
Autonomous Target Detection and
Tracking for Remotely operated Weapon
Stations

Vetle Bjørngaard Gundersen

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology



 



Preface

This Master’s thesis is a proposition of a novel system implementation for au-
tonomous target detection and tracking, based on state-of-the-art computer vi-
sion methods. The assignment of exploring a relevant solution to combine a
detector and a tracker was given by Kongsberg Defence & Aerospace (KDA),
division Protech, and was carried out in the Spring semester of 2018. One of
the main considerations for the tracking application is future deployment on the
Nvidia Jetson TX2 module, which is an embedded platform. This is to make
detection and tracking possible for a PROTECTOR Remote Weapon Station
(RWS), a product delivered by KDA. The starting point for this thesis is my
own preliminary project [1], from the Fall semester of 2017. This was a literature
study on relevant computer vision methods for an autonomous object detection
and tracking system, and the results from the preliminary work are the methods
used in this thesis. For a complete presentation of the background and methods,
some of the sections in this thesis are based on work presented in the preliminary
project report.

Trondheim, June 9, 2018

Vetle Bjørngaard Gundersen

i





Acknowledgements

I am thankful for all the support, motivation and feedback from both friends and
family during my work with this thesis. In addition to this, I would like to extend
my sincere gratitude to ...

... Professor Jan Tommy Gravdahl, my supervisor at the Department of
Engineering Cybernetics at NTNU, for supporting a thesis outside of his
own area of expertise. His guidance has been important for continuous
progress, and I believe that this thesis has been enlightening for the both
of us.

... Erik Marius Gamborg, my supervisor and Senior Software Engineer at
Kongsberg, for showing trust in my decisions and providing feedback and
ideas at odd hours. I appreciate the opportunity to carry out a rewarding
assignment for Kongsberg Defence & Aerospace.

... Sara A. Kjærvik, for pointing out the necessity of proofreading and self-
lessly taking her time to do so with parts of this thesis.

... Sibel K. Solberg, for being my rock. I would never be where I am today
without her infinite love and support.

iii





Abstract

This Master’s thesis proposes a novel implementation of an autonomous tracker
in Python, which combines a deep learning detection module and a point based
tracking module. An accurate detection will introduce latency if the video cap-
ture rate exceeds the processing rate. The use of a frame buffer, a key element
of the combination design, will compensate for this weakness. All frames period-
ically skipped by the detector will be stored, and a fast tracker will process the
buffer to provide an updated object prediction for the current frame. The system
implementation is developed with focus on future deployment on a Nvidia Jetson
TX2 embedded platform, and utilizes Google’s TensorFlow object detection API
and the OpenCV object tracking API. The autonomous tracker is evaluated on
a number of relevant videos, with a hybrid measure combining the bounding box
overlap and a new proposed distance error score. The final system configuration,
with a lightweight neural network for detection and the median flow algorithm
for tracking, show real-time performance on a quad-core CPU.

v





Sammendrag

Denne masteroppgaven foreslår en ny implementasjon av en autonom målføl-
ger i Python, som kombinerer en deteksjonsmodul basert på dyp læring og en
punktbasert målfølgingsmodul. En nøyaktig deteksjon vil introdusere forsinkelse
hvis frekvensen på henting av nye bilder fra videoen overstiger frekvensen av
deteksjoner som leveres. Bruken av et bildebuffer, som er et hovedelement i
kombinasjonsdesignet, vil kompensere for denne svakheten. Alle bildene som da
jevnlig blir utelatt av detektoren vil bli lagret, og en rask målfølger vil gå ig-
jennom bufferet for å levere et oppdatert objektforslag for det nåværende bildet.
Systemimplementasjonen er utviklet med fokus på fremtidig distribusjon for en
Nvidia Jetson TX2 innebygd [embedded] platform, og bruker Googles TensorFlow
objektdeteksjons-API og OpenCV målfølgings-API. Den autonome målfølgeren
vurderes mot en rekke relevante videoer, med et hybridmål som kombinerer over-
lappet til en avgrensningsboks [bounding box] og et nytt mål for avstandsfeil.
Den endelige systemkonfigurasjonen, med et lettvekts nevralnett for deteksjon
og «median flow»-algoritmen for målfølging, viser sanntidsytelse på en firekjær-
net CPU.

vii





Contents

Preface i

Acknowledgements iii

Abstract v

Sammendrag vii

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Remote Weapon Station . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Object Detection and Tracking Methods . . . . . . . . . . . 3

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

ix



CONTENTS

I Theory 13

2 Computer Vision Fundamentals 15
2.1 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Feature Description . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Models for Supervised learning . . . . . . . . . . . . . . . . 28

3 Computer Vision Application 33
3.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Detection Method . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Tracking Method . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Point Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Data Structuring . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Proposition of a Hybrid Tracking Measure . . . . . . . . . . 53

II Implementation 57

4 Software 59
4.1 Frameworks and Supportive Software . . . . . . . . . . . . . . . . . 61

4.1.1 Deep Learning Framework . . . . . . . . . . . . . . . . . . . 61
4.1.2 Tracker Implementations . . . . . . . . . . . . . . . . . . . 66
4.1.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Available Computer Vision Data . . . . . . . . . . . . . . . . . . . 68
4.2.1 Benchmark Data Sets . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Custom Test Videos . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . 71

x



CONTENTS

5 System Implementation 73
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Application Work-flow . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Post Processing of Raw Predictions . . . . . . . . . . . . . . 81
5.2.4 Video Display . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.5 Command Line Interface . . . . . . . . . . . . . . . . . . . . 83
5.2.6 Data Processing Scripts . . . . . . . . . . . . . . . . . . . . 87

5.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.1 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

III Evaluation 89

6 Results 91
6.1 Tracking in Test Videos . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1.1 Video: HobbyKing . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.2 Video: BlurBody . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.3 Video: Dancer2 . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.4 Video: David3 . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.5 Video: Human2 . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.6 Video: Jump . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.7 Video: Woman . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1.8 Total Tracking Performance . . . . . . . . . . . . . . . . . . 99

7 Discussion 101
7.1 The Autonomous Tracker . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.2 The Embedded Platform . . . . . . . . . . . . . . . . . . . 102
7.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Performance in Test Videos . . . . . . . . . . . . . . . . . . . . . . 104
7.2.1 The Selected Videos . . . . . . . . . . . . . . . . . . . . . . 104
7.2.2 Evaluation of the Results . . . . . . . . . . . . . . . . . . . 104
7.2.3 Bounding Box Consideration . . . . . . . . . . . . . . . . . 106
7.2.4 The Proposed Hybrid Measure . . . . . . . . . . . . . . . . 107

xi



CONTENTS

8 Conclusion and Further Work 109
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2.1 Work-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.3 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A The GitHub Repository 113
A.1 detection-and-tracking/ . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 host/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 host/scripts/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.4 host/test/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.5 target/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.6 videos/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

xii



List of Figures

1.1 PROTECTOR RWS . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Computer vision structure . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Intuitive system model . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Image representation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Harris corner response . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Corner detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Difference of Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 SIFT descriptor steps . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Example of HOG features . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 SVM - Kernel trick . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Illustration of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Simple mathematical model of a neuron . . . . . . . . . . . . . . . 30
2.11 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Typical structure of an Artificial Neural Network . . . . . . . . . . 32

3.1 Detection pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Structure of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Tracking pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Extended tracking pipeline . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Limitations of point tracking . . . . . . . . . . . . . . . . . . . . . 45
3.7 State variable update . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Data set separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii



LIST OF FIGURES

3.10 Center distance error . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.11 Distance Score Illustration . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 TensorRT work-flow . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Custom videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Frame processing timeline . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 System decision tree and module interaction . . . . . . . . . . . . . 76
5.3 Video overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Frames from tracking in HobbyKing.mp4 . . . . . . . . . . . . . . 92
6.2 Performance plot for HobbyKing.mp4 . . . . . . . . . . . . . . . . 92
6.3 Frames from tracking in BlurBody.mp4 . . . . . . . . . . . . . . . 93
6.4 Performance plot for BlurBody.mp4 . . . . . . . . . . . . . . . . . 93
6.5 Frames from tracking in Dancer2.mp4 . . . . . . . . . . . . . . . . 94
6.6 Performance plot for Dancer2.mp4 . . . . . . . . . . . . . . . . . . 94
6.7 Frames from tracking in David3.mp4 . . . . . . . . . . . . . . . . . 95
6.8 Performance plot for David3.mp4 . . . . . . . . . . . . . . . . . . . 95
6.9 Frames from tracking in Human2.mp4 . . . . . . . . . . . . . . . . 96
6.10 Performance plot for Human2.mp4 . . . . . . . . . . . . . . . . . . 96
6.11 Frames from tracking in Jump.mp4 . . . . . . . . . . . . . . . . . . 97
6.12 Performance plot for Jump.mp4 . . . . . . . . . . . . . . . . . . . . 97
6.13 Frames from tracking in Woman.mp4 . . . . . . . . . . . . . . . . . 98
6.14 Performance plot for Woman.mp4 . . . . . . . . . . . . . . . . . . 98
6.15 Average tracking scores for the test videos . . . . . . . . . . . . . . 99

7.1 Difference in bounding box approach . . . . . . . . . . . . . . . . . 106

xiv



List of Tables

1.1 Comparison of object detection approaches . . . . . . . . . . . . . 5
1.2 Comparison of object tracking methods . . . . . . . . . . . . . . . 5

3.1 Prediction outcomes for object detection . . . . . . . . . . . . . . . 50
3.2 Calculation of mAP . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Deep learning frameworks . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 License permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 License conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 License limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Custom test videos . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Object detection models . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Performance summary . . . . . . . . . . . . . . . . . . . . . . . . . 99

xv





Acronyms

AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface

CNN Convolutional Neural Network
CV Computer Vision

DoG Difference of Gaussian

FOV Field of View
FPS frames per second

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection over Union

LoG Laplacian of Gaussian

mAP mean average precision

xvii



Acronyms

R-CNN Region based CNN
RoI Region of Interest
RPN Region Proposal Network
RWS Remote Weapon Station

SIFT Scale Invariant Feature Transform
SVM Support Vector Machine

xviii



Chapter 1
Introduction

1.1 Background
This section is based on sections 1.1 and 1.2 of the preliminary project [1].

1.1.1 Motivation
The research area of Computer Vision (CV) can be traced back to the late 1960’s,
and was meant to mimic the human vision system for creation of robots with in-
telligent behaviour. The “visual input” problem was at this time believed to be
an easy step along the way of more complex systems. A student at MIT was
simply assigned a task to “spend the summer linking a camera to a computer
and getting the computer to describe what it saw” [2, p. 781]. Today, this state-
ment can be seen as a great underestimation of the problem of having computers
acquire, process, analyze, and understand digital images the way humans do.

Digitalization of visual input is a form of innovation that is and will be the
future of many industries. As with all innovation, the field of CV is driven by
technological advancements, industrial competition and an ongoing need for bet-
ter solutions. First, the development of the Graphics Processing Unit (GPU),
using dedicated hardware to process images, made visual solutions more attrac-
tive. Then, competition pushes the need for better visual sensors, as with the
automotive industry and their development of driver-less cars. Furthermore, the
application area of human assistance emerges as an important factor. This can
for instance be interpretation of medical images, or detection of abnormal be-
haviour in surveillance videos.

1



1.1. BACKGROUND

Finally, there is a demand for new solutions to counter the issues that arise in
the wake of new technology. Consumer-friendly drones raise important issues on
how abuse of technology may threaten privacy and security. This was uncovered
when a drone landed on the lawn of the White House in 2015 - undetected [3].
And more recently, 2018 became the year of “the first announced use of a swarm
of drones in a military action” [4]. From a security and defence perspective, the
application of CV for object detection and tracking is more relevant than ever.

1.1.2 Remote Weapon Station
A Remote Weapon Station (RWS), as seen in Figure 1.1, is a platform for light
and medium range weapons, mounted on top of a vehicle or any other surface [5].
This is a system which enables an operator to handle weapons, as well as observe
targets through different cameras, in a more protected environment; seated inside
a vehicle or at another remote location. To further develop this remote system
a natural step would be, if not automate target acquisition completely, to assist
an operator in the process of finding targets. For the case of the PROTECTOR
RWS, this will include taking advantage of the camera video already available,
which is displayed on a control screen for the operator.

Figure 1.1: Image of a PROTECTOR Remote Weapon Station (RWS).

2



1.1. BACKGROUND

The application platform for an autonomous target detector and tracker should
be irrelevant. Regardless of it being an autonomous vehicle, a RWS mounted on
a vehicle or a stationary camp protection, the task at hand will remain the same;
find the target and keep hold of it. For the field of computer vision this can be
translated into detection and tracking of objects.

1.1.3 Object Detection and Tracking Methods
In the preliminary project [1], the objects drone, person and vehicle were dis-
cussed as relevant targets for the application area of the RWS. These objects
are relevant target classes from a defence perspective, but they are also trending
objects in other CV research and application areas. The most important issue
to address for these objects, is the representation difficulty. When taking their
physical attributes into account, it is difficult to find common ground of which
to simplify a representation model. For their structure, both drones and vehicles
are rigid objects, but a person is non-rigid. The motion pattern for both person
and vehicle tend to be somewhat predictable, but drones can fly in irregular and
unpredictable patterns. In size these three objects are all usually different, rang-
ing from small to large.

Several surveys on detection and tracking were used to organize the most popular
methods and algorithms [1]. The resulting structure is illustrated in Figure 1.2.
Furthermore, relevant methods in light of the RWS application environment were
evaluated by qualitative measures. A detector can be compared on attributes such
as decision accuracy, processing speed and generality. A tracker can be compared
on its handling of occlusion, entry/exit of objects, whether it can be optimized
and if it can handle more than one object at the same time. Table 1.1 and Ta-
ble 1.2 show a summary of the findings. Each method category is reduced to only
show the qualities of the method with the best attributes. From these tables, it
is suggested that an accurate deep learning detector could be combined with a
fast point based tracking method, for an acceptable result in the RWS application
area.

3



1.1. BACKGROUND

Autonomous 
Detection and 

Tracking

Computer 
Vision

Recognition Detection

Tracking

Coarse-to-fine and 
boosted classifiers

Dictionary based

Deformable part-based 
models

Deep Learning

Trainable image 
processing architectures

Point Tracking

Kernel Tracking

Silhouette Tracking

Figure 1.2: Sub-categories of computer vision, when used for the task of au-
tonomous detection and tracking. Both detection and tracking can be divided
into several methods.

4



1.1. BACKGROUND

Table 1.1: Qualitative comparison of object detection approaches, based on Ta-
ble 1 in [6], and originally presented for the preliminary project [1].

Category Accuracy Speed Generality

Coarse-to-fine and
boosted classifiers

Dictionary
based
Deformable
part-based models

Deep
learning

Trainable image
processing architectures

Legend: Good, Medium, Bad

Table 1.2: Qualitative comparison of object tracking methods, based on table in
[7], and originally presented for the preliminary project [1]. The table indicates
the events of multiple objects, object entry, exit and occlusion, and if the method
provides an optimal solution to the cost function minimized.

Category Occlusion Entry Exit Optimal Multiple

Point tracking

Kernel tracking

Silhouette tracking

Legend: Yes, No

5



1.2. PROBLEM DESCRIPTION

1.2 Problem Description
This thesis will focus on autonomous functionality for remotely operated weapon
stations. A RWS typically provides one or more cameras in addition to a control
interface for an operator. State-of-the-art CV methods can therefore be used on
the camera video to automate certain tasks, which can be useful in several sce-
narios. One example is camp protection, in which there may be more than one
weapon station per operator. In this case it will be useful with a system to assist
the operator in finding and surveilling targets. The weapon station will provide
the ability to search for relevant targets, and track them until the operator can
evaluate them and decide on the appropriate course of action. This kind of au-
tonomous functionality can also be useful for a weapon station mounted on an
autonomous vehicle. The weapon station can then autonomously look for targets
while the vehicle is on the move, and alert the operator when there are potential
threats. Both scenarios can benefit from an accurate target detector back-end
for finding potential targets. A target tracker front-end can then maintain track
of the target until the operator has time to consider it.

With the background as described in section 1.1, and the preliminary litera-
ture study [1] of applicable CV methods, this thesis will describe and test a novel
implementation of a detection module combined with a tracking module. The
motivation for combining two such modules explicitly, is because of the real-
time demands on a vision based system. The hazardous working environment
of a RWS requires the system to process live camera video, and present instant
feedback to the operator - that is, track target objects in real-time. However, a
thorough processing of images takes time, in which there is an obvious trade-off
in accuracy and speed for a detector. A solution to this compromise will be ex-
plored in terms of designing a system to initialize a fast tracker with accurate
detections - resulting in an autonomous object tracker.

The tracking application will be implemented with focus on running on an embed-
ded platform in the future, specifically the Nvidia Jetson Tegra X2 development
module (Jetson TX2). This is to keep the tracking system close to the RWS,
to minimize video transportation overhead, and create a general module to be
installed for different scenarios. With rights to this hardware, a relevant software
framework must be chosen to realize deep learning for object detection and a
point based tracking algorithm.

6



1.3. APPROACH

1.3 Approach
The problem of providing autonomous assistance to an operator of a weapon
station, as in the scenarios described in section 1.2, is put together by a series of
complex issues. From choosing the right video input format and processing the
video, to providing final results in form of graphics - or even regulation of weapon
station movements. This thesis will therefore only focus on the video processing,
and present performance results in a convenient manner for discussion purposes.

Problem steps
With this thesis, the problem will be broken down into the following steps:

1. Introduce CV operations and the suitable detection and tracking methods
as determined by the preliminary work [1].

2. Choose a relevant software framework to implement object detection and
tracking.

3. Research relevant data sets of images for the deep learning approach, as
well as videos for performance testing of the final tracking application.

4. Create a module based system architecture for the combination of detection
and tracking, with focus on a solid foundation for further development.
The idea of how a tracker can be periodically corrected by a detector is
illustrated in Figure 1.3.

5. Explore implementation of a single target tracking system for the Jetson
TX2 embedded platform.

Figure 1.3: An intuitive system model, combining a detector and a tracker in a
feedback loop. The tracker is initialized by the detector, with a periodic correc-
tion.

7



1.4. CONTRIBUTIONS

Assumptions
This approach to the problem is based on the following assumptions:

1. The research area of CV is not lectured by the department of Engineering
Cybernetics, so an introduction to basic image processing is necessary.

2. The object class drone is the most relevant class in terms of recent defence
activities, but for tracker evaluation it is the drone characteristics that
are interesting. Any similar class of small objects with irregular motion
patterns can compensate for lack of annotated drone data, and can replace
it for testing.

3. Future work on object tracking for embedded deployment will benefit from
a solid software foundation, and a “best practice” use of the third-party
tools utilized in the system.

4. The system design and architecture developed in this thesis is not in any
way claimed to be optimal. The system is provided as a proof of concept
based on an intuitive approach, but nevertheless implemented with focus
on maintainability for any further development.

5. The real-time constraint to consider is the definition of live camera video.
For this problem, the constraint is measured in frames per second (FPS) -
that is, the capture rate of the camera. For both 4:3 and 16:9 frame aspect
ratios, 30 FPS is a commonly used and reasonable capture/display rate [8].

