
Changepoint model selection in Gaussian
data by maximization of approximate
Bayes Factors with the Pruned Exact
Linear Time algorithm

Kristin Benedicte Bakka

Master of Science in Physics and Mathematics

Supervisor: Mette Langaas, IMF

Department of Mathematical Sciences

Submission date: June 2018

Norwegian University of Science and Technology

i

Preface

This thesis constitutes the course TMA4900 Industrial Mathematics Mas-
ter’s Thesis which is a mandatory part of the master’s degree in Industrial
Mathematics at NTNU. The course accounts for 30 of 30 credits at the
10th semester of the master’s degree. This thesis is in collaboration with the
Sensor Project at the Big Insight SFI hosted by the Norwegian Computing
Center.

The purpose of the collaboration is detection and prediction of anomalies
on ships, and the main topic of this thesis is multiple changepoint detection.
I am deeply grateful to Killick and Eckley for having developed the elegant
algorithm Pruned Exact Linear Time that I have enjoyed so much becoming
intimately acquainted with, and to Zhang and Siegmund whose mBIC has set
my mind on fire. I hope it will be as enjoyable to read about the revelations
I had when working with this project as it was to write them down.

I would like to thank Professor Ingrid Glad from the University of Oslo
(UiO) for leading the collaboration. I would also like to thank Andreas
Brandsæter from DNV GL as well as the other collaborators. Furthermore
I would like to thank Professor Gunnar Taraldsen and Professor Øyvind
Bakke. I am also deeply grateful to my supervisor Professor Mette Langaas
for informative discussions, good advice, and for her investment of time and
effort into my development as a statistician. Furthermore I would like to
thank all the other brilliant professors and teachers who have taught me the
skills and knowledge needed to embark on this thesis.

Last but not least I want to thank my beloved family, boyfriend and close
friends for your understanding and assistance while I worked on this thesis.
I love you guys.

ii

Abstract

In this thesis we consider the changepoint detection in independently
distributed Gaussian data. Detection of multiple changepoints in a data
set is treated as a model selection problem where the model complexity is
dependent on the number of changepoints. The Bayes Factor is a practical
model selection tool of which the Bayesian Information Criterion (BIC) is
a popular approximation. The BIC is twice the maximum log likelihood of
the data under the model minus a penalty for number of changepoints, and
is to be maximized. We develop the log likelihood for both univariate and
multivariate Gaussian data.

Although the changepoint model is an irregular statistical model, BIC is
asymptotically consistent when the data are univariate and independently
Gaussian distributed with a known variance. For Gaussian data also two
versions of the modified BIC (mBIC) are asymptotically consistent approx-
imations of the Bayes Factor. As the penalty for model complexity is often
treated as a tuning parameter in applications, we propose a range for it when
the data are independently Gaussian distributed and the approximate value
of the variance is known.

For data that are univariate Gaussian distributed with known variances
the mBIC involves an additional penalty on the relative positions of the
changepoints which is small when the changepoints are evenly distributed
in the data and large when they are clustered together. Although in the
mBIC criterion the penalty on the relative positions of the changepoints are
set by maximization of the likelihood term, we instead let them be set by
maximization of the sum of the likelihood and the penalty terms. Thus we get
a criterion that we can maximize with the algorithm Pruned Exact Linear
Time (PELT), which runs on O(n) time under certain conditions. In the
thesis we also suggest a modification to the algorithm Changepoint Detection
for a Range of Penalties (CROPS) that lets us maximize the original mBIC
using PELT.

In simulations we see that PELT performs better than the popular change-
point detection algorithm Binary Segmentation (BinSeg) when both are ap-
plied to maximize BIC. Although BIC is usually a strict criterion in the
sense that it prefers a parsimonious model, on simulations where the vari-
ance is known it is outperformed by mBIC which has a higher penalty on
model complexity than BIC for most data. For the case where the data are
univariate Gaussian but the variance is not known, we do not find a simple
criterion to maximize. Rather we propose an ad hoc criterion similar to both
BIC as applied to these changepoint data, and to mBIC for Gaussian data
with known variance. When p parameters are estimated in the likelihood,
changepoints need to be separated by at least p − 1 points. We generalize
PELT to account for this, and use Directed Asyclic Graphs to illustrate the
inner workings of OP, PELT and our generalized PELT.

iii

Sammendrag (Abstract in Norwegian)

Denne masteroppgaven omhandler deteksjon av endringspunkter (change-
points) i uavhengige normalfordelte data. Vi finner endringspunkter ved
hjelp av modellseleksjon. Kompleksiteten til en modell avhenger av antall
endringspunkter. Det bayesianske informasjonskriteriet (BIC) er en populær
approksimasjon av bayes faktor, som er et praktisk verktøy for modellselek-
sjon. BIC består av to ledd og skal maksimeres. Det ene er to ganger log-
aritmen til den maksimale rimelighetsfunksjonen til datasettet. Det andre
leddet er negativt og er en straff for antall endringspunkter. Vi utvikler loga-
ritmen til rimelighetsfunksjonen for data både for univariate og multivariate
normalfordelinger.

Selv om endringspunktmodellen er en irregulær statistisk modell er BIC
asymptotisk konsistent når dataene er univariate og identisk normalfordelte
med kjent varians. For normalfordelte data er to versjoner av modifisert
BIC (mBIC) også asymptotisk konsistente approksimasjoner av bayes fak-
tor. Siden straffen for hvor kompleks modellen er ofte blir behandlet som
en justeringsparameter i anvendelser foreslår vi et intervall for straffen når
dataene er uavhengig normalfordelte og verdien til variansen kan anslås.

For data som er univariat normalfordelte med kjent varians innebærer
mBIC en ekstra straff for den relative posisjonen til endringspunktene. Straf-
fen er stor når endringspunktene er nært hverandre, og liten når de er jevnt
spredt utover datasettet. Selv om denne ekstra straffen i mBIC egentlig
bestemmes ut fra posisjonene som maksimerer rimelighetsfunksjonen til mod-
ellen, velger vi å sette den slik at den maksimerer summen av straffen og
rimelighetsfunksjonen. På den måten får vi et kriterium vi kan maksimere
med algoritmen Pruned Exact Linear Time (PELT) som kjører i O(n) tid
under visse betingelser. I masteroppgaven foreslår vi også å modifisere algo-
ritmen Changepoint Detection for a Range of Penalties (CROPS) slik at vi
kan maksimere mBIC med PELT slik kriteriet opprinnelig er definert.

I simuleringer ser vi at PELT gir bedre resultater enn den populære al-
goritmen Binary Segmentation (BinSeg) når begge brukes til å maksimere
BIC for deteksjon av endringspunkter. Selv om BIC vanligvis er et strengt
kriterium som foretrekker en enkel modell ser vi i simuleringer hvor vari-
ansen er kjent at mBIC presterer bedre i kraft av å ha enda høyere straff
for modellkompleksitet. Når dataene er univariate og normalfordelte men
variansen ikke er kjent finner vi ikke et enkelt kriterium vi kan maksimere.
I stedet foreslår vi et ad hoc kriterium som har felles egenskaper med både
BIC og mBIC for normalfordelte data med kjent varians. Når p parametre
blir estimert i rimelighetsfunksjonen må det være minst p − 1 datapunkter
mellom hvert endringspunkt. Vi generaliserer PELT slik at algoritmen tar
hensyn til det, og lager en grafisk fremstilling for å visualisere virkemåtene til
OP, PELT og vår generaliserte PELT ved hjelp av rettede asykliske grafer.

iv

Contents

1 Introduction 1

2 Statistical background 4
2.1 Anomaly detection . 4
2.2 Detection setting . 6
2.3 Evaluation of detection method 7
2.4 Likelihood . 9
2.5 Likelihood ratio test . 11
2.6 Model selection . 13

3 Single parameter changepoint detection 17
3.1 The changepoint model . 17
3.2 Likelihood of the changepoint model 20
3.3 Model selection . 22

3.3.1 BIC . 22
3.3.2 mBIC . 23
3.3.3 mBIC likelihood term 24
3.3.4 mBIC penalty term 25
3.3.5 mBIC interpretation 27

3.4 Optimization problem . 29
3.4.1 Optimal cost in changepoint detection algorithms . . 29
3.4.2 Optimal cost with the model selection criteria 30
3.4.3 Changepoint DAG 33

3.5 Algorithms . 35
3.5.1 Binary Segmentation 35
3.5.2 Optimal Partitioning 37
3.5.3 Pruned Exact Linear Time 42

4 Simulations and discussion 49
4.1 Compare PELT and BinSeg using BIC 49

4.1.1 No internal changepoints 49
4.1.2 One internal changepoint 51
4.1.3 Multiple internal changepoints 56

4.2 The mBIC penalty . 60
4.3 Compare BIC and mBIC using PELT 65
4.4 Preliminary discussion . 68

4.4.1 PELT vs BinSeg . 68
4.4.2 Online application 69
4.4.3 BIC vs mBIC . 70

v

5 Multi-parameter changepoint detection with PELT 72
5.1 The changepoint model . 72
5.2 Likelihood of a changepoint interval 74
5.3 Likelihood maximization with PELT 78

5.3.1 Likelihood based cost functions 78
5.3.2 Detailed study of cost functions 80
5.3.3 Estimate the mean only 82
5.3.4 Estimate the mean and variance 83

5.4 Model selection when the variance is known 85
5.4.1 BIC . 85
5.4.2 mBIC . 85
5.4.3 Range of penalties (CROPS) 86

5.5 Model selection when the variance is unknown 89
5.5.1 mBIC . 89
5.5.2 BIC inspired cost functions 91

5.6 Algorithms . 92
5.6.1 gOP . 92
5.6.2 Straight forward PELT 96
5.6.3 gPELT . 97

6 Discussion and conclusion 102
6.1 Alternate model selection criteria 103
6.2 Conclusion . 104

Bibliography 105

Appendix A Likelihood and cost functions for multivariate Gaus-
sian data 108
A.1 Known covariance matrix . 109
A.2 Diagonal covariance matrix 110
A.3 Unknown covariance matrix 111

Appendix B R-code 115
B.1 Make use of the package changepoint 115
B.2 Cost functions . 116

B.2.1 Univariate . 117
B.2.2 Multivariate . 118

B.3 Implementation of generalized OP 120
B.4 Implementation of generalized PELT 123

1

1. Introduction

This thesis is associated with an ongoing research project on analysis
of sensor data, which we will refer to as the Big Insight sensor project. An
important objective is to solve a real world problem experienced by people
on ships. A ship might have 500 sensors that collect data in real time. When
in a specific operational mode, for instance transit at high speed (100mph),
the problem is to detect it when anything unexpected happens. As the op-
erational mode was supposed to stay the same, the unexpected event might
need the attention of the crew. For instance if the speed suddenly drops,
but everything else stays the same, the speedometer might be broken, or an
inefficiency has happened somewhere in the system. This type of problem
is called anomaly detection and it can be solved by changepoint detection.
A main point is that we want to detect not some specific change, but any
change in the system. To be able to detect unexpected events a so-called
training set assumed to only contain normal events is collected. For each
data point there is one observation for each sensor.

Figure 1.1: Overview of the full process to detect unexpected events in a sensor system
on a ship. The box with colored background marks where changepoint detection algo-
rithms such as PELT may be applied. In the box below the colored box i.i.d. is short for
independent and identically distributed.

Training
data:

collect and
preprocess.

Collect an
observation
in real time.

Computation
reducing
clusters.

AAKR. Express ob-
servation as sum of
residuals and obser-
vations reconstructed
from training data.

Residuals.Reconstructed
observations.

Make sure
residuals
are i.i.d.

Changepoint
detection.

Some space for next page

2

Various parameters of the sensor system change frequently, so that both
the training data and the real time data are expected to contain multiple
changepoints that are not indicators of an anomaly. In Brandsæter et al.
(2016) the anomaly detection problem is divided into different parts. A
schematic view of the detection process is illustrated in Figure 1.1. Initially
some training data containing no known anomalies is gathered and prepro-
cessed. To save computation time later, a technique where the training data
are represented as clusters might be applied at this point. Then the on-line
anomaly detection may begin. On every vector of real time observations Auto
Associative Kernel Regression (AAKR) is performed. That is, the observa-
tion is reconstructed as a weighted average of the preprocessed training data.
The reconstructed observations are the values displayed to the captain on
the bridge. For instance the temperature outside might be measured at 10°C
while the reconstructed value is 7°C. Then the captain will read off 7°C on
the recalibrated thermometer. The difference between reconstructed values
and observed values is the residual, and is what will be used in classifying
the state of the system to normal or anomalous. The box with colored back-
ground marks an online changepoint problem. Another option is to perform
changepoint detection on the training data in order to gain insight on the
changepoint process as it is when it is in control. Then we may devise some
other method to detect when the changepoint process is out of control, that
is when an anomaly has occurred.

A common method of detecting multiple changepoints is to maximize
some criterion that consists of a term that penalizes the number of change-
points and a term that penalizes changes in the data set if they occur any-
where but at the changepoints. Such criteria are often based on an assump-
tion that the data are independently Gaussian distributed (Truong et al.,
2018). In applications where the assumptions only hold approximately the
term that penalizes model complexity is then slightly adjusted. In applica-
tions the term that penalizes the number of changepoints is often treated as
a tuning parameter, a parameter that is set from the data so that the change-
points detected seem reasonable to the researcher. Another option is to set
the penalty on number of changepoints according to a specialized model
selection criterion that has good theoretical properties given some assump-
tions. To be able to maximize changepoint criteria for multiple changepoints
specialized algorithms are needed. One challenge is that we want the algo-
rithm to maximize the criterion and not simply find a set of changepoints
that gives a large value for the criterion. Other challenges are that the algo-
rithm should allow for criteria that are as complex as possible, and that the
algorithm should also be fast.

One contribution from this thesis is that we generalize the changepoint
detection algorithm named Pruned Exact Linear Time (PELT) so that it
can be used to maximize criteria where more than one parameter is es-

3

timated. PELT finds multiple changepoints fast under certain conditions
(Killick et al., 2012a). Schwarz (1978) and Zhang and Siegmund (2007)
present specialized criteria that are shown to have good properties when
one assumption is that the data are independently Gaussian distributed.
One contribution from this thesis is that we thoroughly explain how these
criteria may be used in changepoint detection. We also propose a method of
selecting the range of the term that penalizes the number of changepoint in
applications where it is treated as a tuning parameter.

Section 2 starts off with defining concepts relevant to detecting unex-
pected events, and to model selection in general. In Section 3 we present
specialized criteria for changepoint detection in univariate Gaussian data
when the variance is one, and detail how to use these to get criteria that
can be maximized with the algorithms in Section 3.5. Only small alterations
are needed when the data are Gaussian with a known variance of any other
value, but we postpone handling this to Section 5 as it makes the presen-
tation in Section 3 easier to follow. One of the algorithms we present is the
currently popular fast changepoint detection algorithm Binary Segmenta-
tion (BinSeg). The performance of BinSeg and PELT on simulated data sets
with different number of changepoints is presented in Section 4. In Section
4 also the performance of the changepoint detection criteria presented so far
are evaluated using simulated data, and Section 4.4 contains a preliminary
discussion of some of the subjects covered so far in the thesis. Then in Sec-
tion 5 we present criteria for changepoint detection in univariate Gaussian
data when both the mean and the variance need to be estimated. Section
5.6 details our generalization of PELT that allows more than one parame-
ter to be estimated, and the implementation is available in Appendix B. In
Appendix A we develop the likelihood into a form that may be used when
maximizing the BIC. The discussion in Section 6 concludes the thesis.

4

2. Statistical background

The field of anomaly detection by changepoint detection developed in
wartime out of the need to craft weapons of a certain quality, without the
need of too many samples to detect when the weapons produced were no
longer satisfactory. Since then it has been applied in various settings. This
section presents the central concepts for anomaly detection and model se-
lection.

2.1. Anomaly detection
We observe a data set xt = (x1, . . . , xt) sequentially. The data is the out-

put from some system. If we assume the system is in control for t = 1, . . . , κ,
and out of control for t = κ+ 1, κ+ 2, . . ., then a fault has occurred between
observation xκ and xκ+1. We may consider x1, . . . , xt as being realizations
from some probability distribution. When the system is in control we say
that it is in normal state or normal condition. The system not being in
normal state constitutes an anomaly.

Some anomalies result in changes in the underlying distribution of x1, . . . , xt.
Such a change may be abrupt and occur between xκ and xκ+1, or gradual
and occur between xκ and xκ+k for some k ∈ N. If the state changes back to
normal the change was transient and if not it is labeled a persistent change
(Tveten, 2017). When the change in distribution is abrupt and persistent
xκ is a changepoint. We then have two batches of data, the in-control batch
is the data set x1, . . . , xκ, and the out of control batch is xκ+1, xκ+2, A
changepoint is characterized by marking a change in the underlying distribu-
tion, and in the general field of changepoint detection there may be multiple
changepoints. Applied in an anomaly detection setting the changepoint is
interpreted as the indicator to where the system transitions to an anomalous
state.

Example 2.1. A ship has multiple sensors, and at time t the output of
the system xt is a vector with as many elements as there are sensors. In
this example the system is in the normal state when the hull is intact,
while the hull being damaged constitutes an anomaly. If the hull gets
damaged between t = κ and t = κ+1 then a fault has happened and the
state is out of control after t = κ. This may or may not affect the outputs
xκ+1, . . . , xt. Assuming that it affects the output such that x1, . . . , xκ are
realizations from one distribution and xκ, . . . , xt are realizations from
another distribution, then given xt changepoint detection may be used
to estimate the value of κ.
One approach to anomaly detection is to identify possible causes for

faults and to analyze how they would affect the output of the system, in
order to recognize such a fault when it occurs. With changepoint detection
we may assume some underlying distribution for the output from the system

5

and detect some change in the properties of the distribution. We might
seek to detect some specific property, for instance increase or in decrease of
the mean, or to identify any possible change. Changepoint detection is also
concerned with estimating the underlying distribution of the data in the two
batches. If x1, . . . , xt each are univariate the problem is referred to as single
stream changepoint detection problem. The focus in this work is anomaly
detection by single stream changepoint detection.

Example 2.2. Assume a ship has multiple sensors. At time t the output
of the system xt is a vector with as many elements as there are sensors.
Then any anomalous state should be detected from xt. This time the
state is normal when everything works as it is supposed to. When any-
thing is out of order, for instance the temperature of the engine is too
high, the hull is deformed, or a sensor is broken, then the state is anoma-
lous.

6

2.2. Detection setting
In statistics sequential analysis is statistical analysis where data are eval-

uated as they are collected until a pre-defined stopping condition is fulfilled.
Accordingly sequential change point detection is sequential analysis with the
goal of finding change point(s). Based on the original work of Wald Price
(1948) states that sequential analysis is best suited to test hypotheses on
data where it is expensive to obtain the samples, as it allows reaching a
conclusion that is correct at a pre-assigned level of probability with fewer
samples than with classical statistical methods. In some sequential methods
when a new data point is collected, only some previously stored statistic
and the new data point are involved in the evaluation of the hypothesis
or stopping condition, so storing the previous data points is not necessary.
Commonly this reduces the computational cost.

In online changepoint detection we also have a sequential data set where
we evaluate the data as it is collected. Commonly the samples are not costly
to obtain, but arrive at a set pace, for instance once every five seconds. In
online changepoint detection we want to reach a reliable conclusion in as
little time as possible, and thus with as few samples as possible. In addition
the computation to be performed needs to be fast enough for the evaluation
at the nth step to be finished before the (n+1)th data point is observed. Any
algorithm that runs fast enough to evaluate before the next time step may be
applied in an online setting. Conversely in offline changepoint detection all
the data points are known in advance, and all the data are used to identify
changepoints. However in online applications it is beneficial that in general
the conclusion reached in the nth step is similar to the conclusion reached
in the (n+ 1)th step.

An algorithm is commonly referred to as an online algorithm if it is
readily applicable in an online setting, and otherwise it is referred to as
an offline algorithm. However in the online setting all algorithms need to
observe some samples from the new distribution in order to detect that a
change has occurred. In order to compare methods in changepoint detection
Aminikhanghahi and Cook (2017) defines an ε–real time algorithm as an
online algorithm which needs at least ε data samples from the new batch of
data to be able to identify the changepoint. All the algorithms considered in
this thesis are 1-real time algorithms if applied in an online setting. However
the two main algorithms under study are arguably not readily applicable in
an online setting.

7

2.3. Evaluation of detection method
A hypothesis is a statement about a population parameter. Given a sam-

ple X from the population a hypothesis test is a rule to decide which of two
hypotheses is true. The null hypotheses is usually denoted H0 and is assumed
to be true unless the sample indicates otherwise. The null hypothesis may be
rejected in favor of the alternative hypotheses which is usually denoted H1.
The subset of the sample space for which H0 is rejected and H1 is accepted
is the rejection region R of the hypothesis test. In practice the acceptance
or rejection of H0 is decided by the value of a test statistic, a real or vector
valued function with a domain that includes the sample space.

Where the parameter space is Θ = Θ0 ∪Θc
0 and Θ0 ∩Θc

0 = ∅ the general
format of the two hypotheses is H0 : θ ∈ Θ0 and H1 : θ ∈ Θc

0. Then the Type
I error Pr(X ∈ R|θ ∈ Θ0) is the probability of falsely rejecting H0 when
H0 is true. Conversely the probability of not rejecting H0 when H1 is true
is 1− Pr(X ∈ R|θ ∈ Θc

0) and is called the Type II error. The function of θ
defined by β(θ) = Pr(X ∈ R) is the power function of a hypotheses test.
When the two hypotheses are completely specified, they are simple and may
be denoted H0 : θ = θ0 and H1 : θ = θ1.

When we perform a hypothesis test we use the power and the type I and
type II errors to evaluate the method. The presentation here is based on
Chapter 8 of Casella and Berger (2002), which subscribes to the view that
in a hypothesis testing problem either of two actions is going to be taken -
either the assertion of H0 or H1. An alternative view is that the researcher
does not believe H0 is true, but is only willing to reject it if the sample is in
the rejection region. Commonly the dimension of the parameter space under
H0 is no larger than under H1.

In an online setting, where the data set xt = (x1, . . . , xκ, xκ+1, . . . , xt)
consists of two batches as in Section 2.1, we attempt to find κ. Then we
denote by Eκ an expected value given κ and the distribution of the data in
the two batches. When κ ≥ t and the data set contains no changepoints, we
denote the expected value as E∞. The expected number of samples T before
a change is detected when there is no change is

E∞(T), (2.1)

and we call it the Average Run Length (ARL). For a requirement E∞(T) < c1
the expected time between occurrence and detection of changepoint is

Eκ(T − κ|T > κ),

which we call the Expected Detection Delay (EDD).
If we want to do anomaly detection by changepoint detection in an online

setting, we assume the state of the output from the system is in control at
first. At any given time point we test whether a fault has occurred. So we

8

test H0 : no changepoint, against H1 : a changepoint at κ. Then EDD is a
measure for the power of the test, and ARL is a measure for the type I error.
A test with high power will have a low EDD, and a test with high ARL will
have a small type I error.

9

2.4. Likelihood
We have a sample xt = (x1, . . . , xt) of length t that is a realization of

Xt = (X1, . . . , Xt). Then we write x1 ∼ f or X1 ∼ f to denote that the
random variable X1 has probability distribution f(x1) (probability density
function whenX1 is a continuous variable, or probability mass function when
X1 is a discrete variable). The probability distribution f(x|θ) is defined by
the parameter vector θ = (θ1, . . . , θn). Accordingly xt ∼ f(xt|θ) denotes
that xt is a realization from Xt with probability distribution f(xt|θ), and
we say that f(xt|θ) is the underlying distribution of xt. Given that xt is
observed, the function of θ defined by L(θ|xt) = f(xt|θ) is the likelihood of
θ. When X1, . . . , Xt are independent and identically distributed (i.i.d.), the
likelihood function for the observation xt is

L(θ|xt) =
t∏
i=1

L(θ|xi),

and we denote as the log-likelihood

`(θ|xt) = logL(θ|xt) =
t∑
i=1

`(θ|xi) =
t∑
i=1

log(f(xi|θ)).

The likelihood denotes how likely the observation is under the distribu-
tion considered. We often want to choose parameters such that the likelihood
is maximized. The notation maxθ L(θ|xt) denotes the largest likelihood for
any parameter θ. We express the value of θ such that the maximum is ob-
tained with arg maxθ L(θ|xt). The maximum likelihood estimate (MLE) of
θ is thus θ̂ = arg maxθ L(θ|xt) = arg maxθ l(θ|xt), where we follow the
convention to indicate a MLE with a hat above the parameter.

The probability density function (pdf) of a univariate normal random
variable x is

f(x|µ, σ) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
,

which we will denoteN (µ, σ2) in this thesis. Thus assuming xt = (x1, . . . , xt)
are realizations from X1, . . . , Xt with elements that are i.i.d. N (µ, σ2) we get

L(µ, σ2|xt) =
t∏
i=1

1√
2πσ2

exp
(
−(xi − µ)2

2σ2

)
,

and

l(µ, σ2|xt) = − t2 log(2πσ2)− 1
2σ2

t∑
i=1

(xi − µ)2. (2.2)

To find the MLE of the mean µ and the variance σ2 we solve the sys-
tem ∂

∂θi
l(θ|xt) = 0. The resulting estimates are µ̂ = 1

t

∑t
i=1 xi and σ̂2 =

10

1
t

∑t
i=1(xi − µ̂)2, such that

max
µ,σ2

l(µ, σ2|xt) = − t2 log(2πσ̂2)− 1
2σ̂2

t∑
i=1

(xi − µ̂).

In the expression for the maximum observed log-likelihood and the estimate
for σ2, the estimate µ̂ is replaced by the true value µ if it is known.

11

2.5. Likelihood ratio test
Now we move on to a popular test statistic presented in Casella and

Berger (2002) as Definition 8.2.1. Then we will need that supΘ L(θ|xt) de-
notes the smallest upper bound of the likelihood in the parameter space
Θ.

Definition 2.1. The likelihood ratio test (LRT) statistic for testing H0 :
θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is

λ(x) = supΘ0 L(θ|x)
supΘ L(θ|x) ,

where Θ = Θ0 ∪ Θc
0 and Θ0 ∩ Θc

0 = ∅. An LRT is any test that has
a rejection region on the form {x : λ(x) ≤ c}, where c is any number
satisfying 0 ≤ c ≤ 1.
When the maximum likelihood estimate θ̂ exists, supΘ L(θ|x) = L(θ̂|x).

So 0 < λ(x) ≤ 1, where λ(x) = 1 when θ̂ ∈ Θ0. This means that with
the simple null hypothesis (uniquely specified distribution) H0 : θ = θ0
and the alternative hypothesis H1 : θ 6= θ0 the i.i.d. normal observations
xt = (x1, . . . , xt) give

λ(x) =
(
σ̂

σ0

)t
exp

(
t∑
i=1

(
(xi − µ̂)2

2σ̂2 − (xi − µ0)2

2σ2
0

))
.

There are two interesting results about the distribution of the LRT statis-
tic that we will present here. The first one is the Neymann-Pearson Lemma,
and is found in Casella and Berger (2002) as Theorem 8.3.12.

Theorem 2.1. For a test of H0 : θ ∈ Θ0 against H1 : θ ∈ Θc
0, suppose

the elements of Xt = (X1, . . . , Xt) are i.i.d. f(x|θ), the type I error is
α = Pr(λ(x) ≥ c|H0). Then the power of the test is smaller or equal to
Pr(λ(x) ≥ c|H1), which is the the power of the likelihood ratio test.
For the next theorem we need the χ2 distribution which is defined by the

probability density function

χ2
p = 1

2 p
2γ(p2)

x
p
2−1e−

x
2 , x > 0, (2.3)

where p is a natural number and is the degrees of freedom.
Theorem 2.2. For testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc

0 where
p = dim(Θ) − dim(Θ0), suppose the elements of Xt = (X1, . . . , Xt) are
i.i.d. f(x|θ), and that the regularity conditions discussed in Wilks (1938)
hold. Then under H0 as t→∞,

2W (Xt) = −2 log(λ(Xt))→ χ2
p

in distribution, where χ2
p is the probability density function of the χ2

p

distribution in Equation (2.3). This is known as the Wilks theorem.

12

Equivalently we may write

2W (X) = 2(log(sup
Θ
L(θ|X))− log(sup

Θ0

L(θ|X))).

With 0 < α < 1 and a kα such that P (kα > χ2
p) = α we thus reject a null

hypothesis in favor of the alternative hypothesis on confidence level 1 − α
when 2W (x) > kα. When 2W (x) < kα we do not reject the null hypothesis.

13

2.6. Model selection
In this section x denotes an observation, and M denotes a statistical

model with a parameter θ. In Bayesian statistics important quantities are
the likelihood Pr(x|M), the posterior probability Pr(M |x) and the prior
probabilities Pr(M) and Pr(x). To compare the evidence for a model M1
against the evidence for another model M0 given an observation x, we may
use the posterior odds

Pr(M1 |x)
Pr(M0 |x) , (2.4)

regardless of whether the models are nested, that is whether the parameter
space of one is a subset of the parameter space of the other. In Bayesian
statistics we use Bayes formula for the posterior probability

Pr(M |x) = Pr(M)Pr(x|M)
Pr(x) . (2.5)

We can insert this expression into the posterior odds to get

Pr(M1 |x)
Pr(M0 |x) = Pr(M1)

Pr(M0)
Pr(x|M1)
Pr(x|M0) .

The two terms on the right hand side of the equation are the prior odds,
and the Bayes Factor Bw(x) (Efron and Hastie, 2016, p. 244) is

Bw(x) = Pr(x|M1)
Pr(x|M0) . (2.6)

A large Bayes Factor reflects that the evidence for M1 after data is collected
is greater than in the prior. However if the prior odds is small then a large
Bayes Factor is necessary to conclude on M1 in favor of M0.

When M0 and M1 are both simple hypotheses and the prior odds is
known, we may compute the posterior odds and conclude that either model
M0 or M1 is preferred. This is where the evaluation of the posterior odds in
the Bayesian setting is different from a hypotheses test. In a hypothesis test
we do or do not reject M0 in favor of M1, but we do not gather evidence for
M0. When we evaluate the posterior odds we commonly use Jeffrey’s scale,
which is detailed in Table 2.1 (Efron and Hastie, 2016, p. 245). In many
cases there is little information on the prior distributions. A convention for
uninformative priors is to use the Laplace choice (Kass and Raftery, 1995)
of Pr(M1) = Pr(M2) such that the posterior odds equals the Bayes Factor.

