
Autonomous Landing of a Multirotor UAV
on a Platform in Motion

Vegard Line

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Aleksander Simonsen, FFI

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology



 



Preface

This thesis concludes my masters degree in Engineering Cybernetics at the Norwegian
University of Science and Technology.

The quadcopter, ground vehicle and surface vehicle used in this thesis, all equipped
with necessary sensors, controllers and communication systems are provided by Nor-
wegian Defence Research Establishment (FFI). FFI have also facilitated with office
space and paid for travel expenses. The background and contributions of the project
are described in more detail in Section 1.4 Background and Contributions

First of all, I would like to thank my co-supervisor Aleksander Simonsen from FFI,
for help and guidance, and never the less for his interest and engagement in my work.
Also, thanks to all the other researchers at FFI that have been very accommodating
and have gladly attended discussions. Furthermore, thanks to my supervisor Kristin Y.
Pettersen for signing up as supervisor and answering my technical questions. Lastly,
thanks to Erik Wilthil and Andreas Lindahl Flåten for great discussions and for sharing
some of their prime knowledge on state estimators.

i



ii



Abstract

Multirotor Unmanned Aerial Vehicles (UAVs) high maneuverability and their capability
to hover, makes them an extensively used platform in many fields of applications.
However, their limitations in flight time challenge the ambition of using multirotor
UAVs in fully autonomous operations. By introducing ground or maritime vehicles for
deployment and recovery of the UAVs, or even serve as a service platform performing
automatic battery replacement, it is possible to perform autonomous operations with
multirotor UAVs beyond todays limitations in regards range and duration. To achieve a
seamless synergy between the UAVs and the vehicle including a landing pad, requires
the UAV to be able to perform autonomous landing on the landing pad wile it is in
motion.

This thesis addresses autonomous landing of a multirotor UAV on a vehicle in
motion by using traditional navigation sensors in combination with a camera based
measurement system. The camera based measurements and the traditional navigation
measurements are processed in a Kalman filter developed in this assignment which
performs sensor fusion, estimates navigation states as well as calculating the sensor
biases. Moreover, two different guidance methods are compared, and a state machine
generating flight paths and adjusting controller gains are developed.

The camera based measurement system, the state estimator and the controller
are all implemented on the UAV and physical tests have been conducted in real time.
Results from the test show that the UAV is, in a robust manner, able to locate, track and
precisely land on a static landing pad. Unfortunately, there was no time to conduct

iii



final tests on landing pad in motion. However, results from simulations and the state
estimator indicates that the system is able to carry out autonomous landing on a
landing pads in motion.

iv



Sammendrag

Ubemannede multirotor luftfartøys (UML) gode evne til både å manøvrere, og til å
kunne stå stille i luften, gjør dem til svært populære plattformer med mange ulike
bruksområder. Deres ulempe er begrensende flytid, hvilket gjør UML uegnet til mange
fullautonome operasjoner. Ved å introdusere andre farkoster for distribusjon og
innhenting, automatisk batteribytte og vedlikehold av UML, kan bruken av multi-
rotor luftfartøy i autonome operasjoner nå langt utover dagens bruksområder. For
å kunne oppnå en slik samhandling mellom UML og farkosten det skal samarbeide
med, må imidlertid multirotor luftfarøtyet kunne lande autonomt på farkosten mens
farkosten er i bevegelse.

Denne avhandlingen omhandler temaet autonom landing med UML på en farkost i
bevegelse. For å kunne oppnå dette har det blitt brukt tradisjonelle navigasjonssensorer
i kombinasjon med kamerabasert målesystem. Avlesninger fra det kamerabaserte
målesystemet og navigasjonssensorene er prosessert i et Kalmanfilter utarbeidet i
denne oppgaven. Kalmanfilteret utfører sensorfusjonering, og returnerer estimater av
navigasjonsvariabler og sensorskjevheter. Videre i oppgaven har det blitt utarbeidet
en tilstandsmaskin som genererer flybaner og justerer kontrollerparametere, i tillegg
til at to navigasjonsmetoder er definert og sammenlignet.

Det kamerabaserte navigasjonssystemet, tilstandsestimatoren, en av navigasjon-
smetodene og tilstandsmaskinen er implementert på et UML som softwaremoduler.
Resultater fra et titalls fysiske tester der softwaremodulene kjører i sanntid på luft-
fartøyet, viser med høy robusthet og etterprøvbarhet at UML kan lokalisere og lande

v



presist på en statisk landingsplattform. Tiden strakk dessverre ikke til for å få gjen-
nomført de gjenstående testene på autonom landing på farkost i bevegelse. Imidlertid
gir resultater fra simuleringer, og testresultater fra tilstandsestimatoren gjennomført
på farkost i bevegelse, en sterk indikasjon på at systemet skal kunne gjennomføre
autonom landing på farkost i bevegelse.

vi



Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Background and Contributions . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modeling and Notations 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Unit Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Geodetic coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Skew Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Dynamic Modeling of a Quad-Rotor . . . . . . . . . . . . . . . . . . . 14

vii



3 Navigation 21

3.1 Fiducial Markers and Camera . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Multi marker system . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Sensor input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Barometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 UAV and Landing Pad Sensors . . . . . . . . . . . . . . . . . . 27

3.3 State estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Position and linear velocity state estimation . . . . . . . . . . 32
3.3.2 Position, linear velocity and bias state estimation . . . . . . . 34
3.3.3 Full state estimation . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 State Estimation for Static Landing Pad . . . . . . . . . . . . . 37

4 Controller 39

4.1 Controller Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Guidance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Parallel Navigation Guidance . . . . . . . . . . . . . . . . . . 44
4.2.2 Optimal Guidance . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Implementation and Test Setup 51

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.1 Robotics Operating System . . . . . . . . . . . . . . . . . . . 51
5.1.2 Implemented Nodes . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Quadcopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Landing Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



6 Results 65
6.1 Guidance Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Constant Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 Accelerating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3 Random Driving . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 State estimator tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Static Landing Pad . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Landing Pad in Motion . . . . . . . . . . . . . . . . . . . . . . 72
6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Controller Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion and future work 81

References 85

ix



x



List of Tables

2.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Measurement types received from the UAV and landing pad . . . . . 27

5.1 Topics in /mavros/* from figure 5.1 . . . . . . . . . . . . . . . . . . . 52
5.2 Messages on the mavros topic received from the UAV . . . . . . . . . 53
5.3 Messages on the odometry topic received from the landing pad . . . . 53
5.4 List of Devices Quadcopter . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 List of Devices in Custom Sensor Unit . . . . . . . . . . . . . . . . . . 60

6.1 Parameters used in the state machine . . . . . . . . . . . . . . . . . . 79

xi



xii



List of Figures

2.1 Geometrical definition of Euler angles . . . . . . . . . . . . . . . . . . 9
2.2 Linear velocities u,v ,w and the angular velocities p, q, r . . . . . . . . 9
2.3 Body frame and NED frame . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Example of RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Example of PRiAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Measurements used in the Kalman filter . . . . . . . . . . . . . . . . . 29
3.4 Updating the Kalman filter with sensor input . . . . . . . . . . . . . . 31
3.5 Position vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Velocity set-point and HAL communication flow chart . . . . . . . . 40
4.2 State machine states visualized for a UAV landing on a vehicle . . . . 41
4.3 Velocity vectors in the Parallel navigation guidance . . . . . . . . . . 45

5.1 ROS node overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Flow chart of the node_aruco . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Flow chart of the node_navigation . . . . . . . . . . . . . . . . . . . . 55
5.4 Flow chart of the node_controller . . . . . . . . . . . . . . . . . . . . 57
5.5 Communication setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Router, UAV, CSU and landing pad . . . . . . . . . . . . . . . . . . . . 59
5.7 Closeup of the 3DR solo quadcopter . . . . . . . . . . . . . . . . . . . 59
5.8 SBC, wireless adapter and camera mounted on the UAV . . . . . . . . 59

xiii



5.9 UAV landing on the FFI ground vehicle Olav . . . . . . . . . . . . . . 60
5.10 Olav detected from UAV camera at 12m . . . . . . . . . . . . . . . . . 60
5.11 UAV landing on the FFI surface vehicle Odin . . . . . . . . . . . . . . 61
5.12 Odin detected from UAV camera at 15m . . . . . . . . . . . . . . . . . 61
5.13 Overview of the components included in the SBC . . . . . . . . . . . 61
5.14 Fully assembled SBC . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Optimal Guidance with different prediction lengths . . . . . . . . . . 67
6.2 Optimal and Parallel navigation Guidance with a constant velocity target 68
6.3 Optimal and Parallel navigation Guidance with a accelerating target . 69
6.4 Optimal and Parallel navigation Guidance with random steering target 70
6.5 UAV landing on a static Landing Pad . . . . . . . . . . . . . . . . . . 71
6.6 Results from the navigation filter tuned for a static landing pad . . . 73
6.7 How covariance estimate narrows . . . . . . . . . . . . . . . . . . . . 74
6.8 Results from the navigation filter tuned for a landing pad at speed . . 76
6.9 Closeup of the ArUco measurements . . . . . . . . . . . . . . . . . . 77
6.10 Image from the onboard camera affected by motion blur . . . . . . . 78
6.11 Delay between the measured and estimated LP velocity . . . . . . . . 78
6.12 Relative position pnl/u during autonomous landing . . . . . . . . . . . 80

xiv



Glossary

CSU Custom Sensor Unit.

EKF Extended Kalman Filter.

EW Electronic Warfare.

FFI Norwegian Defence Research Establishment.

GNSS Global Navigation Satellite Systems.

HAL Hybrid Autonomous Layer.

IMU Inertial Measurement Unit.

INS Inertial Navigation System.

MEMS Microelectromechanical Systems.

MPC Model Predictive Control.

OpenCV Open Source Computer Vision Library.

PRiAM Pixel Replacement in ArUco Marker.

xv



RAM Recursive ArUco Marker.

ROS Robotic Operating System.

SAR Search and Rescue.

SBC Single Board Computer.

UAV Unmanned Aerial Vehicle.

UGAS Uniformly Globally Asymptotically Stable.

UGV Unmanned Ground Vehicle.

USGES Uniform Semiglobal Exponential Stability.

USV Unmanned Surface Vehicle.

UWB Ultra-Wideband.

xvi



Chapter 1

Introduction

1.1 Motivation

The multirotor UAV is a popular and much used platform getting more and more
introduced into our society by hobbyists, researchers, photographers, the coastguard,
farmers, the military and many others. Norwegian Defence Research Establishment
(FFI) are using UAVs in many of their fields of research such as, surveillance, Search
and Rescue (SAR), Electronic Warfare (EW), autonomy, swarms, communication and
environmental monitoring.

Due to the multirotor UAVs high maneuverability, though limited flight time, other
autonomous vehicles such as Unmanned Surface Vehicles (USVs), Unmanned Ground
Vehicles (UGVs) or even fixed wing UAVs can be used as a platform to transport and
serve multirotor UAVs. For autonomous cooperation between multirotor UAVs and
other vehicles to be realized, an autonomous system for precise landing on landing
pads in motion needs to be established.

1



2 CHAPTER 1. INTRODUCTION

1.2 Literature Review

The idea of deploying and recovering multirotor UAVs from a vehicles is not new. Some
examples are the autonomous drone service integrated in the Mercedes-Benz Vision
Van (AG (2017)) and the ship-to-shore drone delivery system from Field Innovation
Team (Gibbs and agencies (2016)).

In the last decade, multiple studies have been conducted in the area of autonomous
landing of multirotor UAVs on vehicles in motion. In the paper of Borowczyk et al.
(2016) they have been successful in autonomously landing a commercial UAV on the
roof of a car at velocities up to 14m/s . In their application, a smart-phone and a
visual fiducial marker were strapped to the roof of the car to provide position and
velocity measurements of the landing pad. Araar et al. (2017) did some interesting
research on autonomous landing on moving platforms using vision based navigation.
The visual fiducial markers used for the navigation were designed to have multiple
markers at different sizes, aimed for extensive range of detection. The two filters
Extended Kalman and Extended K∞ where compared for performing the sensor fusion
of the visual measurements and the Inertial Measurement Unit (IMU) data, where the
Extended Kalman Filter (EKF) by far resulted in the best accuracy. There is also worth
mentioning that the system where only tested for velocities up to 1.8m/s .