1.4 Contributions
This thesis provides the following contributions:

1. Practical use of state-of-the-art CV methods, with focus on future RWS
applications

2. Proposition of a new center distance score, and a hybrid measure, for tracker
performance

3. A solution to how a detection module and a tracking module can be com-
bined in practice

4. Implementation of an autonomous tracking application with real-time per-
formance

5. Open source GitHub repository [9] (see Appendix A) for further develop-
ment

8



1.5. RELATED WORK

1.5 Related Work
A consideration of related work for the objective of the thesis may give a brief
insight of what to expect. When regarding the embedded platform Jetson TX2,
a proposal of a computer vision system for detection and tracking is previously
provided for an older Jetson platform [10]. This implementation for a Jetson TK1
(an older model) utilizes software tools customized for the platform, in addition
to the deep learning framework Caffe, to implement the use of a convolutional
neural network (CNN). The authors also stress how a combination of CV mod-
ules demand high-performance embedded-processing hardware, such as a GPU,
to enable real-time behaviour. This is supported by another paper with a CNN
based tracking implementation [11], which states that a better GPU is required
to train and test a neural network in reasonable time. The implementation pro-
posed show how the classification ability of a CNN can be used in a tracking task.

With an interest in drones, a large data set with representative images of this
class will be required for a deep learning approach - which is assumed to be an is-
sue. One solution to the scarce data problem is to create artificial images. A very
recent paper [12] describes an algorithm for posting images of drones at random
positions in frames taken from a video. With control of the object placement,
associated ground truth annotations are created as well. The artificial data set is
used for training of a CNN detection model, and proved successful by detecting
drones and distinguishing them from birds.

These papers are related to the problem of this thesis in terms of platform fo-
cus, the deep learning approach and data set consideration. This serves as an
indication of what to expect in the process of implementing a computer vision
based application. With regards to the Jetson TX2, it will be important to fo-
cus the development on software compatible with the limited hardware of the
platform. A future deployment will benefit from the use of versatile develop-
ment tools and software with support of runtime optimization. In case of scarce
data for a specific object class, the system can still be evaluated with another
class to illustrate application behaviour - with the notion that a data set can be
artificially generated at a later step in the development process.

9



1.6. STRUCTURE OF THE THESIS

1.6 Structure of the Thesis
The structure of the thesis is designed to reflect the sub-tasks presented in sec-
tion 1.3. An overall chapter sectioning, in three parts, is enforced to illustrate
the development process of the tracking application.

Part I - Theory
The first part serves as an introduction to CV, and the relevant methods for the
problem approach.

Chapter 2: Introduces basic image processing operations, which is the
foundation of CV. From image filtering and feature description, to different
architectures for machine learning.

Chapter 3: Provides definitions on visual object detection and tracking,
introduce the methods intended for the implemented application, and the
most common performance metrics for detection and tracking. In addi-
tion to this, the final subsection defines a new hybrid tracking measure to
evaluate tracker performance.

Part II - Implementation
The second part is an elaboration on the software components of the system,
with a complete description of the developed application.

Chapter 4: Is a discussion of available software frameworks and data rel-
evant to the detection and tracking application. It also highlights different
aspects for consideration when relying on open source software.

Chapter 5: Describes the system design and architecture for a command
line application implemented in Python. This includes presentation of the
intended work-flow, limitations and the final application interface.

Part III - Deployment
The third part is a discussion on the performance of the implemented application.

Chapter 6: Presents the performance results of the implemented tracking
application. It is important to notice that different data sets and videos
are used to illustrate the different aspects of this specific combination of
detection and tracking methods.

Chapter 7: Discuss the final tracking application and the performance
results in terms of the objective of this thesis.

Chapter 8: Presents concluding remarks on the proposed tracking appli-
cation, and provides relevant notes on how to further develop the tracking
system as it is described in this thesis.

10



1.6. STRUCTURE OF THE THESIS

Appendix A: Provides an overview of the publicly available, open source,
GitHub repository created for the purpose of this thesis.

11





Part I

Theory

“Simplification is one of the
most difficult things to do.”

Sir Jonathan Ive

13





Chapter 2
Computer Vision
Fundamentals

Contents:
This chapter introduces basic image processing operations, which is the founda-
tion of CV. From image filtering and feature description, to different architectures
for machine learning.

Literature review:
In Computer Vision: A Modern Approach [13], Forsyth and Ponce present CV
with a bottom-up approach; from a physical understanding of the image forma-
tion, to the high level application areas of object classification. CV as a field
can be considered disorganized, and this is (from their preface) because it is an
"intellectual frontier". The book succeeds in presenting an orderly picture of CV,
based on decades of experience within the field. This is why it provides a good
baseline for the theory of this report.

Even though the book [13] includes a broad range of application as an improve-
ment in the second edition, the book Computer Vision: Algorithms and Appli-
cations [14] has this in focus. Szeliski provides a book with a more hands-on
approach to CV, with algorithms that have real-world applications and work well
in practice. This is based on his experience in computer vision research in cor-
porate research labs. Digital Image Processing [15] is also used as a source to
further cover the ground on general background mathematics, which is preferred
before studying CV techniques. Basic image processing techniques are covered
elaborately in this book, which also includes object recognition in the last chap-

15



ter. Finally, an introduction to artificial intelligence from Artificial Intelligence:
A Modern Approach [16] is included in the source material. This is because learn-
ing is an important part of the application of CV, and the topic is treated in this
book. Both the section on machine learning and artificial neural networks are
relevant.

All of the books mentioned above are recommended and used as curriculum in
image processing, computer vision and artificial intelligence courses at NTNU.
They are all published after 2010, and most of them contain references to recent
work done within the field of CV.

16



2.1. IMAGE PROCESSING

2.1 Image Processing
2.1.1 Filtering
This subsection is based on section 2.1 of the preliminary project [1].

With an image sensor, e.g. a camera, a scene is quantified into an n-dimensional
map of discrete values. A basic grey image is a 2D-map of intensity values repre-
senting shades from black to white, and a Red-Green-Blue (RGB) color image is
a 3D-map because of its multiple color channels defining each pixel. This type of
color image, with channels/layers of red, green and blue combined to create dif-
ferent colors, can be defined as a three-dimensional intensity function f(x, y, z).
The intensity of color channel z is given at the spatial coordinates (x, y). With
the origin (0, 0) of a color channel usually defined as the top left corner, the
spatial representation can be illustrated as in Figure 2.1a.

(a) Spatial representation of a single
color channel in an image.

(b) Sliding window tech-
nique. A visualization of
the iteration process of an
image, with a 3 × 3 kernel
on a 9 × 12 image.

Figure 2.1: Image representation.

Image processing, like sharpening or blurring, can from this kind of image repre-
sentation be defined as mathematical operations. A new manipulated image can
be created by combining a spatial filter (also called matrix/kernel/mask/tem-
plate/window) with an image, a process called filtering. When combining a
spatial filter with an image, the iteration over an M × N image can be visu-
alized as a sliding window across the M rows and N columns, as it is illustrated
in Figure 2.1b. The nature of the filtering process, i.e. the resulting image,
is determined by the kernel used. A kernel with e.g. slightly negative values
and a positive value in the middle would enhance contrasts and suppress smaller
changes, which is a sharpening of the image.

17



2.1. IMAGE PROCESSING

On the other hand, a smoothing/blurring of the image would require the in-
tensity values in a neighbourhood to be more equal to each other. An averaging
filter, with a kernel to add intensity values in a neighbourhood and divide them
by the kernel size, is a linear filter which creates this blurring effect. This is also
the case for a Gaussian smoothing filter: a square kernel with values to repli-
cate a Gaussian normal distribution, divided by the kernel sum. The Gaussian
smoothing operation is basically a weighted average of a neighbourhood, with
the most central pixel value contributing the most.

These filters, however different their kernels might be, are all kernels correlated
with an image. This correlation can also be described as a convolution if the same
kernel is rotated 180 degrees (flipping both rows and columns of the kernel). From
this, a filtered image g(x) can be defined as a convolution:

g(x) = w(x, y) ∗ f(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t) (2.1)

Equation 2.1 is the discrete convolution of a kernel w with a spatial image f . The
image function f is a discrete function, because of the discrete intensity values
at each position (x, y). (The convolution of a continuous function is originally
described by an integral, which becomes a sum when the function is discrete).
The reason why it is important to express a filtering process as a convolution,
is because of the identity found in the convolution theorem. One half of the
theorem is denoted in Equation 2.2:

f(t) ∗ w(t)⇐⇒W (µ)F (µ) (2.2)

Equation 2.2 indicates that a convolution between two functions in the spatial
domain, is a multiplication in the frequency domain. As long as the filtering
operation is linear, it does not matter whether it is done in the spatial or frequency
domain. In the spatial domain a filtering process is more intuitive, as of how the
image is traversed with a kernel (sliding window), and how a neighbourhood is
weighted. As for the frequency domain it is no point in visualizing the process,
but the operation is easier to implement, and it is arguably faster to perform
two discrete Fourier transforms and a matrix multiplication (of which the whole
image is processed at once).

18



2.1. IMAGE PROCESSING

The key transformation for this implementation is the 2D discrete Fourier transform
(DFT) [15, p. 257]:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π( ux
M + vy

N ) (2.3)

Equation 2.3 denotes the DFT of an M × N digital image. To be able to use
the identity given by the convolution theorem, the discrete Fourier transform
and the inverse Fourier transform is used. The ability to do a transformation
to the frequency domain and back is indicated with the double sided arrow in
Equation 2.2.

2.1.2 Feature Extraction
This subsection is based on section 2.2 of the preliminary project [1].

The first kind of features to stand out when looking at an image are those with
distinct shapes and boundaries. To be able to describe these we are interested in
edge segments to create regions, and corners to be able to determine specific lo-
cations. The concept of these key point features or interest points will be further
explained, with examples on how to extract them.

Edge
A first step towards any method to interpret an image is to extract information
which describes the scene. Usually there is a distinction between relevant and
irrelevant scene elements, which can be noted as the foreground and the back-
ground. To distinguish an element from its background intuitively we know that
there are regions, even visual boundaries, that separate these. A boundary of a
finite region creates a closed path, and can be seen as a “global” concept. To be
able to determine a boundary, we use edges, which per definition is not necessar-
ily a complete line: “The idea of an edge is a “local” concept that is based on
a measure of intensity-level discontinuity at a point.”[15, p.92] This means that
when multiple edge points are linked together in segments, these edge segments
can be linked to correspond a boundary, but it is not always the case. An edge
segment, or just edge, is a curve that follows a path of rapid change in intensity.

Whether or not an edge segment (or just edge) can be defined as a boundary,
edges are features which describes the content of an image. A common algorithm
for extracting edges is the Canny Edge detector.

19



2.1. IMAGE PROCESSING

The steps of the algorithm [15, p.745]:

1. Smooth the input image with a Gaussian filter.

2. Compute the gradient magnitude and angle images.

3. Apply non-maxima suppression to the gradient magnitude image.

4. Use double thresholding and connectivity analysis to detect and link edges.

Step (1) is to prevent edges to be extracted from noise. The gradient is computed
in step (2) because an edge is defined as an intensity discontinuity, and this is done
with a derivative filter. With step (3) the algorithm provides a single edge point
response, to only identify a single edge point with each true edge point. Finally,
a double threshold is provided in step (4) to only preserve the strongest edge
points (high threshold) and the weak edge points (low threshold) connected to a
strong edge point. The output is a feature map of edge segments, as illustrated
in Figure 2.2.

(a) Original image. (b) Canny edge detection.

Figure 2.2: Edge detection of image.

Corner
Even though edges describe features in an image, it is difficult to determine which
edge points are the same in two closely related images. When a window is trans-
lated along an edge in an image, it is not possible to determine a location because
the image patch in the window will not change significantly. This is the same
as sliding the window across a region of constant value: it does not provide any
useful information (also known as the aperture problem). Even if it is to relate
two camera models of a scene, or to determine the trajectory of an instance in se-
quential images, we are interested in features we can localize. A corner is a point
with this attribute. It does not only provide a distinct location of discontinuity

20



2.1. IMAGE PROCESSING

in the intensity (edge), but a change in direction of an edge segment. A corner
point can be identified with a specific (x, y)-value in an image f .

Intuitively, an idea would be to walk along an edge until it changes direction.
The problem with this is that most edge detectors fail at corners, because cor-
ners are covered by a smoothing filter. For corners, there is a need for a more
tailored algorithm to avoid this problem. A common algorithm for this is the
Harris corner detector, with the following steps:

1. Spatial derivative calculation

2. Structure tensor setup

3. Harris response calculation

4. Non-maximum suppression

In step (1), the rate of intensity change is calculated. The classic Harris detector
uses a simple 1D derivative filter, but in more resent years the image is rather
convolved with the horizontal and vertical derivatives of a Gaussian. From the
spatial derivatives, we can construct a structuring tensor S in step (2). The
notation for this is different in both [13, p. 150] and [14, p. 212], but can be
defined as S in Equation 2.4:

S(x, y) =
∑

window

{(∇I)(∇I)T } ≈
∑
m

∑
n

w(m,n)
[
I2
x IxIy

IxIy I2
y

]
(2.4)

The m × n window entails the directional gradients, modified with a weight w
which diminishes the contribution of positions that are far away from the central
pixel (x, y). We are interested in the eigen values of this tensor, λ1 and λ2, to
calculate the Harris response R in step (3). A simple quantity to use is defined
in Equation 2.5:

R = det(S)− αtrace(S)2 = λ1λ2 − α(λ1 + λ2)2 (2.5)

With α being an empirically determined constant (α ∈ [0.04, 0.06]). How the
Harris response R is interpreted is illustrated in Figure 2.3. From step (4), only
the pixels with a response above a given threshold is kept as a corner. An example
of the result of a Harris corner detection is shown in Figure 2.4.

21



2.1. IMAGE PROCESSING

Figure 2.3: Illustration of Harris corner response: Relation between the magni-
tude of the structuring tensor eigenvalues (λ1, λ2), and the Harris response R.

Figure 2.4: Result of “Harris corner detection”.

22



2.1. IMAGE PROCESSING

2.1.3 Feature Description
This subsection is based on section 2.3 of the preliminary project [1].

After extracting interest points, the next step is to utilize them to describe the
scene in the image. A descriptor is a way of constructing features from interest
points. These features can be seen as more or less distinct patterns. Both SIFT
(Scale Invariant Feature Transform) and HOG (Histogram of Oriented Gradi-
ents) are common methods to represent and describe the features.

SIFT: Scale Invariant Feature Transform
A Scale Invariant Feature Transform (SIFT) descriptor uses both magnitude and
orientation of image gradients. The basic idea is to put image gradients into
histograms, based on orientation and magnitude, but this will confuse similar
patches of an image with each other. There are a few more steps to it, in order
to create a more distinct descriptor. The steps of the SIFT algorithm can be
summarized into the following (based on [13, p. 157] and [14, p. 223]):

1. Extract candidate/interest points from Difference of Gaussian (DoG) im-
ages.

2. Update location of candidate points by interpolating color values in neigh-
bourhood.

3. Eliminate low contrast candidates and candidate points along the image
edge.

4. Assign orientation to interest points, based on peaks in histogram of gradi-
ent directions in a small neighbourhood.

5. Histogram is normalized, thresholded and normalized again.

The first steps (1)-(3) are meant to extract distinct feature points, and the last
two steps (4) and (5) are the construction of the descriptor. Step (1) is based
on the concept that the DoG is an approximation of the Laplacian of Gaus-
sian (LoG), and it is easier to compute. The LoG is a combined two-step of
extracting image gradients, filtering the image with a Laplacian computed Gaus-
sian kernel. The Gaussian filters out noise, and a Laplacian filter extracts image
gradients. Multiple convolutions are then performed on an image, with different
scaled Gaussian, which gives a stack of Gaussian images. This is illustrated in
Figure 2.5. The difference of Gaussian is computed between two and two images,
creating a DoG image stack. With step (2), the candidates are then extremes
across scale images, which is an interpolation of the 3D neighbourhood with scale
image above and below. Step (3) only keeps the stronger interest points.

23



2.1. IMAGE PROCESSING

Figure 2.5: Difference of Gaussian. Image filtered by Gaussian with different
scales, to approximate Laplacian of Gaussian.

Figure 2.6: SIFT descriptor steps. (Source: [13, p. 157]).

24



2.1. IMAGE PROCESSING

The final steps are the interesting part of the SIFT construction, and are il-
lustrated in Figure 2.6. The image is divided into a n × n grid, and each grid
element into a m×m sub-grid. All pixels in a sub-grid element are represented in
a histogram separated in q different orientations. Each gradients impact on the
histogram is determined by magnitude, as well as its closeness to the center of
the sub-grid. For the detector to be invariant to effects of change in illumination
intensity, the histogram is normalized. Then, the histogram is cut by a threshold
t, to reduce very large gradients which tend to be unstable. After this it is re-
normalized. The dominant orientation is decided by the peak in the histogram.
A SIFT descriptor is a set of normalized histograms of image gradients.

HOG: Histogram of Oriented Gradients
The Histogram of Oriented Gradients (HOG) descriptor can be seen as a spe-
cial case of the SIFT descriptor. Just as with SIFT, gradient orientations are
organized in histograms, but for HOG features the process is adjusted to extract
high-contrast edges. From the SIFT algorithm, the histogram is normalized over
a neighbourhood, but for the HOG descriptor it is normalized with respect to
nearby gradients only. Even though an image is divided into a grid with sub-
grids, the normalization can occur over a different sub-grid element other than
the orientation sub-grid (initial division). With this overlapping normalization,
a gradient can contribute to multiple histograms, with different weights and out-
come. From [13, p. 160], we can express the weight of a gradient at position x
for a cell C as in Equation 2.6:

wx,C = ‖ ∇Ix ‖∑
u∈C ‖ ∇Iu ‖

(2.6)

The gradient magnitude ‖ ∇Ix ‖ is compared to the others in the cell. With
this, the HOG features are good at extracting outline curves from confusing
backgrounds, and is proven to be a good approach for human detection [17]
(because of the distinct "lollipop" shape from a persons silhouette).

25



2.1. IMAGE PROCESSING

Figure 2.7: Example of HOG features, represented as rose plots.

26



2.2. MACHINE LEARNING

2.2 Machine Learning
This section is based on section 2.4 of the preliminary project [1].

2.2.1 Learning
Learning, within the field of artificial intelligence, can be defined with the follow-
ing statement:

“ An agent [something that acts] is learning if it improves its perfor-
mance on future tasks after making observations about the world. ”
[16, p. 693]

The reason that a learning agent is attractive, instead of a designer implementing
all improvements of a system at first, is because of at least one of the three
following reasons [16]:

1. A designer can not anticipate all possible situations the agent will act in

2. A designer can not anticipate all changes over time

3. The designer does not know how to implement the solution

For CV, learning is interesting and useful for the purpose of classification. A
feature descriptor is part of the process, of which the features in a new image
should be matched to output a result. When the result is discrete we denote
the output with a class label (and when the result is a continuous value, it is a
regression problem). The general process of a classifier is to generate a weighted
output based on a set of input values. This means that the core of a classifier
lies in the structure of its weights: how they are combined and how they are
determined and updated. We are interested in updating the weights by previous
results, to improve the performance over time - thus creating the learning effect.

The learning process can be categorized by the type of feedback, and this gives
three main types of learning [16, p. 694]: unsupervised, reinforced and supervised.
Each type with gradually more informative feedback. Unsupervised learning, as
the name implies, is not provided with any explicit feedback. The agent learns
patterns from the input data, but it is only able to determine a structure or a
way of sectioning this data. With unsupervised learning the goal is to create
potentially useful groups of data from input examples, which is also known as
clustering. Reinforcement learning is a more informed method of learning. The
agent is not provided with any form of solution to the desired result from the
input example, but it is provided with a set of possible rewards and punishments
- reinforcements. With a given input example, the agent is given either a positive

27



2.2. MACHINE LEARNING

or a negative feedback (i.e. a score). Based on this more or less basic feedback,
the agent learns to associate the outcome from an input with something positive
or negative, and will improve its actions to obtain a reward. Finally, the super-
vised learning method provides the most complete set of feedback. That is, the
agent is provided with the solution (or a ground truth) for the problem it is set
to solve. By observing the input-output pairs, it can map the required response
to a function, and update its performance.