When either M0 or M1 is not a simple model, as is usually the case,
there are more steps to computing the Bayes Factor. We will assume that
the model M has a parameter θ which takes on values from the parameter
space Θ. If we for Pr(x|M) use the maximal likelihood under M and the
Laplace choice for prior odds, the posterior odds reduces to the likelihood

14

ratio. In the Frequentist perspective θ is an unknown parameter, and it
makes sense to find the maximum likelihood estimate of that constant, and
thus of Pr(x|M). In the Bayesian perspective θ is a random variable with a
distribution, and the likelihood Pr(x|M) is a combination of the likelihoods
under all the values θ can take on. So a formula consistent with the Bayesian
approach is (Kass and Raftery, 1995)

Pr(x|M) =
∫

Θ
Pr(x|θ,M)Pr(θ|M)dθ. (2.7)

Then we need the prior distribution Pr(θ|M) for the parameters under the
hypotheses.

The Bayes Factor can be used to compare the evidence for two models,
that is it may be used for model selection. Sometimes we want to compare
a number of different models, and then we use that

Pr(x|M1)
Pr(x|M2) = Pr(x|M1)

Pr(x|M0)

(
Pr(x|M2)
Pr(x|M0)

)−1

.

As the Bayes Factor is derived from Equations (2.4) and (2.5), the two
models do not need to be nested (Kass and Raftery, 1995).

An important class of probability distributions is the exponential distri-
bution family, which has probability density on the form

f(x|θ) = exp (θ · y(x)− b(θ)), (2.8)

where y(x) is the sufficient K-dimensional statistic, and θ is as before in the
parameter space Θ. The following theorem is an approximation of the Bayes
Factor that is widely used in model selection, even when its requirements
are not satisfied.

Theorem 2.3. This Theorem expresses the procedure in Schwarz (1978)
in a simplified manner, for the precise preconditions see Schwarz (1978).
It requires a special class of prior (Schwarz, 1978) distributions Pr(θ|M).
Let the Bayes Factor in question be

Bw = Pr(x|M1)
Pr(x|M0)

where M0 is the model where the parameter space is Θ, and the param-
eter space Θ1 of M1 is a subspace of Θ and only has dimension p. Given
the data set x = (x1, . . . , xn) of independent realizations from identical
distributions in the exponential family defined in Equation (2.8), the log-
arithm of an asymptotic approximation when n goes to infinity for the
Bayes Factor is

logBw ≈ BBIC(x) = log λ(x)− p

2 log n, (2.9)

15

where
λ(x) = supΘ1 L(θ|x)

supΘ L(θ|x) ,

and Θ1 denotes the parameter space under M1. We index this by BIC
as it is known as the Bayesian Information Criterion (BIC) (Efron and
Hastie, 2016, p. 246). It is also known as Schwarz Information Criterion
(SIC).
As BBIC is the logarithm of an approximation of the Bayes Factor we

may use it to compare non-nested models. We will term the p in Equation
(2.9) the degrees of freedom (df) of the model. For two models M1 and M2
with p1 and p2 degrees of freedom and parameter spaces Θ1 and Θ2 nested
within Θ0

log Pr(x|M1)
Pr(x|M2) = log Pr(x|M1)

Pr(x|M0) − log Pr(x|M2)
Pr(x|M0)

≈ BBIC,1(x)−BBIC,2(x)

= log supΘ1 L(θ|x)
supΘ0 L(θ|x) −

p1

2 − log supΘ2 L(θ|x)
supΘ0 L(θ|x) + p2

2 ,

so we get

BBIC(x) = BBIC,1(x)−BBIC,2(x) = log supΘ1 L(θ|x)
supΘ2 L(θ|x) −

p1 − p2

2 .

In other words we may compare M1 and M2 by comparing their BICs with
respect to M0. Since the BIC is an approximation of the Bayes Factor we
should use Jeffrey’s scale in Table 2.1. However if we are willing to disregard
Jeffrey’s scale and prefer M1 when BBIC > 1 and M2 otherwise, interesting
opportunities arise. Then we in effect prefer the model with the largest BIC.

We may then choose between several models by simply preferring the
one with the highest BIC as defined in Equation (2.9). In that process the
likelihood of M0 becomes obsolete, and we may define

BIC = 2`(θ̂)− p log(n). (2.10)

This is an equation regularly referred to as the BIC of a model. We will use
this1 formula throughout this thesis. To maximize this expression is also the
model selection rule that Schwarz (1978) arrives at. The p is a penalty on the
degrees of freedoms in the model. When there are more degrees of freedom
the maximum likelihood is larger, and so we need the penalty to be larger
as well. And so often p is simply referred to as the degrees of freedom.

1In Kass and Raftery (1995) Equation (2.10) is referred to as the BIC, and then BIC/2
is referred to as SIC.

16

As we can see from Equations (2.9) and (2.10) the BIC is on the form

`(θ̂|x)− pen(p, n),

which is a general form on which we can write several model selection criteria
like Mallows CP and Akaikes AIC.

Table 2.1: Jeffreys’ scale of evidence for the interpretation of Bayes Factors (see Equation
(2.6)) as presented in Efron and Hastie (2016, p. 245).

Bayes Factor Evidence for M1
<1 negative
1-3 barely worthwile
3-20 positive
20-150 strong
>150 very strong

17

3. Single parameter changepoint detection

In this section we consider the one parameter changepoint problem where
there may be more than one changepoint and we make strict assumptions.
In Section 3.1 we will establish the assumptions of this section and the
language we will use to discuss the multiple changepoint problem. Then in
Section 3.2 we develop the likelihood of data under the changepoint model.
This likelihood is used further in Section 3.3 as it is a part of the model
selection criteria. The model selection criteria are approximations of the
Bayes Factor, and are to be maximized. In Section 3.4 we explain how to
write the criteria on a form that may be maximized with the changepoint
algorithms we detail in Section 4.

3.1. The changepoint model

We have a sequential data set x1, x2, . . . , xn of realizations of indepen-
dently distributed random variables X1, X2, . . . , Xn. We have X1 ∼ f1 and

Xi+1 ∼ fj, j ∈ {j, j + 1},

where f1 and fj are distributions from some given family, then changepoint
number j is the last realization from fj. In addition there is a zeroth fictitious
changepoint, and so the changepoints are xi such that i ∈ {τ0, . . . , τm+1},
with

0 = τ1 < τ2 < · · · < τm < τm+1 = n .

In this section the following distributional assumption is made.
Assumption 3.1. The data set x1, x2 . . . , xn are realizations of Xj ∼
fj, j ∈ {j, j+1} such that fj = N (µj, 1) and µj 6= µj+1 for j ∈ (1,m+1).
For all i 6= j also Xi and Xj are independent.
The theory may be applied to other distributions as well, for instance

normal distributions with both mean and variance available for estimation,
which we consider in Section 5.

In this thesis data point xi is referred to as the data point at position i,
or simply as data point i. The τjs are thus the positions of the changepoints,
although they are often simply referred to as the changepoints. The change-
point vector τ = (τ1, . . . , τm+1) segments the data set into m + 1 intervals
where an interval is defined as the set of consecutive data points that are
realizations from the same distribution. Equivalently the interval is the set of
data points i ∈ {τj−1 +1, . . . , τj} where xi ∼ fj. The jth interval is of length
nj = τj − τj−1. For data points on the jth interval the most recent change-
point is data point τj−1, that is for data points i ∈ {τj−1 +1, . . . , τj} the most
recent changepoint is τj−1. The predecessor is the most recent changepoint

18

to a changepoint at that location2, and we call it r, such that

r(τj) = τj−1.

A changepoint model is a distributional assumption on fj, combined with
the assumption that there are m changepoints. A common interpretation of
what are the model parameters is Assumption 3.2. Another opinion is that a
changepoint model is also defined by the changepoint positions τ , and that
in the case of Assumption 3.1 the model parameters are simply the elements
of the mean vector µ = (µ1, . . . , µm+1). Commonly BIC, as presented in
Equation (2.10), is used as a model selection criterion. An argument for
Assumption 3.2 is that BIC perform better when we make Assumption 3.2,
so we will use this in the thesis.

Assumption 3.2. In the case of Assumption 3.1 the parameters of the
changepoint model with m changepoints are

θ = (µ1, . . . , µm+1, τ1, . . . , τm).

The intuitive meaning of a changepoint is that it indicates a change from
one distribution to a new one. Accordingly we define a changepoint to be
internal if it is non-fictitious and has a non-fictitious consecutive data point.
A changepoint that is not internal is external, such that 0 = τ0 and n = τm+1
are external, and the rest are internal. These external changepoints are im-
plicitly assumed to be available for any data set or set of changepoints. Figure
3.1 from Example 1 illustrates the concepts defined in the current section.
The choices are traditional and reflect the language in Killick et al. (2012a)
and Killick and Eckley (2014), except for the definition of changepoints and
the categorization to internal, external, fictitious, and non-fictitious. Our
motivation for these definitions is their simplicity, and disambiguation, as
the word changepoint is ambiguous in literature.

Example 3.1. The purpose of this example is to illustrate the con-
cepts described so far. We study the data set displayed in Figure 3.1,
where m = 2 and the underlying distributions are f1 = N (0.2, 1),
f2 = N (7.6, 1), f3 = N (−4.2, 1). This data set is much smaller than
a typical data set and has more frequent changepoints than what is usu-
ally expected. Data point numbers 3, 5, and 7 are changepoints since
they are the last points from their distribution. Two equivalent ways to
state this is that data points 3, 5, and 7 are changepoints, or that three
changepoints have positions 3, 5, and 7. Furthermore the predecessor of
7 is 5, the predecessor of 5 is 3. The solution to the changepoint problem
is the underlying distributions. The lower graph in Figure 3.2 represents

2In Killick et al. (2012a) r(i) is denoted pi, and is interchangeably referred to as the
predecessor of data point i and as the last previous changepoint of data point i.

19

●
●

●

●
●

●
●

−5.0

−2.5

0.0

2.5

5.0

7.5

1 2 3 4 5 6 7

Data point number

V
al

ue

Changepoint

●

●

No

Yes

Interval number

●

●

●

1

2

3

Figure 3.1: Example data consisting of 7 univariate observations from f1 = N (0.2, 1),f2 =
N (7.6, 1),f3 = N (−4.2, 1) with m = 2 internal changepoints.

0 1 2 3 4 5 6 7

τ0 = 0
τ1 = 3,
f1 =

N(0.2, 1)

τ2 = 5,
f2 =

N(7.6, 1)

τ3 = 7,
f3 =

N(−4.2, 1)

Figure 3.2: Solution represented as a changepoint DAG and data nodes on intervals. On
the jth interval where τj is the last point, the observations are drawn from fj . The external
and internal changepoints are colored respectively blue and green. The zeroth data point
is fictitious which is represented by a lack of outline. The predecessor of x3 is x1, while x3
is the predecessor of x5 and x5 is the predecessor of x7, or equivalently r(7) = 5, r(5) = 3,
and r(3) = 0. The values for τj of the first and last nodes in the DAG are predetermined,
which is marked by a more prominent outline.

the data points color coded for what type. There also the zeroth fictitious
data point is represented.
Even though the model parameters of a changepoint model with mean

shift are θ = (τ1, . . . , τm, µ1, . . . , µm+1) we will as the literature on change-
point detection algorithms refer to τ as the solution to the changepoint
problem. It is then assumed that (µ1, . . . , µm+1) are the parameters that
maximize the likelihood of the changepoint model. In the following section
we find expressions for the maximum likelihood parameters.

20

3.2. Likelihood of the changepoint model
In this section we develop the likelihood under Assumption 3.1 of the

changepoint model presented in the previous section. According to Assump-
tion 3.1 the log likelihood of x = (x1, . . . , xn) is for a given value of m

`(µ1, . . . , µm+1, τ |x) =
m+1∑
j=1

`(µj|xτj−1+1, . . . , xτj
, σ2 = 1),

where µj is the mean of the jth distribution fj = N (µj, 1). From Equation
(2.2) this becomes

`(µ1, . . . , µm+1, τ |x) = −n2 log(2π)− 1
2

m+1∑
j=1

τj∑
i=τj−1+1

(xi − µj)2.

To count the number of possible changepoint vectors given values for m
and n is equivalent to counting in how many ways n stars can be separated
with m bars, given that each bar needs to be next to two stars. This is
commonly called the stars and bars problem. It is equivalent to choosing m
of the the n − 1 spaces between the stars without replacement, and thus
there are

(n− 1)C(m) = (n− 1)!
m!(n− 1−m)! (3.1)

unique τ s.
In order to find the maximum likelihood estimate for the means for a

fixed τ we use that (xi − µj)2 = x2
i − 2xiµj + µ2

j ,

∂

∂µj
`(τ |x) = ∂

∂µj

−n2 log(2π)− 1
2

m+1∑
j=1

τj∑
i=τj−1+1

(x2
i − 2xiµj + µ2

j)

= −1
2

τj∑
i=τj−1+1

(−2xi + 2µj),

and setting ∂
∂µj
`(τ |x) = 0 gives the maximum likelihood estimate µ̂j =

1
nj

∑τj

i=τj−1+1 xi since ∂2

∂2µj
`(τ |x) = −1. Hence the maximum likelihood with

respect to the means for a fixed τ is

`(τ |x) = −n2 log(2π)− 1
2

m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2. (3.2)

From now on we will use the definition that nj = τj − τj−1. Then the
likelihood may alternatively be written

x2
i − 2xiµj + µ2

j`(τ |x) = −n2 log(2π)− (1
2

n∑
i=1

x2
i + 1

2

m+1∑
j=1

njµ̂
2
j), (3.3)

21

as ∑τj

i=τj−1+1 xi = njµ̂j and the second term in Equation (3.2) is

−
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 = −
m+1∑
j=1

τj∑
i=τj−1+1

(x2
i − 2xiµ̂j + µ̂2

j)

= −
n∑
i=1

x2
i + 2

m+1∑
j=1

µ̂j

τj∑
i=τj−1+1

xi −
m+1∑
j=1

njµ̂
2
j

= −
n∑
i=1

x2
i + 2

m+1∑
j=1

µ̂j(njµ̂j)−
m+1∑
j=1

njµ̂
2
j

= −
n∑
i=1

x2
i +

m+1∑
j=1

njµ̂
2
j .

To find the maximum likelihood when m is fixed we may simply try each
of the the finite number of possible τ s. When we compare the likelihoods
to find the maximum we only need to look at the difference between the
likelihoods, and so we only need to compute the terms ∑m+1

j=1 njµ̂
2
j to find

out which τ gives the maximal likelihood.

22

3.3. Model selection
The aim of this section is to find criteria to choose the m that defines

the changepoint model described in Assumption 3.2. Then we can proceed
to find the parameters µj and τj by maximum likelihood estimation from
Equation (3.2). It is tempting to find m by maximum likelihood estimation
too. To see why this does not work we return to Equation (3.2) and see that

max
− τj∑

i=τj−1+1
(xi − µ̂j)2

 = 0,

which is the result when τj − τj−1 = 1. And so

max
m

`(τ1, . . . , τm|x) = −n2 log(2π),

and the maximum likelihood estimate of m would be m̂ = n − 1. This
means that all data points are always changepoints, which is not our desired
solution. It is important to note that m is not a parameter in itself, but
regulates how many parameters the model contains. We need methods for
model selection to determine m. One popular method is to apply Schwarz’
BIC directly. Another option is to use the modified Bayesian Information
Criterion (mBIC), which is an approximation of the Bayes Factor specifically
developed for the changepoint model with data from a normal distribution
(Zhang and Siegmund, 2007). These two approaches are detailed in the fol-
lowing sections.

3.3.1. BIC
Under Assumption 3.2 there is a total of 2m+1 parameters to determine.

When the BIC formula in Equation (2.10) is used directly with the maximum
likelihood from Equation (3.2) the BIC is

−n2 log(2π)−
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 − (2m+ 1) log n.

However we will use the BIC to select the model with the maximal BIC, and
thus terms independent of the model parameters may be omitted from the
equation. This gives the commonly used

BIC1 = −
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 − 2m log n, (3.4)

where the indicator 1 denotes that it is the first BIC version for a changepoint
model to be introduced in the thesis. However in the changepoint model the
data points are in general not identically distributed, so the assumptions
of Theorem 2.3 do not hold. The asymptotic consistency of BIC has been
established when the changepoint data are independently normal distributed
(Yao, 1988), and for a few other special changepoint situations.

23

3.3.2. mBIC
The modified Bayesian Information Criterion (mBIC) (Zhang and Sieg-

mund, 2007) is under certain conditions optimal in the changepoint setting.
It uses some notation we will now introduce. To write that a sequence Xn

of random variables is Xn = OP (1) denotes that Xn is of order less than or
equal to 1 in probability (Lehmann, 1999), that is for any ε > 0, there exists
a finite M > 0 and a finite N > 0 such that for all n > N ,

Pr(|Xn| > M) < ε.

Theorem 3.1. This is Theorem 1 from Zhang and Siegmund (2007)
re-parametrized and slightly simplified. The theorem states that under
certain priors on the model parameters that represent no information,
and under Assumptions 3.1 and 3.2,

log P (x|Mm)
P (x|M0) = 1

2

m+1∑
j=1

(τ̂j − τ̂j−1)(µ̂j −
1
n

n∑
i=1

xi)2 (3.5)

− 1
2

m+1∑
j=1

log(τ̂j − τ̂j−1) + (1− 2m) log n
+Op(1),

where the τ̂js are the positions in τ̂ = (τ̂1, . . . , τ̂m) such that

τ̂ = arg max
τ

1
2

m+1∑
j=1

(τj − τj−1)(µ̂j −
1
n

n∑
i=1

xi)2 (3.6)

for a given m, and M0 is the changepoint model with m = 0. This is
the result of approximating the Bayes factor when n approaches infinity
while τj/n approaches a constant. A solution sketch is found in the web
appendix of Zhang and Siegmund (2007).
Loosely speaking the remainder term being Op(1) means that it is smaller

than some value not depending on n. On the other hand the rest of the
expression grows with n. And so when n approaches infinity the term that
is Op(1) becomes negligible. Thus the mBIC is

D1(m) = 1
2

m+1∑
j=1

(τ̂j − τ̂j−1)(µ̂j −
1
n

n∑
i=1

xi)2 (3.7)

− 1
2

m+1∑
j=1

log(τ̂j − τ̂j−1) + (1− 2m) log n
 ,

which we labeled D1 as we will refer to it later. We want the model that
maximizes the mBIC, similar to in Section 3.3.1 where we maximize the
BIC.

24

There is no closed form expression for τ̂ for a given m. It is instead
convenient to use the expression

D2(m, τ) =1
2

m+1∑
j=1

(τj − τj−1)(µ̂j −
1
n

n∑
i=1

xi)2 (3.8)

− 1
2

m+1∑
j=1

log(τj − τj−1) + (1− 2m) log n
 .

Here we have replaced τ̂j with τj. It is tempting to maximize this instead of
the approximate Bayes Factor from Theorem (3.5). However for a given m,
the τ that gives maxτ D2(m, τ) = D2(m, τ̃) is

τ̃ = arg max
τ

1
2

m+1∑
j=1

(τj − τj−1)(µ̂j −
1
n

n∑
i=1

xi)2 − 1
2

m+1∑
j=1

log(τj − τj−1)
 .

This is different from Equation (3.6). So max(m,τ) D2(m, τ) is in general not
equal to maxmD1(m).

The natural approach to finding arg maxmD1(m) is to find τ̂ from Equa-
tion (3.6) for m = 0, 1, . . . , n − 1, and choose the model that maximizes
Equation (3.5). The modified version (Zhang and Siegmund, 2007) of the
Circular Binary Segmentation (CBS) algorithm (Olshen et al., 2004) finds
for a given m a τ such that the likelihood is large, but not necessarily max-
imal. So when the modified CBS is run for every m = 1, . . . , n − 1 and the
model with the largest resulting D2(m, τ) is chosen, it is not guaranteed that
the resulting τ is the maximum likelihood estimate, or that the resulting m
maximizes Equation (3.5).

As we have just seen, neither by maximizing D2(m) or by the natu-
ral approach described above are we guaranteed to find the changepoint
model that maximizes the mBIC D1(m) in Equation (3.7). Indeed Truong
et al. (2018) states that to find the (m, τ) that maximizes the mBIC is not
tractable. In this thesis when we want to find the parameters that maximize
the Bayes Factor under the assumptions of Theorem 3.1, we will instead
maximize D2(m, τ). In the rest of this section we will interpret the first and
second term of Equation (3.8) in that order. Then we will find a simple
expression that is analogous to Equation (3.4); a simple expression that is
minimal when D1(m, τ) in Equation (3.8) is minimal.

3.3.3. mBIC likelihood term
The first term in Equation (3.8) represents the likelihood of the obser-

vations under Mm (Zhang and Siegmund, 2007). We will now ascertain this
by comparing it to `(τ |x) in Equation (3.2). To see this we write it in detail
with nj = τj−τj−1 and x̄ = 1

n

∑n
i=1 xi, and we insert the maximum likelihood

25

estimates for the µjs. So the first term of Equation (3.8) is

1
2

m+1∑
j=1

nj(µ̂j − x̄)2 = 1
2

m+1∑
j=1

nj(µ̂2
j − 2µ̂jx̄+ x̄2)

= 1
2

m+1∑
j=1

njµ̂
2
j − 2x̄

m+1∑
j=1

njµ̂j + x̄2
m+1∑
j=1

nj

= 1

2

m+1∑
j=1

njµ̂
2
j − 2x̄2n+ x̄2n

 = 1
2

m+1∑
j=1

njµ̂
2
j −

1
2 x̄

2n,

and for a given data set this likelihood is maximized with respect to τ when
1
2
∑m+1
j=1 njµ̂

2
j is maximized. Likewise the likelihood from Equation (3.3) is

maximized when 1
2
∑m+1
j=1 njµ̂

2
j is maximized, and so the first term in Equa-

tion (3.8) may be said to represent the likelihood `(τ |x) in Equation (3.2)
maximized with respect to the means. Since

1
2

m+1∑
j=1

njµ̂
2
j −

1
2 x̄

2n− `(τ |x)

1
2

m+1∑
j=1

njµ̂
2
j −

1
2 x̄

2n−

−n2 log(2π)− 1
2

n∑
i=1

x2
i + 1

2

m+1∑
j=1

njµ̂
2
j

= −n2 x̄

2 + n

2 log(2π) + 1
2

n∑
i=1

x2
i ,

we may write (3.8) as

log P (x|Mm)
P (x|M0) = `(τ |x)− n

2 x̄
2 + n

2 log(2π) + 1
2

n∑
i=1

x2
i

− 1
2

m+1∑
j=1

log(τj − τj−1) + (2m− 1) log n
+Op(1),

where `(τ |x) is the likelihood from Equation (3.2).

3.3.4. mBIC penalty term
Zhang and Siegmund (2007) states that the second part of Equation

(3.5) corresponds to a penalty. The second part of Equation (3.8) may be

26

rewritten as

− 1
2

m+1∑
j=1

log(τj − τj−1) + (2m− 1) log n

= −1
2

m+1∑
j=1

log(τj − τj−1) + (2m− 1) log n+ (m+ 1) log n− (m+ 1) log n

= −1
2

m+1∑
j=1

log
(
τj − τj−1

n

)
+ 3m log n

 ,
such that Equation (3.8) may be expressed as

D2(m, τ) = `(τ |x)− n

2 x̄
2 + n

2 log(2π) + 1
2

n∑
i=1

x2
i (3.9)

− 1
2

m+1∑
j=1

log τj − τj−1

n
+ 3m log n

 .
The value of log τj−τj−1

n
is always negative. When the changepoints are

close together it is a large negative number, and when they are evenly spaced
it is a small number. So the penalty is higher when the changepoints are
close together. Now there are two extremes. One extreme is that all the
changepoints are evenly spaced. Then the m+ 1 segments all have the same
value of τj − τj−1, such that n/(τj − τj−1) = m+ 1. Thus the maximum with
respect to τ when m and n is fixed is

max
τ

m+1∑
j=1

log τj − τj−1

n
= −

m+1∑
j=1

log(m+ 1) = −(m+ 1) log(m+ 1).

The other extreme is that all the changepoints are next to each other, that
is τj − τj−1 = 1. Then for j in 1 to m we get log τj−τj−1

n
= − log n. For the

last interval we get τm = m, such that log τm+1−τm

n
= log n−m

n
and

min
τ

m+1∑
j=1

log τj − τj−1

n
= −m log n+ log n−m

n
≈ −m log n.

In other words the penalty term when all the changepoints are next to each
other becomes

min
τ

m+1∑
j=1

log τj − τj−1

n
+ 3m log n

= −m log n+ log n−m

n
+ 3m log n ≈

n�m
2m log n (3.10)

27

for a fixed m and n. In comparison

max
τ

m+1∑
j=1

log τj − τj−1

n
+ 3m log n

= −(m+ 1) log(m+ 1) + 3m log n ≈

n�m
3m log n, (3.11)

when the changepoints are evenly spaced in the data set. This means that the
penalty takes on a value between 2m log n and 3m log n. Both mBIC and BIC
are asymptotically consistent for the changepoint model under Assumption
3.1.

When we find the model such that the modified Bayesian Information
Criterion (mBIC) in Equation (3.9) is maximized, the terms independent of
the model parameters and m may be omitted so that we get the simplified
expression

BIC2 = −
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 −

m+1∑
j=1

log τj − τj−1

n
+ 3m log n

 . (3.12)

The last part of the equation is similar to Equation (5) in Zhang and Sieg-
mund (2007), however the expressions are different because they maximize
D1 in Equation (3.7) while we maximize D2 in Equation (3.8).

3.3.5. mBIC interpretation
In Theorem 2.3 the penalty is set using the dimension p of the parameter

space. This regulates how complex or parsimonious the model is. Occam’s
razor, also called the law of parsimony, dictates that we choose the most
parsimonious model that fits the data. The term degrees of freedom (df) is
used to describe how parsimonious a model is. The data set has a number
of degrees of freedom available, and the model requires a given number of
degrees of freedom. In this thesis we call the degrees of freedom the model
requires the degrees of freedom of the model, such that p in Equation (2.10)
represents the degrees of freedom of a model. Another choice is to call the
degrees of freedom left after the model is fitted to a data set the degrees of
freedom of the model. The principle of parsimony leads the penalty to be
scaled by the number of degrees of freedom of the model.

One reason for the debate on what constitutes the model parameters in
a changepoint setting is that we want to determine the degrees of freedom
and set the penalty accordingly. When there is a debate on what are the
model parameters in a changepoint setting, this is partly because we want to
determine the degrees of freedom and thus the penalty. As mBIC is optimal
on Gaussian changepoint data, ideally we would like BIC1 to have the same
penalty value. And so a penalty adjusted BIC1 from Equation (3.4) is

BIC1,adj = −
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 − (d+ 1)m log n, (3.13)

28

where p = (d + 1)m. We will call the p such that BIC1 and BIC2 have the
same penalty the effective degrees of freedom of the model. We assume that
the µjs contribute 1 effective degree of freedom each to p in this setting,
which gives a penalty of m log n in Equations (3.4) and (3.12). The entire
penalty in Equation (3.12) is

2m log n+
m+1∑
j=1

log τj − τj−1

n
+m log n,

and so the penalty for τ is

2m log n+
m+1∑
j=1

log τj − τj−1

n
.

Then from Equation (2.10) we find the effective degrees of freedom for τ by
dividing by log n, that is

2m+
∑m+1
j=1 log(τj−τj−1

n
)

log n . (3.14)

And then we would like for d in Equation (3.13) to be equal to the effective
degrees of freedom per τj, that is

edf = 2 +
∑m+1
j=1 log(τj−τj−1

n
)

m log n , (3.15)

which we label edf . We will come back to edf in Section 4.2 to see how it
depends on n and on the quantity and the positions of the changepoints.
The difference between the d in Equation (3.13) and edf in the Equation
above is that d is a constant determined prior to maximizing the criterion,
while edf is a property that is computed for a fitted or underlying model.

As we see from Equation (3.9), it is not actually the changepoint locations
that contribute effective degrees of freedom to p, but the scaled interval
lengths (τj − τj−1)/n. Longer intervals contribute more effective degrees of
freedom. Intuitively when the interval (τj+1 − τj−1)/n is divided by τj that
division contributes more effective degrees of freedom when (τj+1 − τj−1)/n
is a long interval. For instance if τj−1 = 1, τj = 2, and τj+1 = 3 the additional
effective degrees of freedom are severely limited, but if τj−1 = 10, τj = 110,
and τj+1 = 210, the division affects the fit of 200 data points.

29

3.4. Optimization problem
In this section we will write the criteria on the form

−

m+1∑
j=1

C(τj−1 + 1, τj) + βm

 . (3.16)

Since the optimal parameters are those that maximize the chosen criteria,
we want to minimize the expression inside the parentheses. The motivation
for writing the criteria on this form is that the algorithms for changepoint
detection is defined in this way. First we will present the terms and concepts
used in the changepoint detection algorithms, and then we will specify how
we use these when we maximize our criteria. In Section 3.4.3 a method to
aid in the understanding of the algorithms of Section 3.5 is presented.

3.4.1. Optimal cost in changepoint detection algorithms
When a prospective interval starts at data point s and ends at data point

t, we will associate with it a cost3

C(s, t) .

For instance the interval cost of the jth interval is C(τj−1 + 1, τj). A high
value for C(·, ·) indicates that the changepoint model is a bad fit to the data
in this region. The total cost of with given parameters (m, θ) is

m+1∑
j=1

C(τj−1 + 1, τj) + q(m) ,

the sum of the interval costs, and a penalty q(m) for the number of change-
points. As with Equation (3.20) the (m, θ) that gives the minimal total cost
for the data set is considered to be optimal. Even though all the parameters
in Assumption 3.2 need to be specified to compute the total cost of a data
set under Assumption 3.1, τ is referred to as the solution or prospective solu-
tion of the changepoint problem in the algorithmic literature. An algorithm
is considered good if it has low run time and the total cost of the acquired
solution is as small as possible. Some exact algorithms that find the optimal
solutions under certain requirements are Segmentation Neighborhood (SN),
OP, and PELT. A popular algorithm that finds a good solution, in that it
has a quite low cost, is Binary Segmentation (BinSeg).

