA FEA, 2018].

Poisson’s Ratio Reduction Model
The Poisson’s ratio reduction model for the selected solution strategy was damage based.
Consequently, the ratio decreased as the damage caused by cracking increased.
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Stress Confinement Model
The increase in compressive strength due to lateral confinement was modified according to
the model proposed by Selby & Vecchio.

2.3.3.3 Constitutive Model for Reinforcement

Von Mises elasto-plastic material model was used for the reinforcement. This material model
only requires tensile data. For the selected solution strategy a nominal hardening modulus,
Ehar , of 2% of the Young’s modulus for the reinforcement, Es , was used.

2.3.3.4 Model for Concrete-Reinforcement Interaction

Tension Stiffening
The crack spacing had to be considered relative to the crack-band width in order to decide
if tension stiffening had to be accounted for in the numerical model. With a mesh density of
H/12, the element height became 33.3 mm or 50 mm for the beams from the benchmark
analyses. If the average crack spacing is smaller than the crack bandwidth, heq = h, GF

should be increased [Hendriks et al., 2017]. The first term in Eg. (2.2) includes the concrete
cover multiplied by a factor of 3.4. The minimum cover for the benchmark specimens was
25 mm. Hence, the value of this first term become 85 or larger, which is greater than the
maximum element size. Consequently, a tension softening model based on the unmodified
tensile fracture energy, GF , was used.

Bond-slip between reinforcement and concrete
The reinforcement was embedded in the concrete, which adds stiffness to the finite element
model.

Figure 2.23: Topology of embedded reinforcement bar elements [DIANA FEA, 2018].
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2.3.3.5 Specifications regarding the solution strategy for the numerical model in Case
Study 3

The selected solution strategy was assigned to 2D numerical approaches of the beams in
the case studies. As described, plane stress elements were used in these numerical models.
However, due to the complex geometry of RCxcb, DIANA struggled with generation of a
realistic stress distribution when the out-of plane stresses were neglected. Therefore, a 3D
numerical approach of RCxcb was created in order to model the fully triaxial behaviour.
The 3D model utilized the fully depth of the beam in order to create a three-dimensional
stress situation. An internal comparison between the structural behaviour of a 2D and a
3D numerical model of RCxcb, as shown in Figures 2.24 and 2.25, will be presented in Sec.
3.3.

Figure 2.24: RCxcb. Geometry of the 2D finite element model, modelled in DIANA.

Figure 2.25: RCxcb. Geometry of the 3D finite element model, modelled in DIANA.

Boundary Conditions and Loading Scheme
Both 2D and 3D models were modelled as simply supported, restrained in all axial directions
in the left support and free in the longitudinal x-axis in the right support. All connection
nodes were set to rotate freely around the global axis. While the 2D model was loaded in
single points, and had point supports, the 3D model was loaded by line loads, and had line
supports connected to the nodes in the depth direction.

Connection Property Assignment
Due to large deformations and complex geometry of RCxcb, the comprehensive numerical
model required specification of a structural interface between the concrete and the steel
plates. All numerical analyses of RCxcb were performed with soft interface, which is further
presented in Sec. 3.3.2.1.

In Case Study 1 and 2, the deflections were relatively small. Consequently, so were
the friction/constrained friction forces. The numerical results were not affected by lack
of structural interface elements in these case studies, and they were excluded in these
models.
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When two different materials interact with each other in a numerical program, the differ-
ences in transverse contraction between those materials can cause an effect in the state of
stress that differs from the intended stress conditions. It is stated in Kotsovos’ and Pavlovic’s
book about finite element analysis for limit state design of concrete structures [Kotsovos and
Pavlovic, 1995] that the degree of lateral boundary constraint, in which develops at interface
between load plates and concrete, has an effect on concrete strength properties. Kotsovos
points out that this constraint develops as a result of the incompatible lateral deformation of
specimen and plates, and rise frictional stresses at the specimen boundaries. This will also
be a source of uncertainty with respect to the axial testing regime where properties for tested
specimens are determined. DIANA has an initial set of normal- and tangential stiffness pa-
rameters, Kn and Kt , respectively, that take this effect into account.

The following formulas for the numerical interface are only used as an initial guess, and
should be calibrated [DIANA FEA, 2018]:

Kn
∼= 100 ∼ 1000 · E ad j

l el
(2.5)

Kt
∼= Kn

10 ∼ 100
(2.6)

The visual effect of principal stresses beneath load plates with and without interface is
presented in Figure 3.62 for the 2D finite element model. The chosen interface for all 2D
and 3D numerical models in Case Study 3 was soft interface, which is presented in Sec.
3.3.2.1.

Finite Elements
The adapted solution strategy operated with plane stress quadratic elements, referred to
as CQ16M in DIANA. The standard mesh density was the height of the beam, H, divided
by 12. The circular web openings in Case Study 3, and the implemented connection
property assignment with structural interface, resulted in additional element types. The 2D
RCxcb model in DIANA generated three different finite element types: CQ16M, CT12M and
CL12I.

• CQ16M was the specified element type, and was generated in all structural elements.

• CT12M is a six-node triangular isoparametric plane stress element, and was generated
locally around all web openings in concrete.

• CL12I is a 3+3 node interface element between two lines in a two-dimensional
configuration, and was generated in the interface between concrete and steel.
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(a)

(b)

Figure 2.26: Topology of (a) Six-node triangular isoparametric plane stress element
CT12M and (b) 3+3 node 2D interface element CL12I [DIANA FEA, 2018].

The 3D model generated five different element types: CHX60, CPY39, CTE30, CTP45 and
CQ48I. The crack-band width is considered as h = 3

p
V , where V is the volume of the

element.

• CHX60 is a twenty-node isoparametric solid brick element, and was generated in all
structural elements.

• CPY39 is a thirteen-node isoparametric solid pyramid element, and was generated
locally in the edges of web opening 1, 4, 11 and 12.

• CTE30 is a ten-node, three-side isoparametric solid tetrahedron element, and was
generated locally in the edges of web openings 1, 4, 11 and 12.

• CTP45 is a fifteen-node isoparametric solid wedge element, and was generated locally
around all web openings in concrete.

• CQ48I is a 8+8 nodes interface element between two planes in a three-dimensional
configuration, and was generated in the interface.

(a) (b)

(c)

Figure 2.27: Topology of (a) twenty-node isoparametric solid brick element CHX60 and
(b) thirteen-node isoparametric solid pyramid element CPY39 and (c) ten-node, three-
side isoparametric solid tetrahedron element CTE30 [DIANA FEA, 2018].
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(a)

(b)

Figure 2.28: Topology of (a) fifteen-node isoparametric solid wedge element CTP45 and
(b) 8+8 node 3D interface element CQ48I [DIANA FEA, 2018].

2.3.4 Sensitivity Study of the Solution Strategy

All selections regarding constitutive relations, kinematic compatibility and force equilibrium
in NLFEAs influence the accuracy of the results. In order to identify possible sensitivities
and limitations within the chosen solution strategy, the FEA discretization and certain
constitutive relations were varied. The structural response obtained by the different models
were evaluated and compared with each other.

In this numerical parameter study, sensitivity regarding the following topics were investi-
gated:

• Mesh density

• Concrete TS model

• Concrete compressive behaviour function

• Concrete shear retention model

2.3.4.1 FEA Discretization

Mesh Density
As mentioned, DG includes recommendations regarding maximum element size for regular
2D beams, without openings. However, the beams investigated in this thesis had two or
more web openings. Consequently, the optimal solution strategy may differ from the DG-
recommendations. As shown in Table 2.10, the beam height, H , divided by 12 was chosen
as standard mesh density. Additionally, one coarser and one finer mesh density were tested;
the span length, L, divided by 50, and the beam height, H , divided by six.

2.3.4.2 Constitutive Model for Concrete

In order to investigate the sensitivity regarding constitutive relations, several material
models were varied.
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Tensile Behaviour
For the selected solution strategy, MC2010, was chosen as the standard TS model. In the
sensitivity study, exponential TS model was tested as well. The stress strain diagrams for
these two approaches are shown in Figure 2.29. The softening branches deviate remarkably.
Complete softening of the concrete is achieved at a principal tensile strain value of 5 · GF

fctm ·h
for MC2010 TS, and 2 · GF

fctm ·h for exponential TS. Consequently, exponential TS results in a
less ductile FE model as the strain value for completely softened concrete in tension is 2.5
times lower than for MC2010. In DIANA, the Poisson’s ratio is not an input parameter for
MC2010 TS. For exponential TS on the other hand, this parameter needs to be specified, and
was set to 0.15, as recommended in DG.

Figure 2.29: Stress-strain curves for MC2010- and exponential TS models [DIANA, 2017].

Compressive Behaviour
A constant compressive behaviour function was tested in addition to the parabolic softening-
hardening function. The definition of these curves is shown in Figure 2.30. With a constant
compressive behaviour the compressive capacity remains constant after the compressive
strength is reached, while a parabolic compressive behaviour results in a material that gets
completely softened in compression. According to DG, models that only limit the compres-
sive strength, like the constant function does, are not advisable. The analyses was accompa-
nied with post-analysis checks of the compressive strains [Hendriks et al., 2017].

Figure 2.30: Stress-strain curves for parabolic- and constant compressive behaviour
approaches [DIANA, 2017].
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Shear Retention Model
Regarding shear retention model, constant models were tested in addition to the damage
based model. Constant shear retention includes a reduction factor, β, that is equal to- or
lower than one, but greater than zero. It indicates the percentage of remaining shear strength
after cracking. According to DG, this approach is not advisable. Therefore the NLFEAs were
followed by thorough post-analysis checks of spurious tensile stresses.

2.3.5 Post-Analysis Checks

In order to validate the accuracy of the numerical results, thorough post-analysis checks
should be conducted. The post-analysis checks conducted in this thesis are based on
concepts presented in DG. LDCs enabled comparison of the response of the numerical
models from the NLFEAs and the response of the physical models from the experiments.
This curve is a graphical representation of the response that characterizes the overall
behaviour of the structure. Post-analyses checks were typically conducted at points on the
curve where the applied load dropped drastically. Those points reflect changes in the global
behaviour of the beam, and may be caused by:

• Crack generation due to local exceedance of the tensile strength in the concrete. εpeak ,
described in Table 2.11, characterize the strain value at this point for the different
numerical models.

• Complete tension softening of the concrete. εu , described in Table 2.11, characterize
the strain value at this point for the different numerical models.

• Crushing of the concrete due to local exceedance of the compressive strength of the
material. αc , described in Table 2.11, characterize the strain value at this point for the
different numerical models.

• Complete compression softening of the concrete. αu , described in Table 2.11, charac-
terize the strain value at this point for the different numerical models.

• Yielding in the reinforcement.

• Shear failure due to exceedance of the shear capacity.
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Table 2.11: Description of strain parameters that were used in post-analysis checks.

ε1 Principal tensile strain.
ε2 Principal compressive strain. (ε3 for 3D models).
εpeak Strain value for for when principal tensile stress reaches the tensile strength,

fctm . Cracking starts when ε1 exceeds εpeak .
εu Strain value for when the concrete is fully softened in tension.
αc Strain value for when principal compressive stress reaches the compressive

strength, fcm , when a parabolic function is used to describe the concrete
compressive behaviour. Crushing starts when ε2 exceeds αc .

αu Strain value for when the concrete is fully softened in compression
εc Strain value for when principal compressive stress reaches the compressive

strength, fcm , when a constant function is used to describe the concrete
compressive behaviour. Crushing starts when ε2 exceeds εc .

εcu2 Idealized fracture strain value obtained from [CEN, 2004], used as a
reference value in the constant compressive behaviour function
for Case Study 3.

εcr
nn Represents the normal crack strain in the integration points

of the elements, to obtain the crack pattern
defined as Eknn in DIANA [DIANA FEA, 2014].
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2.4 Modelling Uncertainty

Modelling uncertainty indicates how good the numerical results are compared to the
physical behaviour, and is therefore important when it comes to decision-making regarding
the NLFEA results. The FE-outcome is uncertain as it represents simplifications of the
physical behaviour of the structures [Engen, 2017]. The chosen solution strategy includes
choices regarding kinematic compatibility, material models and equilibrium, where the
different models will be more suited in some specific situations than others. All those
choices contribute to the modelling uncertainty, in addition to uncertainties regarding the
experimental setup. A higher complexity of the solution strategy will reduce the modelling
uncertainty, as the variables will influence the model implicitly if it is not defined explicitly
in the selected solution strategy.

The uncertainty could be divided into two main groups; physical uncertainties and mod-
elling uncertainties. The physical uncertainties will not influence the choice of mechanical
models regarding the solution strategy and influence the outcome from the FE-modelling,
but will have an impact on the experimental results. Hence, it will influence the modelling
uncertainty.

Physical Uncertainties
The physical uncertainties include uncertainty regarding the material properties, geome-
try, load application and boundary conditions. Different types of physical uncertainties that
could influence the experimental capacity, are listed below. The list is collected from the
Ph.D of Morten Engen [Engen, 2017].

Material uncertainties:

• The compressive and tensile strengths of concrete.

• The Young’s modulus of concrete.

• The yield strength of the reinforcement steel.

• The uncertain relation between stresses and strains of the materials.

Geometrical uncertainties:

• Cross-sectional thickness

• The cover to the reinforcement

• The cross-sectional area of the reinforcement bars.

• Imperfections of the geometry.

Uncertainties due to load and boundary conditions:

• Distribution and intensity of distributed load.

• Locations and intensities of point loads.

• Ground motion intensity.

• The mass densities of the materials.
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• The stiffness and strength of surrounding structures and foundations.

• Geometrical idealization of supports.

The material properties depend on the measuring technique, as well as the numbers of tests
taken. An increased amount of tests will reduce the uncertainty of the material strength.
Concrete properties are considered as the largest sources of error, as it is a heterogeneous
material. Thus a part of the uncertainties will always remain even though the number of
tests is increased or the machinery is calibrated.

Imperfections due to geometry, load and boundary conditions could occur and contribute
to the physical uncertainty which would influence the experimental capacity. Uncertainty
regarding load is dependent on the nature of the load, dead load or live load. Dead
loads are comparable with the material parameters, while live load are based on random
processes.

It is used a cylinder test to decide the concrete compressive strength in all case studies.
In Case Study 3 two cylinder tests were performed, while in Case Study 1 and 2 it was
not specified. Mean values are used, implementing uncertainty regarding the material
properties. No information is given regarding the fabrication of the reinforcement, but it
will contribute to the physical uncertainty which is implicitly included in the modelling
uncertainty.

Modelling Uncertainties
To implement the experiment in a software for FE-modelling, material models have to be
selected. The material models are defined as mathematical models that tries to describe
the mechanical behaviour of the material, and are only approximations of the real physical
behaviour of the structure. The mathematical models contain different degree of complexity.
A multiple amount of combinations are available, causing complexity of finding the ultimate
combination. Additionally, the models used are uncertain as they often are empirically
based. The numerical outcome will also be uncertain, but not random. NLFEA will provide
the same solution in every analysis. The lack of knowledge or experience regarding the
choice of models add uncertainty to the FE-modelling.

If not all material properties are given from the experiment, sub-models should be used
to calculate the remaining variables. The sub-models express variables as functions of
given variables and are often empirically based. This contributes to modelling uncertainty
as the material parameters are included in the FE-modelling. The sub-models should
be implemented consistently for the different benchmark analyses, to obtain an accurate
modelling uncertainty.

In most experiments, compressive strength was the only defined parameter for concrete.
Sub-models for the other material parameters had to be adopted. EC2 is used to calculate the
Young’s modulus of concrete, as a function of the concrete compressive strength. The other
material parameters are based on equations from DG. Sub-models for a various number of
reinforcement properties had to be adopted as well.

The FE-modelling is based on the geometries, loads and boundary conditions given in the lit-
erature for the different case studies. Not all covers and spacing between reinforcement stir-
rups were given in the benchmark reports. Consequently some parameter values were based
on assumptions in all case studies, which contributed to the modelling uncertainty.
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The iterative solution of the NLFEA contributes to modelling uncertainty as it could never
be assumed as 100% accurate. Lack of knowledge and experience regarding the software
could also contribute to modelling uncertainty. Refinement of the FE-model could impact
the results. RCxcb is tested with both 2D and 3D modelling.

Quantification of the Modelling Uncertainty
Quantification of the modelling uncertainty is important in validation of each benchmark
analyses and the selected solution strategy.

For use of NLFEA, the modelling uncertainty, θ, is usually given as

θ = Rexp

RN LF E A
(2.7)

Rexp is the measured outcome from the experiment and RN LF E A is the predicted outcome
of the same experiment using NLFEA. For θ > 1.0 the model prediction is underestimating
the experimental capacity. Rexp is the outcome of a random process, hence the estimated
modelling uncertainty depends on the physical uncertainties that influence the measured
Rexp . When θ is calculated individually for each analysis, it describes the between-model
uncertainty.

When all results from the benchmark analyses are included in one model uncertainty, the
equations become

θi = (
Rexp

RN LF E A
)i (2.8)

θm = 1

n

n∑
i=1

θi (2.9)

where θi describes the uncertainty obtained in each analysis and θm describes the uncer-
tainty obtained for n analyses with the selected solution strategy. θm describes the within-
model uncertainty.

θm could be represented by a normally distributed random variable, where the probability
distribution is given through a mean value, µθ, and a coefficient of variation, Vθ. Those
values are estimated by comparing NLFEA outcomes with the experimental capacities. µθ
is the bias and indicates the average fit to experimental results.

The following equations can be used if no information is given about the variable [Engen
et al., 2017a]. The expected values for the mean and variance are given in Eq. (2.10)
and (2.11), where the sample mean is given by θm and the sample variance is given by
s2 = 1

n−1

∑n
i=1(θi −θm)2. The coefficient of variation is given by Vθ = σ

µ .

E [µ|θ] = θm (2.10)

E [σ2|θ] = n −1

n −3
s2 (2.11)
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3. Numerical Results
In this section results from several NLFEAs will be presented. Sec. 3.0.1 presents the main
results from the NLFEAs obtained by the selected solution strategy. Sec. 3.1.1, 3.2.1 and
3.3.1 present post-process investigations of the numerical results of 6IT1, T1-0 and RCxcb,
respectively.

3.0.1 NLFEA Results obtained by the selected Solution Strategy

The selected solution strategy was used to perform NLFEAs on all test specimens listed in Ta-
ble 3.1. Table 3.2 shows a summary of the ultimate load capacities for the numerical models
of these eight specimens. This table includes the achieved modelling uncertainties, which
are based on their respective experimental failure loads. Table 3.3 lists the obtained experi-
mental and numerical failure modes for these specimens. 6IT1, T1-0 and RCxcb are further
studied in Case Study 1, 2 and 3, while the rest of the listed specimens were analyzed by the
selected solution strategy, but the results will not be further elaborated in this paper.

Failure Modes
All numerical models listed in Table 3.1 experienced shear failure in the NLFEAs. The achieved
numerical modes of failure, listed in Table 3.3 are defined below [Placas and Regan]:

• Shear Compression Failure: This mechanism occurs for shear cracking combined with
crushing of the concrete, due to inadequate compressive capacity. It is typical for deep
beams with shear reinforcement.

• Diagonal Tension Failure: This type of failure appears in beams where the amount of
shear reinforcement is insufficient. Failure occurs immediately on the appearance of
shear cracks. The diagonal tension failure is of a rapid and violent type of failure.

• Web Crushing: Shear cracks combined with crushing of the web in beams with thin
webs.
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Table 3.1: Summary of all test specimens.

6IT1 From Case Study 1 [Yang and Ashour].
Detailed post-process investigation

presented in Sec. 3.1.
Sensitivity study summed up in Table 3.4

and elaborated in Sec. 3.1.2
T1-0 From Case Study 2 [Yang et al., 2007].

Detailed post-process investigation
presented in Sec. 3.2.

Sensitivity study summed up in Table 3.5
and elaborated in Sec. 3.2.2.

RCxcb From Case Study 3 [Aykac et al., 2014].
(2D & 3D) Detailed post-process investigation

presented in Sec. 3.3.
Sensitivity study summed up in Table 3.6

and elaborated in Sec. 3.3.2.
B-I-L Beam from experimental study by

A. F. Ashour and G. Rishi, 2000 [Ashour and Rishi, 2000].
Studied in detail by Line Nilsson in

conjunction with a former project work on NTNU.
B-I-S Beam from experimental study by

A. F. Ashour and G. Rishi, 2000 [Ashour and Rishi, 2000].
Studied in detail by Kristine Nøttveit in

conjunction with a former project work on NTNU.
B-E-L Beam from experimental study by

A. F. Ashour and G. Rishi, 2000 [Ashour and Rishi, 2000].
Studied in detail by Erlend Nygårdsvoll in

conjunction with a former project work on NTNU.
T3-3 Beam from experimental study by

K.-H Yang, H.-S Chung and A.F. Ashour [Yang et al., 2007].
Similar geometry as T1-0 from Case Study 2,

but with larger web openings and inclined reinforcement.
T1-1 Beam from experimental study by

K.-H Yang, H.-S Chung and A.F. Ashour [Yang et al., 2007].
Similar geometry as T1-0 from Case Study 2,

but with inclined reinforcement.
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Table 3.2: Failure loads obtained by the selected solution strategy in NLFEAs of the tested
specimens.

Test Specimen Numerical Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

6IT1
(Case Study 1) 2565 kN 0.85

T1-0 1670 kN 0.87
(Case Study 2)

RCxcb (2D)
(Case Study 3) 250 kN 1.14

RCxcb (3D)
(Case Study 3) 242 kN 1.18

B-I-L* 348 kN 1.10
B-I-S * 601 kN 1.14
B-E-L* 557 kN 1.33
T3-3** 1889 kN 1.06
T1-1** 1751 kN 0.99

* Previously studied benchmark specimens. Details and source specified in Table 3.1.
** Benchmark test from the same experimental study as T1-0, referred to in Table 3.1.

Table 3.3: Experimental and numerical failure modes for the analyzed specimens.

Test Specimen Numerical Experimental
Failure Mode Failure Mode

6IT1 Diagonal Tension Failure
Case Study 1 combined with Shear Unspecified Shear Failure

Compression Failure
T1-0 Shear Compression Failure Unspecified Shear Failure

Case Study 2
RCxcb (2D) Diagonal Tension Failure

Case Study 3 combined with Web Beam-Type Flexural Failure
Crushing Failure

RCxcb (3D) Diagonal Tension Failure
Case Study 3 combined with Web Beam-Type Flexural Failure

Crushing Failure
B-I-L* Diagonal Tension Failure Unspecified Shear Failure
B-I-S * Diagonal Tension Failure Unspecified Shear Failure
B-E-L* Diagonal Tension Failure
T3-3** Shear Compression Failure Unspecified Shear Failure
T1-1** Shear Compression Failure Unspecifed Shear Failure

* Previously studied benchmark specimens. Details and source specified in Table 3.1.
** Benchmark test from the same experimental study as T1-0, referred to in Table 3.1.
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3.0.1.1 Sensitivity Study from Case Study 1

Table 3.4: Numerical failure mode, failure load and modelling uncertainty obtained by
different numerical solution strategies for 6IT1.

Parameter Failure Mode Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

Mesh Density
H/12 = Diagonal Tension

element size Failure combined 2565 kN 0.85
50 mm with Shear

Compression Failure
L/50 = No Failure* No peak —

element size
14.4 mm

H/6 = Diagonal Tension
element size Failure combined 2401 kN 0.92

100 mm with Shear
Compression Failure

Tension Softening Model
MC2010 TS Diagonal Tension

Failure combined 2565 kN 0.85
with Shear

Compression Failure
Exponential TS Diagonal Tension 1590 kN 1.39

Failure
Compressive Behaviour

Function
Parabolic Compressive Diagonal Tension

Behaviour Function Failure combined 2565 kN 0.85
with Shear

Compression Failure
Constant Compressive No Failure**

Behaviour Function 2987 kN 0.74
Shear Retention Model

Damage Based Diagonal Tension
Behaviour Function Failure combined 2565 kN 0.85

with Shear
Compression Failure

Constant (β=0.1) No Failure*** No Peak —
Constant (β=0.01) No Failure*** No Peak —

No Failure due to:
* Analysis ended before a failure mechanism was formed.
** Compressive capacity never fully utilized.
*** Shear capacity never fully utilized.
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3.0.1.2 Sensitivity Study from Case Study 2

Table 3.5: Numerical failure mode, failure load and modelling uncertainty obtained by
different numerical solution strategies for T1-0.

Parameter Failure Mode Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

Mesh Density
H/12 = Shear

element size Compression Failure 1670 kN 0.87
50 mm
L/50 = Shear

element size Compression Failure 1528 kN 0.95
18 mm
H/6 = Shear

element size Compression Failure 1708 kN 0.85
100 mm

Tension Softening Model
MC2010 TS Shear

Compression Failure 1670 kN 0.87
Exponential TS Shear

Compression Failure 1161 kN 1.25
Compressive Behaviour

Function
Parabolic Compressive Shear

Behaviour Function Compression Failure 1670 kN 0.87
Constant Compressive No Failure**

Behaviour Function No peak —
Shear Retention Model

Damage Based Shear
Compression Failure 1670 kN 0.87

Constant (β=0.1) No Failure*** No Peak —
Constant (β=0.01) No Failure*** No Peak —

No Failure due to:
* Analysis ended before a failure mechanism was formed.
** Compressive capacity never fully utilized.
*** Shear capacity never fully utilized.
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3.0.1.3 Sensitivity Study from Case Study 3

Table 3.6: Numerical failure mode, failure load and modelling uncertainty obtained by
different numerical solution strategies for the 2D and 3D model of RCxcb.

Parameter Failure Mode Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

2D / 3D 2D / 3D
Mesh Density

H/12 = Diagonal Tension 250.4 kN / 1.14 / 1.18
element size Failure combined 242 kN

33.33 mm with Web
Crushing Failure

L/50 = Same as H/12 260 kN / 1.09 / 0.99
element size 285.9 kN

76 mm
H/6 = Same as H/12 285.5 kN / 0.99 / 1.10

element size 257.3 kN
66.67 mm

B/6 = Same as H/12 240.1 kN / 1.18 / 1.35
element size 209.3 kN

25 mm
Tension Softening Model

MC2010 TS Diagonal Tension 250.4 kN / 1.14 / 1.18
Failure combined 242 kN

with Web
Crushing Failure

Exponential TS Same as MC2010 TS 212.3 kN / 1.33 / 1.28
220.7 kN

Compressive Behaviour
Function

Parabolic Compressive Diagonal Tension 250.4 kN / 1.14 / 1.18
Behaviour Function Failure combined 242 kN

with Web
Crushing Failure

Constant Compressive Same as Parabolic 255.3 kN / 1.11 / 1.16
Behaviour Function Compressive Behaviour 243.7 kN

Function
Shear Retention Model

Damage Based Diagonal Tension 250.4 kN / 1.14 / 1.18
Failure combined 242 kN

with Web
Crushing Failure

Constant (β=0.1) No Failure No Peak —
Constant (β=0.01) As Damage Based 370.4 kN / 0.77 / 0.77

Shear Retention Model 369 kN
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3.1 Case study 1

The following case study is a numerical approach to the experimental test of 6IT1, collected
from paper Structural behaviour of reinforced-concrete continuous deep beams with web
openings [Yang and Ashour]. The FE model of 6IT1 will be referred to as 6IT1 throughout
this section.

3.1.1 NLFEA Results obtained by Selected Solution Strategy

The NLFEA of 6IT1 conducted by the selected solution strategy specified in Table 2.10, was
accompanied by thorough post-analysis checks. The aim was to detect the numerical failure
mode and failure load. This was mainly conducted by investigation of the development and
distribution of principal strains and stresses, crack initiation and crack distribution, and also
detection of non-converged LSs.

Figure 3.1 compares the LDC obtained in the numerical analysis and the experiment.
Dots represent essential observations that constituted specific responses in the FE model,
while red crosses indicates non-converged LSs. As shown in the curve, non-converged LSs
followed after peaks and flat plateaus. After the final peak, convergence was not achieved
in any steps. The highest load taken up by the numerical model was 2565 kN in LS 74, at a
deflection of 1.36 mm. After this LS a failure mechanism was formed.

Figure 3.1: 6IT1. LDC from the numerical solution strategy and the experiment. The
numerical LDC is marked with essential observations that affected the global behaviour.

The amount of transferred load to the different supports is shown in Figure 3.2. Due to
symmetrical geometry and loading, it was assumed that the load transfer from the load
plated to the two outer supports would be more or less identical. Therefore only the left

48



outer support reaction is plotted, in addition to the middle support. After application of
1178 kN in LS 15, which constituted the first peak in the LDC, the load transfer to the middle
support was reduced. However, this load path was not entirely damaged, hence it still had
load carrying capacity in the following 60 LSs. After LS 74 on the other hand, this path was
fully damaged, and the applied load could no longer be transferred to the middle support.
Hence, the global capacity was reached as the beam was split into separate blocks.

Figure 3.2: 6IT1. Support reactions against total applied load from the numerical
solution strategy. The curves are marked with observations of fully open cracks and
failure.

3.1.1.1 Concrete Cracking

The main crack observations are marked with dots in the LDC in Figure 3.1 and summarized
in Table 3.7.

Table 3.7: T1-0. Crack observations from the numerical solution strategy.

LS Observation Location Total applied load
6 First microcracks Over middle support 495 kN
9 First microcracks Web opening corners 742 kN
15 First fully open crack Web opening corners 1178 kN
74 Fully open cracks Entire beam height 2565 kN

through openings

Figure 3.3 shows principal tensile strain plots for 6IT1 obtained by the selected solution
strategy. Blue colour indicates strain values less than εpeak , listed in Table 3.8, while red
colour indicates strain values exceeding εu , listed in the same table.