With focus on the RWS application environment, the CV learning process will
consist in identifying targets and their location from a series of images. If this
were to be specified as an unsupervised learning environment, it would be the
same as saying that the targets are unknown, but would like to see if something
in the environment stands out. As this is not the case, and there is a set of
objects of interest (targets), all available information should be utilized. A su-
pervised learning approach will require data sets with corresponding solutions,
that is, images with content description to supervise the process. It is a better
idea to provide the agent with a complete solution, if available, and optimize per-
formance with rights to a labeled data set. There are several useful and popular
models for supervised learning, with some further explained in subsection 2.2.2,
but the Artificial Neural Network (ANN) can be seen as most relevant for the
approach of this thesis.

2.2.2 Models for Supervised learning

Adaptive Boosting
The method of Adaptive Boosting, or AdaBoost, is one of the best off-the-shelf
classification algorithms [18]. This is because the algorithm is put together by
multiple “weak” classifiers, and the sum of their prediction gives a boosted clas-
sification. In [13, p. 475] the general boosting process is described as a series of
classifiers trained to correct each others mistakes. The first classifier is trained
and weighted on a data set, and the second classifier is trained and weighted to
get examples right if the previous got them wrong. This goes on for a number
of times, and the final classification is a weighted combination of the outputs
of these classifiers. The resulting classifier is extremely fast in practice, but the
training time can be very long (in order of weeks) [14, p. 664].

Support Vector Machine
A Support Vector Machine (SVM) is a statistical method for determining a hy-
perplane to separate two classes, in order to make binary decisions. With a data
set of two classes, the SVM searches for a plane with maximum margin to the
classes (that is, biggest gap between the closest samples) [14, p. 662]. With the

28



2.2. MACHINE LEARNING

vectors of these closest samples, we can describe a hyperplane that separates the
classes. These closest samples provide the support vectors of the method. The
separation of the classes, with indication of the support samples, is illustrated in
Figure 2.8b. A new, unlabeled sample is classified by whether it is above or below
the hyperplane. If a linear classification boundary is insufficient for the data set,
as in Figure 2.8a, we can perform a kernel trick. By elevating the samples in the
input space to a higher dimensional space, we can search for a high-dimensional
plane to achieve a linear separation. This illustrated in Figure 2.8.

The SVM is an attractive classifier [16, p. 744], because:
1. It generalizes well, as it is based on a maximum separation (the hyperplane)

between classes.

2. The kernel trick generates a linearly separable data set from a nonlinear.

3. The method is non-parametric
The use of SVM is not limited to only two classes. For multiple classes, it is
possible to utilize a cascade of Support Vector Machines. This can be done for
instance by representing each step as an “if-elseif-else” hierarchy. An object is
either part of the first class, or it is not - and so the chain can go on. The size of
this classifier will increase proportionally with the number of classes. Even though
the method is not tuned with parameters, it will potentially store all the needed
training examples (data samples) to generate the classifier. Nevertheless, as it
obtains its classification ability from training examples only, it is like AdaBoost
an off-the-shelf approach.

(a) Data set not linearly separable.

(b) Linearly separable data set. Bi-
nary classification by hyperplane
with biggest gap between classes.

Figure 2.8: If a data set is not linearly separable, the multiplication with a kernel
can transform it to a feature space where it is - e.g. from (a) to (b) in the figure.

29



2.2. MACHINE LEARNING

Artificial Neural Network
An Artificial Neural Network (ANN) is a model created to mimic the structure
of the human neural network. The nodes of a network is inspired by this biology,
which is illustrated in Figure 2.9. A neuron, which is equivalent to node, has a
number of inputs to represent the perception from a dendrite. The neuron pro-
cesses the perception input, and determines if itself is activated to pass on a signal
in the network. This neural process can be replicated with a simple mathematical
model, and the concept of an artificial neuron is extended in Figure 2.10.

Figure 2.9: Illustration of a neuron. The nodes of an artificial neural network are
inspired by biological neurons.

The mathematical model can be divided into three steps: (1) weighted input
wi,jai, (2) activation function g and (3) an output aj . The activated output aj
from a node j, with a number of i inputs, can be described with Equation 2.7
[16, p. 728]:

aj = g(
n∑
i=0

wi,jai) (2.7)

Figure 2.10: Simple mathematical model of a neuron. Illustration is based on
figure in [16, p. 728].

30



2.2. MACHINE LEARNING

For step (1), each input is the output ai from another node. A node output is
usually connected to multiple other nodes (as illustrated in Figure 2.12), which
is why there is a unique weight wi,j from node i to node j. All of these activation
inputs are accumulated in a sum. The activation output of the node j in focus is
determined by an activation function g in step (2). Examples of typical activation
functions are defined in Equation 2.8, and plotted in Figure 2.11.

Threshold: Sigmoid: ReLU:

gT (x) =
{

0, for x < 0
1, for x ≥ 0

, gσ(x) = 1
1+e−x , gRe(x) =

{
0, for x < 0
x, for x ≥ 0

(2.8)

(a) (b) (c)

Figure 2.11: Example of activation functions: (a) Hard threshold, (b) sigmoid
and (c) ReLU.

An activation function is used to determine if a node should contribute with a
signal to the rest of the network, with an analogy to a neuron firing on percep-
tions. The hard threshold activation (Figure 2.11a), is a binary step (similar to a
logical "OR" operator), the sigmoid activation is a soft step (Figure 2.11b), and
the Rectified Linear Unit (ReLU, Figure 2.11c) rectifies the response by zeroing
negative values. The choice of activation function for a ANN will depend on the
purpose of the network, and the response that is required.

The final step, step (3), is to connect the output to other nodes in the network.
A typical structure for both connecting and visualizing an ANN is illustrated in
Figure 2.12. In a network like this, we group nodes into multiple layers. On a
low level we have seen that a network can be customized with different activation
functions (which is only one of many features to determine). From another point
of view, an ANN model can be defined on a higher level by the number of nodes
in each layer, the number of layers, and how the nodes are connected/linked
together. As further illustrated in Figure 2.12, a network has an input layer,
an output layer, and an optional number of hidden layers. All of these possible
configurations, both on low and high levels, are what makes an ANN model at-
tractive. Tuning of these parameters, and equally as important the weights of
the node connections, provides great classification results without the designer

31



2.2. MACHINE LEARNING

knowing how features are combined or weighted. The use of an artificial neural
network is the “black-box” approach of the CV methods.

Figure 2.12: Typical structure of an Artificial Neural Network (ANN). The input
layer is constructed from a pattern x, e.g. from an image patch. The output layer
gives a confidence parameter c for each class. For this illustration, each hidden
layer is fully connected, but this is optional.

32



Chapter 3
Computer Vision
Application

Contents:
This chapter provides definitions on visual object detection and tracking, in-
troduce the methods intended for the implemented application, and the most
common performance metrics for detection and tracking. In addition to this,
the final subsection defines a new hybrid tracking measure to evaluate tracker
performance.

Literature review:
From the preliminary project [1] on CV, several surveys were used to present
methods for object detection [6, 19–21] and tracking [7, 22–25]. The structure of
CV as it is illustrated in Figure 1.2 is the result of these surveys. All of these
papers are relevant for the discussion on the pipelines presented for both detec-
tion in subsection 3.1.3, and tracking in subsection 3.2.3. Some of the theory for
these methods, as well as data set structuring, is also covered by literature used
in the previous chapter [13, 14, 26].

For object detection, the survey “Object Detection: Current and Future Di-
rections” [6] is central for object detection methods with assessment of their
strengths and weaknesses. Verschae and Ruiz-del-Solar cites both classic stud-
ies for the relevant methods, as well as compare their work of this study with
other object detection reviews. Out of these there is a review on detection of
vehicles [19], a comprehensive review of the steps taken for object detection [20],
and a survey on feature representation in statistical learning [21]. The most re-

33



cent paper used for the area of tracking is “A survey on moving object tracking
using image processing” [22]. This paper introduces the basic steps taken in a
tracking pipeline, and categorize tracking methods into sub-groups. The paper is
complimented by older reviews [7, 23, 24], which all give similar presentation of
the topic. The assessments presented in “Object Tracking: A Survey” [25], from
2006, also indicates that the sub-groups of tracking have remained the same for
the past decade.

For tracking performance measures, the “Visual Object Tracking Performance
Measures Revisited” [27] is a thorough elaboration on the most popular tracking
measures in tracking literature. The critical focus on the intention and limitations
of the measures is enlightening for further presentation of performance results.

34



3.1. OBJECT DETECTION

3.1 Object Detection
This section is based on chapter 3 of the preliminary project [1].

3.1.1 Definition
Object detection is a sub-domain of the larger problem area recognition (as it was
illustrated in Figure 1.2), alongside instance recognition and class recognition [14,
ch. 14]. The simpler of these is instance recognition, which is to re-recognize a
known rigid object (i.e. the same object) in a another environment. When we are
looking to recognize any instance of a specific class, given the class is present, we
are solving a problem of class recognition. Finally, the more intricate problem,
object detection, is to determine the presence of a class and locate it:

“Given a set of object classes, object detection consists in determining
the location and scale of all object instances, if any, that are present
in an image.” [6]

In other words, object detection is the problem of finding and classifying all
objects in an image.

3.1.2 Detection Method
To be suitable for the application area of the RWS, a detector must handle:

• Detection of multiple objects. This is because an operator must be aware
of all possible threats.

• High confidence on its detections. Correct targets are crucial (and an ob-
vious attribute) for the situations which require the use of a RWS.

• High accuracy of any detection. This is because the result from the detector
will be used as the input for a tracker.

Methods for object detection can be compared qualitatively on accuracy, speed
and generality. The motivation for a combined detector and tracker is that the
detector should provide accuracy and generality to the system, which are strong
attributes in deep learning based systems (as it was presented in subsection 1.1.3).
The topic of deep learning is continued in subsection 3.1.4.

35



3.1. OBJECT DETECTION

3.1.3 Pipeline
With the bottom-up description of image processing in section 2.1, there is an
implicit algorithm in the process of object detection. These steps, from traversing
an image to the presentation of a detection, can be visualized as a pipeline. By
organizing the procedure in certain steps, it can be represented as in Figure 3.1.

Figure 3.1: Detection pipeline: Steps to take for object detection.

The first step, candidate regions, is what separates object detection from class
recognition, as defined in subsection 3.1.1. Instead of an object covering the whole
image (which makes the image the region), one or more objects are present in
smaller areas of the original image. An intuitive approach would be to use a slid-
ing window (explained in subsection 2.1.1), perhaps with different sized windows,
to generate smaller image patches for the rest of the pipeline. This is not an ef-
fective approach, and not computationally sparse, but serves as an illustration of
the concept. A more effective method for this step could be a Region Proposal
Network (RPN), which is further explained in subsection 3.1.4.

The second step, feature extraction, is based on the concept explained in subsec-
tion 2.1.2 with the same name. This step is not only a step to extract features,
but the features are also combined and stored to create some sort of representa-
tion or descriptor. The type of descriptor will depend on the application area,
e.g. HOG for human detection [17]. The third step, classification, is what de-
termines if the candidate region contains a given class or not. Depending on the
desired response, this step (as with all methods) will depend on the application
area. If the classification is binary, a SVM can be a good choice, even though it
can be used in a cascade for multiple classes as well. Another option is to use an
AdaBoost classifier, which together with the SVM is described in subsection 2.2.2.

The final step, revise detection, is more or less a key component of this detection
pipeline. Together with the classification to determine if an object is present
or not, the revision of this is to locate and output the position of the object.
The output of the complete pipeline will depend on the methods used, and how
the information is preserved along the line. If the input candidate regions are
multiple neighbouring patches, the revision can consist of combining multiple
similar detection results into a larger bounding box (which is a concept utilized
by single-shot detectors, further explained in subsection 3.1.4). For a more precise

36



3.1. OBJECT DETECTION

candidate region, the revision process can be simpler.

For the pipeline presented in Figure 3.1, it is important to notice that it is
not a definite approach to a detection system. It is merely an illustration of the
necessary steps for a detector to process, analyze and understand an image.

3.1.4 Deep Learning

With deep learning methods we have the advantage that representation can be
transferred to other classes (transfer learning), and a common application area
is search (as in e.g. retrieving information from pictures) [6]. The most notable
downside for supervised learning, is the requirement of large data sets for training.

Deep learning is a domain within machine learning (supervised learning), en-
tailing methods for learning data representations. Other than visual processing
for CV applications, deep learning architectures can also be used for both speech
and audio processing. This is because deep learning provides an Artificial Intelli-
gence (AI) approach on such sensor problems, and mimics the human processing
methods. The use of ANN models (see subsection 2.2.2) has accelerated the
past years. Mainly, within CV, it is the variation Convolutional Neural Network
(CNN) which has been most interesting - an architecture specialized for images.
The use of CNN for face detection in 2004 [28] were one of the first successful
studies for CV. Then, the interest for this method was brought back in 2012 with
a classifier [29] showing great results in ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), compared to the other contestants.

Convolutional Neural Network (CNN)
A CNN is a stack of (i) convolutional, (ii) pooling and (iii) fully connected layers,
and is a version of ANN customized for image inputs. The typical structure of
a CNN is illustrated in Figure 3.2. A first obvious addition to the previously
described ANN architecture, is the presence of convolutional layers. Several dif-
ferent filters are used to convolve a 3D input volume, a method described in
subsection 2.1.1, to a 3D output volume of neuron activations. Each filter gen-
erates a feature map, and the convolution layer is the final stack of these. The
reason behind the use of pooling layers (ii), is to down-sample the convolutional
layer and reduce the number of model parameters (layer size). The idea is that
a deeper network will create more advanced and aggregated features, that is,
several separate features together creates a whole. It is assumed that this feature
combination is more important than the resolution at each layer, which means
that a layer can be down-sampled without much loss of information. Any suitable
method for compressing the layer may be used, e.g. the average - average pooling,

37



3.1. OBJECT DETECTION

or max values - max pooling.

Figure 3.2: General structure of a Convolutional Neural Network.

The purpose of a final fully connected layer (iii), is to generate the output val-
ues. The fully connected layers will generate class predictions/ regression values
from the features calculated by the convolution and pooling layers. As the name
indicates, a fully connected layer is a layer with a connection between every node
in the previous and the current layer. This means that a deep convolutional net-
work will become very large if each layer is fully connected. With for instance
an image, each layer will contribute with a number of height × width × depth
weights, which does not scale well for multiple layers. Only the final layers are
usually fully connected in order to provide the predictions. For a number of c
classes, an input image is transformed to a [1× 1× c] vector of scores.

The depth of a convolutional layer is not to be confused with the depth of the
complete network. In terms of this, the depth of the network is what provides
the deep in deep learning. This depth, and the importance of it, is part of what
made the classifier of 2012 [29] succeed. In this paper it is discussed that remov-
ing a hidden layer results in a notable loss of performance. Each layer in a CNN
teaches the network different and more specified features to recognize objects.

Region based CNN
Girshick, now a part of Facebook AI Research (FAIR), has since 2013 been a con-
tinuous part of the teams to further develop the use of CNN. The basic concept
of the method of Region based CNN (R-CNN) [31] is to provide region proposals
to a CNN, to limit the search area of the image. With this paper it was also pre-
sented that supervised pre-training of the network provided better performance,
and that CNN outperformed systems with simple HOG-like features (method
presented in subsection 2.1.3). The application of CNN for object detection is
obvious with the use of R-CNN, as it outputs bounding boxes around objects in
addition to provide class labels. The region proposals are generated by the use of

38



3.1. OBJECT DETECTION

selective search [32]. For a high level understanding, the image is searched with
different sized windows, and each window try to group adjacent pixels based on
texture, color, or intensity to identify objects. The final step of the R-CNN, is
to use a SVM to determine if the window patch contains an object or not - and
then classify the object.

A couple of years later, Girshick published a paper on fast R-CNN [30]. This pa-
per proposed a simplification of the original R-CNN, which resulted in both faster
processing and easier training. The architecture of the first R-CNN is designed
to send image features through the network, also called forward pass, for each
window proposal in every image. Additionally, all the models (CNN, the SVM,
and a regression model for the bounding boxes) need separate training. For faster
R-CNN, the forward pass is reduced to only once for each image. This is done by
selecting the Region of Interest (RoI) from the corresponding CNN feature map,
and not from the input image. Then the features from each region is pooled,
which is called RoIPool. The training issue is solved by combining the previ-
ous three models into one. This is done by replacing the SVM classifier with a
softmax, or sigmoid-normalization (see the sigmoid function in Equation 2.8), on
top of the CNN. Parallel to this, a linear regression layer outputs bounding boxes.

The final iteration of the R-CNN improvement, called faster R-CNN [33], identi-
fies the region proposal model as the bottleneck of the fast method. As the region
proposals from the selective search are dependant on the features from the CNN
[30], the region proposals are instead embedded into and proposed from the CNN
feature map. Another CNN uses the feature map to propose regions, creating
a Region Proposal Network (RPN) within the system - a process illustrated in
Figure 3.3. With this, the only input to the faster R-CNN is an image, and the
output is class predictions and bounding boxes for object detection. As concluded
in the paper: “By sharing convolutional features with the down-stream detection
network, the region proposal step is nearly cost-free” [33].

Single-shot detectors
The name Girshick can also be found in the publication of the “You Only Look
Once” (YOLO) architecture [34]. This model can be defined as a single-shot
detector. Like the faster R-CNN model, the input is only an image which is “for-
ward passed” once through a CNN, but the RPN is omitted. Instead, the input
image is pre-divided into an S × S-grid (RoI), and bounding boxes with associ-
ated classes are predicted within each grid. With class predictions for each grid
element, a class probability map can be generated. Adjacent grid elements with
the same highest class probability is combined to generate the final bounding box
for an object.

39



3.1. OBJECT DETECTION

Figure 3.3: Faster R-CNN. A unified network for object detection, with a CNN
and a RPN. The illustration is based on a similar figure in [33].

A competing architecture to YOLO, is the “Single Shot MultiBox Detector”
(SSD) [35]. The first notable difference in the pipeline, is that a pre-defined grid
is used to divide the output space - not the input image. The SSD architecture
uses a set of boxes, with different sizes, determined by training. At run-time,
the class probabilities are calculated for each of these boxes in output space,
which are adjusted to create the final bounding box to fit an object. Secondly,
SSD uses multiple feature maps for detection, compared to the use of only one
map in the YOLO model. The SSD feature maps also decrease in size to adjust
to the different sized output boxes. The paper points out that “[SSD] is faster
than the current real time YOLO alternative” [35]. However, this was before the
publication of “YOLOv2” [36] with improved performance.

40



3.2. OBJECT TRACKING

3.2 Object Tracking
This section is based on chapter 4 of the preliminary project [1].

3.2.1 Definition
Computer Vision (CV) can be separated into areas of research based on problem
types, as it was illustrated in Figure 1.2. However, this does not mean that the
research areas detection and tracking are completely unrelated. Tracking can be
defined with the following formulation:

“Tracking is the problem of generating an inference about the motion
of an object given a sequence of images.” [13, p.326]

That is, when the position of an object is given in the first image, a tracker is
desired to find and follow the same object through the rest of the consecutive
images. As with object detection, to be able to track an object, we need features
to describe the image and methods for segmenting and classifying interesting re-
gions. The difference between these two lies in the preliminary information. A
detector is supposed to locate any instance of a specified object when it appears
in an image. A tracker, on the other hand, is supposed to find the same instance
of any object specified from the initial image. In other words: a detector uses
information gathered from other sources, and a tracker uses the information given
in the image sequence (e.g. video) at hand.