A special case for solution cost is when the penalty term is linear in m,
that is q(m) = mβ + B where β and B are freely chosen parameters. In
Section 3.5.2 we see that a linear penalty is a requirement for the OP and
PELT algorithms. The penalties of the two methods above are linear, and
in the thesis we only consider linear penalties.

3The cost C(s, t) is denoted as C(xs:t) in Killick et al. (2012a)

30

Assumption 3.3. The penalty term is q(m) = mβ + B, and is thus
linear in m, for some B independent of m and the model parameters.
The prospective solution cost with linear penalty is

p(t) =
m+1∑
i=1

(C(τi−1 + 1, τi)) +mβ +B ,

=
m+1∑
i=1

(C(τi−1 + 1, τi) + β)− β +B . (3.17)

The last line of Equation (3.17) is why the linear penalty is particularly
easy to work with; the penalty term q(m) becomes a penalty β for each new
interval. OP and PELT takes advantage of this to find the optimal solution
in a systematic fashion, and therefore require the penalty to be linear.

For a fixed β the optimal solution for a given data set is the one which
minimizes p(t) with respect to m and the τis. Thus the term −β+B outside
the summation sign in Equation (3.17) does not affect which solution is
chosen, and any B will give the same optimal changepoints. In Killick et al.
(2012a) they chose B = 0, which gives the intuition that a data set with
only one data point will have p(1) = C(1, 1), the cost of only the first data
point. Another natural choice is B = β such that the total cost is the sum
of the costs and a total penalty of (m + 1)β. We choose the first option in
this thesis and we then define the prospective total cost of a solution for
x1, . . . , xt as

p(t) =
m+1∑
i=1

(C(τi−1 + 1, τi) + β)− β , (3.18)

where m and the τis are defined according to the prospective solution. Ac-
cordingly we define the total cost of the optimal (’final’) solution on the
same data as

F (t) = min p(t) = min
(
m+1∑
i=1

(C(τi−1 + 1, τi) + β)
)
− β . (3.19)

This means that F (t)− p(t) ≥ 0 for any solution cost p(t).

3.4.2. Optimal cost with the model selection criteria
To maximize the BIC from Equation (3.4) is equivalent to minimize its

negative. With θ = (τ1, . . . , τm, µ1, . . . , µm+1) we get that the optimal model
m1 and parameter vector θ̂1 with respect to BIC1 is

(m1, θ̂1) = arg max
m,θ

BIC1 = arg min
m,θ

(−BIC1) (3.20)

= arg min
m,θ

m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 + 2m log n
 ,

31

which we in turn may write as

(m1, θ̂1) = arg min
m,θ

m+1∑
j=1

C(τj−1 + 1, τj) + q(m),

with

C(τj−1 + 1, τj) =
τj∑

i=τj−1+1
(xi − µ̂j)2, (3.21)

and q(m) = 2m log n, such that β = 2 log n.

In that sense C(τj−1 + 1, τj) is a cost that we want to minimize. We also
want to minimize the penalty term q(m) = 2m log n.

Likewise we may write the optimal model m1 and parameter vector θ̃2
with respect to BIC2 as

(m2, θ̃2) = arg min
m,θ

m+1∑
j=1

 τj∑
i=τj−1+1

(xi − µ̂j)2 + log τj − τj−1

n

+ 3m log n

= arg min
m,θ

m+1∑
j=1

C(τj−1 + 1, τj) + q(m)
 ,

this time with

q(m) = 3m log n, such that β = 3 log n, and (3.22)

C(τj−1 + 1, τj) =
τj∑

i=τj−1+1
(xi − µ̂j)2 + log τj − τj−1

n
.

The motivation for including log(nj/n) in C instead of in q is to make sure
that q(m) is not a function of the xis and the model parameters. This high-
lights a subtle difference between the term penalty as it is used in algorithmic
settings and in the setting of statistical model selection criteria. In model
selection penalty is whatever acts as a counter weight to the model com-
plexity, that is, the penalty regulates how parsimonious the model is. But
in the algorithms for changepoint detection the penalty is simply the terms
that are independent of the data and not a part of the cost functions for the
intervals.

Example 3.2. In Example (3.1) we knew which points were from which
distribution. This time only the data set in Table 3.1 and Figure 3.3 is
assumed known. We choose to maximize BIC1, so we use Equation (3.21)
for the cost and penalty. This means that n = 7, and

β = 2 log(n) = 2 log(7) = 3.89 .

Two natural guesses at the solution are τ (1) = (0, 3, 7) and τ (2) =

32

●
●

●

●

●

● ●

−7.5

−5.0

−2.5

0.0

2.5

1 2 3 4 5 6 7

Node

V
al

ue

Figure 3.3: Example data consisting of 7 univariate observations from unknown standard
normal distributions.

0 1 2 3 4 5 6 7

τ0 = 0 τ1 = 3 τ2 = 7

Figure 3.4: Prospective solution τ (1) = (0, 3, 7).

0 1 2 3 4 5 6 7

τ0 = 0 τ1 = 3 τ2 = 4 τ3 = 7

Figure 3.5: Prospective solution τ (2) = (0, 3, 4, 7).

Table 3.1: Changepoint data set from standard normal distributions used in Example 3.2.

i 1 2 3 4 5 6 7
xi -4.19 -3.35 -6.17 2.84 -0.197 1.75 1.36

(0, 3, 4, 7), which are displayed in Figures 3.4 and 3.5. For prospective
solution τ (1) the length of the two intervals are n(1)

1 = 3 and n
(1)
2 = 4,

while for τ (2) the three interval lengths are n(2)
1 = 3, n(2)

2 = 1, n(2)
3 = 3.

Using µ̂i = 1
ni

∑τi
k=τi−1+1 xk then for both solutions µ̂1 = −4.56. Accord-

ingly for τ (1) we get µ̂(1)
2 = 1.44, and for τ (2) we get µ̂(2)

2 = 2.84 and
µ̂

(2)
3 = 0.970. In both cases the first interval cost is

Ce(1, 3) = (−4.19 + 4.56)2 + (−3.35 + 4.56)2 + (−6.17 + 4.56)2 = 4.19 .

33

Computing the rest in this fashion we get

p1(7) = 2βe + C1(1, 3) + C1(4, 7)
= 2 · 3.89 + 4.15 + 4.74 = 16.7 ,

p2(7) = 2βe + C2(1, 3) + C2(4, 4) + C2(5, 7)
= 3 · 3.89 + 4.15 + 1.84 + 2.12 = 19.8 ,

such that τ (1) gives a lower total cost than τ (2) and is thus the better
solution . We see that introducing data point 4 as a changepoint reduce
the sum of the interval costs since 3.96 = C2(4, 4)+C2(5, 7) < C1(4, 7) =
4.74. However the reduction is smaller than the penalty. The sum of the
interval costs usually decrease with increasing number of changepoints,
which illustrates the need for a penalty. Indeed whenever β = 0 the
optimal choice is to let every data point be a change point. The underly-
ing distributions used to generate the examples were f1 = N (−5.59, 1),
f2 = N (3.42, 1), f3 = N (0.95, 1), with solution τ = (0, 3, 4, 7), which is
equal to the prospective solution τ (2). In general it is the case that the
correct solution may not give the lowest total cost for an observed data
set.

3.4.3. Changepoint DAG
A powerful data science tool is to represent components in problem solv-

ing as graphs which resemble flowcharts. A Directed Acyclic Graph (DAG)
is a graph with finite number of nodes, where the paths between nodes are
directed, and there are no cycles, such that any DAG may be topologically
ordered. In this section we have applied the concept to visualize a prospective
set of model parameters, which we will continue to refer to as a solution.

A DAG can be constructed such that it carries all the relevant infor-
mation on the truth as we imagine it or on a suggested solution. In such a
DAG each node corresponds to a changepoint. Each node points to the node
of its predecessor (Figure 3.1). Since there is one changepoint per interval
each node in the DAG also corresponds to one interval. Node i should carry
information on changepoint τi. Additionally it may contain information on
the distribution of the data points on its interval.

The first node in the DAG is the node such that no other node points to it.
In this thesis we refer to the first node in the DAG as node number m+ 1,
which corresponds to the last changepoint which has data point number
τm+1 = n. For ease of computation and thinking we defined a 0th fictional
data point with no value x0 ∈ ∅, which also is defined as a changepoint. This
results in a node number i = 0 in the DAG which has no observations and
no likelihood function. This makes the end node in the DAG well defined,
and acts as an aid indicating where the DAG terminates.

When a solution is in the form of such a DAG the total cost is the sum
of the costs of each node in the DAG and a penalty for the number of nodes.

34

Accordingly the cost of each node with BIC1 is minus twice the log likelihood
of the observations in the corresponding interval. As the true DAG is not
known, the positions of its nodes, and the distribution indicated on each node
must be estimated from the data. The problem of finding the optimal set of
changepoints thus corresponds to finding the optimal changepoint DAG.

Example 3.3. The data from Example 3.1 is illustrated in Figure 3.1.
The solution is illustrated as a DAG and intervals in Figure 3.2. Since
m = 2 and n = 7 it is predetermined that τ0 = 0 and τm+1 = τ3 = n = 7.
This makes the start and end nodes of the solution DAG easy to identify
when implementing an algorithm.

35

3.5. Algorithms

Algorithms are evaluated on their run time, commonly using big O no-
tation. In Big-O notation g(n) = O(f(n)) means that there exist an M > 0
and a n0 > 0 such that |g(n)| ≤ Mf(n) for all n ≥ n0 (Knuth, 1976). A
changepoint detection algorithm is a pruning of another algorithm if it finds
the same solution in less computations and is an alteration of the other al-
gorithm. Binary Segmentation (BinSeg) is an algorithm that finds a solution
in O(nlog(n)) time when the data set is of length n. It does not find the op-
timal solution, but one that has a quite low total cost. It is well established
in multiple changepoint detection due to the speedy runtime, and we will
come back to it in Section 3.5.1.

An algorithm that finds the optimal solution is Segmentation Neighbor-
hood (SN) (Auger and Lawrence, 1989). For each m from 0 to some up-
per limit M set by the user it computes all the total costs of the (n −
1)!/(m!(n − 1 − m)!) possible solutions. Then it returns the solution with
the lowest total cost among the optimal solutions for each m. Accordingly
it runs in O(mn2) time. The pruning pruned Dynamic Programming Algo-
rithm (pDPA) (Rigaill, 2010) reduces the run time to O(n log n), but only
allows for one parameter to be estimated. The Algorithm Optimal Parti-
tioning (OP) (Jackson et al., 2005) also finds the optimal solution, and it is
detailed in Section 3.5.2. It also computes all the possible solutions and runs
in O(n2) time, but has the requirement that the cost q(m) must be linear in
m. PELT is a pruning of OP, but with an additional requirement on the cost
function. PELT has a runtime of O(n) under optimal conditions, although in
the worst case it is identical to OP. We consider PELT in Section 3.5.3. An-
other pruning of OP is Functional Pruning Optimal Partitioning (FPOP)
(R. Maidstone, 2014) which runs in O(n) time, and where the method of
pruning is similar to that used in pDPA. In FPOP only one parameter may
be estimated, but with an adjustment that we make in Section 5 PELT may
estimate multiple parameters. The algorithm Changepoint Detection for a
Range of Penalties (CROPS) (Haynes et al., 2017a) finds the solutions given
penalties in a continuous range by running some changepoint detection al-
gorithm several times. The runtime of CROPS and the properties of the
CROPS solution are thus determined by which algorithm is used.

3.5.1. Binary Segmentation
Binary Segmentation (BinSeg) is a popular algorithm in offline change-

point detection. For a data set x1, . . . , xn introducing a changepoint at xt is
a binary segmentation of the data set into x1, . . . , xt and xt+1, . . . , xn, hence
the name of the algorithm. With a linear penalty from Assumption 3.3, the
total cost of a data set when splitting x1, . . . , xn at t is

C(1, s) + C(s+ 1, n) + β .

36

BinSeg suggests a candidate changepoint position t as the position that gives
minimum cost of the segments

s = arg min
t

(C(1, t) + C(t+ 1, n)) .

Then it classifies xs to be a changepoint if

(C(1, s) + C(s+ 1, n)) + β < C(1, n) .

If the data set is segmented, BinSeg is in turn applied to each of the segments.
Applying a binary segmentation to the data set recursively, the BinSeg parti-
tioning of the data set is found. Commonly the maximum number of internal
changepoints the algorithm may find is restricted, to guarantee that BinSeg
terminates before it has split the data set into n segments each consisting of
only one point. This is a so called greedy approach as the algorithm makes
the locally optimal choice of reducing the total cost as much as possible, and
in general it does not find the globally minimal total cost.

Example 3.4. In this example we apply BinSeg to the data set in Figure
3.3 and Table 3.1 with penalty β = 2 log(n) = 2 log(7). First we compute

C(1, t) + C(t+ 1, 7)

for every binary segmentation of the data set. This is displayed in Table
3.2. Then s = 3 since C(1, 3) + C(4, 7) = 8.90 is the smallest cost.
Because C(1, 7) = 70.6 > 12.8 = C(1, 3) + C(4, 7) + 2 log(7), the binary
segmentation is accepted, and x3 is labelled a changepoint.

Table 3.2: Costs computed in step 1 of applying the BinSeg algorithm to the data in Table
3.1.

t 1 2 3 4 5 6
C(1, t) + C(t+ 1, 7) 59.8 51.2 8.90 47.3 50.4 63.4

As a second step we look for a binary segmentation of x1, x2, x3. First
we compute C(1, 1) + C(2, 3) = 3.94, C(1, 2) + C(3, 3) = 0.351 and
C(1, 3) = 4.15. Thus the best segmentation is for s = 2, but C(1, 3) =
4.15 < 4.24 = C(1, 2) +C(2, 3) + 2 log(7) so no changepoint is accepted.
As we have not yet searched for a binary segmentation of x4, x5, x6, x7 we
proceed with this. Among the segmentation costs in Table 3.3, C(4, 4) +
C(5, 7) = 2.12 is smallest, so now s = 4. However since C(4, 7) = 4.7 <
6 = C(4, 4) +C(5, 7) + 2 log(7) this binary segmentation is not accepted
either, and the BinSeg solution is simply τ = (0, 3, 7). The total cost is
2 log(7) + C(1, 3) + C(4, 7) = 12.8, which is equal to the minimum total
cost from Equation 3.19 only if τ = (0, 3, 7) is the optimal solution.

37

Table 3.3: Costs computed in step 3 of applying the BinSeg algorithm to the data in Table
3.1.

t 4 5 6
C(4, t) + C(t+ 1, 7) 2.12 4.69 4.73

BinSeg may be used with either of Equations (3.4) or (3.12) by using
their respective cost functions in Equations (3.21) and (3.22). However since
BinSeg does not find the optimal solution, the solution BinSeg finds is in
general not the one that maximizes the BIC or mBIC, but simply a solution
for which they are large.

The BinSeg algorithm may be modified to account for a non-linear penalty
term q(m) by making it work with the entire data set at once. The first step
would be the same. After a changepoint has been confirmed such that there
are currently m internal changepoints it would select the additional new bi-
nary segmentation that would give the highest reduction in total cost. Then
it would terminate with m internal changepoints if the reduction was larger
than q(m+1)−q(m), or else accept the proposed changepoint and continue.

3.5.2. Optimal Partitioning
OP is an exact algorithm which finds the optimal set of changepoints

when the penalty is linear, and runs in O(n2) time in its basic form. To
understand PELT it is important to understand OP, as PELT is simply a
version of OP where superfluous computations are omitted. A schematic
view of OP based on the presentation in Killick et al. (2012a) is displayed in
Algorithm 1. Using a double for-loop the algorithm iterates through every
possible partitioning of the data set. The value p and the list F contain
respectively the prospective and optimal total costs from Equations (3.18)
and (3.19), and r(t) is the predecessor to xt, which is defined in Section 3 as
the most recent changepoint to a changepoint at t.

The outer for-loop at line number 2 in Algorithm 1 ensures that we first
find the optimal total cost of {x1}, then of {x1, x2}, and so on. In lines
3 through 10 the goal is to find the optimal previous changepoint at data
point t, and save it in the vector r. This can be thought of as creating
multiple suggestions to solution DAGs. For each increment of t the question
If data point t is a changepoint, which data points belong on the t-interval?
or equivalently If data point t is a changepoint, where shall the equivalent
solution DAG node point to? is answered. By definition the last point in the
data set is a changepoint. In lines 12 through 18 the changepoints are found
by first adding data point n, then the data point which n points to, and so
on. In the inner for-loop at lines 4 through 10 every single previous point is
tested for being the optimal last changepoint. This is not always necessary,
and is where PELT omits superfluous computation and improves the run
time.

38

Algorithm 1: Optimal Partitioning Algorithm. Through a nested for-
loop we iterate through all the possible partitions of the data set Y .
The final estimate of the series of changepoints is kept in τ , and F (t) is
the final cost from data point 0 to data point t. The only functions here
are Sort and the cost function C, the other entities represent scalars
or vectors.
input : Y = (y1, . . . , yn), n=length(Y), β, C(·)
output: τ = (τ1, . . . , τm+1)
/* Initialize final total cost at zeroth node */

1 F(0)= −β
2 for t ← 1 to n do
3 F(t)=∞

/* For each data point yt find best previous
changepoint ys */

4 for s ← 0 to t− 1 do
/* Calculate prospective total cost to t via s */

5 p =F(s)+C(s +1,t)+β
/* If reduction made by going via s */

6 if p <F(t) then
/* Record new estimate for F(t) */

7 F(t)=p
/* Record that best previous changepoint at t is

s */
8 r (t)=s
9 end

10 end
11 end

/* Build vector τ from r */
12 changepoint =n
13 i =1
14 while changepoint 6=0 do
15 τ (i)=changepoint
16 changepoint =r (changepoint)
17 i =i +1
18 end

/* Now we have τ = (τm+1, τm, . . . , τ1), so we reverse it */
19 τ = Sort(τ)

The set of considered data points increasing incrementally can concep-
tually be thought of as time progressing and revealing one more observation
for every increment of t. The main purpose is that being systematical in this

39

fashion allows for computation preserving memoisation; the optimal (mini-
mal) total cost F (t1) is computed once, and used to determine the optimal
total cost F (t) at later steps where t > t1. Another benefit is that the algo-
rithm may very well be implemented such that t represents time, and that
t is incremented only when another observation has been measured in the
real world. Some challenges to this approach are discussed in Section 6.

To explain why it is an absolute requirement for OP that the total penalty
q(m) = βm in F (·) must be linear in the number of changepointsm we return
to thinking of t as time. Then at time t any information that stems from
{xt+1, . . . , xn} is off limits. From Equation (3.18) with a given τ we have

p(t) =
m+1∑
i=1

(C(τi−1 + 1, τi) + β)− β ,

p(t) =
m∑
i=1

(C(τi−1 + 1, τi) + β)− β + C(τm + 1, τm+1) + β ,

p(t) = p(t− 1) + C(τm + 1, τm+1) + β .

Inserting τm = r(t) and τm+1 = t we get

p(t) = p(t− 1) + C(r(t) + 1, t) + β . (3.23)

Using a penalty non-linear in the number of changepoints corresponds to
using the inferred patterns of later observations to influence how earlier
observations are interpreted. In the OP approach the total cost

C(τi−1 + 1, τi) + β

of node i in a prospective solution DAG is determined when the node is
constructed. Since the penalty β used must be the same when constructing
all the solution DAG nodes for the changepoints found to minimize (3.19).
If for instance the penalty differed so that βi grew as a function of i, the first
changepoints would be relatively closer than the last changepoints. Since
there are m nodes in the solution DAG, thus the total penalty f(m) must
be linear in the number of changepoints f(m) = m β +B.

Table 3.4: The values of F (t) and r(t) at line 12 before vector τ is built.

t 0 1 2 3 4 5 6 7
r(t) 0 0 2 3 3 3 6
F (t) -3.89 0 4.72 10.447 16.18 18.09 20.66 26.39

Example 3.5. In this first example we illustrate what happens in lines
12 through 19 of Algorithm 1 in order to show the purpose of generating
F (t) and r(t) in lines 1 through 10. At line 12 we have two vectors F (t)
and r(t). For a given data set these values are as displayed in Table 3.1.

40

Figure 3.6: Representation of r(t) from 3.4 above. Below is resulting partitioning τ . The
n = 7th data point is a changepoint. Since r(7) = 6, also

The vector r(t) of predecessors can be visualized as in Figure 3.6. The nth
data point is always a changepoint. Since n = 7 and r(7) = 6, r(6) = 3,
and r(3) = 2, the changepoints are τ = [0, 2, 3, 6, 7]. In the graph this is
found by going along the paths from data point 7 to data point 0. This
is also what is done in Algorithm 1 lines 12 through 18. In the last line
of Algorithm 1 the vector is reversed in order for it to contain the non
fictitious changepoints in increasing order.
Example 3.6. In this example we reuse the data set from Example 3.2
and use OP to find the optimal solution. The data is found in Table 3.1
and Figure 3.3. The penalty and interval cost function used are the same
here as in Example 3.2, that is

β = 2 log(7)

and

C(s+ 1, t) =
t∑

k=s+1
(xk − µ̂)2 .

In line 1 of Algorithm 1 the vector F of final costs is initialized. When
t = 1 the only choice for the predecessor of t = 1 is r(t = 1) = 0 since
there is only one previous data point. When t is incremented to t = 2,
either r(2) = 0 or r(2) = 1. So the final cost when the data set is only
data point 1 is F (1) = 0 from Equation (3.23).

We denote by pc(t) the prospective cost of {x1, . . . , xt} when r(t) = c.
Then prospective costs p0(2) and p1(2) of the data set {x1, x2} where
respectively r(2) = 0 or r(2) = 1 are also computed using (3.23). When
computing these we benefit from having previously computed F (0) =
−3.89 and F (1) = 0. All we are left with is to find C(1, 2) = 0.351 and
C(2, 2) = 0 respectively to find that p0(2) = F (0)+C(1, 2)+β = 0.35 and
p1(2) = F (1)+C(2, 2)+β = 3.89. Since p0(2) < p1(2) then r(2) = 0. This
computation is made for every increment of t. For instance at t = 4 and
t = 5 the computation is as displayed in Table 3.5. This computation
for all ts give the values displayed in Table 3.7. Performing the same
operation as in Example 3.5 for building the vector τ produces Figure
3.7. When representing r(t) as a graph the optimal set of changepoints
for a dataset of length t is find on the path from node t to node 0.
Since OP finds the optimal solution and both the BIC and mBIC in

Equations (3.4) and (3.12) have linear penalties OP may be used to find
the model and parameters that maximize the expressions. But computing
prospective cost for every possible predecessor r(t) is cumbersome and thus

41

Table 3.5: Values needed to find r(4) with OP, most notably prospective costs ps(4) at
t = 4 when the predecessor is at s. Lowest cost is p3(4), so r(4) = 3. Data from Example
3.6.

s F (s) C(s+ 1, 4) ps(4)
0 -3.89 45.3 45.3
1 0 42.4 46.3
2 4.03 40.5 48.4
3 9.67 0 13.6

Table 3.6: Values needed to find r(5) with OP, most notably prospective costs ps(5) at
t = 5 when the predecessor is s. Lowest cost is p4(5), so r(5) = 4. The data is from
Example 3.6.

s F (s) C(s+ 1, 5) ps(5)
0 -3.89 50.3 50.3
1 0 45.5 49.3
2 4.03 41.9 49.8
3 9.67 4.61 18.2
4 15.4 0 15.4

0 1 2 3 4 5 6 7

τ0 = 0 τ1 = 3 τ2 = 7

Figure 3.7: These three graphs represent the solution found by OP in Example 3.6 and
by PELT in Example 3.7. The top graph is r(t) from Table 3.7, where for instance nodes
4, 6 and 7 point to node 3 because r(4) = r(6) = r(7) = 3. The path marked in dark blue
indicates the elected solution.

computationally heavy. In the next section we see that the PELT algorithm
provides a rule for which data points can be omitted when finding r(t).

42

Table 3.7: The values of F (t) and r(t) at lines 12 before vector τ is built in Example 3.6.

t 0 1 2 3 4 5 6 7
r(t) 0 0 0 3 4 3 3
F (t) -3.89 0 4.03 9.67 15.40 21.13 23.81 25.65

3.5.3. Pruned Exact Linear Time
The algorithm for PELT is given in Algorithm 2 and is very similar to

the OP Algorithm 1. The difference is that the inner for loop in line 5 of
Algorithm 2 only iterates through some of the previous data point numbers,
and not all. In order to do this the considered data points must be imple-
mented as some type of set, for instance a vector. The set of consideration is
the s.set in Algorithm 2, and at line 16 of the algorithm when t = t2 it is all
t1s such that 0 ≤ t1 < t2 that are possible optimal predecessors r(t3) of later
data points t3 with t2 < t3. Just before t is incremented (in lines 12 through
17 of Algorithm 2) the current data point number t is not simply appended
to the set of consideration as in OP, but also some data point numbers are
removed from the set. In this setting to prune t means to remove t from
the set of consideration. Those pruned at outer loop number t = t2 are data
points numbers t1 such that

F (t1) + C(t1 + 1, t2) ≥ F (t2) , (3.24)

where t1 < t2 < t3.
For the pruning not to remove the optimal chain of changepoints from

the considered set, the cost function requirement must hold for the cost
function, namely

C(t1 + 1, t2) + C(t2 + 1, t3) ≤ C(t1 + 1, t3). (3.25)

We will see in Section 5.3.1 that this always holds when the interval cost
is the negative log likelihood. Equations (3.25) and (3.24) are the equations
central to the PELT algorithm, and I refer to them respectively as the cost
function requirement and the pruning condition for PELT.

When applying PELT in practice we make sure to chose a cost function
such that the assumption in Equation (3.25) holds everywhere, and prune
whenever (3.24) also holds. A proof that when both hold data point t1 can
never be the optimal predecessor of data point t3 is stated in Killick et al.
(2012b). The proof is restated in this thesis under Theorem 3.2.

Theorem 3.2. Whenever (3.24) and (3.25) both hold for t1 < t2 < t3
then data point number t1 is not the optimal estimate for the predecessor
of t3.

Proof. First we add C(t2, t3) on both sides of the pruning condition from

43

Equation (3.24), that is

F (t1) + C(t1 + 1, t2) ≥ F (t2) ,
F (t1) + C(t1 + 1, t2) + C(t2 + 1, t3) ≥ F (t2) + C(t2 + 1, t3) .

Then use the cost requirement from Equation (3.25) to get

F (t1) + C(t1 + 1, t3) ≥ F (t1) + C(t1 + 1, t2) + C(t2 + 1, t3)
≥ F (t2) + C(t2 + 1, t3) ,

pt1(t3) = F (t1) + C(t1 + 1, t3) + β ≥ F (t2) + C(t2 + 1, t3) + β = pt2(t3) ,

where pa(t3) is the prospective total cost at t3 of a solution where a = r(t3).
The optimal estimate for the predecessor r(t3) is the previous changepoint
which has minimal prospective cost p(t3). Since the prospective total cost
pt1(t3) at t3 when last previous changepoint to t3 is t1 is greater than or
equal to the prospective cost pt2(t3) when t2 is last previous changepoint, t1
can be never be the uniquely best predecessor of t3 in the solution DAG.

As with BinSeg and OP we would like to find the model and the pa-
rameters that maximize BIC1 and BIC2 in Equations (3.4) and (3.12). Since
both result in linear penalties, the penalties are no problem. But we need to
check that the resulting cost functions in Equations (3.21) and (3.22) fulfill
the cost function requirement in Equation (3.25).

First we check the cost function for BIC1. The cost functions are for
xt1+1, . . . , xt2 , xt2+1 . . . , xt3

C(t1 + 1, t2) =
t2∑

i=t1+1
(xi −

1
t2 − t1

t2∑
j=t1+1

xj)2,

C(t2 + 1, t3) =
t3∑

i=t2+1
(xi −

1
t3 − t2

t3∑
j=t2+1

xj)2,

C(t1 + 1, t3) =
t3∑

i=t1+1
(xi −

1
t3 − t1

t3∑
j=t1+1

xj)2

=
t2∑

i=t1+1
(xi −

1
t3 − t1

t2∑
j=t1+1

xj)2 +
t3∑

i=t2+1
(xi −

1
t3 − t1

t3∑
j=t2+1

xj)2,

and since

C(t1 + 1, t2) ≤
t2∑

i=t1+1
(xi −

1
t3 − t1

t2∑
j=t1+1

xj)2, and

C(t2 + 1, t3) ≤
t3∑

i=t2+1
(xi −

1
t3 − t1

t3∑
j=t2+1

xj)2

44

then also
C(t1 + 1, t2) + C(t2 + 1, t3) ≤ C(t1 + 1, t3).

So it fulfills the cost function requirement in Equation (3.25), and PELT
may be used to find the model and parameters that maximize Equation
(3.4). This is utilized in the following example.