Table 3.8: 6IT1. Specific tensile strain values for MC2010 TS curve.

Strain Formula Strain value Tensile stress
εpeak 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 3.59·10−3 σ = 0
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Microcracks formed at local weak points in the material when the tensile strain, ε1, exceeded
εpeak . Complete softening in tension was achieved when ε1 exceeded εu . At this strain value
cracks were considered to be fully open.

The initially most stressed point of the concrete in 6IT1 was located over the middle support.
Here microcracks, with a principal crack width of 3.18·10−4 mm, were initiated in LS 6 when
495 kN was applied. This situation is shown in Figure 3.3a, by hiding data outside of the
limits in the contour plot. Consequently, the parts of the material where ε1 exceeded εpeak

achieved colour.

With increased deflection, the deformations started to localize into a zone of microcracks at
the most critical section of the specimen, which for 6IT1 was in the corners of the openings.
The first fully open crack, with a principal crack width of 0.12 mm, was generated in these
critical areas in LS 15, at a loading of 1178 kN, as shown in Figure 3.3b. After this stage the
load capacity dropped drastically. Consequently, this response represents the first load drop
in the LDC.

Further enforced deflection resulted in propagation of these diagonal cracks. Based on the
principal tensile strain plot shown in Figure 3.3c, it looks like the shear cracks were fully
open almost all the way through the beam in LS 74. However, the strain values in the nodes
underneath the inner corners of the load plates, were still smaller than εu . By zooming in on
this area, as illustrated in Figure 3.3e, it was observed that the crack was not fully open all
the way through the top elements of the specimen yet. In LS 76 on the other hand, all nodes
in the critical shear zone of 6IT1 had achieved strains larger than εu . The maximum crack
width increased from 3.03 mm in LS 74 to 8.33 mm in LS 76. Figure 3.3d shows that the crack
split the beam into separate blocks in LS 76.

(a) LS 6 (P=495 kN). Blue colour=ε1>εpeak . (b) LS 15 (P=1178 kN). Red colour=ε1>εu .

(c) LS 74 (P=2565 kN). Red colour=ε1>εu . (d) LS 76 (P=1906 kN). Red colour=ε1>εu .

(e) LS 74 zoom. Red colour=ε1>εu . (f ) LS 76 zoom. Red colour=ε1>εu .

Figure 3.3: 6IT1. Principal tensile strain plots from essential load steps in NLFEA of the
solution strategy.
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3.1.1.2 Concrete Crushing

Figure 3.4 shows contour plots of the principal compressive strains in 6IT1 at the peak load
level in the LDC, and immediately after, when a failure mechanism was formed. Red colour
indicates concrete with |ε2|>|αu |, listed in Table 3.9. When |αu | was exceeded, the concrete
was completely softened in compression, hence the material had no remaining compressive
capacity. As shown in the contour plot in Figure 3.4b, this strain value was obtained in LS
76. The concrete was softened in the upper part of the shear crack. Another observation that
anticipated the large compressive stresses generated in this area was the slope of the cracks,
which was remarkably reduced. As shown in Figure 3.5, the cracks in the top elements were
almost horizontal.

(a) LS 74 (P=2565 kN). (b) LS 76 (P=1906 kN).

Figure 3.4: 6IT1. Principal compressive strain plots from the numerical solution strategy.
Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Table 3.9: 6IT1. Specific compressive strain values for the parabolic stress-strain curve.

Strain Formula Strain value Compressive stress

αc −5 · 1
3 · fc

Ec
-2.92 ·10−3 σ = fc

αu αc - 3
2

GC
h fc

-2.08·10−2 σ= 0

Figure 3.5: 6IT1. Crack strains in LS 76 (P=1906 kN) of the NLFEA by the selected solution
strategy. Auto-scaled colour plot.

3.1.1.3 Tension-Compression Interaction

Three nodes in the concrete elements that had achieved complete tensile softening in LS 74
are highlighted in Figure 3.6. These nodes corresponded to node number 400, 397 and 390
in the FE model. They also comprised a part of the compressive strut that transferred the
load from the load plates and down to the middle support. Hence this area achieved large
compressive stresses as the applied load increased. Figure 3.7 visualizes the development
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of principal compressive stresses, S2, in these nodes. The horizontal axis indicates at what
load-factor the respective stress values were obtained. Load factor 0.7 indicates the point
when 70% of the total prescribed deflection was applied. Consequently the decimals of
the load-factor corresponds more or less to the LS number. As shown in this figure, the
maximum compressive stress was therefore reached at some point between LS 70 and LS
80. The maximum absolute value was however lower than the absolute value of the specified
compressive strength for 6IT1 which was 68.2 N/mm2.

Figure 3.6: 6IT1. Principal tensile strain plot. Red colour=ε1>εu . Development of
compressive stresses in highlighted nodes; 400, 397 and 390, are shown in Figure 3.7.

Figure 3.7: 6IT1. Table-output from DIANA, showing the development of principal
compressive stresses, S2, in node 400, 397 and 390, highlighted in Figure 3.6.
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3.1.1.4 Yielding of Reinforcement

With the selected solution strategy, the largest reinforcement stress achieved in the analysis
before a failure mechanism was formed, was 450 N/mm2. This was achieved in the
longitudinal rebars, over the middle support. As the yielding limit for all reinforcement
in 6IT1 was 560 N/mm2, the selected solution strategy did not result in any yielding
reinforcement bars.

3.1.1.5 Global Failure

The failure mode of 6IT1 was characterized by shear failure. After LS 74, the splitting shear
crack was fully open almost all the way through the beam. However, the top of the shear
spans were highly compressed. Hence, the beam was not split into separate blocks as long
as these areas had remaining compressive capacity.

In LS 76 the concrete in these areas got completely softened in compression, and the material
capacity was fully utilized in the entire critical section. Consequently, the global capacity
dropped drastically. As shown in Table 3.10, the failure mode was therefore characterized
by a combination of diagonal tension and shear compression failure. The failure load for
6IT1 obtained by the selected solution strategy was 2565 kN, which resulted in a modelling
uncertainty of 0.85.

Table 3.10: 6IT1. Failure mode and failure load from NLFEA of solution strategy.

Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

Diagonal Tension Failure
combined with Shear 2565 kN 0.85
Compression Failure
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3.1.2 Sensitivity Study of the Numerical Modelling in Case Study 1

In this section results from a sensitivity study of the selected solution strategy for NLFEAs
of 6IT1 from the experimental benchmark test [Yang and Ashour] are presented. The
analysis conducted by the selected solution strategy, which is elaborated above, will be
referred to as Analysis 1 throughout this section. Analyses with complementary solution
strategies, meaning other selections regarding FE discretization and sub-models for the
concrete constitutive model, will be referred to as Analysis 2 and Analysis 3 within each
separate sensitivity study. Only one aspect of the solution strategy was changed at a time,
while the rest of the selections were in compliance with the solution strategy described in
Table 2.10.

3.1.2.1 Sensitivity regarding FE Discretization

In this sensitivity study, three mesh densities were tested; L/50, H/6, and H/12 which was
the mesh density for the selected solution strategy. For the geometry of 6IT1, these densities
resulted in element heights of 14.4 mm, 100 mm and 50 mm respectively.

Throughout this sensitivity study, the following designations will be used as references for
the three NLFEAs of 6IT1 with different FE discretizations:
Analysis 1: Mesh density H/12 (50 mm).
Analysis 2: Mesh density L/50 (14.4 mm).
Analysis 3: Mesh density H/6 (100 mm).

Figure 3.8 compares LDCs from the NLFEAs obtained in Analysis 1, 2 and 3, in addition to
the experimental LDC. Appearance of non-converged LSs in Analysis 1, symbolized by red
crosses in the LDC, are explained in the previous section. Green crosses represents non-
converged steps in Analysis 2 and black in Analysis 3. As shown in the curves, Analysis 2 and
3 had less non-converged LSs than Analysis 1. Analysis 2 achieved convergence in almost all
LSs, except in a few after the first peak. In Analysis 3, non-converged steps followed post all
large peaks in the LDC.

In Analysis 3, with element discretization H/6, the first microcracks, with a principal crack
width of 7.64·10−4 mm, were generated in LS 9 (P=773 kN) as indicated in the LDC and
mentioned in Table 3.11. With finer mesh densities, in Analysis 1 and 2, smaller microcracks
were detected, and hence at lower loads. As mentioned the microcracks detected in Analysis
1 had a width of 3.18·10−4 mm, while in Analysis 2 the detected microcracks had a width of
1.23·10−5 mm. These cracks were initiated in LS 6 in Analysis 1, and LS 4 in Analysis 2. The
corresponding load levels were 495 kN and 304 kN.

In all three analyses the first fully open cracks were generated in two diagonal corners of the
web openings. These cracks constituted the first load drop in the LDCs, and one or two non-
converged steps followed after this. The applied loads at this point in the respective models
are listed in Table 3.11. Principal tensile strain plots illustrating this situation is visualized in
Figure 3.9. Blue colour indicates principal tensile strain values less than the respective εpeak -
value, listed in Table 3.12. Red colour represents principal tensile strain values exceeding the
respective εu-value, listed in the same table. The detected widths of these cracks were 0.12
mm, 0.03 mm and 0.11 mm for Analysis 1, 2 and 3, respectively. With increased loading, the
tensile strains increased, and these cracks became wider. Regardless of the mesh density,
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these cracks propagated towards the load plates and the middle support plate. However, the
width of the cracks decreased with a refined mesh density.

Figure 3.8: 6IT1. LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with essential observations that
affected the global behaviour.

(a) Analysis 1: First fully open crack
developed after LS 15 (P=1178 kN).

(b) Analysis 3: First fully open crack
developed after LS 15 (P=1219 kN).

(c) Analysis 2: First fully open crack
initiated after LS 20 (P=1266 kN).

(d) Analysis 2: First fully open crack
fully developed after LS 21.

Figure 3.9: 6IT1. Principal tensile strain plots for different mesh densities. Red
colour=ε1>εu . Blue colour=ε1<εpeak .
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Table 3.11: 6IT1. Crack observations from the NLFEAs with different mesh densities.

Observation, Applied Load Applied Load Applied Load
Location Analysis 1 Analysis 2 Analysis 3
First microcrack,
over middle support 495 kN 304 kN 773 kN
First fully open crack,
in critical shear zone 1178 kN 1219 kN 1266 kN

Table 3.12: 6IT1. Specific tensile strain values in the MC2010 TS curve for different mesh
densities.

Strain Formula Strain value Strain value Strain value Tensile stress
Analysis 1 Analysis 2 Analysis 3

εpeak 1.50·10−4 1.50·10−4 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 3.59·10−3 1.25·10−2 1.79·10−3 σ = 0

In addition to different principal crack widths, a varying number of total initiated cracks
were obtained in the three analyses. Table 3.13 summarizes output information regarding
crack development in DIANA. It shows the total number of cracks, how many that were
open and closed, number of active and inactive cracks and how many that raised, re-opened
and closed in this specific LS. A larger number of cracks were generated in the FE model
with refined mesh density. Figure 3.10 shows principal tensile strain plots from the ultimate
steps before failure. From these plots it is observed that a refined mesh resulted in a greater
quantity of cracks, while the width and length of the cracks seemed to be larger for coarser
FE discretizations. For Analysis 3, both LS 70 and 77 are illustrated in the figure. The failure
load, P= 2401 kN, was applied in LS 70, but the beam did not fail before after LS 77.

Neither of the analyses related to this sensitivity study resulted in yielding of reinforcement
in the numerical model of 6IT1. The largest reinforcement stress, 522 N/mm2, was obtained
with the coarsest mesh, in LS 77. This stress value was obtained in the longitudinal
reinforcement over the middle support. The location of the maximum rebar stress was
identical in all three analyses, regardless of FE discretization.

Table 3.13: 6IT1. Summary of crack logging for different mesh densities at failure load,
given by DIANA.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
LS number
Analysis 1 - 1966 1934 32 1154 812 4 0 0

LS 74
Analysis 2 - 18385 17753 632 4476 13909 0 0 0

LS 100
Analysis 3 - 678 674 16 524 154 2 0 0

LS 70
Analysis 3 - 794 778 16 464 330 6 0 0

LS 77
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(a) Analysis 1: LS 74 (P=2565 kN). (b) Analysis 2: LS 100 (P=1454 kN).

(c) Analysis 3: LS 71 (P=2401 kN). (d) Analysis 3: LS 77 (P=2149 kN).

Figure 3.10: 6IT1. Principal tensile strain plots with different mesh densities, at
maximum applied load levels. Red colour=ε1 > εu .

Figure 3.11 shows contour plots of the principal compressive strains, at critical steps with
respect to compressive capacity. Red colour indicates compressive strains exceeding the
respective value of |αu |, listed in Table 3.14. As described Sec. 3.1.1, this occurred in LS
76 for Analysis 1. With the coarsest mesh, in Analysis 3, the |ε2| exceeded the respective |αu |-
value in LS 71, after an applied load of 2401 kN. The area of completely compressive softened
concrete increased when further deflection was enforced. After LS 77 a remarkable area
underneath the inner corners of the load plates was completely softened in compression.
In Analysis 2, with the finest mesh density, the concrete did not get completely softened in
compression.

Table 3.14: 6IT1. Specific compressive strain values for parabolic stress-strain curve with
different mesh densities.

Strain Formula Strain value Strain value Strain value Compressive stress
Analysis 1 Analysis 2 Analysis 3

αc −5 · 1
3 ·

fc
Ec

-2.92·10−3 -2.92·10−3 -2.92·10−3 σ = fc

αu αc − 3
2 · GC

h· fc
-2.08·10−2 -6.27·10−2 -1.15·10−2 σ≈ 0

(a) Analysis 1: LS 76 (P=2565 kN).

(b) Analysis 3: After LS 70 (P=2401 kN). (c) Analysis 3: After LS 77 (P=2149 kN).

Figure 3.11: 6IT1. Principal compressive strain plots with different mesh densities. Red
colour=| ε2 |>|αu |.
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Another prominent difference in the NLFEAs of 6IT1 with different mesh densities was the
size of the LSs. According to the chosen solution strategy, the load step size should be 1%
of the maximum prescribed displacement, which was 2 mm. Therefore the incremental
displacement should be 0.02 mm, regardless of the mesh density. Due to default regulations
within the software, the average load step size became 0.0203 mm, 0.0075 mm and 0.0249
mm in Analysis 1, 2 and 3, respectively.

As only 100 LSs were provided, a small LS-size resulted in limited total deflection and total
applied load. Consequently, 6IT1 in Analysis 2 did not achieve failure during the specified
100 incremental displacement steps. The total deflection only reached 0.75 mm in the
final LS, which corresponded to an applied load of 1454 kN. Besides the non-converged
LSs after the first peak in the LDC, this analysis achieved convergence from LS 29 and out.
The crack pattern maintained consistent, without any large changes. Figure 3.12 illustrates
this consistency by showing that the principal tensile strain plots from LSs 29 and 100 were
almost identical. The bounding colours are the same as in Figure 3.11.

Analysis 3 required the largest number of iterations within each load step before convergence
was achieved. The ultimate failure was reached after LS 77 at a deflection of 2 mm. At
this point the shear crack was fully open all the way through the beam. The final 0.4 mm
deflection constituted a descending branch in the LDC in Figure 3.8. The largest applied
load taken up by the numerical model before this branch was 2401 kN in LS 70, which
corresponded to 1.54 mm deflection.

The achieved failure modes and the respective failure loads from this sensitivity study
regarding mesh density are summed up in Table 3.15.

(a) LS 29 (P=1181 kN). (b) LS 100 (P=1454 kN).

Figure 3.12: 6IT1. Principal tensile strain plot from Analysis 2. Red colour=ε1 > εu .

Table 3.15: 6IT1. Failure mode and failure load from the NLFEAs with different mesh
densities.

Analysis Failure Mode Failure Load Modelling Uncertainty(
Rexp

RN LF E A
)

1 Diagonal Tension Failure 2565 kN 0.85
combined with Shear
Compression Failure

2 No Failure* No peak —
3 Diagonal Tension Failure 2401 kN 0.92

combined with Shear
Compression Failure

* The analysis ended before a failure mechanism was formed.
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3.1.2.2 Sensitivity to choice of Constitutive Model for Concrete

Tension Softening Model For the selected solution strategy, MC2010 was chosen as the
standard TS approach. According to DG, exponential TS is preferred. In order to investigate
the sensitivity related to this sub-model, these two approaches were tested. Figure 3.13
shows the obtained LDCs from NLFEAs of 6IT1 with the two respective TS sub-models. Based
on these curves it is clear that the FE model was sensitive to choice of TS approach. Red
crosses, which symbolize non-converged LSs from Analysis 1, are explained in the previous
section. Green crosses symbolize non-converged steps for Analysis 2. As shown, Analysis 2
only had four such steps after the ultimate peak was reached.

Figure 3.13: 6IT1. LDCs from the NLFEAs with different TS models, and the experimental
LDC. The numerical LDCs are marked with essential observations that affected the global
behaviour.

Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of 6IT1 with different TS approaches:
Analysis 1: MC2010 TS Model.
Analysis 2: Exponential TS Model.

Both analyses resulted in similar crack propagation before the stress level exceeded the
strength, fctm , and the principal tensile strain reached the value of εpeak listed in Table
3.8 and 3.16. When further deflection was enforced and the corresponding applied load
increased, specific cracks appeared at different loads.

Figure 3.14 shows principal tensile strain plots of 6IT1 obtained in Analysis 2. Blue colour
indicates strains below εpeak , listed in Table 3.16, while red colour indicates strains larger
than εu from the same table.
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Table 3.16: 6IT1. Specific tensile strain values for exponential TS.

Strain Formula Strain value Tensile stress
Analysis 2

εpeak
fctm
Ecm

1.10·10−4 σ = fctm

εu 2 · GF
fctm ·h 1.44·10−3 σ' 0

(a) Microcracks generated (P=495 kN). (b) LS 15 (P=1174kN).

(c) LS 44 (P=1590 kN). (d) LS 46 (P=1024 kN).

(e) LS 44 zoom. (f ) LS 46 zoom.

Figure 3.14: 6IT1. Principal tensile strain plots from essential LSs in Analysis 2. Red
colour=ε1 > εu . Blue colour=ε1 < εpeak .

Table 3.17 lists specific crack observations and their respective formation loads. 6IT1
generated microcracks at 495 kN applied load in both analyses. Figures 3.3a and 3.14a
show that they were also generated in the same area of the specimen. The obtained crack
widths were quite similar; 3.18·10−4 mm and 4.08·10−4 mm, for MC2010 and exponential TS,
respectively.

Tensile strains larger than εu were achieved at similar load levels and at the same location in
both analyses. Figures 3.3b and 3.14b show principal tensile strain plots from this stage for
6IT1 with MC2010 and exponential TS respectively. The bounding contour colours indicate
strain values less than εpeak and greater εu for 6IT1 with the respective tensile approaches.
After this stage the load dropped drastically in both LDCs.

As further deflection was enforced, the strains continued to redistribute due to cracking. For
both TS approaches, large cracks also started to form in the tension zones in the lower part
of the midspans. Based on the principal tensile strain plot from Analysis 2, shown in Figure
3.14c, it looked like the shear cracks were fully open almost all the way through the beam in
LS 44. In the following LS converge was not achieved. By looking into the strain values in the
individual nodes underneath the inner corners of the load plates, ε1 were still smaller than
εu . In the zoomed figure from this LS, shown in Figure 3.14e, this is visualized. However, in
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LS 46 on the other hand, the nodes in this area achieved strains larger than εu . Figure 3.14d
visualizes that a sharp strain-division occurred between concrete that was fully softened in
tension, and concrete that was less strained. This situation constituted the peak in the LDC
in Analysis 2, at a loading of 1590 kN.

Table 3.17: 6IT1. Crack observations from the NLFEAs with different TS models.

Observation Location Total applied load, Total applied load,
Analysis 1 Analysis 2

First microcrack Over middle support 495 kN 495 kN
First fully open Critical shear
crack zone 1178 kN 1174 kN

Regarding compressive behaviour, 6IT1 responded differently in Analysis 1 and 2. All
parameters that constitutes the formula for the specific compressive strain values in the
parabolic compressive behaviour function were identical for the concrete in both analyses.
Consequently the specific compressive strain values, αc and αu , were identical, and are
listed in Table 3.9. In Analysis 1, with the MC2010 TS model, 6IT1 failed when the
concrete was completely softened in compression in the top part of the beam. In Analysis
2, when an exponential TS model was used, 6IT1 failed before the compressive capacity
was fully utilized in the concrete. Hence no parts of the concrete in 6IT1 experienced
complete softening in compression when the TS model was characterized by an exponential
function.

Consequently, as stated in Table 3.18, different failure modes were achieved for the different
TS sub-models. With the selected solution strategy, including the MC2010 TS approach, the
failure mode was characterized by diagonal tensile failure combined with shear compression
failure, as described earlier. 6IT1 in Analysis 2 of this sensitivity study, which included an
exponential TS approach, resulted in only diagonal tension failure. Compared to Analysis 1,
Analysis 2 resulted in a remarkably lower global capacity. Therefore the stresses in the rebars
were even lower than in Analysis 1, which knowingly did not achieve yielding. Consequently
no rebars yielded in Analysis 2 either.

Table 3.18: 6IT1. Failure mode and failure load from the NLFEAs with different TS
models.

Analysis Failure Mode Failure Load Modelling Uncertainty(
Rexp

RN LF E A
)

1 Diagonal Tension Failure 2565 kN 0.85
combined with Shear
Compression Failure

2 Diagonal Tension Failure 1590 kN 1.61

Compressive Behaviour Function
In order to investigate the sensitivity related to choice of compressive behaviour function,

constant function was tested in addition to parabolic function, which was the chosen sub-
model for the common solution strategy.
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Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of 6IT1 with different compressive behaviour functions:
Analysis 1: Parabolic compressive behaviour function.
Analysis 2: Constant compressive behaviour function.

Figure 3.15 shows the LDCs obtained in NLFEAs of 6IT1 with the two different compressive
behaviour functions. Based on these curves it is obvious that the FE model responded
differently based on selection of sub-model regarding the compressive behaviour. Red
crosses symbolize non-converged LSs from Analysis 1 and green crosses symbolize non-
converged steps for Analysis 2. As shown, after the non-converged step at a deflection of
0.79 mm, Analysis 2 converged in all remaining LSs.

Figure 3.15: 6IT1. LDCs from the NLFEAs with different compressive behaviour func-
tions, and the experimental LDC. The numerical LDCs are marked with essential obser-
vations that affected the global behaviour.

A post-process investigation was conducted in order to investigate the response of 6IT1 in
the NLFEAs with different specifications regarding the compressive behaviour.

6IT1 achieved similar response in Analysis 1 and 2 all the way until a failure mechanism
formed in Analysis 1. As Analysis 1 is identical to the selected solution strategy, the formation
of this failure mode is elaborated in the previous sections. In Analysis 2, with the constant
compressive behaviour function, 6IT1 still had load carrying capacity after this stage.

Figure 3.16 illustrates the situation in LS 94 and 95, which constituted a peak in the LDC for
Analysis 2. In Figures 3.16a and 3.16b red colour indicated that the absolute value of the
compressive strains exceeded the absolute value of εc , given in Table 3.40. Consequently,
red areas in these plots indicated crushed concrete. By use of a constant approach for
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the compressive behaviour, the compressive strength does not get reduced by increased
compressive strains. Consequently, no ultimate compressive strain limits were provided
for this compressive behaviour specification. Therefore, the concrete in 6IT1 never got
completely softened when the compressive behaviour was characterized by a simplified
constant function. However, Figure 3.16d indicates that large incremental displacements
followed after LS 94. The fully softened areas in tension increased remarkably in the
lower chord from LS 94 to LS 95, as shown in Figures 3.16e and 3.16f. However, as the
compressed areas in the top part of the shear spans was not fully softened in compression,
the beam did not fail globally at this stage. Consequently, with the compressive behaviour
characterized by a constant function, 6IT1 was not split into separated blocks even though
the crack had propagated through the beam. As mentioned in Table 3.20, this means that
no failure mechanism was formed by this specific solution strategy. The failure mechanism
generated in Analysis 1 is described earlier, as parabolic compressive behaviour constituted
the selected solution strategy described in Table 2.10. However, it is also repeated in Table
3.20.

Table 3.19: 6IT1. Specific compressive strain values in the stress-strain curve of constant
compressive behaviour function of concrete.

Strain Formula Strain value Compressive stress

εc - fc
Ec

-1.74·10−3 σ = fc

(a) LS 94: Principal compressive strain plot.
Red colour=|ε2| > |εc |.

(b) LS 95: Principal compressive strain plot.
Red colour=|ε2| > |εc |.

(c) LS 94: Incremental vertical displacement
plot. Auto-scaled colour plot.

(d) LS 95: Incremental vertical displacement plot.
Auto-scaled colour plot.

(e) LS 94: Principal tensile strain plot.
Red colour=ε1 > εu .

(f ) LS 95: Principal tensile strain plot.
Red colour=ε1 > εu .

Figure 3.16: 6IT1. Principal compressive strain plots, incremental displacement plots
and principal tensile strain plots from LS 94 and 95 in Analysis 2.
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Table 3.20: 6IT1. Failure mode and failure load from the NLFEAs with different
compressive behaviour functions.

Analysis Failure Mode Failure Load Modelling Uncertainty(
Rexp

RN LF E A
)

1 Diagonal Tension Failure 2565 kN 0.85
combined with Shear
Compression Failure

2 No Failure* — —

* Diagonal Tension Cracking but no failure due to the fact that the compressive capacity remained
constant.

As described earlier, the reinforcement in 6IT1 did not yield when the NLFEA was run by the
selected solution strategy, i.e with parabolic compressive behaviour. However, the lack of
failure in Analysis 2, with a constant compressive behaviour function, corresponded to larger
deflections and strain values. This caused yielding in the lower longitudinal reinforcement
bars in LS 98, in a small area over the middle support.

Shear Retention Model
Constant and damage based shear retention models were tested on the numerical models in
order to investigate the sensitivity related to this aspect of the concrete material behaviour.
Two shear retention factors, β=0.1 and β=0.01 were used for the constant model. Post-
analysis checks for spurious tensile strength, crack pattern and load distribution were
conducted.

Throughout this sensitivity study, the following designations will be used as references for
the three NLFEAs of 6IT1 with different shear retention models:
Analysis 1: Damage based shear retention model.
Analysis 2: Constant shear retention model with β=0.1.
Analysis 2: Constant shear retention model with β=0.01.

The LDCs obtained for 6IT1 with the different shear retention models are shown in Figure
3.17. Based on these curves it is clear that 6IT1 was sensitive to choice of shear retention
model. Red crosses symbolize non-converged LSs from Analysis 1, green from Analysis 2
and black from Analysis 3. As shown, all analyses resulted in non-converged steps after
peaks.

As shown in Table 3.21, microcracks were detected at identical load levels in all three
analyses. The width of these microcracks were 3.18·10−4 mm. The first fully open crack in
6IT1 was detected after an applied load of 1048 kN in Analysis 3, and 1127 kN in Analysis 2. In
Analysis 1 the first fully open crack was generated when the applied load exceeded 1178 kN.
These situations represent the first peak in the LDCs in Figure 3.17. All approaches resulted
in one or two non-converged LSs after this.
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Figure 3.17: 6IT1. LDCs from the NLFEAs with different shear retention models, and
the experimental LDC. The numerical LDCs are marked with essential observations that
affected the global behaviour.

Table 3.21: 6IT1. Crack observations from the NLFEAs with different shear retention
models.

Observation Location Total applied Total applied Total applied
load, Analysis 1 load, Analysis 2 load, Analysis 3

First micro- Over middle
crack support 495 kN 495 kN 495 kN
First fully In corners
open crack of openings 1178 kN 1127 kN 1048 kN

Figure 3.2 confirms that 6IT1 in Analysis 1, which included the damage based shear retention
model, failed after LS 76 as described previously. At this point the beam was cracked all the
way through, and the concrete got completely softened in compression in the upper part.
The load path from the load plates and down to the middle support could no longer transfer
load. The beam was divided into separate blocks, and a failure mechanism was formed.
From the principal tensile strain plots from this NLFEA shown in Figures 3.18a and 3.18b it
is clear that the width of the maximum tensile strain path in 6IT1 increased remarkably from
LS 74 and 76. The maximum principal crack width also increased remarkably; from 3.03 mm
to 8.33 mm. The large changes and sharp distinction between the left and right side of the
shear crack in the incremental displacement contour plots from these LSs, shown in Figures
3.18c and 3.18d, amplifies that the beam was split into separate blocks in LS 76.
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(a) LS 74 (P=2565 kN): Principal tensile strain
plot. Red colour=ε1 > εu .

(b) LS 76: Principal tensile strain plot, failure
mechanism was formed. Red colour=ε1 > εu .

(c) LS 74: Incremental displacement plot.
Auto-scaled colour plot.

(d) LS 76: Incremental displacement plot.
Auto-scaled colour plot.

Figure 3.18: 6IT1. Shear crack development in Analysis 1.

Figures 3.19a and 3.19b illustrate the principal tensile strain plots from the last converged LS
before failure, and the LS after the crack was fully open all the way through 6IT1 in Analysis
2. This corresponded to LS 64 and LS 65 respectively. However, the maximum principal
crack width only increased 0.02 mm from LS 64 to LS 65. As mentioned, in Analysis 1 this
width increased by 5.3 mm when 6IT1 were split into separate blocks. The largest crack width
obtained in the final LS of Analysis 2 was 3.07 mm.