The information inferred from an object at different frames can be stored as an
object state. This state variable can include one or more of the relevant attributes
(in different combinations): position, velocity, acceleration and appearance [13].
What information to extract, and keep track of, will depend on application area
and available resources.

41



3.2. OBJECT TRACKING

3.2.2 Tracking Method
To be suitable for the application area of the RWS, a tracker must handle:

• Video with dynamic background. This is because of either movement of the
vehicle the RWS is mounted on, or movement of the RWS itself.

• Objects of different sizes. The possible objects of interest, drone, person
and vehicle (as presented in subsection 1.1.3), represent all object sizes from
small to large.

• Object representation for a variety of shapes.

• Object occlusion

• Real-time processing of the input video.

• Tracking of a single target to assist the operator.

Methods for object tracking can be compared qualitatively based on how oc-
clusion, entry/exit of objects and multiple objects are handled. For a tracking
system to be able to handle objects with different physical attributes, it is as-
sumed that a point based method will be suitable (as stated in subsection 1.1.3).
This is especially because of the ability to track small objects. A fast tracker may
be subject to drift (gradually shifting away from the target), which motivates the
desire to periodically update the track with a more accurate detection. The topic
of point based tracking is continued in subsection 3.2.4.

3.2.3 Pipeline
As for detection in subsection 3.1.3, tracking can also be presented as a pipeline.
With background in the representation presented in the surveys [7, 22, 23, 25],
the steps for a tracking method can be illustrated as in Figure 3.4

Figure 3.4: Tracking pipeline: Steps to take for object tracking.

However, this representation is not unanimous. Another view on simple tracking
strategies is to divide them into tracking-by-detection and tracking-by-matching
[13, ch. 11]. For the first case, as with the approach in the surveys [22, 23, 25], the
strategy is based on a strong model of the object. This model is strong enough
to identify the object in each frame. The second case, tracking-by-matching,

42



3.2. OBJECT TRACKING

is used when there is a model of how the object moves. When we know the
region of which an object is located in one image frame, we use the motion model
to find a region in the next frame. This region is then subject to a matching
model, a way of comparing the previous domain in frame n with the domain in
frame (n + 1). The matching model is used to determine that the object is the
same. This alternative division is to somewhat supported by what is presented
in [24], with the difference of dividing the strategies into tracking-by-detection
and statistical tracking. With this second opinion on the tracking pipeline, the
pipeline in Figure 3.4 can be extended and illustrated as in Figure 3.5.

Figure 3.5: Extended pipeline, split in steps for either tracking-by-detection or
tracking-by-matching.

The tracker is intended to follow objects in consecutive images, which is why
the first step is to input a video source. For object detection in this pipeline,
there are several possible methods. It is stressed that there is a difference to
how types of detection methods for tracking are classified [24], based on other
surveys. From this, we can see that the oldest survey [25] group methods into
(i) background subtraction, (ii) point detector, (iii) segmentation and (iv) su-
pervised learning. However, newer surveys [22, 23] rather use the grouping (in
addition to (i) background subtraction) (v) frame difference and (vi) optical flow.

Both background subtraction (i) and frame difference (v) are closely related,
as well as intuitive. With frame difference, the difference between two frames are
calculated to indicate any movement. This is easy to implement, but it is difficult
to extract an accurate location for a moving object. The background subtraction
is a bit more complex to implement. With (most conventionally) a stationary
camera, the background can be subtracted, and the remaining information is
thresholded and segmented to obtain the moving object. Because of the benefit
of a stationary camera, this is a popular method for security applications [24].
Segmentation (iii) can also be used on its own. This is a basic image operation
which labels regions in an image, based on e.g. color, shape or pattern. It can

43



3.2. OBJECT TRACKING

for instance be easy to segment out the squares on a chess board based on color.
The motivation for a good segmentation operator lies in both efficiency, and how
to chose a segment.

The method of optical flow (vi), is more related to a tracking-by-matching ap-
proach. The optical flow is the resulting apparent motion in an image, caused by
scene or camera motion relative to an object [16, p. 939]. A measure of similarity
is calculated, to match a new domain in frame n+ 1, by e.g. the sum of squared
differences as in Equation 3.1:

SSD(Dx, Dy) =
∑
(x,y)

(I(x, y, t)− I(x+Dx, y +Dy, t+Dt))2 (3.1)

The optical flow at (x0, y0) is (vx, vy) = (Dx

Dt
,
Dy

Dt
), which is measured in [pixels/hour].

The last two methods for this, (ii) point detection and (iv) supervised learning,
are not completely independent. Point detection is still only extraction of feature
points (see subsection 2.1.2) either from distinct positions or intensity values. But
to find a matching point in a sequential frame, a calculation of for instance optical
flow is needed. Supervised learning is more of a technique for data training, and
detectors based on this requires large sets of data (as previously mentioned).

In the final step of the pipeline in Figure 3.5, object tracking, a model of the
object’s motion is calculated. The more frames that pass, the stronger the ob-
ject model should get. This can be stored in an object state variable, and the
increasing information gathered on the object can be used to improve the target
tracking. The tracking-by-matching part of the pipeline, which can be seen as
statistical tracking, have the advantage of being faster then the other strategy.
This is because tracking-by-matching is mostly based on motion prediction, and
does not require the system to execute a detection process on each frame [24].

44



3.2. OBJECT TRACKING

3.2.4 Point Tracking
Point tracking is a method where an object is represented by its feature points
(see subsection 2.1.2), and corresponding points are tracked between frames. The
points are associated by the previous object state with position and motion. Be-
cause of the point representation, this category is appropriate for tracking small
objects, but it is required to use an external mechanism to detect the object in
each frame.

Finding corresponding features from one frame to another comes with a cost
[7, 25], and can be determined by a combination of the following assumptions:

• Proximity: The location will not change much in the next frame.

• Extreme velocity: There is a boundary on max velocity of an image
point.

• Minor velocity change: The velocity of a point does not change much.

• Mutual motion: The velocity of points in a neighbourhood tend to be
similar, as well as the distance between points in a group (when the object
is rigid).

These assumptions are illustrated in Figure 3.6.

(a) Proximity (b) Extreme velocity (c) Minor v. change (d) Mutual motion

Figure 3.6: Illustration of the kinematic limitations of point tracking. The circle
indicates a point in frame n−1 and X a point in frame n. These illustrations are
based on figures in [7, 25].

The assumptions can be used to calculate an optimal path both for deterministic
and statistical tracking methods. The deterministic approach would be to use a
greedy selection of points, e.g. a shortest path algorithm, to chose corresponding
points based on the assumptions. The method of using Kalman filter for tracking

45



3.2. OBJECT TRACKING

is a statistical approach. It is widely used in CV for noisy environments, all
the way back to 1986 [37]. As it assumes the state variables to be Gaussian
distributed, it will result in poor performance if it is not [25]. The track generation
is based on prior and posterior knowledge of the state variables. This is generated
in a two-phase manner: prediction and correction, illustrated in Figure 3.7, with
the predicted state being corrected from measurements in the next frame. This
limitation of the Kalman filter is overcome by using a particle filter, which also
use a two-phase procedure for the state, but weigh the importance of a sample
by its appearance frequency.

Figure 3.7: The two-phase process of updating the state variable, used by Kalman
filtering.

A last example on a point based tracking method is Multiple Hypothesis Tracking
(MHT). As indicated by the name, it creates multiple hypothesis for the position
of each feature point. On a frame to frame basis, the model of the motion will
become increasingly better, and the most probable trajectory is the one to track
[22]. This method can maintain multiple suggestions at a time, and thus create
new and remove old ones in time with objects entering and exiting the Field of
View (FOV). A prediction for the position of a point will be calculated for each
frame, and compared to a distance measure for detection. With multiple objects,
and then several hypothesis, this method can be computationally heavy for a
large set of sample points. However, the scalability of such a method will not be
an issue as long as the application is single target tracking.

46



3.3. TRAINING AND EVALUATION

3.3 Training and Evaluation
3.3.1 Data Structuring
This subsection is based on parts from subsection 2.4.2 of the preliminary project
[1].

With a deep learning approach there is a continuous notion on the importance of
large data sets. Deep learning methods, compared to methods with predefined
and manually defined features of interest (e.g. the methods in subsection 2.1.2),
extract the knowledge of relevant features from the input data it is provided. For
a human, it is possible to determine that an object is a car - even if both brand
and model is not seen before. This is mostly because the daily interaction with
cars of different types and models. A similar (and maybe more intense) approach
is used for training of a neural network: the network is repeatedly exposed to a
number of images, and learn object characteristics from examples.

The size of the data set, and how it should be utilized, will depend on the system
model and the intended application area. The data set should be divided into
two or three parts: mainly two separate training and testing sets, and optionally
a validation set from a portion of the training set. To be perfectly clear, these
three sets can be defined as [26, p. 354]:

- Training set: A set of examples used for learning, that is to fit the pa-
rameters of the classifier.

- Validation set: A set of examples used to tune the parameters of a classi-
fier, for example to choose the number of hidden units in a neural network.

- Test set: A set of examples used only to assess the performance of a
fully-specified classifier.

The separation of the training and test set is important for the integrity of the
performance results from model evaluation, and to prevent any bias from peeking
at some of the test samples during training: “Peeking is the consequence of using
test-set performance to both choose a hypothesis and evaluate it. The way to
avoid this is to really hold the test set out - lock it away until you are completely
done with learning and simply wish to obtain an independent evaluation of the fi-
nal hypothesis” [16, p. 709]. A validation set can be used to measure performance
on unseen data, and with a test set “locked away” the remaining data is divided
into training and validation sets. An illustration of this can be seen in Figure 3.9a.

In addition to tuning of model parameters, the validation set is an important

47



3.3. TRAINING AND EVALUATION

measure to oversee the training process. After a certain number of training cy-
cles, the model will start to specialize on features and characteristics only present
in the training set, and the performance on the validation will therefore become
weaker. This phenomenon is known as overfitting or over-training, and can be
illustrated as in Figure 3.8 in terms of the training error on the output predic-
tions of the model. There are a few regularization methods for dealing with the
problem of overfitting:

(i) Early stopping

(ii) Dropout

(iii) Cross-validation

Figure 3.8: Overfitting: After a certain number of training cycles, the model will
start to specialize on the training set. This will decrease the general performance,
as illustrated in an increasingly worse training error for the validation set.

With early stopping (i), the idea is to stop the training as soon the error on
the validation set is higher than when previously checked, and use the previous
weights of the model [38, p. 56]. This method can prove to be unfortunate if
the stopping point is not the global minimum. Checkpoints during training can
also be stored, for a final evaluation of the validation error after a fixed number
of training cycles. The use of dropout (ii) can significantly reduce overfitting
and give major improvements over other regularization methods [39]. The idea
is to randomly drop nodes and their connections throughout the network, which
prevents nodes from co-adapting too much and maintain node activity. Finally,
the effect of a validation set can be increased with cross-validation (iii) [13, p.
464]. This is illustrated in Figure 3.9b, which includes splitting the data set
into separate training and validation sets differently, a number of K times. The
resulting validation error is the average error of all the K sets.

48



3.3. TRAINING AND EVALUATION

(a) Separation of data set into training
and test sets, with a validation set as an
optional part of the training process.

(b) K-folds cross-validation. This is an ex-
ample of K = 4 folds.

Figure 3.9: Data set separation.

3.3.2 Performance Measures
This subsection is based on parts from subsection 2.4.2 of the preliminary project
[1].

Detection
When evaluating a method or technique for detection, there are a few terms used
to describe the result. A detector should locate and determine the size of an ob-
ject, and this is usually done with a bounding box. A bounding box is a rectangle
which creates a boundary around the object, and is usually desired to have a
close fit to the outer edges of any object. An intuitive measurement to determine
accuracy during training, when evaluating performance, is the Intersection over
Union (IoU) for the prediction. The predicted bounding box is compared to a
ground truth bounding box for the object in the image, resulting in a value be-
tween 1 and 0. An IoU is illustrated in Equation 3.2, which yields that a perfect
fit will result in a value of 1. It is then possible to determine the average IoU of
multiple detections, for a total evaluation.

Intersection over Union (IoU) = Area of Overlap
Area of Union = (3.2)

A good detector does not only need to output accurate locations, but also have
to be confident on its classifications. When using a data set with both positive
and negative cases (e.g. images with and without a given class), we can define
the accuracy, recall and precision of a detector. To determine this, the prediction
is seen as a binary choice; either the class is present in the image or it is not.

49



3.3. TRAINING AND EVALUATION

This results in four outcomes for each detection (prediction of an object), shown
in Table 3.1:

Table 3.1: Prediction outcomes for object detection.

Positive case Negative case

Positive prediction True positive (TP) False positive (FP)

Negative prediction False negative (FN) True negative (TN)

The terms are then defined (with all positive and negative cases denoted PC and
NC ) as:

accuracy = (TP + TN)
(PC + NC) , recall = TP

PC , and precision = TP
(TP + FP) (3.3)

Out off all the ratios defined in Equation 3.3, accuracy is one of the more intuitive
measures. To put it in words, accuracy is a ratio on how many predictions were
correct for all cases. The recall is a ratio on how many of the positive cases were
predicted, and the precision is the number on how many positive predictions were
actually correct.

A standard metric for search and prediction algorithms is either the average
precision (AP) or mean average precision (mAP)[40], which utilize both pre-
cision and recall as they are defined in Equation 3.3. As the name states, it is a
double average of precision values, but it might be a bit misleading for how it is
actually calculated. A more suitable name may perhaps be “order-matters recall”
(quote by Zygmunt Zając, fastml.com), because correct predictions early in a
test sequence gives a higher score. This metric is best explained with a custom
example, as provided in Table 3.2.

First of all, the average precision (AP) is calculated from a fixed sequence of
predictions, but the precision sum is only taken of the true positive (TP) predic-
tions. The way the recall value is used, is by change in recall (here the notation
∆recall is used) from one sample k to the next. The AP is calculated as the
precision multiplied with the change in recall. With no change in recall for a FP
only the TP predictions contribute to the value. The two prediction sequences
shown in Table 3.2 illustrate how the average precision is better if the true pos-
itives occur earlier in the sequence, which means that the order matters. The
final mean value is calculated as an average of the total test sequences - and is
usually noted as a mean value “at” k (mAP@k).

50

fastml.com


3.3. TRAINING AND EVALUATION

Table 3.2: An example on calculation of mean average precision at different k-
values, to illustrate the mAP@k value. In this batch there are 10 test images,
with a total of 5 positive cases (PC). With a positive prediction in every image,
there will be equally many true positive (TP) and false positive (FP) predictions
distributed in the test batch. Two different prediction sequences are provided to
illustrate how the order of the TP predictions matters for the AP and the final
mAP value. The average precision is calculated as the sum of ∆Recall ·Precision.

k 1 2 3 4 5 6 7 8 9 10

Prediction: TP FP TP FP TP FP FP FP TP TP

Recall: 0.2 0.2 0.4 0.4 0.6 0.6 0.6 0.6 0.8 1.0

∆ Recall 0.2 0 0.2 0 0.2 0 0 0 0.2 0.2

Precision: 1.0 0.5 0.67 0.5 0.6 0.5 0.43 0.38 0.4 0.5

AP@k 0.2 0.2 0.33 0.33 0.45 0.45 0.45 0.45 0.54 0.64

Prediction: FP FP TP TP TP FP TP FP TP FP

Recall: 0 0 0.2 0.4 0.6 0.6 0.8 0.8 1.0 1.0

∆ Recall 0 0 0.2 0.2 0.2 0 0.2 0 0.2 0

Precision: 0 0 0.33 0.5 0.6 0.5 0.57 0.5 0.56 0.5

AP@k 0 0 0.07 0.17 0.29 0.29 0.4 0.4 0.51 0.51

mAP@k 0.1 0.1 0.2 0.25 0.37 0.37 0.43 0.43 0.53 0.58

51



3.3. TRAINING AND EVALUATION

Tracking
The paper “Visual Object Tracking Performance Measures Revisited” [27] is a
survey on visual object tracking performance measures. The survey presents a
thorough collection of the most popular measures for single-target visual track-
ing, and states that “none of them is a de-facto standard”. This serves as a good
starting point for considering relevant performance measures, and the different
approaches for performance assessment are listed as: (i) center error, (ii) region
overlap, (iii) tracking length, (iv) failure rate, (v) hybrid measures and (vi) per-
formance plots. The paper [27] also establishes a general definition of an object
state description Λ in a sequence with length N frames:

Λ = {(Rt,xt)}Nt=1 (3.4)

In Equation 3.4, xt ∈ R2 denotes the center of the object and Rt the region/area
of the object at time t. For this thesis the region Rt is described by an axis
aligned bounding box, and the state for the ground truth box and the predicted
box is denoted ΛG and ΛT .

The center error (i) is a measure of distance between the center of the predicted
target and the the center of the ground truth. This measure requires minimal
annotation preparation for a data set, with just a single point in each frame. The
center can also be derived from a ground truth bounding box. The Euclidean
distance, the shortest straight line between two points, is used to calculate the
distance error between the prediction xTt and the ground truth xGt . This measure
does not take the size of the bounding box into account, but the drawback can be
improved by normalizing the distance with rights to the box size. A discussion
of the center distance error is continued in subsection 3.3.3, with a proposition
of a new distance score.

The region overlap (ii) is the same measure as the IoU as defined in Equation 3.2.
With the the same notation as in Equation 3.4, a region overlap φt at time t, and
the average overlap φ̄, can be written as:

φt = RGt ∩RTt
RGt ∪RTt

and φ̄ =
∑
t

φt
N

(3.5)

The region overlap is also used in combination with a threshold, say τ = 0.5,
to calculate a success rate - the number of successful predictions out of all the
processed frames N . Both tracking length (iii) and failure rate (iv) are also mea-
sures usually dependent on thresholds. The length of tracking can be determined
by the number of continuous successful predictions, and the failure rate is the
number of not successful predictions, which are rates filtered by thresholds. The

52



3.3. TRAINING AND EVALUATION

papers [41–43] are examples of experimental comparison of several algorithms,
which use the success rate from the overlap and the average center location error
to evaluate performance on several well-known videos. This combination of over-
lap and center error is widely used [27]. A perspective on the use of threshold for
success rate is presented in [42], which states that a static threshold may not be
fair or representative for the tracker. A score derived from the area under chart
(AUC) is proposed as an alternative, but this is proven to be the same as the
average overlap value φ̄ in Appendix B of [27].

The final two approaches, hybrid measures (v) and performance plots (vi), are
usually just utilization of the basic measures. This is to present more robust
evaluations, and simpler visualizations of the performance results. In terms of
visualization, the most common approaches are to plot the center error or the
region overlap, with respect to the frame number.

3.3.3 Proposition of a Hybrid Tracking Measure
Center Distance Error Issue
The calculation of the center distance error, as it is described for tracking in
subsection 3.3.2, will have two different approaches (as stated in [27]). When cal-
culating this distance relative to the frame size, the measure completely ignores
the target’s size (size of the bounding box) and does not reflect the apparent
tracking failure. An illustration of this measure in situations with boxes of differ-
ent sizes can be seen in Figure 3.10a. With the same resulting Euclidean distance
for both situations, there is no intuitive indication that one of these predictions
completely miss the target (the situation illustrated to the right).

The second approach, intended to remedy this, is to normalize the distance er-
ror with rights to the area of the ground truth bounding box. This approach
is illustrated in Figure 3.10b. With this measure, it is easier to notice that one
situation depicts a better prediction. Still, this approach is dependent on some
kind of threshold to determine the meaning of the error. A further introduction
to a new center distance score is provided, for use in this thesis, as an attempt
to improve the center distance measure and its intuitive meaning.