To achieve robust and accurate autonomous on a landing pad at speed, accurate nav-
igation methods needs to be established. This implies the need of a good state estimator
that estimates the position and velocities of the UAV and landing pad. Throughout
time there have been developed many different methods for guidance and navigation.
The sun and stars, compass, inertial sensors, landmarks, radar, radio triangulation and
Global Navigation Satellite Systems (GNSS) are among the many used methods. Lately,
lightweight and low cost inertial sensors, pressure sensors and GNSS receivers have
been introduced. According to Beard and McLain (2012) these kind of lightweight and
low cost sensors and receivers have made a huge impact on the development of of
small unmanned aircrafts.

Many different navigation methods have been carefully tested and implemented
on multirotor UAVs. One method frequently used for outdoor navigation is the combi-



1.2. LITERATURE REVIEW 3

nation of GNSS and IMU (Beard and McLain (2012)). Other methods for navigating in
GNSS-denied environments are established, as the usage of Ultra-Wideband (UWB)
(Tiemann et al. (2015)), infrared motion capture system (Zou et al. (2016)) or vision
based navigation (Huang et al. (2015)). More general, solving navigation equations
often involve fusion of several sensors returning asynchronous measurements.

The Extended Kalman filter is shown as a method with high performance to solve
the Inertial Navigation System (INS)/GNSS integration (Groves (2013)). There are two
main methods for implementing the EKF to solve navigation equations, the direct
and indirect method. The direct method estimates all the navigation-states in the
filter, while the indirect method only estimates errors (Vik (2009)). By using the
direct method, the dynamics of the vehicle can be included in the state equations.
An accurate dynamic model of the vehicle implemented in an EKF using the direct
method, makes the state estimate more accurate and robust against sensor failures
by implementing Dead-reconing. On the other hand, creating an accurate dynamic
model can be challenging due to many physical parameters to be defined (Roumeliotis
et al. (1999)). Martin and Salaün (2010) defines an accurate model for the rotor drag
on a quadcopter by using EKF to estimate physical parameters. In the paper from
Tailanian et al. (2014) they describe how to implement a full state direct Kalman filter
on a multirotor UAV.

The indirect method, often called the error state method, differs from the direct
method by that it estimates only the sensors error states. This implies that the system
dynamics is not included in the filter, whats makes the filter flexible and universal.
The same error state filter can therefore be used in various applications without
development of accurate dynamic models or re engineering the filter (Roumeliotis
et al. (1999)). Another argument for using the indirect method, is that even low
cost Microelectromechanical Systems (MEMS) IMU’s gives an relative high accurate
measurement that often overcomes the accuracy of the developed model.

Several architectures, for different level of integration have been developed for
GNSS/INS integration. In the book of Vik (2009), the uncoupled, loosely coupled,
tight coupled and deeply coupled integration methods are discussed. The tightly and
deeply coupled integration methods are the most accurate and robust integration



4 CHAPTER 1. INTRODUCTION

methods. Even the case where there are to few satellites available to calculate the
receivers position, the raw measurements from the GNSS receiver will still provide
useful information to the filter. Unlike the loosely and uncoupled integration, where
the calculated position and velocity-data form the receiver are used. On the other
hand, the loosely and uncoupled systems are lees complex and can therefore more
easily be implemented. Another benefit is that the GNSS receiver can be switched
without changing the code, while tightly and deeply coupled integration methods are
customized to a specific sensor Vik (2009).

1.3 Problem description

For multirotor UAVs to have a useful role as a sensor platform, the operation of tracking
and recovering to its landing pad needs to be robust and fully automated. Furthermore,
to be able to operate from vehicles at sea, or other vehicles without interrupting the
ongoing mission, landing on a platform in motion is essential. In order to solve this
problem, the assignment has been structured into the following tasks:

• Investigate the available onboard sensors which are relevant for autonomous
landing with small quadcopters.

• Consider fiducial marker detection systems and develop a concept for a system
in which the marker is being clearly visible for wide range of relevant altitudes.

• Investigate and develop a state estimator for relative positioning which allows
asynchronous measurement updates.

• Investigate different control and guidance strategies.

• Implement the marker-detection, the state estimator and a suitable controller
on a real platform for testing.

• Perform experiments in which quadcopter is being ordered to land on either a
vehicle, a surface vessel or a landing platform from a position nearby.



1.4. BACKGROUND AND CONTRIBUTIONS 5

1.4 Background and Contributions

In this project, a multi marker method described in 3.1.1 has been developed. The
method is using a combination of ordinary fiducial markers to extend the detection
range. The custom sensor unit described in 5.2.3.1 has also been made during this
work. The enclosure of the custom sensor unit was designed and 3D printed, the
components were connected together and the flight controller was configured. FFI
supplied software and configured the Single Board Computer (SBC) mounted on the
custom sensor unit.

Moreover, the following software modules are developed and implemented in this
work using C++. All of the listed software modules are tested and run in real time on
the SBC mounted on the UAV

• A fiducial marker detection module described in 5.1.2.1. The module detects
fiducial markers using Open Source Computer Vision Library (OpenCV) and
calculates the relative pose between the UAV and the landing pad.

• A state estimator module described in 5.1.2.2. The module reads and transforms
sensor inputs, performing sensor fusion and estimates navigation states and
biases.

• A controller module described in 5.1.2.3. The module runs a Guidance Controller
controlling the UAV position. It do also include a state machine, generating
position set points and controller gains to the Guidance Controller.

The following hardware were given as background material from FFI

• Quadcopter UAV including camera and a SBC set up with ROS and communi-
cation link to the workstation and manual control. Additionally, the SBC were
set up with communication to the UAV flight controller, allowing velocity set
points and receiving measurements.

• UGV included navigation sensors and communication link to the UAV

• USV included navigation sensors and communication link to the UAV



6 CHAPTER 1. INTRODUCTION

Moreover, FFI contributed with the following software modules

• Software module for reading out raw image from the camera mounted on the
UAV

• Software module for communicating with the landing pad

• Safety module between the set points generated by the controller and the flight
controller

Additionally, the following sections are based on the authors previous work con-
ducted in the feasibility study carried out in the fall semester 2017 (Line; 2017)

• 1.2 Literature Review

• 2 Modeling and Notations

• 3.2.1 GNSS

• 3.2.2 Inertial Measurement Unit

• 3.2.3 Barometer

1.5 Outline

This thesis is organized as follows. Chapter 2 concerns notations, coordinate frames
and transformations. Moreover, a mathematical model describing the system dynamics
of a rigid body quadcopter UAV is derived i the same chapter. Sensor equations and
Kalman filter equations are found in chapter 3. Further on, in chapter 4 a controller logic
and two Guidance methods are presented. Chapter 5 describes the implementation of
software and hardware in addition to the test setup. The results from simulation and
physical tests are then presented and discussed in chapter 6, before the conclusion and
further work ends the assignment in chapter 7.



Chapter 2

Modeling and Notations

In this chapter, the notations and reference frames used in the assignment will be stated.
Methods to transfer between coordinate frames will also be examined. Furthermore,
a dynamic model of a quadrotor UAV is developed. A representation of the system
is useful for simulations, deriving state estimators and for controller design. In this
assignment, the following assumptions have been made: The quadcoper is assumed to
be symmetric, in other words, all the motors and propellers are equally sized and the
lever from the quadcoper center to the motors have the same lengths. Moreover, the
multirotor is assumed to have a rigid body, the mass of the propellers is approximated
to zero and that the drag force due to air resistance is negligible.

The quad-rotor UAV has been a popular platform due to its simplicity. By using four
variable speed motors with fixed pitch propellers, the UAV gets a simple mechanical
structure that makes the UAV fully controllable. A god approximation of the force
from the propellers is stated in equation 2.1.

f = kω2 (2.1)

Where k > 0 is a constant depending on the shape of the propeller, gear ratio and
density of air. ω is the angular velocity of the motor (Lozano (2013)). This chapter is

7



8 CHAPTER 2. MODELING AND NOTATIONS

based on the feasibility study written by the author (Line; 2017).

2.1 Notation

The notations used in this assignment are mainly based on the notations used in
Fossen (2011). A coordinate free vector is written as ®u. To write a vector relative to
coordinate system {n}, the notation un is used. When a point is differentiated, it must
be done with respect to a reference frame. The notation used for describing this is
the subscript uob j/r ef . For example, the velocity of a particle in reference frame {a}
relative to reference frame {b} given in frame {c} is written as vca/b . Vectors are written
as lowercase letters, while matrices are written as uppercase. The inverse of a matrix
or vector is written as A−1 and A⊤ as the transpose.

2.2 Reference Frames

To be able to derive system equations for a vehicle in motion, several reference frames
needs to be established. An overview of the reference frames used in this assignment
are summarized in table 2.1. Where the Body frame is fixed to the frame of the UAV,
where it is often placed in the the UAV center as illustrated in figure 2.3. The ECI
frame is centered in the Earths mass center and is fixed in space, unlike the ECEF
frame which is also centered in the Earths mass center but is rotating with the Earth
(Fossen (2011)). Both the ECI and ECEF have their z axis pointing along with the
Earth’s rotation axis (Vik (2009)). The NED frame is in this assignment defined as a
fixed frame located at a tangent plane at the Earth’s reference ellipsoid close to the
UAV. The NED frame’s x axis is pointing towards true North, the y axis is pointing
towards East and the resulting z frame points downwards normal to the ellipsoid. ENU
frame is often used as an alternative to the NED frame. The x , y and z axis of the ENU
frame is pointing in the East, North and upwards normal to the ellipsoid respectively.
The CG frame is placed in the center of gravity of the vehicle, and is orientated at the
same direction as the Body frame (Fossen (2011)).



2.3. EULER ANGLES 9

Name Description Symbol
Body Body-fixed reference b

CG Center of gravity д

ECEF Earth-centered Earth fixed f

ECI Earth-centered inertial i

NED North-East-Down n

ENU East-North-Up e

GEO Geodetic Coordinate System дe

Table 2.1: Reference frames

2.3 Euler angles

The attitude of the Body frame relative to NED is often given by the Euler angles
Θnb = [ϕ, θ , ψ ]

⊤ (Fossen (2011)). The Euler angles geometrical definition is given in
figure 2.1, where ϕ, θ andψ are often referred to as roll, pitch and yaw respectively.

ψ

−θ

ϕ

x

y

z

Figure 2.1: Geometrical definition of Euler
angles

Figure 2.2: Linear velocities u,v ,w and the
angular velocities p, q, r
The linear velocities u,v ,w and the angular
velocities p, q, r . All given in Body frame



10 CHAPTER 2. MODELING AND NOTATIONS

Transformation of a vector ∈ R3 given in the body frame b to the NED frame
n is often performed using a rotation matrix Rnb (Θnb ). As figure 2.1 illustrates, this
assignment uses the zyx convention. In other words, the rotational transformation is
performed by first rotate an angleψ about the z axis, followed by the rotation θ about
the y axis and finally rotate ϕ about the x axis. The transformation matrix Rnb in zyx

convention as a function of Θnb is then given as (Fossen (2011)).

Rnb (Θnb ) =


cψ cθ −sψ cϕ + cψ sθ sϕ sψ sϕ + cψ sθcϕ

sψ cθ cψ cϕ + sϕsθ sψ −cψ sϕ + sψ sθcϕ

−sθ cθ sϕ cθcϕ


(2.2)

where cx and sx is abbreviations for cos(x) and sin(x) respectively. The rotational
transformation from NED to body, can be found by taking the inverse of 2.28 (Fossen;
2011).