For Analysis 3, the specimen was fully softened in tension all the way through the beam
height in LS 64. LS 62 was the last LS to achieve convergence before this. Principal tensile
strain plots from these LSs are shown in Figures 3.20a and 3.20b. In this analysis the
maximum principal crack width increased by 0.19 mm. Consequently, Analysis 3 resulted
in a larger increase of maximum principal crack width than Analysis 2, but this increase was
still significantly small compared to in Analysis 1. The largest principal crack width obtained
in Analysis 3; 3.27 mm, was achieved in the final LS.

As shown in these tensile strain plots, 6IT1 with a shear retention model characterized by a
simplified constant function, was cracked all the way through in LS 65 and 64 for β=0.1 and
β=0.01 respectively. Compared to the corresponding LS in Analysis 1, LS 76, the incremental
displacement plots from these LSs in Analysis 2 and 3 showed a more local displacement
effect. This is shown in Figures 3.19c, 3.19d for β=0.1 and Figures 3.20c and 3.20d for β=0.01.
Consequently Analysis 1 showed a more rapid development of the shear crack, with great
incremental displacement in the critical LS. This difference is also reflected in the varied
increases of the maximum crack widths. As stated, the constant shear retention models
resulted in increases of 0.02 mm and 0.19 mm in the critical LSs with respect to cracking,
while the crack width increased by 5.3 mm at this stage when the shear behaviour was
characterized by a damage based retention model.
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(a) LS 64 (P=2344 kN): Principal tensile strain
plot. Red colour=ε1 > εu .

(b) LS 65: Principal tensile strain plot.
Red colour=ε1 > εu .

(c) LS 64: Incremental displacement plot in
vertical direction. Auto-scaled colour plot.

(d) LS65: Incremental displacement plot in
vertical direction. Auto-scaled colour plot.

Figure 3.19: 6IT1. Shear crack development in Analysis 2.

(a) LS 62 (P=2073 kN): Principal tensile strain
plot. Red colour=ε1 > εu .

(b) LS64: Principal tensile strain plot.
Red colour=ε1 > εu .

(c) LS 62 (P=2073 kN): Incremental
displacement plot in vertical direction.
Auto-scaled colour plot.

(d) LS 64: Incremental displacement plot
in vertical direction. Auto-scaled
colour plot.

Figure 3.20: 6IT1. Shear crack development in Analysis 3.

As described earlier, the selected solution strategy, which constituted Analysis 1 in this
sensitivity study, resulted in an impaired load transfer to the middle support at the point
when the shear crack was fully open all the way through the beam. In Analysis 2 and 3 on
the other hand, the concrete along the shear crack still had load carrying capacity at this
point. Consequently, with a constant shear retention model, 6IT1 did not lose its entire
shear capacity in cracked regions. Figures 3.21a and 3.21b show that the applied load was
transferred to the middle support, even though the beam was fully softened in tension all
the way though the height of the beam from the middle support to the load plates.

Analysis 1 resulted in a significant load drop after LS 76, when ε1 exceeded εu through the
entire beam height, and |ε2| exceeded |αu | in the finite elements along the inner edge of the
load plates. Hence, a failure mechanism formed and the LDC dropped. Contrary, as Table
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3.22 states, no failure mechanism formed in 6IT1 at this point in neither Analysis 2 nor 3.
The shear capacity was retained in the numerical model throughout the analyses when a
constant shear retention model was used. Therefore, 6IT1 could still take up more load after
the cracks were fully open all the way through the beam. Consequently, the LDCs for these
analyses had no clear drop.

(a) Analysis 2.

(b) Analysis 3.

Figure 3.21: 6IT1. Support reactions against total applied load obtained in the NLFEA
with constant shear retention models. The curves are marked with observations of fully
open cracks and failure.

Table 3.22: 6IT1. Failure mode and failure load from the NLFEAs with different shear
retention models.

Analysis Failure Mode Failure Load Modelling Uncertainty(
Rexp

RN LF E A
)

1 Diagonal Tension Failure 2565 kN 0.85
combined with Shear
Compression Failure

2 No Failure* — —
3 No Failure* — —

* Diagonal Tension Cracking combined with Shear Compression Softening but no failure due to the
fact that the shear capacity remained constant.
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3.2 Case study 2

The following case study is a numerical approach to the experimental test of T1-0, collected
from paper Influence of Inclined Web Reinforcement on Reinforced Concrete Deep Beams with
Openings [Yang et al., 2007]. The FE model of T1-0 will be referred to as T1-0 throughout this
section.

3.2.1 NLFEA Results obtained by the selected Solution Strategy

Post-analysis checks of the NLFEA of T1-0 were conducted in order to determine its response
and failure mode. Results obtained by the selected numerical solution strategy, specified in
Table 2.10 is presented in this section.

Figure 3.22 compares the LDC obtained in the numerical analysis and the experiment, where
red crosses indicate non-converged LSs. The NLFEA had four non-converged LSs; 9, 79,
93, 95. Non-convergence occurred when large redistribution of stresses was observed. The
highest load taken up by T1-0 was 1670 kN in LS 92, with a corresponding midspan deflection
of 2.74 mm. Consequently, after this LS the load dropped and a failure mechanism was
formed. The load distribution to the supports was equal throughout the analysis.

Figure 3.22: T1-0. LDC from the numerical solution strategy and the experiment. The
numerical LDC is marked with non-converged LSs.
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3.2.1.1 Concrete Cracking

Microcracks were formed in the concrete when the principal tensile strain, ε1, exceeded
the peak tensile strain, εpeak , as listed in Table 3.23. Fully open cracks occurred when ε1

exceeded the ultimate tensile strain, εu , given in the same table. At this point the concrete
was completely softened in tension, and the respective area did not have any remaining
tensile capacity.

The main crack observations are marked with dots in the numerical LDC in Figure 3.23 and
summarized in Table 3.24.

Table 3.23: T1-0. Specific tensile strains for the solution strategy.

Strain Formula Strain value Tensile stress
εpeak 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 3.77·10−3 σ = 0

Figure 3.23: T1-0. LDC for the numerical solution strategy and the experiment. The
numerical LDC is marked with essential observations that affected the global behaviour.
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Table 3.24: T1-0. Crack observations from numerical solution strategy.

LS Observation Location Total applied load
4 First microcracks Around openings 262 kN
9-10 First fully open crack in critical shear zone 523-479 kN
17 Crack propagation midspan 622 kN
85 Fully open cracks Below the right load plate 1639 kN
92 Fully open cracks Inner corner of right support plate 1670 kN

The first microcracks appeared in LS 4 with a total applied load, P, of 262 kN. The cracks
were observed around the web openings, in the corners close to the load points, as shown in
Figure 3.24a. The maximum principal crack width was 1.45·10−3 mm, located in the opening
corners. The LDC did not show a decreased capacity at this point. Bottom flexural cracks
were observed in the next step (P=326 kN), along with an increased crack area around the
openings. This is illustrated in Figure 3.24b.

The first fully open cracks appeared in LS 10 with a principal crack width of 0.26 mm.
Principal tensile strain plot from this LS is shown in Figure 3.24c. At this point the total
applied load decreased from 523 kN in the non-converged LS 9 to 479 kN in LS 10. The
cracks were located in a critical shear zone below the openings and propagated towards the
supports. In LS 17 the flexural cracks propagated towards the middle of the beam height, as
shown in the contour plot in Figure 3.24d.

The LDC showed a small drop in the applied load in LS 85, and the concrete was completely
softened in tension in all the top nodes in an element below the right load plate, as shown
in Figure 3.24e. In LS 92, ε1 exceeded εu in several nodes above the right support. Figure
3.24f shows the principal tensile strain plot at this stage, but it is not possible to see the
increased tensile strains in the respective nodes. Convergence was not achieved in the
following LS. The LDC decreased drastically, and the amount of total cracks increased along
with increased open, closed, inactive and closing cracks, as given in Table 3.25. This data
was collected from an output file in DIANA. As shown in Eq. (3.1) and (3.2), the percentage
of cracks that were inactive increased from 44.4% in LS 92 to 51.6% in LS 93. As shown in
Figures 3.25a and 3.25b, the principal crack width increased from LS 92 to 93, from 3.72 mm
to 14.56 mm above the right support.

Table 3.25: T1-0: Summary of crack logging at peak- and post peak load level for solution
strategy, given by DIANA. The numbers indicate the amount of cracks.

Step number Crack Open Closed Active Inactive Arises Re-opens Closes
LS 92 1936 1915 21 1076 860 4 0 2
LS 93 2205 2145 60 1066 1139 269 7 46

% of inactive cracks in LS 92 = # of inactive cracks

# of cracks in total
·100% = 860

1936
·100% = 44.4% (3.1)

% of inactive cracks in LS 93 = # of inactive cracks

# of cracks in total
·100% = 1139

2205
·100% = 51.6% (3.2)
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(a) LS 4 (P=262 kN). Red colour=ε1>εpeak . (b) LS 5 (P=326 kN). Red colour=ε1>εpeak .

(c) LS 10 (P=479 kN). Red colour=ε1>εu .
Blue colour=ε1<εpeak .

(d) LS 17 (P=622 kN). Red colour=ε1>εu .
Blue colour=ε1<εpeak .

(e) LS 85 (P=1639 kN). Red colour=ε1>εu .
Blue colour=ε1<εpeak .

(f ) LS 92 (P=1670 kN). Red colour=ε1>εu .
Blue colour=ε1<εpeak .

Figure 3.24: T1-0. Principal tensile strain plots from essential LSs in the NLFEA with the
selected solution strategy.

(a) LS 92 (P=1670 kN). (b) LS 93 (P=968 kN).

Figure 3.25: T1-0. Principal crack width from the last LSs in the NLFEA with the selected
solution strategy. Auto-scaled colour plot.
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3.2.1.2 Concrete Crushing

The compressive strain, |ε2|, exceeded the peak compressive strain, |αc |, listed in Table 3.26,
in LS 38 (P=1057 kN). At this point the concrete in T1-0 started to crush in a small area below
the inner corners of the load plates, without influencing the load carrying capacity, due to
the LDC.

Table 3.26: T1-0. Specific compressive strain values for the parabolic stress-strain curve.

Strain Formula Strain value Compressive stress

αc -5·1
3 ·

fc
Ec

-2.87·10−3 σ = fc

αu αc - 3
2

GC
h fc

-2.31·10−2 σ = 0

In LS 92, |ε2| exceeded |αu |. The value of |αu | is given in Table 3.26. The concrete was
completely softened in compression above the right support plate. Principal compressive
strain plots from LS 92 and 93 are shown in Figures 3.26a and 3.26b.

(a) LS 92 (P=1670 kN). (b) LS 93 (P=968 kN).

Figure 3.26: T1-0. Principal compressive strain plots from essential LSs in the NLFEA
with the selected solution strategy. Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

3.2.1.3 Tension-Compression Interaction

Two nodes in the concrete elements that had achieved complete tensile softening in LS 92
are highlighted in Figure 3.27. These nodes corresponded to node number 751 and 787 in
the FE model. These nodes comprised a part of the strut that transferred the load from
the load plate and down to the support. Hence, this area also achieved large compressive
stresses during the analysis. Figure 3.28 visualizes the development of principal compressive
stresses, S2, in these nodes. The horizontal axis indicates at what load-factor the respective
stress values are obtained. Load factor 0.9 indicates the point when 90% of the total
prescribed deflection is applied. Consequently the decimals of the load-factor corresponds
more or less to the LS number. As shown in this figure, the maximum compressive stress was
therefore reached at approximately LS 92-93. The maximum absolute value was however
lower than the absolute value of the specified compressive strength for T1-0, which was 55.8
N/mm2.
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Figure 3.27: T1-0. Principal tensile strain plot. Red colour=ε1>εu . Development of
compressive stresses in highlighted nodes; 751 and 787, are shown in Figure 3.28.

Figure 3.28: T1-0. Table-output from DIANA, showing the development of principal
compressive stresses, S2, in node 751 and 787, highlighted in Figure 3.27.
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3.2.1.4 Yielding of Reinforcement

Both vertical and horizontal bars of ø6 and ø10 started to yield during the numerical analysis.
The yielding observations are marked in the numerical LDC, as shown in Figure 3.23. The
yielding occurred in the same areas as the cracks developed, as illustrated in Figure 3.29,
where the areas of yielding are marked with circles. Red colour indicates areas of yielding.
The strain values that indicate yielding and ultimate capacity of the reinforcement bars are
given in Table 2.7.

(a) LS 17 (P=622 kN).
Red colour=εxx > εym,ø6.

(b) LS 33 (P=952 kN).
Red colour=εxx > εym,ø10.

(c) LS 60 (P=1389 kN).
Red colour=εy y > εym,ø10.

(d) LS 64 (P=1448 kN).
Red colour=εy y > εym,ø6.

(e) εxx in LS 92 (P=1670 kN).
Auto-scaled colour plot.

(f ) εy y in LS 92 (P=1670 kN).
Auto-scaled colour plot.

Figure 3.29: T1-0. Reinforcement strains in x- and y-direction in essential LSs from the
NLFEA with the selected solution strategy. Areas of yielding are marked with circles.

In LS 17 (P=622 kN), the lower horizontal bars of ø6, started to yield in the midspan of
the beam, as illustrated in Figure 3.29a. In the same step a vertical crack propagation was
observed in the same area. The horizontal bars of ø10, below the openings, started to yield in
LS 33 (P=952 kN), as shown in Figure 3.29b. The vertical stirrups of ø10, below the openings,
started to yield in LS 60 (P=1389 kN), as shown in Figure 3.29c. The vertical stirrups of ø6,
outside of the left opening, started to yield in LS 64 (P=1448 kN), as shown in Figure 3.29d. In
LS 85 (P=1639 kN) the horizontal ø6-bars above the openings, exceeded the ultimate strain
value of 2.10·10−2. The ultimate strain value for ø10 (3.80·10−2) was never exceeded. The
main longitudinal reinforcement of ø19 never reached the yield strength of 803 N/mm2. The
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maximum stress observed in these bars was 564 N/mm2 at peak load level, in LS 92. Figures
3.29e and 3.29f show areas of yielding at peak load level.

3.2.1.5 Global Failure

Diagonal cracks were formed around both web openings, and propagated towards the four
load points. The crack pattern ended near the load plates and the supports, as shown in
Figure 3.24f. LS 93 was characterized by complete softened concrete in compression and
fully open cracks above the right support, followed by large incremental displacements in
the respective area. The crack width increased drastically in the same LS, along with the
number of inactive cracks, as shown in Eq. (3.1) and (3.2). As mentioned, the obtained peak
load before failure was 1670 kN, in LS 92, with a corresponding midspan deflection of 2.74
mm. Consequently, for T1-0 analyzed by the selected solution strategy, this resulted in a
modelling uncertainty of 0.87, as given in Table 3.27.

Table 3.27: T1-0. Failure mode and failure load from the NLFEA with the selected
solution strategy.

Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

Shear Compression Failure 1670 kN 0.87
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3.2.2 Sensitivity Study of the Numerical Modelling in Case Study 2

In this section results from a sensitivity study on the selected solution strategy for NLFEAs
of T1-0 from the experimental benchmark test [Yang et al., 2007] are presented. The analysis
conducted by the selected solution strategy, which is elaborated above, will be referred to as
Analysis 1 throughout this section. Just as for Case Study 1, analyses with complementary
solution strategies, meaning other selections regarding the mesh density, tension softening
model, compressive behaviour function or shear retention model, will be referred to as
Analysis 2 and Analysis 3 within each separate sensitivity study.

3.2.2.1 Sensitivity regarding FE Discretization

In this sensitivity study the numerical response of T1-0 modelled by three different mesh
densities were compared; H/6, H/12 and L/50. These mesh densities resulted in element
heights of 100 mm, 50 mm and 18 mm, respectively.

Throughout this sensitivity study, the following designations will be used as references for
the three NLFEAs of T1-0 with different FE discretizations:
Analysis 1: Mesh density H/12 (50 mm).
Analysis 2: Mesh density L/50 (18 mm).
Analysis 3: Mesh density H/6 (100 mm).

Figure 3.30 shows the LDC obtained with the different mesh densities. Non-converged steps
are marked with crosses and crack observations are marked with dots in the numerical LDCs.
Analysis 2 had 18 non-converged steps; LS 11, 18, 19, 27, 28, 40, 47, 81, 89-95 and 98-100,
while Analysis 3 had five; LS 10, 27, 32, 58 and 92. The non-converged steps were mainly
caused by significant changes in the stress distribution. The numerical LDCs behaved
similarly. However, Analysis 2, with the finest mesh density, resulted in a lower failure load
than Analysis 1 and 3.

Microcracks appeared in T1-0 when ε1 exceeded εpeak in the integration points. The cracks
were defined as fully open when ε1 exceeded the value of εu . The latter varied for different
mesh densities. The respective strain values are given in Table 3.28. The crack observations
for the three analyses are summarized in Table 3.29.

Table 3.28: T1-0. Specific tensile strain values in the MC2010 TS curve.

Strain Formula Strain value Strain value Strain value Tensile stress
Analysis 1 Analysis 2 Analysis 3

εpeak 1.50·10−4 1.50·10−4 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 3.77·10−3 1.05·10−2 1.88·10−3 σ = 0
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Figure 3.30: T1-0. LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. Numerical LDCs are marked with crack observations and non-
converged LSs.

Table 3.29: T1-0. Crack observations from NLFEAs with different mesh densities.

Observation, Applied Load Applied Load Applied Load
Location Analysis 1 Analysis 2 Analysis 3
First microcrack,
at opening corners 262 kN 246 kN 394 kN
First microcrack,
at midspan 326 kN 307 kN 333 kN
First fully open crack,
in critical shear zone 523 kN 586 kN 533 kN

Analysis 2, with the finest mesh, yielded earlier crack initiation than the other analyses. The
first microcracks appeared around the openings in LS 4, at a loading of 246 kN. The principal
crack width was 2.98·10−3 mm. Flexural cracks at midspan arose in the next step. The total
applied load dropped from 587 kN in LS 11 (non-converged LS) to 537 kN in LS 12, when
the first fully open cracks developed below the openings with a principal crack width of 0.26
mm. At post peak level, in non-converged LS 89, ε1 in the nodes above the right support
plate exceeded εu . Consequently, the shear crack was fully open in this area. The maximum
principal crack width, located at the inner edge of the right web opening, increased from 3.95
mm to 10.28 mm from LS 89 to LS 90.

In Analysis 3, with the coarsest mesh, the first microcracks appeared as flexural cracks in
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the bottom of the beam, in LS 5 (P=332 kN). The principal crack width was 4.45·10−3 mm.
Similar as for Analysis 1 and 2, the total applied load decreased when the first fully open
cracks developed. In Analysis 3 this occurred after LS 10 (non-converged LS), and the total
applied load decreased from 533 kN to 478 kN. The principal crack width was 0.24 mm
at this stage. After the peak load of 1708 kN was applied in LS 91, a larger area of nodes
accomplished tensile strains larger than εu . Consequently, the area of concrete that was
completely softened in tension increased. Especially, nodes in the areas below the load
plates experienced increased tensile strains. A great incremental displacement followed
in LS 91 and 92, outside the left load plate. In LS 91 the maximum principal crack width,
observed at the outer lower corner of the right web opening, was 3.62 mm. The crack width
did not increase in the next LSs.

As shown in Figures 3.31a, 3.31b and 3.31c, the crack pattern at peak load level was similar
for the three analyses. A finer mesh density, used in Analysis 2, gave a more detailed crack
pattern. Table 3.30 shows the amount of cracks and the crack status for Analysis 2 and 3 at
the respective peak LSs. The data is given by an output file in DIANA. The analysis with the
finest mesh had a total amount of 14362 cracks, while the analysis with the coarsest mesh
had only 955 cracks in the last step before failure. 99% of the cracks were open at this stage,
in all analyses. Analysis 2, with the finest mesh density, resulted in 59% inactive cracks in the
peak LS, Analysis 1 resulted in 44%, while Analysis 3, with the coarsest mesh density, resulted
in 34% inactive cracks in LS 91.

(a) Analysis 1: LS 92 (P=1670 kN).

(b) Analysis 2: LS 89 (P=1531 kN). (c) Analysis 3: LS 91 (P=1708 kN).

Figure 3.31: T1-0. Principal tensile strain plots at failure LS from the NLFEAs with
different mesh densities. Red colour=ε1>εu . Blue colour=ε1<εpeak .
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Table 3.30: T1-0. Summary of crack logging for different mesh densities at failure load,
given by DIANA. The numbers indicate the amount of cracks.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
step number opens

2-LS 88 14362 14248 114 5917 8445 76 1 0
2-LS 89 14789 14639 150 4672 10117 427 6 42
3-LS 91 955 953 2 629 326 4 0 0
3-LS 92 959 957 2 594 365 4 0 0

The specific compressive strains for T1-0 with various mesh densities are given in Table 3.31.
Figure 3.32 shows the contour plots of the principal compressive strain, ε2, at peak load level
and post peak load level, for both Analysis 2 and 3. Red colour indicates areas where the
concrete was completely softened in compression, as |ε2|>|αu |.

In Analysis 2, T1-0 started to crush (|ε2|>|αc |) at the inner and outer corners of the load plates
in LS 17 (P=666 kN). The concrete in this area was never completely softened in compression
in Analysis 2. However, as shown in Figure 3.32b, the concrete was completely softened in
compression in a small area above the right support in LS 89 (P=1531 kN). This was in the
same area as Analysis 1 achieved complete softening in compression.

In Analysis 3, T1-0 started to crush in the outer corners of the load plates in LS 41 (P=1122
kN). In the same areas, the concrete was completely softened in compression in LS 91
(P=1708 kN), as illustrated in Figures 3.32c and 3.32d. The concrete was partly crushed above
the supports, but it was not completely softened in compression above the right support as
it was in Analysis 1 and 2.

Table 3.31: T1-0. Specific compressive strain values for parabolic stress-strain curve with
different mesh densities.

Strain Formula Strain value Strain value Strain value Compressive stress
Analysis 1 Analysis 2 Analysis 3

αc 5αc/3 -2.87·10−3 -2.87·10−3 -2.87·10−3 σ = fc

αu αc - 3
2

GC
h fc

-2.30·10−2 -5.90·10−2 -1.30·10−2 σ = 0
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(a) Analysis 2: LS 88 (P=1528 kN). (b) Analysis 2: LS 89 (P=1531 kN).

(c) Analysis 3: LS 91 (P=1708 kN). (d) Analysis 3: LS 92 (P=1690 kN).

Figure 3.32: T1-0. Principal compressive strain plots for different mesh densities. Red
colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.
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Observations of reinforcement yielding in the analyses with various mesh densities, are
marked with dots in the numerical LDCs in Figure 3.33, and summarized in Table 3.32. None
of the yielding observations resulted in significant load drops in the LDCs. The yielding in
Analysis 2 and 3 appeared in the same rebars as in Analysis 1, but at different load levels or
locations in the respective bars.

Figure 3.33: T1-0. LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with observations of reinforcement
yielding.

Table 3.32: T1-0. Observations of yielding of reinforcement and its representative load
levels with different mesh densities.

Observation, Applied Load Applied Load Applied Load
Location Analysis 1 Analysis 2 Analysis 3
Yielding of horizontal bars ø6,
lower bars, variable location 622 kN 732 kN 911 kN
Yielding of vertical bars ø6,
outside openings 1448 kN 1092 kN 1507 kN
Yielding of horizontal bars ø10,
variable location 952 kN 947 kN 927 kN
Yielding of vertical bars ø10,
below openings 1389 kN 1455 kN 1068 kN
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In all analyses, bars in the cracked areas started to yield, except the main longitudinal
reinforcement (3ø19). In the latter, the maximum stresses accomplished were 564, 526 and
573 N/mm2 in Analysis 1, 2 and 3, respectively. None of the vertical stirrups of ø6 and ø10,
reached the ultimate strain values for the respective bars.

In Analysis 2, with the finest mesh density, the horizontal bars of ø6 above the openings,
reached the ultimate strain in LS 77 (P=1455 kN), similarly as for Analysis 1 (LS 85, P= 1639
kN). The ultimate strain value was not exceeded in Analysis 3.

The yielding of ø6-bars, horizontally and vertically, was located in the same areas for all
analyses. Yielding of the horizontal bars of ø10 was first observed below the openings in
Analysis 1 and 2, and above the openings in Analysis 3. Yielding of the vertical stirrups of ø10
was first observed below the openings for all analyses.

To sum up the main results from this sensitivity study regarding mesh density, the failure
modes were evaluated, and are listed in Table 3.33. All analyses resulted in a diagonal crack
pattern, as shown in Figure 3.31. The concrete above the right support was completely
softened in compression in both Analysis 1 and 2, immediately after the peak load. Analysis 3
showed crushing above the support plates, butαu was only exceeded in nodes below the load
plates. Neither of the analyses where ø6 bars reached the ultimate strain value, exhibited a
reduced load carrying capacity due to this observation. The peak load obtained in Analysis 2,
with the finest mesh, was 1528 kN in LS 88. This resulted in a modelling uncertainty of 0.95,
as mentioned in Table 3.33. The peak load in Analysis 3 was 1708 kN in LS 91. Consequently,
this resulted in a modelling uncertainty of of 0.85 for the NLFEA of T1-0 with the coarsest
mesh density.

Table 3.33: T1-0. Failure mode and failure load from the NLFEAs with different mesh
densities.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 Shear Compression Failure 1670 kN 0.87
2 Shear Compression Failure 1528 kN 0.95
3 Shear Compression Failure 1708 kN 0.85

3.2.2.2 Sensitivity to choice of Constitutive Model for Concrete

Tension Softening Model
For the selected solution strategy, MC2010 was chosen as the standard TS approach.
According to DG, exponential TS is preferred. In order to investigate the sensitivity related to
this constitutive approach, these two models were tested.

Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of T1-0 with different TS approaches:
Analysis 1: MC2010 TS model.
Analysis 2: Exponential TS model.

Figure 3.34 shows the LDCs for the two analyses and the experiment. The numerical
LDCs are marked with crosses that indicate non-converged LSs and dots that indicate crack

83



observations. Analysis 2 had five non-converged steps; LS 9, 57, 60, 72 and 81, marked with
green crosses in the curve.

Table 3.34 lists the specific tensile strain values for exponential TS, used in post-processing
of T1-0 in Analysis 2. The crack observations for the two analyses are summarized in Table
3.35.

Table 3.34: T1-0. Specific tensile strain values for exponential TS.

Strain Formula Value Tensile stress

εpeak
fctm
Ecm

1.23·10−4 σ = fctm

εu 2 GF
fctm ·h 1.51·10−3 σ' 0

Figure 3.34: T1-0. LDCs from the NLFEAs with different TS models, and the experimental
LDC. The numerical LDCs are marked with crack observations and non-converged LSs.

Table 3.35: T1-0. Summary of crack logging from the NLFEAs with different TS models,
given by DIANA.

Observation, Applied Load Applied Load
Location Analysis 1 Analysis 2
First microcrack,
at opening corners 262 kN 262 kN
First microcrack,
at midspan 326 kN 326 kN
First fully open crack,
in critical shear zone 523 kN 513 kN
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In Analysis 2, the first microcracks appeared around the openings and in the midspan of
the beam, as flexural cracks. It occurred in the same load levels as in Analysis 1, even
though the εpeak values were slightly different for the two TS models. A diagonal crack
pattern propagated below the openings after LS 8, for a similar applied load as in Analysis
1. The crack propagation led to a drop in the total applied load, which resulted in lack of
convergence in LS 9 in Analysis 2. It was observed open cracks below the load plates in LS
41, resulting in a small drop in the total applied load. Cracks opened above the right support
plate and the load dropped drastically after LS 56. The next LS did not converge. At this stage
the amount of inactive cracks increased in Analysis 2, from 78% to 83%, based on values
given in Table 3.36. 99.5% of the cracks were open. With an exponential TS approach, the
crack pattern on the right side of T1-0 gradually disappeared as the load decreased after the
peak. In LS 73, all of the cracks had disappeared, as shown in Figure 3.35. In the crack pattern
on the left side the strain values and crack width increased during these LSs.

Analysis 1 achieved more open longitudinal cracks at the beam ends than Analysis 2, as
shown in Figure 3.36. However, this did not affect the response of the beam. Analysis 1 also
resulted in larger areas of cracked concrete around the load plates, as illustrated in Figure
3.36.

Figure 3.35: T1-0. Crack strain in LS 73 for Analysis 2. Auto-scaled colour plot.

(a) Analysis 1: LS 92 (P=1670 kN). (b) Analysis 2: LS 56 (P=1003 kN).

Figure 3.36: T1-0. Principal tensile strain plots before failure from the NLFEAs with
different TS models. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

Table 3.36: T1-0. Summary of crack logging from NLFEA with exponential TS, given by
DIANA. The numbers indicate the amount of cracks.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
step number opens

2-LS 56 1305 1299 6 287 1018 18 0 1
2-LS 57 1402 1390 12 236 1166 97 0 6
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Both analyses were based on parabolic compression behaviour function of concrete. Conse-
quently, the same strain values were used to analyze the compressive behaviour in Analysis
2 as in Analysis 1, listed in Table 3.26.