53



3.3. TRAINING AND EVALUATION

(a) Euclidean distance with reference to the size of the frame.

(b) Euclidean distance with reference to the size of the ground truth bounding box.

Figure 3.10: Illustration of two approaches on the calculation of the center dis-
tance error. The frames depict two situations with the same physical distance
between a blue ground truth box and a red prediction box, but with different
amount of box overlap. The center distance error is calculated as the Euclidean
distance in normalized coordinates. In (a) it is calculated with reference to the
image frame, and in (b) with reference to the ground truth box.

54



3.3. TRAINING AND EVALUATION

Proposed Center Distance Score
Continuing the state notation from Equation 3.4, the components can be defined
as:

Rt = wt · ht and xt = (xt, yt) (3.6)

With Equation 3.6, the center error in both x and y direction can be defined as
in Equation 3.7:

δt,x =| xGt − xTt | and δt,y =| yGt − yTt | (3.7)

With Equation 3.6 and Equation 3.7, a score Sδ ∈ [0, 1] (relative to the ground
truth region RGt ) can be defined to calculate the accuracy of the predicted center
position:

Sδ,t = 1−min(max
(

2δt,x
wGt

,
2δt,y
hGt

)
, 1) (3.8)

An illustration of the center distance score Sd for a prediction, as it is defined
in Equation 3.8, can be seen in Figure 3.11. The ground truth bounding can
be considered a shooting-target, and the distance score is determined from the
maximum distance error in either x or y direction. A predicted center xTt right
on top of the ground truth center xTt will result in the max score Sδ = 1. This
score will decrease with an increasing error, until the boundary with Sδ = 0.

Figure 3.11: The distance score Sδ = 0.30 for a predicted bounding box. The
score Sδ is determined by the greatest distance deviation in either x or y direction
between the box centers, and calculated relative to the center of the ground truth
box. Sd ∈ [0, 1] with score 0 for any center outside the bounds of the ground
truth box, and score 1 for a complete overlap.

55



3.3. TRAINING AND EVALUATION

Hybrid Measure for Tracker Performance
The Combined Tracking Performance Score (CoTPS) is a combination of track-
ing accuracy and tracking failure in a single score. The definition of this in
Equation 3.9 [27] is only provided for reference purposes, with φ̄ for the average
overlap and λ0 percentage of failure frames (when φ = 0):

CoTPS = 1− φ̄− (1− λ0)λ0 (3.9)

This approach is criticized by the paper on tracking measures [27], and it is stated
that “[...] two very different basic measures are being combined in a rather com-
plicated manner, prohibiting a straightforward interpretation”. Taking this into
account, an attempt on using a more intuitive combination of measures will be
further presented.

The position of the bounding box as a center error and the size of the box
in terms of region overlap will be interesting to evaluate for the purpose of the
RWS. Both the center of the target (which for most cases is the same as the
center of the bounding box around a rigid object), and the object size are highly
relevant for a RWS. With the center distance score proposed in Equation 3.8, the
center error is defined in terms of the same range [0, 1] as the IoU. These two
(now similar) measures can be combined in a straightforward manner, with an
average:

ST,t = 1
2

(
Sδ,t + RGt ∩RTt

RGt ∪RTt

)
= 1

2(Sδ,t + φt) (3.10)

The hybrid tracker performance score ST , as it is presented in Equation 3.10, is
ment to balance two popular basic measures into a single intuitive result. In the
tracking measure survey [27] it is pointed out that a center error normalization
alone may give misleading results, because the center error is reduced proportion-
ally to the object size. A large bounding box may result in a smaller error than
a bounding box with the correct size. This may be prevented when considering
both the region overlap and position in a single hybrid score ST . The intention
of introducing a new hybrid measure for this thesis, is to quantify both the size
and position in a single bounding box metric, and treat these measures as equally
important when evaluating an object tracker for a RWS.

56



Part II

Implementation

“Ideas are easy,
implementation is hard.”

Guy Kawasaki

57





Chapter 4
Software

Contents:
This chapter is a discussion of available software frameworks and data relevant
to the detection and tracking application. It also highlights different aspects for
consideration when relying on open source software.

Resources:
To limit the scope of possible resources for a CV implementation, decisions should
be made with focus on possibilities for the Jetson TX2 module and the use case
of the RWS. With this, both the Jetson TX2 hardware and software capabilities
will play an important role in how an autonomous tracking application is devel-
oped. A lot of the references provided in this chapter will be to online resources,
because of the dynamic nature of software and how it is distributed. Note that
inference, i.e. reaching a conclusion on basis of reasoning, is a term used for the
object detection process.

The Jetson TX2 has the following hardware specifications:
• NVIDIA PascalTM Architecture GPU

• 2 Denver 64-bit CPUs + Quad-Core A57 Complex

• 8 GB L128 bit DDR4 Memory

• 32 GB eMMC 5.1 Flash Storage

• Connectivity to 802.11ac Wi-Fi and Bluetooth-Enabled Devices

• 10/100/1000BASE-T Ethernet

59



All the Jetson platform specific software is bundled together in JetPack 3.2 [44]
with L4T (Nvidia Linux for Tegra driver package), which includes:

• TensorRT: Speeds up deep learning inference as well as reducing the run-
time memory footprint for convolutional and deconv neural networks.

• cuDNN: CUDA Deep Neural Network library provides high-performance
primitives for all deep learning frameworks. It includes support for convo-
lutions, activation functions and tensor transformations.

• CUDA Toolkit: CUDA Toolkit provides a comprehensive development
environment for C and C++ developers building GPU-accelerated applica-
tions. The toolkit includes a compiler for NVIDIA GPUs, math libraries,
and tools for debugging and optimizing the performance of applications.

• GStreamer: GStreamer is a library for constructing graphs of media-
handling components. The applications it supports range from simple
Ogg/Vorbis playback, audio/video streaming to complex audio (mixing)
and video (non-linear editing) processing.

• OpenCV: OpenCV (Open Source Computer Vision) is a library of pro-
gramming functions mainly aimed at real-time computer vision.

60



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

4.1 Frameworks and Supportive Software
4.1.1 Deep Learning Framework
First of all, the term framework is here understood as an abstraction for a reusable
software environment, which provides standard functionality for a specific task
or application purpose. This means that a deep learning framework is software
that provides support for deep learning methods, such as construction of a neural
network for visual object detection. As it is explained for both artificial neural
networks in subsection 2.2.2, and the different modifications of it for object detec-
tion in subsection 3.1.4, there are a lot of mathematical operations and algorithms
in play. Instead of having to implement all of these basic operations from scratch,
a framework provides - just like a toolkit - assisting functionality and building
blocks for design of applications.

Relevant Attributes
Because of all the possible options and combinations of available software to use,
it can be useful to consider what attributes or functionality that are necessary
for the application. For the development of a novel deep learning based system,
the focus should be on criteria that can help current and future implementation.
The following attributes could be considered, with focus on the Jetson TX2:

- Support for GPU acceleration

- Support for TensorRT

- Versatile and easy to use interface

- Framework with optimized core implementation

- Support community

- Cloud computing

- Licensing

In the recent years, multiple deep learning frameworks have been developed for
deep learning purposes, and a few of these have already managed to manifest
themselves as popular. A list of popular deep learning frameworks with GPU
support is presented in Table 4.1, which only show a few of the possible options.
Nvidia also provides a list [45] of frameworks that are compatible with their own
GPU acceleration, which include: Caffe2, Cognitive Toolkit, MATLAB, MXNet,
NVIDIA Caffe, PyTorch, TensorFlow, Chainer and PaddlePaddle. This is im-
portant as both CUDA and cuDNN [46] are included in the Jetson TX2 software
bundle, as mentioned in the beginning of this chapter.

61



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

Table 4.1: The most popular, open source deep learning frameworks with support
of GPU acceleration. The frameworks are listed alphabetically.

Framework Developer Interface

Caffe
Berkeley Artificial
Intelligence
Research (BAIR)

C, C++, Python,
MATLAB and
command line

Caffe2 Facebook C++ and Python

Keras1 Francois Chollet Python

Microsoft Cognitive
Toolkit (prev. CNTK) Microsoft Python, C++, C#

and command line

MXNet Apache Software
Foundation

Python, R,
C++ and Julia

TensorFlow Google C++ and Python2

Theano Université de Montréal Python2

Torch
Ronan Collobert,
Koray Kavukcuoglu
and Clement Farabet

C, C++ and Lua

1 Python API to other back-end deep learning frameworks.
2 Support Keras front-end.

62



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

TensorRT
Cross-referencing the Nvidia list with the one in Table 4.1, a lot of the frame-
works are still standing. For the software interface, Python can be considered as
an easy to use and flexible scripting language, but it is important that the core
implementation is effective. This is usually the case with hardware near imple-
mentations like C/C++, and therefore a combination of these languages would
be preferable. All of the frameworks in the Nvidia list are also compatible with
TensorRT (listed in the beginning of this chapter). With TensorRT, the infer-
ence process for the Jetson TX2 can be optimized. This work-flow is illustrated
in Figure 4.1, with (a) presenting the steps intended on a host computer, and (b)
the steps on the target/embedded platform.

(a) Import and optimize model.

(b) Deploy inference engine.

Figure 4.1: The TensorRT work-flow. From training and optimization on a host
computer (a), to generated inference engine on a target platform (b). The illus-
tration is taken from Nvidia’s description of TensorRT [47].

The intention of developing an application aimed at TensorRT is to fulfill the
assumption in section 1.3 which state that embedded deployment will benefit from
a [...] “best practice” use of the third-party tools utilized. When considering the
use of Python, it is important to notice that at the time of writing the Python
Application Programming Interface (API) for TensorRT is not supported on the
Jetson TX2. For now, this can make it difficult to create a streamlined applica-
tion in Python for the embedded platform.

Because almost all of the mentioned frameworks can seem to be suitable for

63



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

the use with the Jetson, and the work-flow presented for TensorRT, future use
cases should be considered as well. This will include consideration of a possible
support community, how versatile it is, and the possibility for cloud computing.
Cloud computing could be a contributing factor, because of e.g. an economic
perspective. This is because dedicated hardware for supervised learning is rented
instead of owned. With support in Google Cloud, Google’s TensorFlow frame-
work is guaranteed cloud support. For a future notice on technology, TensorFlow
will be interesting because of Google’s development of Tensor Processing Units
(TPUs) [48]. With the GPU introducing parallel processing, the TPU introduces
custom tensor processing. The TPU is an integrated circuit for AI applications
specifically designed for neural network machine learning. This does not mean
that any of the other frameworks are not supported by such a service, or any
other alternative like Amazon Cloud or Microsoft Azure. However, it will ulti-
mately depend on on the most relevant approach for the future.

TensorFlow
The abstraction TensorFlow uses for neural networks is in the form of a data
flow graph. Each node in the graph represent mathematical operations, like the
illustration of a neuron in Figure 2.10. The edges (all the pathways between the
neurons) represent multidimensional data arrays called tensors. TensorFlow also
comes with a suite of visualization tools called TensorBoard [49], which can be
used to visualize models and data. This can definitely be an important tool for
training, for example in the case of preventing overfitting as described in subsec-
tion 3.3.1 with the visualization in Figure 3.8.

For the implementation of the autonomous tracking system, Google’s Tensor-
Flow deep learning framework is further used as a starting point. There is no
definite answer for why none of the other frameworks are chosen, as many of the
frameworks seem to be compatible with development for the Jetson TX2. Still,
TensorFlow fulfills all the relevant attributes presented in the beginning of this
section. And as a starting point for object detection, Google’s object detection
API [50] in Python seems like a good candidate. This is also because of the
available state-of-the-art neural network models provided for object detection,
further discussed in subsection 4.2.3.

License
The deep learning frameworks listed in Table 4.1 are all open source, but their
software rights are all specified by one of three licenses: Apache 2.0, MIT or BSD.
A summary of the relevant permissions, conditions and limitations for these li-
censes are listed in Table 4.2, Table 4.3 and Table 4.4. Considering future produc-
tion of a RWS vision system built with TensorFlow, the corresponding Apache

64



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

2.0 includes permissions for commercial use, distribution and patent use - which
are all relevant use cases from a business perspective.

Table 4.2: License permissions

License Commercial
use

Distribution Modification Patent
use

Private
use

Apache 2.0

BSD 3

MIT

Legend: Yes, No, Not stated

Table 4.3: License conditions

License License and
copyright notice State changes

Apache 2.0

BSD 3

MIT

Legend: Yes, No, Not stated

Table 4.4: License limitations

License Liability Trademark use Warranty

Apache 2.0

BSD 3

MIT

Legend: Yes, No, Not stated

65



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

4.1.2 Tracker Implementations
For object tracking, when focusing on a method based on more traditional CV,
there are no common frameworks developed. Usually, tracking algorithms are
implemented for the purpose of a specific task or application area. To not be oc-
cupied with implementation of the steps of a tracking algorithm from scratch, it
will be easier to find a relevant tracker implementation. Such an implementation
should be a type of point based tracker, as suggested by the preliminary project
[1] presented in subsection 1.1.3.

Referencing the software list included in the beginning of this chapter, OpenCV
(Open Source Computer Vision Library) is part of the Jetpack 3.2 package. This
is a commonly known CV library which is supported in Python, and there is also
an existing object tracking API under development. The object tracking API
[51] is currently not part of any official release/version of OpenCV, but it can
be accessed through a contribution package (opencv-python-contrib). The API
provides use of five implementations of different tracking algorithms, with the one
called MedianFlow showing the highest frame rate count. The implementation of
this algorithm is based on the paper that first presented the Median Flow tracker
[52], which is a tracking algorithm that tracks feature points from an initial region
of interest. The MedianFlow-algorithm is the most promising implementation,
with respect to the point based approach desired for the tracking module.

The use of OpenCV, as it is a library specifically made for computer vision,
will make it possible to implement custom tracking algorithms for future use.
This should serve as a good staring point when designing a modular application,
with the possibility of changing the tracking method without changing the code
which utilize it.

4.1.3 Security
In subsection 2.2.2, specifically in the description of ANN, it is stated that the
use of an artificial neural network is the “black-box” approach of the CV meth-
ods. This is because it is difficult to pin-point exactly what layer combinations,
connections and features that work best for a use case - and it is also difficult to
evaluate risks if not all factors are known.

A relatively recent paper [53] uncovered intriguing properties of neural networks.
It is possible to manipulate an image in a way imperceptible to humans, and
make a deep neural network label an object as something completely different to
what it actually is. The paper describes how “adversarial examples” are made by
optimizing the input to maximize the prediction error. This means that, in con-

66



4.1. FRAMEWORKS AND SUPPORTIVE SOFTWARE

trast to optimizing the weights of the network to minimize the prediction error
(for an accurate prediction), the input image itself is changed to cause a wrong
prediction. By using limits on how much the intensity values in the image can
change, the manipulation can be made imperceptible to the human eye.

Another paper [54], researching a similar issue, shows how easy it is to con-
struct images completely unrecognizable to humans that are positively labeled.
Images looking like white noise or meaningless patterns can be classified by state-
of-the-art deep neural networks as specific objects - with a 99.9% certainty. Both
of these papers show how this is mostly accomplished with access to the model
of the neural network, to tailor the images for the system it is intended to fool.
This can become an even greater issue if a system is based on a publicly available
detection model, such as the ones provided by TensorFlow. In theory, distinct
printed patterns can then be used to camouflage objects from being detected by
a future autonomous RWS vision system. Future risk assessments of vision based
systems will possibly be subject to new neural network properties.

67



4.2. AVAILABLE COMPUTER VISION DATA

4.2 Available Computer Vision Data
4.2.1 Benchmark Data Sets
Deep learning methods are dependent on data to train models, and for the de-
tector it will be important to train with relevant images. With the popularity
and increasing research on CV methods, attempts are continuously made to cre-
ate standard data sets to evaluate performance. Some of the most recognized
benchmarks for deep learning in CV literature are:

• ImageNet [55] for image classification

• Microsoft COCO [56] for object detection

• Visual Object Classification VOC [57] for image classification

These benchmarks include large amounts of data, in form of images and annota-
tions (ground truths), for training of CV systems. There are also more specific
data sets in other benchmarks, depending on the CV application, but the three
listed are known for their large number of different classes. Models trained on
either of these data sets will be relevant for the RWS detection module, because
classes such as airplane, person and vehicle are all included. This will enable
direct use of a trained model, or it can serve as a base for transfer learning of
more specific custom classes like drones or military vehicles.

The same goes for object tracking. Even though the tracking method chosen
does not require information about data prior to deployment, compared to the
training process for deep learning, test videos are still important. Videos, or
sequences of consecutive image frames, with annotations are necessary for evalu-
ation. As with detection, there are also some interesting benchmarks for object
tracking:

• Computer Vision Lab CVLab [43] with publicly available data sets [58]

• Visual Object Tracking Challenge VOT [59] with publicly available data
sets [60]

The CVLab data set is a collection of videos used in multiple other tracking
papers, with both short term and long term tracking videos, and both single and
multiple objects. This is also the case for the VOT data set, but it is also used for
an annual challenge. Both of these data sets include different scenarios relevant
for multiple application areas. An important disadvantage when using these sets,
is that none of them contain any videos of aerial objects. For testing purposes
this will require custom data construction.

68



4.2. AVAILABLE COMPUTER VISION DATA

4.2.2 Custom Test Videos
It is difficult to find relevant annotated drone data. The data available for a more
general aerial object/class, such as airplane, is also scarce. A solution to this is to
create new test videos from sections of YouTube videos, and make relevant video
clips with representative object behaviour. This is still with focus on airplanes,
because most available drone videos are from the drone’s point of view. Table 4.5
lists the four videos created, with URL to the original videos and which time slots
of the originals that were used. A thumbnail for each one of these videos can also
be seen in Figure 4.2.

The custom videos in Table 4.5 all include different scenarios that can prove im-
portant during the development process of an autonomous tracking application.
The first video, BlueAngels, is a video of four fighter jets flying in formation. With
multiple objects in the video, it is possible to decide how the system (initially
intended for single target tracking) will deal with this issue. The video section is
also subject to video clipping (in the original video), and thus objects will fade,
reappear, and can suddenly change both position and angle. This is also the case
for the last one in the list, ToyPlane. Only a single target is visible, but there are
a lot of scene changes and overlaps. In this video the airplane is also rather small.

The video RCBoeing747 is the most stable and continuous of the custom videos.
This is a video of a passenger airplane replica, flying in a big circle parallel to the
ground. With this yaw rotation, both the object silhouette and size will change.
The final video, HobbyKing, is perhaps the most interesting. This is because the
original video is of a model plane, and in this section of the original video the
camera is zoomed in on the airplane in flight, with very unstable camera han-
dling. Because of this, the video section includes irregular motion, object out of
focus, change in size, and rotations in multiple directions - with turning, loops
and rolls. This is also the only video with manually created annotations. Ground
truth data is important for the evaluation of the final tracking application, but
the manual process is time-consuming. A 20 seconds short video, with a capture
rate of 30 fps, will consist of 600 individual images.

69



4.2. AVAILABLE COMPUTER VISION DATA

Table 4.5: Custom test videos

Video Source Time [min:sec]

BlueAngels.mp4 https://youtu.be/LkrnpO5v0z8 05:27 - 05:54

HobbyKing.mp4 https://youtu.be/XhUzoIm6OQo 00:54 - 01:14

RCBoeing747.mp4 https://youtu.be/akoJ2zBwX1o 01:15 - 02:45

ToyPlane.mp4 https://youtu.be/y8G2ezOmz1w 06:06 - 07:47

(a) BlueAngels (b) HobbyKing

(c) RCBoeing747 (d) ToyPlane

Figure 4.2: Images of the four custom test videos listed in Table 4.5.