Example 3.7. Returning to the dataset in Table 3.1 and Figure 3.3
which was also used in Examples 3.2 and 3.6 we want to find r(7) with
PELT when we use the cost and penalty that maximize Equation (3.4).
As PELT is simply a pruned version of OP the initial computations will
be identical. When we are in the outer for-loop of PELT where t = 4
we may add one column to Table 3.5 to get the corresponding table for
PELT which is Table 3.8. The lowest prospective cost is p3(4) = 13.6,
so r(4) = 3. Elements s such that ps(4)− β > 13.6 are removed in lines
12 to 16 of Algorithm 2. This means that when t = 5 the set of possible
predecessors is {3, 4}. In order to find r(t = 5) we used Table 3.5 for OP,
but for PELT we use Table 3.9. The latter table only uses two rows, while
the former has five rows. The number of items to compute is reduced,
and this reduces the run time of PELT compared to OP. However the
solution they find is the same, so PELT will also result in the solution
outlined in Figure 3.7

45

Algorithm 2: Pruned Exact Linear Time (PELT). The final estimate
of the series of changepoints is kept in τ , and F (t) is the final cost from
data point 0 to data point t. The only functions here are cost function
C, Remove(Set,a) which removes a from set Set, Append(Set,a) which
appends a to the set Set, and Reverse(a) which reverses the vector a.
The other entities represent scalars or vectors.
input : Y = (y1, . . . , yn), n=length(Y), β, C(·)
output: τ = (τ1, . . . , τm+1)
/* Initialize final total cost at zeroth node */

1 F(0)= −β
2 s.set = {0}
3 for t ← 1 to n do
4 F(t)=∞

/* For each data point yt find best previous
changepoint ys */

5 for s ∈ s.set do
/* Calculate prospective total cost to t via s */

6 p =F(s)+C(s +1,t)+β
/* If reduction made by going via s */

7 if p <F(t) then
/* Record new estimate for F(t) */

8 F(t)=p
/* Record that best previous changepoint at t is

s */
9 r (t)=s

10 end
11 end
12 for s ∈ s.set do
13 if F(s)+C(s +1,t)≥F(t) then
14 Remove(s.set,s)
15 end
16 end
17 Append (s.set,t)
18 end

/* Build vector τ from r */
19 changepoint =n
20 i =1
21 while changepoint 6=0 do
22 τ (i)=changepoint
23 changepoint =r (changepoint)
24 i =i +1
25 end

/* Now we have τ = (τm+1, τm, . . . , τ1), so we reverse it */
26 τ = Sort(τ)

46

Table 3.8: Values needed to find r(4) with PELT, most notably prospective costs ps(4)
at t = 4 when the predecessor is s. Lowest cost is p3(4) = 13.6, so r(4) = 3. Elements s
such that ps(4)− β > 13.6 are pruned. Corresponds to Table 3.5.

s F (s) C(s+ 1, 5) ps(4) ps(4)− β
0 -3.89 45.3 45.3 41.4
1 0 42.4 46.3 42.4
2 4.03 40.5 48.4 44.5
3 9.67 0 13.6 9.67

Table 3.9: Values needed to find r(5) with PELT, most notably prospective costs ps(5) at
t = 5 when the predecessor is s. Lowest cost is p4(5), so r(5) = 4. Corresponds to Table
3.6.

s F (s) C(s+ 1, 5) ps(5) ps(5)− β
3 9.67 4.61 18.2 14.3
4 15.4 0 15.4 15.4

47

The cost function in Equation (3.22) for BIC2 has the term log((τj −
τj−1)/n) in addition to the term that is in BIC1. That is denoting the cost
functions of BIC1 and BIC2 as respectively C ′ and C, then

C(τj−1 + 1, τj) = C ′(τj−1 + 1, τj) + log τj−1 + 1, τj
n

.

Given that both C ′(τj−1+1, τj) and log((τj−τj−1)/n) satisfy the cost function
requirement in Equation (3.25), then also C(τj−1 +1, τj) satisfies it. We have
already proven that the requirement hods for C ′(τj−1 + 1, τj), and in the
following theorem we show that it also holds for log((τj − τj−1)/n). Thus we
may also use PELT to find the model and parameters that fulfill the mBIC
solution.

Theorem 3.3. For natural numbers t1, t2, t3, and n such that 0 ≤ t1 <
t2 < t3 ≤ n we have

log t3 − t1
n
− log t3 − t2

n
− log t2 − t1

n
> 0.

Proof.

log t3 − t1
n
− log t3 − t2

n
− log t2 − t1

n
= log(t3 − t1)− log(t3 − t2)− log(t2 − t1) + log n

= log t3 − t1
t3 − t2

+ log n

t2 − t1
> 0.

However that the PELT requirement holds for the cost function is is
dependent on the parametrization we chose in Equation (3.9). With log(τj−
τj−1) in the interval cost function instead of log((τj − τj−1)/n), that is

C(s+ 1, τj) =
τj∑

i=τj−1+1
(xi − µ̂j) + log(τj − τj−1), (3.26)

and also t1 = 0, t2 = 3 and t3 = 5, we get t3 − t1 = 5 and t3 − t2 = 2.
Then log(5) = 1.61 and log(3) + log(2) = 1.79 such that for small enough
differences in the likelihoods C(1, 5) < C(1, 3) + C(4, 5). For instance with
the data set (0.1, -1.8, 0.15, -1.1, 0.1) we would get C(1, 5) = 7.99, C(1, 3) =
6.04 and C(4, 5) = 2.13 such that C(1, 3) +C(4, 5) = 8.18 > 7.99, such that
the cost function does not satisfy the cost function requirement of PELT.

Example 3.8. Using PELT with BIC2 the optimal segmentation of the
data set in Table 3.1 and Figure 3.3 is τ = (0, 2, 3, 7). With the cost
function from Equation (3.22) the solution cost is

C(1, 2) + C(3, 3) + C(4, 7) + 2β
= 0.90− 1.95 + 4.18 + 6 log(7) = 13.01,

48

On the other hand the output from the function cpt.mean in the R
package changepoint (Killick and Eckley, 2014) is the segmentation τ ′ =
(0, 3, 7), which has solution cost

C(1, 3) + C(4, 7) + β

= 3.35 + 4.18 + 3 log(7) = 13.37.

The solutions found with these algorithms are different and have different
solution costs.

49

4. Simulations and discussion

We will now study the concepts and algorithms we have introduced so far
by applying them to some simulated data. In this section we first compare
the results from maximizing BIC1 with BinSeg and PELT. Then in Section
4.2 we study the additional penalty on the relative positions of the change-
points that was introduced in BIC2. The insights derived in these sections
allow Section 4.3 where we compare the performance of BIC1 and BIC2 on
simulated data to be concise. The simulations are followed up with a pre-
liminary discussion in Section 4.4 on some of the concepts covered so far in
the thesis.

All analyses are performed in R (R Core Team, 2017). The central pieces
of code are displayed in Appendix B, and are also available in an R pack-
age at https://github.com/kristinbakka/generalizedPELT. Most of the
simulations are analyzed with our generalization of PELT that we present
in Section 5.6.3, although in Section 4.1 also the implementation of PELT
in the package changepoint (Killick and Eckley, 2014) is used. In the pack-
age changepoint several changepoint detection methods are implemented,
but we only use the implementations of BinSeg and PELT. The syntax to
employ these algorithms are displayed in Appendix B.1. In this section we
will refer to BIC1 and BIC2 as respectively BIC and mBIC, since they are
adaptations of these criteria. In the figures we will indicate each simulation
or set of simulations with a dot or a cross, and connect the dots with lines
for readability. The exception is that we will omit the dots when they are
very close to each other.

4.1. Compare PELT and BinSeg using BIC
BinSeg is one of the most popular algorithms for multiple changepoint

detection. In this section we look at how PELT performs in comparison to
BinSeg when they are used to maximize BIC1. All analyses are performed in
R (R Core Team, 2017). We use the implementation of PELT in the package
changepoint Killick and Eckley (2014) when it gives the same result as our
own implementation. We also use it to maximize BIC1 with BinSeg. The
syntax of the function we have used is described in Appendix B.1. There are
respectively zero, one and multiple internal changepoints in the simulated
data in Sections 4.1.1, 4.1.2 and 4.1.3.

4.1.1. No internal changepoints
First we want to compare the performance of the methods when there

are no internal changepoints. In order to do this we simulate time series of
length hmax = 5000 where each point is from a standard normal distribution.
Then we evaluate the first h data of each series with BinSeg and PELT,
where 1 ≤ h1 < h2 < · · · ≤ hmax. Three simulations with h1 = 5, h2 = 50
and h3 = 85 are illustrated in Figure 4.1. In the simulations the maximum

https://github.com/kristinbakka/generalizedPELT

50

5
50

85

0 20 40 60 80

−2
−1

0
1
2

−2
−1

0
1
2

−2
−1

0
1
2

h_i

V
al

ue
Method

5

50

85

Figure 4.1: Illustration of a simulation evaluated at h1 = 5, h2 = 50 and h3 = 85 of a
process where the data points are realizations from N (0, 1), and there is no changepoint.

Figure 4.2: Proportion of 10000 simulations where no internal changepoints was detected
as a function of the length of the data set h. The simulations contained no changepoints
and the data points were realizations from N (0, 1). BS is another abbreviation for Binary
Segmentation, and signifies that BinSeg was used to analyze the data.

number of changepoints with BinSeg is set to Q = 5, and when evaluating
at the ith length hi we use the BIC1 penalty β1 = 2 log(hi) from Equation
(3.21). The penalty thus increases as the data set increases in size. Evaluating
the first h data of each a series with BinSeg and PELT is comparable to a
setting where we receive a data set in real time and evaluate the data set
with BinSeg and PELT in order to find whether a changepoint has occurred
yet.

With a simulation where there are 50 different values of h and with
varying increase in h the proportion of simulations where BinSeg or PELT
correctly find no changepoints is displayed in Figure 4.2. In all the simula-
tions the algorithms either found no changepoints or one changepoint, never
multiple changepoints. The figure illustrates that for a short data set the
probability of not finding a changepoint that is not there is a little smaller
than for a long data set. This makes sense since the algorithms use the infor-
mation from all the data points to determine whether there is a changepoint

51

present. If a high proportion of the data points in a data set is improbable
under a null hypotheses of no changepoints, then the null hypotheses should
be rejected and a changepoint detected. When a data set of realizations
from some distribution is long, it is less likely that a high proportion of the
data set is realizations with low probability density, and so the likelihood of
correctly finding no changepoint increases with the length of the data set.

In order to avoid detecting changepoints that are not there, the penalty
could be adjusted to be larger for small data sets. For instance it could be
changed to β = ((hi)−1 + 2) log(hi). Any such adjustment would however
affect analyses of different data sets in multiple ways. It could make PELT
or BinSeg dislocate or not find changepoints when they are present. It could
also render undetectable changepoints belonging to short intervals.

Another result from the simulation is that both methods found zero or
one changepoint in all the cases considered. Here more than one internal
changepoint is not a viable option. As stated in Section 3 PELT finds the
likelihood based optimal segmentation of the data set, while as stated in
Section 3.5.1 BinSeg finds the likelihood based optimal binary segmentation
of the data set recursively. When more than one internal changepoint is not a
viable option BinSeg is not applied recursively, and both BinSeg and PELT
find the optimal binary segmentation if it is optimal to split the data into
two segments. So in this case PELT and BinSeg estimate the exact same
number (and positions) of changepoints, which is why the results from the
two methods are exactly the same in Figure 4.2.

4.1.2. One internal changepoint
In this section there will be exactly one internal changepoint in the middle

of the data set, and we will seek to identify it correctly. Figure 4.3 illustrates
the setting. The first points are drawn independently from N (0, 1), and the
rest of the points from N (∆, 1). In the short data set in the figure it is easy
to see that a changepoint occurs at t = 5 when ∆ is 4 or 7, but it is not
easily discernible when ∆ is 1.5 or lower.

We will continue to evaluate the performance of maximizing the BIC1
from Equation (3.4) with BinSeg and PELT. There are two main questions
to answer when we evaluate a changepoint detection method, and those are
Does it find the correct number of changepoints? and Does it find the correct
position?. First we look at how many changepoints the model finds, displayed
in Figure 4.4. For a data set of this length the methods find either 0, 1, 2 or
3 changepoints, and so for each ∆ in Figure 4.4 the proportions sum to 1.
For instance when ∆ = 0.5 the proportion of the simulations where PELT
finds 0, 1, 2 and 3 changepoints is respectively 0.01, 0.06, 0.21 and 0.72, and
0.01 + 0.06 + 0.21 + 0.72 = 1.

The black lines in Figure 4.4 represent the proportion of simulations that
find the correct number of changepoints in data sets of length n = 10. PELT
performs better than BinSeg when ∆ < 1, while it is the other way around

52

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●● ●
● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

0

3

6

9

1 2 3 4 5 6 7 8 9 10

t

x t
∆

●

●

●

●

●

0.5

1

1.5

4

7

Figure 4.3: An illustration of simulations with the parameters τ = (0, 5, 10) and µ = (0,∆)
for different ∆.

when ∆ > 1. The rest of the lines demonstrate that for every ∆ PELT finds
0 changepoints a lower portion of the simulations than BinSeg, and finds
more than 1 changepoints a higher portion of the simulations. So the reason
BinSeg performs better than PELT when ∆ > 1 is that PELT has more of
a tendency to find too many changepoints. This is an advantage when there
is one changepoint but ∆ < 1, and so then PELT performs better.

The same tendencies are apparent in Figure 4.5 as well as in Figure 4.4,
but the performance of PELT and BinSeg is much more equal and a ∆ ≥ 0.75
is sufficient for the algorithms to detect the changepoint in 0.75 portions of
the simulations. This demonstrates that a short data set represents a higher
difficulty. Since a short data set means less data points to determine the
number of changepoints it also means less information. So the longer the
data set, the better and more similar the performance of BinSeg and PELT
with respect to the number of changepoints detected. When we move on to
data sets with more changepoints the ratio m/n is often larger than in the
long data sets considered in this section. Sometimes the ratio m/n is quite
large, and therefore it is interesting to look at data wherem = 1 and the ratio
m/n is quite large as well. If PELT or BinSeg are to be applied in an online
setting the EDD must be taken into account, and the behaviour on short
data sets ought to be taken into consideration. The next point to investigate
is whether the algorithms find the correct position of the changepoint. In
Figures 4.6 and 4.7 the proportion of simulations where the methods find
the correct τ is displayed for data sets of lengths 10 and 100. In the long
data set the performance of BinSeg and PELT is virtually the same, while
BinSeg performs better on the short data set. For a high enough ∆ both
methods find the correct τ whenever it finds the correct m, but a ∆ of 5.5
or more is necessary. This is a very high value, as we can see from Figure
4.3, and it does not seem to depend on n. However when n is larger the
proportion of simulations where each of the methods find the correct τ is

53

●

●

●

●

●

●

●

●

●
●● ●●

●
●

● ● ● ● ● ●

● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

1 2 3 4

∆

P
ro

po
rt

io
n

Method

●

BinSeg

PELT

m
●

●

●

●

0

1

2

3

Figure 4.4: Proportion of simulated data sets where the method detects between 0 and 3
changepoints. There are 20000 simulated data sets for each ∆. Each data set is simulated
with the parameters m = 1, n = 10, τ = (0, 5, 10) and µ = (0,∆), and evaluated with
BIC1 from Equation (3.4).

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ● ● ● ● ●● ●●

● ● ●● ● ●0.00

0.25

0.50

0.75

1.00

0.3 0.6 0.9

∆

P
ro

po
rt

io
n

Method

●

BinSeg

PELT

m
●

●

●

●

0

1

2

3

Figure 4.5: Proportions of simulated data sets where the method detects between 0 and 3
changepoints, given that the proportion is greater than 0.005. There are 10000 simulated
data sets for each ∆. Each data set is simulated with the parameters m = 1, n = 100,
τ = (0, 50, 100) and µ = (0,∆), and evaluated with BIC1 from Equation (3.4).

greater for every ∆. For instance for ∆ = 2 and BinSeg the proportions are
respectively 0.59 and 0.53 when n = 100 and n = 10.

From Figure 4.7 it is evident that there are three different situations
each with their specific challenge that can occur depending on the size of
∆ when we have one true changepoint. If ∆ is very small it is difficult to
detect that there has been a change at all. If the ∆ is quite small it is easier
to detect it, but it is difficult to detect its position. When ∆ is quite large
then the position is usually correct when the correct number of changepoints
is found, but the risk of finding too many changepoints is more prominent.
Which ∆ is small, intermediate or large clearly depends on either n/m or
n, although as m = 1 in this section we do not yet have enough information
to ascertain which of these it is. For instance Figures 4.6 and 4.5 show that
intermediate values for ∆ are approximately 1 < ∆ < 4.5 when n = 100 and

54

● ● ●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ● ●
● ● ●● ● ●

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

∆

P
ro

po
rt

io
n

Method
● BinSeg

PELT

Type
●

●

Exact

Correct m

Figure 4.6: Proportion of simulations where the method finds the exact position of m or
merely the correct m when m = 1, n = 10, τ = (0, 5, 10).

●

●

●

●

●
●

● ● ● ● ● ●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

● ● ●● ● ●

0.00

0.25

0.50

0.75

1.00

0 2 4

∆

P
ro

po
rt

io
n

Method
● BS

PELT

Type
●

●

Exact

Correct m

Figure 4.7: Proportion of simulations where the method finds the exact position of m or
merely the correct m when m = 1, n = 100, τ = (0, 50, 100).

2.5 < ∆ < 4.5 when n = 10. Thus we will use the term intermediate region
to refer to the region of the parameter space where the algorithms usually
find the correct number of changepoints, but not the correct positions.

The natural next question that arises isWhat changepoint position do the
methods find when they find the correct number of changepoints?. In order
to answer this we have Figures 4.8 and 4.9 which display the proportion
of simulations where the methods detected one changepoint positioned at
each of these values for t. In the first plot we see that already at the small
value ∆ = 0.5 the most likely changepoint position to be identified is the
correct one. The figure also shows that the farther away a position is from the
correct one, the less likely it is that the method detects it as the changepoint
position.

The histogram for BinSeg and PELT in Figure 4.8 are not identical al-
though we know that when both algorithms find one changepoint, then they
find the same position. This is because there are instances where one method
and not the other finds the correct number of changepoints. With a large

55

0.00

0.01

0.02

0.03

0.04

45 46 47 48 49 50 51 52 53 54 55

Value

P
ro

po
rt

io
n

Delta

0.5

0.00

0.01

0.02

0.03

45 46 47 48 49 50 51 52 53 54 55

Value

P
ro

po
rt

io
n

Delta

0.5

Figure 4.8: Proportion of simulations that correctly classify to one changepoint and
identifies the changepoint position as the value indicated when m = 1, n = 100, and
τ = (0, 50, 100). The upper histogram is for BinSeg, the lower is for PELT.

enough number of simulations the plots would be symmetric about t = 50,
since the ordering of time does not make any difference to BinSeg and PELT,
and the changepoint is centered in the data set. The difference between the
histograms for BinSeg and the histograms for PELT in Figure 4.9 is very
small so this is an issue for both the algorithms. As expected BinSeg iden-
tifies the correct changepoint position at a slightly higher proportion of the
simulations than PELT for all ∆s. This is because BinSeg identifies the
correct number of changepoints in a higher proportion of the simulations.

From Figure 4.7 we know that the intermediate region when n = 100
is for ∆ approximately such that 1 ≤ ∆ ≤ 4.5. And so in Figure 4.9 the
histograms at 50 are higher for ∆ ∈ {4, 7, 9} than for ∆ ∈ {1, 2}. Also when
∆ = 2 the proportion of simulations in Figure 4.9 where the methods find
the changepoint position to be at |t − 50| = 5 is negligible. This means
that the proportions for each position t when |t− 50| > 5 are even smaller.
This means that from the middle of the intermediate region the changepoint
position is detected close to the correct location when it is not detected at
the exactly correct position.

From Figure 4.9 we also see that although it is about as likely for the

56

0.00

0.25

0.50

0.75

1.00

45 46 47 48 49 50 51 52 53 54 55

Value

P
ro

po
rt

io
n

Delta

0.5

1

2

4

7

9

0.00

0.25

0.50

0.75

1.00

45 46 47 48 49 50 51 52 53 54 55

Value

P
ro

po
rt

io
n

Delta

0.5

1

2

4

7

9

Figure 4.9: Proportion of simulations that correctly classify to one changepoint and
identifies the changepoint position as the value indicated when m = 1, n = 100, and
τ = (0, 50, 100). The upper histogram is for BinSeg, the lower is for PELT.

methods to find a changepoint at |t−50| = 1 when ∆ = 1 and when ∆ = 2, it
is far more likely to find one at |t−50| = 2 when ∆ = 2. Also the proportion
of simulations where the position is located at t decreases less as t increases.
This means that in the start of the intermediate region the position detected
is not reliable. Also it means that in the intermediate region the position
becomes gradually more focused. In applications we might have different
tolerances for how close to the correct position the changepoint needs to
be located. For instance if used directly in an anomaly detection setting on
a boat it is conceivably of no significance when in a period of one minute
the anomaly happens. With for instance 50 sample point per second that
would allow for a ’wiggle room’ of 3000 points. Thus when we now move on
to the situation with more changepoints we will only register what is the
intermediate region. We will not try to divide it into when the solution is
acceptable, since that depends entirely on the application.

4.1.3. Multiple internal changepoints
In this section we investigate the properties of the solutions when m = 5.

This is when we expect PELT to perform better than BinSeg, as PELT

57

is constructed to detect multiple changepoints in complex data. The pa-
rameters of the simulations we will test the methods on are such that
τ = (0, τ1, 2τ1, . . . , 6τ1) and µ = (0,∆, 2∆, . . . , 5∆), as illustrated in Fig-
ure 4.10 for τ1 = 10 and for different ∆ values. We will again seek to answer
the two questions Does the method find the correct number of changepoints?
and Does the method find the correct position?.

Figure 4.10: One simulation for each of the 12 ∆ values where m = 5 τ = (0, 10, . . . , 60)
for, µ = (0,∆, 2∆, . . . , 5∆) and n = 60.

In Figures 4.11 and 4.12 the proportion of simulations where the methods
find the correct τ or the correct number of changepoints is displayed. The
graphs for correct number of changepoints start with a steep ascent. Already
at ∆ = 1.5 PELT finds the correct number of changepoints in more than
87.5% of the simulations. The other graphs also all eventually plateau at a
proportion of approximately 87.5%. This means that for large ∆ values it
is only important whether ∆ is bigger than some limit, and not how large
the value is. The correct number of changepoints found increases quicker for
PELT than for BinSeg initially, and quicker when n = 240 than when n = 60.
Figure 4.12 shows that PELT finds the correct number of changepoints in
more than 87% of the simulations already at ∆ = 1.5, while BinSeg only
reaches that level after ∆ = 7.

In Figure 4.13 the different m values found by the algorithms are dis-
played. In this case BinSeg finds more than the correct number of 5 change-
points a larger proportion of the simulations than PELT. When approxi-
mately ∆ < 1.20 the methods still find the wrong number of changepoints
25% of the simulations. Then both of the methods fail because they find
too few changepoints. On the other hand when approximately ∆ > 1.40 the
concern is whether the methods find too many changepoints. And in the
intermediate region BinSeg finds more changepoint than are actually there.
This makes sense because with multiple changepoints in the data set then
the likelihood that an interval that is the result from a binary segmentation
will contain one or more changepoints increases. And so when the algorithm

58

● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ● ● ● ●

● ●
● ●

0.00

0.25

0.50

0.75

1.00

2 4 6

∆

P
ro

po
rt

io
n

Method
● BinSeg

PELT

Type
●

●

Exact

Correct m

Figure 4.11: Proportion of 10000 simulations where the methods find the exact po-
sition or merely the correct m when m = 5, n = 60, τ = (0, 10, 20, . . . , 60) and
µ = (0,∆, 2∆, . . . , 5∆).

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6

∆

P
ro

po
rt

io
n

Method
● BinSeg

PELT

Type
●

●

Exact

Correct m

Figure 4.12: Proportion of 60000 simulations where the methods find the exact position
of m or merely the correct m when m = 5, n = 240, τ = (0, 40, 80, . . . , 240) and µ =
(0,∆, 2∆, . . . , 5∆).

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●● ●

●
●●● ●●

● ● ●●0.00

0.25

0.50

0.75

1.00

0.5 1.0 1.5 2.0

∆

P
ro

po
rt

io
n

Method

●

BinSeg

PELT

m
●

●

●

●

●

●

2

3

4

5

6

7

Figure 4.13: Proportion of 60000 simulations where the methods find different m when
m = 5, n = 240, τ = (0, 40, 80, . . . , 240) and µ = (0,∆, 2∆, . . . , 5∆).

puts a split somewhere other than on the changepoint the resulting intervals

59

will sometimes contain a true changepoint that the algorithms is able to
detect. Then there might be detected more changepoints than are actually
there. It looks like this effect is compounded by the size of m relative to n
as the difference between PELT and BinSeg is smaller at ∆ = 7 in Figure
4.11 than in 4.12.

60

4.2. The mBIC penalty
In this section we want to study the penalty in BIC2 in detail. This

is primarily so that we can predict and interpret the workings of model
selection with BIC2. We will discuss it in terms of the value for d in Equation
(3.13) given by the edf in Equation (3.15), so that we get a number that is
comparable across data sets of different length and with different number of
data sets.

Depending on the assumptions we make and on the length of n the
effective degrees of freedom per interval in Equation (3.15), ought to be
different. Some common and reasonable assumptions are that

1. Every vector τ is equally probable for a given m.
2. The number of changepoints increases linearly with n.

The latter point is true for instance when the time between changepoints
is exponentially distributed, or when the changepoints are evenly spaced
throughout the data set. For evenly spaced changepoints edf may be com-
puted easily. We will now move on to compute both of these in order to
study the edf on these types of data.

It is possible to compute the average value of edf for Alternative 1 com-
binatorially. Instead we draw the τ uniformly, that is we draw them change-
point positions without replacement from {1, . . . , n−1} with identical prob-
abilities on each value. Counts of the different resulting edf values are dis-
played in Figures 4.14, 4.15 and 4.16. The first axis is marked by Penalty
because edf is computed from the total penalty. The three dashed lines mark
the 10%, 50% and 90% quantiles, while the solid line marks the mean.

The upper limit of the support is from Equation (3.11)

−(m+ 1) log(m+ 1) + 2m log n
m log n = 2− m+ 1

m

log(m+ 1)
log n ,

which is for m = 5 and n = 120 1.55, while with m = 3 it is respectively
1.70 and 1.83 for n = 500 and n = 50000. From Equation (3.10) the lower
limit is

1
m log n(m log n+ log n−m

n
) = 1 + 1

m log n log n−m
n

,

and is 1.0000, 0.9997, and 0.9982 when (n,m) is respectively (50000, 3),(500, 3)
and (125, 5). And so the there are less possible values for the edf in Figures
4.14, 4.15 and 4.16 for smaller n.

The sample distributions we may derive from the histograms in Figures
4.14, 4.15 and 4.16 are markedly skewed to the right, very close to the limit
of their support. When n is larger the distribution is also more skewed,
which we for instance can see from the distance between the median and
the mean. The count at the mode is also higher when n is higher, and the

61

0

2000

4000

6000

1.1 1.2 1.3 1.4 1.5

Penalty

C
ou

nt

Figure 4.14: For 100000 τ s uniformly drawn according to Alternative 1 defined on page
60 with m = 5 and n = 120, this is the count of the number of τ s that give rise to these
values of Equation (3.15).

0

5000

10000

15000

20000

1.2 1.4 1.6

Penalty

C
ou

nt

Figure 4.15: For 100000 τ s uniformly drawn according to Alternative 1 defined on page
60 with m = 3 and n = 500, this is the count of the number of τ s that give rise to these
values of Equation (3.15).

0

5000

10000

15000

20000

1.4 1.5 1.6 1.7 1.8

Penalty

C
ou

nt

Figure 4.16: For 100000 τ s uniformly drawn according to Alternative 1 defined on page
60 with m = 3 and n = 50000, this is the count of the number of τ s that give rise to
these values of Equation (3.15).

62

distance between the 10% and 90% quantiles is shorter. This is because
there are more ways to draw m = 3 or m = 5 points spread out throughout
the data set than there are ways to draw them close together. And also
because in the longest data sets the most frequent set of distances are more
frequent. In Figures 4.17 and 4.18 these patterns are easily discernible, and
an important exception is illustrated. Namely that when n is small enough
then (n−1)C(m) from Equation (3.1) is a low number such that there are few
possible values of edf . Then the counts of the most frequent values of edf is
larger than for slightly larger n. Another consequence is that the distribution
becomes ragged instead of smooth, that is bins next to each other may be
of quite different heights. This signals that edf values within occur with
different frequency, and is to be expected since the sample distribution is
discrete with a support of a maximum of (n − 1)C(m) values. Since (n −
1)C(m) is also small when |12n−m| is large, that is when m is close to n or
to 0, these conclusions may also be drawn for such m.

0

3000

6000

9000

1.0 1.2 1.4

Penalty

C
ou

nt

n

20

60

120

Figure 4.17: For Alternative 1 defined on page 60 this is the distribution of Equation
(3.14) divided by m = 5 with three different n. The edf was computed for 100000 drawn
τ .

0

10000

20000

30000

40000

1.2 1.4 1.6 1.8

Penalty

C
ou

nt

n

500

5000

50000

Figure 4.18: For Alternative 1 defined on page 60 this is the distribution of Equation
(3.14) divided by m = 3 with three different n. The edf was computed for 100000 drawn
τ .

63

Now that we have analyzed how the edf values differ when the change-
points are uniformly distributed we may move on to investigate what hap-
pens to the edf for different m when n increases. This is displayed in Figure
4.19 for two different intervals of n. The edf increases with n, but increases
less as n gets higher. The simple form of Alternative 2 defined on page 60
corresponds to the maximal edf and is thus close to the mode of the distri-
bution for Alternative 1.

1.0

1.2

1.4

1.6

1.8

0 1000 2000 3000 4000 5000

n

P
en

al
ty

Type

Alt 1

Alt 2

m

3

7

20

0.9

1.1

1.3

1.5

1.7

100 200 300

n

P
en

al
ty

m

3

7

14

Type

Alt 1

Alt 2

Figure 4.19: The plots display Equation (3.15). The solid lines are marked with Alt
1, which means that they are the means of 10000 uniformly drawn τ s for each n.
The dashed lines are marked with Alt 2 because they are the edf values when τ =
(0, n

m+1 , . . . ,
n(m+1)
m+1).

As BIC1,adj is for reasonable choices of d a hybrid between the well used
BIC1 and BIC2, it would be interesting to use it as a third criteria to compare
the other two criteria with in the next section. Then we could for instance
see the difference between estimating the τjs only based on the likelihood
and a constant penalty, or also based on the interval lengths. It is tempting
to point out that in Figure 4.19 there is a difference of approximately 0.5
between the lowest and highest edf value in the graphs for a given n, and to
claim that we can use this knowledge about the edf , and that n is usually
known to select a good d for BIC1,adj from Equation (3.13). But when m is

64

high compared to n the maximal edf is

2− m+ 1
m

log(m+ 1)
log n (4.1)

which in the extreme case when m = n− 1 is

2− n

n− 1
log n
log n < 1.