Rbn(Θnb ) = Rnb (Θnb )
−1 (2.3)

Due to the inconsistent use of the reference frames NED and ENU, a method to
transfer between thees two frames needs to be established. The attitude of the ENU
frame relative to the NED frame can be given as the Euler angles Θne = [π , 0,π/2]⊤.
By using the rotation matrix given in 2.2, the rotational transformation from NED to
ENU can be given as

Rne (Θne ) =


0 1 0

1 0 0

0 0 −1


(2.4)

Due to the symmetry of the matrix, we get that Rne (Θne ) = Re
n(Θne ).

The angular velocity transformation from the body-fixed angular velocities to the
Euler rate vector can be given as (Fossen (2011))

ÛΘnb = TΘ(Θnb )ω
b
b/n (2.5)



2.4. UNIT QUATERNIONS 11

WhereTΘ(Θnb ) is

TΘ(Θnb ) =


1 sϕtθ cϕtθ

0 cϕ −sϕ

0 sϕ/cθ cϕ/cθ


(2.6)

in this matrix, sx , cx and tx is abbreviations for sin(x), cos(x) and tan(x) respectively.

2.4 Unit Quaternions

Unit quaternions is an alternative to the Euler-angle representation described in 2.3.
This four parametric representation of a rotation has the benefit of being able to
represent singularity-free three dimensional rotations (Fossen (2011)). A quaternion q
is defined as:

q =



η

ϵ1

ϵ2

ϵ3


=


η

ϵ

 (2.7)

where η is the real part and ϵ is the complex part of the quaternion. In addition, the
unit quaternions must satisfy the following constraint (Fossen (2011))

q⊤q = 1 (2.8)

The angular velocity of a unit quaternion can be derived as

Ûq =

Ûη

Ûϵ

 =
1
2


−ϵ⊤

ηI 3×3 + S(ϵ)

 ωb
b/n (2.9)

Furthermore, the rotation matrix for unit quaternions from coordinate frame a to b is



12 CHAPTER 2. MODELING AND NOTATIONS

states as (Fossen (2011))

R(q)ba =


1 − 2(ϵ2

2 + ϵ
2
3 ) 2(ϵ1ϵ2 − ϵ3η) 2(ϵ1ϵ3 + ϵ2η)

2(ϵ1ϵ2 + ϵ3η) 1 − 2(ϵ2
1 + ϵ

2
3 ) 2(ϵ2ϵ3 − ϵ1η)

1(ϵ1ϵ3 − ϵ2η) 2(ϵ2ϵ3 + ϵ1η) 1 − 2(ϵ2
1 + ϵ

2
2 )


(2.10)

As in the Euler angles notation in 2.3, there is also an angular velocity transforma-
tion for unit quaternions (Fossen (2011))

Ûq = T q(q)ω
b
b/n (2.11)

WhereT q(q) is

T q(q) =



−ϵ1 −ϵ2 −ϵ3

η −ϵ3 ϵ2

ϵ3 η −ϵ1

−ϵ2 ϵ1 η


(2.12)

Converting Euler angles to quaternions and the other way around can be done by
requiring the that the rotation matrices for both Euler-angles and unit quaternions are
equal (Vik (2009)).

R(q)ba = R(Θ)ba (2.13)

2.5 Geodetic coordinates

One method to represent a global position near the surface of the earth is by using
the geodetic coordinate system. Geodetic coordinate systems depends on a reference
ellipsoid of the earth. The coordinate system describes the position of a point with the
variables longitude, latitude and height respectively denoted as λ, ϕ and h. Where the
longitude is the rotational angle between the Prime Median and the point, latitude is
the angle between the equator plane and the normal of the reference ellipsoid passing
trough the point and height is the distance between the ellipsoid and the point (Cai



2.5. GEODETIC COORDINATES 13

et al.; 2011).

All GNSS receivers used in this assignment refers to the same WGS-84 ellipsoid
model. Cai et al. (2011) summarize the WGS-84 parameters as

REa = 6378137.0m (2.14)

f = 1/298.257223563 (2.15)

where REa is the semi-major axis and f is the flattering factor. Further on, the semi-
minor axis REb , first eccentricity e , median radius of curvature ME and the prime
vertical radius of curvature NE are defined as

REb = REa(1 − f ) (2.16)

e =

√
R2
Ea − R

2
Eb

REa
(2.17)

Me =
REa(1 − e2)

(1 − e2 sin2 ϕ)3/2
(2.18)

NE =
REa√

1 − e2 sin2 ϕ
(2.19)

A pointpдe = [λ,ϕ,h]⊤ in the geodetic coordinate system can be given in the ECEF
coordinate system by using the conversion method

pf =


(NE + h) cosϕ cos λ

(NE + h) cosϕ sin λ

[NE (1 − e2) + h] sinϕ


(2.20)

(Cai et al.; 2011)

Furthermore, the point p can be represented relative to a local NED coordinate
system. In this assignment, the local NED frame ploc is defined to be whatever the
UAV reads from the GNSS sensor when the UAV arms the motors. Equation 2.21 states



14 CHAPTER 2. MODELING AND NOTATIONS

the position conversion given in Cai et al. (2011)

pn = Rnf (p
дe
loc )(p

f − p
f
loc ) (2.21)

where Rnf (p
дe
loc ) is the rotation matrix from ECEF to the loc NED given as

Rnf (p
дe
loc ) =


−sϕloccλloc −sϕloc sλloc cϕloc

−sλloc cλloc 0

−cϕloccλloc −cϕloc sλloc −sϕloc


(2.22)

where cx and sx is abbreviations for cos(x) and sin(x) respectively.

2.6 Skew Symmetric Matrix

A matrix is said to be skew symmetric if and only if S = S⊤ (Spong et al. (2006)). The
3 × 3 skew symmetric matrix can be stated as:

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0


where x ∈ R3. This matrix is useful for performing the vector cross product defined
by: (Fossen (2011))

a × b := S(a)b

where a,b ∈ R3.

2.7 Dynamic Modeling of a Quad-Rotor

In this section, the dynamic model for a rigid body quadcoper will be derived using the
Newton-Euler approach. Euler’s equation can for linear- (®pд) and angular momentum



2.7. DYNAMIC MODELING OF A QUAD-ROTOR 15

(®hд) is defined as in equation 2.23 and 2.24 respectively (Fossen (2011)).

nd

dt
®pд = ®fд ®pд =m ®vд/n (2.23)

nd

dt
®hд = ®mд ®hд = Iд ®ωb/n (2.24)

where ®fд is the force acting on the vehicle, ®mд is the moment acting on the same rigid
body,m is the total mass, Iд is the inertia about the center of gravity, ®vд/n and ®ωb/n is
the linear and angular velocities respectively.

The equation for linear momentum in 2.23 can be rewritten as

®fд =m
nd

dt
®vд/n (2.25)

, and by expressing the equations in body frame the following is obtained:

®fд =m(
bd

dt
®vд/n + ®ωb/n × ®vb/n) (2.26)

f bд =m( Ûvb
д/n + S(ω

b
b/n)v

b
д/n) (2.27)

Equation 2.24 can be reformulated such that the rotational motion about CG can
be expressed in Body frame as

mb
д = Iд( Ûωb

b/n − S(ω
b
b/n)ω

b
b/n) (2.28)

where S is the skew symmetric matrix defined in 2.6.

Resulting Newton Euler equations from 2.27 and 2.28 can be written as (Fossen
(2011)) 

mI 3×3 03×3

03×3 Iд



Ûvb
д/n

Ûωb
д/n

 +

mS(ωb/n

b ) 03×3

03×3 −S(ωb/n
b )



vb
д/n

ωb
д/n

 =

f bд

mb
д

 (2.29)



16 CHAPTER 2. MODELING AND NOTATIONS

where I 3×3 is the 3 × 3 identity matrix and 03×3 is a 3 × 3 matrix containing only zeros.
The matrix involving the system inertia constants can be states asMCG

RB and the matrix
containing the Coriolis-Centripetal parameters asCCG

RB . Further on, the equation 2.29
can be written in the compact matrix form (Fossen (2011))

MCG
RB


Ûvb
д/n

Ûωb
д/n

 +CCG
RB


vb
д/n

ωb
д/n

 =

f bд

mb
д

 (2.30)

whereMCG
RB is unique, while there is possible to find a large number of representations

forCCG
RB (Fossen (2011)).

System equations given in 2.30 are expressed for system motions relative to center
of gravity. A more suitable set of equations would be to have the system motions
described about a chosen body frame. A vector rbд describes the translation from center
of gravity to the body frame. By using coordinate transformation, we can according to
Fossen (2011) rewrite 2.30 as
mI 3×3 −mS(rbд)

mS(rbд) Ib



Ûvb
b/n

Ûωb
b/n

 +


mS(ωb
b/n) −mS(ωb

b/n)S(r
b
д)

−mS(rbд)S(ω
b
b/n) −S(Ibω

b
b/n)



vb
b/n

ωb
b/n

 =

f bb

mb
b


(2.31)

which again, can be written more compact(Fossen (2011)).

MRB Ûν +CRB (ν )ν = τRB (2.32)

WhereMRB is often referred to as the Rigid-Body System Inertia Matrix whileCRB is
called Coriolis-Centripetal Matrix. ν is the state vector and τRB is a generalized vector



2.7. DYNAMIC MODELING OF A QUAD-ROTOR 17

of external forces and moments, both written out in 2.33.

ν =


vb
b/n

ωb
b/n

 =


u

v

w

p

q

r


τRB =


f bb

mb
b

 =


X

Y

Z

K

M

N


(2.33)

There are two main linear forces acting on the quadcopter. The gravitational force
and the force given by the propellers. For the model developed in this assignment,
we approximate the gravitational force to be parallel to the NED frame’s z axis. The
force due to gravitation is then given as f nд,д =mд[0 0 1]T . By transferring this force
to body frame, the gravitational force equation is written f bд,д = Rbnmд[0 0 1]T , where
Rbn is the rotation matrix described in section 2.3. The force from the motor-driven
propellers is given in equation 2.1. For a quadcopter design, the motors are fixed to the
frame and the propellers force are parallel to the body frame z axis

∑4
i=1 kω

2
i [0 0 1]T .

The sum of forces acting on the rigid UAV frame can then be expressed as

f bд = Rbnmд

[
0
0
1

]
− k

4∑
i=1

ω2
i

[
0
0
1

]
(2.34)

where ωi is the rotational speed of motor i . The directions of the forces are given by
the frames of reference given in figure 2.3.

Angular momentum acting on the UAV frame is generated from the difference
in force generated from motors across the x and y axis of the body frame (Lozano
(2013)). The difference in force from motor one and three gives an angular momentum
around the y axis, while difference in force from motor two and four generates angular
momentum around the x axis. The relation between angular- and linear moment is
m = r × f , where r is the vector from center of rotation to the linear force, and f is
the linear moment (Egeland and Gravdahl (2002)). There is also generated angular



18 CHAPTER 2. MODELING AND NOTATIONS

Figure 2.3: Body frame and NED frame
Illustrates that the position of body-frame is in the center of the UAV. The difference
in force from motors one and three generates torque about the body frame y axis,

while motor 2 and 4 affects the torque about the x axis.



2.7. DYNAMIC MODELING OF A QUAD-ROTOR 19

momentum around the z axis. This momentum are generated due to the drag force
from the propellers (Nicolai and Carichner (2001)), and can be formulated as dω2

i ,
where d is the drag factor and ωi is the angular velocity for propeller i . By using the
right-hand rule to determine the directions at the forces and momentums, we can
summarize the input torques as

mb
b =


lk(ω2

4 −ω
2
2)

lk(ω2
1 −ω

2
3)

d(−ω1 +ω2 −ω3 +ω4)

 (2.35)

Where l is the distance from the body frame to the propeller.
By using the angular velocity transformation and the rotation matrix differential

equations defined in 2.3, the kinematic equations for the position and attitude can be
summarized on the form Ûη = J (η)ν as (Fossen (2011))[

Ûpnn/b
ÛΘnb

]
=

[
Rnb (Θnb) 03×3

03×3 TΘ(Θnb)

] [
vb
b/n

ωb
b/n

]
(2.36)

The Euler angle approach is used for this equation set. The kinematic equation can
also be defined for the singularity free unit quaternions defined in 2.4 (Fossen2011)[

Ûpnn/b
Ûq

]
=

[
Rnb (q) 03×3

04×3 T q(q)

] [
vb
b/n

ωb
b/n

]
(2.37)

The 12 state differential equation set can be summarized as[
Ûν

Ûη

]
=

[
M−1

RB (τRB −CRB (ν )ν )

J (η)ν

]
(2.38)

where J is either the JΘ from equation 2.36 using the Euler method or Jq from equa-
tion 2.37 using quaternions.