70

https://youtu.be/LkrnpO5v0z8
https://youtu.be/XhUzoIm6OQo
https://youtu.be/akoJ2zBwX1o
https://youtu.be/y8G2ezOmz1w


4.2. AVAILABLE COMPUTER VISION DATA

4.2.3 Deep Learning Models
With reference to subsection 3.1.4, the most recent and best performing models
for object detection are considered to be faster R-CNN and single-shot detection
(SSD). For the object detection module, a model based on either of these meth-
ods will be interesting to deploy.

In the TensorFlow detection model zoo available on GitHub [61], a collection
of pre-trained models is provided for “out-of-the-box” inference. The relevant
models for the detection module are listed in Table 4.6. Because of the continu-
ous update of this model zoo, the models are most relevant for the system at the
time of writing; the list is likely to be updated with new and improved models.
The listed models are pre-trained on the COCO (Microsoft Common Objects
in Context) data set [56], containing images with a total of 91 different object
types. As addressed in subsection 4.2.1, a model pre-trained on this data set will
be interesting with the relevant classes included. For custom data or classes, it
can be used as a base for transfer learning.

Table 4.6: Object detection models, relevant for the detection module, from the
TensorFlow detection model zoo [61], and pre-trained on the COCO data set.
The reported running time is in milliseconds (ms) on a 600× 600 image, with a
Nvidia GeForce GTX TITAN X GPU.

Model name Speed (ms) Speed (fps) COCO mAP

faster_rcnn_inception_v2_coco 58 17.2 28

ssd_inception_v2_coco 42 23.8 24

ssd_mobilenet_v2_coco 31 32.3 22

ssd_mobilenet_v1_coco 30 33.3 21

71



4.2. AVAILABLE COMPUTER VISION DATA

In Table 4.6, both of the names faster_rcnn and ssd are familiar from sub-
section 3.1.4. The name mobilenet, on the other hand, refers to a different
architecture. The MobileNetV2 is a new mobile architecture [62], which show
improvements in mobile networks. With the paper presenting conclusive notes
on increased performance and reduction of model parameters, it can be a good
choice for an embedded platform with limited resources. The table is first of all
sorted by the highest mean average precision mAP (see subsection 3.3.2), but
the trade-off in speed is also apparent with a decreasing processing time down
the list. For the detection module of the tracking application, a higher mAP is
desired, but there will still be limitations on the processing speed to consider
when choosing a model. This is because of the system design when combining a
detector and a tracker, and will be further discussed in subsection 5.1.2.

72



Chapter 5
System Implementation

Contents:
This chapter describes the system design and architecture for a command line
application implemented in Python. This includes presentation of the intended
work-flow, limitations and the final application interface.

Resources:
The system implementation is made publicly available on GitHub [9], and the
structure for the repository detection-and-tracking can be seen in Appendix A.

The following frameworks are used:

• TensorFlow: Google’s object detection API [50]

• OpenCV: Tracking API [51], which is a part of the OpenCV-contrib package

Custom implementations in Python for this thesis:

• Detection module/class which utilize the TensorFlow object detection API

• Tracking module/class which utilize an OpenCV tracker

• Video capture module/class for asynchronous video capture

• Tracking application to combine the above modules

• Scripts to calculate performance results

73



Additional scripts implemented in Python/Bash to automate and streamline pro-
cessing of data:

• Download test images, and create playable videos

• Normalize ground truth annotations

• Create annotations for new videos (manual process)

• Calculate relevant measures (overlap and error distance) from the tracking
results

• Installation and environment setup for the tracking application

System structure:
The implemented system is structured in a hierarchy of folders as displayed in
Listing 5.1. The system is partitioned into top levels host and target for software
with intended use on respectively a desktop computer and the Jetson TX2, and
the custom videos listed in Table 4.5 are stored in videos.

de tec t i on−and−t r a ck ing /
|−−− host /

|−−− s c r i p t s /
|−−− s r c /

|−−− de t e c t o r /
|−−− t r a cke r /
|−−− u t i l s /

|−−− t e s t /
|−−− cv lab /
|−−− vot2017/

|−−− t a r g e t /
|−−− s c r i p t s /

|−−− v ideos /
|−−− data/

Listing 5.1: System folder hierarchy.

74



5.1. DESIGN

5.1 Design
5.1.1 Approach
The Real-time Constraint
To understand the issue and why a combination of a detector and a tracker is
interesting, an example of a detector alone can first be considered. If a hypothet-
ical detector (with an arbitrary hardware configuration) use a time t = 0.1s to
process a single image, this translates to processing f = 1

t = 10 frames per second
(FPS). If there are no restrictions on either the detector or the input video, each
frame from the video can be captured at a pace suitable for the detector. The
problem, however, may present itself when real-time restrictions are introduced.
The definition of live camera video in section 1.3, with a capture rate of 30 FPS,
will create a conflict with the hypothetical detector. With this input rate, the
detector will only be capable of processing 10 out of 30 frames each second, which
means that a number of frames will be skipped periodically; in this case two.

The introduction of a tracker is intended to cope with this real-time constraint
of live video. A “light weight” tracker, which only considers features provided
online (i.e. at system runtime with no pre-processing of data), have the ability
to process frames at a much higher rate. But with high speed, there is usually
not much consideration of features, which results in a not so robust tracker. This
can for instance mean that the tracker will drift away from the intended target,
and rather track something else in the background. The combination of these
two modules is the main idea for complying with the real-time constraints: a fast
tracker updated periodically by accurate detections. When the detection module
is supposed to find any instance of an object for a general approach, the tracker
is only intended to find the specific object provided by the detector. This idea
is illustrated in Figure 5.1. The blue sequence indicates the rate of which new
frames are captured, and the numbers are used to illustrate which frame the de-
tector and tracker is processing at each new frame capture.

Frame Buffer
When a detector skips frames, this does not only mean that there are frames not
being processed, but the results from the processed frames will be old. In other
words, the detector will bring latency to the system. The effect of a slow detector
will depend on the application area, but with a moving object the object might
not be anywhere near the detection result after a few frames. This is a key issue
with such a combination: the detection provided for the tracker must be accurate
and relevant for the current frame.

75



5.1. DESIGN

Figure 5.1: Illustration of a frame processing timeline. The top sequence is the
consecutive frames captured from camera video, with the detector and tracker
below. The numbers indicate which frame is being processed at each step.

Start

Capture frame

Store frame 
in buffer

Clear 
buffer

Tracker 
updated?

yes

no

Update current 
frame

Grab current 
frame

Detect

Notify tracker

Grab current 
frame

Update track

Show 
bounding box

New 
detection?

Notify handler

Iterate through 
frame buffer

yes

no

Asynchronous Video Capture Detector Tracker

Figure 5.2: System decision tree and module interaction.

76



5.1. DESIGN

To fulfill this requirement, a frame buffer is introduced. By storing the skipped
frames between each detection, the oldest frame in the buffer will correspond to
the detection result. This means that the tracker can be initialized with this
frame, track through the frames in the buffer, and predict an up-to-date result
for the current frame. An illustration of this algorithm is presented in Figure 5.2,
with frames stored in a buffer, and the tracker being corrected periodically with
notice of a new detection. This approach means that the tracker does not only
have to process the captured frames, but also an additional number of frames for
each detection. This is a system limitation further discussed in subsection 5.1.2.

5.1.2 Limitations
An important assumption, which is the foundation for this design, is that the
tracker has to process frames fast enough to iterate through the frame buffer
before a new frame is due. That is, the tracker must be able to process a number
n of frames in the time period tv between frames in the video. This requirement
on the processing period of the tracker tt can be defined as in Equation 5.1:

tt ≥
tv
n

(5.1)

These variables can be further expressed in terms of the frequency measurement
FPS:

tt = 1
FPSt

, tv = 1
FPSv

and n = FPSv
FPSd

(5.2)

Equation 5.2 also shows that the buffer size n is a number on how many frames
that go by in between detections, which is dependent on the video rate. The
real time requirement on the system is defined by the capture rate of the camera
video, and thus it is more natural to denote the speed dependency in terms of
FPS. With the notation in Equation 5.2, Equation 5.1 can be formulated as:

FPSt ≥
FPS2

v

FPSd
(5.3)

Equation 5.3 indicates that this way of combining a detector and a tracker creates
a notable dependency on the processing speed of both modules. With a trade-off
in accuracy and speed on the detector part, an accurate detection will require
more processing time. However, with the dependency illustrated in Equation 5.3,
there is a finite limit on how accurate the detector can afford to be. And the
other way around, as they are inversely proportional, the tracking method has to
be fast enough to process the frame buffer before a new frame is captured.

77



5.2. IMPLEMENTATION

5.2 Implementation

5.2.1 Modules
The implementation of the tracking application in Python is object oriented, and
for the time of writing intended on the host platform. As it is illustrated in
Figure 5.2, there are three modules implemented: VideoCaptureAsync, Detector
and Tracker. The detector and the tracker modules are the main components
discussed throughout this thesis, and the video capture module is developed to
provide more control over both this and future video source scenarios. The mod-
ules are described with input arguments and available class methods.

VideoCaptureAsync (Python Class):

• File: src/videocapture.py

• Dependency: opencv-python

• Arguments: source, width, height and fps.

• Methods: start, wait, read, read and clear frame buffer and stop.

This class requires OpenCV for the internal read functionality of the input source,
and the frame width and height can be specified. The additional fps argument
is to provide control for testing. The module is started with the start method,
which creates an independent thread for video capturing. This thread is depen-
dent on an internal time thread, which signals a periodic “tick”-event according
to the fps argument, and realizes the specific video capture rate. This is the
asynchronous part of the video capturing module, with the current frame stored
periodically. From the application program it is also possible to read the current
frame, wait for a new frame (triggered by an event) and both read and clear the
frame buffer (as described in subsection 5.1.1).

Detector (Python Class):

• File: src/detector/detector.py

• Dependency: object_detection (TensorFlow API)

• Arguments: capture source, model, labels, number of classes.

• Methods: start, wait and stop, as well as get methods for detections, fps,
class ID and class name.

78



5.2. IMPLEMENTATION

This class requires the TensorFlow Object Detection API to run inference. The
capture source is the VideoCaptureAsync module, for the ability to read the cur-
rent frame. The neural network model used for object detection (e.g. a model
listed in Table 4.6) must be specified, with additional model specifications such as
labels for object classes and the number of classes to detect. As with the Video-
CaptureAsync module, the detector is also created in an independent thread with
start. That is why additional class methods are necessary to read the detections
and other relevant status information.

Tracker (Python Class):

• File: src/tracker/tracker.py

• Dependency: opencv-python-contrib

• Arguments: tracker type.

• Methods: init, update, get bounding box and get fps.

This class requires the OpenCV Tracking API (which is under development).
The tracker module can be seen as a wrapper, as it basically extends the tracking
API with the init and update methods. The tracker module uses the tracker
type MedianFlow as default (as mentioned in subsection 4.1.2). One interesting
drawback of the OpenCV implementation of the tracking algorithm, is that it is
only possible to initialize a tracker once, which means that it is required to create
a new Tracker class instance to re-initialize the object tracker. This is necessary
for the ability to evaluate new detections, and utilize the frame buffer.

5.2.2 Application Work-flow
The application is intended to mimic the original module design as it is presented
in Figure 5.2. With this said, there are some modifications to how the modules
signal each other in a more implicit way. Both the video capture module and the
detector module run in separate threads. This leaves the tracker module to be
used explicitly in the tracking application tracker-app.py.

The capture module only updates the current frame and store the previous one
in a buffer. Any resetting of the frame buffer is done by an external method call.
The tracker does in a way notify the video capture module that it has used the
frame buffer, but this is only by calling the clear buffer method. For the detector,
it does not notify the tracker explicitly, but a status variable can be checked when
fetching the recent detections - to determine whether the detection is old or new.

79



5.2. IMPLEMENTATION

A section of the source code from tracker-app.py in Listing 5.2 illustrates the
key algorithm for the combination design. For each new (and positive) detection,
the video capture buffer will be read (and cleared), and a new tracker will iterate
through the frame buffer to transform the detection to a prediction in the current
frame. If not, the tracker is just updated normally with the current frame.

79 # Tracker update
80 i f new_detection :
81 i f bbox_d :
82 time_d = time . time ( )
83 bu f f e r = cap . read_frame_ bu f f e r ( )
84 i f bu f f e r :
85 t r a cke r = Tracker ( )
86 t r a cke r . i n i t ( bu f f e r . pop (0 ) , bbox_d)
87 for f in bu f f e r :
88 t r a cke r . update ( f )
89 else :
90 cap . clear_frame_ bu f f e r ( )
91 t r a cke r . update ( frame )

Listing 5.2: Key section for tracker algorithm.

This “tracker update algorithm” in Listing 5.2 is constrained to run only once for
each new captured frame, to avoid unnecessary polling and use of resources. This
is realized with the wait method for the capture module, which triggers an event
for each new frame. In order to synchronize the use of the frame buffer, and pre-
vent that the detector read and process a frame which later will be deleted from
the buffer before a detection is ready, the wait method is used in the detection
module as well. After the detector is finished with a detection, it will wait for
the next frame.

For the design limitation as expressed in Equation 5.3, no explicit system action
is performed if the constraint is not complied with. Nevertheless, the processing
rates are monitored, and information is printed for the user in the terminal:

[!] Warning: FPS_t = FPSt is too slow (limit = FPS2
v

FPSd
).

Here with placeholders FPSt, FPSv and FPSd for the real values calculated at
runtime. This is provided to indicate that the detection model is too slow for
the current hardware configuration (assuming the tracker “model” MedianFlow
is default).

80



5.2. IMPLEMENTATION

5.2.3 Post Processing of Raw Predictions
The modules described in subsection 5.2.1 utilize third-party interfaces (detec-
tion and tracking API), but the raw prediction data is further processed in the
tracking-app.py implementation to serve the purpose of the system. These
operations can be listed as the following post processing steps:

1. Filter out single best detection based on object class and confidence thresh-
old

2. Throw away prediction if time-out on detection occurs

3. Stabilize the tracking prediction by considering the size of previous bound-
ing boxes

These steps are somewhat products of continuous testing of the implementation
during development, by running object tracking on the custom videos described
in subsection 4.2.2. These videos, as previously stated, all include different sce-
narios that may be important for the use case of a RWS. The handling of the
scenarios by the raw tracker will therefore be relevant pointers to what attributes
the final tracker should possess.

Filter object detection
To be clear, step 1 is only one way - a more or less greedy way - of handling the
reduction in number of objects. As it is specified in section 1.3, the implementa-
tion is intended to explore a single target tracker. The CNN models used with the
TensorFlow object detection API are specified to output multiple detections to
be able to detect a larger number of object in each frame, even multiple instances
of the same object type. The issue of data association in object tracking is a field
of its own, and thus filtering out the best detection from the relevant target class
is probably the easiest way out. This method, however, creates complications
when introducing the tracker to a video with multiple same-class objects - such
as in the BlueAngels video. The result of this is that the tracker will jump be-
tween the different objects, as soon as the confidence score is higher for another
object than the previous detection. With this greedy filtering step, the tracker
does not only work for single object tracking, but it will not produce reasonable
predictions when multiple objects are present in the same frame.

Consider tracker integrity
For step 2 it is all about connecting the confidence and accuracy of the detector
to the prediction of the tracker. In addition to keep track of an object in between
detections, and iterate through missed frames presented in the frame buffer, the
tracker can still maintain track of an object even if the detector for some reason

81



5.2. IMPLEMENTATION

does not recognize an instance. There are both positive and negative sides to
this ability, and the video ToyPlane indicates how it can be a problem. This
video has several overlapping clips with the airplane fading in and out of view,
change in illumination, and a lot of background objects with distinct features
(e.g. buildings). When the camera is following the airplane, the background
objects will be moving relative to this in the opposite direction. This will in
some cases make the tracker drift away from the target, and continue to track
background objects instead. With step 2, a timer is used to put a constraint on
such undesired behaviour. By resetting a timer for each new positive detection,
a time-out threshold can be evaluated for each tracking prediction: if it has been
too long since the last detection, the tracking prediction looses its integrity, and
it should no longer be presented. The intention of the tracking application is
to extend accurate detections, and thus the prediction will be dismissed after a
specified time-out.

Bounding Box Stabilization
The final step of the post processing is made with focus on the application area of
the system, namely the assistance - and future automation - in operating a RWS.
When presenting a bounding box for an object, the placement of this is equally
important to the confidence score of the detection. In the video RCBoeing747 ,
showing an airplane with a relatively smooth flying pattern, some fluctuations in
the raw tracking prediction is noticeable. Considering a real world application,
change in the size of a rigid object in camera video will almost only occur when
the object moves towards or away from the camera. Because of this, it will be
relevant to constrain rapid change in bounding box size to a certain degree. This
is implemented, as stated in step 3, by considering a number of previous bounding
boxes. A history/stabilization buffer stores the last 10 bounding boxes, which
is an arbitrary value fitting this purpose. The buffer size, with a video capture
rate of 30 FPS, translates to storing one third of a second of the past predicted
bounding boxes. The frames are stored in a “first in, first out” (FIFO) manner,
with the oldest frame popped out when a new frame is stored. A stabilization, or
size filtration, is performed by taking the median value of all the bounding boxes
in the history buffer. The original position of the raw track is combined with the
median size for the final prediction. This can be compared to a simple band-pass
filtration, limiting outliers of both relatively small and large bounding boxes.

82



5.2. IMPLEMENTATION

5.2.4 Video Display
The visualization is also an important component of a computer vision applica-
tion. For illustration purposes, a video overlay is implemented to present tracking
results and system information at runtime (the period of which the tracking ap-
plication is executed). The overlay, as it is illustrated in Figure 5.3, includes
a labeled bounding box and status information in the header and footer of the
video. The coordinates used to draw the bounding box, and the standard chosen
for the system implementation, is on the form (x, y, w, h): x, y for the top left
corner, and w, h for the width and height of the bounding box. Status informa-
tion on the selected target for the video, as well as the confidence of the latest
detection, is presented in the header. This score is interesting, not only because
of the accuracy, but it will also indicate whether the predicted track may time-
out (as described in subsection 5.2.3) if it drops below the selected threshold.
The footer presents the current frame processing rate of both the detector and
tracker, and will also indicate status “No track” if the prediction fails.

5.2.5 Command Line Interface
When developing an application like the one presented in this chapter, it is nec-
essary to focus on a modular design. Not only in the meaning of being able to
switch out components of a system, but also having the option to choose differ-
ent system settings from the command line. This will increase the simplicity of
system testing, and help with the adaption process to an embedded platform.
As a command line application, the tracking-app.py is implemented with the
ability to list the the different command line options supported, and this can be
seen in Listing 5.3. The command line user interface supports several options:
source and format of the input video, target information, settings for the detec-
tion module, and whether the video should be displayed or saved to a new output
file.

Some of the system information is displayed in the video overlay (Figure 5.3), but
even more detailed information is presented in the desktop terminal. The infor-
mation printed at runtime can be seen in Listing 5.4, and matches the command
line options for the tracking application. Additional status information is printed
with a thematic prefix: [!] - warning, [c] - capture, [d] - detector, [i] - information
and [t] - tracker.

83



5.2. IMPLEMENTATION

Figure 5.3: Frame from video displayed for the user, when tracking in video
HobbyKing. The implemented overlay marks the object with a labeled bounding
box in red, and provides additional relevant system information on top of the
video.