And so the pattern that each line in Figure 4.19 starts at very low edf values
would also be there when m is larger. Thus all d values in the interval may
be the optimal choice according to the edf , and we need prior knowledge on
the approximate number of changepoints in the interval to set a good d value
for BIC1,adj. It is however reasonable for d to be set somewhere between the
maximal and minimal possible edf values for the n of the data set in question
instead of to 1. We would need an extensive set of simulations to evaluate
the resulting BIC1,adj as it would be quite different on different data, and it
would not be fair to simply pick one. And so when we in the next section
compare BIC1 and BIC2 we will leave out BIC1,adj. One result from this
study is however that we know more about how to choose the region that
d ought to be in. This comes in handy when computer scientists want to
use the CROPS method (Haynes et al., 2017a) for changepoint detection,
where you only supply the minimal and maximal values of d+ 1 and get the
different τ s that BIC1,adj produces for penalties in that region.

65

4.3. Compare BIC and mBIC using PELT
In this section we compare the performance of the methods when BIC1

and BIC2 are maximized. The plots corresponding to maximization of BIC2
will be marked by mBIC as it is an approximation to the mBIC criterion.
There are only 2000 simulations for each ∆ because use our own slow R-
implementation instead of the fast C implementation in Killick and Eckley
(2014).

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●● ●

● ● ●● ●● ●● ●

●0.00

0.25

0.50

0.75

1.00

1 2 3

∆

P
ro

po
rt

io
n

m
●

●

●

●

●

●

●

1
2
3
4
5
6
7

Method

●

BIC 1
mBIC

Figure 4.20: Proportion of 2000 simulations where the methods find the correct m when
m = 5, τ = (0, 20, 40, . . . , 120) and µ = (0,∆, . . . , 5∆)..

● ● ● ●●●●●
●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●
●

●● ● ●
● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2 4 6

∆

P
ro

po
rt

io
n

Type
●

●

Exact

Correct m

Method
● BIC 1

mBIC

Figure 4.21: Proportion of 2000 simulations where the methods find the exactly correct
changepoint vector or merely the correct m when m = 5, τ = (0, 20, 40, . . . , 120) and
µ = (0,∆, . . . , 5∆).

In Figures 4.20 and 4.21 the changepoints are evenly distributed across
the data. For all values of ∆ then BIC1 finds more changepoints than mBIC,
and so it also finds the correct number m = 5 in a higher proportion of
the simulations when ∆ < 1.75. However mBIC quickly surpasses BIC 1,
and detects the correct m from ∆ = 2 and throughout the intermediate
region. Also mBIC finds the correct changepoint vector on more simulations
than BIC1 for every value of ∆. And so mBIC performs better than BIC1
on the data set these figures are based on. A potential problem with the

66

BIC1 criterion is that the penalty is too small, and these simulations show
that that is indeed a problem. However the parameters of the simulations
on which BIC1 and BIC2 are tested in Figures 4.20 and 4.21 are artificially
favourable for mBIC. This is because the changepoints are evenly spread in
the data set, and thus the BIC penalty for the data sets are close to the
maximal penalty for m = 5 and n = 120.

One option is to study simulations where the changepoint vector is
τ = (0, 1, . . . ,m, n). Then mBIC will have a lower resulting penalty and
may find too many changepoints, or BIC may find too few. However such
a changepoint vector is a theoretical setting that is seldom of interest in
an application. So in the remainder of this section we will instead for each
simulation draw the changepoint vector uniformly in the way detailed on
page 60. The goal will then be to find how the various attributes in Table
4.1 affect the proportion of the simulations at which BIC and mBIC find the
correct number of changepoints. For this we use Figures 4.22, 4.23 and 4.24.

Table 4.1: The model parameters we use in the simulations where τ are drawn uniformly
and the resulting key numbers. The value of max edf is from Equation (4.1). Combinations
are the number of possible τ from Equation (3.1).

n m n/(m+ 1) m/n max edf log n Combinations
24 5 4 0.21 1.32 3.18 3.4 · 104

105 20 5 0.19 1.31 4.65 1.3 · 1021

100 4 20 0.04 1.56 4.61 3.8 · 106

We start by looking at Figure 4.22 which is where mBIC performs the
worst compared to BIC1. Key information about the simulations in this
plot is in Table 4.1 under n = 24. The performance of BIC1 is marginally
worse than that of mBIC when ∆ > 3.5 that is when the proportion of
simulations where the correct m is found is larger than 0.45. In Figure 4.23
we have increased n and m such that log n = 4.65 as detailed in Table 4.1.
The difference between the performance of BIC1 and mBIC increases from
Figure 4.22 to Figure 4.23. The reason for this is that log n increases, so
when the effective degrees of freedom of τ is different from 1 the difference
between the penalties is larger, and the criteria are less similar. This also
illustrates that the meager differences in these small data sets is exacerbated
when n is larger, so they may amount to large differences for the long data
sets on which PELT is usually applied.

Next we look at Figure 4.24 and compare it to Figure 4.23. The difference
here is thatm is reduced such that the maximal number of degrees of freedom
increases (see Table 4.1). This leads to the difference between the two criteria
increasing as well, and mBIC performs better than BIC1 when ∆ > 3 which
is when the proportions of simulations with correctly detected m surpass
65%.

The differences in the shapes of the curves for the different correct ms

67

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ● ●

● ● ● ●●
●● ●●

● ●● ●●0.00

0.25

0.50

0.75

1.00

2 3 4 5 6

∆

P
ro

po
rt

io
n

m
●

●

●

●

●

●

2
3
4
5
6
7

Method

●

BIC 1
mBIC

Figure 4.22: Proportion of 1000 simulations where the methods find the correct m
when m = 5, n = (m + 1)4 = 24, τ is uniformly drawn for each simulation, and
µ = (0,∆, . . . , 5∆).

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●● ●

●

●
●

●●

●

●

●

●

●
●

● ●●

● ●
●

● ● ● ● ●●

●● ● ●●●0.00

0.25

0.50

0.75

1.00

4 5 6 7 8

∆

P
ro

po
rt

io
n

m
●

●

●

●

●

●

●

●

●

●

13
14
15
16
17
18
19
20
21
22

Method

●

BIC 1
mBIC

Figure 4.23: Proportion of 2000 simulations where the methods find the correct m when
m = 20, n = (m + 1)5 = 105, τ is uniformly drawn for each simulation, and µ =
(0,∆, . . . , 20∆).

●●
●

●●
●

●

●

●

●

●

●

●

●
●

● ●

● ● ●● ●● ●
● ●0.00

0.25

0.50

0.75

1.00

2 3 4 5

∆

P
ro

po
rt

io
n

m
●

●

●

●

●

2
3
4
5
6

Method

●

BIC 1
mBIC

Figure 4.24: Proportion of 2000 simulations where the methods find the correct m
when m = 4, n = (m + 1)20 = 10, τ is uniformly drawn for each simulation, and
µ = (0,∆, . . . , 4∆).

68

are due to the window sizes. Furthermore the first ∆ at which the proportion
of simulations where the criteria gives the correct number of changepoints
has surpassed 0.75 is respectively ∆ = 4.5, ∆ = 6 and ∆ = 3.5 in Figures
4.22, 4.23 and 4.24. The lowest value is because n/(m + 1) is significantly
higher than for the two options, such that there is more information per
changepoint interval. And intuitively a method is less at risk to finding too
many changepoints when it identifies the changepoints close to where they
truly are. For the top two figures n/(m+ 1) is so close that this effect does
not come into play. Instead the top gets a good success rate faster because
there are less viable ms to mistakenly detect. For instance when ∆ = 4 the
method detects either 4, 5 or 6 internal changepoints, while when n = 105
and m = 20 the methods detect 18, 19, 20 or 21 internal changepoints.

4.4. Preliminary discussion
4.4.1. PELT vs BinSeg

So far in this thesis the main focus has been to study how the PELT al-
gorithm can be used to detect anomalies in independent time series data. We
saw in Sections 3 and 4 that this is possible. This section contains remarks
and questions that may be answered by further work. An important remark
from Section 4 is that a value for ∆ may be small, intermediate or large
relatively to the other parameters. For intermediate ∆ values the algorithms
were able to identify the number of changepoints to some extent, but not
the correct placement of the changepoints. We opted to call this subset of
the parameter space the intermediate region. Further investigations on the
behaviour of the intermediate region is of interest.

The main difference between PELT and BinSeg is that PELT finds the
optimal set of multiple changepoints, while BinSeg finds one changepoint at a
time in an optimal manner. As we saw above when there was no changepoint
or one changepoint, then BinSeg performs better or as good as PELT. The
simulations in Section 4.1 showed that PELT finds more changepoints than
BinSeg when the penalty is the same. This might be seen as BinSeg inducing
a lower model complexity. This makes sense as BinSeg does not in general
find the optimal model parameter, and thus does not maximize over the
entire parameter space in the criterion. If BinSeg for instance has effective
degrees of freedom per changepoint interval edfBinSeg = 0.95edf , then the
penalty β = edf log(n) = 2 log(n) = 1.05edfBinSeg log(n). So for BinSeg the
penalty is relatively higher compared to the number of degrees of freedom.
It would be interesting to conduct more simulations and find out what the
apparent reduction in model complexity amounts to for BinSeg. The way
we propose to do this is to calibrate on ’easy’ data sets, where the value
for ∆ is large. In other words to make the algorithms plateau at the same
value in Figure 4.10 for a multitude of data sets. This might also aid people
who are faced with a multiple changepoint problem, and who want to switch
from BinSeg to PELT when both use the BIC criterion. Both may of course

69

be implemented with the mBIC criterion. Then the criterion may be strict
enough on model complexity that PELT performs better than BinSeg. It
would be interesting to see if this is the case, although it is likely that
BinSeg would still perform better on data sets with one changepoint and
worse on data sets with more changepoints.

Assuming anomalies are relatively infrequent then a data set might be
expected to contain at most one anomaly. PELT is tailored to finding multi-
ple changepoints, and it runs in O(n) time when the number of changepoints
increases linearly with the length of the data set. When there are few or no
changepoints the pruning condition in Equation (3.24) will hold for a small
subset of the data points. So under these conditions the runtime of PELT is
much longer than the runtime of BinSeg. Additionally we demonstrated in
Section 4.1.2 that BinSeg is better at finding the correct changepoint when
there is only one changepoint. So assuming anomalies are relatively infre-
quent PELT is relatively poorly suited to analyze the residuals as indicated
in Figure 1.1.

In the raw sensor data from a ship there are many changepoints. An
alternative use for PELT is then to apply it with a time series cost function
per interval to the raw sensor data. The nature of the changepoints may be
categorized by another application, and when a new type of change is found
it may be labeled an anomaly.

4.4.2. Online application
The most straight forward way to use PELT and BinSeg in an online

setting is to run them for every new data point, or for every few new data
points. This is analogous to the simulation in Section 4. The simulation
can be seen as investigating the same property as is quantified in the ARL
defined in Equation (2.1). ARL is the expected time until a changepoint is
detected when there is no changepoint. Receiving a data set in real time
online algorithms typically terminate once they find a changepoint. In our
setting we may see this as the algorithm having detected an anomaly, and
thus does not look for more.

For BinSeg the probability of correctly identifying that there are no
changepoints increase with the length of the data set. Life time analysis
may be utilized to find the approximate ARL if we analyze much longer
simulations. The ARL depends heavily on the upper tail of the distribution
of the time until a changepoint is detected. Since the probability to correctly
find the changepoint is high and increases when the data set is of length 1 to
50000, we assume the upper tail is heavy when PELT or BinSeg is applied in
this fashion. Figure 4.9 shows proportion of simulations where BinSeg and
PELT identified the changepoint position at the different locations. This is
not comparable to EDD as EDD says something about when sequentially
the changepoint was located.

A challenge when applying an algorithm online is that when it at time t

70

detects that a certain number of changepoints has occurred, we do not want
it to reach a radically different conclusion at time t + 1. In other words we
want it to be stable. For instance if it reaches the conclusion at time t = 1000
that there are internal changepoints at (5, 100, 877), we do not want it to
identify (5, 11, 500) as internal changepoints at t = 1001.

The graph in Figure 4.2 illustrates that the naive online application of
PELT and BinSeg is unstable even when there are no changepoints, in the
sense that a changepoint detected in such a fashion might be decided not
to be present after observing more data points. One conclusion from this is
that an online application would preferably apply PELT or BinSeg in a more
ingenious fashion. An interesting topic is whether it is possible to redesign
PELT as an online sequential algorithm.

PELT is a sequential algorithm, where each step is computed in O(n)
time. It is possible to set up PELT to run sequentially with time, but that
leaves the penalty value out in the open. For a long data set a small penalty
will make PELT identify too many changepoints, but if the penalty is large
when the data set is still short actual changepoints may not be identified.
An alternative is to try to introduce a moving window concept, where only
the recent data points are considered.

As illustrated in Figure 3.7 PELT keeps multiple competing solutions.
The concept of the algorithm is to link each data point to one solution, and
to keep only the solutions that may turn out to minimize the total cost for
the full data set. And so it is not stable in the sense above. However when
all solutions kept at a time involve a specific changepoint, that changepoint
is guaranteed to be a part of the optimal solution. It would be interesting
to explore whether this could be used to make PELT readily applicable in
an online setting.

4.4.3. BIC vs mBIC
The criterion BIC2 is an approximation to the mBIC from Zhang and

Siegmund (2007), and thus we will refer to it as mBIC in this section. How-
ever first we would like to note that it would be interesting to compute the
optimal parameters of mBIC and of BIC2 and compare the solutions to see
when they differ, and by how much. Both the ture mBIC criterion and BIC2
makes sure that the changepoints are more likely to be clustered together
as this gives a lower penalty, but the tendency might be far stronger with
BIC2 as it is a direct part of the cost function.

Both BIC and mBIC are large sample approximations to the Bayes Fac-
tor. As seen from Equations (3.4) and (3.12) the likelihood terms are equiv-
alent, but in the limit as n goes to infinity the BIC penalty is 2m log n while
the mBIC penalty may be up to 3m log n, as seen in Equation (3.11). This
illustrates that there is not one intuitive way for the sample size of a change-
point dataset to increase. If we assume that the positions τ1, . . . , τm of the
changepoints are constant while the length of the last changepoint interval

71

increases to infinity, then mBIC and BIC have the same limiting penalty
value. However mBIC is developed under the assumption that 1

n
τ1, . . . ,

1
n
τm

stay constant while the sample size n grows. A third assumption is that the
number of changepoints increases linearly with n as n increases, and is the
assumption under which PELT runs in O(n) time (Killick et al., 2012a). The
difference in performance on the simulated data sets between the BIC and
mBIC criteria in Section 4.3 is not as large as the difference between Bin-
Seg and PELT with BIC in Section 4.1. Furthermore when we use BIC we
find the correct number of changepoints with slightly lower ∆. However with
mBIC we find the correct changepoint vector for lower ∆, and with mBIC we
stabilize at finding the correct m for a higher proportion of the simulations.
The differences between the performance of the two criteria in Section 4.3 is
underwhelming, but they illustrate for what types of data mBIC performs
better than BIC. It also illustrates that when mBIC performs better, it is
because the penalty of BIC is not high enough. That is using BIC we find
more changepoints than with mBIC. It would be interesting to perform the
same study with longer data sets and see at what lengths of the interval
data set the difference between the performance of the two criteria becomes
considerable for different types of applications. On a side note there are more
terms of mBIC that may be included for it to perform better on short data
sets, although that would introduce a bias (Zhang and Siegmund, 2007).

Although the performance with BIC and mBIC differ marginally on these
data sets we would use mBIC on real data, because the performance is better
sometimes. We assume that the performance will be similar on data sets with
only one changepoint as well. Since the minimal penalty of mBIC is smaller
than the penalty of BIC, mBIC may perform as good or better. It would
also be interesting to investigate this further. Furthermore we want to know
hoe BIC and mBIC perform on real data. One distinction is that in many
applications the data is from a distribution with an unknown variance, or
with a known variance different from 1. Thus in the next section we will look
at criteria that accounts for this, and a PELT algorithm that may compute
some of the some criteria.

72

5. Multi-parameter changepoint detection with PELT

So far in the thesis we have detailed changepoint model selection when
there is one parameter only in the Gaussian data; the mean. Now we general-
ize the theory and the algorithms to account for the variance of the univariate
Gaussian distribution. The resulting changepoint model is presented in Sec-
tion 5.1, and the likelihood of each changepoint interval is found in Section
5.2. In Section 3 we saw that the aim of developing a likelihood is to find
cost functions that may be used with PELT when we maximize a model se-
lection criterion. Hence we study the likelihood based cost functions in detail
and develop the likelihood based cost functions in Section 5.3. Similar cost
functions for multivariate Gaussian data are presented in Appendix A. In
Sections 5.4 and 5.5 we also present model selection criteria that are based
on approximations of the Bayes Factor for univariate Gaussian data. Then
in Section 5.6 we detail the generalizations of OP and PELT that make it
possible to estimate more than one parameter on each changepoint interval.

5.1. The changepoint model
In the rest of the thesis we will consider the changepoint detection prob-

lem when there are multiple parameters and Gaussian data. In this section
we thus substitute Assumption 3.1 for either of Assumptions 5.1 and 5.2
below.

Assumption 5.1. The data set x1, x2 . . . , xn are realizations of Xj ∼
fj, j ∈ {j, j + 1} such that fj = N (µj, σ2), with σ2 is a known number
in R and µj 6= µj+1 for j ∈ (1,m + 1). For all i 6= j also Xi and Xj are
independent.
Assumption 5.2. The data set x1, x2 . . . , xn are realizations of Xj ∼
fj, j ∈ {j, j + 1} such that fj = N (µj, σ2

j), µj 6= µj+1 and σ2
j 6= σ2

j+1 for
j ∈ (1,m+ 1). For all i 6= j also Xi and Xj are independent.
Note that the only difference between the three assumptions is the dis-

tribution for fj. Assumptions 3.1 and 5.1 only require us to estimate one
parameter per interval, while we must estimate two parameters per interval
under 5.2.

The changepoint model in this section is the same as in Section 3.1 except
that we introduce one more term that will be important when we estimate
more than one parameter. This was not introduced before as it complicates
the algorithms as we will see in Section 5.6, and since it is not necessary
when there is only one parameter per interval.

Definition 5.1. The minimum segment length g is

g = min
j∈{1,...,m+1}

(τj − τj−1) ,

where the τjs are the true changepoint positions defined in Section 3.1.

73

We also define that the observed minimum segment length is

min
j∈{1,...,m+1}

(τj − τj−1)

when the τjs are the changepoint positions of some prospective solution. We
will make sure that the observed minimal segment length is never shorter
than what we assume to be the minimal segment length. That is when we
evaluate the total cost of a solution we will operate with a new cost function
labeled Cg with domain restricted to s, t ∈ N such that t− s + 1 ≥ g. This
cost function may be defined as

Cg(s, t) = C(s, t), for t− s+ 1 ≥ g, (5.1)

where C is some cost function that applies when g = 1. The new cost
function requirement is then that

Cg(t1 + 1, t3) ≥ Cg(t1 + 1, t2) + Cg(t2 + 1, t3), (5.2)

when t3− t2 ≥ g and t2− t1 ≥ g. When it is clear from the context what the
value of g is, it will be omitted. Also as the true minimum segment length
is in general not known we will refer to the assumed g in Equation (5.1) as
the minimum segment length as well.

74

5.2. Likelihood of a changepoint interval
All observations are independent and thus the observations on each inter-

val in the data set are independent of the observations on the other intervals
for a given set of intervals. Hence we may find the maximum likelihood es-
timates of the parameters by only considering one interval at a time. We
will label the observations on the interval x = (xs, . . . , xt), and they are
realizations of the random variables X = (Xs, . . . , Xt).

Assume then that we have one random variable with probability density
function

f(x|θ) = 1√
2πσ2

exp−(x− µ)2

2σ2 ,

where exp a signifies Eulers constant e to the power of a. In this section the
parameter vector is θ = (µ, σ2). For t− s + 1 independent observations the
probability density function is

f(x|θ) =
(

1√
2πσ2

)t−s+1

exp− 1
2σ2

t∑
i=s

(xi − µ)2,

the log likelihood is

`(µ, σ2) = −t− s+ 1
2

(
log 2π + log σ2

)
− 1

2σ2

t∑
i=s

(xi − µ)2, (5.3)

and (xi−µ)2 = (x2
i −2xiµ+µ2). We may solve the equations ∂

∂µ
`(µ, σ2) = 0

and ∂
∂σ2 `(µ, σ2) = 0 separately to get the maximum likelihood estimates if

the parameters are orthogonal, that is if the off diagonal elements of the
Fisher information matrix are zero. The Fisher information matrix in this
setting is (Casella and Berger, 2002)

I(θ) = −Eθ
(
∂

∂θ2 log f(X|θ)
)
,

which written out is

I(θ) = −E
 ∂2

∂2µ
log f(X|θ) ∂2

∂σ2∂µ
log f(X|θ)

∂2

∂µ∂σ2 log f(X|θ) ∂2

∂2σ2 log f(X|θ)

 . (5.4)

Given that the off-diagonal entries of the Fisher information matrix are zero,
then the diagonal entries need to be positive for there to be a maximum
likelihood estimate for each parameter. We will proceed to compute each
component of ∂

∂θ2 log f(X|θ).
When we differentiate log f(X|θ) with respect to µ we get

∂

∂µ
log f(X|θ) = ∂

∂µ

(
−t− s+ 1

2
(
log 2π + log σ2

)
− 1

2σ2

t∑
i=s

(Xi − µ)2
)

= − 1
2σ2

t∑
i=s

(−2Xi + 2µ),

75

and we get

∂

∂σ2 log f(X|θ) = ∂

∂σ2

(
−t− s+ 1

2
(
log 2π + log σ2

)
− 1

2σ2

t∑
i=s

(Xi − µ)2
)

= −t− s+ 1
2σ2 + 1

2σ4

t∑
i=s

(Xi − µ)2.

When we differentiate with respect to σ2. Then in turn

∂2

∂2µ
log f(X|θ) = ∂

∂µ

(
− 1

2σ2

t∑
i=s

(−2Xi + 2µ)
)

= − 1
σ2 , (5.5)

and
∂2

∂2σ2 log f(X|θ) = ∂

∂σ2

(
−t− s+ 1

2σ2 + 1
2σ4

t∑
i=s

(Xi − µ)2
)

(5.6)

= t− s+ 1
2σ4 − 1

σ6

t∑
i=s

(Xi − µ)2.

Also
∂2

∂σ2∂µ
log f(X|θ) = ∂

∂σ2

(
− 1
σ2

t∑
i=s

(−Xi + µ)
)

= 1
σ4

t∑
i=s

(−Xi + µ) (5.7)

and
∂2

∂µ∂σ2 log f(X|θ) = ∂

∂µ

(
−t− s+ 1

2σ2 + 1
2σ4

t∑
i=s

(X2
i − 2Xiµ+ µ2)

)

= 1
σ4

t∑
i=s

(−Xi + µ).

Since the Fisher information matrix is defined by the expected values we
will need to find the mean EXi for Equation (5.7).

EXi =
∫ ∞
xi=−∞

xi√
2πσ2

exp−(xi − µ)2

2σ2 dxi.

With the change of variables x = xi − µ we get xi = x + µ and dxi = dx.
Hence

EXi =
∫ ∞
x=−∞

x+ µ√
2πσ2

exp−(x)2

2σ2 dx,

where x exp−x2 is odd such that

EXi = µ
∫ ∞
x=−∞

1√
2πσ2

exp−(x)2

2σ2 dx (5.8)

= µ
∫ ∞
x=−∞

log f(x|µ = 1, σ2)dx = µ.

76

For Equation (5.6) we also need to compute the variance E(Xi − µ)2,
that is

E(Xi − µ)2 =
∫ ∞
xi=−∞

(xi − µ)2
√

2πσ2
exp−(xi − µ)2

2σ2 dxi.

= σ

√
2
π

∫ ∞
xi=−∞

(
xi − µ√

2σ

)2

exp−
(
xi − µ√

2σ

)2

dxi.

We will use the change of variables x =
(
xi−µ√

2σ

)2
which gives

dx
dxi

= 2√
2σ

(
xi − µ√

2σ

)
=
√

2
σ

√
x,

such that

E(Xi − µ)2 = σ

√
2
π

σ√
2

∫ ∞
xi=−∞

x√
x

exp−x dx

= 2σ
√

2
π

σ√
2

∫ ∞
x=0

x√
x

exp−x dx

= 2σ2
√
π

∫ ∞
x=0

x
3
2−1 exp−x dx = 2σ2

√
π

Γ
(3

2

)
,

where the Gamma function is Γ(α) =
∫∞
x=0 x

α−1 exp−xdx. Since Γ(3
2) =

√
π

2
thus

E(Xi − µ)2 = σ2. (5.9)

Then we compute each of the components of the Fisher information ma-
trix from Equations (5.5),(5.6) and (5.7) using Equations (5.8) and (5.9)
that is

E ∂2

∂2µ
log f(X|θ) = − 1

σ2

E ∂2

∂σ2∂µ
log f(X|θ) = E ∂2

∂µ∂σ2 log f(X|θ) = 1
σ4

t∑
i=s

E(−Xi + µ) = 0

E ∂2

∂2σ2 log f(X|θ) = t− s+ 1
2σ4 − 1

σ6

t∑
i=s

E(Xi − µ)2

= t− s+ 1
2σ4 − t− s+ 1

σ4 = −t− s+ 1
2σ4 .

When we insert this into Equation (5.4) we get

I(θ) =
[

1
σ2 0
0 t−s+1

2σ4

]
,

77

such that we may find the maximum likelihood estimates by differentiat-
ing with respect to one parameter at a time as the diagonal elements are
both positive, and the off-diagonal elements are both zero. Thus we get the
maximum likelihood estimates

µ̂ = 1
t− s+ 1

t∑
i=s

xi (5.10)

from
∂

∂µ
`(µ, σ2) =

(
− 1

2σ2

t∑
i=s

(−2xi + 2µ)
)

= 0,

and
σ̂2 = 1

t− s+ 1

t∑
i=s

(xi − µ̂)2 (5.11)

from
∂

∂σ2 `(µ, σ
2) = −t− s+ 1

2σ2 + 1
2σ4

t∑
i=s

(xi − µ̂)2 = 0,

where the partial derivatives of the log likelihood are seen from Equations
(5.6) and (5.5).

78

5.3. Likelihood maximization with PELT
In the current section we show how to use the likelihood that was treated

in the last section to create cost functions for PELT similar to the cost
functions in Section 3.4. We also prove that a certain type of likelihood based
cost function can always be used with PELT, and study these likelihood
based cost functions in detail.

5.3.1. Likelihood based cost functions
The cost function requirement from Equation (5.2) needs to be fulfilled

in order for PELT to be guaranteed to find the same optimal solution that
OP would give. Now we will show that minus twice the log likelihood of
the observations give rise to a cost function that satisfies the requirement.
In order to do that we need the following result on the log likelihood of
observations.

Definition 5.2. Denote by `(i, θ) the logarithm of the likelihood of ob-
servation xi with parameter vector θ, and denote by `(s, t, θ) = ∑t

i=s `(i, θ)
the logarithm of the likelihood of independent and identically distributed
observations xs, . . . , xt when the parameter vector is θ. Furthermore let
`(s, t, θ̂) denote `(s, t, θ) with parameter vector θ̂ being the maximum
likelihood estimator based on observations xs, . . . , xt. When it is clear
from the context s and t are omitted from `(s, t, θ).
According to Definition 5.2 the likelihood of a data set under the change-

point model is

`(θ) =
m+1∑
j=1

`(τj−1 + 1, τj, θj), (5.12)

where θj are the parameters of that interval, for instance σ2
j and µj. In the

following theorem we present a property of the likelihood at the maximum
likelihood estimates that we will make use of promptly.

Theorem 5.1. As illustrated in Figure 5.1 let θ̂0, θ̂1,1 and θ̂1,2 be the
maximum likelihood estimators of θ based on respectively xt1 , . . . , xt3 ,
xt1 , . . . , xt2 , and xt2+1, . . . , xt3 such that
`(t1, t2, θ̂0) ≤ `(t1, t2, θ̂1,1) and `(t2 + 1, t3, θ̂0) ≤ `(t2 + 1, t3, θ̂1,2), (5.13)

with notation from Definition. Then 5.2
`(t1, t3, θ̂) ≤ `(t1, t2, θ̂) + `(t2 + 1, t3, θ̂).

Proof. The proof is short and simple, and hinges on Equation (5.13).

`(t1, t3, θ̂) = `(t1, t3, θ̂0) = `(t1, t2, θ̂0) + `(t2 + 1, t3, θ̂0)
≤ `(t1, t3, θ̂1,1) + `(t2 + 1, t3, θ̂1,2)
= `(t1, t3, θ̂) + `(t2 + 1, t3, θ̂).

79

θ̂0
θ̂1,1 θ̂1,2

xt1 xt1 + 1 · · · xt2 xt2 + 1 · · · xt3

Figure 5.1: Illustration for Theorem 5.1. The maximum likelihood estimators of θ based
on respectively xt1 , . . . , xt3 , xt1 , . . . , xt2 , and xt2+1, . . . , xt3 are labeled θ̂0, θ̂1,1 and θ̂1,2.

Now we are ready for the theorem presenting the likelihood based cost
functions that may be used with PELT

Theorem 5.2. When the log likelihood satisfies the requirements of
Theorem 5.1, then

Cg(s, t) = −2`(s, t, θ̂)−
t∑
i=s

a(xi) (5.14)

satisfies the cost function requirement in Equation (5.2) for any set
a(xs), . . . , a(xt) ∈ R where the values only depend on the value of x
in each data point.

Proof. From Theorem 5.1 we get

`(t1, t3, θ̂) ≤ `(t1, t2, θ̂) + `(t2 + 1, t3, θ̂),
−2`(t1, t3, θ̂) ≥ −2`(t1, t2, θ̂)− 2`(t2 + 1, t3, θ̂),

−2`(t1, t3, θ̂)−
t3∑
i=t1

a(xi) ≥ −2`(t1, t2, θ̂)− 2`(t2 + 1, t3, θ̂)−
t3∑
i=t1

a(xi).