20 CHAPTER 2. MODELING AND NOTATIONS



Chapter 3

Navigation

3.1 Fiducial Markers and Camera

Autonomous landing on a relative small landing pad relies on an accurate relative
measurement between the UAV and the landing pad. Several methods were considered,
such as radio ranging, infrared sensing, LiDAR and Reflective markers. The fiducial
marker detection method where selected due to its simplicity, robustness and low
cost. In robot navigation, multiple fiducial marker detection methods for camera
pose estimation have been developed, such as the ArUco library, Intersense, ARTag,
CyberCode, ReacTIVision, BinARyID and more (Garrido-Jurado et al.; 2014).

In the paper of Garrido-Jurado, noz Salinas, Madrid-Cuevas and Marín-Jiménez
(2014), they presents the ArUco library for camera pose estimation relative to fiducial
markers. The library includes a general method to generate markers with the lowest
fault rate possible. ArUco tag detection functions are also included in the ArUco
library, where a local adaptive thresholding approach is used rather than the Canny
edge detector to limit the computational load in the image segmentation phase. Further
on, contour extraction and filtering is performed to filter out all contours that are not
4-vertex polygons. All the resulting polygons are then reshaped as rectangular images
and compared with the generated marker library by dividing the rectangle in to a

21



22 CHAPTER 3. NAVIGATION

grid and translate each element to 1 or 0 depending on the average amount of white
or black in the element. The generation and detection of ArUco fiducial markers are
included in the OpenCV project Itseez (2018).

3.1.1 Multi marker system

One of the main requirements of the relative measurement, is to have an accurate
measurement both at altitudes up to 25m and at close range down to 30cm. Due to
limitations in imaging sensors and fixed optics, one single marker will not be able to
give an accurate measurement within the necessary altitude rage. Two alternatives to
the single marker were therefor developed in this work, a Recursive ArUco Marker
(RAM) method and a Pixel Replacement in ArUco Marker (PRiAM) method.

The RAM is built up with several unique ArUco markers in decreasing sizes placed
in a circular shaped pattern. An example of the RAM is given in figure 3.1. In the
PRiAM method, an ArUco fiducial marker with a black center pixel is selected as the
larger (outer) tag. The center pixel is then replaced by an AruCo tag with the same
dimensions as the pixel. Figure 3.2 gives an example of this method using two unique
ArUco markers. In this PRiAM method, the tag used as the center pixel in the outer
marker must contain a dominance of black pixels to be treated as a black pixel. The
main benefits of using the PRiAM rather than the RAMmethod, is that the the center of
the tag is equal at all heights and that the footprint of the tag is not affected compared
to a single marker. On the other hand, the pixel replacement method may be more
sensitive to noise, due to the mixture of white and black pixels in the inner tag. It is
also restricted to fiducial markers that are rectangular and have a center pixel, while
the recursive tag method can be used by any fiducial marker systems.

3.2 Sensor input

Both the UAV and the landing pad consists of navigation sensors such as GNSS,
magnetometers, barometer, linear accelerometers and rate gyros. Measurements from
these sensors are then used in their already implemented pose and velocity state



3.2. SENSOR INPUT 23

Figure 3.1: Example of RAM Figure 3.2: Example of PRiAM

estimators. The GNSS/INS integration will therefore not be present in this assignment.
Some solutions to the GNSS/INS problem can be studied in future details in Vik (2009).
The resulting pose and velocity estimates and their corresponding error covariance
are treated as new measurements in the state estimator developed in section 3.3. The
fiducial pose estimate given from the ArUco tag detection in section 3.1 is also treated
as a measurement and fed in to the state estimator. Sensor equations are developed in
this section to get an understanding of the biases and noise in these measurements.

3.2.1 GNSS

In this assignment, where the UAV is flying relatively close to the defined NED frame,
we can state the GNSS position and velocity equations as:

ypos,GNSS =


λ

ϕ

h

 +wpos (3.1)

yvel,GNSS = v
b
b/n +wvel (3.2)

Where λ and ϕ is longitude and latitude respectively, often stated as Θen ∈ S
2. h ∈ R

is the altitude above the WGS-84 ellipsoid. wpos ∈ R
3 is the zero-mean Gaussian white



24 CHAPTER 3. NAVIGATION

noise. vn
b/n andwvel is the linear velocity of the UAV relative to the NED frame and

its associated zero-mean Gaussian white noise. Section 2.5 describes a method for
transforming the geodetic coordinates to a position vector relative to NED. A GNSS
receiver gives position estimates at typically 1-5Hz.

3.2.2 Inertial Measurement Unit

By combining the benefit of global positioning from the GNSS system and the high
measurements rate from the accelerometers, magnetometers and rate gyros, a fast and
accurate position estimate can be achieved. This sensor combination is commonly used,
and for that reason the industry has developed a unit including three accelerometers,
rate gyros and magnetometers, named IMU (Beard and McLain (2012)). Further on in
this section, the IMU is assumed to be placed in the center of the body frame with the
sensors pointing parallel to the body axis.

Accelerometers

There are three major accelerations affecting the IMU during a flight. Its the accelera-
tions from the body due to changes in the linear velocity, centripetal acceleration due
to rotational velocity and the gravitational acceleration. The sensor equation can be
derived as (Vik (2009)):

yaccel = Ûv
b
b/n +ω

b
b/n ×v

b
b/n − R

b
n


0
0
д

 + βaccel +waccel (3.3)

where βaccel is the bias from sensor drifting and other none estimated terms. The
waccel is the zero-mean Gaussian white noise.

Rate gyro

Rate gyros measures the angular velocity about the sensors sensitive axis with respect
to the Earth-centered inertial frame. Du to high measurement biases in MEMS gyros



3.2. SENSOR INPUT 25

(10-3600deg/hr), the measurement of Earth rotation can therefore be neglected. The
resulting rate gyro sensor equation can be derived as

yдyro = ωb
b/n + βдyro +wдyro (3.4)

ωb
b/n βдyro is the bias from sensor drifting and other none estimated terms while

wдyro is the zero-mean Gaussian white noise.

Magnetometer

A magnetometer measures the strength of a magnetic field in its sensing axis. The
direction of the field can be measured by using three sensors placed orthogonal to
each other. If the vehicles horizontal plane is leveled with the North East plane, in
other words ϕ ≈ θ ≈ 0, the magnet heading angle can be measured as (Fossen (2011),
Beard and McLain (2012)):

ψm = − atan2(my ,mx ) (3.5)

wheremx andmy is the magnetic reading along the x and y axis respectively. The
atan2 function is the two-argument arctangent function that uses the sign ofmy and
mx to select the appropriate quadrant (Spong et al. (2006)).

To be able to derive the heading equation for applications that do not have approx-
imated zero roll and pitch angles, the angles need to be measured or estimated. By
achieving these angles, the equation can be stated as (Fossen (2011)):

hx =mx cos(θ ) +my sin(θ ) sin(ϕ) +mz cos(ϕ) sin(θ )

hy =my cos(ϕ) −mz sin(ϕ)

ψm =


− atan2(hy ,hx ) if hx , 0
π/2 if hx = 0,hy < 0
3π/2 if hx = 0,hy > 0


(3.6)

where hx and hy are the horizontal components fromm transformed to b frame. These
equations are often calculated in the strapdown equations, whereψm is the output from
these equations and can be treated as a measurement ymaд . Due to the difference in



26 CHAPTER 3. NAVIGATION

magnetic north and true north, in other words ψ = δ + ψm , the measurement will
include a bias term (Beard and McLain (2012)). The measurement equation is therefore
stated as:

ymaд = ψ
b
b/n + βmaд +wmaд (3.7)

where βmaд is the bias term due to Earth’smagnetic field declination and othermagnetic
fields and wmaд is the zero-mean Gaussian white noise. The disadvantage of the
magnetometer is that it is affected by other time varying magnetic fields, such as
power cables and motors.

3.2.3 Barometer

An important navigation-parameter in aerial vehicles is the height above ground. By
using an absolute pressure sensor measuring the atmospheric pressure relative to a
fixed reference pressure, an relative altitude estimate can be calculated using a basic
equation of hydrostatics for a static fluid (Beard and McLain (2012))

δp = ρдδz (3.8)

where δp is the change in pressure due to change in height δz, for a static fluid and
constant density ρ. The air in the atmosphere is compressible and have a density
varying on altitude and weather-conditions. On the other hand, the variation in
density at altitudes lower than 1000m are so small that they can be neglected. The
variations in weather-conditions can also be neglected for quadrotor applications due
to the short fly-range. The change in pressure δp, can be defined as pд − pm , where pд
and pm is the pressure at sea level and sensor altitude respectively. Hence, the sensor
equation can be given as in 3.9.

ypres = ρдh + βpres +wpres (3.9)

Where βpres is the bias term, wpres is the zero-mean Gaussian white noise and ρ is
the density of air.



3.2. SENSOR INPUT 27

3.2.4 UAV and Landing Pad Sensors

As mentioned in the introduction of this chapter, the sensor outputs from the GNNS,
IMU and barometer are processed in an already implemented navigation equations
and state estimator in the UAV and the landing pad.

Measurement Type Measurement UAV Measurement LP
Global position p

дe
u p

дe
l

Global position covariance rpeu rpel
Orientation qeu qel
Linear velocity ve

u/e ve
l/e

Angular velocity ωe
u/e ωe

l/e

Table 3.1: Measurement types received from the UAV and landing pad

Table 3.1 gives an overview of the measurements read form the UAV and the
landing pad, where pдu and pдl are the position given in geodetic coordinates and rpeu
and rpel are the associated covariance given in ENU. qeu and qel are the UAV and the
landing pad orientation relative to ENU given in quaternions. ve

u/e andv
e
l/e are the

linear velocities of the UAV and landing pad given in and relative to ENU, andωe
u/e

andωe
l/e are the angular velocities of the UAV and landing pad given in and relative to

ENU. To be able to use the measurements in the state estimator developed in chapter 3,
all the measurements needs to be transformed according to the measurement vector
given in the same chapter. The position measurements are the results from the internal
navigation filter in the UAV and the landing pad. The position estimates pдeu and pдel
does therefore include the benefit of global position from the GNSS sensor and high
frequency relative position from the IMU and barometer. Section 2.5 presents a method
to represent the geodetic coordinates relative to the n frame. Equation 3.10 and 3.11
summarizes the method used to transfer the position to NED.

pnu/n = Rnf (p
дe
loc )(p

f
u − p

f
loc ) + β

n
u/n +wpu (3.10)

pnl/n = Rnf (p
дe
loc )(p

f
l − p

f
loc ) + β

n
l/n +wpl (3.11)



28 CHAPTER 3. NAVIGATION

where ploc is the local NED origin and Rnf is the rotation matrix from ECEF to NED
given in equation 2.21. pfu and pfl are the UAV and landing pad position given in ECEF.
The transformation from geodetic coordinates to ECEF are given in equation 2.20. β
andw is the measurement bias and zero-mean Gaussian white noise respectively.