84



5.2. IMPLEMENTATION

$ python tracking -app.py -h
usage: tracking -app.py [-h] [-i SRC] [-t TARGET_CLASS ]

[-th SCORE] [-s WIDTH HEIGHT ]
[-f FPS] [-m MODEL_NAME ]
[-l LABEL_NAME ] [-w]
[-o FILE_NAME ] [-c FOURCC ]
[-e EXT]

optional arguments :
-h, --help show this help message and

exit
-i SRC , --input SRC path to video source
-t TARGET_CLASS , --target TARGET_CLASS

target class to track
-th SCORE , --threshold SCORE

detection score threshold
(0 -100)

-s WIDTH HEIGHT , --size WIDTH HEIGHT
video frame size

-f FPS , --fps FPS video playback rate
-m MODEL_NAME , --model MODEL_NAME

name of inference model
-l LABEL_NAME , --label LABEL_NAME

name of label file
-w, --write whether to write results

to file
-o FILE_NAME , --output FILE_NAME

name of output file
(w/o ext)

-c FOURCC , --codec FOURCC
fourcc codec for output
file

-e EXT , --ext EXT ext ( container ) for
output file

Listing 5.3: Application usage information displayed in the Ubuntu terminal.

85



5.2. IMPLEMENTATION

$ python tracking -app.py
____ ____ __ ___ __ _ __ __ _ ___

(_ _)( _ \ / _\ / __)( / ) ( ) ( ( \ / __)
)( ) // \( (__ ) ( )( / /( (_ \

(__) (__\_)\_/\_/ \___ )(__\_) (__) \_)__) \___/
tracking -app v1 .0.0 (C) weedle1912

--- Source ---
* Input: ../ videos / HobbyKing .mp4
* Size: 640 x480
* FPS: 30.0
--- Detector ---
* Model: ssd_mobilenet_v2_coco_2018_03_29
* Labels : mscoco_label_map
--- Object ---
* Target : airplane
* Threshold : 50%

--- Running app:
[i] Init.
[d] Starting .
[c] Starting .
[i] Press "Esc" key to stop.
[d] Stopping .
[c] Stopping .

Listing 5.4: Application runtime information displayed in the Ubuntu terminal.

86



5.2. IMPLEMENTATION

5.2.6 Data Processing Scripts
In addition to the implementation of the tracking application, it is necessary to
initialize test data before testing the tracker, and calculate the resulting perfor-
mance for evaluation. Thus, an effort is made to automate as many of these tasks
as possible, both for this thesis and further development. The convention chosen
for the application is to store a normalized bounding box by comma separated
values (.csv) on the form “<x-pos>,<y-pos>,<width>,<height>”. This is for a
bounding box with top left corner at position (x, y), and side lengths width and
height. The absence of a bounding box is stated with empty brackets “()”. Each
line in a csv-file for bounding boxes corresponds to the same frame in a video file,
and this format is compatible with a spreadsheet for plotting of results. The fol-
lowing implemented scripts are located in host/scripts (see section A.3), and all
of them support command line options to provide the necessary input arguments.

Data processing

• images_to_video.py:
Create video from images in specified folder

• normalize_gt.py:
Normalize ground truth file with rights to specified size

• make_gt.py:
Make ground truth bounding box for object, frame by frame, in specified
video

• show_bboxes.py:
Play or step through video with specified bounding box file

The first two scripts in the list are aimed at formatting test data from bench-
marks, because the data is stored as separate frames and the annotations are
listed in terms of pixels by the original frame size. The third script is used to
create custom annotations, as with the case of the HobbyKing video. The last
script is used to visually review performance results.

Metrics

• iou_by_csv.py:
Calculate the overlap score, according to Equation 3.5, for bounding boxes
specified by two csv-files

• dist_score_by_csv.py:
Calculate the distance score, according to Equation 3.8, for bounding boxes
specified by two csv-files

87



5.3. INSTALLATION

5.3 Installation
5.3.1 Host
The host application is intended to run on an Ubuntu 16.04 compatible platform
(only distribution tested), and the following instructions assume that the source
code for the final implementation, detection-and-tracking-v1.0.0 , is downloaded.
The installation process of the tracking application is intended to be as smooth
and straightforward as possible. By using a virtual environment, it is possible
to create a self-contained directory tree, and structure the relevant additional
software packages in a requirements file. In addition to this, there is a “setup”
script implemented to automate most of the process. As it is instructed in the
GitHub repository, which can also be seen in section A.2, there are only four
simple steps to install the application:

1. Install the newest version of Protobuf (Google’s language neutral buffers
for serializing data)

2. Install virtual environment (virtualenv)

3. Run the environment setup script

4. Compile the Protobuf libraries

For the steps in 1, 2 and 4, the bash terminal commands are provided. When run-
ning the environment setup script in step 3, the virtual environment is created,
the requirements are installed (including the OpenCV contribution package for
the tracking API), and the TensorFlow object detection API is downloaded. The
final step initializes the object detection API with the required Protobuf libraries.

The installation process is with this reduced to a more or less “copy-paste” pro-
cess, as all the necessary commands are provided.

5.3.2 Target
For the target part of the system, a similar environment setup script is provided,
and a few optimization notes for the Jetson TX2 platform. This can be considered
as a starting point for future deployment on the embedded platform, and the
details on this can be seen in section A.5. Because of the focus on the host
application in this thesis, no further work was put into software for the Jetson
TX2.

88



Part III

Evaluation

“An ounce of performance is
worth pounds of promises.”

Mae West

89





Chapter 6
Results

Contents:
This chapter presents the performance results of the implemented tracking ap-
plication. It is important to notice that different data sets and videos are used
to illustrate the different aspects of this specific combination of detection and
tracking methods.

Resources:
The videos used for the evaluation of the tracking application are, in addition
to the custom video HobbyKing, selected videos from the CVLab database [58]
as described in subsection 4.2.1. Because of the assumption that classes with
irregular motion patterns can replace drones for testing (section 1.3), the sin-
gle target videos selected are of class person. All results are from running on
Intel R© CoreTM i5-3470 quad-core CPU, with 640× 480 video at 30.0 FPS.

The videos used for evaluation:

• Airplane: HobbyKing

• Person: BlurBody, Dancer2, David3, Human2, Jump and Woman

The tracking metrics used for this chapter:

• The bounding box overlap IoU/φ as defined in Equation 3.2/ Equation 3.5

• The proposed distance score Sδ defined in Equation 3.8

• The hybrid measurement ST defined in Equation 3.10

91



6.1. TRACKING IN TEST VIDEOS

6.1 Tracking in Test Videos
6.1.1 Video: HobbyKing

Figure 6.1: Frames from tracking in video HobbyKing.

Figure 6.2: Plot of hybrid measure score ST from tracking in video HobbyKing.

92



6.1. TRACKING IN TEST VIDEOS

6.1.2 Video: BlurBody

Figure 6.3: Frames from tracking in video BlurBody.

Figure 6.4: Plot of hybrid measure score ST from tracking in video BlurBody.

93



6.1. TRACKING IN TEST VIDEOS

6.1.3 Video: Dancer2

Figure 6.5: Frames from tracking in video Dancer2.

Figure 6.6: Plot of hybrid measure score ST from tracking in video Dancer2.

94



6.1. TRACKING IN TEST VIDEOS

6.1.4 Video: David3

Figure 6.7: Frames from tracking in video David3.

Figure 6.8: Plot of hybrid measure score ST from tracking in video David3.

95



6.1. TRACKING IN TEST VIDEOS

6.1.5 Video: Human2

Figure 6.9: Frames from tracking in video Human2.

Figure 6.10: Plot of hybrid measure score ST from tracking in video Human2.

96



6.1. TRACKING IN TEST VIDEOS

6.1.6 Video: Jump

Figure 6.11: Frames from tracking in video Jump.

Figure 6.12: Plot of hybrid measure score ST from tracking in video Jump.

97



6.1. TRACKING IN TEST VIDEOS

6.1.7 Video: Woman

Figure 6.13: Frames from tracking in video Woman.

Figure 6.14: Plot of hybrid measure score ST from tracking in video Woman.

98



6.1. TRACKING IN TEST VIDEOS

6.1.8 Total Tracking Performance

Figure 6.15: Average tracking scores for the test videos, the first entry is for class
airplane and the rest for person. Both IoU and distance score Sd is combined in
the hybrid tracking score ST .

Table 6.1: Performance summary for tracking on test videos, presented as av-
erage scores. Detection with ssd_mobilenet_v2_coco, threshold 0.5 and tracker
timeout 1.5s. The success rate is calculated for the hybrid score ST,t > τ .

Video IoU (φ̄) Dist. score (S̄δ) S̄T Success rate (τ = 0.5)

HobbyKing 0.68 0.81 0.74 0.97

BlurBody 0.60 0.56 0.58 0.64

Dancer2 0.61 0.68 0.65 0.80

David3 0.41 0.40 0.41 0.46

Human2 0.71 0.75 0.73 0.86

Jump 0.21 0.22 0.22 0.27

Woman 0.52 0.65 0.59 0.78

99





Chapter 7
Discussion

7.1 The Autonomous Tracker

7.1.1 Proof of Concept
The implemented tracking system, as it is described in chapter 5, can be consid-
ered a proof of concept for the objective of the thesis. In the problem description
in section 1.2, the only directive provided is that the autonomous functional-
ity should be explored as a combination of an accurate detector module with
a fast tracking module. With the implementation of the Python application
tracking-app.py, a solution to this combination problem is presented.

The detection module is implemented with the TensorFlow object detection API,
and use a deep neural network based on a Single Shot Detector (SSD) architec-
ture, which is considered state-of-the-art. The results presented in chapter 6 were
produced using the ssd_mobilenet_v2_coco model, which is one of the modules
presented in Table 4.6. With regards to the mAP scores, this was the model
with the highest score that could comply with the design requirement defined in
Equation 5.3. This was determined by testing the application with the different
models listed, and choose the one with the highest mAP that did not provide a
system warning (the message printed for the user, described in subsection 5.2.2).
This can be a way to tune any other system configuration with an optimal de-
tection model.

The tracking application is tested on an Intel R© CoreTM i5-3470 CPU. This means
that even though the hardware configuration is with limited processing capabil-

101



7.1. THE AUTONOMOUS TRACKER

ities, the application can still meet the real-time requirements of live camera
video.

7.1.2 The Embedded Platform
The system implementation for the autonomous tracker is made with focus on
the Nvidia Jetson TX2 module. This is done by choosing a framework which is
known to be compatible with the embedded platform. Google’s TensorFlow pro-
vides deep learning models which are supported by a number of relevant features,
such as cloud computing, training visualization tools, and optimization with Ten-
sorRT. This is important for developing and customizing an effective detection
module for future deployment. As for the tracking module, the API used for
the tracking algorithms are provided by OpenCV. This is a practical approach,
because a custom distribution of OpenCV is part of the software bundle for the
Jetson TX2 (JetPack 3.2). The decisions on third-party software are made with
focus on making the step towards embedded deployment easier.

It should also be mentioned that applying state-of-the-art methods to solve a
practical problem will lead to a few issues. The Jetson TX2 platform does indeed
support a custom Ubuntu distribution, but such embedded hardware comes with
limitations. Considering that most of the third-party software used for the appli-
cation is under development, chances are that these might be incompatible with
the Jetson TX2 at the time of writing. This could for instance be the case with
the tracking API, as it is not part of any official OpenCV release - and thus it will
not be part of the custom version for the Jetson TX2. However, precautions for
such issues are made when designing a module based architecture, such as the one
presented in this thesis. Because of this, it is possible to make subtle adjustments
- and even change out modules - without breaking the tracking application.

7.1.3 Limitations
The steps taken to process the raw detection and tracking predictions are pre-
sented in subsection 5.2.3, but as mentioned in that section, they are not without
room for improvement.

The most important consideration should be made with regards to how mul-
tiple detections are reduced to one, for the purpose of single target tracking. As
the application stands now, with the greedy approach of choosing the best detec-
tion, it is not fit for the working environment of the RWS. The problem with this
is that it can not handle a scene of multiple targets of interest, as the confidence
among several instances of the same class may change - and thus the tracker
will jump between these sporadically. Additional requirements for this selection

102



7.1. THE AUTONOMOUS TRACKER

should be considered, by for instance choosing the detection that is closest to the
previous prediction. This data association problem can be solved for several lev-
els of complexity, but at least a few more such requirements should be considered.

When it comes to the tracker, the downside of the OpenCV API chosen is that the
only interface to the tracker is initialization and update. An ideal implementation
should have the opportunity to adjust the tracker, not only create and start a
new one. This simple interface limits the control of the tracker, and the tracking
state history can be difficult to consider. It can be argued that the use of a frame
buffer is a way of compensating for this, as it is possible to store some of the
past tracking information. If additional functionality and control was provided,
it could be possible to have a more nuanced selection of the final prediction and
even determine the confidence of the tracker as well. Instead of blindly using a
new detection, the current track could be evaluated and just kept going.

103



7.2. PERFORMANCE IN TEST VIDEOS

7.2 Performance in Test Videos
7.2.1 The Selected Videos
Tracking of drones is probably one of the most interesting areas of research for fu-
ture RWS vision based systems, both because of the increasing safety threats and
the issues related to object size and movement. Because of the lack of relevant
annotated drone data, other object classes are used to evaluate the performance
of the implemented tracking application. The class airplane is a close alternative
- if not even a parent class - for drones, with a similar operation environment. For
argument’s sake, the Oxford English Dictionary defines “drone” as: “A remote-
controlled pilotless aircraft or missile.”. This means that the custom videos of
remote-controlled model airplanes does fit the definition (subsection 4.2.2). So-
called fixed wing drones, which can impose a real world threat, does also have a
resemblance to small airplanes. Nevertheless, for the environment of the RWS
and the defence perspective, it is implied that the drone is either of military grade
or a multicopter.

As for the videos used from the CVLab data set [58], they all depict the class
person. None of the videos in the additional data sets are of airplanes, and so
this second class have to compensate for this. The use of person can be justified
because it is one of the original classes proposed in the preliminary research [1]
(see subsection 1.1.3), and the class is included in the Microsoft COCO data set
[56]. This is important because the relevant neural network models listed in Ta-
ble 4.6 are all pre-trained on this data set, which means that this test class will
be compatible with the modules of the system.

What is common for all the selected videos, is that they all include only a single
instance of the relevant object class, due to the focus on single target tracking.
This is the only criteria used for selection of videos from the CVLab data set, to
be able to present an objective evaluation of the tracking performance. This is
not completely the case for the custom videos, as these are subjectively made to
mimic relevant test cases for drones. However, the video HobbyKing was manu-
ally annotated for evaluation purposes, because it is the one video with the most
relevant scenarios (blur, size change, rotation and erratic movement).

7.2.2 Evaluation of the Results
The tracking performance is only plotted as the hybrid measure ST at each frame
for all of the videos. It is therefore interesting to first consider the performance
summary in either Figure 6.15 or Table 6.1, to see how both the overlap scores
and distance scores contribute to these results. For a majority of the videos, the

104



7.2. PERFORMANCE IN TEST VIDEOS

distance score prove to be higher than the overlap score, which can indicate that
the tracking application is better at predicting the position of the object. This
difference is clearly the case for both HobbyKing in Figure 6.2 and Woman in
Figure 6.14. A possible explanation for this could be how the final prediction
is stabilized with rights to size, as described in subsection 5.2.3. Both of these
videos are subject to relatively rapid change in size of the object, as the camera
is zoomed in on the objects. The stabilization process is a contributing factor for
the presented bounding box size, and is intended to limit sudden change. This
will affect the response time when the object really does change at a rapid rate.
This does not have to be a persistent problem, as the stabilization process can
be further tuned for the application area.

For the two worst performances, David3 in Figure 6.8 and Jump in Figure 6.12, it
is not as easy to state what the problem might be. For David3, the plot illustrates
in “waves” how the prediction periodically drifts away from the target (or how
it seems like the person is walking away from a stationary bounding box). The
feature points in the background may be more distinct than those of the object
at each detection, and some occlusion (a pole and a tree) disrupts the object flow
- which can be the causes of the drift. For the Jump video, the object seems
too blurry and distorted in the image, and can not be detected until half way
through. Again, this is also an example of how the size of the bounding box can
not keep up with the change, which can be seen in the still images in Figure 6.11.

The score plot for BlurBody in Figure 6.4 is a good correlation of what the
video depicts. With the continuous shake of the camera in the horizontal plane,
it is noticeable from Table 6.1 that the average distance score Sδ weakens the
overall performance. The final two videos, Dancer2 in Figure 6.6 and Human2
in Figure 6.10, both show relatively stable results. The “dips” in the score plot
for both of these videos correlate with change in posture, and distortion of the
object. This issue is not necessarily a weakness of the implemented tracking ap-
plication, and is further discussed in subsection 7.2.3.

Compared to the summary chart in Figure 6.15, an additional measure is added
to the summary in Table 6.1. A success rate is usually considered according to
the overlap score [27], with a threshold τ = 0.5. But in this table, the success
rate is calculated according to the hybrid measure ST because this is the score
used for all the plots. Even though it can be difficult to evaluate such a rate, it
should count positively for the performance that many of the test videos show
an approximate 0.80 success rate - especially with the airplane video at 0.97.

105



7.2. PERFORMANCE IN TEST VIDEOS

7.2.3 Bounding Box Consideration

Both the definition of a bounding box, and what a “best fit” is, may be dependent
on the CV application. It is important to consider the performance results with
reference to the video annotations. For instance, the plot in Figure 6.10 (for
the video Human2 ) shows good tracking performance, and it would be fair to
say that a few mistakes are expected. Two frames from this video, at two of
these “dips” in the score plot, is shown in Figure 7.1. These frames indicate that
there have been a different approach to what is considered a good ground truth
annotation, compared to the bounding box predicted by the tracker. In the case
of occlusion (Figure 7.1a), the tracker is predicting the visible part of the object,
and for movement (Figure 7.1b) the tracker predicts a bounding box to fit the
object - and does not keep the original pose as the annotation. It can be argued
that a bounding box should make a close fit around the object, especially when
the size of the object is important for the tracking scenario.

(a) Difference in object occlusion. (b) Difference in non-rigid movement.

Figure 7.1: The difference in bounding box approach affects the performance
results. The blue box is the ground truth provided for the video, and the red box
is the output of the tracking application.

106



7.2. PERFORMANCE IN TEST VIDEOS

7.2.4 The Proposed Hybrid Measure
Without any means of comparing this measure with other trackers, the hybrid
performance score ST (Equation 3.10) is still used for the evaluation. For all
of the seven videos presented in chapter 6, this score is plotted to visualize the
tracking performance. This is because it is considered to represent a more intu-
itive approach to tracking assessment, with a positive focus on both the overlap
and the distance score.

With the discussion in subsection 3.3.2 of different approaches for tracker as-
sessments, it is stated that there is no “de-facto” standard [27]. This can be
considered as an opportunity to present any measure that seems fit for the appli-
cation. For the case of the RWS, the size and placement of a bounding box will
translate into important target characteristics. This focus seems to be common
for other applications as well, because the overlap and the distance error are
considered to be basic measures. The problem of leaving one of these out of the
evaluation is that they really are closely related. It can be difficult to present
only the overlap score, because this value does not say anything about what part
of the object that is covered. For the case of a sole distance error measure, the
position can be evaluated as good even if the size is completely off.