Which in turn gives

Cg(t1, t3, θ̂) ≥ Cg(t1, t2, θ̂) + Cg(t2 + 1, t3, θ̂),

such that the cost function satisfies Equation (5.2).

Now we know a way to construct cost functions based on the likelihood
that fulfill the PELT requirement in Equation (5.13). However as in Sec-
tion 3.4.1 we want a simple expression for Cg(s, t) such that maximizing a
criterion on the form of Equation (2.10) is equivalent to minimizing

m+1∑
j=1

Cg(τj−1, τj) +mβ, (5.15)

80

for some value of β not depending on m and τ . It is evident that when
Equation (5.14) fulfills the cost function requirement of PELT in Equation
(5.2), then also

Cg(s, t) = −2`(s, t, θ̂) (5.16)

and Cg(s, t) = −`(s, t, θ̂) fulfill the requirement. Also we know from Equation
(5.12) that maximizing Equation (2.10) is equivalent to minimizing Equation
(5.15) when we use the cost function in Equation (5.16). However the ma-
nipulated cost function in Equation (5.14) allows us the freedom of choosing
a simpler cost function. In the following section we will demonstrate that
the using −2`(s, t, θ) or −2`(s, t, θ) −∑t

i=s a(xi) as the cost function gives
the same minimization of Equation (5.15).

5.3.2. Detailed study of cost functions
In order to maximize some criterion we look for the optimal solution;

that is the solution with cost F (t) from Equation (3.19). The object of this
section is to present which manipulations of the cost function may be done
without it affecting what criterion we are maximizing. The first manipula-
tion is motivated in the last section. Second we look at adding a constant to
each segment, and then we multiply Cg(τi−1 + 1, τi) with a constant. We will
see that the second manipulation changes what criterion we are maximiz-
ing. We will also see that the penalty may be changed such that the third
manipulation does not change what criterion we are maximizing.

In Theorem 5.2 we add the sum of a function evaluated on each of the
individual data points. The following theorem proves that such a manipu-
lation of the cost function does not affect what is the optimal solution that
PELT and OP find. This is important because if the first cost function may
be used to optimize some criterion, that also the altered cost function does
so.

Theorem 5.3. The optimal solution on a data set x1, . . . , xn with penalty
β and cost function Cg is identical to the solution with penalty β and
cost function C ′g when

Cg(τi−1 + 1, τi) = C ′g(τi−1 + 1, τi) +
τi∑

t=τi−1+1
a(xt),

for some predetermined function a(xt).

Proof. The optimal solution is the set of τis that for a data set x1, . . . , xn

81

with n = τm+1 minimizes

p(t) =
m+1∑
i=1

Cg(τi−1 + 1, τi) +mβ +B

=
m+1∑
i=1

C ′g(τi−1 + 1, τi) +
τi∑

t=τi−1+1
a(xt)

+mβ +B

=
m+1∑
i=1

C ′g(τi−1 + 1, τi) +mβ +
τm+1∑
t=1

a(xt) +B,

whereB is some constant independent ofm and τ1, . . . , τm. Any set of τis that
minimizes p(t) also minimizes p′(t) = p(t) − ∑τm+1

t=1 a(xt) since ∑τm+1
t=1 a(xt)

is a constant. Thus the PELT solution on a data set with penalty β and
cost function Cg is identical to the solution with penalty β and cost function
C ′g.

The most notable function a(xt) is a(xt) = 1, with ∑τm+1
t=1 1 = τi − τi−1 .

This means that two cost functions Cg and C ′g such that

C ′g(τi−1 + 1, τi) = Cg(τi−1 + 1, τi) + (τi − τi−1)

give the exact same optimal solution. Such a manipulation of the cost func-
tion also guarantees that if Cg fulfills the PELT cost function requirement,
then C ′g also does, since Cg(t1 + 1, t3) ≥ Cg(t1 + 1, t2) +Cg(t2 + 1, t3) implies
that C ′g(t1 + 1, t3) ≥ C ′g(t1 + 1, t2) + C ′g(t2 + 1, t3). Another result from this
that might seem strange at first is that the solution cost p(t) might well be
negative, and this has no consequence. If we set a(xt) to be a large enough
positive constant then any solution may be given a positive total cost. When
the cost of two solutions are p1(t) and p2(t), and the solution with cost p1(t)
is the optimal one then p2(t)− p1(t) ≥ 0.

We now look at what happens to the optimal solution if we add a constant
to each segment cost, such that C ′g(τi−1 + 1, τi) = Cg(τi−1 + 1, τi) + b. Then
the cost of the former, p′(t), is

p′(t) =
m+1∑
i=1

(Cg(τi−1 + 1, τi) + b) +mβ +B

p′(t) =
m+1∑
i=1

(Cg(τi−1 + 1, τi)) +m(β + b) + (B + b).

Since B + b is a constant the alteration of the cost function is equivalent
to a change in the constant penalty term β. This implies that when b < 0
it makes sense to make sure that β + b ≥ 0. When b < 0 we get that C ′g
satisfies the PELT cost function requirement whenever Cg does. However if
the old cost function Cg satisfied the PELT cost function requirement, then

82

the new cost function C ′g does not when b > 0. A simple counter example is
when Cg(τi−1 + 1, τi) = 0. Then

0 = Cg(t1 + 1, t3) ≥ Cg(t1 + 1, t2) + Cg(t2 + 1, t3) = 0,

but
b = C ′g(t1 + 1, t3) < C ′g(t1 + 1, t2) + C ′g(t2 + 1, t3) = 2b,

for b > 0.
Finally we study the effect of multiplying the segment cost with a num-

ber not depending on the model parameters, such that C ′g(τi−1 + 1, τi) =
bCg(τi−1 + 1, τi). It turns out that with an adjustment to β the resulting
optimal solutions are identical, such that the two sets of cost function and
penalty result in the maximization of the same criterion.

Theorem 5.4. When C ′g(τi−1 + 1, τi) = bCg(τi−1 + 1, τi) and β′ = bβ,
such that the total costs are are

p(t) =
m+1∑
i=1

Cg(τi−1+1, τi)+mβ+B and p(t) =
m+1∑
i=1

C ′g(τi−1+1, τi)+mβ′+B,

then the optimal solutions to the two problems on a data set x1, . . . , xn
are identical.

Proof. Inserting C ′g(τi−1 + 1, τi) = bCg(τi−1 + 1, τi) and β′ = bβ into the
expression for p(t) yields

p(t) = 1
b

m+1∑
i=1

C ′g(τi−1 + 1, τi) +m
1
b
β′ +B

= 1
b
p′(t) + (1− 1

b
)B.

Since (1− 1
b
)B and b are constants then min p(t) and min(p′(t)) are attained

for the same solution and the optimal solutions to the two problems are
identical. Thus the cost functions and penalties result in the maximization
of the same criterion.

5.3.3. Estimate the mean only
First we assume that σ2 is known. Now we will use twice the negative

log likelihood to create a cost function that results in the maximization of
the likelihood when it is applied with PELT under Assumption 5.1. From
Equation (5.3) we get that

−2l(µ̂j, σ2) = (t− s+ 1)(log 2π + log σ2) + 1
2σ2

t∑
i=s

(x2
i − 2µ̂jxi + µ̂2

j),

=
t∑
i=s

a(xi) + 1
σ2

n∑
i=1

(−µ̂jxi + µ̂2
j),

83

with a(xi) = log 2π+log σ2+x2
i and µ̂j from Equation (5.10). Then according

to Theorems 5.2 and 5.3 a cost function for observations xs, . . . , xt that
satisfies the cost function requirement in Equation (5.2) and corresponds to
minimizing minus twice the log likelihood is

C(s, t) = 1
σ2

t∑
i=s

(−2µ̂jxi + µ̂2
j),

when the value for σ is known. Another such cost function is

C(s, t) = 1
σ2

t∑
i=s

(xi − µ̂j)2. (5.17)

While the latter is strictly positive, the former may take on negative values.
Even though it might seem counter intuitive for a cost to be negative, there is
no such restriction on the cost. Due to Theorem 5.3 the former and the latter
cost functions give the same optimal solution. It is the difference between
the costs that determines which solution is optimal, so the cost function may
take on any finite value in R.

5.3.4. Estimate the mean and variance
This time we follow Assumption 5.2 when we find the cost function. Since

1
σ̂2
j

t∑
i=s

(xi − µ̂j)2 =
σ̂2
j (t− s+ 1)

σ̂2
j

,

then from Equation (5.3)

−2l(µ̂j, σ̂2
j) = (t− s+ 1)(log 2π + log σ̂2

j + 1),

=
t∑
i=s

a(xi) + (t− s+ 1) log σ̂2
j , (5.18)

this time with a(xi) = log 2π + 1. A cost function that satisfies the require-
ment in Equation (5.2) and corresponds to minimizing minus twice the log
likelihood is

C1(s, t) = (t− s+ 1) log σ̂2
j , (5.19)

due to Theorems 5.2 and 5.3, where the number 1 signifies that t−s+1 ≥ 1
following the notation defined in Equation (5.1). However there is a problem
when s = t. Then µ̂ = xs such that from Equation (5.11) σ̂2 = 0 and
C(s, s) = −∞. When the cost of one segment is minus infinity, then the
selection of the other segments is arbitrary since they would all give the
same total cost. Therefore Equation (5.19) is not a cost function that may
be used in either OP or PELT. A reasonable cost function is instead

C2(s, t) = (t− s+ 1) log σ̂2
j , (5.20)

84

where we now restrict t− s + 1 ≥ 2, and this also satisfies the requirement
in Equation (5.2). Written out using the formula for σ̂2 in Equation (5.11)

C2(s, t) = (t− s+ 1)
(

log
t∑
i=s

(xi − µ̂j)2 − log(t− s+ 1)
)
.

85

5.4. Model selection when the variance is known
In this section we consider model selection based on approximations of

Equation (2.10) under Assumption 5.1. All the criteria are written on the
form from Equation (3.16), which we want to maximize with respect to the
choice of m and τ .

5.4.1. BIC
As the parameters we estimate are the same as in Assumption 3.3 we may

interpret there to be 2m+1 degrees of freedom here as well. The appropriate
cost function under this assumption is displayed in Equation (5.17). In other
words with these assumptions the criterion is to minimize

BIC3 = −
m+1∑
j=1

1
σ2

τj∑
i=τj−1+1

(xi − µ̂j)2 − 2m log n. (5.21)

This is quite similar to BIC1 in Equation (3.4), the only difference being
the factor 1

σ2 in the first term. According to Theorem 5.4 minimizing BIC3
is equivalent to minimizing BIC1, except that instead of the β in Equation
(3.21) we use β = 2σ2 log n. That is the same τ minimizes BIC3 and

−
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 − 2σ2m log n,

because we have multiplied both the penalty and each interval cost function
with σ2. This means that for a given data set the quantity and placements
of the changepoints we identify depend on the value of σ2. This makes sense
intuitively as for instance the data set (0.1, 0.5, 2.5,−3.2) might be assumed
to have m = 3 if σ2 = 0.01, but m = 2 is σ2 = 1 and m = 0 if σ2 = 10.

Similarly the version of BIC3, adjusted to take into account that accord-
ing to mBIC the degrees of freedom contributed by each element of τ is
arguably some number d generally different from 1, is

BIC3,adj = −
m+1∑
j=1

1
σ2

τj∑
i=τj−1+1

(xi − µ̂j)2 − (d+ 1)m log n.

This criterion is in turn similar to Equation (3.13). Maximizing this criterion
is thus equivalent to maximizing

−
m+1∑
j=1

τj∑
i=τj−1+1

(xi − µ̂j)2 − (d+ 1)σ2m log n. (5.22)

5.4.2. mBIC
According to Zhang and Siegmund (2007) we may assume that σ2 = 1

without loss of generality when σ2 is known in what is presented in this thesis
as Theorem 3.1. Thus only the expressions for the likelihoods in Equations

86

(3.5) and (3.6) change when Assumption 5.1 is substituted for Assumption
3.1 in Theorem 3.1. This is the same element that is changed between BIC1
in Equation (3.4) and BIC3 in Equation (5.21). If we know the means and the
variance of a changepoint data set we may scale it to have another variance.
This will not change the value of the likelihood at the maximum likelihood
estimate as long as we compute the likelihood with the correct variance. And
so the approximation to the mBIC criterion in Equation (3.12) becomes

BIC4 = −
m+1∑
j=1

τj∑
i=τj−1+1

1
σ2 (xi − µ̂j)2 −

m+1∑
j=1

log τj − τj−1

n
+ 3m log n

 .
(5.23)

Thus with known σ2 the cost function is

C(τj−1 + 1, τj) = 1
σ2

τj∑
i=τj−1+1

(xi − µ̂j)2 + log τj − τj−1

n
, and β = 3 log n.

According to Theorem 5.4 the criterion is also maximized when we find the
optimal solution with the cost and penalty

C(τj−1 + 1, τj) =
τj∑

i=τj−1+1
(xi − µ̂j)2 + σ2 log τj − τj−1

n
, and β = 3σ2 log n,

and it is not possible to remove the value of σ2 completely from this cost
function as it was for BIC3 in the previous section.

5.4.3. Range of penalties (CROPS)
In Section 3.5 we mentioned several changepoint detection algorithms,

among them CROPS (Haynes et al., 2017a). In this section we will present
some applications of CROPS. In some applied settings where Assumption 5.1
holds but we only know the approximate value of σ2 we may take advantage
of Equation (5.22). On the other hand since σ2 may not be removed from
the cost function of BIC4 we may not easily maximize the BIC4 criterion for
an unknown constant σ2. However when we maximize Equation (5.22) the
β in Equation (3.16) may be set to be in the range that corresponds to the
possible values for σ2 and with a value for d that is expected to be similar
to the edf of τ/m in Equation (3.15). That is β may be set to be in in the
range such that

min β = (min edf + 1)(min σ2) log n, and
max β = (max edf + 1)(max σ2) log n.

From Equations (3.15) and (3.10)

min edf =
m log n+ log n−m

n

m log n

= 1 +
log(1− m

n
)

m log n

87

and from Equation (3.11)

max edf = 2m log n− (m+ 1) log(m+ 1)
m log n

= 2− (1 + 1
m

) log(m+ 1)
log n .

Knowing the approximate value form will reduce the range it is necessary
to investigate. As β needs to be large in order for us to detect few internal
changepoint, and small in order for us to detect many internal changepoints

min β = (2 +
log(1− maxm

n
)

(maxm) log n)(min σ2) log n, and (5.24)

max β =
(

3 log n− (1 + 1
minm≥1m

) log(1 + min
m≥1

m)
)

(max σ2),

where m ≥ 1 since when m = 0 any number that is sufficiently large is an
appropriate value for β, and so there is no upper limit. If it is possible that
m = 0 then the value of the upper limit should be increased beyond the
value for max β in the previous equation.

Because we have maxm = n − 1 and the minimal possible m we can
insert into the expression is m = 1 we get

min
m

β = (2 +
log(1− n−1

n
)

(n− 1) log n)(min σ2) log n

= (2 + log(n− (n− 1))− log n
(n− 1) log n)(min σ2) log n

= (2− 1
(n− 1))(min σ2) log n, and

max
m

β =
(

3 log n− (1 + 1
1) log(1 + 1)

)
(max σ2).

= (3 log n− 2 log 2) (max σ2).

In practice the solutions for a range of penalties may be used with
CROPS. In Haynes et al. (2017a) the cost function is on the form

C(τj−1 + 1, τj) =
τj∑

i=τj−1+1
x2
i −

τj∑
i=τj−1+1

x2
i

ni
,

which gives

−
m+1∑
j=1

C(τj−1 + 1, τj) = −
m+1∑
j=1

 τj∑
i=τj−1+1

x2
i −

τj∑
i=τj−1+1

x2
i

nj

= −

n∑
i=1

x2
i +

m+1∑
j=1

µ̂j

τj∑
i=τj−1+1

xi = −
n∑
i=1

x2
i +

m+1∑
j=1

njµ̂
2
j ,

88

such that from Equation (3.3)

m+1∑
j=1

C(τj−1 + 1, τj) + 2`(τ |x) = n log(2π).

Hence the range of β may be set as in Equation (5.24). With another choice
of cost function the range for β would need to be adjusted such that the cost
functions are equivalent by Theorem 5.3 and 5.4.

The method of finding all resulting solutions for a continuous range of
penalties may also be used for model selection with mBIC. To do this first we
find the solutions for β values such that Equation (5.24) holds using BIC3.
That will yield a number of different solutions that are optimal for different
penalties with regard to BIC3. The solution among these that maximize
BIC4 is then another approximation to the Bayes Factor that may be used
for model selection in the case where σ2 is known. The advantage of this
method over maximizing BIC2 or BIC4 directly is that τ is not set as the
maximizer of an expression that contains ∑m+1

j=1 log nj. It is however unclear
whether the solution that maximizes the BIC is guaranteed to be among the
solutions yielded from CROPS.

Another setting where we may take advantage of a range of penalties is
when Assumption 5.1 only holds approximately. Since Hocking et al. (2013)
demonstrated that mBIC did not perform satisfactory on a real data set
where the assumptions only hold approximately, the range in Equation (5.24)
may only be used as a guide to what values must at least be included in the
range in that case.

89

5.5. Model selection when the variance is unknown
Model selection is more complicated when the variance of the univari-

ate Gaussian distribution also needs to be estimated in each interval. In
this section we present various approximations for the Bayes Factor under
Assumption 5.2. In Section 5.5.1 we present mBIC and in Section 5.5.2 we
present BIC for this assumption. As the expression for mBIC is too compli-
cated to yield itself to maximization with PELT, we also present an ad hoc
cost function inspired by mBIC in Section 5.5.2.

5.5.1. mBIC
As well as a modified BIC for independent changepoint data fromN (µj, 1)

distributions, Zhang and Siegmund (2007) present a modified criterion when
the changepoint data are from N (µj, σ2

j) distributions. This is also derived
as an approximation of the Bayes factor. This time however there are more
parameters to integrate over. Let σ2 = (σ2

1, . . . , σ
2
m+1), µ = (µ1, . . . , µm+1)

and τ = (τ1, . . . , τm) so Equation (2.7) becomes

Pr(x|Mm) =
∫

Θ
Pr(x|θ,Mm)Pr(θ|Mm)dθ,

Pr(x|Mm) =∫ ∫ ∫
Pr(x|θ,Mm)Pr(σ2|Mm)Pr(µ|Mm,σ

2)Pr(τ |σ2,µ,Mm)dσ2dµdτ .

Hence the mBIC criterion displayed in the following theorem is more complex
than the mBIC criterion in Theorem 3.1 when the σ2 has a constant known
value.

Theorem 5.5. Theorem 2 from Zhang and Siegmund (2007) states that
under Assumption 5.2, where Mm is the model with m internal change-
points and M0 is the model with 0 internal changepoints under priors on
the parameters that represent no information

log P (x|Mm)
P (x|M0) =n−m+ 1

2 log
(

1 + SSbg(τ̂)
SSwg(τ̂)

)
(5.25)

+ log
Γ
(
n−m+1

2

)
Γ
(
n+1

2

) + m

2 log(SSall)

− 1
2

m+1∑
j=1

log(nj) + (1− 2m) log n
+Op(1),

where SSbg is the term that represented the likelihood in Equation (3.5),
namely with x̄ = ∑n

i=1 xi/n

SSbg(τ̂) = 1
2

m+1∑
j=1

nj(µ̂j − x̄)2, τ̂ = arg max SSbg(τ)
SSwg(τ) ,

90

and

SSall =
m+1∑
j=1

(xj − x̄), SSwg(τ̂) = SSall − SSbg(τ̂).

According to Zhang and Siegmund (2007) the first line on the right hand
side of Equation (5.25) represents the likelihood, the middle line is the result
of integrating out the nuisance parameter, and the last line represents the
penalty. In that sense the penalty is the same as when there was only one
parameter, but the terms from the nuisance parameter also regulates how
parsimonious the optimal model is. Furthermore the nuisance parameter
makes the distribution of µj Student-t instead of Gaussian, which is why
the likelihood is so different from in Equation (3.7) and σ̂2

j is not a part of
the expression.

The likelihood in Equation (5.25) is maximized when SSbg(τ̂)/SSwg(τ̂) is
maximized. When we let the data points on an interval constitute a group,
then SSbg in Theorem is the between group variability, and SSwg is the
variability within each group. An interpretation of the likelihood is thus
that SSbg(τ̂)/SSwg(τ̂) represents an odds, and when it is large more of the
variability is explained by the difference between the groups, than by the
variability within each group. So for a certain m the criterion chooses the µ̂j
and τ̂js such that the variability between groups is maximal, while it does
not have to choose a value for σ̂2

j .
The first term of Equation (5.25) may be written

n−m+ 1
2 log

(
1 + SSbg(τ̂)

SSwg(τ̂)

)

= n−m+ 1
2 log

(
1 + SSbg(τ̂)

SSall − SSbg(τ̂)

)

= n−m+ 1
2 log

(
SSall

SSall − SSbg(τ̂)

)

= n−m+ 1
2 (logSSall − log(SSall − SSbg(τ̂)))

= n−m+ 1
2

logSSall − log
(
SSall −

1
2

m+1∑
j=1

nj(µ̂j − x̄)2
) ,

which does not directly give rise to a separate cost function for each inter-
val. But Equation (5.25) is maximized when (P (x|Mm)/P (x|M0))

2
n−m+1 is

maximized for a given m, and so we may continue with

1 + SSbg(τ̂)
SSwg(τ̂) = SSall

SSall − 1
2

m+1∑
j=1

nj(µ̂j − x̄)2

−1

.

91

However when we compute with PELT we do not consider m to be known.
Proceeding along these lines it may be possible to formulate a criterion that
is maximal when mBIC is maximal as well as being on the form of a sum of
interval costs and a penalty term, but such a criterion is not guaranteed to
work with PELT.

5.5.2. BIC inspired cost functions
When we want to approximate the Bayes Factor in Equation (2.6) one

option is to use Equation (2.10) in the same way as in Section 3.3.1. Following
Assumption 5.2 the parameters are τ = (µ1, . . . , µm+1, σ

2
1, . . . , σ

2
m+1, τ1, . . . , τm),

which constitutes a total of 3m + 2 parameters. These may be interpreted
as 3m+ 2 degrees of freedom. Then from Equation (5.18) the BIC is

−
m+1∑
j=1

nj(log 2π + log σ̂2
j + 1)− (3m+ 2) log n,

with nj ≥ 2 for all j. Maximizing twice the likelihood is according to Equa-
tion (5.20) equivalent to maximizing

−
m+1∑
j=1

nj log σ̂2
j .

Furthermore −2 log n is a constant for a given data set and does not affect
the maximization, to see this we may note that it is equivalent to a(xi) =
−(2 log n)/n for all xi in Theorem 5.3. Thus a criterion based on Equation
(2.10) when we estimate both µ and σ2 is

BIC5 = −
m+1∑
j=1

nj log σ̂2
j − 3m log n, nj ≥ 2 ∀j (5.26)

such that
β = 3 log n and C2(τj−1 + 1, τj) = nj log σ̂2

j .

However the situation in the previous section shows that this approach is
overly simplistic. Thus the criterion may be a very bad approximation of the
Bayes Factor.

An ad hoc option for model selection is to let the cost be either

C2(τj−1 + 1, τj) = nj log σ̂2
j (5.27)

or
C2(τj−1 + 1, τj) = nj log σ̂2

j + log nj
n
,

and let the penalty be somewhere in a continuous range. Then we may again
select the solution among only a few ones where the mBIC is maximal, or
we may simply treat the penalty as a tuning parameter.

92

5.6. Algorithms
In Section 3.5 we mentioned several algorithms for changepoint detec-

tion, and detailed BinSeg, OP, and PELT. In this section we generalize OP
and PELT so that we may estimate more than one parameter. We can easily
adjust BinSeg so that it can estimate more than one parameter per change-
point interval, but based on the algorithms performance on the simulations
in Section 4.1 we opt not to do this. Our generalization of OP is presented
thoroughly in Section 5.6.1 in order to prepare the reader for the presen-
tation in Section 5.6.3 of our generalized PELT. In Section 5.6.2 a straight
forward way to attempt to generalize PELT is also presented because it
makes it easier to understand the generalization of PELT.

5.6.1. gOP
The Optimal Partitioning algorithm only needs to be slightly adjusted

to accommodate for a restriction on the minimum segment length. OP iter-
atively decides what is the best previous changepoint given that there is a
changepoint at the data point in question. Without a restriction it consid-
ers every single previous data point as a possible predecessor. In order to
generalize OP we only need the following theorem.

Theorem 5.6. When the minimum segment length is restricted to g,
then the best predecessor of a changepoint at t is contained in the set
{0, g, g + 1, . . . , t− g}.

Proof. Since κ1−κ0 ≥ g and κ0 = 0 then κ1 ≥ 0 and {1, . . . , g−1} may not
contain any changepoints. When there is a changepoint at t then for some
value q we have that κq = t. As κq − κq−1 ≥ g then κq−1 ≤ t− g. Thus the
best predecessor of a changepoint at t is not contained in the set {1, . . . , g−
1, t− g + 1, . . . , t− 1}, and must be in the set {0, g, g + 1, . . . , t− g}.

One way to implement gOP is displayed in Algorithm 3, it may also be
found in R (R Core Team, 2017) code in Appendix B.3. At lines 1 through 4
we compute the final total cost for no changepoints in the simple case where
there may be no internal changepoints. When the data set is of length 0
we define the total cost to be −β. However the cost of a data set with for
instance g − 1 data points is not defined, as there is no way to compute
the cost Cg(1, g − 1) of g − 1 data points. When the data set is of length
g the predecessor must be 0, since it is the only data point for which the
total cost is defined, that is F (g) = F (0) + C(1, g) + β = C(1, g). Also
when the data set is of length t in {g + 1, . . . , 2g − 1} the only possible
predecessor is 0 since the other points are either too close to 0 or t. So then
F (t) = F (0) + C(1, t) + β = C(1, t).

When t is in {2g, . . . , n} the available predecessors are all the ones that
were available at t−1, as well as the newly available point t−g. This is why
the s.set is expanded in line 6 in Algorithm 3. Then in lines 8 through 14

93

the optimal predecessor is selected among the possible predecessors exactly
like in OP and PELT, that is Algorithms 1 and 2. In lines 16 through 23
we also construct the vector τ from r in the exact same fashion as OP and
PELT. So the differences between OP and gOP is in lines 2 to 4 and in line
6. The following example illustrates gOP applied to a data set.

Example 5.1. Example of gOP employed to a data set in Table 5.3
with g = 2, where we fit both mean and variance, as in Equation (5.17),
and let the penalty be β = 0. Tables 5.1 and 5.2 support the text in
this example, and the solution that is found is displayed in Figure 5.2.
First we execute lines 1 to 4 of Algorithm 3. For t = 2 and t = 3 the
only possible previous changepoint is 0, and the computation of F (2)
and F (3) is straightforward, see Table 5.3. Then we move on to line 5
of Algorithm 3. For t = 4 either 0 or 2 may be the predecessor. Since
C2(1, 4) = −1.23, and C2(3, 4) = 0.662, we get that

−1.23 = F (0) + C2(1, 4) > F (2) + C2(3, 4) = −5.39, (5.28)

such that r(4) = 2 and F (4) = −5.39. Then in the next step t = 5 and
the predecessor may be either 0, 2 or 3. The computation is displayed
in Table 5.1. In the next step t = 6 and the considered data points are
0, 2, 3 or 4, so that the computation is as in Table 5.2.

Continuing forward in this manner yields the table of costs and pre-
decessors presented in Table 5.3. When the data set is of length 8 thus
the changepoint vector is τ = (0, 3, 6, 8).

0 1 2 3 4 5 6 7 8

τ0 = 0 τ1 = 3 τ2 = 6 τ2 = 8

Figure 5.2: These graph represent the solution found by the generalized OP in Example
5.1 and by the generalized PELT in Example 5.3. The top graph is r(t) from Table 5.3,
where for instance nodes 4 and 5 point to node 2 because r(4) = r(5) = 2. The path
marked in dark blue indicates the elected solution.

94

Algorithm 3: Generalized Optimal Partitioning (gOP).
input : Y = (x1, . . . , xn), n=length(Y), β, C(·), g
output: τ = (τ1, . . . , τm+1)
/* Set s.set, r, and final total cost up to 2g */

1 s.set ={0}; F(0)= −β
2 for t ← g to 2g − 1 do
3 r (t)=0; F (t) = C(1,t)
4 end
5 for t ← 2g to n do

/* Add newly available predecessor to s.set */
6 s.set = {s.set, t− g}

/* For a changepoint at t find best most recent
changepoint s */

7 F(t)=∞
8 for s ∈ s.set do
9 p =F(s)+C(s +1,t)+β

10 if p <F(t) then
11 F(t)=p
12 r (t)=s
13 end
14 end

15 end
/* Build vector τ from r */

16 changepoint =n
17 i =1
18 while changepoint 6=0 do
19 τ (i)=changepoint
20 changepoint =r (changepoint)
21 i =i +1
22 end
23 τ = Sort(τ)

Table 5.1: OP algorithm t = 5 and β = 0. Since the lowest prospective total cost is −6.23
for s = 2 then r(5) = 2.

s F(s) C(s+1,5) p(5)
0 0 -2.63 -2.63
2 -6.06 -6.23 -6.23
3 -4.43 -1.29 -5.71

95

Table 5.2: OP algorithm t = 6 and β = 0. Since the lowest prospective total cost is −6.56
for s = 3 then r(6) = 3.

s F(s) C(s+1,6) p(6)
0 0 -1.61 -1.61
2 -6.06 0.176 -5.88
3 -4.43 -2.13 -6.56
4 -5.39 -1.10 -6.49

Table 5.3: The values of F (t) and r(t) at line 12 before vector τ is built in Example 5.1,
as well as the data set x1, . . . , xt which is used in Examples 5.2 and 5.3.

t 0 1 2 3 4 5 6 7 8
xt 0.99 0.55 -0.17 2.19 0.74 2.26 0.02 1.20
r(t) 0 0 2 2 3 4 6
F (t) 0 -6.06 -4.43 -5.39 -6.23 -6.56 -5.81 -8.67

96

5.6.2. Straight forward PELT
We run into problems if we try to employ PELT in the straightforward

manner when there is a restriction on the minimum segment length. The
next example demonstrates this.