The position covariance matrices rpeu ∈ R3x3 and rpel ∈ R
3x3 does only contain

elements on its diagonal and represents the position error covariance, and are given
in the ENU frame. The covariance matrix can be represented in the NED frame by
switching the element rpe (1, 1) with the element rpe (2, 2).

rpn =


rpe (2,2) 0 0

0 rpe (1,1) 0
0 0 rpe (3,3)

 (3.12)

The rotation between the ENU frame and body frameqeu = [ηeu ,ϵ1,eu ,ϵ2,eu ,ϵ3,eu ]
⊤

andqel = [ηel ,ϵ1,el ,ϵ2,el ,ϵ3,el ]
⊤ can be transformed to represent the rotation between

the NED frame and body frame by using the geometric relations given in 3.13.

qnu =


ηeu
ϵ2,eu

ϵ1,eu

−ϵ3,eu


+wq qnl =


ηel
ϵ2,el

ϵ1,el

−ϵ3,el


+wq (3.13)

wherewq is the zero-mean Gaussian white noise

The linear and angular velocities can be given related to NED by using the rotation
matrix Rne (Θne ) given in 2.4

vn
u/n = Rne (Θne )v

e
u/e +wv (3.14)

ωn
u/n = Rne (Θne )ω

e
u/e +wω (3.15)

vn
l/n = Rne (Θne )v

e
l/e +wv (3.16)

ωn
l/n = Rne (Θne )ω

e
l/e +wω (3.17)



3.3. STATE ESTIMATORS 29

wherewv andwω are the respective zero-mean Gaussian white noise for the linear
and angular velocity.

3.3 State estimators

As illustrated in figure 3.3, the measurements send to the state estimator originates
from the landing pad, the UAV and the camera mounted on the UAV. Both the Landing
pad and the UAV measurements are relative to and given in the same NED reference
system. While the relative measurement from the camera, returns the pose of the
landing pad relative to the UAV frame given in NED.

Landing Pad

Kalman Filter

UAV Cam/ArUco

pnl/n
vn
l/n

Rl

pnu/n
vn
u/n

Ru

pnu/n
Rr

x̂
P

Figure 3.3: Measurements used in the Kalman filter
Measurements used in the Kalman filter to estimate the states x̂ and the covariance P

of the estimate

The different sensor inputs have different update-rates and the measurements read
from the camera arrive with a variable time step. A method to implement a Kalman
filter that handles asynchronous measurements must for that reason be developed.
First of all, the filter does not know the time until the next filter update. Consequently
the a priori covariance and state estimate needs to be calculated at the beginning of



30 CHAPTER 3. NAVIGATION

each step k .

x̂−k = Φk x̂k−1 + ∆kuk−1 (3.18)

P−k = ΦkPk−1Φ
⊤
k (3.19)

where x̂−k and P−k is the a priori state estimate and covariance respectively. x̂k−1 and
uk−1 is the state estimate and system input at time tk−1. The state transition matrix Φk

and the input matrix ∆k are time varying matrices due to change in ∆t = tk − tk−1.

The Kalman filter equations for a filter with asynchronous update rate can be given
on the form:

xk = Φkxk−1 + ∆kuk−1 +wk−1

zk = Hkxk +vk (3.20)

where xk is the process state vector at time tk , Φk and ∆k is the state and input
transition matrix respectively,wk andvk is the zero-mean Gaussian white noise, zk is
the measurement at time tk and Hk is the connection between the measurement and
state vector.

Furthermore, Brown and Hwang (1997) describes a method for updating the filter
with one measurement at a time. The H matrix can be rewrite in partitioned form as:

Hk =


Ha

k

Hb
k
...

 (3.21)

Where each block represent its corresponding measurement a, b ... . When updating
the filter with a measurement, all blocks are set to zero except the block representing
the measurement that is updating the filter. This filter update sequence is illustrated
in figure 3.4

As figure 3.4 illustrates, the filter is updated if there is a newmeasurement available.
If there are multiple measurements available at the same time-step k , the filter iterates



3.3. STATE ESTIMATORS 31

Iterate through all measure-
ments at time-step k

Done:
Wait for new measurement

New measurement

Update ΦΦΦk and ∆∆∆k

Projecting
x̂̂x̂x−k = ΦΦΦk x̂̂x̂xk−1 +∆∆∆kuuuk−1
PPP−k = ΦΦΦkPPPk−1ΦΦΦ

⊤
k +QQQk

Update matrices
HHHk ,zzzk

Compute Kalman gain
KKKk = PPP

−
kHHH
⊤
k (HHHkPPP

−
kHHH
⊤
k +RRRk )

−1

Update state estimate and error covariance
x̂̂x̂xk = x̂̂x̂x

−
k +KKKk (zzzk −HHHk x̂̂x̂x

−
k )

PPPk = (III −KKKkHHHk )PPP
−
k (III −KKKkHHHk )

⊤ +KKKkRRRkKKK
⊤
k

x̂̂x̂x−k = x̂̂x̂xk
PPP−k = PPPk

zzzik

Figure 3.4: Updating the Kalman filter with sensor input

trough all the measurements and updates the filter with one measurement at a time.

There is also possible to update the states and error covariance between measure-
ment by performing dead reckoning. State estimate request can for instance be required
from a controller or user interface. One simple way to implement dead reckoning in
practice, is to use the same filter update sequence as given in figure 3.4 and set the
Hk matrix to zero, this updates both the state estimate and its corresponding error
covariance.



32 CHAPTER 3. NAVIGATION

3.3.1 Position and linear velocity state estimation

For applications concerning landing pads that have zero or small pitch and roll angles,
a position and linear velocity state estimation may be suitable.

In the application of landing on a moving landing pad, the most essential states
are the relative distance between the UAV and the landing pad and the velocity of the
landing pad, often referred to as speed over ground. For convenience, the states and
the measurements are all given relative to NED. The states are therefore chosen to be
the 6 × 1 vector

x =

[
pnl/u
vn
l/n

]
(3.22)

By using a constant velocity approximation of the UAV and landing pad, the
dynamic equations can be stated as

pnl/u,k = p
n
l/u,k−1 + (v

n
l/n,k−1 −v

n
u/n,k−1)(tk − tk−1) +wk (3.23)

vn
l/n,k = v

n
l/n,k−1 +wk (3.24)

where tk and tk−1 are the time-stamps in seconds of the time-steps k and k − 1 respec-
tively. Figure 3.5 gives a graphical illustration of how the relative position vector pnl/u
can be written as a function of the UAV- and landing pad position vectors, pnu/n and
pnl/n .

The equations in 3.23 can be written on the Kalman filter equation form of given
in 3.20 by selecting the matrices Φk , ∆k and Hk as

Φk =

[
I ∆t

0 I

]
∆k =

[
−∆t

0

]
Hk =


I 0
I 0
0 I

 (3.25)

where I is the 3 × 3 identity matrix, 0 is a 3 × 3 matrix with all elements equal to zero
and ∆t is a 3× 3 matrix with the relative time-step (tk − tk−1) on its diagonal and zeros
on the none-diagonal elements. It is worth nothing that theΦ and ∆matrices are given
in the time-step k and not k − 1. The system is initially represented as time invariant,



3.3. STATE ESTIMATORS 33

pnu/n

pnl/n

pnl/u

Figure 3.5: Position vectors

but the inconsistence in the time-steps makes the system matrices a function of time.
The input vector u and measurement vector z are then given as

u =
[
vn
u/n

]
z =


pnl/n − p

n
u/n

pnl/u
vn
l/n

 (3.26)

where pnl/n − p
n
u/n represents the position measurements from the landing pad sub-

tracted by the position measurements from the UAV. The second row in the measure-
ment vector z corresponds to the relative ArUco measurement pnl/u and the last row is
the landing pad velocity measurement transmitted from the landing pad.



34 CHAPTER 3. NAVIGATION

3.3.2 Position, linear velocity and bias state estimation

As given in section 3.2.4, the position estimate from the UAV and landing pad includes
the biases βnl/n and βnu/n respectively. These biases varies and should therefore be
estimates during the flight. One method to deal with these biases is to estimates them
in the Kalman filter as extra states. To reduce the number of states in the filter, the
biases can be reduced to a relative bias given as

βnl/u = βnl/n − β
n
u/n (3.27)

By adding the the bias states given in equation 3.27 to the filter, the state vector and
filter equations are extended to

x =


pnl/u
vn
l/n

βnl/u

 (3.28)

and

pnl/u,k = p
n
l/u,k−1 + (v

n
l/n,k−1 −v

n
u/n,k−1)(tk − tk−1) +wk (3.29)

vn
l/n,k = v

n
l/n,k−1 +wk (3.30)

βnl/u,k = βnl/u,k−1 +wk (3.31)

where the bias is modeled as a Gaussian random walk model. The corresponding state
transition matrix, input transition matrix and measurement connection matrix are
then given as.

Φk =


I ∆t 0
0 I 0
0 0 I

 ∆k =


−∆t

0
0

 Hk =


I 0 I

I 0 0
0 I 0

 (3.32)

As the measurement connection matrix Hk illustrates, the relative position measure-
ment from the UAV and landing pad does also include the bias βnl/u . This gives the



3.3. STATE ESTIMATORS 35

input and measurement vectors

u =
[
vn
u/n

]
z =


pnl/n − p

n
u/n + β

n
l/u

pnl/u
vn
l/n

 (3.33)

3.3.3 Full state estimation

In addition to the relative position, landing pad velocity and bias, the relative orienta-
tion and landing pad angular velocity are added as states in the full state estimator.

x =



pnl/u
Θul

vn
l/n

ωn
l/n

βnl/u


(3.34)

Here, the measurement and input vectors z and u, are supplemented with the mea-
surements of orientation and angular velocities.

z =



pnl/n − p
n
u/n + β

n
l/u

pnl/u
Θul

vn
l/n

ωn
l/n


u =

[
vn
u/n

ωn
u/n

]
(3.35)

where Θul is measured form the fiducial marker,ωn
l/n is measured from the landing

pad navigation system and ωn
u/n is measured from the UAV navigation system. By

still using the approach of constant velocity on the landing pad, we can formulate the



36 CHAPTER 3. NAVIGATION

discrete dynamic equations as

pnl/u,k = p
n
l/u,k−1 + (v

n
l/n,k−1 +v

n
u/n,k−1)(tk − tk−1) +wk

Θul,k = Θul,k−1 + (ω
n
l/n,k−1 +ω

n
u/n,k−1)(tk − tk−1) +wk

vn
l/n,k = v

n
l/n,k−1 +wk

ωn
l/n,k = ωn

l/n,k−1 +wk

βnl/u,k = βnl/u,k−1 +wk

This gives the state and input transition matrices

Φk−1 =



I 0 ∆t 0 0
0 I 0 ∆t 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


∆ =


∆t 0
0 ∆t

0 0
0 0


And the measurement matrix

Hk =



I 0 0 0 I

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0





3.3. STATE ESTIMATORS 37

3.3.4 State Estimation for Static Landing Pad

For applications where we have the prior knowledge that the landing will be static
during the flight, this information can be used in the state estimator to improve the
estimates. One method of adjusting the Kalman filter in the reduced state estimator, is
to modify the Φk matrix such that the dynamic equation describing the velocity of the
landing pad is stated as

vn
l/n,k = 0 +wk (3.36)

Furthermore, the elements in the covariance matrixQk , representing the landing pad
velocity estimate is to be set close to zero. For the full state estimation filters, both the
linear- and angular velocity is to be set to zero, and the corresponding elements in the
covariance matrix is to be set close to zero.

vn
l/n,k = 0 +wk (3.37)

ωn
l/n,k = 0 +wk (3.38)



38 CHAPTER 3. NAVIGATION



Chapter 4

Controller

4.1 Controller Logic

The autonomous landing system developed in this work is just a piece of FFI’s au-
tonomous UAV platform. All control systems and sensor modules are controlled by
the Hybrid Autonomous Layer (HAL) module, that takes the high level decisions
and delegates task to underlaying modules. For instance, during a search and rescue
mission HAL takes the decision of when the UAV have to change battery. HAL then
requests autonomous landing on to the battery exchange robot mounted on a moving
vehicle. The autonomous landing system then starts performing its landing sequence.
At any time during the landing operation, HAL may reschedule and disable the landing.
For safety reasons, the velocity set-point generated by the landing controller, and all
other control modules are sent to a safety node. The safety node checks the velocity
set-point and restricts it if necessary before it sends the velocity command to the
UAV flight controller. The safety module do also switch to manual control as soon as
someone uses the remote control.