In Analysis 2, crushed concrete was first observed in the outer corner of the left load plate.
This was not in the same area as for Analysis 1, where crushing first was observed below the
inner corners of the load plates. In LS 52, the area beneath the left load plate was completely
softened in compression in Analysis 2. A diagonal pattern of crushed concrete was formed
along the left crack pattern after LS 56, as shown in Figure 3.37a. In LS 57 the concrete
got completely softened in compression above the left support plate, as shown in Figure
3.37b. Due to large changes in the stress distribution, convergence was not achieved in this
LS.

(a) LS 56 (P=1003 kN). (b) LS 57 (P=732 kN).

Figure 3.37: T1-0. Principal compressive strain plots for Analysis 2.
Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αpeak |.

The behaviour of reinforcement yielding was quite similar for the two analyses. The first
observations of yielding are listed in Table 3.37 for the two analyses. Essential LSs for
observations of yielding are marked on the numerical LDC of Analysis 2, as shown in Figure
3.38. The horizontal bars, both ø6 and ø10, achieved yielding at almost identical load levels.
For the vertical bars, the yielding occurred earlier in Analysis 2 than in Analysis 1. In Analysis
2, the strains in the bars located in the cracked areas decreased after LS 55. None of the bars
were close to exceed the respective ultimate strain values in Analysis 2. The maximum stress
observed in the main longitudinal reinforcement (3ø19) in Analysis 2 was (383 N/mm2),
lower than in Analysis 1 (564 N/mm2).

Table 3.37: T1-0. Observations of reinforcement yielding and its representative load
levels from the NLFEAs with different TS models.

Observation, Applied Load Applied Load
Location Analysis 1 Analysis 2
Yielding of horizontal bars ø6,
lower bars, midspan 622 kN 658 kN
Yielding of vertical bars ø6,
variable location 1448 kN 1158 kN
Yielding of horizontal bars ø10,
variable location 952 kN 987 kN
Yielding of vertical bars ø10,
variable location 1389 kN 1131 kN
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Figure 3.38: T1-0. LDCs from the NLFEAs with different TS models, and the experimental
LDC. The numerical LDCs are marked with observations of reinforcement yielding.

Failure modes and failure loads for this sensitivity study, where T1-0 was analyzed with two
different TS approaches, are given in Table 3.38. Both analyses formed a similar diagonal
crack pattern in the load path from the load plates to the supports. The concrete got crushed
below the left load plate in Analysis 2, while this happened above the right support in
Analysis 1. T1-0 was able to take up larger loads in Analysis 1 than in Analysis 2. Analysis
2 resulted in a peak load of 1161 kN in LS 45, which gave a modelling uncertainty of 0.80.
In the following descending branch, the force distribution became unsymmetrical. The left
support gradually received more load than the right support.

Table 3.38: T1-0. Failure mode and failure load from the NLFEAs with different TS
models.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 Shear Compression Failure 1670 kN 0.87
2 Shear Compression Failure 1161 kN 1.25

Compressive Behaviour Function
In this sensitivity study the influence of two different compressive behaviour functions of
concrete were tested on T1-0. For the selected solution strategy, a parabolic softening-
hardening function was used. In addition to this, an idealized constant function was
tested.

Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of T1-0 with different compressive behaviour approaches:
Analysis 1: Parabolic compressive behaviour function.
Analysis 2: Constant compressive behaviour function.
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The LDCs obtained in the two analyses are shown in Figure 3.39, in addition to the
experimental LDC. The numerical LDCs are marked with dots that imply observations of
concrete or yielding of the reinforcement. The crosses imply non-converged LSs. Analysis 2
only had two non-converged LSs; LS 9 and 89.

The crack observations were almost identical in the two analyses. Therefore, not all
observations are plotted in the LDC for Analysis 2. They are however plotted in the LDC
in Figure 3.23, which were obtained by the selected solution strategy, constituting Analysis 1
in the sensitivity studies.

Figure 3.39: T1-0. LDCs from the NLFEAs with different compressive behaviour func-
tions, and the experimental LDC. The numerical LDCs are marked with essential obser-
vations that affected the global behaviour.

In Analysis 2, the load dropped after the non-converging LS 89. Based on the values given
in Table 3.39, the amount of inactive cracks increased from 40% to 46% from LS 88 to LS 89,
similar as in Analysis 1 at peak load level. In these LSs, 99% of the cracks were open. The
amount of cracks continued to grow until the last step, LS 100, where 47% of the cracks did
not transfer load. The two compressive behaviour approaches resulted in a similar crack
pattern in T1-0, as shown in Figure 3.40.
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Table 3.39: T1-0. Summary of crack logging with constant compressive behaviour
function of concrete, given by DIANA.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
step number opens

2-LS 88 1909 1892 17 1145 764 7 0 0
2-LS 89 1918 1899 19 1027 891 9 0 2

2-LS 100 2047 2020 27 1075 972 23 1 6

(a) Analysis 1: LS 92 (P=1670 kN). (b) Analysis 2: LS 88 (P=1718 kN).

Figure 3.40: T1-0. Principal tensile strain plots from the NLFEAs with different compres-
sive behaviour functions. Red colour=ε1 > εu .

In Analysis 2, with constant compressive behaviour function of concrete, the compressive
capacity remained constant after the elastic regime was exceeded. Consequently, only one
strain value is used to describe the stress-strain curve of this approach. εc , given in Table
3.40, indicates the strain value at the point when the material started to crush in Analysis 2.
The corresponding value in Analysis 1 was called αc , and is given in Table 3.26. Crushing
below the load plates occurred earlier in Analysis 2 than in Analysis 1. Crushing in Analysis
2 started at the inner and outer corners below the load plates in LS 27. This corresponded
to an applied load of 828 kN. The concrete started to crush in LS 38 for Analysis 1, with an
applied load of 1057 kN.

Table 3.40: T1-0. Specific compressive strain values for constant compressive behaviour
function of concrete.

Strain Formula Strain value Compressive stress

εc
fc
Ec

-1.72·10−3 σ = fc

The yielding behaviour was similar for the two analyses. The horizontal bars of ø6 above the
openings exceeded the ultimate strain value of 2.10·10−2 in LS 88, similar as in Analysis 1.
The observations regarding the first yielding of the different bars are summarized in Table
3.41. In Figure 3.39, only observations that were significantly different in the two analyses
are marked. The vertical stirrups of ø10 started to yield in the same location as in Analysis 1,
with a different load level. The stresses in the reinforcement increased throughout Analysis
2, while they were drastically reduced after the peak in Analysis 1. In Analysis 2, the main
longitudinal bars reached a maximum stress of 587 N/mm2 in LS 99, which was higher than
in Analysis 1 (564 N/mm2).
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Table 3.41: T1-0. Observations of yielding of reinforcement and its representative load
levels from NLFEA with two different concrete compressive behaviour functions.

Observation, Applied Load Applied Load
Location Analysis 1 Analysis 2
Yielding of horizontal bars ø6,
lower bars, midspan 622 kN 622 kN
Yielding of vertical bars ø6,
outside openings 1448 kN 1489 kN
Yielding of horizontal bars ø10,
Above openings 952 kN 956 kN
Yielding of vertical bars ø10,
Below openings 1389 kN 1578 kN

The obtained failure modes and failure loads for T1-0 with the two different concrete
compressive behaviour functions are given in Table 3.42. In Analysis 2, the LDC showed
small load drops in LSs 77, 89 and 100. However, except in these LSs, the applied load
increased monotonically throughout the analysis. The highest load taken up by T1-0 with
Analysis 2 was 1764 kN in LS 99. Consequently, as given in Table 3.42, T1-0 in Analysis 2 did
not achieve a clear failure mode, hence no failure load was detected. However, a diagonal
crack pattern combined with crushing of the concrete was achieved, similarly as in Analysis
1.

Table 3.42: T1-0. Failure mode and failure load from the NLFEAs with different
compressive behaviour functions.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 Shear Compression Failure 1670 kN 0.87
2 No Failure* — —

* Shear cracking but no failure due to the fact that the concrete did not soften in compression.

Shear Retention Model
In order to investigate the sensitivity related to the shear behaviour of the concrete, three
shear retention models were tested on T1-0. A damage based shear retention model was
selected for the standard solution strategy, elaborated in Table 2.10. Additionally, the
response of T1-0 with two different constant shear retention models were investigated. The
shear retention factors for the respective constant approaches were β=0.1 and β=0.01.

Throughout this sensitivity study, the following designations will be used as references for
the three NLFEAs of T1-0 with different shear behaviour approaches:
Analysis 1: Damage based shear retention model.
Analysis 2: Constant shear retention model with β=0.1.
Analysis 3: Constant shear retention model with β=0.01.

Figure 3.41 shows the different LDCs from NLFEAs of T1-0 with the various shear retention
models. The LDCs are marked with crosses that indicate non-converged LSs. Analysis 2 had
only one such step; LS 24, while Analysis 3 had five non-converged steps; LS 8, 16, 35, 89 and
92.
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The principal tensile and compressive strain values are equal for all analyses, and are given
in Tables 3.23 and 3.26, respectively.

The numerical LDCs are also marked with dots that indicate observations of tensile and
compressive behaviour of concrete for the respective analyses. The first microcracks were
observed at identical load levels and in the same areas for the three analyses, when ε1>εpeak .
All LDCs showed a small load drop after the first fully open cracks were generated, when
ε1>εu .

Figure 3.41: T1-0. LDCs from the NLFEAs with different shear retention models, and
the experimental LDC. The numerical LDCs are marked with essential observations that
affected the global behaviour.

Figure 3.42 shows principal tensile strain plots for some essential LSs in the three analyses.
Red colour indicates areas with fully open cracks. The sub-figures represent the LSs when
the first fully open cracks developed and when a final crack pattern was established.

In Analysis 2, the first fully open cracks appeared in the bottom of the beam as flexural cracks,
as shown in Figure 3.42c. This caused a small load drop in the LDC for Analysis 2 and a non-
converged LS followed. Further, fully open cracks developed in a diagonal path, as shown in
Figure 3.42d.

In Analysis 3, the first fully open cracks were observed in the midspan of the beam, as shown
in Figure 3.42e. Diagonal cracks developed in later LSs, and the final crack pattern was
similar as for Analysis 1, as shown in Figure 3.42f. Analysis 3 resulted in less comprehensive
flexural cracks in the final crack pattern than for Analysis 1 and 2. A peak in the LDC for
Analysis 3 was observed after LS 88 (P=1719 kN). At this point the concrete at the outer corner
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of the left load plate was completely softened in tension, meaning that this area had achieved
principal tensile strains larger than εu . However, after a few descending LSs, T1-0 continued
to take up more load throughout the analysis.

(a) Analysis 1: LS 10 (P=479 kN). (b) Analysis 1: LS 92 (P=1670 kN).

(c) Analysis 2: LS 9 (P=497 kN). (d) Analysis 2: LS 91 (P=1887 kN).

(e) Analysis 3: LS 8 (P=434 kN). (f ) Analysis 3 (β=0.01): LS 88 (P=1719 kN).

Figure 3.42: T1-0. Principal tensile strain plots from essential LSs in the NLFEAs with
different shear retention models. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

The compressive behaviour of T1-0 was also affected by the choice of shear retention model.
However, the concrete started to crush below the load plates for all analyses, and at similar
load levels. For Analysis 2 and 3, it started to crush at the outer corners beneath the load
plates. As opposed to in Analysis 1, neither Analysis 2 nor Analysis 3 achieved compressive
strains larger than |αu | above the right support. Consequently, these areas of T1-0 did
not get completely softened in compression when a constant shear retention model was
used. However, the concrete got completely softened in compression underneath the outer
corners of the load plates in Analysis 2 and 3, as shown in Figure 3.43. In Analysis 2, a small
area of concrete was completely softened in compression in LS 92 (P=1861 kN), as shown in
Figure 3.43a. The area of crushed concrete increased throughout the analysis.
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In Analysis 3, the concrete got completely softened in compression in a small area in the
outer corner of the left load plate in LS 89 (P=1693 kN). This is shown in Figure 3.43b. The
crushed area increased throughout Analysis 3, similarly as in Analysis 2.

(a) Analysis 2: LS 92 (P=1861 kN). (b) Analysis 3: LS 89 (P=1693 kN).

Figure 3.43: T1-0. Principal compressive strain plots from the NLFEAs with constant
shear retention. Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |

The main observations regarding reinforcement yielding in T1-0 are marked with dots in the
numerical LDCs, as shown in Figure 3.44, and summarized in Table 3.43. In both Analysis 2
and 3, the reinforcement stresses increased throughout the analysis. In the final LSs, rebars
were yielding in the same areas in all analyses, which mainly were exposed to cracking of
concrete.

Figure 3.44: T1-0. LDCs from the NLFEAs with different shear retention models, and the
experimental LDC. The numerical LDCs are marked with observations of reinforcement
yielding.
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Table 3.43: T1-0. Observations of reinforcement yielding and its representative load
levels from the NLFEAs with different shear retention models.

Observation, Applied Load Applied Load Applied Load
Location Analysis 1 Analysis 2 Analysis 3
Yielding of horizontal bars ø6,
lower bars, midspan 622 kN 652 kN 534 kN
Yielding of vertical bars ø6,
variable location 1448 kN 1880 kN 1680 kN
Yielding of horizontal bars ø10,
Above openings 952 kN 882 kN 968 kN
Yielding of vertical bars ø10,
variable location 1389 kN 1859 kN 1703 kN

In all analyses, yielding was first observed in the lower horizontal bars of ø6, located in the
midspan of the beam where flexural cracks developed. The yielding of the horizontal bars of
ø10 was observed at similar load levels in all analyses. These bars yielded in the same areas
as exposed to diagonal cracking around the openings. The yielding of vertical stirrups of ø6
was observed late in the analyses with constant shear retention. Yielding was observed in
the stirrups close to the openings in LS 94 (P=1880 kN) and in LS 84 (P=1680 kN), in Analysis
2 and 3, respectively.

None of the bars of ø6 had strain values close to the ultimate strain (2.10·10−2) in neither
Analysis 2 nor 3. In Analysis 2, the highest strain value was observed in the lower horizontal
bars in the midspan of the beam in LS 97 with a maximum strain equal to 1.32·10−2. In
Analysis 3, the maximum strain was 1.45·10−2 in LS 89. The latter was observed in the
horizontal bars above the right opening, at the same location as where the respective bars
exceeded the ultimate strain in Analysis 1. None of the strain values in the ø10-bars were
close to exceed the ultimate strain value of 3.80·10−2. The main longitudinal reinforcement
obtained maximum stresses of 564, 673, 610 N/mm2 in Analysis 1, 2 and 3, respectively. All
analyses were far from the yield strength of 803 N/mm2.

In order to detect failure modes of T1-0 in these three analyses, all observations were taken
into account. In Analysis 2, it was observed several load drops in the LDC in the end of
the analysis. However, in the post-process investigation, it was not observed any clear
failure mechanism. The concrete in T1-0 was completely softened in compression at the
outer corners of both load plates, simultaneously as a small load drop was observed in the
response curve. The reinforcement stresses increased throughout the analysis, but no areas
achieved the respective ultimate strain value. Hence, the applied load continued to increase
throughout the analysis and no clear failure was detected.

Analysis 3 did not achieve a clear failure mechanism of T1-0 either. The LDC in this analysis
had several small load drops in the last LSs, similarly as in Analysis 2. These drops were
constituted by completely softened concrete in compression, crack propagation and yielding
in some reinforcement bars.

T1-0 was able to resist a larger load with a constant shear retention factor of β=0.1 than
β=0.01. The maximum load taken up by T1-0 in Analysis 2, with β=0.1, was 1894 kN, while it
was 1719 kN in Analysis 3, with β=0.01. Compared to Analysis 1, when a damage based shear
retention model was used, both constant shear retention models resulted in larger capacity
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of T1-0. These results are summarized in Table 3.44, but as no failure mechanisms were
observed, the failure loads could not be stated.

Table 3.44: T1-0. Failure mode and failure load from the NLFEAs with different shear
retention models.

Analysis Failure mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 Shear Compression Failure 1670 kN 0.87
2 No Failure* —
3 No Failure* —

* Shear cracking but no failure due to the fact that the shear capacity remained constant.
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3.3 Case Study 3
The following case study is a numerical approach to the experimental test of RCxcb, collected
from paper Flexural Behaviour and Strength of Reinforced Concrete Beams with Multiple
Transverse Openings [Aykac et al., 2014]. The FE model of RCxcb will be referred to as RCxcb
throughout this section. Both 2D and 3D numerical models of RCxcb were developed in
DIANA.

3.3.1 NLFEA Results obtained by the selected Solution Strategy

Post-analysis checks of the 2D and 3D NLFEAs of RCxcb were conducted in order to
determine the numerical responses and failure modes. This section will present results
obtained by the selected solution strategy, specified in Table 2.10. However, additional
selections was necessary for the 3D model. Consequently only the 2D model of RCxcb is used
to verify the selected solution strategy. However, results for both models will be presented
and compared in this section.

Figures 3.45 and 3.46 compare the LDCs obtained in the experiment and in the numerical
analyses with 2D and 3D modelling, respectively. LDCs are marked with dots that represent
essential observations that constituted specific responses in the FE model. Red crosses
indicate non-converged LSs. As shown in the curves, non-converged LSs followed post
peaks for both models. The highest load taken up by the 2D model was 250 kN in LS 8, at
a corresponding deflection of 19.3 mm. The highest load taken up by the 3D model was 242
kN in LS 7, at a deflection of 17.2 mm. Consequently, after these LSs, a failure mechanism
was formed.

Load transfer and distribution between the supports are shown in Figures 3.47 and 3.48, for
2D and 3D modelling, respectively. A more detailed representation of the load distribution
are presented in Table 3.45. After the peak loads were reached, and failure mechanisms were
formed, both models experienced a reduced load transfer to the supports. However, the load
path to the left support in the 2D model still had some load transferring capacity. Yet, non of
the supports were able to take up any additional forces.
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Figure 3.45: RCxcb (2D). LDC from the numerical solution strategy and the experiment.
The numerical LDC is marked with essential observations that affected the global
behaviour.

Figure 3.46: RCxcb (3D). LDC from the numerical solution strategy and the experiment.
The numerical LDC is marked with essential observations that affected the global
behaviour.
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Figure 3.47: RCxcb (2D). Support reactions against total applied load from the numerical
solution strategy. The curves are marked with essential observations that affected the
global behaviour.

Figure 3.48: RCxcb (3D). Support reactions against total applied load from the numerical
solution strategy. The curves are marked with essential observations that affected the
global behaviour.
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Table 3.45: RCxcb. Reaction forces and amount of force distribution between supports
in numerical models.

Analysis Peak Load Step Peak Load Value Left Reaction Force Right Reaction Force
2D Model 8 250 kN 122 kN (48.8% of peak load) 128 kN (51.2% of peak load)
3D Model 7 242 kN 122kN (50.6% of peak load) 120 kN (49.4% of peak load)
Analysis Last Load Step Last Load Value Left Reaction Force Right Reaction Force
2D Model 10 186 kN 126 kN (68% of last load) 59 kN (32% of last load)
3D Model 11 92kN 72 kN (78.4% of last load) 20 kN (21.6% of last load)

3.3.1.1 Concrete Cracking

Microcracks were formed in the numerical models when the principal tensile strain, ε1,
exceeded the peak tensile strain, εpeak , given in Table 3.46. Further, cracks were considered
as fully open when the ultimate tensile strain, εu , from the same table was exceeded. At this
point the concrete was completely softened in tension, meaning that the material did not
have any remaining tensile capacity.

Table 3.46: RCxcb. Specific tensile strain values for MC2010 TS curve.

Strain Formula Value Tensile stress
εpeak 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 9.52·10−3 σ = 0

RCxcb 2D Model:
The main crack observations from the NLFEA of RCxcb (2D Model) are listed in Table
3.47.

Table 3.47: RCxcb (2D). Crack observations from the numerical solution strategy.

LS Observation Location Total applied load
1 First microcracks appeared Bottom of beam and around openings 55 kN
5 Horizontal discrete cracks Beneath load plates 192 kN
7 Horizontal discrete cracks Beam ends 236 kN
7-8 Fully open cracks Beneath opening 1 and 12 236-250 kN
8-9 Fully open cracks Entire beam height at opening 1 and 12 250-228 kN

Microcracks were observed in LS 1 at an applied load, P, of 55 kN. Principal tensile strain
plot from this LS is shown in Figure 3.49a, where red colour indicates tensile strains larger
than εpeak . Here microcracks, with a principal crack width of 3.85·10−2 mm, were initiated.
Flexural vertical cracks occurred in the tensile zone of the beam, and cracks with an angle of
45◦ were initiated at the outer openings, going towards load- and support plates, as shown
in Figure 3.50a. The first horizontal cracks occurred in LS 3, at an applied load of 127 kN,
and were located beneath the two middle load plates. In LS 5 (P=195 kN), horizontal cracks
appeared under all load plates.

In LS 4 (P=160 kN) fully open cracks were observed beneath opening 1 and 12. From LS 7
towards the peak load of 250 kN, in LS 8, fully open cracks propagated from the opening
edge towards the bottom of the beam, at openings 1 and 12. This is shown in the principal
tensile strain plots in Figures 3.49b and 3.49c, where red colour indicates tensile strains larger
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than εu , while blue colour represents strains less than εpeak . The maximum principal crack
width was generated in LS 8, with a width of 4.74 mm. From LS 8 to LS 9 (P=228 kN), fully
open cracks propagated through the entire beam height at openings 1 and 12, shown in
Figure 3.49d. The crack strain patterns and crack directions obtained in LSs 1, 8 and 10 are
shown in Figures 3.50a, 3.50b and 3.50c. Horizontal crack strains were established beneath
the load plates, in some posts, and under some openings. The maximum principal crack
width increased from 4.74 mm in LS 8 to 475.7 mm in LS 9.

(a) LS 1 (P=55 kN). Red colour=ε1>εpeak .

(b) LS 7 (P=236 kN). Red colour=ε1>εu . Blue colour=ε1<εpeak .

(c) LS 8 (P=250 kN). Red colour=ε1>εu . Blue colour=ε1<εpeak

(d) LS 9 (P=228 kN). Red colour=ε1>εu . Blue colour=ε1<εpeak .

Figure 3.49: RCxcb (2D). Principal tensile strain plots from essential LSs in the NLFEA
with the selected solution strategy.

(a) LS 1 (P=55 kN).

(b) LS 8 (P=250 kN).

(c) LS 10 (P=186 kN).

Figure 3.50: RCxcb (2D). Crack pattern development from essential LSs in the NLFEA
with the selected solution strategy. Auto-scaled colour plot.
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RCxcb 3D Model:
The main crack observations of RCxcb (3D Model) obtained by the selected solution strategy
are listed in Table 3.48.

Table 3.48: RCxcb (3D). Crack observations from the numerical solution strategy.

LS Observation Location Total applied load
1 First microcracks appeared Bottom of beam and around openings 55 kN
4 Horizontal discrete cracks Beneath load plates 161 kN
7 Horizontal discrete cracks Beam ends 242 kN
7 Fully open cracks Beneath opening 1 and 11 242 kN
7-9 Fully open cracks Entire beam height at opening 1 and 11 242-174 kN

The appearance of cracks in LS 1 (P=55 kN) and LS 2 (P=92 kN) were identical as for the 2D
model. The principal tensile strain plot from LS 1 is illustrated in Figure 3.52a. The first
horizontal cracks occurred in LS 3 (P=127 kN) in the 3D model. It was observed beneath the
two middle load plates and the left load plate. In LS 4 (P=161 kN) horizontal cracks appeared
under all load plates.

In LS 4 fully open cracks were most prominent beneath opening 1. In the same LS fully open
cracks were observed in a small area under opening 11 and 12. From LS 7 to 8 (P=230 kN)
fully open cracks from the opening edge towards the lower beam edge under openings 1 and
11 were observed. The tensile strain plot from LS 7 is shown in Figure 3.51c. Additionally,
fully open cracks propagated from opening 11 towards the upper edge of the beam. From
LS 8 to LS 9, fully open cracks propagated in the entire beam height at opening 1 and 11, as
shown in Figure 3.51c.

The crack strain patterns obtained in LS 1, 7 and 11 are shown in Figures 3.52a, 3.52b and
3.52c. As for the 2D model, horizontal cracks were established beneath load plates, in some
posts, and beneath some openings, as visualized in the figures.

(a) LS 1 (P=55 kN). Red colour=ε1>εpeak .

(b) LS 7 (P=242 kN). Red colour=ε1>εu . Blue colour=ε1<εpeak .

(c) LS 9 (P=174 kN). Red colour=ε1>εu . Blue colour=ε1<εpeak .

Figure 3.51: RCxcb (3D). Principal tensile strain plots for essential LSs in the NLFEA with
the selected solution strategy.
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(a) LS 1 (P=55 kN).

(b) LS 7 (P=242 kN).

(c) LS 11 (P=92 kN).

Figure 3.52: RCxcb (3D). Crack pattern development in essential LSs in the NLFEA with
the selected solution strategy. Auto-scaled colour plot.

A summary of the crack situation from the peak LSs and the post peak LSs in the NLFEAs of
both the 2D and 3D models are shown in Table 3.49. The data was collected from an output
file in DIANA.

Table 3.49: RCxcb (2D and 3D). Summary of crack logging at peak- and post peak load,
given by DIANA. The numbers indicate the amount of cracks.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
step number opens

2D - LS 8 7390 7314 76 5346 2044 346 7 13
2D - LS 9 7681 7556 125 2354 5327 291 13 62
3D - LS 7 134817 134034 783 103805 31012 13892 81 276
3D - LS 8 148230 146523 1707 59662 88568 13413 219 1143

3.3.1.2 Concrete Crushing

Crushing of concrete was characterized by principal compressive strains, ε2, with an abso-
lute value larger than the absolute value of αc , given in Table 3.50. Further increased com-
pressive strains led to compression softening of the concrete. At the point when |ε2|>|αu |,
from Table 3.50, the concrete was completely softened in compression.
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Table 3.50: RCxcb. Specific compressive strain values for parabolic stress-strain curve.

Strain Formula Value Compressive stress

αc −5 · 1

3
· fcm

Ec
-1.44·10−3 σ = fcm

αu αc − 3

2
· GC

h · fcm
-5.66·10−2 σ = 0

RCxcb 2D Model:
The main observations of the concrete compressive behaviour for RCxcb (2D model) are
listed in Table 3.51.

The first signs of crushing in the concrete were observed beneath opening 8, 11 and 12 in LS 4
(P=160 kN), as shown in Figure 3.53a. A clear compressive path in the beam was formed with
an angle of 45◦ from the supports to the outer load plates. This is shown in the contour plot
of principal compressive strains in Figure 3.53b. In LS 6 (P=221 kN), concrete crushed locally
beneath all load plates and beneath all openings, except opening 7. At peak load level, in LS 8
(P=250 kN), areas of crushed concrete propagated through the entire beam height at opening
1, and in the lower core beneath opening 11 and 12. |ε2| increased in the upper central core.
Post peak, in LS 9 (P=228 kN), the concrete was crushed through the entire beam height at
both opening 1 and 12, as shown in Figure 3.53c. The concrete was completely softened
in compression above and below opening 12 at this stage, as |ε2|>|αu | in these areas. The
compression softening strain path in RCxcb formed a 45◦ path, as shown in Figure 3.54e.
RCxcb was also completely softened in compression in an area over the right support.

Table 3.51: RCxcb (2D). Observations of crushing from the NLFEA with the selected
solution strategy.

LS Observation Location Total applied load
4 First signs of crushing See Figure 3.53a) 160 kN
6 Localized crushing Beneath load plates and web openings 221 kN
8 Critical crushing See Figure 3.53b) 250 kN
9 Critical crushing See Figure 3.53c) 228 kN
9 Concrete fully softened in compression Above web opening 12 228 kN
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(a) LS 4 (P=160 kN). Red colour=| ε2 |>|αc |.

(b) LS 8 (P=250 kN). Red colour=| ε2 |>|αc |.

(c) LS 9 (P=228 kN). Red colour=| ε2 |>|αc |.

(d) LS 9 (P=228 kN). Red colour=| S2 |>| fcm |.

(e) LS 9 (P=228 kN). Red colour=| ε2 |>|αu |.

Figure 3.53: RCxcb (2D). Principal compressive strain and stress plots from essential LSs
in the NLFEA with the selected solution strategy.

RCxcb 3D Model:
The main observations of the concrete compressive behaviour for RCxcb (3D model) are
listed in Table 3.52.

Table 3.52: RCxcb (3D). Observations of crushing from the NLFEA with the selected
solution strategy.

LS Observation Location Total applied load
5 First signs of crushing See Figure 3.54a) 192 kN
7 Localized crushing Upper central core and web openings 242 kN
7 Localized crushing At outer openings 242kN
9 Critical crushing See Figure 3.54c) 174 kN
10 Fully softened concrete in compression At openings 1 and 11 119 kN

The first signs of crushing of concrete were observed beneath opening 1, 8, 9, 11 and 12 in
LS 5 (P=192 kN), shown in Figure 3.54a. A compressive strut formed identically as in the 2D
model. This is shown in Figure 3.54b. At the peak load level, in LS 7 (P=242 kN), the concrete
was crushed beneath opening 1, 2, 11 and 12. At post peak level, in LS 9 (P=174 kN), the
concrete was crushed in the entire beam height at opening 1 and 11, as illustrated in Figure
3.54c. In LS 10 (P=119 kN) the concrete was completely softened in compression in the entire
beam height at opening 1 and 11, as shown in Figure 3.54e.
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(a) LS 5 (P=192 kN). Red colour=| ε3 |>|αc |.

(b) LS 7 (P=242 kN). Red colour=| ε3 |>|αc |.

(c) LS 9 (P=174 kN). Red colour=| ε3 |>|αc |.