Example 5.2. Now we employ an erroneous version of the PELT algo-
rithm where only the same adjustments that the OP algorithm needs are
made in order to accommodate for the restriction g = 2. The data set
is the same as in the last example, and is displayed in Table 5.3. The
solution it finds is displayed in Figure 5.3. Furthermore β = 0, and we fit
both mean and variance with the cost function in Equation (5.17). The
computation for data points 0, 1, 2, 3 and 4 is identical to the computa-
tion with OP in Example 5.1 because the data points are close to the
boundary.

Due to Equation (5.28), and β = 0 then F (4) = −5.39 and the old
pruning condition says that only nodes s such that F (s) +C(s+ 1, 4) ≤
F (4) need to be evaluated again at the next iteration of t. So when t = 5
we would only get the rows such that s ∈ {2, 3} in Table 5.1. This works
out fine since r(5) = 2 is one of the considered previous changepoints.

The only s ∈ {2, 3} such that F (s)+C(s+1, 5) ≤ F (5) is of course 2,
and so in the next iteration we only compute the rows in Table 5.1 such
that s ∈ {2, 4}. As can be seen from the table in reality r(6) = 3, which
is not in the set. This erroneous version of PELT would pick 4 as the
predecessor of 6. Then at t = 7 it would pick 4, and at t = 8 it would pick
6 such that the prospective solution it finds is τ = (0, 2, 4, 6, 8), which
has a total cost of −8.60. This total cost is higher than the total cost of
the OP solution, which we from Table 5.3 know to be F (8) = −8.67.

0 1 2 3 4 5 6 7 8

τ2 = 0 τ2 = 2 τ1 = 4 τ2 = 6 τ2 = 8

Figure 5.3: These graphs represent the solution found by the erroneous PELT in Example
5.2. The top graph is r(t), where for instance nodes 6 and 7 point to node 4 because
r(7) = r(6) = 4. The path marked in dark blue indicates the elected solution. These
graphs are quite dissimilar to the corresponding graphs for gOP and gPELT applied to
the same data set in Figure 5.2

Example 5.2 provides a counterexample that proves that a straightfor-
ward PELT application with a restriction of g > 1 does not in general
provide the optimal OP solution for any β ≥ 0 even when the cost function
satisfies Equation (5.2). Further numeric investigation shows that there are

97

numerous counterexamples for any β, and that factors that contribute to
the erroneous approach yielding the wrong changepoint vector is the data
set being long, the minimum segment length g being high, and β being low.
These simulations are not presented here as we do not consider it relevant
to the contents of this master thesis.

We have implemented the erroneous straight forward PELT application
outlined in Example 5.2 under the name pelt2.mycpt in our R (R Core
Team, 2017) package at https://github.com/kristinbakka/generalizedPELT.
When we employ the PELT algorithm implemented in the changepoint pack-
age (Killick and Eckley, 2014) with a restriction that g > 1 to a large number
of simulated data sets, we get the same output as from the straight forward
PELT application outlined in Example 5.2. One of the contributions from
this master thesis is thus the development of PELT generalized to account
for a restriction of g > 1, which is presented in the subsequent section. In
theory we may simply use the gOP algorithm to analyze data sets when we
need to restrict g > 1, but in practice the quadratic run time of OP makes it
only possible to analyze relatively short data sets. Especially when we want
to generalize to multiple streams we are in need of a correct generalization
of the PELT algorithm to account for a restriction on g.

5.6.3. gPELT
In this section the PELT algorithm generalized to accommodate for g > 1

is developed. We refer to it as gPELT in this thesis. The cost function require-
ment is displayed in Equation (5.2). The pruning condition is unchanged.
Hence the pruning condition on t1 and t2, where t1 < t2 is

F (t1) + Cg(t1 + 1, t2) ≥ F (t2) , (5.29)

but it must be employed in a slightly different fashion. The following theorem
is the mathematical basis for the pruning in generalized PELT.

Theorem 5.7. Whenever (5.2) and (5.29) both hold for t1 < t2 < t3,
where t3 − t2 ≥ g and t2 − t1 ≥ g, then data point number t1 is not the
optimal estimate for the predecessor of t3.

Proof. First we add Cg(t2 + 1, t3) on both sides of the pruning condition
from Equation (5.29), that is

F (t1) + Cg(t1 + 1, t2) ≥ F (t2) ,
F (t1) + Cg(t1 + 1, t2) + Cg(t2 + 1, t3) ≥ F (t2) + Cg(t2 + 1, t3) .

Then according to Equation (5.2)

F (t1) + Cg(t1 + 1, t3) ≥ F (t1) + Cg(t1 + 1, t2) + Cg(t2 + 1, t3),

so that we get

F (t1) + Cg(t1 + 1, t3) + β ≥ F (t2) + Cg(t2 + 1, t3) + β.

https://github.com/kristinbakka/generalizedPELT

98

The optimal estimate for the predecessor of t3 is the one which gives the
minimal total cost at t3. As the total cost with r(t3) = t1 is not smaller than
the total cost with r(t3) = t2, then t1 is not the optimal estimate for the
predecessor of t3.

From Theorem 5.6 we get that a minimum segment length of g means
that in the gOP algorithm at loop t, only 0, g, g + 1, g + 2, . . . , t − g are
considered as possible positions of the predecessor. The consequence of the
requirement in Theorem 5.7 that t3− t2 ≥ g is that at t = t2 the data point
numbers t1 that fulfill Equation (5.29) may not be the optimal predecessor
of a changepoint at t3. That is in the PELT algorithm at t = t3,1 the optimal
predecessor is either in {t2, t2 − 1, . . . , t2 − g + 1}, or it is a data point t1
such that F (t1) + Cg(t1 + 1, t2) < F (t2), with t2 = t3,1 − g. An easy way to
think of this is that at t = t3,1 we get an s.set that is a combination of the
earned data points {t2, t2 − 1, . . . , t2 − g + 1} and the data points inherited
from the computation at t2.

There are several ways to implement gPELT, and one straight forward
way is displayed in Algorithm 4. Note how closely it relates to gOP in Al-
gorithm 3. The first change is that a vector named Inherit is introduced.
At line 6 of Algorithm 4 we call Inherit(t− g). Subsequently we will label
t2 = t − g, since this is in accordance with the labeling in Theorem 5.7.
Inherit(t2) are the t1s such that t1 ≤ t2− g and F (t1) +Cg(t1, t2) ≤ F (t2).
That is Inherit(t2) is a set of data points that may contain the predecessor
of t3 = t2 + 1. Lines 1 to 5 are the same in gOP and gPELT apart from the
introduction of Inherit.

Inherit(t2) Earned

0 g t − 2g t2 t

Figure 5.4: Represents a portion of a data set where gκ = 4. Big circles indicate minimum
distance between changepoints.

Inherit(t2) Earned

0 g t2 t

Figure 5.5: Represents a portion of a data set where gκ = 4 and t = 9. Big circles indicate
minimum distance between changepoints.

The next difference between the algorithms is in line 6 of Algorithms 3
and 4. While in gOP the s.set at t is the s.set at t − 1 combined with

99

the newly available point t− g, in gPELT the s.set at t is the data points
from Inherit(t− g) as well as the admissible predecessors that may never
be in Inherit(t − g). In Figures 5.4 and 5.5 this is illustrated with g = 4,
t = 17, t2 = t− g = 13. The data points marked in gray are not admissible
as predecessors to t, and the points that may be in Inherit(t2) are marked
in green. The rest of the data points are indicated with Earned, to signify
that they are the admissible predecessors that may never be in Inherit(t2).
In Figure 5.4 the earned data points are t − 2g + 1, . . . , t2, while in Figure
5.5 they are only g and t2. In lines 15 through 21 of Algorithm 4 we remove
some elements of s.set, and save the remaining elements as Inherit(t). In
the following example we apply gPELT to data.

Example 5.3. In this example we apply gPELT in Algorithm 4 to the
data in Table 5.3, which is the same data that we used in Examples 5.1
and 5.2. We arrive at the same solution as is illustrated in Figure 5.2, as
we use the same penalty and cost function, that is we use β = 0 and the
cost function in Equation (5.17) which estimates both the mean and the
variance. In the following figure Inherit(t− g) is marked in dark green,
and the earned data points are marked in orange. The data points that
to our knowledge at t− g may not be the predecessor of t are marked in
light grey if they are not admissible, or else in light green. The current
t is marked in blue. Those points that will be a part of Inherit(t) are
marked with a thick border.

First we perform the steps in lines 1 through 5 in Algorithm 4. For
t in 2, 3 we get Inherit(t)= {0} since g = 2 and 2g − 1 = 3. When we
enter the for-loop at line 6 there are two data points to choose from, and
we get as in Example 5.1 that

−1.23 = F (0) + C2(1, 4) > F (2) + C2(3, 4) = −5.39.

The 0th point is thus chosen as predecessor to 2. As β = 0 then F (4) <
F (2) + C2(3, 4) and we get that Inherit(4)= {0}. In Figure 5.6 this is
signified with a broad outline at t = 4, and with dark green fill at t = 6.

In the next iteration we inherit the 0th data point, and earn two new
data points, so s.set = {0, 2, 3}. Thus we get Table 5.1 from Example
5.1, and conclude that r(5) = 2. Then we find the elements s of s.set
such that F (s) + C(s + 1, 5) ≤ F (5). Since β = 0 this is only true for
s = 5, but for another β there might have been more such data points.
In Figure 5.6 we mark this by a dark green node for t = 7, and with a
broad outline for t = 5.

In the next step when t = 6, only the data points indicated by orange
and dark green may be the optimal predecessor, so s.set = {0, 3, 4}.
Data point 2 is a predecessor such that it is possible to calculate the
total cost, but due to the pruning at t− g = 6− 2 = 4 we know that it
may not be the optimal predecessor. As seen from Table 5.2 the optimal

100

predecessor is r(6) = 3. In Figure 5.6 the computation is done for t = 7
and t = 8 as well. At t = 7 we get that s.set = {2, 4, 5}, and at t = 8
we get that s.set = {3, 5, 6}. Theorem 5.7 guarantees that the optimal
predecessor is within s.set, and this is also what the figure shows.

t = 2
0 1 2 3 4 5 6 7 8
Earn Inherit(t − 2) Inherit(t)

t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

Figure 5.6: Represents a portion of a data set where gκ = 2. Big circles indicate minimum
distance between changepoints.

101

Algorithm 4: Generalized Pruned Exact Linear Time (gPELT).
input : Y = (y1, . . . , yn), n=length(Y), β, C(·), g
output: τ = (τ1, . . . , τm+1)
/* Set s.set, r, final total cost, and Inherit up to 2g */

1 s.set ={0}; F(0)= −β
2 for t ← g to 2g − 1 do
3 r (t)=0; F (t) = C(1,t); Inherit(t)=0
4 end
5 for t ← 2g to n do

/* Combine inherited and earned data points to get
s.set */

6 s.set = {Inherit(t-g),max(g, t− 2g + 1) : (t− g))}
/* For a changepoint at t find best most recent

changepoint s */
7 F(t)=∞
8 for s ∈ s.set do
9 p =F(s)+C(s +1,t)+β

10 if p <F(t) then
11 F(t)=p
12 r (t)=s
13 end
14 end

/* Remove non-optimal predecessors */
15 for s ∈ s.set do
16 if F(s)+C(s +1,t)≥F(t) then
17 Remove(s.set,s)
18 end
19 end

/* Remember which data points to inherit */
20 Inherit(t) ← s.set
21 end

/* Build vector τ from r */
22 changepoint =n
23 i =1
24 while changepoint 6=0 do
25 τ (i)=changepoint
26 changepoint =r (changepoint)
27 i =i +1
28 end
29 τ = Sort(τ)

102

6. Discussion and conclusion

In Section 5 we have introduced various model selection criteria under
Assumptions 5.1 and 5.2, and a generalization of PELT such that it may be
used in the setting where we need to maximize more than one parameter.
A natural next step is to study the properties of these criteria, and the
properties of gPELT when g is large. However this is outside the scope
of this thesis. Furthermore under Assumption 5.2 the penalty of BIC4 in
Equation (5.23) is likely to be too low, and extensive simulations are needed
to find alternate penalties for which the criterion performs better. CROPS
used with gPELT is well suited to aid in this endeavor. Finding the optimal
penalty is an open research question. In applications the penalty is often
treated as a tuning parameter, found by trial and error until the wanted
sensitivity to potential changes appears to be achieved.

It would be interesting to endeavor to write the expression of mBIC in
Theorem 5.5 on the form of sum of interval costs and a penalty. It would
also be interesting to derive an mBIC for when all the data have the same
variance, but that variance is unknown. It is possible that such a criterion
would be simple enough to yield itself to maximization with PELT. One of
the downsides with PELT and BS is that they only allow for a total penalty
linear in m. Killick et al. (2012a) suggests an algorithm based on PELT that
allows for a total penalty that is not linear in m. The suggestion is to run
PELT on the data set with some β, and then run PELT again with a new β
determined from the last solution until the total penalty corresponds to the
desired function of m. They further argue that this may be done since PELT
is fast under certain conditions. This is similar to the way we suggest to use
CROPS to compute the mBIC in Equations (3.12) or (5.26). When we want
to use PELT to maximize the approximated Bayes Factor with the help of
either BIC or mBIC under Assumptions 3.1 or 5.1, then the penalty is linear
and so the restriction that the penalty must be linear is of no consequence.

The runtime of gPELT is likely to be close to the runtime of PELT
as the algorithms are so similar, but a simulation study to estimate the
empirical run time of PELT is of interest as well. A property of PELT that
we have ignored in this thesis is that Killick et al. (2012a) allows the PELT
requirement in Equation (3.25) to instead be

C(t1 + 1, t3)− C(t1 + 1, t2)− C(t2 + 1, t3) ≥ K,

which slightly adjusts what cost functions are applicable. As we did not need
this in the thesis, we have not mentioned it before. The code of gPELT may
of course be adjusted to account for the K, but this is left for further work.
One advantage of including a K is that the cost function in Equation (3.26)
could then to be made to fulfill the PELT requirement in Equation (3.25),

103

since when
t3∑

i=t1+1
(xi − µ̂j)−

t2∑
i=t1+1

(xi − µ̂j)−
t3∑

i=t2+1
(xi − µ̂j)

+ log t1 + 1, t3
n

− log t1 + 1, t2
n

− log t1 + 1, t2
n

≥ 0

then
t3∑

i=t1+1
(xi − µ̂j)−

t2∑
i=t1+1

(xi − µ̂j)−
t3∑

i=t2+1
(xi − µ̂j)

+ log(t1 + 1, t3)− log(t1 + 1, t2)− log(t1 + 1, t2) ≥ − log n.

6.1. Alternate model selection criteria
An other model selection criterion that may be used with PELT in this

setting is Minimum Description Length (MDL) (Wu and Hsieh, 2006), or In-
formation Complexity (ICOMP) (Bozdogan and Haughton, 1998). It would
be interesting to compare the performances of MDL, ICOMP and of our
BIC3 criterion with PELT. MDL and ICOMP may also be used in other
settings, and so may PELT. If we have other assumptions on the data, for
instance that they are independent draws from Gamma distributions we
would substitute the likelihood of the normal distributions in the cost func-
tion of PELT with the likelihood of the distribution in question. The penalty
will likely also need to be altered, but as long as it is linear and the cost
function fulfills the requirement in Equation (5.2) we may analyze these
data with CROPS and gPELT. Assuming another model is thus equivalent
to changing the model selection criterion.

The algorithms always evaluate the cost of all data points in an interval
simultaneously. So it is not necessary to require that the data points in a
changepoint interval are independent. We might fit any distribution on each
interval, for instance an AR(3) time series process. In the Big Insight sensor
project our initial idea was to see whether PELT could be used to identify
anomalies that materialize as changepoints in the residuals, see Figure 1.1.
One challenge is that Tveten (2017) found that the residuals were not i.i.d.
normal, but were dependent on the previous residuals. Tveten (2017) fitted
an AR(3) model to the residuals, and the residuals from the fit were ap-
proximately normal. It is also an option to fit a non-parametric distribution,
as was done in Haynes et al. (2017b). In order to take the time between
observations into account, it may be included as a value of each data point.

When each observation is a number on R2 or R3 or some higher di-
mension we may for instance assume that the data points are multivariate
realizations from i.i.d. multivariate normal distributions. The appropriate
cost functions in this setting are developed in Appendix A. However as the
model selection criterion based on BIC is so different from the optimal model

104

selection criterion in Theorem 5.5, there is no reason to believe that a naive
BIC will perform well when the data are from multivariate normal distribu-
tions. Thus we are reduced to treating the penalty as a tuning parameter. It
would be interesting to investigate which penalty values would be optimal
for simulated data, which we again may perform with PELT and CROPS.
In our package which is available at https://github.com/kristinbakka/
generalizedPELT the algorithms are implemented in such a way that they
may be used with multivariate data. It would be natural to compare this
performance to the performance of Multi Stream Continuous Hidden Markov
Models as applied in Missaoui et al. (2013).

6.2. Conclusion
In this thesis we have considered the changepoint detection problem when

the data on the jth changepoint interval are i.i.d. N (µj, 1), and then we
have considered the changepoint problem when jth changepoint interval are
i.i.d. N (µj, σ2) for some known σ2. For these types of data we have made
a slight adjustment of the mBIC criterion that allows it to be maximized
or approximately maximized with methods like BinSeg and PELT. We have
also compared the BIC as it is commonly applied to these types of data to
this slightly altered mBIC criterion. In real data we might not know the exact
value of σ2, and so we have proposed upper and lower limits to the range of
penalties to investigate with CROPS that are based on our analysis of the
mBIC criterion. Additionally we have proposed a method to compute the
exact mBIC criterion for these types of data with a combination of CROPS
and PELT. We have also found that PELT is not readily applicable in an
online setting, which is of interest in the Big Insight sensor project.

In this thesis we have also considered the changepoint problem when
jth changepoint interval are i.i.d. N (µj, σ2

j). Our most significant contribu-
tion in this case is that we have developed a generalized version of PELT
that may be applied when there is a restriction on the minimum length of
an interval, for instance when more than one parameters are estimated per
changepoint interval. This allows methods like CROPS which apply other
methods for changepoint detection repeatedly more options on what prob-
lems they may tackle. Furthermore we have made systems for visualizing
the changepoint solution and how PELT and our generalized PELT work,
illustrated in Figures 3.7 and 5.6. Additionally we have shown that a certain
type of likelihood based cost is always applicable to PELT and the gener-
alized PELT, and proven some ways in which such cost functions may and
may not be simplified. As an extension we have developed cost functions to
be used when the data are multivariate normal.

https://github.com/kristinbakka/generalizedPELT
https://github.com/kristinbakka/generalizedPELT

105

Bibliography

Aminikhanghahi, S., Cook, D. J., 2017. A survey of methods for time series
change point detection. Knowledge Information Systems 51 (2), 339–367.

Anderson, T., Olkin, I., 1985. Maximum-likelihood estimation of the param-
eters of a multivariate normal distribution. Elsevier 70, 147–171.

Auger, I., Lawrence, C., 1989. Algorithms for the optimal identification of
segment neighborhoods. Bulletin of Mathematical Biology 51 (1), 39–54.

Bozdogan, H., Haughton, D. M., 1998. Informational complexity criteria for
regression models. Computational Statistics Data Analysis 28 (1), 51 –
76.
URL http://www.sciencedirect.com/science/article/pii/
S0167947398000255

Brandsæter, A., Manno, G., Vanem, E., Glad, I. K., June 2016. An applica-
tion of sensor-based anomaly detection in the maritime industry. In: 2016
IEEE International Conference on Prognostics and Health Management
(ICPHM). pp. 1–8.

Casella, G., Berger, R., 2002. Statistical Inference, 2e. Duxbury/Thomson
Learning, Pacific Grove, California.

Efron, B., Hastie, T., 2016. Computer Age Statistical Inference Algorithms,
Evidence, and Data Science. Cambridge university press, New York, NY.

Haynes, K., Eckley, I. A., Fearnhead, P., 2017a. Computationally efficient
changepoint detection for a range of penalties. Journal of Computational
and Graphical Statistics 26 (1), 134–143.

Haynes, K., Fearnhead, P., Eckley, I. A., Sep 2017b. A computationally
efficient nonparametric approach for changepoint detection. Statistics and
Computing 27 (5).

Hocking, T., Rigaill, G., Vert, J.-P., Bach, F., 17–19 Jun 2013. Learning
sparse penalties for change-point detection using max margin interval re-
gression. In: Dasgupta, S., McAllester, D. (Eds.), Proceedings of the 30th
International Conference on Machine Learning. Vol. 28 of Proceedings of
Machine Learning Research. PMLR, Atlanta, Georgia, USA, pp. 172–180.
URL http://proceedings.mlr.press/v28/hocking13.html

ISO/IEC, 2011. ISO International standard ISO/IEC 9899:2011(E) - Pro-
gramming Language. International Organization for Standardization
(ISO), Geneva, Switzerland.
URL https://www.iso.org/standard/57853.html

http://www.sciencedirect.com/science/article/pii/S0167947398000255
http://www.sciencedirect.com/science/article/pii/S0167947398000255
http://proceedings.mlr.press/v28/hocking13.html
https://www.iso.org/standard/57853.html

106

Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P.,
Gwin, E., Snagtrakulcharoen, P., Tan, L., Tsai, T. T., 2005. An algorithm
for optimal partitioning of data on an interval. IEEE Signal Processing
Letters 12, 105–108.

Kass, R. E., Raftery, A. E., 1995. Bayes factors. Journal of the American
Statistical Association 90 (430), 773 – 795.
URL http://www.jstor.org/stable/2291091

Killick, R., Eckley, I. A., 2014. changepoint: An R package for changepoint
analysis. Journal of Statistical Software 58 (3).

Killick, R., Fearnhead, P., Eckley, I. A., 2012a. Optimal detection of change-
points with a linear computational cost. Journal of the American Statis-
tical Association 107 (500), 1590–1598.

Killick, R., Fearnhead, P., Eckley, I. A., 2012b. Supporting material: Optimal
detection of changepoints with a linear computational cost.

Knuth, D. E., 1976. Big omicron and big omega and big theta. ACM
SIGACT News 8 (2), 18–23.
URL http://www.phil.uu.nl/datastructuren/10-11/knuth_big_
omicron.pdf

Lehmann, E. L., 1999. Elements of Large-Sample Theory. Springer New
York, New York, NY.
URL https://doi.org/10.1007/0-387-22729-6_2

Missaoui, O., Frigui, H., Gader, P., 2013. Multi-stream continuous hidden
markov models with application to landmine detection. EURASIP Journal
on Advances in Signal Processing 2013 (1), 40, blahblah.

Olshen, A. B., Venkatraman, E. S., Lucito, R., M.Wigler, 2004. Circular
binary segmentation for the analysis of array-based dna copy number data.
Biostatistics 5, 557–572.

Price, D. O., 1948. Sequential analysis. by abraham wald. new york: John
wiley and sons, inc., 1947. 212 pp. $4.00. Social Forces 27 (2), 170–171.

R Core Team, 2017. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org

R. Maidstone, T. Hocking, G. R. P. F., 2014. On optimal multiple change-
point algorithms for large data. Statistics and Computing.

Rigaill, G., 2010. Pruned dynamic programming for optimal multiple change-
point detection. arXiv preprint arXiv:1004.0887.

http://www.jstor.org/stable/2291091
http://www.phil.uu.nl/datastructuren/10-11/knuth_big_omicron.pdf
http://www.phil.uu.nl/datastructuren/10-11/knuth_big_omicron.pdf
https://doi.org/10.1007/0-387-22729-6_2
https://www.R-project.org

107

Schwarz, G., 1978. Estimating the dimension of a model. The Annals of
Statistics 6 (2), 461–464.
URL https://doi.org/10.1214/aos/1176344136

Truong, C., Oudre, L., Vayatis, N., 2018. A review of change point detection
methods. CoRR abs/1801.00718.
URL http://arxiv.org/abs/1801.00718

Tveten, M., 2017. Multi-stream sequential change detection using sparsity
and dimension reduction. Master’s thesis, University of Oslo.

Wilks, S. S., 1938. The large-sample distribution of the likelihood ratio for
testing composite hypotheses. Ann. Math. Statist. 9 (1), 60–62.

Wu, C.-H., Hsieh, C.-H., 2006. Multiple change-point audio segmentation
and classification using an mdl-based gaussian model. IEEE 14 (2), 647 –
657.

Yao, Y.-C., 1988. Estimating the number of change-points via schwarz’
criterion. Statistics Probability Letters 6 (3), 181 – 189.
URL http://www.sciencedirect.com/science/article/pii/
0167715288901186

Zhang, N., Siegmund, D., 2007. A modified bayes information criterion with
applications to the analysis of comparative genomic hybridization data.
Biometrics 63 (1), 22–32.

https://doi.org/10.1214/aos/1176344136
http://arxiv.org/abs/1801.00718
http://www.sciencedirect.com/science/article/pii/0167715288901186
http://www.sciencedirect.com/science/article/pii/0167715288901186

108

A. Likelihood and cost functions for multivariate Gaussian data

The probability density function of an observation x from a multivariate
normal distribution is

f(x) = (2π)−u
2 det(Σ)− 1

2 exp−1
2(x− µ)TΣ−1(x− µ),

where x and µ are column vectors of length u, and Σ is a positive definite
matrix of rank u. In this section the changepoint model is as in Sections 3.1
and 5.1, except that fj is a multinormal distribution, which we will denote
as fj = N (µj,Σj). In the first section Σ1 = Σ2 = · · · = Σm+1 = Σ, and
the value of Σ is considered known. In the next section we will assume that
only the diagonal elements of Σj are nonzero, and after that we will look at
what happens when all the elements of Σj are considered unknown. As the
observations in disjoint intervals are independent we will proceed to develop
the cost function for an interval containing observations xs, . . . , xt, like we
did in Section 5.3. In most of this appendix we will express the equations by
the centered observations zi = xi − µ̂, where µ̂ is found from the interval in
question. Furthermore we will denote the kth element of an observation as
xi,k, so that a single observation is xi = (xi,1, . . . , xi,u). We will also index zi
and µ accordingly.

The log likelihood of the observation xi is

`(i, µ,Σ) = −1
2(u log 2π + log det(Σ) + (xi − µ)TΣ−1(xi − µ)),

and for independent and identically distributed observations xs, . . . , xt we
get

2`(s, t, µ,Σ) = −
t∑
i=s

(u log(2π) + log det(Σ))−
t∑
i=s

(xi − µ)TΣ−1(xi − µ).

We will now use the notation that the trace of a matrix A with diagonal
elements a11, a22, . . . , aNN is

tr(A) =
N∑
i=1

aii,

and that for a constant c and conformable matrices A,B and C we have
that

tr((A+B)c) = (tr(A) + tr(B))c
and that tr(ABC) = tr(BCA). Since (xi − µ)TΣ−1(xi − µ) is a scalar

t∑
i=s

(xi − µ)TΣ−1(xi − µ) =
t∑
i=s

tr
(
(xi − µ)TΣ−1(xi − µ)

)

=
t∑
i=s

tr
(
Σ−1(xi − µ)(xi − µ)T

)
= tr

(
Σ−1

t∑
i=s

(xi − µ)(xi − µ)T
)
.

109

With x̄ = 1
t−s+1

∑t
i=s xi we have that

t∑
i=s

(xi − x̄)(x̄− µ)T = (
t∑
i=s

xi −
t∑
i=s

x̄)(x̄− µ)T = 0

since ∑t
i=s xi = ∑t

i=s x̄ = (t− s+ 1)x̄. As (xi− µ) = (xi− x̄+ x̄− µ) we get
that

t∑
i=s

(xi − µ)(xi − µ)T =
t∑
i=s

(xi − x̄)(xi − x̄)T +
t∑
i=s

(x̄− µ)(x̄− µ)T .

To find the maximum likelihood estimator of µ, we use that `(s, t, µ,Σ)
is maximal when tr

(
Σ−1∑t

i=s(xi − µ)(xi − µ)T
)
is minimal, which is when

µ̂ = x̄, that is

µ̂ = 1
t− s+ 1

t∑
i=s

xi.

The likelihood at the maximum likelihood estimate for µmay thus be written

−2`(s, t, µ̂,Σ) =
t∑
i=s

(u log(2π)+log det(Σ))+tr
(

Σ−1
t∑
i=s

(xi − µ̂)(xi − µ̂)T
)
.

(A.1)
This holds true regardless of the constraints on Σ. In the following we will
consider the likelihood of observations in the cases where Σ is known, Σ
is diagonal, and when Σ is any positive definite matrix. After that we will
consider what happens when Σ is a positive semi-definite matrix with rank
k. Our objective for developing these likelihoods is to construct reasonable
cost functions. To simplify the notation we will in place of xi use the centered
observations zi = xi − µ̂. In addition we will use the notation that zij, xij,
x̄j and µj denote the jth element of respectively zi, xi, x̄ and µ.

A.1. Known covariance matrix
When Σ is known then minus twice the log likelihood of the centered

observations zs, . . . , zt is

−2`(µ̂) =
t∑
i=s

a(xi) + tr
(

Σ−1
t∑
i=s

ziz
T
i

)
,

with a(xi) = (u log(2π) + log det(Σ)) such that by Theorem 5.2 a cost func-
tion that satisfies the cost function requirement in Equation (5.2) for a known
Σ is

C(s, t) = tr
(

Σ−1
t∑
i=s

ziz
T
i

)
,

or
C(s, t) =

t∑
i=s

zTi Σ−1zi.

110

In the special case when Σ = Ip then this cost function reduces to

C(s, t) =
t∑
i=s

zTi zi.

A.2. Diagonal covariance matrix
Assume that the centered observations zs, . . . , zt are realizations from a

multivariate normal distribution with mean zero and a diagonal covariance
matrix Σ with diagonal elements σ2

1, . . . , σ
2
u. Then zi,1, . . . , zi,u are realiza-

tions from independent normal distributions with variances σ2
1, . . . , σ

2
u. Sec-

tion 5.3.4 contains the special case when u = 1. Since the determinant of a
matrix is the product of its eigenvalues

det(Σ) = σ2
1 · · ·σ2

p, log (det(Σ)) =
u∑
i=1

log σ2
i .