The set-point and HAL communication-flow described in this section are illustrated
in Figure 4.1

39



40 CHAPTER 4. CONTROLLER

HAL

Autonomous Landing

Safety Module

Flight Controller

Enable/Disable Autonomous Landing

Velocity set-point

Velocity set-point

Manual override

Mode

Figure 4.1: Velocity set-point and HAL communication flow chart

4.1.1 State machine

This section takes a close look at the state machine used to implement the autonomous
landing system. The state machine in this section returns position set-point and
a controller gain to be fed in to a target tracking controller. Two target tracking
controllers are derived in closer details in section 4.2. The state machine do also
return a boolean output to the flight controller to trigger a force land command. This
command tels the flight controller to ignore the velocity set-point and just go straight
down and turn of its propellers when it touches the ground.

The state machine is built up with seven states. Stop, Intercept, Hover, Lower, Gain
adjust, Final stage and Land. Figure 4.2 gives a graphical illustration of the different
states. The state stop, is only activated when autonomous landing is disabled and will
the return zero as velocity output. The intercept state has the purpose of bringing the
UAV to the hover point located at a fixed distance above the landing pad. In hover



4.1. CONTROLLER LOGIC 41

Intercept

Lower

Hover

Gain adjust

Final stage

Land

Figure 4.2: State machine states visualized for a UAV landing on a vehicle

mode, the UAV will stay in this hover point fixed above the landing pad while the
position state estimator improves its estimates. This hover point is selected at a certain
height that ensures the landing pad to be fixed within the camera field of view. The
state machine will stay in this state until the covariance of the position estimate reaches
an acceptable level. The lower state lowers the UAV towards the landing pad at a given
descent velocity. When the UAV reaches a certain height, the state machine enters the
gain adjust state. This state adjusts the controller gain to a more aggressive gain to
ensure a more precise position control. At the final stage state, the descent velocity
is reduced to get an even more precise position control. And finally, the land states
triggers the force land command to the flight controller, which brings the UAV all the



42 CHAPTER 4. CONTROLLER

way down to the landing pad and disarms the motors. Algorithm 1 lists a pseudo code
to summarize the state machine outputs in the different states.

Algorithm 1 State machine output
1: ∆t = дetCurrentTime() − t0
2: if state = stop then
3: Stop
4: else if state = intercept or hover then
5: дain ← дain1
6: possp ← hooverHeiдht
7: else if state = lower then
8: дain ← дain1
9: possp ← possp − decentVelu∆t
10: else if state = дainAdjust then
11: дain ← дain2
12: possp ← possp − decentVelu∆t
13: else if state = f inalStaдe then
14: дain ← дain2
15: possp ← possp − decentVell∆t
16: else if state = land then
17: land ← True
18: t0 = дetCurrentTime()

In the pseudo code given above, land is the boolean output to the flight controller
that triggers the landing command, дain is the controller gain in the UAV position
controller and possp is the position set-point to the same controller. The parameters
дain1, дain2, hoverHeiдht , decentVelu and decentVell are parameters tunable from a
parameter file.

The logic for switching between the states in the state machine are given in
algorithm 2. As the pseudo code indicates, the switching to the hover and land state
are triggered by the presence of the UAV inside a given sphere and cylinder respectively.
These "imaginary" geometrical figures are illustrated in figure 4.2 and have tunable
dimensions.

The parameters hoverSphere ,min covar , heiдhtдa , heiдhtf s and landinдCylinder
given in algorithm 2 are also tunable in a given parameter file. The variable abort is



4.1. CONTROLLER LOGIC 43

Algorithm 2 State machine shifting logic
1: if autonomousLandinд = False then
2: state ← stop
3: else if abort = true then
4: state ← intercept
5: else if state = intercept then
6: if UAVpos ∈ hoverSphere then
7: state ← hover
8: else if state = hover then
9: if nav covar ≤ min covar then
10: state ← lower
11: else if state = lower then
12: if UAVheiдht ≤ heiдhtдa then
13: state ← дainAdjust

14: else if state = дainAdjust then
15: if UAVheiдht ≤ heiдhtf s then
16: state ← f inalStaдe

17: else if state = f inalStaдe then
18: if UAVpos ∈ landinдCylinder then
19: state ← land



44 CHAPTER 4. CONTROLLER

a control variable given from a condition monitoring and fault detection system. A
condition monitoring and fault detection system will not be included in this work.

4.2 Guidance Methods

The objective of this section is to define several methods for having the UAV matching
both the position and speed of the LP. This objective is often referred to as rendezvous
in the space industry and corresponds to the motion control objective in a target
tracking scenario (Breivik (2010)). In guidance theory, the interceptor and target
are also referred to as evader and pursuer or predators and pray (Shneydor (1998b)).
Further on in this section, UAV and LP will be used as synonyms for interceptor and
target, respectively.

The target tracking scenario in this assignment can be states as

lim
t→∞
(pnu/n − p

n
d/n) = 0 (4.1)

lim
t→∞
(vn

u/n −v
n
l/n) = 0 (4.2)

where
pnd/n = p

n
l/n − p

n
h/l (4.3)

is the desired tracking point and pnh = [0, 0,h]
⊤ ∈ R3 is a vector defining the hover

height h above the landing pad.

4.2.1 Parallel Navigation Guidance

Parallel navigation has for long been used for mariners to avoid collisions at sea,
and is therefor also known under the names "constant bearing" and "collision course
navigation" (Shneydor; 1998a). The parallel navigation notation originate from its use
in air-to-air missile guidance applications (Fossen; 2011), where the main objective
is to achieve collision with the target. Breivik (2010) applies the parallel navigation
concept together with an asymptotic interception method to form a stable motion
control of marine craft. Their paper proves stability for surface position and heading



4.2. GUIDANCE METHODS 45

for a fully actuated marine surface craft performing motion control using the constant
bearing guidance method.

The fundamental of the parallel guidance is that the UAV velocity is a combination
of a parallel velocity of the landing pad and a velocity vector pointing directly at the
landing pad. Figure 4.3 and equation 4.4 illustrates this method in further details.

vn
d/n

vn
u/n

vn
a/n

vn
d/n

Figure 4.3: Velocity vectors in the Parallel navigation guidance
2D representation of the velocity vectors in the Parallel navigation guidance

vn
u/n = v

n
d/n +v

n
a/n (4.4)



46 CHAPTER 4. CONTROLLER

wherevn
a/n is the approach velocity pointing in the same direction as the line of sight

vector between the UAV and the landing pad. vn
d/n is the desired position velocity, and

vn
u/n is the velocity vector send as set-point to the UAV flight controller (Fossen; 2011).

A simple kinematic model of a quadcopter can be modeled as

Ûpnu/n = vn
u/n (4.5)

By applying the kinematic control design given in Breivik and Fossen (2007) as a three
axis position UAV controller, the stability proof in the same paper can be rewritten to
fit the kinematic equation given in 4.5. Equation 4.6 states a continuously differentiable
positive definite Lyapunov function candidate for the differential equation in 4.5

V =
1
2 (p

n
u/d )

⊤pnu/d (4.6)

where
pnu/d = p

n
u/n − p

n
d/n (4.7)

is the relative position between the UAV and its desired position pnd/n . The time
derivative of pnu/d is

Ûpnu/d = Ûp
n
u/n − Ûp

n
d/n = v

n
u/n −v

n
d/n (4.8)

Differentiating the Lyapunov function candidate given in 4.6 with respect to time
along the trajectories of pnu/d gives

ÛV = (pnu/d )
⊤ Ûpnu/d = (p

n
u/d )

⊤(vn
u/n −v

n
d/n) (4.9)

Implementing the parallel navigation guidance method gives the controller

vn
u/n = v

n
d/n − κ

pnu/d
|pnu/d |

(4.10)

where κ is a controller gain. This parallel navigation guidance controller is designed to
achieve collision with the target. Breivik and Fossen (2007) implements an asymptotic



4.2. GUIDANCE METHODS 47

gain to achieve asymptotically interception velocity with the desired position. This is
realized by selecting the controller gain as

κ = Uc,max

|pnu/d |√
(pnu/d )

⊤pnu/d + ∆
2

(4.11)

where Uc,max is the maximum approach velocity and ∆ is a tunable control parameter.
By adding the asymptotic gain given in 4.11 in to the parallel navigation guidance
method in 4.10, the controller can be rewritten as

vn
u/n = v

n
d/n −Uc,max

pnu/d√
(pnu/d )

⊤pnu/d + ∆
2

(4.12)

substituting 4.12 in to 4.9 yields

ÛV = −Uc,max

(pnu/d )
⊤pnu/d√

(pnu/d )
⊤pnu/d + ∆

2
< 0, ∀pnu/d , 0 (4.13)

which is negative definite when ∆ and Uc,max are positive and bounded. By using
Lyapunov’s theorem (Khalil; 2015), the system is shown to be Uniformly Globally
Asymptotically Stable (UGAS) (Fossen; 2011). Moreover, Belleter (2016) proves in his
thesis that the system is Uniform Semiglobal Exponential Stability (USGES).

4.2.2 Optimal Guidance

Optimal Guidance or optimal control problems aim to find the optimal control output
that minimizes a control objective at the same time as some given constraints are
met. A reasonable control objective to minimize in the subject of landing a UAV on a
platform in motion, is to use the distance between the UAV and the tracking point, in
addition to the relative velocity between them.

A general quadratic objective function with linear constraints for a discrete time



48 CHAPTER 4. CONTROLLER

systems can be written as (Foss and Heirung; 2013)

f (z) =
N∑
k=0

f (xk+1,uk ) =
N−1∑
k=0

1
2x
⊤
k+1Qk+1xk+1 +

1
2u
⊤
k Rkuk (4.14)

subject to

xk+1 = Akxk + Bkuk (4.15)

x low ≤ xk ≤ xhiдh (4.16)

ulow ≤ uk ≤ uhiдh (4.17)

−∆uhiдh ≤ ∆uk ≤ ∆uhiдh (4.18)

where

∆uk = uk −uk−1 (4.19)

z⊤ = (x⊤1 , . . . ,x
⊤
N ,u

⊤
0 , . . . ,u

⊤
N−1) (4.20)

n = N (nx + nu ) (4.21)

x0,u−1 is given (4.22)

Qk ⪰ 0 (4.23)

Rk ⪰ 0 (4.24)

furthermore, N is the prediction horizon, x andu are decision variables and represents
the system states and control input respectively and k is the time step from k = 0 to
k = N . The vectors x low , xhiдh , ulow and uhiдh contains the upper and lower limits of
the states and input respectively. Additionally, the vectors ∆uhiдh and ∆ulow enable
constraints on the change of control input. TheQk and Rk matrices in the objective
function 4.14 are matrices weighting the individual states and control inputs. These
weighting matrices and the prediction horizon N are used for tuning the optimization
function to give its desired behavior.

One way to implement optimal guidance by using the general quadratic objective



4.2. GUIDANCE METHODS 49

function given in 4.14 and its corresponding constraints (4.19-4.24), is by using the
relative position and velocity between the UAV and the desired tracking point as states
and their respective velocities relative to the n frame as control input.

xk =

[
pnd/u
und/u

]
uk =

[
unu/n
und/n

]
(4.25)

Furthermore, a constant velocity discrete time model can be implemented in the
equality constraints 4.15,

pnd/u,k+1 = p
n
d/u,k + ∆t u

n
d/u,k (4.26)

und/u,k+1 = u
n
d/n,k −u

n
u/n,k (4.27)

Gives the Ak and Bk matrices

Ak =

[
I ∆t

0 0

]
Bk =

[
0 0
−I I

]
(4.28)

where I is the 3 × 3 identity matrix, 0 is a 3 × 3 matrix with all elements equal to
zero and ∆t is a 3 × 3 matrix with the relative time-step (tk+1 − tk ) on its diagonal
and zeros on the non-diagonal elements. By setting the constraints representing the
control input for the desired tracking point to the measured velocity of the tracking
point, ensures constant velocity estimate of the desired tracking point. The constraints
representing the control input for the UAV is set to the desired maximum velocity for
the UAV.