(d) LS 9 (P=174 kN). Red colour=| S3 |>| fcm |.

(e) LS 10 (P=119 kN). Red colour=| ε3 |>|αu |.

Figure 3.54: RCxcb (3D). Principal compressive strain and stress plots from essential LSs
in the NLFEA with the selected solution strategy.

3.3.1.3 Tension-Compression Interaction

RCxcb 2D Model
Two nodes in the concrete elements that had achieved strains that indicated fully tensile
softening are highlighted in Figure 3.55. These nodes corresponded to node number 2448
and 2795 in the FE model. However, these nodes also comprised a part of the strut that
transferred load from the load plate to the support. Hence this area also achieved large
compressive stresses during the analysis. Figure 3.56 visualizes the development of principal
compressive stresses, S2, in these nodes. The horizontal axis indicates at what load-factor
the respective stress values were obtained. Load factor 0.06 indicates the point when 6% of
the total prescribed deflection was applied. Consequently the decimals of the load-factor
corresponds to the LS number. As shown in this figure, the maximum compressive stress
was therefore reached in LS 6. The maximum absolute value was however lower than the
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absolute value of the specified compressive strength for RCxcb which was 26.1 N/mm2.

Figure 3.55: RCxcb. Principal tensile strain plot. Red colour=ε1>εu . Development of
compressive stresses in highlighted nodes; 2448 and 2795, are shown in Figure 3.56.

Figure 3.56: RCxcb. Table-output from DIANA, showing the development of principal
compressive stresses, S2, in node 2448 and 2795, highlighted in Figure 3.55.

RCxcb 3D Model
Two nodes in the concrete elements that had achieved strains that indicated fully tensile
softening are highlighted in Figure 3.57. These nodes corresponded to node number 12455
and 12456 in the FE model. However these nodes also comprised a part of the strut that
transferred load from the load plate to the support. Hence this area also achieved large
compressive stresses during the analysis. Figure 3.58 visualizes the development of principal
compressive stresses, S2, in these nodes. As shown in this figure, the maximum compressive
stress was therefore reached in LS 10. The maximum absolute value was however lower than
the absolute value of the specified compressive strength.
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Figure 3.57: 6IT1. Principal tensile strain plot. Red colour=ε1>εu . Development of
compressive stresses in highlighted nodes; 12455 and 12456, are shown in Figure 3.58.

Figure 3.58: 6IT1. Table-output from DIANA, showing the development of principal
compressive stresses, S2, in node 12455 and 12456, highlighted in Figure 3.57.
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3.3.1.4 Yielding of Reinforcement

Yield strains and ultimate strain limits for the reinforcement in RCxcb are given in Table
2.9. The evaluated strain values in the reinforcement were extracted from the nodes of the
embedded bar elements.

RCxcb 2D Model:
Figure 3.59 shows the reinforcement strains in x- and y-direction at different LSs for the
RCxcb 2D model, where yielding and ultimate strain areas are marked with circles. In LS
6 yielding occurred in stirrups (ø4) beneath opening 1, 8, 11 and 12. At peak load level, in LS
8 (P=250 kN), yielding was detected in stirrups beneath and above opening 1, 2, 11 and 12. At
post peak level, in LS 9, the mean ultimate strain was reached in stirrups beneath openings 1
and 12. The maximum registered strain value was 0.3 in a stirrup beneath openings 12 in LS
10. The maximum strain in the main longitudinal reinforcement (ø12) was observed in LS 8
with a value of 2.30·10−3. Consequently it did not reach the yield strain value of 2.75·10−3. In
the cable reinforcement (ø10), the maximum obtained strain was 1.35·10−2 in LS 9, and the
bars yielded beneath opening 1. The main reinforcement in the central compressive zone
achieved a maximum detected strain of -9.30·10−4 at peak load level, in LS 8. The respective
bars did not yield.

(a) LS 6. Red colour=εy y >εym,ø4.

(b) LS 8. Red colour=εy y >εym,ø4.

(c) LS 9. Red colour=εy y >εum,ø4.

(d) LS 8. εxx did not exceed εym,ø12 (red colour) in main tensile reinforcement.

(e) LS 9. Red colour=εy y >εym,ø10.

Figure 3.59: RCxcb (2D). Reinforcement strains in x- and y-direction in essential LSs from
the NLFEA with the selected solution strategy. Areas of yielding and ultimate strains are
marked with circles.
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RCxcb 3D Model:
Figure 3.60 shows the reinforcement strains in x-, y- and z-direction at different LSs for the
RCxcb 3D model, where yielding and ultimate strain areas are marked with circles. In LS 6,
yielding occurred in vertical stirrups (ø4) beneath opening 1, 11 and 12. At peak load level, in
LS 7 (P=242 kN), yielding was observed in stirrups beneath opening 1, 2, 8, 11 and 12. In LS
8, yielding was reached in stirrups beneath opening 11, in the out-of-plane direction. Mean
ultimate strains were reached in stirrups above and beneath opening 1 and 11 in LS 10. The
maximum observed strain value was 6·10−2 beneath opening 1 in this LS. The maximum
strain in the main longitudinal reinforcement (ø12) was observed in LS 7 with a value of
2.10·10−3. Consequently it did not reach the yield strain value of 2.75·10−3. In the cable
reinforcement (ø10), the maximum observed strain was 3·10−2 in LS 10, and the bars yielded
in horizontal direction. The main reinforcement in the central compressive zone achieved a
maximum strain of almost -1·10−3, in LS 7.

(a) LS 6. Red colour=εzz >εym,ø4.

(b) LS 7. Red colour=εzz >εym,ø4.

(c) LS 8. Red colour=εy y >εym,ø4.

(d) LS 10. Red colour=εzz >εum,ø4.

(e) LS 7. εxx did not exceed εym,ø12 (red colour) in main tensile reinforcement.

Figure 3.60: RCxcb (3D). Reinforcement strains in x-, y- and z-direction in essential LSs
from the NLFEA with the selected solution strategy. Areas of yielding and ultimate strains
are marked with circles.
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3.3.1.5 Global Failure

The failure mode for RCxcb, in both the 2D and 3D models, was characterized by a reduction
of compressive capacity due to large lateral tensile forces, which resulted in a combined
failure mode of diagonal tension failure combined with web crushing failure. The failure
modes for the numerical models were brittle, in contrast to the experimental failure modes,
which yielded a ductile behaviour for RCxcb.

As observed during post-processing, the failure mechanism occurred at peak load level
with a failure load as presented in Table 3.53. Consequently, this resulted in a modelling
uncertainty of 1.14 and 1.18, for the 2D and 3D models, respectively.

Table 3.53: RCxcb. Failure mode and failure load from the NLFEA of the solution strategy.

Analysis Failure Mode Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

2D Model Diagonal Tension Failure 250 kN 1.14
combined with
Web Crushing Failure

3D Model Diagonal Tension Failure 242 kN 1.18
combined with
Web Crushing Failure
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3.3.2 Sensitivity Study of the Numerical Modelling in Case Study 3

3.3.2.1 Sensitivity to Structural Interface Selection

Three different interface schemes were tested numerically in the 2D numerical RCxcb model.
Formulas used to calculate the interface stiffness are defined in Eq. (2.5) and (2.6). One of the
tested schemes were defined with a normal stiffness, Kn , of 1000 times Esteel divided by the
selected length of the elements, and a tangential stiffness, Kt , of zero. This scheme is referred
to as a soft interface. The second tested scheme had the same normal stiffness as described
above, and a tangential stiffness equal to Kn divided by 10. This scheme is referred to as stiff
interface. The third test was without any interface material, and is therefore referred to as no
interface.

Analysis 1: Soft interface (Kn = 1000 · Esteel
h , Kt =0).

Analysis 2: Stiff interface (Kn = 1000 · Esteel
h , Kt = Kn

10 ).
Analysis 3: No interface

LDCs from the NLFEAs of RCxcb with the different interfaces are shown in Figure 3.61 for the
2D numerical model.

Figure 3.61: RCxcb (2D). LDCs with different interface schemes and the experimental
LDC.

Figure 3.62 presents the principal compressive stress plots from the NLFEAs obtained for the
2D model with different interface schemes. The plots describe the stress pattern at peak load
level. Analyses 1 and 2 achieved peaks in the LDCs, while Analysis 3 did not gain a peak load
before the last LS diverged and the analysis terminated. Both Analyses 2 and 3 yielded stress
concentrations, propagating from the right load plate towards opening 11. In order to reduce
stress concentrations under the load plates, DG recommends to use a no-friction interface
between steel load plates and the concrete core. However, as observed in the contour
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plots, all analyses did to some extent generate stress concentrations beneath the load plates.
Yet, in compliance with the DG recommendation, the analysis without tangential stiffness,
hence no-friction interface, achieved less comprehensive principal compressive stresses
propagating from the load plate towards the web opening beneath.

(a) Analysis 1: LS 8 (P=250 kN).

(b) Analysis 2: LS 7 (P=239 kN).

(c) Analysis 3: LS 10 (P=252 kN).

Figure 3.62: RCxcb (2D model). Principal compressive stress plots from the 2D solution
strategy model with different interface schemes. Red colour=| S2 |>| fcm |.

Table 3.54: RCxcb. Midspan deflection, failure load and modelling uncertainty from
NLFEAs with interfaces.

Analysis Midspan Deflection Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 (2D) 19.3 mm 250 kN 1.14

2 (2D) 17.7 mm 239 kN 1.19

3 (2D) — No Peak —
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3.3.2.2 Sensitivity regarding FE Discretization

In this sensitivity study, the numerical responses from NLFEAs of RCxcb with four different
mesh densities were compared. As for Case Study 1 and 2, the tested densities were H/6,
H/12 and L/50, which for RCxcb resulted in element sizes of 66.67 mm, 33.33 mm and
76 mm, respectively. These NLFEAs are defined as Analysis 1, 2 and 3. According to DG,
maximum element size for 3D modelling of beam structures should be limited to the beam
width, B, divided by six. Therefore, as Case Study 3 included 3D modelling, an additional
mesh density was implemented in Analysis 4.

Throughout this sensitivity study, the following designations will be used as references for
the four NLFEAs of RCxcb with different FE discretizations:
Analysis 1: Mesh density H/12 (33.33 mm)
Analysis 2: Mesh density L/50 (76 mm)
Analysis 3: Mesh density H/6 (66.67 mm)
Analysis 4: Mesh density B/6 (25 mm)

Figures 3.63 and 3.64 show the LDCs obtained with the different mesh densities, for the
2D and 3D models, respectively. The different curves are marked with dots that represent
observations regarding the tensile behaviour of the concrete. Non-converged LSs are marked
with crosses. In Analysis 2 for the 2D model, eight LSs did not achieve convergence; LS 15,
17, 18, 19, 20, 21, 22 and 23. The 3D model in Analysis 2 had two non-converged steps; LS 10
and LS11. In Analysis 3 of the 2D model, six LSs did not achieve convergence; LS 12, 14, 16,
19, 20 and 21, while the 3D model resulted in seven such steps; LS 9, 10, 11, 12, 13, 14 and 15.
Finally, in Analysis 4, the 2D model only had in two non-converged steps; LS 9 and 10, while
the 3D model had four; LS 7, 8, 9 and 10. The last non-converged LS, marked on each curve,
is defined as diverged LS in DIANA.

Microcracks were formed at local weak points in the material when the tensile strain, ε1,
exceeded εpeak , given in Table 3.55. Fully softening in tension was achieved when ε1

exceeded εu , listed in the same table. At this strain value cracks were considered to be fully
open.

The principal tensile strain plots for the 2D and 3D models with different mesh densities
are presented in Figures 3.65 and 3.66, respectively. The plots represent essential LSs for the
concrete tensile behaviour. Red colour indicates ε1>εu .

113



Figure 3.63: RCxcb (2D). LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with crack observations and non-
converged LSs.
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Figure 3.64: RCxcb (3D). LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with crack observations and non-
converged LSs.

Table 3.55: RCxcb. Specific tensile strain values in the MC2010 TS curve with different
mesh densities.

Strain Formula Strain value Strain value Strain value Strain value Tensile stress
Analysis 1 Analysis 2 Analysis 3 Analysis 4

εpeak 1.50·10−4 1.50·10−4 1.50·10−4 1.50·10−4 σ = fctm

εu 5 · GF
fctm ·h 9.52·10−3 4.18·10−3 4.76·10−3 1.27·10−2 σ = 0

In all 2D and 3D analyses, the largest mesh density yielded a more comprehensive area of
fully open cracks than with a finer mesh.

In Analysis 2-4 of the 2D model, the cracks going through the entire beam height were
unsymmetrically located in the beam. The crack pattern was more symmetrical in Analysis
1. In Analysis 4, the fully open cracks were propagated through the entire beam height after
peak load level.

Unlike for the 2D model, all 3D analyses yielded fully tensile softened concrete through the
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entire beam height at post-peak level. The diagonal crack pattern was propagated in the
same critical path connected to opening 11, in both the 2D and 3D models, except for the 2D
model in Analysis 1, where this path was localized at opening 12 instead of 11. In all analyses
the 2D model yielded fully open cracks in the entire beam height at an earlier stage than
the 3D model. Larger areas of completely tensile softened concrete were observed in the 2D
model than in the 3D model with indentical mesh density.

(a) Analysis 2: Peak LS 8 (P=260 kN).

(b) Analysis 2: Post-peak LS 9 (P=250 kN).

(c) Analysis 2: Post-peak LS 14 (P=205 kN).

(d) Analysis 3: Peak LS 10 (P=286 kN).

(e) Analysis 3: Post-peak LS 11 (P=242 kN).

(f ) Analysis 4: Peak LS 8 (P=240 kN).

(g) Analysis 4: Post-peak LS 9 (P=209 kN).

Figure 3.65: RCxcb (2D). Principal tensile strain plots from essential LSs in the NLFEAs
with different mesh densities. Red colour=ε1>εu . Blue colour=ε1<εpeak .

Table 3.56 presents a summary of crack logging from the NLFEAs with different mesh
densities. The table shows the amount of cracks that were developed at the given LS and the
respective crack status. Two values are highlighted from each analysis; the peak load level
and the post-peak load level. A larger amount of cracks were developed in the models with
the finest meshes. In the 3D model, the coarsest mesh yielded the lowest amount of cracks
at peak load level. This was obtained with the next coarsest mesh in the 2D model.
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(a) Analysis 2: Peak LS 9 (P=286 kN).

(b) Analysis 2: Post-peak LS 10 (P=266 kN).

(c) Analysis 3: Peak LS 8 (P=257 kN).

(d) Analysis 3: Post-peak LS 9 (P=200 kN).

(e) Analysis 4: Peak LS 6 (P=209 kN).

(f ) Analysis 4: Post-peak LS 7 (P=206 kN).

Figure 3.66: RCxcb (3D). Principal tensile strain plots from essential LSs in the NLFEAs
with different mesh densities. Red colour=ε1>εu . Blue colour=ε1<εpeak .
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Figures 3.67 and 3.68 show the LDCs obtained with the different mesh densities, for the
2D and 3D models. The different curves are marked with dots which represents LSs with
essential observations of compressive behaviour of concrete.

Figure 3.67: RCxcb (2D). LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with observations of crushing.
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Figure 3.68: RCxcb (3D). LDCs from the NLFEAs with different mesh densities, and the
experimental LDC. The numerical LDCs are marked with observations of crushing.

Table 3.56: RCxcb (2D and 3D). Summary of crack logging from the NLFEAs with
different mesh densities, given by DIANA.

Analysis - Crack Open Closed Active Inactive Arises Re- Closes
step number opens
2: LS 8 (2D) 2184 2167 17 1703 481 153 3 6
2: LS 9 (2D) 2313 2284 29 1176 1137 129 2 14
3: LS10 (2D) 2688 2663 25 2136 552 79 2 2
3: LS 11 (2D) 2874 2830 44 1214 1660 186 6 25
4: LS 8 (2D) 13472 13275 197 8046 5426 885 22 93
4: LS 9 (2D) 13901 13586 315 2384 11517 429 38 156
2: LS 9 (3D) 21156 21040 116 16789 4367 1768 15 50
2: LS 10 (3D) 22855 22557 298 11863 10992 1699 37 219
3: LS 8 (3D) 22992 22879 113 18587 4405 2007 21 39
3: LS 9 (3D) 25353 24833 520 11434 13919 2361 34 441
4: LS 6 (3D) 292884 290299 2585 206454 86430 38377 192 1166
4: LS 7 (3D) 324930 320509 4421 160921 164009 32046 634 2470
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Table 3.57 shows the defined specific compressive strain values that are used to describe
the compressive behaviour in the different analyses in this section. When the principal
compressive strain (2D:|ε2|, 3D:|ε3|) exceeded |αc |, the concrete started to crush in the
respective area. When αu was reached, the concrete was defined as completely softened in
compression in that area. The plots in Figures 3.69 and 3.70 show the principal compressive
strains for the 2D and 3D model, respectively. The red areas show how the beam was
disposed to crushing and complete softening in compression, as αc and αu were reached
in the integration points of the elements.

Table 3.57: RCxcb. Specific compressive strain values for the parabolic stress-strain
curve with different mesh densities.

Strain Formula Strain value Strain value Strain value Strain value Compressive stress
(H/12) (L/50) (H/6) (B/6)

αc -5·1
3

fc
E -1.44·10−3 -1.44·10−3 -1.44·10−3 -1.44·10−3 σ = fc

αu αc - 3
2

GC
h fc

-5.66·10−2 -2.63·10−2 -2.97·10−2 -7.69·10−2 σ = 0

The principal compressive strain plots for the 2D and 3D models with different mesh
densities are visualized in Figures 3.69 and 3.70. The larger mesh densities yielded more
comprehensive crushing areas. Crushing occurred in the same LSs and at the same locations
as where the concrete was defined as completely softened in tension. Crushed concrete was
observed in the entire beam height at opening 11 in both the 2D and the 3D models. In
addition, crushing was also prominent in the upper central chord.

As for tensile strains, areas of crushed concrete covered larger areas when coarser mesh
densities were used. Complete softening was more prominent for coarse meshes at post
peak level. As for the principal tensile strains, the concrete crushed in a non-symmetrical
path in all analyses of the 2D model.

Unlike the 2D model, the 3D model was only crushed in entire beam height at opening 11,
not at opening 1. The 3D model yielded complete softening in larger areas than the 2D
model.
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(a) Analysis 2: Peak LS 8 (P=260 kN). Red colour=| ε2 |>|αc |.

(b) Analysis 2: Post-peak LS 10 (P=193 kN). Red colour=| ε2 |>|αu |.

(c) Analysis 2: Post-peak LS 14 (P=205 kN). Red colour=| ε2 |>|αc |.

(d) Analysis 3: Peak LS 10 (P=286 kN). Red colour=| ε2 |>|αc |.

(e) Analysis 3: Post-peak LS 11 (P=242 kN). Red colour=| ε2 |>|αc |.

(f ) Analysis 3: Post-peak LS 11 (P=242 kN). Red colour=| ε2 |>|αu |.

(g) Analysis 4: Peak LS 8 (P=240 kN). Red colour=| ε2 |>|αc |.

(h) Analysis 4: Post-peak LS 9 (P=209 kN). Red colour=| ε2 |>|αc |.

(i) Analysis 4: Post-peak LS 9 (P=209 kN). Red colour=| ε2 |>|αu |.

Figure 3.69: RCxcb (2D). Principal compressive strain plots from essential LSs in the
NLFEAs with different mesh densities.
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(a) Analysis 2: Peak LS 9 (P=286 kN). Red colour=| ε3 |>|αc |.

(b) Analysis 2: Post-peak LS 10 (P=266 kN). Red colour=| ε3 |>|αc |.

(c) Analysis 2: Post-peak LS 11 (P=201 kN). Red colour=| ε3 |>|αu |.

(d) Analysis 3: Peak LS 8 (P=257 kN). Red colour=| ε3 |>|αc |.

(e) Analysis 3: Post-peak LS 9 (P=200 kN). Red colour=| ε3 |>|αc |.

(f ) Analysis 3: Post-peak LS 11 (P=196 kN). Red colour=| ε3 |>|αu |.

(g) Analysis 4: Peak LS 6 (P=209 kN). Red colour=| ε3 |>|αc |.

(h) Analysis 4: Post-peak LS 7 (P=206 kN). Red colour=| ε3 |>|αc |.

(i) Analysis 4: Post-peak LS 10 (P=50 kN). Red colour=| ε3 |>|αu |.

Figure 3.70: RCxcb (3D). Principal compressive strain plots from essential LSs in the
NLFEAs with different mesh densities.
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Figures 3.71 and 3.72 show the development of the reaction forces in the supports from the
different analyses with various mesh densities. All peak values for the reaction forces were
coherent with peaks in the LDCs visualized in Figures 3.67 and 3.68. The clear drop in all
curves, for the both 2D and 3D models, indicated that non of these models were able to take
up any additional forces after the failure mechanisms were established.

Figure 3.71: RCxcb (2D). Support reactions against total applied load from the NLFEAs
with different mesh densities. The curves are marked with crack observations.
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Figure 3.72: RCxcb (3D). Support reactions against total applied load from the NLFEAs
with different mesh densities. The curves are marked with crack observations.

Table 3.58 shows the amount of force distribution in supports for the 2D and 3D models with
different mesh densities. A greater amount of forces were transferred to the left support in all
analyses, except for Analysis 1. From peak load level to the last LS, the left supports were able
to take up more load than the right supports in all analyses, except for Analysis 3 (2D).
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Table 3.58: RCxcb (2D and 3D). Reaction forces and amount of force distribution in
supports from the NLFEAs with different mesh densities.

Mesh Density Peak LS Deformation (Peak) Left Reaction Force (Peak) Right Reaction Force (Peak)
1: 33.33mm (2D) 8 19.3mm 122.1 kN (48.8% of peak load) 128.3 kN (51.2% of peak load)
1: 33.33mm (3D) 7 17.2mm 122.4 kN (50.6% of peak load) 119.6 kN (49.4% of peak load)
2: 76mm (2D) 8 20.0mm 133.5 kN (51.3% of peak load) 126.5 kN (48.7% of peak load)
2: 76mm (3D) 9 22.7mm 147.7 kN (51.7% of peak load) 138.2 kN (48.3% of peak load)
3: 66.67mm (2D) 10 25.1mm 153 kN (53.6% of peak load) 132.5 kN (46.4% of peak load)
3: 66.67mm (3D) 8 20.2mm 133.9 kN (52% of peak load) 123.4 kN (48% of peak load)
4: 25mm (2D) 8 19.1mm 126.6 kN (52.7% of peak load) 113.5 kN (47.3% of peak load)
4: 25mm (3D) 6 14.7mm 106.1 kN (50.7% of peak load) 103.2 kN (49.3% of peak load)
Analysis Last LS Last Load Value Left Reaction Force (Last LS) Right Reaction Force (Last LS)
1 (2D) 10 185.5 kN 126.2 kN (68% of last load) 59.3 kN (32% of last load)
1 (3D) 11 92.1 kN 72.2 kN (78.4% of last load) 19.9 kN (21.6% of last load)
2 (2D) 23 91.1 kN 53.3 kN (58.5% of last load) 37.8 kN (41.5% of last load)
2 (3D) 11 201 kN 161 kN (80% of last load) 40 kN (20% of last load)
3 (2D) 21 70.3 kN 30.3 kN (43.1% of last load) 40 kN (56.9% of last load)
3 (3D) 15 165.6 kN 136.5 kN (82.4% of last load) 29.1 kN (17.6% of last load)
4 (2D) 10 160.7 kN 110.8 kN (68.9% of last load) 49.9 kN (31.1% of last load)
4 (3D) 10 50.1 kN 35.2 kN (70.3% of last load) 14.9 kN (29.7% of last load)

As for the solution strategy in Analysis 1, the reinforcement yielded in the same critical areas
in the other analyses as well. The main reinforcement in the tensile zone did not yield before
a failure mechanism was established.

Analysis 4, with the finest mesh density, achieved the lowest failure load in both 2D and
3D modelling. Analysis 2, with largest element sizes, withstood the greatest deformations
in both the 2D and 3D model. The 2D model in Analysis 3 accomplished the highest
2D load capacity with a peak load of 286 kN at 25.1 mm deflection. The 3D model in
Analysis 2 accomplished the highest 3D load capacity with a peak load of 286 kN at 22.7
mm deflection.

Table 3.59 presents the failure modes achieved in the different analyses in this sensitivity
study. All four analyses yielded a brittle failure mechanism, characterized by a combination
of cracking and crushing of concrete.

Table 3.59: RCxcb (2D and 3D). Failure mode and failure load from the NLFEAs with
different mesh densities.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 (2D) Same as 2D Model in Fig. 3.53 250 kN 1.14
1 (3D) Same as 3D Model in Fig. 3.53 242 kN 1.17
2 (2D) Same as 2D Model in Fig. 3.53 260 kN 1.09
2 (3D) Same as 3D Model in Fig. 3.53 286 kN 0.99
3 (2D) Same as 2D Model in Fig. 3.53 286 kN 0.99
3 (3D) Same as 3D Model in Fig. 3.53 257 kN 1.10
4 (2D) Same as 2D Model in Fig. 3.53 240 kN 1.18
4 (3D) Same as 3D Model in Fig. 3.53 209 kN 1.36
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3.3.2.3 Sensitivity to choice of Constitutive Model for Concrete

Tension Softening Model
For the selected solution strategy, MC2010 was chosen as the standard TS approach.
According to DG, exponential TS is preferred. In order to investigate the sensitivity related
to this constitutive approach, these two models were tested. Figures 3.73 and 3.74 show
the obtained LDCs from NLFEAs with the two different TS models, in 2D and 3D modelling
respectively. The curves are marked with observations of tensile softening of concrete and
non-converged LSs.

Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of RCxcb with different TS models:
Analysis 1: MC2010 TS Model
Analysis 2: Exponential TS Model

Figure 3.73: RCxcb (2D). LDCs from the NLFEAs with different TS models, and the
experimental LDC. The numerical LDCs are marked with crack observations and non-
converged LSs.
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Figure 3.74: RCxcb (3D). LDCs from the NLFEAs with different TS models, and the
experimental LDC. The numerical LDCs are marked with crack observations and non-
converged LSs.

Table 3.60 shows the specific tensile strain values that are used to describe the exponential
TS behaviour. Figures 3.75 and 3.76 show principal tensile strain plots of RCxcb obtained in
Analysis 2 for 2D and 3D modelling respectively. Blue colour indicates strain values less than
εpeak , listed in Table 3.60, while red colour indicates strains larger than the value of εu from
the same table. The red areas show where the beam generated fully open cracks as the limit
strain value in tension softening was reached.

Table 3.60: RCxcb. Specific tensile strain values for the exponential TS.

Strain Formula Value Tensile stress

εpeak
fctm
Ecm

6.83·10−5 σ = fctm

εu 2· GF
fctm ·h 3.81·10−3 σ' 0

In 2D Analysis 2, the cracks were fully open through the entire beam height at opening 1 and
12 in the LS after the peak load in the LDC. Similarly as in Analysis 1, the obtained crack
pattern was symmetrical. However, the fully open crack pattern in the upper chord showed
a different angle in Analysis 2 than in Analysis 1.

In 3D Analysis 2, the cracks were fully open through the entire beam height at opening 2
and 11 in the LS after the peak load in the LDC. Also similar as in Analysis 1, the 3D model
obtained an unsymmetrical crack pattern.
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(a) Peak LS 6 (P=212kN)

(b) Post-peak LS 7 (P=120kN)

Figure 3.75: RCxcb (2D). Principal tensile strain plots from essential LSs in the NLFEA
with exponential TS. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

(a) Peak LS 6 (P=221kN)

(b) Post-peak LS 7 (P=144kN)

(c) Post-peak LS 8 (P=35kN)

Figure 3.76: RCxcb (3D). Principal tensile strain plots from essential LSs in the NLFEA
with exponential TS. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

Figures 3.77 and 3.78 show the LDCs obtained with different TS models, for the 2D and 3D
modelling, respectively. The different curves are marked with dots that indicate specific
compressive behaviour observations. Compressive strain values that describe the parabolic
behaviour function of concrete are defined in Table 3.50. The red areas in the principal
compressive strain plots in Figures 3.79 and 3.80 indicate concrete that were completely
softened in compression.
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Figure 3.77: RCxcb (2D). LDCs from the NLFEAs with different TS models, and the
experimental LDC. The numerical LDCs are marked with observations of concrete
crushing.

Figure 3.78: RCxcb (3D). LDCs from NLFEAs with two different TS models, and the ex-
perimental LDC. The numerical LDCs are marked with compressive strain observations
of concrete.
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In the 2D Analysis 2, crushed areas were observed through the entire beam height at opening
1 and 12, in the same area as the critical shear crack developed. In contrast to Analysis 1,
crushing was not prominent in the upper central chord in Analysis 2. However, completely
softening in compression at opening 1 and 12 was more prominent in Analysis 2 than in
Analysis 1, as only a small area over and under opening 12 was completely softened in
compression in 2D Analysis 1.

In the 3D Analysis 2, crushing of concrete was observed in the same path and LS as the fully
open cracks were observed. In contrast to Analysis 1, where the concrete was completely
softened in compression at openings 1 and 11, this corresponded to opening 2 and 11 in
Analysis 2.

(a) Peak LS 6 (P=212kN). Red colour=| ε2 |>|αc |.

(b) Post-peak LS 7 (P=120kN). Red colour=| ε2 |>|αc |.

(c) Post-peak LS 7 (P=120kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Figure 3.79: RCxcb (2D). Principal compressive strain plots from essential LSs in the
NLFEA with exponential TS.