As zi is a column vector, zizTi is a j by j matrix where element number (j, j)
is z2

i,j. Thus the diagonal elements of Σ−1∑t
i=s ziz

T
i are ∑t

i=s z
2
i,j/σ

2
j , and the

trace is
tr
(

Σ−1
t∑
i=s

ziz
T
i

)
=

u∑
j=1

1
σ2
j

t∑
i=s

z2
i,j.

When we combine this with Equation (A.1) we get that the likelihood at µ̂
may be written as

2`(µ̂,Σ) = −(t− s+ 1)
u log(2π) +

u∑
j=1

log σ2
j

− u∑
j=1

1
σ2
j

t∑
i=s

z2
i,j,

where then Ezi = 0. The maximum likelihood estimate for σ2
j is thus found

from
∂

∂σ2
j

2`(µ̂,Σ) = −(t− s+ 1)
σ2
j

+ 1
(σ2

j)2

t∑
i=s

z2
i,j = 0,

which is identical to the maximum likelihood estimate for the univariate
variance of the jth element of the zis, namely

σ̂2
j = 1

(t− s+ 1)

t∑
i=s

z2
i,j.

We have that
1
σ̂2
j

t∑
i=s

z2
i,j = (t− s+ 1)

such that
−2`(µ̂,Σ) =

t∑
i=s

a(xi) + (t− s+ 1)
u∑
j=1

log σ̂2
j ,

111

with a(xi) = u log(2π) + 1. Thus with the notation from Equation (5.1) a
cost function that satisfies the cost function requirement is

C2(s, t) = (t− s+ 1)
u∑
j=1

log σ̂2
j , (A.2)

in the multivariate normal case where the nonzero elements of Σ are on the
diagonal. This is equivalent to use 5.20 to compute the costs of zsj, . . . , ztj for
each j, and then sum those costs. Thus restricting the covariance matrix to
be diagonal is equivalent to finding changepoints in u data sets with the one
dimensional approach under the restriction that the changes must happen
simultaneously. Note that the sizes of the different σ2

j s make the total costs of
each of these one dimensional solutions different. But it is only the difference
between the possible total costs that determine which solution is optimal,
and so a stream with consistently high values for σ2

j and a stream with
consistently low values for σ2

j will influence what is the optimal solutions
equally. Rather it is a stream with a large difference between the values in
different segments that will influence what is the optimal solution the most.

A.3. Unknown covariance matrix
The likelihood for observations xs, . . . , xt for some Σ at µ̂ is

2`(Σ) = −
t∑
i=s

(u log(2π) + log det(Σ))− tr
(

Σ−1
t∑
i=s

ziz
T
i

)
, (A.3)

when Σ is positive definite. Labeling the observed quantity

V = 1
t− s+ 1

t∑
i=s

ziz
T
i , (A.4)

our goal is now to prove that Σ̂ = V . This formula is the same as in Equation
5.11, except that this time zizTi is a u by u matrix. First we need to derive
a simpler expression which is maximal at the maximum likelihood estimate
of Σ. This is done in the following theorem.

Theorem A.1. The likelihood in Equation A.3 is maximal when

h(Ψ, V) = log det(Ψ)− tr (ΨV)

is maximal, where Ψ = Σ−1 and we label the function h for further use
in this section.

Proof. The likelihood is maximal when − log det(Σ)−tr (Σ−1V) is maximal.
Since Σ is positive definite, then Ψ = Σ−1 is a one-to-one transformation of
Σ. As such the likelihood is also maximal when

h(Ψ, V) = log det(Ψ)− tr (ΨV)

is maximal.

112

The next step is to derive a canonical form of h.
Theorem A.2. Given a square nonsingular matrix C such that V =
CCT , Ψ̃ = CTΨC and Σ = CΨ̃−1CT , then the maximum likelihood
estimate is

Σ̂ = C(arg max
Ψ̃

h(Ψ̃, Ip))−1CT ,

where the likelihood is as in Equation (A.3) and V is from Equation
(A.4). Furthermore

Σ̂ = V ⇐⇒ arg max
Ψ̃

h(Ψ̃, Ip) = Ip.

Proof. We get that

tr(ΨV) = tr(ΨCCT) = tr(CTΨC) = tr(Ψ̃),

and that
− log det(V) + log det(Ψ̃),

because

log det((C)−1) + log det((CT)−1) = − log det(CCT) = − log det(V)

in

log det(Ψ) = log det((C)−1) + log det(CTΨC) + log det((CT)−1)
= − log det(V) + log det(Ψ̃).

This allows us to write h in the canonical form, namely

h(Ψ, V) = log det(Ψ)− tr (ΨV)
= − log det(V) + log det(Ψ̃)− tr

(
Ψ̃
)

= − log det(V) + h(Ψ̃, Ip)

So according to Theorem A.1 the likelihood is maximal when h(Ψ̃, Ip) =
log det(Ψ̃)− tr

(
Ψ̃
)
is maximal. If the maximum is attained for Ψ̃ = Ip, then

Σ̂ = CIpC
T = V , so that the proposition holds.

Now we are ready to prove that Σ̂ = V by induction.
Theorem A.3. The maximum likelihood estimate for Σ when the like-
lihood is given by Equation (A.3) is

Σ̂ = 1
t− s+ 1

t∑
i=s

ziz
T
i ,

that is Σ̂ = V from Equation (A.4).

113

Proof. When u = 1 we get

d

dΨ̃
h(Ψ̃, I) = 0 = Ψ̃−1 − 1

so that Ψ̃ = 1 and Σ̂ = V as proposed. For u > 1 we partition

Ψ̃
u×u

=

 Ψ̃11
(u−1)×(u−1)

Ψ̃12
(u−1)×1

Ψ̃21
1×(u−1)

Ψ̃22
1×1

 ,
and assume that h(Ψ̃11, Iu−1) is maximized at Ψ̃11 = Iu−1. Since Ψ̃ is positive
definite, also Ψ̃11 and the Schur complement Ψ̃22 − Ψ̃21Ψ̃11Ψ̃12 are positive
definite. Since

det Ψ̃ = (det Ψ̃11)(Ψ̃22 − Ψ̃21Ψ̃11Ψ̃12)

we have that

log det Ψ̃ = log det Ψ̃11 + log(Ψ̃22 − Ψ̃12Ψ̃22Ψ̃21).

When we also take into account that tr Ψ̃ = tr Ψ̃11 + Ψ̃22 we get that

h(Ψ̃, I) = (log det Ψ̃11 − tr Ψ̃11) + log(Ψ̃22 − Ψ̃12Ψ̃22Ψ̃21)− Ψ̃22.

This in turn we want to maximize with the restriction that Ψ̃ is positive
definite. First we notice that for fixed values of Ψ̃11 and Ψ̃22 the maximum
is at Ψ̃12 = Ψ̃21 = 0 and that (log det Ψ̃11 − tr Ψ̃11) = h(Ψ̃11, Iu−1). Then

max
Ψ̃

h(Ψ̃, I) = max
Ψ̃11

h(Ψ̃11, Iu−1) + max
Ψ̃22

(log Ψ̃22 − Ψ̃22),

which is attained at Ψ̃ = Ip because maxΨ̃11
h(Ψ̃11, Iu−1) = h(Iu−1, Iu−1) and

maxΨ̃22
(log Ψ̃22 − Ψ̃22) = log(1)− 1.

Since arg maxΨ̃ h(Ψ̃, Ip) = Ip is true whenever it is true for u = 1, and it
is true for u = 1, then for any u ≥ 1 we have that arg maxΨ̃ h(Ψ̃, Ip) = Ip.
According to Theorem A.2 thus the maximum likelihood estimate of Σ is
Σ̂ = V Since Σ̂ = V for u = 1, and whenever Σ̂ = V for u − 1 then also
Σ̂ = V for u, the proposition is proven by induction. For multiple ways to
derive this theorem see Anderson and Olkin (1985).

Now that we know the maximum likelihood estimates for both µ and Σ
we are ready to plug them into the likelihood to get the maximum likelihood
and thus a cost function. But we still need to know what restriction on the
minimum segmentation length is necessary for the cost function, that is how
many observations are needed for both the mean and the covariance matrix

114

to be of full rank. The rank of Σ̂ is the dimension of its column space. We
will call the column spaces of Σ̂ and Si respectively KΣ̂ and Ki, such that

dim(KΣ̂) =
t∑
i=s

dim(Ki)− dim(Ks ∩ · · · ∩Kt).

Since 0 ≤ dimKi ≤ 1 and 1 ≤ dim(Ks ∩ · · · ∩Kt) the maximal value of this
expression is

max dim(KΣ̂) =
t∑
i=s

1− 1.

we need at least u+ 1 observations xi for Σ̂ to be of rank u.
When Σ̂ is of full rank

Σ̂−1
t∑
i=s

ziz
T
i = (t− s+ 1)Σ̂−1Σ̂ = (t− s+ 1)Iu.

As tr((t−s+1)Ip) = (t−s+1)u = ∑t
i=s u we may use a(xi) = u(log(2π)+1)

to write

−2`(µ̂, Σ̂) =
t∑
i=s

a(xi) + (t− s+ 1) log det Σ̂,

such that a cost function that satisfies the cost function requirement is

Cu+1(s, t) = (t− s+ 1) log det(Σ̂). (A.5)

If 1 < dim(Ks ∩ · · · ∩ Kt) then the estimate Σ̂ will not be of full rank.
When the estimate Σ̂ is not of full rank the determinant is zero, and the cost
would become negative infinity. This satisfies the cost function requirement,
but does not yield a useful result. In some real data sets we may make sure
that this never happens by choosing a g that is suitable to that data set and
has g ≥ u + 1. A way to get a finite cost function that is defined when the
rank of Σ̂ is k such that k < u + 1 is to substitute the determinant with
the generalized determinant, and the inverse with the generalized inverse in
the probability density function in Equation (A.3) and find an appropriate
cost from this. This is equivalent to the likelihood of a singular multivariate
normal distribution. Note that such a cost function does not fulfill the cost
function requirement if it is used in conjunction with some other cost func-
tion, only if all the data is from the singular normal distribution, such that
all the intervals are evaluated with the same cost function.

Another extension is to look at when only u0 of u streams change. Then
for each changepoint interval we may select which streams change as those
that give the smallest interval cost, and only treat the streams that change
as observations when we compute the interval costs.

115

B. R-code

This appendix contains the R (R Core Team, 2017) code that will aid the
reader the most in understanding the concepts described in this thesis. In
this appendix the first section presents the parts of the package changepoint
that we make use of in Section 4. The other sections present the most im-
portant parts of our implementations of gOP and gPELT. This R code is
also available at https://github.com/kristinbakka/generalizedPELT as
part of an R package, along with the files test-univariate.R, test-multivariate.R
and plot-univariate.R. These three files illustrate how to employ the dif-
ferent algorithms, and the difference in their perfrmance. The objective of
the implementations of gOP and gPELT is to make the algorithms as easy
to understand as possible.

B.1. Make use of the package changepoint
Although we have implemented PELT ourselves to properly understand

it, we use the implementation of BinSeg and PELT in the changepoint pack-
age (Killick and Eckley, 2014) in R in the simulations whenever these give
the same solutions as our own implementation. That is because the com-
putationally heavy parts of the algorithms are implemented efficiently in C
ISO/IEC (2011) in Killick and Eckley (2014), such that it runs in less time
than our implementation. The function we use is cpt.mean(), which finds
changes in the mean of a normal distribution. Although it does not say so
explicitly in the documentation for the PELT package, we have found from
testing cpt.mean() against our own implementation of PELT that it as-
sumes the data points are i.i.d. N (µ, 1), that is with variance equal to 1.
Below is code that simulates one data set, and analyzes it with BinSeg and
PELT.

library(changepoint)
Create a data set
Delta <- 0.5
data.set <- matrix(sapply(1:5,function(i)
t(rnorm(20,Delta*i,1))),nrow=1)

BinSeg
BIC penalty (2*log(n))
BSbic <- cpt.mean(data=data.set,penalty="BIC",

Q=20, method="BinSeg", class=TRUE)
Manual penalty (2*log(n))
BSmanual <- cpt.mean(data=data.set,

penalty="Manual",pen.value="2*log(n)",method="BinSeg",Q=20)

PELT

https://github.com/kristinbakka/generalizedPELT

116

BIC penalty (2*log(n))
PELT<- cpt.mean(data=data.set,

penalty="BIC", Q=20, method="BinSeg")

List of objects of S4 class 'cpt'
print(BSmanual[[1]])
PELT[[1]]@pen.value

Display data
plot(BSbic[[1]])
plot(PELT[[1]])

When the penalty="BIC", the β for BIC1 from Equation (3.21) is used.
The syntax to set the penalty manually is displayed where the variable
BSmanual is initialized. The function cpt.mean() returns a list of evalu-
ated series if the data is a matrix of time series. If class is set to TRUE,
each element in the list returned becomes an object of type cpt that may
be plotted. When the method is BinSeg a parameter Q must be set, which
restricts the maximal number of changepoints the algorithm may identify. A
warning to reapply BS with a higher value for Q is returned if the algorithm
identifies Q changepoints. Two other functions in the package are cpt.var()
and cpt.meanvar(). They respectively find changes in the variance given
a constant known mean, and changes in the mean and the variance. All
the functions allow for several methods of changepoint detection other than
PELT.

B.2. Cost functions
The cost functions determine which criterion is maximized, and in this

section all the cost functions we have implemented are presented. The code
below shows an overview of the possible cost function.

cost.mycpt <- function(intv.dat,type="1d.mean",n=1){
return(
switch(type,

"1d.mean"=cost.1d.mean.mycpt(intv.dat=intv.dat),
"1d.meanvar"=cost.1d.meanvar.mycpt(intv.dat=intv.dat),
"pd.mean"=cost.pd.mean.mycpt(intv.dat=intv.dat),
"pd.meanvar.diag"=
cost.pd.meanvar.diag.mycpt(intv.dat=intv.dat),
"pd.meanvar.full"=
cost.pd.meanvar.full.mycpt(intv.dat=intv.dat),

"mbic.1d.mean"=

117

cost.mbic.1d.mean.mycpt(intv.dat=intv.dat,n=n),
"mbic.1d.meanvar"=
cost.mbic.1d.meanvar.mycpt(intv.dat=intv.dat,n=n),
"mbic.pd.mean"=
cost.mbic.pd.mean.mycpt(intv.dat=intv.dat,n=n),
"mbic.pd.meanvar.diag"=
cost.mbic.pd.meanvar.diag.mycpt(intv.dat=intv.dat,n=n),
"mbic.pd.meanvar.full"=
cost.mbic.pd.meanvar.full.mycpt(intv.dat=intv.dat,n=n)

)
)

}

The following two sections contain the cost functions of the BIC or mBIC
for univariate and multivariate Gaussian data with different restrictions.

B.2.1. Univariate
The first two functions are designed to maximize criteria BIC1, BIC2 and

BIC3, and their expressions are given by Equations (3.21) and (3.22). The
third and fourth cost functions are from Equations (5.20) and (5.27). The
fourth cost function can be used to maximize BIC4.

cost.1d.mean.mycpt <- function(intv.dat,t=0){
return(sum((intv.dat-mean(intv.dat))^2))

}

cost.mbic.1d.mean.mycpt <- function(intv.dat,t=0,n){
return(sum((intv.dat-mean(intv.dat))^2)+
log(length(intv.dat)/n))

}

cost.1d.meanvar.mycpt <- function(intv.dat,t=0){
t.n=length(intv.dat)
#sigma.sq.hat=(t.n-1)*var(intv.dat)/t.n
sigma.sq.hat=sum((intv.dat-mean(intv.dat))^2)/t.n
if(sigma.sq.hat<0.0000000001){

sigma.sq.hat=0.0000000001
}
return(t.n*log(sigma.sq.hat))

}

cost.mbic.1d.meanvar.mycpt <- function(intv.dat,t=0,n){
t.n=length(intv.dat)

118

#sigma.sq.hat=(t.n-1)*var(intv.dat)/t.n
sigma.sq.hat=sum((intv.dat-mean(intv.dat))^2)/t.n
if(sigma.sq.hat<0.0000000001){

sigma.sq.hat=0.0000000001
}
return(t.n*log(sigma.sq.hat)+
log(length(intv.dat)/n))

}

B.2.2. Multivariate
These are implementations of the cost functions when the data are mul-

tivariate Gaussian. The first block of code contain cost functions based on
Equation (A.2). When p = 1 these simplify to the cost functions imple-
mented in B.2.1. Note that p in this code is the same as u in Appendix A,
namely the dimension of xi.

cost.pd.mean.mycpt <- function(intv.dat,t=0){
When Sigma is known to be I_p
mu.hat=colMeans(intv.dat)
return(sum((intv.dat-mu.hat)^2))

}

cost.pd.meanvar.diag.mycpt <- function(intv.dat,t=0){
log.sigma.sq.hat = log(colSums((intv.dat-colMeans(intv.dat))^2)/
dim(intv.dat)[1])
return(dim(intv.dat)[1]*sum(log.sigma.sq.hat))

}

cost.mbic.pd.mean.mycpt <- function(intv.dat,t=0,n){
When Sigma is known to be I_p
mu.hat=colMeans(intv.dat)
return(sum((intv.dat-mu.hat)^2)+
log(length(intv.dat)/n))

}

cost.mbic.pd.meanvar.diag.mycpt <- function(intv.dat,t=0,n){
log.sigma.sq.hat =
log(colSums((intv.dat-colMeans(intv.dat))^2)/
dim(intv.dat)[1])
return(dim(intv.dat)[1]*sum(log.sigma.sq.hat)+
log(length(intv.dat)/n))

}

119

The following cost functions are based on Equation (A.5), and are for
multivariate Gaussian data when all the elements of Σ are estimated.

cost.pd.meanvar.full.mycpt <- function(intv.dat,t=0){
intv.dat had one time stamp in the same row.
Each column is a stream (i.e. temperature in the same column)
Fits a p-dim normal to data and returns cost and mean,var
Number of observations
len = dim(intv.dat)[1]
p = dim(intv.dat)[2]

Mean ML-estimate
mu.hat=colMeans(intv.dat)
Subtract mean from data
z=as.matrix(sweep(intv.dat,2,mu.hat))

Compute sigma.hat
For every row compute t(x_i-mu)(x_i-mu) and #sum over i
sigma.hat=apply(z, 1, function(x) t(z)%*%(z))
Sum each t(x-mu)(x-mu), put into matrix,
#divide by normalizing
sigma.hat=matrix(sigma.hat[,1],ncol=p,nrow=p)/len

SVD (singular value decomposition for faster computing)
Compute eigenvalues
eigen = svd(x=sigma.hat,nu=0,nv=0)
kutte ut numerisk null
eigen$d = eigen$d[eigen$d>10^-10]
Compute cost based on rank=eigen$d and det(S)=prod(eigen$d)
cost=len*(length(eigen$d)*(log(2*pi)+1)+
log(prod(eigen$d))) #cost.K is negative
return(cost)

}

cost.mbic.pd.meanvar.full.mycpt <- function(intv.dat,t=0,n){
intv.dat had one time stamp in the same row.
Each column is a stream (i.e. temperature in the same column)
Fits a p-dim normal to data and returns cost and mean,var
Number of observations
len = dim(intv.dat)[1]
p = dim(intv.dat)[2]

Mean ML-estimate

120

mu.hat=colMeans(intv.dat)
Subtract mean from data
z=as.matrix(sweep(intv.dat,2,mu.hat))

Compute sigma.hat
For every row compute t(x_i-mu)(x_i-mu) and
#sum over i
sigma.hat=apply(z, 1, function(x) t(z)%*%(z))
Sum each t(x-mu)(x-mu), put into matrix,
#divide by normalizing
sigma.hat=matrix(sigma.hat[,1],ncol=p,nrow=p)/len

SVD
NB: requirement is not fulfilled if singular
Compute eigenvalues
eigen = svd(x=sigma.hat,nu=0,nv=0)
drop numaric zero
eigen$d = eigen$d[eigen$d>10^-10]
Compute cost based on rank=eigen$d and det(S)=prod(eigen$d)
cost=len*(length(eigen$d)*(log(2*pi)+1)+
log(prod(eigen$d))) #cost.K is negative
return(cost+log(length(intv.dat)/n))

}

B.3. Implementation of generalized OP
This is our implementation of the of gOP which may also be found at

https://github.com/kristinbakka/generalizedPELT, or in a schematic
form in Algorithm 3. The objective of the implementation is to make the al-
gorithms as easy to understand as possible. It is easier to understand gPELT
after one understands gOP. The reader is invited to set my.debug=TRUE
and run all lines except for for(t in (attrb$minseglen):attrb$n) in
op.mycpt().

dat=c(-4.19 , -3.35 , -6.17 , 2.84 , -0.197 , 1.75 , 1.36)
attrb=list(p=1,n=length(dat),minseglen=1,
pen=2*log(length(dat)))

op.mycpt <- function(attrb,dat,type="1d.mean"){
exact same as OP, nothing is ever pruned
Not manually debugging
my.debug=FALSE
Is type among the selection of cost functions

https://github.com/kristinbakka/generalizedPELT

121

if(attrb$p==1){
if(!is.element(type,c("1d.mean","1d.meanvar",
"pd.meanvar.diag","mbic.1d.mean,
"mbic.1d.meanvar","mbic.pd.meanvar.diag"))){

return("Type is not valid.")
}
dat=matrix(dat,ncol=1)

}else{
if(!is.element(type,c("pd.mean",
"pd.meanvar.diag","pd.meanvar.full",
"mbic.pd.mean","mbic.pd.meanvar.diag",
"mbic.pd.meanvar.full"))){

return("Type is not valid.")
}

}

Initialize first step such that
s = 0, F(0) = -\pen, s.set={0}, r(0)=0
Outer data frame of t,F,r
permanent <- data.frame(t=seq(0,attrb$n),
F.val=rep(NA,attrb$n+1),r=rep(NA,attrb$n+1))
permanent[1,2:3]=c(-attrb$pen,0)
s.set=c(0)
if(my.debug){t=attrb$minseglen-1}

Compute for all data sets lengths shorter
#than attrb$n+1
Work in delay by starting at minseglen
for(t in (attrb$minseglen):attrb$n){

if(my.debug&&(t%%25==0)){cat("t=",t,".\n")}
if(my.debug){t=t+1}

Use cost function to compute int.cost C(s+1,t)
for all s in s.set
This is the only place the cost function
#is evaluated
temp<-data.frame(

s=s.set,
int.cost = sapply(s.set, function(x)
cost.mycpt(intv.dat=dat[(x+1):t,],
type=type,n=attrb$n))

)

122

This is an overly complex way to do it,
but gives a table "permantent" that is
easier to interpret to understand the
algorithm
Compute full cost and pruning cost
temp$full.cost <- permanent[s.set+1,2] +
temp$int.cost + attrb$pen
temp$prune.cost<- permanent[s.set+1,2] +
temp$int.cost

Determine smallest (optimal) full cost
Save smallest (optimal) full cost
permanent$F.val[t+1]=min(temp$full.cost)

Save previous changepoint, the s with
#smallest full cost
That is the last s for which F.val is
minimal
permanent$r[t+1]=tail(temp$s[
temp$full.cost==permanent$F.val[t+1]],1)

Prune - prepare next s.set
s with smaller pre-beta cost
A=temp$prune.cost<=permanent$F.val[t+1]
or superceding t
B=temp$s>permanent$r[t+1] #####
B=rep(FALSE,length(A))
if(B&!A){
warning(paste("B&!A for t=",t,".\n"))
}

Only add element to set if it has a valid
#predecessor
if(t>=(2*attrb$minseglen-1)){
s.set = c(s.set,t+1-(attrb$minseglen))
}

Debug
if(my.debug){cat("t=",t,".\n")}
if(my.debug){temp}
if(my.debug){permanent}
if(my.debug){View(permanent)}

}

123

return(permanent)
}

B.4. Implementation of generalized PELT
This is the implementation of the of gPELT. As the objective of the im-

plementation is to make the algorithms as easy to understand as possible, it is
readable but not fast. The reader is invited to set my.debug=TRUE and run all
lines in gpelt.mycpt() except for for(t in (2*attrb$minseglen):(attrb$n)).
The code is also available at https://github.com/kristinbakka/generalizedPELT.
The algorithm is also presented as Algorithm 4.

dat=c(-4.19 , -3.35 , -6.17 , 2.84 , -0.197 , 1.75 , 1.36)
attrb=list(p=1,n=length(dat),minseglen=1,
pen=2*log(length(dat)))

gpelt.mycpt <- function(attrb,dat,type="1d.mean"){
Not manually debugging
my.debug=FALSE

This is an overly complex way to do it, but gives a table
"permantent"
that is easier to interpret to understand the algorithm

Is type among the selection of cost functions
if(attrb$p==1){

if(!is.element(type,c("1d.mean","1d.meanvar",
"pd.meanvar.diag","mbic.1d.mean","mbic.1d.meanvar",
"mbic.pd.meanvar.diag"))){

return("Type is not valid.")
}
dat=matrix(dat,ncol=1)

}else{
if(!is.element(type,c("pd.mean","pd.meanvar.diag",
"pd.meanvar.full","mbic.pd.mean",
"mbic.pd.meanvar.diag","mbic.pd.meanvar.full"))){

return("Type is not valid.")
}

}

Initialize first step such that

https://github.com/kristinbakka/generalizedPELT

124

inherit = 0, F(0) = -\pen, s.set={0}, r(0)=0
Outer data frame of t,F,r
permanent <- data.frame(t=seq(0,attrb$n),
F.val=rep(NA,attrb$n+1),r=rep(NA,attrb$n+1))
permanent[1,2:3]=c(-attrb$pen,0)

Initialize first step such that
for(t in attrb$minseglen:min(2*attrb$minseglen-1,attrb$n)){

predecessor is 0th data point
permanent[permanent$t==t,2:3]=

c(cost.mycpt(intv.dat=dat[(1):t,],type=type,n=attrb$n),0)
}
Return if finished
if(attrb$n<2*attrb$minseglen){

return(permanent)
}
Else construct Inherit such that
When we inherit from time t, we get the s.set
at Inherit[[t+1]]
inherit$q is the data point we inherit from,
inherit$s is the pruned s.set at the time we inherit from
Inherit=as.list(c(rep(0,2*attrb$minseglen),
rep(NA,attrb$n-3*attrb$minseglen+1)))

if(my.debug){t=2*attrb$minseglen-1}

####
Compute for the rest of the data points
for(t in (2*attrb$minseglen):(attrb$n)){

if(my.debug&&(t%%25==0)){cat("t=",t,".\n")}
if(my.debug){t=t+1}
Combine inherited and earned data points to get s.set
s.set=c(Inherit[[t-attrb$minseglen+1]], #inherited

max(attrb$minseglen,
t-2*attrb$minseglen+1):(t-attrb$minseglen)) #earned

For a changepoint at t find
best most recent changepoint s
Use cost function to compute int.cost C(s+1,t)
for all s in s.set

125

temp<-data.frame(
s=s.set,
int.cost = sapply(s.set, function(x)
cost.mycpt(intv.dat=dat[(x+1):t,],type=type,n=attrb$n))

)
Compute full cost and pruning cost
temp$full.cost <- permanent[s.set+1,2] + temp$int.cost +
attrb$pen
temp$prune.cost<- permanent[s.set+1,2] + temp$int.cost

Determine smallest (optimal) full cost
Save smallest (optimal) full cost
permanent$F.val[t+1]=min(temp$full.cost)

Save previous changepoint, the s with smallest full cost
That is the last s for which F.val is minimal
permanent$r[t+1]=
tail(temp$s[temp$full.cost==permanent$F.val[t+1]],1)

Remove non-optimal predecessors
Remember which data points to inherit
s with smaller pre-beta cost, the ones to keep
A=temp$prune.cost<=permanent$F.val[t+1]

Only add element to next s.set if it has a
valid predecessor
if(length(A==TRUE)==0){

Inherit[[t+1]]=NULL
}else{

Inherit[[t+1]]=temp$s[A]
}

Debug
if(my.debug){t}
if(my.debug){s.set} #current s.set to go through,
out to be 0 until 2*minseglen

if(my.debug){t}
if(my.debug){temp}
if(my.debug){Inherit[[t+1]]}
if(my.debug){t-(attrb$minseglen)} # Inherited from
if(my.debug){inherit$s[inherit$q==t]} # legacy

126

(inheritance passed on from this node (ought to be 0
until 2*attrb$minseglen)

if(my.debug){temp}
if(my.debug){permanent}
if(my.debug){View(permanent)}

}
if(FALSE){cat('\n1 run of gPELT performed.\n')}
return(permanent)

}

	Introduction
	Statistical background
	Anomaly detection
	Detection setting
	Evaluation of detection method
	Likelihood
	Likelihood ratio test
	Model selection

	Single parameter changepoint detection
	The changepoint model
	Likelihood of the changepoint model
	Model selection
	BIC
	mBIC
	mBIC likelihood term
	mBIC penalty term
	mBIC interpretation

	Optimization problem
	Optimal cost in changepoint detection algorithms
	Optimal cost with the model selection criteria
	Changepoint DAG

	Algorithms
	Binary Segmentation
	Optimal Partitioning
	Pruned Exact Linear Time

	Simulations and discussion
	Compare PELT and BinSeg using BIC
	No internal changepoints
	One internal changepoint
	Multiple internal changepoints

	The mBIC penalty
	Compare BIC and mBIC using PELT
	Preliminary discussion
	PELT vs BinSeg
	Online application
	BIC vs mBIC

	Multi-parameter changepoint detection with PELT
	The changepoint model
	Likelihood of a changepoint interval
	Likelihood maximization with PELT
	Likelihood based cost functions
	Detailed study of cost functions
	Estimate the mean only
	Estimate the mean and variance

	Model selection when the variance is known
	BIC
	mBIC
	Range of penalties (CROPS)

	Model selection when the variance is unknown
	mBIC
	BIC inspired cost functions

	Algorithms
	gOP
	Straight forward PELT
	gPELT

	Discussion and conclusion
	Alternate model selection criteria
	Conclusion

	Bibliography
	Appendix Likelihood and cost functions for multivariate Gaussian data
	Known covariance matrix
	Diagonal covariance matrix
	Unknown covariance matrix

	Appendix R-code
	Make use of the package changepoint
	Cost functions
	Univariate
	Multivariate

	Implementation of generalized OP
	Implementation of generalized PELT