Solving the quadratic objective function 4.14 with the linear constraints in 4.19-4.24,
the states and control input given in 4.25 and their systemmatrices in 4.28 gives an open
loop solution to the Optimal Guidance problem (Foss and Heirung; 2013). Feedback can
be added to the Guidance method by introducing the linear Model Predictive Control
(MPC) (Foss and Heirung; 2013). Algorithm 3 taken from Foss and Heirung (2013),
describes how the linear MPC with state feedback closes the loop. The use of MPC
with state feedback requires that all the states are measured. In this application, this



50 CHAPTER 4. CONTROLLER

Algorithm 3 MPC with state feedback
1: for k = 0, 1, 2, . . . do
2: Get current states xk
3: Solve problem 4.14 on the prediction horizon from k to k +N with xk as initial

condition
4: Apply the first control move ut from the solution

require that the relative position pnd/u and velocity und/u are measured.



Chapter 5

Implementation and Test
Setup

5.1 Implementation

5.1.1 Robotics Operating System

Robotic Operating System (ROS) is an open source framework for building robotic
applications developed by contributers in the Open Source Robotics Foundation (Open
Source Robotics Foundation; 2018a). The ROS framework consists of a set of software
libraries and tools for developing robotic applications in a modular way. A system
running on ROS consists of multiple nodes communicating through topics. Figure 5.1
illustrates how the nodes are connected using topics in the implementation done in
this assignment. The green nodes odometry and safety_module are made by FFI, the
nodes node_aruco, node_navigation and node_controller marked blue are developed by
the author and the read nodes are made by other contributers to the ROS community.
All the nodes implemented by the author are implemented as ROS nodes by using
the programming language c++. The ROS nodes are tested on ROS version 1.12.13
(Kinetic). The corresponding table 5.1 lists all the topics included in the /mavros/*

51



52 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

/camera/image_raw

/arucoNode/data

mavros

/mavros/*

node_navigation

node_arucoodometry

uEye

node_controller

safety_module

/navigationNode/stateEstimator

/cmd/status/cmd/velocity /cmd/info

/odometry/
target

/mavros/
time_reference

velocity set point

Figure 5.1: ROS node overview

branch in figure 5.1. Furthermore, table 5.2 and 5.3 lists all the measurements read

/mavros/state
/time_reference
/global_position/global
/imu/data
/local_position/velocity

Table 5.1: Topics in /mavros/* from figure 5.1

from the UAV and the landing pad.



5.1. IMPLEMENTATION 53

Message Measurement
/mavros/global_position/global p

дe
u

/mavros/global_position/global/position_covariance rpeu
/mavros/imu/data/orientation qeu
/mavros/local_position/velocity/twist/linear ve

u/e

/mavros/local_position/velocity/twist/angular ωe
u/e

Table 5.2: Messages on the mavros topic received from the UAV

Message Measurement
/odometry/target/pose/pose/position p

дe
l

/odometry/target/pose/pose/orientation qel
/odometry/target/pose/covariance r l,pose
/odometry/target/twist/twist/linear ve

l/e

/odometry/target/twist/twist/angular ωe
l/e

/odometry/target/twist/covariance r l,twist

Table 5.3: Messages on the odometry topic received from the landing pad

5.1.2 Implemented Nodes

5.1.2.1 node_aruco

The main objective of the node_aruco is to, from an image stream, get a measure-
ment of the position and orientation of a fiducial marker relative to the camera.
A flow chart given in figure 5.2 illustrates the structure of the node. The image
matrix received from the uEye camera contains of m × n 8 bit unsigned integers,
where m × n represents the camera resolution. Each matrix element gives the in-
tensity of the pixel in the corresponding image. The image matrix is send in to the
cv::aruco::detectMarkers function included in the OpenCV library (Itseez; 2018). The
function returns an array with the ID of the markers detected and its corresponding
corners. Furthermore, the pose is estimated for each of the detected markers using the



54 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

{{Corners}, ID}

Estimate Pose

{Pose, Size}

Averaging

Parameter
file....

..

......

Pose

Send Topic
Image Timestamp

Image Matrix

Detect Markers

Figure 5.2: Flow chart of the node_aruco

function cv::aruco::estimatePoseSingleMarkers and parameters given in a parameter file.
Parameters given in the parameter file are constants describing the positions, ID’s and
dimensions of the ArUco tags creating a multi marker tag. Moreover, the parameter
file includes camera calibration matrices. Pose and tag dimensions are then used in
an averaging algorithm to improve the pose measurements. The position averaging
method used is given in equation 5.1 and are used for ArUco markers averaging in the
paper from Tørdal and Hovland (2017).

p̄ =
1
A

Nm∑
i=1

aipi , A =
Nm∑
i=1

ai (5.1)

where ai and pi are the respectively tag area and position vector, Nm is the number of
tags to be averaged and p̄ is the resulting average vector. Finally, the averaged pose
estimate is tagged with the time stamp from the image and sent on the /arucoNode/data
topic. Moreover in the initialization phase, the localn frame is set to the point measured
by the UAV GNSS sensor.



5.1. IMPLEMENTATION 55

5.1.2.2 node_navigation

When the navigation node is started, it waits for the UAV to get armed. This is to ensure
that the UAV have GNSS fix and to ensure that the user have placed the UAV at its
takeoff position. Thereafter, the Kalman filter is initialized, the global NED is defined
and the time difference between the SBC time and GNSS time is calculated. The filter

Wait for UAV to arm

Initialize KF, NED and time

Parameter
file....

..

......

Request states and covariance

GNSS TimestampSend topic

Kalman Filter

Measurement transformation

Measurement callback

10Hz

Start

Figure 5.3: Flow chart of the node_navigation

can either be automatically- or manually initialized, selected by a parameter. If the
filter is automatically initialized, the UAV have to be placed in the center of the landing
pad before initialization. In automatic initialization, the relative position estimate pnl/u
is set to zero, the landing pad velocityvn

l/n is set to the measured velocityvn
l/n and the

bias term βnl/u is set to measured relative position pnl/n −p
n
u/n . The covariance estimate

is set to predefined values based on experience set in the parameter file. Manually
initialization uses predefined values from the parameter file both on the state and
covariance estimate.

To be able to match the measurements from the landing pad with the measurements
form the UAV and camera, all measurement are stamped with GNSS time. Messages



56 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

from the camera and the UAV are originally stamped with time from the computer
clock which differs from the GNSS time. In the initialization phase, a time difference
∆ros/GNSS is calculated by taking the difference between ros::Time::now() and GNSS
time. The time stamps from the camera and the UAV measurements are then adjusted
to GNSS time by adding the ∆ros/GNSS to the initial time stamp. After the filter is ini-
tialized, it starts updating the filter from measurement updates. When a measurement
arrives, the measurement are transformed in to its relevant coordinate frame by using
the conversion methods given in section 3.2. Due to delays on the camera- and Landing
Pad measurements, a method to match the corresponding measurements of the UAV
orientation and position is needed. The method used in node_navigation stores the
latest second of UAV orientation an position measurements and their corresponding
time stamps in dynamic buffers. When a camera or landing pad measurement arrives,
the corresponding UAV orientation and position are calculated using the dynamic
array and linear interpolation between the stored measurements.

As discussed in section 3.3, there are two ways to update the Kalman filter is
updated. Either by updating the filter with new measurements or by dead reckoning
on request. As illustrated in figure 5.3, node_navigation requests the estimated states
and their corresponding covariance, times the states with the GNSS time stamp and
sends them out on the /navigationNode/stateEstimator topic ten times a second.

5.1.2.3 node_controller

The flow chart given in figure 5.4 describes the work flow of the node_controller.
The state machine referred to in the figure is defined in section 4.1.1, where status
from the safety module and the estimated states from the Kalman filter are given as
inputs. Furthermore, a position set point pnd/n and its velocity vn

d/n together with a
controller gain ∆ are set as input to the Parallel Navigation Guidance Controller given
in section 4.2.1. The velocity set pointvn

u/n,sp from the Parallel Navigation Guidance
Controller is sent as a velocity command on a ROS topic.



5.2. TEST SETUP 57

vn
u/n,sp

Send Topic

Parameter
file....

..

......

Estimated States

PNG Controller

pnd/n∆ vn
d/n

Status

State Machine

Figure 5.4: Flow chart of the node_controller

5.2 Test Setup

5.2.1 Communication

The communication setup between the UAV, landing pad, manual controller and the
work station is illustrated in figure 5.5. Figure 5.6 shows a photograph of the router,
UAV, and the Custom Sensor Unit (CSU) used in the tests.

5.2.2 Quadcopter

The quadcopter used in this work is a 3DR Solo Drone produced by 3D Robotics
photographed in figure 5.7. The UAV is a low cost commercial available quadcopter
mainly used by hobbyists and photographers. In addition to the off the shelf quadcopter,
a SBC, a wireless adapter and a global shutter camera is connected to drone. Figure 5.8
illustrates how the equipment is mounted on to the UAV and table 5.4 lists the details
of the equipment. The SBC is running ROS on Ubuntu 16.04 and communicates with
the quadcopter using the mavROS interface (Open Source Robotics Foundation; 2018b).



58 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

Manual control

Router

Workstation

2.4GHz

5GHz

5GHz
2.4GHz

Figure 5.5: Communication setup

Device Brand Type nr
Quadcopter 3D Robotics SOLO Drone
Single Board Computer Hardkernel ODROID-C2
Wireless Adapter Edimax ew-7811uac
Camera iDS UI-3250LE-C-HQ

Table 5.4: List of Devices Quadcopter

5.2.3 Landing Pads

The fiducial marker used in this test setup, is a 80 times 80cm PRiAM tag mounted on
a wooden board. Tests have been carried out with the tag placed on the ground, at the
back of the ground vehicle Olav and at the deck of the surface vehicle Odin. Both Olav
and Odin have accurate navigation systems on board broadcasting the navigation data
to the UAV. In order to have a velocity and position measurement of the landing pad
when using other landing pads, a CSU where created in this work.



5.2. TEST SETUP 59

Figure 5.6: Router, UAV, CSU and landing pad
Router, UAV, CSU and landing pad. Total setup for precise, autonomous landing

Figure 5.7: Closeup of the 3DR solo quadcopter
Figure 5.8: SBC, wireless adapter and
camera mounted on the UAV



60 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

Figure 5.9: UAV landing on the FFI
ground vehicle Olav

Figure 5.10: Olav detected from UAV camera
at 12m

5.2.3.1 Custom Sensor Unit

The CSU is built by a flight controller, GNSS sensor, SBC, wireless adapter, battery
and a 3D printed enclosure. Figure 5.13 illustrates the included components in details.
Detailed information of the components can be studied in table 5.5. The flight controller
is running PX4 flight controller software communicating with the SBC running Ubuntu
16.04 and ROS.

Device Brand Type nr
GNSS sensor mRo GPS u-Blox Neo-M8N
Flight Controller mRo Pixhawk 2.4.6
Single Board Computer Hardkernel ODROID-C2
Battery Zippy Flightmax 3000mAh, 20C, 11.1v
Wireless Adapter Edimax ew-7811uac

Table 5.5: List of Devices in Custom Sensor Unit



5.3. SIMULATION SETUP 61

Figure 5.11: UAV landing on the FFI surface
vehicle Odin

Figure 5.12: Odin detected from UAV
camera at 15m

Figure 5.13: Overview of the components
included in the SBC

Figure 5.14: Fully assembled SBC

5.3 Simulation Setup

A 2D simulation environment were developed to compare the two guidance methods
developed in section 4.2. The simulation environment were developed using Matlab
and includes simplified dynamic models of Olav and the UAV. Moreover, Optimal
and Parallel Navigation Guidance methods and a graphical illustration to present the
results are implemented in the same environment.