(a) Peak LS 6 (P=221kN). Red colour=| ε3 |>|αc |.

(b) Post-peak LS 7 (P=144kN). Red colour=| ε3 |>|αc |.

(c) Post-peak LS 8 (P=35kN). Red colour=| ε3 |>|αu |.

Figure 3.80: RCxcb (3D). Principal compressive strain plots from essential LSs in the
NLFEA with exponential TS.
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Figures 3.81 and 3.82 show the development of the reaction forces in the supports from the
different analyses. The clear drop in all curves, for both the 2D and 3D models, indicates that
non of the analyzed models were able to take up more load after failure mechanisms were
established.

Figure 3.81: RCxcb (2D). Reaction forces from NLFEA with different tension softening
models. The curves are marked with crack observations.

As for the solution strategy in Analysis 1, yielding of the reinforcement was localized at the
same critical areas in Analysis 2. The main longitudinal reinforcement did not yield before
the failure mechanism was established.

Table 3.61 presents the failure mode achieved for both the 2D and the 3D model in the
different analyses related to this sensitivity study. Both TS approaches resulted in formation
of the same brittle failure mechanism. Both models in Analysis 2, with exponential TS, failed
at lower loads and achieved higher modelling uncertainties than in Analysis 1.
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Figure 3.82: RCxcb (3D). Reaction forces from NLFEA with different tension softening
models. The curves are marked with crack- and crushing observations.

Table 3.61: RCxcb. Failure mode and failure load from the NLFEAs with different TS
models.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 (2D) Diagonal Tension Failure 250 kN 1.14
combined with
Web Crushing Failure

2 (2D) Diagonal Tension Failure 212 kN 1.33
combined with
Web Crushing Failure

1 (3D) Diagonal Tension Failure 242 kN 1.18
combined with
Web Crushing Failure

2 (3D) Diagonal Tension Failure 221 kN 1.28
combined with
Web Crushing Failure

132



Compressive Behaviour Function

In order to investigate the sensitivity related to choice of compressive behaviour function,
constant function was tested in addition to parabolic function, which was the chosen
behaviour in the selected solution strategy.

Throughout this sensitivity study, the following designations will be used as references for
the two NLFEAs of RCxcb with different compressive behaviour functions: Analysis 1: Parabolic
compressive behaviour function.
Analysis 2: Constant compressive behaviour function.

The constant compressive behaviour function provides a simplified approach to the con-
crete compressive behaviour, where the material do not soften in compression. The concrete
is given a so-called idealized plastic behaviour. As opposed to for the parabolic curve, no
compressive strain values indicates reduced concrete capacity in the constant curve. There-
fore, a reference value, εcu2, described in Table 2.11, was used in the post-analysis investiga-
tion of RCxcb in order to be able to evaluate how the compressive behaviour developed in the
FE model. Compressive strain value for RCxcb at the point when crushing was initiated, and
also this reference value, yielding an indicative limit value, are further defined in Table 3.62.
Corresponding strain values describing the parabolic curve is given in Table 3.50. However,
αu in this table is not an indicative limit value, but a strain value that indicates completely
softened concrete in compression.

Figures 3.83 and 3.84 show the LDCs obtained with the different compressive behaviour
functions, with 2D and 3D modelling. The different curves are marked with dots that
indicates specific tensile strain observations, and crosses that indicate non-converged
LSs.

The specific tensile strain values used to evaluate crack development in this sensitivity study
are identical as for the selected solution strategy, and are listed in Table 3.46.
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Figure 3.83: RCxcb (2D). LDCs from the NLFEAs with different compressive behaviour
functions, and the experimental LDC. The numerical LDCs are marked crack observa-
tions and non-converged LSs.

Figure 3.84: RCxcb (3D). LDCs from the NLFEAs with different compressive behaviour
functions, and the experimental LDC. The numerical LDCs are marked with crack
observations and non-converged LSs.
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Figures 3.85 and 3.86 shows principal tensile strain plots from essential LSs in Analysis 2 of
the 2D and the 3D model respectively. Red areas represent ε1 > εu , indicating completely
tensile softened concrete and hence fully open crack strains.

Figure 3.85 presents plots of the 2D model, obtained in Analysis 2. In LS 7 (P=238 kN), fully
open shear cracks propagated in entire lower chord beneath opening 1 and 12, and in small
areas beneath all web openings. At peak load level in LS 9 (P=255 kN), fully open cracks were
prominent in entire beam height at web opening 1, and almost in the entire beam height at
web opening 12. The final crack pattern was symmetrical, similarly as in Analysis 1.

Figure 3.86 presents plots of the 3D model, obtained in Analysis 2. At post peak level, in
LS 8 (P=225 kN), fully open shear cracks propagated below web opening 11, and almost
through the entire height of the beam at web opening 1. In LS 9 (P=181 kN), fully open cracks
propagated through the entire height of the beam at web opening 1 and 11. Also, fully open
cracks propagated in areas beneath all web openings. Similarly as in Analysis 1, the 3D model
in Analysis 2 generated an unsymmetrical final crack pattern.

(a) LS 7 (P=238 kN). Red colour= ε1>εu . Blue colour= ε1<εpeak .

(b) Peak LS 9 (P=255 kN). Red colour= ε1>εu . Blue colour= ε1<εpeak .

Figure 3.85: RCxcb (2D). Principal tensile strain plots from essential LSs in NLFEA with
constant compressive behaviour function.

(a) Post-peak LS 8 (P=225 kN). Red colour= ε1>εu . Blue colour= ε1<εpeak .

(b) Post-peak LS 9 (P=181 kN). Red colour= ε1>εu . Blue colour= ε1<εpeak .

Figure 3.86: RCxcb (3D). Principal tensile strain plots from essential LSs in NLFEA with
constant compressive behaviour function.

Figures 3.87 and 3.88 show the LDCs obtained with the different compressive behaviour
functions, for the 2D and 3D models of RCxcb. The different curves are marked with dots that
indicates specific observations related to the compressive behaviour of the concrete.
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Figure 3.87: RCxcb (2D). LDCs from the NLFEAs with different compressive behaviour
functions, and the experimental LDC. The numerical LDCs are marked with observations
of concrete crushing.

Figure 3.88: RCxcb (3D). LDCs from the NLFEAs with different compressive behaviour
functions, and the experimental LDC. The numerical LDCs are marked with observations
of concrete crushing.
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The specific compressive strain values that are used to post-process Analysis 2, are listed in
Table 3.62. When the absolute value of the principal compressive strain (2D:|ε2|, 3D:|ε3|)
exceeded |εc | in the integration points of the finite elements, the concrete compressive
capacity was reached. As mentioned, |εcu2| was used as a limit value in order to evaluate the
development of compressive strains in this analysis. Figures 3.89 and 3.90 show principal
compressive strain plots from essential LSs with respect to crushing in the 2D and the 3D
model in Analysis 2.

Table 3.62: RCxcb. Specific compressive strain values for constant stress-strain curve.

Strain (Constant) Formula Value Compressive stress

εc − fcm

Ec
-8.62·10−4 σ = fcm

εcu2 -3.50·10−3 σ = fcm

Figure 3.89 presents the strain plots for the 2D model in Analysis 2. The first signs of crushing
was observed in LS 4 (P=162 kN), under the load plates and in smaller areas around the
web openings. In LS 9 (P=255 kN), crushing was prominent in the entire beam height
at web opening 1 and 12, and almost in the entire beam height at web opening 2 and
11. Additionally, crushing was observed in the upper central chord and beneath all web
openings. In this LS, |εcu2| was also exceeded in the entire beam height at web opening 1, and
almost in the entire height at web opening 12. The areas of crushed concrete were located in
the same path as where the critical shear crack developed. Similarly as in Analysis 1, the 2D
model got crushed concrete in a symmetrical pattern in Analysis 2.

Figure 3.90 presents the compressive strain plots for the 3D model in Analysis 3. The first
signs of crushing occurred in the upper central chord, below load plates and in smaller areas
around web openings in LS 4 (P=161 kN). At peak load level, in LS 7 (P=244 kN), areas of
crushed concrete propagated through opening 11, along with in local areas around openings
and in upper central chord. Post peak, in LS 8 (P=225 kN), it was observed areas of crushed
concrete in the entire beam height at web openings 1 and 11. In LS 9 (P=181 kN), εcu2 was
reached in these areas, and additionally in the lower chord beneath web opening 2 and 12.
A similar unsymmetrical path of crushed concrete was established for the 3D model in both
Analysis 1 and 2.

However, the area of crushed concrete was more comprehensive in Analysis 2 than in
Analysis 1, in both the 2D and the 3D model. The 2D model reached a higher peak load
than the 3D model in Analysis 2. A higher applied load was required in order to achieve
crushed concrete through the entire beam height in the 2D model compared to in the 3D
model.
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(a) LS 4 (P=162 kN). Red colour=| ε2 |>| εc |.

(b) Peak LS 9 (P=255 kN). Red colour=| ε2 |>| εc |.

(c) Peak LS 9 (P=255 kN). Red colour=| ε2 |>| εcu2 |. Blue colour=| ε2 |<| εc |.

Figure 3.89: RCxcb (2D). Principal compressive strain plots from essential LSs in NLFEA
with constant compressive behaviour function.

(a) LS 4 (P=161kN). Red colour=| ε3 |>| εc |.

(b) Peak LS 7 (P=244kN). Red colour=| ε3 |>| εc |.

(c) Post-peak LS 8 (P=225kN). Red colour=| ε3 |>| εc |.

(d) Post-peak LS 9 (P=181kN). Red colour=| ε3 |>| εcu2 |. Blue colour=| ε3 |<| εc |.

Figure 3.90: RCxcb (3D). Principal compressive strain plots from essential LSs in NLFEA
with constant compressive behaviour function.
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Figures 3.91 and 3.92 show the reaction forces in the supports from Analyses 1 and 2, in
the 2D and the 3D model respectively. The clear drop in all curves indicates that non
of the models were able to transfer load to the supports after failure mechanisms were
formed.

Figure 3.91: RCxcb (2D). Reaction forces from the NLFEAs with different compressive
behaviour functions. The curves are marked with crack- and crushing observations.
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Figure 3.92: RCxcb (3D). Reaction forces from the NLFEAs with different compressive
behaviour functions. The curves are marked with crack- and crushing observations.

As in Analysis 1, yielding of reinforcement was observed in the same critical areas in Analysis
2. The main longitudinal reinforcement did not yield before a failure mechanism was
established.

Table 3.63 presents the obtained 2D and 3D failure modes in Analysis 1 and 2 of this
sensitivity study. The two analyses yielded the same brittle failure mechanism in both
models. A larger load was taken up by both the 2D and the 3D RCxcb model in Analysis 2 than
in Analysis 1. Since the realistic failure load, obtained in the experiment, was underestimated
in all these NLFEAs, Analysis 2 achieved a lower modelling uncertainty than Analysis 1.
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Table 3.63: RCxcb. Failure mode and failure load from the NLFEAs with different
compressive behaviour functions.

Analysis Failure Mode Failure Load Modelling Uncertainty

(
Rexp

RN LF E A
)

1 (2D) Diagonal Tension Failure 250 kN 1.14
combined with
Web Crushing Failure

2 (2D) Diagonal Tension Failure 255 kN 1.11
combined with
Web Crushing Failure

1 (3D) Diagonal Tension Failure 242 kN 1.18
combined with
Web Crushing Failure

2 (3D) Diagonal Tension Failure 244 kN 1.17
combined with
Web Crushing Failure

Shear Retention Model
Constant and damage based shear retention models were tested on RCxcb in order to
investigate the sensitivity related to this parameter. Two shear retention factors, β=0.1 and
β=0.01 were used for the constant model. Post-analysis checks for spurious tensile strength,
crack pattern, crushing and load distribution were conducted.

Throughout this sensitivity study, the following designations will be used as references for
the three NLFEAs of RCxcb with different shear retention approaches:
Analysis 1: Damage based shear retention model.
Analysis 2: Constant shear retention model with β=0.1.
Analysis 3: Constant shear retention model with β=0.01.

The LDCs obtained with the different shear retention models, in both 2D and 3D, are shown
in Figures 3.93 and 3.94. The numerical curves are marked with dots that indicates crack
observations in the concrete. The crosses indicates non-converged LSs. All analyses resulted
in non-converged steps after the peak load level was exceeded.

In all analyses related to this sensitivity study for RCxcb, the same TS approach was used.
Specific tensile strain values describing the concrete tensile behaviour are defined in Table
3.46. All the contour plots in Figures 3.95, 3.96, 3.97 and 3.98 are specified with these tensile
strain limits, in to identify the tensile softening process in the beam.

Figure 3.95 presents the 2D model plots of the principal tensile strains from Analysis 2. Red
areas represents concrete with ε1 > εu , indicating completely softened material, and hence
fully open cracks. In LS 11 (P=342 kN), small areas of fully open cracks were observed, as
shown in Figure 3.95a. The slope of the LDC was slightly decreased in this LS. In LS 59 (P=444
kN) fully open cracks were established in the entire lower chord below openings 5,6,7 and 8,
as shown in Figure 3.95b. In LS 81 (P=428kN) fully open cracks were observed through the
entire height of the beam at opening 1, 2, 11 and 12, as shown in Figure 3.95c.

Figure 3.96 presents plots of the principal tensile strains in the 3D model from Analysis 2. A
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similar crack pattern was observed in both the 2D and the 3D model.

Figure 3.93: RCxcb (2D). LDCs from the NLFEAs with different shear retention models,
and the experimental LDC. The numerical LDCs are marked with crack observations and
non-converged LSs.

142



Figure 3.94: RCxcb (3D). LDCs from the NLFEAs with different shear retention models,
and the experimental LDC. The numerical LDCs are marked with crack observations and
non-converged LSs.

143



(a) LS 11 (P=342 kN)

(b) LS 59 (P=444 kN)

(c) LS 81 (P=428 kN)

Figure 3.95: RCxcb (2D). Principal tensile strain plots from the NLFEA with constant
shear retention factor β=0.1. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

(a) LS 11 (load P=340 kN).

(b) LS 41 (P=417 kN)

(c) LS 93 (P=461 kN)

Figure 3.96: RCxcb (3D). Principal tensile strain plots from the NLFEA with constant
shear retention factor β=0.1. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

Figure 3.97 presents the 2D model plots of the principal tensile strains from Analysis 3. In LS
11 (P=342 kN) of this analysis, fully open cracks occurred in the entire lower chord beneath
opening 1, and 12 and through the entire height of the beam at opening 11, as shown in
Figure 3.97a. From LSs 11 to 25 (P=370 kN), fully open cracks were established in several
parts of the beam. In LS 25, it was also observed fully open cracks through the entire height
of the beam at web opening 1, 2, 3 and 12, as shown in Figure 3.97b. In addition, the lower
chord beneath opening 5, 6, 7 and 8 was also fully softened in tension. In the LDC of Analysis
3, shown in Figure 3.93, it is observed a clear load drop after LS 25.
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Figure 3.98 presents the 3D model plots of the principal tensile strains from Analysis 3. In
LS 15 (P=333 kN) of this analysis, fully open cracks were observed through the entire height
of the beam at opening 1, 2, 11 and 12, as shown in Figure 3.98a. From LS 15 to 96 (P=369
kN), the analysis suffered of several non-converged LSs, visualized in Figure 3.94. In LS 96,
the concrete was completely softened in tension in the entire part of the beam from the
supports to the outer load plates, as shown in Figure 3.98b.

(a) LS 11 (P=316 kN)

(b) LS 25 (P=370 kN)

Figure 3.97: RCxcb (2D). Principal tensile strain plots from NLFEA with constant shear
retention with β=0.01. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .

(a) LS 15 (P=333 kN)

(b) LS 96 ( P=369 kN)

Figure 3.98: RCxcb (3D). Principal tensile strain plots from NLFEA with constant shear
retention with β=0.01. Red colour=ε1 > εu . Blue colour=ε1 < εpeak .
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Figures 3.99 and 3.100 show the LDCs obtained with the different shear retention models,
for the 2D and the 3D model respectively. The numerical curves are marked with dots that
indicate specific observations related to the compressive behaviour of the concrete.

Figure 3.99: RCxcb (2D). LDCs from the NLFEAs with different shear retention models,
and the experimental LDC. The numerical LDCs are marked with observations of
concrete crushing.
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Figure 3.100: RCxcb (3D). LDCs from NLFEAs with different shear retention models,
marked with observations of concrete crushing.
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All analyses in this section utilizes a parabolic function for the concrete compressive be-
haviour. Specific compressive strain values describing the concrete compressive behaviour
are defined in Table 3.50. All the contour plots shown in Figures 3.101, 3.102, 3.103 and 3.104
are specified with these compressive strain limits, in order to identify the compressive soft-
ening process in the beam. The concrete started to crush when |ε2|>|αc | in the 2D model, and
when |ε3|>|αc | in the 3D model. Completely softened concrete was obtained when |ε2| and
|ε3| exceeded |αu |.

Figure 3.101 presents the principal compressive strains plots for the 2D model in Analysis 2.
In LS 11 (P=342 kN) of this analysis, crushed concrete was observed in the upper central
chord, in addition to a crushed diagonal path between the supports and the outer load
plates. In LS 30 (P=400 kN), this diagonal crushed path had expanded through the entire
beam height, as shown in Figure 3.101b. Crushed concrete was at this stage also observed
in the lower chord beneath opening 5, 6, 7 and 8. In LS 59 (P=444 kN), the concrete was
completely softened in compression in a small area under the central load plates, as shown
in Figure 3.101c. The pattern of crushed concrete occurred in the same path as fully open
cracks were established.

Figure 3.102 presents the principal compressive strains plots for the 3D model in Analysis 2.
In LS 11 (P=340 kN) of this analysis, a diagonal pattern of crushed concrete was observed,
similarly as for the 2D model. This is shown in Figure 3.102a. In LS 24 (P=387 kN), larger
areas of crushed concrete were observed, as shown in Figure 3.102b. This was also similar as
for the 2D model, but at a lower applied load. In LS 93 (P=461 kN), large areas of the concrete
were completely softened in compression, as shown in Figure 3.102. The areas of concrete
that were completely softened in compression were more comprehensive in the 3D model
than in the 2D model at this final stage.

(a) LS 11 (P=342 kN). Red colour=| ε2 |>|αc |.

(b) LS 30 (P=400 kN). Red colour=| ε2 |>|αc |.

(c) LS 59 (P=444 kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Figure 3.101: RCxcb (2D). Principal compressive strain plots from NLFEA with constant
shear retention factor β=0.1.
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(a) LS 11 (P=340 kN). Red colour=| ε2 |>|αc |.

(b) LS 24 (P=387 kN). Red colour=| ε2 |>|αc |.

(c) LS 93 (P=461 kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Figure 3.102: RCxcb (3D). Principal compressive strain plots from NLFEA with constant
shear retention factor β=0.1.

Figure 3.103 presents the principal compressive strains plots of the 2D model from Analysis
3. In LS 12 (P=329 kN) of this analysis, it was observed crushed concrete in the upper central
chord and through the entire height of the beam around the outer openings. This situation
is shown in Figure 3.103a. Compared to the plot for the 2D model in Analysis 2, the crushing
pattern differs at this stage. In LS 25 (P=370 kN), the concrete was crushed through the entire
height of the beam at opening 1, 2, 11 and 12. In addition, crushing were prominent in the
upper and lower central chord, as shown in Figure 3.103b. At this LS, a clear load drop was
observed in the respective LDC. In LS 57 (P=284 kN), the concrete was completely softened
in compression in the entire beam height at opening 1. In LS 98 (P=217 kN), complete
compressive softening was also observed in entire beam height at opening 12, as shown in
Figure 3.103d.

Figure 3.104 presents the principal compressive strains plots of the 3D model from Analysis
3. As shown in the LDC for this analysis, a peak was detected in LS 15 (P=346 kN), before
the curve flattened. As shown in Figure 3.104a, the concrete was crushed through the entire
height of the beam at opening 1, 2, 11 and 12 in this LS. In addition, the upper central chord
and the lower chord below all openings were crushed. In LS 96 (P=369 kN), the concrete was
completely softened in compression through the entire height of the beam at opening 1 and
11, as shown in Figure 3.104b.
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(a) LS 12 (P=329 kN). Red colour=| ε2 |>|αc |.

(b) LS 25 (P=370 kN). Red colour=| ε2 |>|αc |.

(c) LS 57 (P=284 kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

(d) LS 98 (P=217 kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Figure 3.103: RCxcb (2D). Principal compressive strain plots from NLFEA with constant
shear retention factor β=0.01.

(a) LS 15 (P=346 kN). Red colour=| ε2 |>|αc |.

(b) LS 96 (P=369 kN). Red colour=| ε2 |>|αu |. Blue colour=| ε2 |<|αc |.

Figure 3.104: RCxcb (3D). Principal compressive strain plots from NLFEA with constant
shear retention factor β=0.01.
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Figures 3.105 and 3.106 present the development of the support reaction forces in both the
2D and the 3D model from Analysis 2 and 3 of this sensitivity study. These analyses yielded
a ductile behaviour for both the 2D and the 3D model. The supports were able to take up
more load after the concrete was fully softened in tension through the entire beam height in
the areas of the load transferring struts.

Figure 3.105: RCxcb (2D). Reaction forces from the NLFEAs with different shear reten-
tion models. The curves are marked with crack- and crushing observations.
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Figure 3.106: RCxcb (3D). Reaction forces from the NLFEAs with different shear reten-
tion models. The curves are marked with crack- and crushing observations.
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In Analysis 2 of the 2D model, the main tensile reinforcement (ø12) reached its mean yield
strain limit in nodal points in LS 10 (P=332 kN). The ultimate strain for the same bars,
2.75·10−2, was exceeded in LS 30. The maximum strain obtained was 4.70·10−2 in LS 59.
The main compressive reinforcement (ø12) reached a minimum strain value of -2.70·10−3

in LS 59 and experienced decreased stresses afterwards. The vertical (ø10) reinforcement
in the outer posts reached a maximum strain value of 4·10−2 in LS 85. The ultimate strain,
5.73·10−2, was never achieved in those bars. Yielding in (ø4) stirrups in the upper and lower
chord was most prominent at web opening 1 and 12. These bars exceeded the yield strain of
2.60·10−3 in LS 10. The maximum observed strain in these bars was 1·10−2, achieved in LSs
80 and 90.

In Analysis 3 of the 2D model, the main tensile reinforcement (ø12) reached the yield strain
in LS 11 (P=316 kN). Afterwards the strain value increased drastically until a peak strain value
of approximately 1.70·10−2 was observed in LS 25 (P=370 kN). The ultimate strain value,
2.75·10−2, was never reached in the main tensile reinforcement. The main compressive
reinforcement (ø12) reached a negative peak strain value of -2.70·10−3 in LS 25. The absolute
value of the strain decreased afterwards. The vertical stirrups (ø10) in the outer posts reached
a maximum strain value of 2·10−2 in LS 60 (P=297 kN). Hence, the ultimate strain in these
bars was never reached. Yielding of stirrups (ø4) in upper and lower chords was detected in
LS 10 (P=302 kN) outside opening 1 and 12. The maximum strain in the respective bars was
observed in LS 40, with a value of 1·10−2.

In Analysis 2 of the 3D model, the main tensile reinforcement (ø12) started to yield in LS
10 (P=330 kN). The same bars reached a peak strain value of approximately 6·10−2 in LS
80 (P=463 kN). The main compressive reinforcement (ø12) reached a negative peak strain
value of -9·10−2 in LS 80 (P=463 kN). Afterwards the strain values stabilized. The vertical
(ø10) reinforcement in the outer posts reached a maximum strain value of 3.70·10−2 in LS 95
(P=464 kN). However, the respective ultimate strain value was never reached. The same bars
started to yield between LSs 80 and 90. Yielding in (ø4) stirrups started in LS 10 (P=330 kN),
and was most prominent in the upper and lower chords at web opening 1 and 12. A peak
value of 8·10−2 was reached in LS 100.

In Analysis 3 of the 3D model, the main tensile reinforcement (ø12) started to yield in LS 15
(P=333 kN). The strain value continued to increase until a peak strain value of approximately
1.70·10−2 was obtained in LS 96 (P=367 kN). The main compressive reinforcement (ø12)
reached a negative peak strain value of -2.70·10−3 in LS 96. The vertical reinforcement (ø10)
in the outer posts reached a maximum strain value of 2·10−2 in LS 72 (P=355 kN). Hence,
the ultimate strain was not exceeded for these bars. Yielding of (ø4) stirrups in upper and
lower chord was most prominent at openings 1 and 12. The stirrups started to yield in LS 10
(P=302 kN). The same bars obtained a high peak strain value of 0.7 in LS 96, which exceeded
the ultimate strain value of 5·10−2.

Table 3.64 presents the achieved failure modes for the 2D and the 3D models in the different
analyses in related to this sensitivity study. It was observed a ductile behaviour of RCxcb
in both Analysis 2 and 3. Analysis 1 and 3 yielded the same failure mechanism, while no
failure was detected in Analysis 2. Both the 2D and the 3D model achieved the highest failure
load in Analysis 3, with a constant shear retention factor β=0.01. Consequently, this analysis
achieved the lowest modelling uncertainty.
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Table 3.64: RCxcb. Failure mode and failure load from the NLFEAs with different shear
retention models.

Analysis Failure Mode Failure Load Modelling Uncertainty (
Rexp

RN LF E A
)

1 (2D) Diagonal Tension Failure 250 kN 1.14
combined with
Web Crushing Failure

2 (2D) No Clear Failure
3 (2D) Diagonal Tension Failure 370 kN 0.77

combined with
Web Crushing Failure

1 (3D) Diagonal Tension Failure 242 kN 1.18
combined with
Web Crushing Failure

2 (3D) No Clear Failure
3 (3D) Diagonal Tension Failure 369 kN 0.77

combined with
Web Crushing Failure
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3.4 Quantification of Modelling Uncertainty
Table 3.65 and Figure 3.107 summarize the global results from eight benchmark analyses.
It resulted in a mean ratio of θm=1.06 and standard deviation of σθ=0.174. The coefficient
of variation Vθ=16.4% implies the scatter of the FE-outcome. V was based on the unbiased
estimators for mean and standard deviation.

The benchmark analyses are based on the same solution strategy, with one exception. RCxcb
was modelled with interfaces and different element types around the circular openings,
described in Sec. 2.3.3.5. Only 2D analyses were included when calculating θm .

Table 3.65: The estimated modelling uncertainties

Beam Ultimate load Ultimate load Ratio
specimen experiment NLFEA

Rexp RN LF E A θ = Rexp

RN LF E A

[kN] [kN]
6IT1 2565 0.85
T1-0 1452 1670 0.87

RCxcb (2D) 284 250 1.14
B-I-L 383 348 1.10
B-I-S 685 601 1.14
B-E-L 741 557 1.33
T3-3 1996 1889 1.06
T1-1 1728 1751 0.99

θm=1.06
Vθ=16.4%

Figure 3.107: Experimental capacity and predicted capacity for nine benchmark analy-
ses.
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4. Discussion of Numerical Results
First, a general discussion regarding the modelling choices in the sensitivity study will be
presented, followed by a more detailed discussion regarding the different case studies.

4.1 General Discussion
For the conducted NLFEAs where the selected solution strategy was applied, some aspects of
the responses for the different FE models were similar, while some differed. This section will
provide a discussion of the most prominent numerical results. The numerical response for
the different FE models will be compared to the behaviour of the physical models described
in the benchmark reports.

In both Case Study 1 and 2 the first microcracks appeared at a lower load in the numerical
analyses than in the experiments. This was probably because cracks observed in the
experiments were of a size that was visible without any instruments, while the numerical
analyses detected small microcracks, that probably would not have been visible in a physical
model. In Case Study 3, appearances of the first microcracks also happened at an early stage
in the numerical model. However, crack development was not described in detail in the
experimental report. Therefore it was not possible to determine if RCxcb generated cracks at
a lower load in the NLFEA than in the physical experiment.

Common for all FE models in the case studies were that shear cracking caused failure.
The failure cracks were initiated in corners of openings located in load transferring paths.
The load was transferred in compressive struts from the application points and down
to the supports. As the load increased, so did the the compressive stresses in these
struts. Consequently, perpendicular tensile stresses and strains also increased, which led
to propagation of these diagonal cracks.

Both Case Study 2 and 3 contained a great amount of shear reinforcement. Yielding of the
rebars occurred in areas of reduced concrete capacity. The load transfer between reinforce-
ment and concrete was fully utilized as embedded reinforcement was used, restricting any
slip between the concrete and the reinforcement. The effect of the reinforcement was there-
fore introduced in the continuum elements, which described the concrete. Consequently,
the reinforcement was not modelled as separate elements with separate degrees of freedom,
but the strains of the rebars were determined from the displacements of the continuum el-
ements. Due to the fact that the reinforcement had separate constitutive relations, with a
higher stiffness than the concrete material had, introduction of reinforcement resulted in
strengthened concrete elements in the direction of the bars. However, in reality there will
always be some slip between reinforcement and concrete, due to imperfections in the mate-
rials. Consequently, the overall stiffness of the numerical models were increased compared
to in the physical specimens. This could explain why the NLFEAs generated stiffer models
than in the experiments, even though the same concrete strength was assigned.