A previous attempt at a hybrid measure is in subsection 3.3.3 considered to
be “[...] two very different basic measures [...] combined in a rather complicated
manner, prohibiting a straightforward interpretation”. By assuming that this is
because the distance error is measured in pixels, the new distance score Sδ is
proposed to deal with the problem. The abstraction of comparing the ground
truth box to a shooting-target completely disregards any pixel measure or frame
scale, and considers only the edges of the bounding box. This new approach on
the distance error, turning it into a score rather than a “penalty”, creates an
environment of which these two measures can be combined. A hybrid measure
like this also highlights how both size and position are important to predict a
good bounding box.

With the definition of the hybrid measure in Equation 3.10, the intention is to
rule the overlap and distance score equally important. The effect of this can be
further explored when considering the performance plots in chapter 6. Intuitively
it is still possible to have a positive overlap score when the distance score is zero,
as will be the case of most of the smaller values plotted. With an average value,
the overlap score is in such a case reduced by half - but it is still a small con-
tributing value. Thus, it may be suitable to use a constraint on the hybrid score
ST , with a more strict consideration of the distance score. One of the reasons for
introducing the distance score Sδ in the first place, is to determine any prediction

107



7.2. PERFORMANCE IN TEST VIDEOS

outside of the object bounds as “off-target”. This abstraction can be extended to
the hybrid tracking measure with a condition as presented in Equation 7.1.

ST,t =
{

1
2 (Sδ,t + φt), if Sδ,t > 0
0, otherwise

(7.1)

With this condition (Sδ,t defined in Equation 3.8) it will be possible to determine
when the tracker has lost the target, without using any arbitrary or application
specific threshold.

108



Chapter 8
Conclusion and Further
Work

8.1 Conclusion
A step towards autonomous functionality for a Remote Weapon Station can be
made by processing live camera video with state-of-the-art computer vision meth-
ods. The autonomous tracker proposed in this thesis is a proof of concept for the
combination of a detection module and a tracking module. For future deploy-
ment on the Jetson TX2 embedded platform, it is imperative that any third-party
software utilized supports versatile use of supervised learning and runtime op-
timization. Even though the use of TensorFlow and OpenCV is suggested, the
module-based architecture is intended to provide interchangeability. However,
the solution presented creates a finite limit on how accurate the detection mod-
ule can afford to be, as the processing rate of the two modules are inversely
proportionate. This must be considered when editing any future application con-
figurations.

The performance of the final tracking application is presented as a hybrid mea-
sure, which is a combination of both the bounding box overlap and a new proposed
distance score. This measure is intended to present an intuitive evaluation of the
tracker performance. With satisfactory results on several videos with relevant
object behavior, and the proven compliance with the real-time restriction on live
camera video, it can be concluded that this approach on autonomous tracking is
compatible with the use case of a Remote Weapon Station.

109



8.2. FURTHER WORK

8.2 Further Work
8.2.1 Work-flow
First of all, a continued effort should be put into deployment on the Jetson TX2.
The tracking application should be edited to run on the embedded platform. This
should be done with focus on the intended work-flow of TensorRT (Figure 4.1,
subsection 4.1.1), by dividing the system into a host and a target partition. A
neural network model is serialized on a host computer, and further optimized and
deployed on the target platform. With the suggested framework TensorFlow, this
will translate into using a desktop computer for supervised learning and model
configuration, and only transfer an optimized detection model to the Jetson TX2.

8.2.2 Implementation
The current state of the tracking application is intended to create an easy tran-
sition for further work, and the GitHub repository [9] is a contribution for this
purpose. With an immediate continuation of this work, two things should be
considered:

- The use of GStreamer

- Further use of OpenCV

As it is listed in the beginning of chapter 4, GStreamer is included in the JetPack
3.2 software bundle. This is a library for media handling. With GStreamer, it is
possible to construct pipes optimized for the Jetson TX2 to encode and decode
video efficiently - to minimize video latency. The video capture module imple-
mented for the tracking application uses OpenCV to capture video, and OpenCV
can be built with GStreamer support. This means that instead of providing a
video file, the input source for the module will be a video pipe.

Further use of OpenCV must be considered because the custom version pro-
vided for the Jetson TX2 may not be adequate. Additional support is required
to use the tracking API, and potentially GStreamer, which will be on the cost of
the optimized version provided for the platform. This does not, however, need to
be the only approach. With the implementation of class-oriented detection and
tracking modules, it is possible to update and/or change the functionality of the
application through the respective modules. As OpenCV is a library for com-
puter vision methods, it is possible to implement a custom tracker better suited
for this purpose. This can also be an approach for dealing with the interface
limitations discussed in subsection 7.1.3, and have more control of the tracking
algorithm.

110



8.2. FURTHER WORK

8.2.3 Data Set
The amount of available annotated data will always be a concern when relying on
supervised learning. A proof of concept with a different object class than desired
will only reach as far as to an initial phase of the development process. At a
certain point, relevant training data must be provided. The problem of scarce
annotated data can be solved by different approaches, both with real images and
artificial [12]. Either way, a protocol for how the data is annotated must be
considered, to be able to avoid issues as the one discussed in subsection 7.2.3.
An ideal ground truth annotation will reflect how the bounding box is supposed
to be predicted.

111





Appendix A
The GitHub Repository

The detection-and-tracking repository, created for this thesis, is publicly available
at GitHub [9].

A key intention with this thesis is to provide a solid foundation for further devel-
opment of a tracking system on an embedded target.

The application software is structured by the following hierarchy:

detec t i on−and−t r a ck ing /
|−−− host /

|−−− s c r i p t s /
|−−− s r c /

|−−− de t e c t o r /
|−−− t r a cke r /
|−−− u t i l s /

|−−− t e s t /
|−−− cv lab /
|−−− vot2017/

|−−− t a r g e t /
|−−− s c r i p t s /

|−−− v ideos /
|−−− data/

113



A.1. DETECTION-AND-TRACKING/

A.1 detection-and-tracking/

114



A.1. DETECTION-AND-TRACKING/

115



A.2. HOST/

A.2 host/

116



A.2. HOST/

117



A.3. HOST/SCRIPTS/

A.3 host/scripts/

118



A.3. HOST/SCRIPTS/

119



A.4. HOST/TEST/

A.4 host/test/

120



A.4. HOST/TEST/

121



A.5. TARGET/

A.5 target/

122



A.5. TARGET/

123



A.5. TARGET/

124



A.6. VIDEOS/

A.6 videos/

125





Bibliography

[1] Vetle Bjørngaard Gundersen. “Autonomous Target Detection and Tracking
for Remotely operated Weapon Stations”. Preliminary Project. Norwegian
University of Science and Technology (NTNU). Dec. 2017.

[2] Margaret A. Boden. Mind As Machine: A History of Cognitive Science.
Oxford University Press, 2006.

[3] The New York Times. A Drone, Too Small for Radar to Detect, Rattles the
White House. 2015. url: https://www.nytimes.com/2015/01/27/us/
white-house-drone.html (visited on 01/17/2018).

[4] New Scientist. A swarm of home made drones has bombed a Russian air-
base. 2017. url: https://www.newscientist.com/article/2158289-
a- swarm- of- home- made- drones- has- bombed- a- russian- airbase/
(visited on 01/17/2018).

[5] Kongsberg Defence & Airspace. Remote Weapon Stations. 2017. url: https:
//www.kongsberg.com/en/kds/products/remoteweaponstation/ (vis-
ited on 01/15/2018).

[6] R. Verschae and J. Ruiz-del-Solar. “Object Detection: Current and Future
Directions”. In: Front. Robot. AI 2.29 (2015).

[7] J. Joshan Athanesious and P. Suresh. “Systematic Survey on Object Track-
ing Methods in Video”. In: International Journal of Advanced Research in
Computer Engineering & Technology (IJARCET) 1.8 (2012), pp. 242–247.

[8] Advanced Television Systems Comitee Inc. Video System Characteristics
of AVC in the ATSC Digital Television System. Document A/72 Part 1.
ATSC, May 2015.

[9] Vetle Bjørngaard Gundersen (user: weedle1912). Repo.: detection-and-tracking.
https://github.com/weedle1912/detection-and-tracking. 2018.

127

https://www.nytimes.com/2015/01/27/us/white-house-drone.html
https://www.nytimes.com/2015/01/27/us/white-house-drone.html
https://www.newscientist.com/article/2158289-a-swarm-of-home-made-drones-has-bombed-a-russian-airbase/
https://www.newscientist.com/article/2158289-a-swarm-of-home-made-drones-has-bombed-a-russian-airbase/
https://www.kongsberg.com/en/kds/products/remoteweaponstation/
https://www.kongsberg.com/en/kds/products/remoteweaponstation/
https://github.com/weedle1912/detection-and-tracking


BIBLIOGRAPHY

[10] A. F. Hurtado et al. “Proposal of a Computer Vision System to Detect
and Track Vehicles in Real Time Using an Embedded Platform Enabled
with a Graphical Processing Unit”. In: 2015 International Conference on
Mechatronics, Electronics and Automotive Engineering (ICMEAE). Nov.
2015, pp. 76–80. doi: 10.1109/ICMEAE.2015.24.

[11] C. Li, Y. Xi, and S. Ding. “Implement tracking algorithm using CNNs”. In:
2016 35th Chinese Control Conference (CCC). July 2016, pp. 7137–7141.
doi: 10.1109/ChiCC.2016.7554485.

[12] Cemal Aker and Sinan Kalkan. “Using Deep Networks for Drone Detec-
tion”. In: 2017 14th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS). Aug. 2017, pp. 1–6. doi: 10.1109/
AVSS.2017.8078539.

[13] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Pearson, 2012.

[14] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer,
2010.

[15] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pear-
son, 2010.

[16] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 2016.

[17] N. Dalal and B. Triggs. “Histograms of oriented gradients for human de-
tection”. In: 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05). Vol. 1. 2005, pp. 886–893.

[18] Balázs Kégl. “The return of AdaBoost.MH: multi-class Hamming trees”.
In: CoRR abs/1312.6086 (2013).

[19] Zehang Sun, G. Bebis, and R. Miller. “On-road vehicle detection: a review”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.5
(2006), pp. 694–711.

[20] Jing Li and Nigel M. Allison. “A comprehensive review of current local fea-
tures for computer vision”. In: Neurocomputing 71.10 (2008). Neurocom-
puting for Vision Research Advances in Blind Signal Processing, pp. 1771–
178.

[21] Yali Li et al. “Feature representation for statistical-learning-based object
detection: A review”. In: Pattern Recognition 48.11 (2015), pp. 3542–3559.

[22] S. R. Balaji and S. Karthikeyan. “A survey on moving object tracking using
image processing”. In: 2017 11th International Conference on Intelligent
Systems and Control (ISCO). 2017, pp. 469–474.

128

https://doi.org/10.1109/ICMEAE.2015.24
https://doi.org/10.1109/ChiCC.2016.7554485
https://doi.org/10.1109/AVSS.2017.8078539
https://doi.org/10.1109/AVSS.2017.8078539


BIBLIOGRAPHY

[23] Himani S. Parekh, Darshak G. Thakore, and Udesang K. Jaliya. “A Sur-
vey on Object Detection and Tracking Methods”. In: International Journal
of Innovative Research in Computer and Communication Engineering 2.2
(2014).

[24] JunzoWatada et al. “Human Tracking: A State-of-Art Survey”. In:Knowledge-
Based and Intelligent Information and Engineering Systems: 14th Interna-
tional Conference, KES 2010, Cardiff, UK, September 8-10, 2010, Proceed-
ings, Part II. Ed. by Rossitza Setchi et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 454–463. isbn: 978-3-642-15390-7.

[25] Alper Yilmaz, Omar Javed, and Mubarak Shah. “Object Tracking: A Sur-
vey”. In: ACM Computing Surveys 38.4 (2006), pp. 1–45.

[26] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge Uni-
versity Press, 1996.

[27] L. Čehovin, A. Leonardis, and M. Kristan. “Visual Object Tracking Per-
formance Measures Revisited”. In: IEEE Transactions on Image Processing
25.3 (Mar. 2016), pp. 1261–1274. issn: 1057-7149. doi: 10.1109/TIP.2016.
2520370.

[28] C. Garcia and M. Delakis. “Convolutional face finder: a neural architec-
ture for fast and robust face detection”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.11 (2004), pp. 1408–1423.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Proceedings of the
25th International Conference on Neural Information Processing Systems.
Vol. 1. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[30] Ross B. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference
on Computer Vision (ICCV). 2015, pp. 1440–1448.

[31] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detec-
tion and semantic segmentation”. In: CoRR abs/1311.2524 (2013).

[32] J. R. R. Uijlings et al. “Selective Search for Object Recognition”. In: Inter-
national Journal of Computer Vision 104.2 (2013), pp. 154–171.

[33] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015).

[34] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object
Detection”. In: CoRR abs/1506.02640 (2015).

[35] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325
(2015).

[36] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”.
In: CoRR abs/1612.08242 (2016).

129

https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/TIP.2016.2520370


BIBLIOGRAPHY

[37] T. J. Broida and R. Chellappa. “Estimation of Object Motion Parame-
ters from Noisy Images”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-8.1 (1986), pp. 90–99.

[38] Genevive B. Orr and Klaus-Robert Müller. Neural Networks: Tricks of the
Trade. Springer, 1998.

[39] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research (JMLR) 15
(2014), pp. 1929–1958.

[40] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88.2 (2010), pp. 303–338.
url: http://host.robots.ox.ac.uk/pascal/VOC/.

[41] Qing Wang et al. “An Experimental Comparison of Online Object Track-
ing Algorithms”. In: Proceedings of SPIE - The International Society for
Optical Engineering (Sept. 2011).

[42] Y. Wu, J. Lim, and M. H. Yang. “Online Object Tracking: A Benchmark”.
In: 2013 IEEE Conference on Computer Vision and Pattern Recognition.
June 2013, pp. 2411–2418. doi: 10.1109/CVPR.2013.312.

[43] Y. Wu, J. Lim, and M. H. Yang. “Object Tracking Benchmark”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 37.9 (Sept.
2015), pp. 1834–1848. issn: 0162-8828. doi: 10.1109/TPAMI.2014.2388226.

[44] NVIDIA. JetPack. 2017. url: https://developer.nvidia.com/embedded/
jetpack (visited on 04/12/2018).

[45] NVIDIA. Deep Learning Frameworks. 2017. url: https://developer.
nvidia.com/deep-learning-frameworks (visited on 01/24/2018).

[46] Sharan Chetlur et al. “cuDNN: Efficient Primitives for Deep Learning”. In:
CoRR abs/1410.0759 (2014).

[47] NVIDIA. TensorRT 3: Faster TensorFlow Inference and Volta Support.
2017. url: https : / / devblogs . nvidia . com / tensorrt - 3 - faster -
tensorflow-inference/ (visited on 04/12/2018).

[48] TensorFlow. Cloud Tensor Processing Units (TPUs). 2018. url: https:
//cloud.google.com/tpu/docs/tpus (visited on 06/05/2018).

[49] TensorFlow. TensorBoard: Visualizing Learning. 2018. url: https://www.
tensorflow . org / programmers _ guide / summaries _ and _ tensorboard
(visited on 06/05/2018).

[50] TensorFlow. Tensorflow Object Detection API. 2018. url: https://github.
com/tensorflow/models/tree/master/research/object_detection
(visited on 05/17/2018).

130

http://host.robots.ox.ac.uk/pascal/VOC/
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1109/TPAMI.2014.2388226
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/deep-learning-frameworks
https://developer.nvidia.com/deep-learning-frameworks
https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/
https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection


BIBLIOGRAPHY

[51] OpenCV-contrib. Object tracking API. 2018. url: https://github.com/
opencv/opencv_contrib/tree/master/modules/tracking (visited on
05/17/2018).

[52] Z. Kalal, K. Mikolajczyk, and J. Matas. “Forward-Backward Error: Auto-
matic Detection of Tracking Failures”. In: 2010 20th International Confer-
ence on Pattern Recognition. Aug. 2010, pp. 2756–2759. doi: 10.1109/
ICPR.2010.675.

[53] Christian Szegedy et al. “Intriguing properties of neural networks”. In:
CoRR abs/1312.6199 ().

[54] A. Nguyen, J. Yosinski, and J. Clune. “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2015, pp. 427–436. doi: 10.1109/CVPR.2015.7298640.

[55] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: CoRR abs/1409.0575 (2014).

[56] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:
CoRR abs/1405.0312 (2014). url: http://arxiv.org/abs/1405.0312.

[57] Mark Everingham et al. “The Pascal Visual Object Classes Challenge: A
Retrospective”. In: International Journal of Computer Vision 111.1 (Jan.
2015), pp. 98–136. issn: 1573-1405. doi: 10.1007/s11263-014-0733-5.

[58] Computer Vision Lab at HYU. Visual Tracker Benchmark. 2018. url:
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
(visited on 05/13/2018).

[59] Matej Kristan et al. The Visual Object Tracking VOT2016 challenge results.
Springer. 2016.

[60] VOT Challenge. VOT - Dataset. 2018. url: http://www.votchallenge.
net/vot2018/dataset.html (visited on 05/08/2018).

[61] TensorFlow. Detection Model Zoo. 2018. url: https : / / github . com /
tensorflow/models/blob/master/research/object_detection/g3doc/
detection_model_zoo.md (visited on 06/04/2018).

[62] Mark Sandler et al. “Inverted Residuals and Linear Bottlenecks: Mobile
Networks for Classification, Detection and Segmentation”. In: CoRR abs/1801.04381
(2018).

131

https://github.com/opencv/opencv_contrib/tree/master/modules/tracking
https://github.com/opencv/opencv_contrib/tree/master/modules/tracking
https://doi.org/10.1109/ICPR.2010.675
https://doi.org/10.1109/ICPR.2010.675
https://doi.org/10.1109/CVPR.2015.7298640
http://arxiv.org/abs/1405.0312
https://doi.org/10.1007/s11263-014-0733-5
http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
http://www.votchallenge.net/vot2018/dataset.html
http://www.votchallenge.net/vot2018/dataset.html
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

	Preface
	Acknowledgements
	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Motivation
	Remote Weapon Station
	Object Detection and Tracking Methods

	Problem Description
	Approach
	Contributions
	Related Work
	Structure of the Thesis

	I Theory
	Computer Vision Fundamentals
	Image Processing
	Filtering
	Feature Extraction
	Feature Description

	Machine Learning
	Learning
	Models for Supervised learning


	Computer Vision Application
	Object Detection
	Definition
	Detection Method
	Pipeline
	Deep Learning

	Object Tracking
	Definition
	Tracking Method
	Pipeline
	Point Tracking

	Training and Evaluation
	Data Structuring
	Performance Measures
	Proposition of a Hybrid Tracking Measure



	II Implementation
	Software
	Frameworks and Supportive Software
	Deep Learning Framework
	Tracker Implementations
	Security

	Available Computer Vision Data
	Benchmark Data Sets
	Custom Test Videos
	Deep Learning Models


	System Implementation
	Design
	Approach
	Limitations

	Implementation
	Modules
	Application Work-flow
	Post Processing of Raw Predictions
	Video Display
	Command Line Interface
	Data Processing Scripts

	Installation
	Host
	Target



	III Evaluation
	Results
	Tracking in Test Videos
	Video: HobbyKing
	Video: BlurBody
	Video: Dancer2
	Video: David3
	Video: Human2
	Video: Jump
	Video: Woman
	Total Tracking Performance


	Discussion
	The Autonomous Tracker
	Proof of Concept
	The Embedded Platform
	Limitations

	Performance in Test Videos
	The Selected Videos
	Evaluation of the Results
	Bounding Box Consideration
	The Proposed Hybrid Measure


	Conclusion and Further Work
	Conclusion
	Further Work
	Work-flow
	Implementation
	Data Set



	The GitHub Repository
	detection-and-tracking/
	host/
	host/scripts/
	host/test/
	target/
	videos/

	Bibliography