Verification of the numerical models were based on comparison of the failure loads and
failure modes obtained in the NLFEAs and the experiments. Published experimental studies
constituted all benchmark tests. Hence, the failure modes of the physical test specimens
were known. The experimental papers reported shear failure for the test specimens in Case
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Study 1 and 2, while flexural crushing was crucial for the specimen in Case Study 3. However,
in the experimental report for the benchmark beam in Case Study 3, tests of several beam
specimens were reported. For one of the experimental test specimens with similar geometry
as for the selected benchmark test, but with quadrilateral web openings instead of circular,
shear failure characterized the failure mode instead of concrete crushing. Consequently, the
numerical failure mode obtained in Case study 3 was prominent in one of the tested physical
specimens with similar geometry.

The type of shear failure was not specified in the benchmark reports for Case Study 1 or 2. For
Case Study 3 on the other hand, it was described in detail which failure modes that occurred
for all the tested specimens. Consequently, in Case Study 1 and 2, the benchmark failure
modes were based on the reported aspects of the response. However, this lack of information
introduced uncertainties regarding the experimental type of failure. The numerical failure
modes also introduced uncertainties to the verification process of the solution strategy, as
the responses of the different FE models were subjectively interpreted by the analyst. The
numerical failure modes were predicted based on post-analyses investigations.

For the selected solution strategy, the MC2010- and parabolic functions were used to de-
scribe the concrete tensile and compressive behaviour, respectively. For the interaction ef-
fect, Vecchio & Collins-model was applied in order to ensure a reduction of maximum al-
lowed compressive stress in areas of large lateral tensile strains. However, these sub-models
are developed independently, and are not necessarily calibrated to work well together.

As mentioned, for all the tested specimens, the global responses were highly affected
by the shear behaviour. Shear loading is equivalent to a combination of both principal
tensile and compressive stresses. For increased loading, and hence increased shear stresses,
the principal stresses in the FE models increased. Correspondingly the principal strains
increased as well. Eventually the principal tensile stresses exceeded the specified tensile
strength, fctm , and cracks were initiated in the concrete. Hence, the stiffness was reduced as
the tensile capacity started to follow the softening branch on the specified tensile behaviour
curve. Consequently, this implied remarkably increased tensile strains.

As mentioned, the selected interaction model should provide a reduction of the compressive
strength in areas of large tensile strains. To verify that this behaviour actually was provided
in the numerical models, the obtained compressive stresses were checked in nodes that had
achieved principal tensile strains larger than εu , hence where the concrete was completely
softened in tension. If the absolute value of the compressive stresses in these points achieved
a value as high as the absolute value of the specified compressive strength, this would
indicate that the sub-models did not work well together.

This was carefully examined in the post-analysis investigations. For all case studies, it is
proven that the compressive strength in the evaluated nodes, which had achieved large
tensile strains, was reduced. Consequently, the interaction effect was achieved according
to the specified interaction model.

As previously stated, for Case Study 1 and 2 the same failure modes were obtained in the
numerical analyses as in the experiments. Consequently, this indicated that the selected
sub-models cooperated in a way that endured a realistic concrete material behaviour in
these numerical models.

In Case Study 3 it is shown that the numerical model of RCxcb yielded a brittle behaviour,
while the physical model yielded a much more ductile behaviour when tested experimen-
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tally. This could imply that the selected interaction model may provide a greater reduction
of the compressive strength due to lateral tensile strains, than what actually was provided in
the physical model. Consequently, this may indicate that the selected interaction model was
not completely accurate in order to achieve a realistic concrete material behaviour for the
complex failure mode in this specific FE model.

However, it was difficult to state any conclusions, as there was uncertainties related to the
post-analysis checks for the crack observations. The calculated ultimate tensile strains
depended on the assumed crack-band widths, which included following uncertainties:

• The crack-band width was assumed to be equal to the specified element height.
However, the mesh density generated in DIANA was not consistent over the entire
model. By default, the software customized the element discretization in order to
generate a mesh that fitted the specific geometry. Consequently, as the crack-band
width varied over the FE model, so did the ultimate tensile strain values.

• Another possible discrepancy regarding the actual crack-band width was that the ele-
ments generated in DIANA were not perfect squares. Hence, the software’s definition
of crack-band width, which was

p
A for higher order two-dimensional elements, did

not constitute the element height, h, which was the value used in calculations of the
specific strain values.

• According to DG, the equivalent length is not only based on the element dimension,
but also on the crack direction. The value of the equivalent length differs based on
whether cracks are generated along one of the diagonals of the element versus along
one of its edges. For the value of the crack-band width used in calculations, h, cracks
were considered horizontal/vertical according to this definition. For diagonal cracks
the crack-band width should be estimated as the element height, h, multiplied by the
square-root of two for quadratic quadrilateral elements with a square shape.

4.1.1 Sensitivity to Mesh Density

Refined mesh density generally resulted in a greater quantity of cracks. Coarser meshes re-
sulted in wider paths of maximum tensile strains, and also larger individual crack widths.
The inherent inaccuracy of the finite element method, where models discretized by coarse
meshes struggle with generating smooth stress fields, affected the strain distribution. Ele-
ments and nodes may also to a larger extent have suffered from extrapolation and corre-
sponding interpolation of stresses when larger elements were used. Hence, this may have
affected the stress redistribution after crack initiation.

Another more obvious reason for the different stress fields concerns the value of the crack-
band width, which was used to calculate the specific strain values. The respective strain
values constituted the bounding colours in the contour plots that illustrated the distinction
in path-width. Greater elements have correspondingly greater equivalent lengths. Since the
denominator of the formula for εu is based on this value, larger elements result in smaller
ultimate strains. Consequently, complete softening in tension occurred at lower strains
for coarser mesh densities. Therefore, at specific load levels in the loading branch of the
analyses, greater areas naturally achieved complete softening in tension when a coarser FE
discretization was used.

The principal crack width also depended on the element size. By definition, the crack width
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equals the principal strain multiplied by the element height. The peak strain, εpeak , in the
selected sub-model for the concrete tensile behaviour is consistent, and do not depend on
the element size. Consequently, this justified why the width of the first initiated crack was
smaller for refined meshes.

In all case studies, the NLFEAs that utilized refined mesh densities obtained the lowest failure
loads. This was probably influenced by the generation of smoother stress fields, and also
increased quantity of detected cracks.

The strain value that indicates complete softening in compression also depends on the crack
band width and was therefore affected by the choice of mesh density. This justifies why the
FE models with different element discretizations achieved different concrete compressive
behaviours.

According to DG, the element size for regular 2D beams should be limited to the minimum
value of L/50 and H/6. However, DG does not consider beams with web openings. Hence,
the numerical solution strategy should therefore not rely solely on DG recommendations.
In the NLFEAs reported in this thesis, it is shown that smaller elements did not necessarily
result in more accurate results. With elements of size L/50, which was the finest tested mesh
density for Case Study 1 and 2, one of the NLFEAs generated considerably smaller LSs than
with coarser FE discretizations. In this analysis, the final LS appeared way before the load
exceeded a critical level, hence no failure mechanism was formed. Consequently, element
height equal to L/50 was not suitable for the modelling of this specific specimen.

4.1.2 Sensitivity related to choice of Tension Softening Model

In all case studies the FE models behaved differently when the concrete TS approach was
changed. All NLFEAs resulted in a lower peak load for exponential TS model than for
MC2010. Theoretically, the elastic branch ends at a larger strain in the MC2010 stress-strain
curve than in the exponential curve. However, the differences in εpeak -value in the curves
were small for the FE models in all case studies. Consequently, the elastic branch on the
LDCs obtained by use of different TS approaches was almost identical.

However, the softening branch on the LDCs differed remarkably when the TS model was
changed. The ultimate strain value, εu , indicating completely softened concrete in tension
is 2.5 times larger for MC2010 than for exponential TS. Hence, the area underneath the
softening curve is smaller for exponential TS. This justifies why specific cracks appeared
at different loads and why all FE models failed at a smaller midspan deflections when an
exponential TS sub-model was used.

4.1.3 Sensitivity related to choice of Compressive Behaviour Function

Based on the numerical LDCs it was observed sensitivity related to the choice of compressive
behaviour functions for the tested specimens in Case Study 1 and 2. In these case studies,
the NLFEAs with concrete compressive behaviour characterized by a parabolic function,
obtained a failure mode where diagonal tension cracking was combined with crushing of the
concrete. Hence, the ultimate compressive strength limited the global capacity. Contrarily,
when the concrete compressive behaviour was characterized by a constant function, large
compressive strains did not result in reduced compressive strength. Consequently, since
the original failure mode was limited by the compressive capacity in the top part of the
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beams, this may explain the lack of failure in the NLFEAs in Case Study 1 and 2. In Case
Study 3 however, both compressive behaviour functions yielded similar LDCs. The fact that
the crushing mainly occurred in the web of the model in this case study, may explain why
the constant compressive function did not cause lack of failure. In the other case studies,
compressive softening was crucial in flexural compression areas, where tensile strains were
less prominent. The compressive strength in the beam in Case Study 3 may have been
reduced by initiation of large tensile strains in the same area as where compression softening
were crucial. However, due to initiation of crushing at a lower strain value when the concrete
compressive behaviour was characterized by an idealized, constant function, the areas of
crushed concrete was more comprehensive with this approach.

4.1.4 Sensitivity related to choice of Shear Retention Model

The results from the case studies indicate that there was sensitivity related to this aspect of
the concrete constitutive model. For constant shear retention models with β different from
zero, some shear capacity is always retained. In all conducted NLFEAs with damage based
shear retention approach, the FE models achieved some type of shear failure. With such
failure modes, limited by the shear capacity, the structural response of the beam models were
highly influenced by a change of shear retention approach. No clear failure load was detected
in the LDCs for FE models with constant shear retention in Case Study 1 and 2. Neither was
any clear failure mode identified in the post-processing of these analyses. Similarly for Case
Study 3, β=0.1 did not result in a clear peak in the LDC. However, β=0.01 resulted in a clear
drop in the respective LDC. The fact that all beams showed higher capacity with β=0.1 than
with β=0.01 was because the percentage of retained shear capacity in the models was larger.
The comparison of damage based and constant shear retention is however more complex,
as the amount of retained shear stiffness with the damage based approach decreases with
increased damage caused by cracking. Consequently, a damage based approach may result
in greater concrete shear capacity if the FE model is not sufficiently cracked, and the β-value
is relatively small. For the beam models analyzed in the case studies, cracking constituted
most of the global capacity reduction. Therefore the damage based approach resulted in
lowest retained shear stiffness in these NLFEAs.

4.1.5 Modelling Uncertainty

The achieved modelling uncertainty for the conducted NLFEAs was quantified by θ=1.06
and Vθ=16.4%. This mean value, which is larger than 1, indicates that the average capacity
obtained by the selected solution strategy was lower than the experimental capacity. Con-
sequently, the numerical model underestimated the real capacity of the structure. However,
as this is a mean value, the coefficient of variance is of great importance in order to be able
to verify if the selected solution strategy produce accurate results. The obtained value for
this coefficient, which was 16.4%, indicates that some of the NLFEAs overestimated the real
capacity of the structure, as the obtained mean modelling uncertainty only indicated 6%
average underestimation. The fact that the analyzed RC beams had significantly different
geometries probably affected the value of Vθ. More similar geometries would presumably
result in a lower coefficient of variation. Additionally, the physical uncertainties, like the
concrete compressive strength, presumably influenced Vθ as well. It was not given how many
material tests the strength was based on in neither Case Study 1 nor 2, and the strength in
Case Study 3 was only based on two material tests. As all other material parameters and de-
pended on this uncertain value, it would implement physical uncertainty in the outcome of
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the experimental capacity. Even if the value of the concrete compressive strength was based
on a large number of tests, it would always remain some uncertainty related to this value due
to the heterogeneous nature of the concrete material. In order to verify if the obtained value
of Vθ was adequate or not, it was compared to the coefficient of variation reported in Paper
IV of the PhD by Morten Engen [Engen et al., 2017a]. Based on 38 benchmark analyses which
consisted of walls, beams, frames and one deep beam, Engen reported Vθ=10.9%. Hence it
was obtained a lower Vθ based on a greater number of beams with a more varying geom-
etry. Therefore, the solution strategy obtained in the PhD may be more suited for a larger
range of structures. Possibly the selected solution strategy elaborated in this thesis could
have accomplished a lower coefficient of variation if a more comprehensive sensitivity study
was conducted, including tests of other sub-models as well. However, it is stated in recom-
mendations by fib [du Béton, 2008] that the coefficient of variation should be less than 30%.
Hence, the calculated Vθ in this thesis could also be considered as acceptable even though it
was larger than the value obtained in the PhD by Morten Engen.

As the solution strategy for RCxcb deviated from the main solution strategy described
in Sec.2.3.3.5, and the numerical results of this beam was included in the uncertainty-
calculations, a pure modelling uncertainty was not obtained. The varying parameters,
like the use of interface and different element types around the circular openings, may
have influenced the results, hence had an impact on the respective modelling uncertainty.
Additionally, the choice of material models may introduce uncertainty to the predicted
outcome. The constitutive models that constitutes the selected solution strategy may not be
accurate for all beams, as they were characterized by different failure modes. Consequently,
some NLFEA results may deviate a lot from the experimental results, hence this would
influence the modelling uncertainty.

The sub-models were used consistently for all analyses as the aim was to obtain a modelling
uncertainty for the selected solution procedure that was as accurate as possible. For sub-
models where the concrete strength was included, the specific formulas varied for the
different beams, as the concrete strength differed. The specimens in Case Study 1 and 2
were characterized by high-strength concrete and therefore the formulas for tensile strength
and the Young’s modulus of concrete were different than for Case Study 3.

The material uncertainty, included implicitly as a physical uncertainty and explicitly through
the chosen mathematical models, is the main provider of modelling uncertainty. The
sensitivity study for all case studies showed that the selection of material models had a
great influence on the outcome of the NLFEAs. The FE modelling especially depended
on the material models for parameters that were crucial in the failure modes. The FE
models from the different case studies showed similar behaviour for the various material
sub-models.

The experimental results of Case Study 1 and 2 indicated unsymmetrical failure modes,
which may be caused by imperfections in the geometries, loads, boundaries, materials,
measuring techniques or machinery. This could have limited the local material capacity,
which would influence the modelling uncertainty. Unsymmetrical failure modes also
characterized most of the NLFEAs, even though the analyzed specimens were modelled
symmetrically. This is probably caused by some default regulations within the software, and
is therefore difficult to justify.
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4.2 Case Study 1

This section presents a detailed discussion of the conducted numerical analyses associated
with Case Study 1. First the results for 6IT1 obtained by the selected solution strategy will be
discussed, followed by a discussion of the results obtained in the sensitivity study.

4.2.1 Selected Solution Strategy

For a five point bending test like this, the top core of the shear spans naturally achieves large
compressive stresses, while the corresponding lower cores get cracked due to lateral tensile
stresses. Therefore 6IT1 achieved large compressive stresses in the area beneath the load
plates, while flexural cracks were generated in the lower part of the midspan. Additionally,
it was shown that cracks were generated in the corners of the web openings. Due to sharp
edges and angles, large stress concentrations were generated in the concrete in these areas.
Complete tensile softening and fully open cracks were first achieved in the two diagonal
opening corners located in the compressive strut going from the load plates to the middle
support. As more load was applied, the compressive stresses in these struts increased.
Consequently, so did the tensile stresses perpendicular to these compressive stresses, which
led to propagation of these diagonal cracks. As these cracks constituted both the numerical
and experimental failure mode of 6IT1, these observations validate the selected numerical
solution strategy.

The first numerical microcrack was generated at a lower load than for the first detected crack
in the experiment. As previously discussed, the first detected microcracks in the numerical
model may not have been visible in a physical model. Consequently, this discrepancy not
necessarily weaken the reliability of the numerical solution strategy.

As shown, the selected solution strategy resulted in a continuous crack throughout the entire
height of 6IT1 after LS 74. This LS constituted the peak on the LDC. By only looking at
the principal tensile strain values in the contour plots, it was hard to tell exactly when the
beam was split by a continuous crack all the way through the height. Parts of the failure
zone had strain values larger than εu way before failure, but they were not necessarily
merged into one crack. However, as the crack was initiated in the bottom of the beam, and
propagated upwards, the nodes in the upper core, at the inside of the load plates, were the
least to achieve ultimate tensile strains. However, as shown, this part of the beam was highly
compressed. Consequently, these areas failed when the material got completely softened in
compression.

An observation that amplified that a failure mechanism was formed in LS 76, was the straight
line that distinguish the blue and red parts in the contour plot in Figure 3.3d. This magnifies
that the beam actually was divided into separate blocks by a shear crack that at this stage
was continuous through the beam.

As shown, the top of the beam, in the areas around the inner corners of the load plates,
failed in compression. It is known that concrete cracks vertically as soon as small tension
stresses arise. Horizontal cracks on the other hand, or cracks with low gradients, require
large compressive stresses. The direction of the cracks on the top of the beam at the point
of failure implied that the failure mode was affected by large compressive stresses in these
areas.

The fact that the numerical LDC showed a drastic load drop when the principal compressive
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strain exceeded αu , indicated that the ultimate capacity of the model was limited by the
compressive strength. When the shear crack propagated upwards in the beam, these areas
achieved increased compressive stresses. When the concrete got completely softened in
these areas, there was no remaining capacity in the critical zone.

Based on the post-analysis checks for 6IT1 reported in Sec. 3.1, it was clear that the failure
mechanism was provoked by a combination of diagonal tension and shear compression
failure. Consequently, in order for these numerical results to be accurate, it required that
the specified tension-compression interaction model initiated a realistic relation between
the specified sub-models that described the concrete tensile and compressive behaviour.
As proved in Sec. 3.1, the maximum compressive stress in areas that achieved large
tensile strains never achieved the value of the specified compressive strength. The peak
compressive stress value for the three evaluated nodes, that were highly strained in tension,
seemed to be approximately -60 N/mm2, while the value of fcm was -68.2 N/mm2. As
previously discussed, this indicated that the interaction model worked as it should, in the
way that the compressive strength got reduced due to large tensile strains.

4.2.2 Sensitivity Study

4.2.2.1 Sensitivity regarding FE Discretization

Analysis 1: Mesh density H/12 (50 mm)
Analysis 2: Mesh density L/50 (14.4 mm)
Analysis 3: Mesh density H/6 (100 mm)

As presented in the result section for 6IT1, a fine mesh resulted in a greater quantity of cracks
compared to a coarser mesh, while the latter resulted in wider paths of maximum tensile
strains, and also larger individual cracks widths. This was similar in all case studies, and is
discussed in Sec. 4.1.

The formula for εpeak does not include the value of the crack-band width, hence it is
consistent, regardless of the element height. As previously discussed, the crack width equals
the principal strain multiplied by the element height. Therefore, cracks with smaller widths
were detected in the FE model with refined mesh density. This explains why microcracks
were detected at larger applied loads for coarser mesh densities. Another theory that justifies
this difference is the fact that the load step size varied with the FE discretization. Analysis 3
resulted in larger LSs than Analysis 1, which again resulted in larger LSs than Analysis 2. The
incremental applied load within each LS increases with its size. Consequently, it is difficult
to determine the exact load for when microcracks were generated in the analysis with large
LSs. Compared to the experimental results, microcracks were generated at a larger load in
Analysis 3, and at a lower load in Analysis 1 and 2. As previously discussed, the first crack in
the physical model was visible to the naked eye, something that the numerical microcracks,
with widths of 1.23·10−5 mm to 7.64·10−4 mm, would not have been. Hence, the numerical
models that generated microcracks at lower loads than the experimental cracking load were
most convincing with respect to this verification check.

The fact that the size of the load steps varied with the mesh density, when no other parame-
ters were changed, must have been due to default regulations within the software.

As discussed, due to different crack-band widths, the strain values for when the concrete
got completely softened in tension and compression, αu and εu , differed for the varying
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mesh densities. This explains why the concrete tensile and compressive behaviour differed
in the three analyses. The model in Analysis 3, with the greatest element sizes, achieved
complete softening in tension and compression at a lower strain value than in Analysis 1
and 2. This may justify that the model in Analyses 3 achieved the largest areas of complete
softening. Small elements results in complete softening at greater strains. Consequently,
larger strains were required in order to achieve this in Analysis 1 than 3, and similarly even
larger strains were required in order to achieve this in Analysis 2. This fact, combined with
the fact that 6IT1 in Analysis 2 did not take up as large loads as in the other two analyses, the
concrete did not achieve complete softening in compression in any areas with the finest FE
discretization.

Increased ductility in Analysis 3, and hence larger strains, justifies the fact that this analysis
achieved largest reinforcement stresses.

Non-converged steps followed if the model did not achieve convergence within the allowable
number of iterations in each incremental displacement step. Consequently, this happened
after large stress redistribution due to cracking. The changes within each step was limited for
small LSs. Hence this explains why Analysis 2 achieved convergence after very few iterations,
and had almost no non-converged LSs. Contrary, Analysis 3 generated greater changes
within each LS. This was due to increased step size and larger elements, which resulted in
a less smooth stress field. Consequently Analysis 3 required the largest number of iterations
before convergence criteria were satisfied.

4.2.2.2 Sensitivity to choice of Constitutive Model for Concrete

Choice of Constitutive Model for Concrete - Tension Softening Model

From the sensitivity study it was clear that 6IT1 was sensitive to choice of TS model.

Analysis 1: MC2010 TS model
Analysis 2: Exponential TS model

It was shown that microcracks were initiated in the same LS and at similar load levels in
both analyses. However, the distinction regarding the widths of the first microcracks may
be explained by the fact that the εpeak -value is lower for the exponential TS approach than
for MC2010. Consequently, this strain value was exceeded at a corresponding lower load
level.

After crack initiation, the different softening branches in the two TS curves explain why
specific areas achieved complete tensile softening at different load levels. As explained, the
ultimate tensile capacity was fully utilized at a strain value which was 2.5 times larger in
Analysis 1 than in Analysis 2. The FE model in Analysis 1 failed due to a combination of
softening in tension and compression. However, due to the fact that the tensile strength was
reduced faster in Analysis 2 than 1, the tensile capacity was fully utilized at a smaller total
deflection. Hence, the FE model with an exponential TS approach failed in tension before the
material was fully softened in compression. The failure mode was therefore characterized by
only diagonal tension failure.
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Choice of Constitutive Model for Concrete - Compressive Behaviour Function

6IT1 also responded differently when the compressive behaviour function was changed.

Analysis 1: Parabolic compressive behaviour function
Analysis 2: Constant compressive behaviour function

As described, the failure mode for 6IT1 in Analysis 1 was characterized by diagonal tension
cracking followed by complete softening in compression in the upper part of the beam. As
shown, the shear crack propagated similarly in Analysis 2. The incremental displacement
plots indicated that the beam got split into separate blocks. However, even though large
compressive strains were obtained in the upper part of the beam, this did not result
in a reduced compressive capacity. Due to the fact that the concrete did not soften in
compression when the constant function characterized the compressive behaviour, no
upper absolute strain value limited this aspect of the material capacity. Hence, this may
explain why the beam did not achieve global failure in this analysis.

However, it is worth mentioning that the concrete compressive capacity may be reduced
even though the selected numerical sub-model that characterizes the compressive behaviour
does not yield a softening branch. As previously discussed, tension-compression interaction
leads to decreased compressive strength in areas of large tensile strains. Consequently, with
such a compressive behaviour approach, web crushing in the paths of tension softened con-
crete may become more critical. However, flexural crushing becomes less critical, as expe-
rienced for 6IT1 when the concrete compressive behaviour was characterized by a constant
function.

Choice of Constitutive Model for Concrete - Shear Retention Model

6IT1 was also sensitive to choice of shear retention model.

Analysis 1: Damage based shear retention model
Analysis 2: Constant shear retention model with β=0.1
Analysis 2: Constant shear retention model with β=0.01

In Analysis 2 and 3, with constant shear retention, the FE model maintained its shear
capacity throughout the analysis, while it was gradually reduced in Analysis 1, with damage
based shear retention. With β=0.01, the elastic shear modulus was reduced more than with
β=0.1. When the beam was adequate damaged, the LDC dropped only for Analysis 1. Due to
the fact that the failure mode was characterized by shear failure, 6IT1 with a damage based
shear retention approach achieved global failure at this point.

The sharp division in the contour plot of the incremental displacement for Analysis 1 may
indicate that the beam was split into separate blocks in LS 76, when the upper part of
the beam got completely softened in compression. The large increase in maximum crack
width amplifies this assumption. The critical shear crack marked a distinction between
separated blocks that moved in opposite direction of each other. Because there are no shear
reinforcement in this beam, the physical model had a brittle failure behaviour. The fact
that large incremental displacements were generated in one critical LS in Analysis 1 makes
damage based shear retention sufficient in order to model the brittle behaviour of shear
failure.

The incremental displacement plots obtained in Analysis 2 and 3 did not indicate that the
beam got split into separate blocks. Neither the maximum crack widths, which increased
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significantly less than in Analysis 1, indicated that a failure mechanism was formed. Even
though the beam seemed to be completely softened all the way through the beam height, the
brittle behaviour of shear failure was not achieved with these models. Another observation
that makes these shear retention approaches inappropriate for this numerical analysis, was
the fact that the beam still could transfer load in the path of the shear crack, even when the
crack seemed to be fully open all the way through the beam height. This indicates that the FE
model experienced spurious shear capacity. Consequently, no failure modes were identified,
and no failure loads were detected in the LDCs from Analysis 2 and 3.
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4.3 Case Study 2

This section presents a detailed discussion of the conducted numerical analyses associated
with Case Study 2. First the results for T1-0 obtained by the selected solution strategy will be
discussed, followed by a discussion of the results obtained in the sensitivity study.

4.3.1 Selected Solution Strategy

For the NLFEA of T1-0 with the selected solution strategy, cracks developed in the expected
areas; flexural cracks in the tensile zone in the bottom of the beam and diagonal cracks in the
critical shear zone. The crack pattern obtained in the FE model was similar as in the physical
model from the experiment. As in Case Study 1, the openings disturbed the load path and
weakened the cross section capacity. Consequently, the critical shear zone was located in
the load path from the load plates to the supports, through the web openings.

The first cracks appeared in the same areas in the numerical analysis as in the experiment,
but at lower loads. As previously discussed, this is justified by the assumption that micro-
cracks may have been initiated before visible cracks were detected in the physical model.
Correspondingly, the first detected numerical microcracks may not have been observed in
the physical model. Both the numerical and experimental LDCs looked unaffected by this
crack initiation, as this microcracking did not influence the behaviour of the beam. How-
ever, when fully open cracks propagated, the numerical LDC showed a small drop, while the
experimental LDC did not show any load drops before failure. In the numerical model the
stress distribution was updated for each incremental displacement step, while in the physi-
cal model the stress was continuously redistributing as load was applied.

The small load drop observed for LS 85 in the numerical LDC, was probably caused by
an increased amount of open cracks at the outer edge of the load plates, which later on
constituted the top of the path where the failure shear crack developed. The load continued
to increase afterwards, indicating that the beam was not completely devastated yet. After
LS 92, when the shear crack seemed to be fully open all the way through the beam height,
from the right load plate to the right support, the amount of inactive cracks increased. This
indicated that the beam was split into separate blocks, hence that a failure mechanism was
formed.

The numerical LDC did not show any specific responses when the reinforcement started
to yield, due to the fact that such a small part of only some rebars yielded at this point.
As the load increased, so did the extent of yielding reinforcement. This indicated that the
reinforcement contributed to the global capacity of T1-0. The load continued to increase
for some LSs after some rebars reached their respective calculated ultimate strain value.
However, this value is only an estimation for the strain capacity of the steel. In this NLFEA
the reinforcement obtained even larger strains. Eventually, the beam failed, but this did not
seem to be caused by failure of the reinforcement.

Neither initiation of crushing in the concrete affected the numerical LDC for T1-0. Even
though the material had started to crush, the concrete still had compressive capacity.
However, after LS 92 the concrete was completely softened in compression above the right
support, and the load decreased drastically. This load drop was caused by a combination
of diagonal tension cracking and complete compressive softening of concrete. The fact that
the following LS did not converge within 40 iterations, indicated that the beam suffered from
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large redistribution of stresses. As previously mentioned, the amount of inactive cracks as
well as the crack widths increased at this point, which amplified that a failure mechanism
was formed.

4.3.2 Sensitivity study

4.3.2.1 Sensitivity regarding FE Discretization

Analysis 1: Mesh density H/12 (50 mm)
Analysis 2: Mesh density L/50 (18 mm)
Analysis 3: Mesh density H/6 (100 mm)

The crack pattern obtained in T1-0 with all three mesh densities looked similar. However,
Analysis 3 obtained a higher failure load. This may be caused by the fact that smaller
elements is more suitable in detecting individual discrete cracks due to better modelling
of strain localization. Consequently, after crack initiation, fine mesh densities often result
in a more ductile FE model, with lower stiffness than for a coarser FE discretization. This
justifies that larger element sizes result in an overestimation of the ultimate load capacity.
Correspondingly, Analysis 2, with the finest mesh density, resulted in the smallest failure
load, along with the greatest number of cracks.

In this case study, the finest mesh resulted in a failure load closest to the experimental failure
load. This amplifies that a finer mesh density will provide more accurate result. However, in
compliance with FEA theory, increased accuracy was achieved at the expense of increased
computing time.

Crushing of the concrete was more concentrated for smaller elements. As discussed
previously, the element height affected the crack-band width, which again affected the
values of αc and αu . Increased element height resulted in a decrease of the absolute value of
these strains. Consequently, the concrete started to crush, and achieved complete softening
in compression at lower loads for larger elements. The areas of T1-0 that achieved complete
softening of the concrete were also affected by the mesh density. With the coarsest mesh
density, in Analysis 3, T1-0 did not experience complete softening above the right support,
as for the other mesh densities. In this analysis the ultimate compressive strain was only
achieved underneath the load plates. This may be caused by the inherent inaccuracy of the
FEM, where large elements struggle with generation of a smooth stress field. Analysis 1 and 2,
with smaller element heights, achieved complete softening in the same areas. Consequently,
since this aspect of the material response constituted the last stage of the failure process,
similar failure mechanism was obtained in Analysis 1 and 2.

Yielding of the reinforcement appeared mostly in the same locations for all analyses. An
exception was the yielding of the horizontal bars of ø6 at midspan. The yielding appeared at
a remarkably greater loading and at a larger deflection level for Analysis 3 than for the two
other analyses, even though the crack initiation at midspan occurred simultaneously. This
may be caused by less stress concentrations, as they were more evenly distributed in the
concrete when a coarser mesh was used.
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4.3.2.2 Sensitivity to choice of Constitutive Model for Concrete

Choice of Constitutive Model for Concrete - Tension Softening Model

Analysis 1: MC2010 TS model
Analysis 2: Exponential TS model

The two TS models resulted in different behaviours of T1-0 in Case Study 2. The crack
initiation stage was equal for the two models, as the difference between the two εpeak -values
was small. The peak load, however, deviated a lot. T1-0 in Analysis 1, was able to take up
larger loads than in Analysis 2, due to different softening branches in the two different TS
approaches. As previously mentioned, the value of εu is 2.5 times larger for the MC2010 TS
model than for the exponential one.

Yielding of the rebars were more prominent with respect to the global behaviour of T1-0 in
Analysis 2 than in Analysis 1. Consequently, the LDC was more affected by this response
when the TS behaviour was characterized by an exponential function. The yielding of ø10-
bars could explain the load drop after the final peak in the response curve for Analysis 2. The
vertical stirrups, ø6 and ø10, started to yield at lower loads and smaller deflections in Analysis
2 than in Analysis 1. As mentioned, the concrete tensile strain capacity was remarkably
reduced when the exponential TS approach was applied. Consequently, the material
achieved complete softening in tension at a lower load and deflection level. Therefore, the
reinforcement contributed more to the global capacity of T1-0 in Analysis 2. Due to the
fact that the failure mode included diagonal tension cracking, a decreased concrete tensile
capacity for T1-0 in Analysis 2, resulted in failure at a lower load and deflection level than in
Analysis 1. Due to the fact that a lot of the reinforcement yielded at the stage of failure could
also influence the shape of the softening branch of the LDC. The LDC for exponential TS in
Analysis 2, showed a less brittle behaviour after failure than in Analysis 1 with MC2010.

The crack patterns were similar for T1-0 in the two analyses, where shear cracking was
combined with crushing of the concrete. Due to a changed stress distribution, caused by
different TS models, the concrete was completely softened in compression in another area
in Analysis 2 than in Analysis 1. However, both analyses achieved crushing in the end of the
main shear crack pattern. After the peak in Analysis 2, the cracks on the left side expanded,
while the crack strains disappeared on the right side. This validates the assumption that the
beam had failed at this stage. The failure mode was, similarly as for the selected solution
strategy, characterized by a combination of shear cracking and crushing of the concrete.
However, with an exponential TS model, and hence a changed stress distribution, the failure
crack was developed on the left side of the beam instead of on the right side. The fact that
unsymmetrical failure modes were produced in the NLFEAs are discussed previously.
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Choice of Constitutive Model for Concrete - Compressive Behaviour Function

Analysis 1: Parabolic compressive behaviour function
Analysis 2: Constant compressive behaviour function

The NLFEA of T1-0 with an idealized constant concrete compressive behaviour resulted in
similar crack pattern as when a parabolic curve characterized the compressive behaviour of
the concrete. This was as expected, due to the fact that cracks are caused by exceedance of
the tensile- and/or shear strength, and both the TS- and the shear retention models were
identical in the two analyses. The yielding observations were also close to identical because
of this. However, due to a changed stress distribution caused by different compressive
behaviour functions, there were some small differences. Yielding of ø10 stirrups occurred
at a lower load and deflection level in Analysis 1 than in Analysis 2.

The compressive peak strain was smaller for the constant- than for the parabolic behaviour
function. Consequently, this explains why T1-0 in Analysis 2 achieved crushing at a
lower load level than in Analysis 1. The fact that the concrete never got completely
softened in compression when the constant behaviour function was used, and that this
aspect of the material capacity was crucial in Analysis 1, resulted in a lack of failure in
Analysis 2. Hence, in order to be able to model the correct failure mode, which included
compression failure of the concrete, a compressive behaviour function that includes a
hardening-softening relation should be used. However, the failure mode is not stated
specifically in the experimental report, and will be an uncertainty related to this constitutive
model verification. Nevertheless, the reported crack observations, as well as the geometry
of the physical model suggested that crushing contributed to the failure mode. Also, it was
a reasonable assumption that a more detailed mathematical model provided more accurate
numerical results, but maybe at the expense of increased computational time. Additionally,
the compressive strength of real concrete structures will always have an upper strain limit.
Hence the real compressive behaviour will always deviate from the numerical behaviour
specified by the simplified constant function.

Choice of Constitutive Model for Concrete - Shear Retention Model

Analysis 1: Damage based shear retention
Analysis 2: Constant shear retention with β=0.1
Analysis 3: Constant shear retention with β=0.01

NLFEAs of T1-0 were also sensitive to choice of shear retention model. The linear zone in
the obtained LDCs ended simultaneously for the three analyses. This was expected as the
tensile peak strains were equal and the shear capacity was not reduced before cracking. For
both Analysis 2 and 3, the first open cracks were flexural cracks, while in Analysis 1, shear
cracks were the first to become fully open. As shown, the constant shear retention models
resulted in a larger shear capacity in the diagonal crack zones for T1-0. However, the final
crack patterns were quite similar for all three analyses.

Analysis 2 did not show any clear failure at the point when the shear crack seemed to be
fully open all the way through the height of the specimen. As the shear stiffness was retained
throughout the analysis, the reinforcement continued to take up more loads. Hence the total
applied load increased throughout the analysis.

In Analysis 3, less shear stiffness was retained, which explains why T1-0 showed a stiffer
global behaviour after crack initiation in Analysis 2. The LDC for Analysis 3 showed a peak
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at the point when the concrete was fully softened in tension underneath the left load plate.
However, as the cracks still maintained 1% shear stiffness, the beam did not fail due to this.
Consequently, the applied load continued to increase after this peak. Due to maintained
shear capacity, the reinforcement stresses continued to increase, hence this also contributed
to increased global capacity. Consequently, no failure mechanism was detected in Analysis
3 either.

Even though T1-0 did not achieve any clear failure mechanism in Analysis 2 and 3, the
obtained principal strain plots indicated that the strain distribution was similar as in Analysis
1. Consequently, when a constant shear retention approach was applied, T1-0 seemed to
proceed towards a shear compression failure mode.
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4.4 Case Study 3
This section presents a detailed discussion of the conducted numerical analyses associated
with Case Study 3. A 2D numerical model was developed for the experimental RCxcb beam
specimen. Since the obtained failure mode for this numerical model was different from the
ductile experimental failure mode, an additional 3D numerical model was developed. The
aim was to see if the brittle failure mode that was obtained for the 2D numerical model could
be avoided by utilizing a triaxial stress state of the concrete. First, the results for RCxcb
obtained by the selected solution strategy for both 2D and 3D models will be discussed,
followed by a discussion of the results obtained in the sensitivity study.

A remark regarding the size of the LSs in the NLFEAs of RCxcb should be addressed. In all
conducted NLFEAs, the specified prescribed deflection was divided into 100 incremental
LSs. As the physical test specimen of RCxcb withstood a deflection of approximately
200 mm, this was specified as the ultimate deflection level in the corresponding NLFEAs.
Consequently, by selecting a total number of 100 LSs, the incremental displacement became
2 mm. As the numerical model of RCxcb achieved a much more brittle behaviour, almost all
analyses resulted in generation of a failure mechanism before LS 10. Consequently, it was
difficult to distinguish the exact load and deflection level for the different observations, as
large changes was generated within each LS.

4.4.1 Selected Solution Strategy

To make a good numerical model that would adapt and replicate the results from the
experiments to an acceptable accuracy, was a challenging process as the different beam
specimens had such different geometries.

As a result of this, the mesh for the 2D numerical modelling of RCxcb consisted of three
different kinds of elements. The software input only specified that quadrilateral plane
stress elements with quadratic mesh order, so called Q16-elements, should be used for this
meshing. However, due to the arbitrary geometry in the areas of the circular openings, an
irregular mesh, including triangular elements in addition to the Q16 specified elements were
generated. Additionally, an interface element type was used between concrete and steel
plates. As the aim of this thesis was to come up with a common solution strategy for a general
set of beams with web openings, a mesh refinement close to openings was not an option.
Hence, the irregular meshing of RCxcb could have affected the numerical outcomes.

Even though a common solution strategy was desirable, some adjustments were necessary
in order to exclude obvious and destructive errors. For RCxcb, large stress concentrations
were generated underneath the load plates. This may have contributed to generation of
an early failure mechanism. These stress concentrations may have been caused by the fact
that the connecting materials had different stiffness, which possibly caused frictional forces
in these transitions as the structure was loaded. Therefore, in order to avoid these stress
concentrations, an interface element with zero tangential stiffness was added between the
load plates and the concrete specimen.

Another distinction between the FEAs of the beams in the other case studies and RCxcb, was
as mentioned the generation of arbitrary elements around the circular openings. For the 3D
numerical model of RCxcb, the concrete mesh consisted of 4 types of elements. This resulted
in occurrences of error messages during post-processing due generation of two bad shaped
elements, which could have affected the results.
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In Case Study 3, neither the initiation of microcracks nor the first fully open crack generation
affected the load carrying capacity. However, in Case Study 1 and 2, fully opening of cracks
constituted a load drop in the LDCs. Compared to the beams in Case Study 1 and 2, where
the corners of the quadrilateral web openings introduced large stress concentrations, the
circular openings in RCxcb caused a more even stress distribution in these areas. The fact
that fully open cracks were generated in areas connected to these openings in all case studies
may be a reason why they caused such a large response for the beams in Case Study 1 and 2,
but not in Case Study 3.

By post-processing the numerical response of RCxcb, it was observed that when the peak
load level was reached, a sudden drop in the LDC for both the 2D and the 3D model occurred.
This response deviated from the experimental response, where the reinforcement started
to yield, and the beam achieved an additional 150 mm deflection before failing. At this
load level a failure mechanism was formed in the numerical model. When investigating
the cause of this brittle behaviour, it was observed that, in addition to completely softening
in tension, crushing of concrete was prominent in the main load transferring struts. Due
to the limited deflection, the main tensile reinforcement did not yield during the NLFEA.
As shown in the result section, the specified compressive strength of the material was not
reached, even though the concrete got crushed. This could be explained by the effect
of the specified tension-compression interaction model, which caused a reduction of the
compressive strength as a result of large lateral tensile strains. In order to investigate if this
effect was applied to the model, the principal compressive stress was measured in the critical
areas where completely softening in tension were prominent. As shown, the compressive
capacity of the concrete was reduced in these areas, which confirmed that the effect of
Vecchio & Collins-model was included in the model. However, this investigation included
some significant uncertainties. The measured compressive stress values were collected from
nodes and not integration points. Consequently, the obtained values may have suffered from
extrapolation/interpolation of stresses in the surrounding areas.

As previously discussed, the different sub-models are developed to work independently of
each other. Consequently, the effect of the specified tension-compression interaction model
would depend on the specified tension and compression sub-models. For this specific FE
model, one reason for the unexpected brittle behaviour could possibly be a too high decrease
rate of the compressive capacity. Even though the sub-models may have introduced realistic
individual aspects of the concrete material behaviour, they did presumably not work as well
together for Case Study 3 as for the other case studies. A remedy for this issue could be to
choose another TS sub-model for which the concrete would not soften as fast as it did for the
chosen MC2010 TS model. Alternatively a higher fracture energy, in the meaning of higher
tolerance of this limit, could perhaps have yielded a more ductile behaviour. This could have
introduced slower development of concrete tension softening, and corresponding lower
reduction rate of the compressive capacity.

When it comes to the 2D adapted model, it is known that concrete with prevented cross-
sectional expansion will yield higher compressive capacity and reach higher critical strains
before failure [CEN, 2004]. To investigate this effect, and utilize the reinforced concrete depth
by activating more stirrups, the 3D adapted model was developed. From the numerical
results, it was observed that stirrups in lateral yy-direction reached plastic state in a critical
area below opening 11. This indicated that a triaxial stress state was achieved. However, this
did not contribute to a more ductile behaviour. The main difference from the 2D approach
was that the 3D model, with solid elements that included the triaxial compressive stress state,
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achieved crushing in the critical areas at a lower load. This could have been due to the fact
that restrained lateral expansion for plane-stress elements leads to increased compressive
strength and critical strains.

However, the differences between the behaviour of the numerical 2D and 3D model were
not very prominent. Even though the models had similar failure loads, the 2D model
had a slightly larger load capacity. Due to the fact that both models underestimated the
experimental load capacity, this resulted in a higher modelling uncertainty for the 3D
model.

4.4.2 Sensitivity Study

4.4.2.1 Sensitivity regarding FE Discretization

Analysis 1: Mesh density H/12 (33.33 mm)
Analysis 2: Mesh density L/50 (76 mm)
Analysis 3: Mesh density H/6 (66.67 mm)
Analysis 4: Mesh density B/6 (25 mm)

Both the numerical 2D and 3D model yielded a less ductile behaviour when the mesh density
was refined. As shown, both models resulted in a greater quantity of cracks when a fine FE
discretization was assigned. Hence the largest number of cracks was obtained in Analysis 4.
Additionally, the finest mesh resulted in the lowest load capacity. This was similar in all case
studies, and is discussed in Sec. 4.1. As mentioned, the numerical models underestimated
the load capacity. Consequently, the failure load obtained for RCxcb discretized by the finest
mesh deviated most from the experimental failure load. This contradicts FE theory, which
states that refined mesh density increases the accuracy of the numerical results. It was shown
that the coarsest mesh densities, in Analysis 3 and 2, resulted in the most realistic failure
loads for the 2D and 3D model, respectively. This implies that there is sensitivity related to
mesh refinement for both 2D and 3D modelling.

All analyses yielded the same brittle behaviour as in Analysis 1, which constituted the
selected solution strategy. The unsymmetrical failure mode was also obtained in all analyses,
regardless of mesh density selection. The left support was able to take up more load than the
right support after the peak on the LDC was reached. This indicated that fully open diagonal
cracks and crushing were more prominent on the right hand side of the beam, and that a
failure mechanism formed at this point.

Yielding of reinforcement was only concentrated in stirrups and cables close to outer
openings where the fully open diagonal crack path was established and the concrete capacity
was reduced. These areas achieved the largest strains, and due to the fact that slip between
concrete and reinforcement was restrained, the largest reinforcement strains were also
achieved in these areas.

Regardless of mesh density, the same combined failure mechanism was achieved. However,
Analysis 1 of the 2D model was the only analysis which yielded a symmetrical crack pattern at
outer openings. As previously discussed, the failure mode will typically not be symmetrical
in reality. However, it is difficult to explain why the software results in an unsymmetrical
failure mode when the beam geometry is symmetrical.

Similarly as in the other case studies, coarser mesh resulted in a wider spreading of the
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crushed and cracked concrete in the numerical models. As previously discussed, the main
reason for this was probably the fact that larger element sizes resulted in larger crack-
band widths, which again resulted in lower ultimate strain values in both tension and
compression. Additionally, the observed advantage of a refined mesh was a more detailed
stress and strain distribution. As discussed, an inadequate inaccuracy of the FEM is that
coarse meshes do not generate smooth stress fields.

When it comes to complete softening of concrete in compression, all analyses, except
Analysis 1 in 2D, yielded the same softening path through the entire beam height connected
to opening 11. Analysis 1 in 2D experienced the same, but connected to opening 12 instead
of opening 11. However, as all 3D models achieved the same path of completely softened
concrete in compression, this may indicate that 3D models are less sensitive to various mesh
densities than 2D models.

4.4.2.2 Sensitivity to choice of Constitutive Model for Concrete

Choice of Constitutive Model for Concrete - Tension Softening Model

Analysis 1: MC2010 TS model
Analysis 2: Exponential TS model

As previously stated a more ductile response of the numerical model was desirable. However,
neither of the two TS approaches caused a ductile behaviour of RCxcb. However, as the
results show, remarkable differences were observed in the two analyses.

A larger load capacity was achieved in Analysis 1 than in Analysis 2, for both the 2D and
the 3D model. As previously discussed, the 2D model had a larger compressive strength
than the 3D model due to prevented lateral expansion. Consequently, this may justify why
the 2D model withstood a higher applied load and larger midspan deflection than the 3D
model in Analysis 1. However, in Analysis 2, the opposite result was observed. The 3D model
yielded a higher peak load value and slightly higher midspan deflection than the 2D model.
The reason for this outcome was not studied further in this thesis. However, it would be an
interesting topic for further study.

As the exponential TS model is defined as completely softened in tension at a strain value
2.5 times lower than in the MC2010 TS model, the ultimate tensile capacity was fully utilized
at an earlier stage in Analysis 2 than in Analysis 1. As the concrete tensile capacity limited
the global capacity in all case studies, the exponential TS consistently resulted in lower load
capacity than the MC2010 TS approach did.

In the 2D model it was shown that fully open cracks were established at a higher total applied
load in Analysis 1 than in Analysis 2. As previously discussed, this was probably caused by
a higher peak tensile strain value in the MC2010 stress-strain curve. Similarities obtained
in the two analyses of the 2D model, were that the same crack pattern was achieved, and
crushing of the concrete happened in the same LS, regardless of assigned TS approach. The
only difference was that in Analysis 2, the concrete was complete softened at the stage of the
peak, and not in the following LS, as it was in Analysis 1. This could possibly be explained by
the fact that the concrete in Analysis 2 lost tensile capacity more rapidly than in Analysis
1, due to a shorter tension softening branch. Consequently, the compressive stresses
perpendicular to these tensile strains would also increase with a higher rate. This could
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explain why Analysis 2, with an exponential TS approach, resulted in complete compressive
softening at an earlier stage than in Analysis 1.

Also, the 3D model resulted in earlier concrete compression softening in Analysis 2 than
in Analysis 1. This was possibly caused by the same reason as for the 2D model, which is
discussed above.

The 3D model also resulted in a larger load capacity in Analysis 1 than 2. For the same rea-
sons as previously discussed, cracks were fully open at higher loads, and the concrete got
completely softened in tension at higher loads with MC2010 TS compared to with exponen-
tial TS. However, for the 3D model, Analysis 2 resulted in a symmetrical failure mechanism,
while Analysis 1 resulted in an unsymmetrical. As opposed to in the sensitivity study re-
garding FE discretization, this discrepancy related to the 3D failure mode generation may
indicate that 2D models are less sensitive to various TS approaches than 3D models.

Choice of Constitutive Model for Concrete: Compressive Behaviour Function

Analysis 1: Parabolic compressive behaviour function
Analysis 2: Constant compressive behaviour function

As mentioned, a more ductile response was desirable for the numerical modelling of
RCxcb. However, this was not achieved by substituting the parabolic compressive behaviour
function with an idealized constant function.

During post-processing it was observed that the obtained responses was similar pre LDC-
peak in both the 2D and the 3D model, regardless of assigned compressive behaviour
function. However, the 2D model obtained a slightly higher load capacity in Analysis
2. This may be explained by the fact that the concrete started to crush for a higher
absolute strain value with parabolic- than with constant compressive behaviour. In the
parabolic hardening-softening curve, the absolute value for the peak strain is 1.67 times
larger than the absolute value for the strain at when the concrete compressive strength
is reached in the constant curve. Consequently, this explains why the areas of crushed
concrete was more comprehensive in Analysis 2. Additionally, as previously discussed,
the constant compressive approach does not introduce any compression softening branch
to the concrete. Consequently, increased absolute compressive strains do not provoke a
reduction of the compressive strength. As compressive softening of the concrete limited the
capacity for the selected solution strategy, this lack of softening may have contributed to the
increased global capacity in Analysis 2.

Choice of Constitutive Model for Concrete: Shear Retention Model

Analysis 1: Damage based shear retention
Analysis 2: Constant shear retention with β=0.1
Analysis 3: Constant shear retention with β=0.01

From the sensitivity study it was clear that the FE model was sensitive to the choice of a shear
retention model.

Damage based shear retention was selected for the common solution strategy. Constant
shear retention approaches were also tested in order to try to achieve a more ductile response
of RCxcb. Another aim was to generate a model that was less sensitive to shear failure, as the
physical test specimen failed in flexural compression and not diagonal tension failure. With
the damage based shear retention model, the shear stiffness was gradually reduced to zero
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as the model was damaged by cracks.

In Analyses 2 and 3, a percentage of the shear stiffness was retained in the cracked zones.
Therefore, cracks maintained a certain shear capacity throughout the analyses. As the
numerical models in all case studies got sufficiently cracked during the NLFEAs, this may
explain why they all yielded such an increased load capacity when a constant shear retention
model was used.

As previously stated, horizontal crack strains occurred when load was applied to RCxcb. This
caused loss of stiffness in the orthogonal direction of these crack strain planes, which could
have caused the sudden brittle failure when a damage based shear retention model was used.
However, as shear stiffness was retained in Analysis 2 and 3, this response was avoided, and
the FE model was able to take up a larger load. For RCxcb this increased load capacity also
resulted in a more ductile behaviour. Consequently, NLFEAs of RCxcb with a non-zero β-
value were the only conducted analyses to avoid the brittle response of this FE model. By
looking at the obtained curves for the reaction forces, it was shown that the load transferring
struts did not loose their entire capacities when lateral cracks occurred in Analysis 2 and
3. Consequently, larger shear cracks were generated, which initiated yielding in the main
longitudinal reinforcement.

As mentioned, compared to Analysis 1, both Analysis 2 and 3 yielded more experimental like
LCDs with respect to achieved midspan deflection. With β = 0.01, both the LDC for the 2D
and the 3D model indicated a disturbed response at a certain deflection level. With β = 0.1
on the other hand, only the 2D model showed a disturbed response at the end of the analysis.
The LDC for the 3D model did not show any sign of a weakened model.

For the 2D model, the LDC from Analysis 2 showed that the response was disturbed after the
concrete beneath the inner load plates was completely softened in compression. However,
no clear failure mechanism was detected.

For the 2D model in Analysis 3, the obtained LDC showed a disturbed response after the
concrete got crushed in the entire beam height at some openings. This was at a lower
deflection level than when the LDC for Analysis 2 showed a disturbed response. As previously
discussed, this could be explained by the fact that a larger amount of the initial shear stiffness
was retained for a larger β-value. However, no failure mechanism was detected in this
analysis either. This may indicate that the models experienced spurious strength in Analysis
2 and 3, as a result of retained shear capacity.

Even though the load capacity did not show a clear drop in the LDC for the 2D model in
Analysis 3, fully open shear cracks occurred and propagated through the entire beam height
at the outer two web openings. In LS 98 the concrete was complete softened in compression
in the entire beam height in these areas. Consequently, it looked like both Analysis 1 and 3
yielded similar failure mechanisms, even though RCxcb in Analysis 3 still had load carrying
capacity afterwards. This was probably caused by the fact that 1% of the concrete shear
stiffness was retained.

As discussed, the largest constant shear retention factor resulted in the largest load capacity
for both the 2D and the 3D model. However, the 3D models in both Analysis 2 and 3 resulted
in a larger load capacity than the 2D models. A greater deflection was also achieved before
disturbed responses were observed. This distinction regarding the obtained responses for
the 2D and 3D model would be an interesting topic for further study.
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5. Conclusions
For the selected solution strategy, the different FE models resulted in varying modelling
uncertainties. Some NLFEAs resulted in overestimation of the experimental failure loads,
while others resulted in underestimation. Based on the conducted sensitivity studies, it
was proven that the analyzed beams were sensitive to selection of sub-models constituting
the concrete constitutive model. Selections regarding the FE-discretization also affected
the accuracy of the numerical results. The different FE models did not necessarily show
sensitivity to the same aspects of the solution strategy. However, for specific variations
within the solution procedure, a certain consistency was observed in the numerical response
specter. Consequently, some observations from the conducted NLFEAs were qualified
contributors in the justification process of the numerical solution strategy for beams with
web openings.

As all the analyzed numerical models achieved shear failure combined with concrete crush-
ing, the conducted sensitivity study proved that the most detailed mathematical models
were preferable for the modelling of these specific behaviour aspects. For the most sim-
plified sub-models tested in conjunction with this study, most of the FE models achieved
spurious strengths and unrealistic stress distributions. Hence, the sub-models regarding
tensile, compressive and shear behaviour should be carefully considered. Attention should
also be brought to the interaction effect of concrete structures subjected to a multidimen-
sional stress state. It was proved that the selected interaction model, according to Vecchio
& Collins, included an interaction effect in the concrete, as the compressive capacity was
reduced in areas that achieved large tensile strains. However, it is questionable if this inter-
action model was the best selection for all the FE models. For Case Study 3, the numerical
failure mode deviated from the experimental one. This may be caused by a too large reduc-
tion of compressive strength, provided by the interaction model.

All conducted NLFEAs related to each FE model obtained a similar crack pattern, even
though failure was not always achieved. Consequently, the respective LDCs often deviated
substantially, while the post-analysis checks indicated that the stress distributions were
similar prior to the ultimate states. Consequently, numerical analyses should always be
accompanied by thorough post-analysis checks in order to identify if failure mechanisms
form without being detected in the response curves. As proved, this may happen due to
spurious strengths that provide false capacity.

Considering FE discretization, it is shown that the explicit choice of element size should be
of great concern in numerical analyses. According to FE theory, a finer mesh should result
in more accurate FE outcomes, but at the expense of increased computing time. However,
the numerical observations reported in this thesis were not necessarily in compliance with
this theory. Upon mesh refinement, neither the results from Case Study 1 nor 3 converged
towards the exact solution for these boundary value problems. For Case Study 2, the
obtained results was in accordance to the the FE theory. However, it was proven that
the density for the selected solution strategy yielded almost as realistic results as with the
finest mesh density. Consequently, with respect to failure load and mode for this specific
model, it was not necessary to use the fine mesh. However, for all analyzed FE models one
advantage with finer mesh density was that smoother stress fields were produced. This was
not obtained to the same extent when a coarser element discretization was used to mesh the
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models. However, these results did not qualify for a common conclusion regarding optimal
mesh density for a general set of beams with openings.

Based on the obtained results from the numerical analyses, the ability for the selected
solution strategy to model various failure modes is undetected, as all conducted NLFEAs
tended towards shear failure. This was however the desired failure modes in most of the
NLFEAs, as it was in compliance with the experimental failure modes.

Based on the calculated modelling uncertainty, θ=1.06, and coefficient of variation, Vθ=16.4%,
the selected solution strategy is validated as adequate, as the coefficient of variation it is
lower than the recommended maximum coefficient of variation of 30%.

Most of the numerical analyses resulted in an underestimation of the capacity. A solution
strategy that produces conservative results is preferable in a design perspective. However,
due to fact that the coefficient of variation was larger than the mean percentage of underes-
timation of the failure load, the selected solution strategy not necessarily provide a conserva-
tive numerical model that is safe to use as design approach. However, the geometries of the
tested beams varied remarkably. Hence, the obtained coefficient of variation, which was not
unacceptably high, indicate that the solution strategy may be considered as an elementary
procedure to evaluate the capacity of beams with openings.
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6. Suggestions for Further Research
In this thesis a solution strategy for numerical modelling of beams with web openings were
developed. Limitations and inconsistencies observed in the conducted sensitivity studies
should be addressed and investigated further before the selected solution strategy can be
validated for a general set of beams with web openings. This section contains proposals for
further research in order to justify or improve the solution strategy.

The observed sensitivity related to FE discretization for FE models with web openings should
be investigated further. The reason for why the LS-size varied for different mesh densities,
even though this size was explicitly specified in the software, should be addressed. The
NLFEAs evaluated in this thesis showed no consistency regarding what mesh densities that
resulted in larger LSs and what mesh densities that resulted in smaller LSs.

The effect related to the tension-compression interaction model for concrete should also
be further investigated. Any limitations within the Vecchio & Collins-model should be
addressed. In general, the correlation effect between all sub-models that constitute the
concrete constitutive model should be elaborated.

Some limitations were related to the verification checks used to prove that the selected
interaction-model worked as intended in these analyses. Tensile strains and compressive
stresses were assessed in FE nodes. However, stresses and strains are by definition evaluated
in integration points. The extent of this inaccuracy should be addressed, and validated tests
that qualify for accurate investigation of the interaction effect between constitutive sub-
models should be developed.

As shown in this research, shear failure characterized all obtained numerical failure modes.
However, this deviated from the experimental failure mode for one of the tested specimens.
This distinction should be further examined, and adjustments should be made to the
solution strategy with the intention to achieve realistic numerical failure modes for all beams
with openings. Therefore, proper constitutive sub-models that include realistic interaction
effects, and that are able to recreate all types of failure modes should be chased.

Additionally, the numerical effect of 3D versus 2D modelling of beams with web openings
should be further investigated. The intention should be to address limitations and differ-
ences related to the provided dimension of the numerical stress state.

The suggested investigations and measures intend to improve the reliability of the numerical
solution strategy. The overall aim for further work is to achieve realistic numerical failure
modes for a general set of beams with web openings, and also to reduce the coefficient of
variation related to the mean numerical failure load.
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