The ground vehicle is modeled as the nonholonomic kinematic car based on rolling



62 CHAPTER 5. IMPLEMENTATION AND TEST SETUP

without slippering constraints given in Spong et al. (2006) as

Ûq =


0
0
0
1


ϕ +


cos(θ )
sin(θ )
1
d tanϕ

0


vn
l/n (5.2)

with the state vector q

q =


pnl/n,x
pnl/n,y
θ

ϕ


(5.3)

θ is the vehicle heading relative to the n frame, ϕ is the vehicle steering angle, pnl/n ∈
R2is the position of the landing pad relative to the n frame,vn

l/n ∈ R
2 is the landing

pad velocity relative ti n and d is the length between the back and front wheels of the
ground vehicle.

The UAV is modeled using a simple mass force model combined with a proportional
velocity controller. The mass force model ca be given as

Ûq =
[
vn
u/n
f nu
m

]
q =

[
pnu/n
vn
u/n

]
(5.4)

where pnu/n ∈ R
2 andvn

u/n ∈ R
2 represents the UAV position and velocity relative to

and given in the n frame. The vector f nu ∈ R2 represent the force acting on the UAV
given in n frame and the constantm is the total mass of the UAV. Furthermore, the
proportional velocity controller controlling the UAV velocity with the force acting on
the UAV f nu is implemented by.

f nu = Kp (v
n
u/n −v

n
u/n,m) (5.5)

The Optimal Guidance method is implemented by solving the quadratic objective
function 4.14 subject to its constraints 4.19-4.24 containing the desired dynamics given



5.3. SIMULATION SETUP 63

by the matrices 4.28 using the quadprog function included in the Matlab Optimiza-
tion Toolbox (MATLAB; 2017). While the parallel navigation guidance method is
implemented by using the controller given in equation 4.12.



64 CHAPTER 5. IMPLEMENTATION AND TEST SETUP



Chapter 6

Results

6.1 Guidance Simulations

This section presents the results from the simulations of the Parallel Navigation- and
Model Optimal Guidance methods discussed in section 4.2. The weighting matricesQ
and R used in the simulations presented are given in 6.1, the constraints restricting
the states are given in 6.2 and the constraints limiting the input are given in 6.3.

Q =


1.3 0 0 0
0 1.3 0 0
0 0 500 0
0 0 0 500


R =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


(6.1)

x low =


−∞

−∞

−∞

−∞


xhiдh =


∞

∞

∞

∞


(6.2)

65



66 CHAPTER 6. RESULTS

ulow =


und/u,x,k
und/u,y,k
−15
−15


uhiдh =


und/u,x,k
und/u,y,k

15
15


∆u =


∞

∞

2.5
2.5


(6.3)

where the states inequality constraints 6.2 gives no restrictions in the flight area.
The control constraints in 6.3 restricts the UAV velocity to ±15m/s and forces the
optimization algorithm to predict constant velocity equal to the measured velocity
und/u,k on the control objective.

Figure 6.1 illustrates how the behavior of the Optimal Guidance Controller changes
by using different prediction lengthsN . Where the blue line in sub figure 6.1a represents
the path driven by the landing pad at constant velocity and the remaining lines
represents the path driven by the UAV using Optimal Guidance controller with different
prediction lengths. Sub figure 6.1b presents the velocity during the simulation. Further
on in the guidance simulations, the prediction length is set to N = 10. The parameters
used in the Parallel Navigation Guidance controller are given in 6.4.

∆ = 16 Uc,max = 10 (6.4)

6.1.1 Constant Velocity

The simulation results given in figure 6.2 presents the behavior of the Optimal- and
the Parallel Navigation Guidance tracking a target at constant velocity. There are two
simulation cases presented in the figure, one where the UAV’s initial positions are set
to [150,−150], and one where the initial positions are set to [150,−50]. Sub figure 6.2a,
illustrates the paths the UAV’s and the landing pad have driven, sub figure 6.2b and
6.2c illustrates the corresponding velocities using the initial condition [150,−150] and
[150,−50] respectively.



6.1. GUIDANCE SIMULATIONS 67

0 50 100 150

-300

-250

-200

-150

-100

-50

0 Landing Pad

N=10

N=20

N=30

(a) Position track from the LP and UAV’s

0 5 10 15 20 25 30

Time [s]

0

5

10

15

20

V
e
lo

c
it
y
 [
m

/s
]

Landing Pad

N=10

N=20

N=30

(b) Velocity from LP and UAV’s

Figure 6.1: Optimal Guidance with different prediction lengths
Optimal Guidance with different prediction lengths. Constant velocity LP

6.1.2 Accelerating

In this simulation, the landing pad is acceleration from 0 to 10m/s with an acceleration
of 1m/s2 and then continues with a constant velocity. Figure 6.3 presents the paths
and velocities generated while tacking the landing pad using Optimal- and Parallel
Navigation Guidance.



68 CHAPTER 6. RESULTS

0 50 100 150

-300

-250

-200

-150

-100

-50

0 Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(a) Position track from the LP and UAV’s

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

V
e
lo

c
it
y
 [
m

/s
]

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(b) Initial position [150,-150]

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

14

V
e
lo

c
it
y
 [
m

/s
]

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(c) Initial position [150,-50]

Figure 6.2: Optimal and Parallel navigation Guidance with a constant velocity target

6.1.3 Random Driving

In the simulations presented in figure 6.4, random noise is added to the steering angle
of the landing pad, while the speed is kept constant. Sub figure 6.4b represents the
velocity of the random driving illustrated in 6.4a. Similarly, sub figure 6.4d represents
the velocity from the random driving in 6.4c.



6.1. GUIDANCE SIMULATIONS 69

0 20 40 60 80 100 120 140 160

-250

-200

-150

-100

-50

0 Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(a) Position track from the LP and UAV’s

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

14
V

e
lo

c
it
y
 [
m

/s
]

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(b) Velocity from LP and UAV’s

Figure 6.3: Optimal and Parallel navigation Guidance with a accelerating target

6.1.4 Summary

Overall, both the guidance methods compared in this result are able to track the desired
tracking point in all the scenarios simulated. The rugged velocity measurements from
the Optimal Guidance methods may be possible to smooth out by tuning the controller.
However, that is one of the major disadvantage using the Optimal Guidance method.
The tuning process is time consuming due to the high number of parameters to be
tuned. Moreover, it is far more complex to implement and has a higher computational
load compared to the Parallel Navigation Guidance method. The benefit of using the
Optimal Guidance method, is the opportunity to set constraints to the states and control



70 CHAPTER 6. RESULTS

0 50 100 150 200
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(a) Position track from random steering 1

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

V
e
lo

c
it
y
 [
m

/s
]

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(b) Velocity from random steering 1

0 50 100 150 200

-60

-40

-20

0

20

40

60

80

100

120

140 Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(c) Position track from random steering 2

0 5 10 15 20 25 30

Time [s]

0

2

4

6

8

10

12

V
e
lo

c
it
y
 [
m

/s
]

Landing Pad

Optimal Guidance

Parallel Navigation Guidance

(d) Velocity from random steering 2

Figure 6.4: Optimal and Parallel navigation Guidance with random steering target

outputs. Such constraints can be restrictions in areas to fly, velocity and acceleration.
Due to the simplicity of the Parallel Navigation Guidance method in addition to the
proven stability given in section 4.2.1, this is the method implemented in the physical
system.



6.2. STATE ESTIMATOR TUNING 71

6.2 State estimator tuning

In this section, the results from the implementation and tuning of the sate estimator
are presented. The Kalman filter for position, linear velocity and bias state estimation
introduced in section 3.3.2 is implemented in the ROS node "node_navigation". All
measurements are collected in ROS bags (data logs) during flight and subsequently
used to tune parameters in the state estimator.

6.2.1 Static Landing Pad

When tuning the filter for a static landing pad, the prior
knowledge of a static landing pad is used to improve the
estimates as discussed in 3.3.4. The filter is automatically
initialized by adapting the knowledge of using the Land-
ing Pad as takeoff position. The multi marker ArUco tag
system is used as fiducial marker and the custom sensor
station is used as Landing Pad sensors measurement unit.
The filter parameters used in this implementation are
given in equation 6.5 to 6.7

Figure 6.5: UAV landing
on a static Landing Pad

Qdiaд =
[
4.1 4.1 4.1 0 0 0 0.1 0.1 10

]
· 10−3 (6.5)

Rdiaд =
[
2 2 11 0.06 0.06 0.025 10000 10000 10000

]
(6.6)

P0,diaд =
[
10 10 10 350 350 380 10 10 10

]
· 10−3 (6.7)

whereQdiaд , Rdiaд and P0,diaд are the diagonal elements in the corresponding 9 × 9
diagonal matrices.

Figures 6.6a, 6.6b and 6.6c present the results from the implemented Kalman



72 CHAPTER 6. RESULTS

filter state estimator. Where sub figure 6.6a presents the measurements from the
ArUco detection, the measurements from the GNSS position sensors, estimated relative
position vector pnl/u and its corresponding 2σ bound. All given in the North, East and
Down components. Moreover, the estimated landing pad velocityvn

l/n from the same
test are given in sub figure 6.6b. Position bias βnl/n and its corresponding 2σ bound are
given in 6.6c. The 2σ bound represents the 95% confidence interval.

Figure 6.7 gives a closed up view of figure 6.6a. Moreover, from figure 6.7 and 6.6c
it can be seen how the state estimate corrects, the covariance of the estimate narrows
and the estimated bias adjusts as the ArUco tag measurements starts to arrive at t = 29.

The figure 6.6a and 6.7 illustrates the importance of supplementing the ArUco
measurements to the state estimator, in addition to the GNSS measurements. Without
the presence of ArUco measurements, the position estimate gets higher covariance
and navigation biases cannot be updated.

6.2.2 Landing Pad in Motion

This section presents the result from the implemented and tuned state estimator in
3.3.1. A multi marker ArUco tag system is placed on the deck of the FFI surface vehicle
Odin. The already implemented state-of-the-art navigation estimate of the surface
vehicle is broadcasted to the UAV. The filter parameters used during this tests are given
in equation 6.8 to 6.10

Qdiaд =
[
4.1 4.1 4.1 10 10 10 0.1 0.1 10

]
· 10−3 (6.8)

Rdiaд =
[
2 2 11 0.06 0.06 0.025 0.0024 0.0024 0.007

]
(6.9)

P0,diaд =
[
140 140 410 12.4 12.4 12.4 28 28 600

]
· 10−3 (6.10)

where Qdiaд , Rdiaд and P0,diaд are the diagonal elements in the analogous 9 × 9
diagonal matrices.

As illustrated in figure 6.8, the test results was conducted with the UAV first hover
at a stationary point while the landing pad accelerates up to 1.8m/s . The UAV then
starts to fly towards the landing pad and matches its velocity before lovering the



6.2. STATE ESTIMATOR TUNING 73

-15

-10

-5

0

5

N
o

rt
h

 [
m

]

ArUco GNSS Kalman filter 2

-10

-5

0

5

E
a

s
t 

[m
]

0 10 20 30 40 50 60 70

Time [s]

-10

0

10

20

D
o

w
n

 [
m

]

(a) State estimates, GNSS- and ArUco measurements of relative position be-
tween UAV and LP pnl/u

-3

-1

1

3

N
o
rt

h
 [
m

/s
]

10 -3

Kalman filter 2

-3

-1

1

3

E
a
s
t 
[m

/s
]

10 -3

0 10 20 30 40 50 60 70

Time [s]

-3

-1

1

3

D
o
w

n
 [
m

/s
]

10 -3

(b) State estimates and measurements of the LP
velocityvn

l/n

1.8

2.3

2.8
3

N
o

rt
h

 [
m

] Kalman filter 2

0.5

1

1.5

E
a

s
t 

[m
]

0 10 20 30 40 50 60 70

Time [s]

4

6

8

10

D
o

w
n

 [
m

]

(c) State estimates of the position bias βnl/n

Figure 6.6: Results from the navigation filter tuned for a static landing pad



74 CHAPTER 6. RESULTS

-10

-5

0

5

N
o
rt

h
 [
m

]

ArUco GNSS Kalman filter

-6

-4

-2

0

2

E
a
s
t 
[m

]

27 28 29 30 31 32 33

Time [s]

10

12

14

16

18

20

D
o
w

n
 [
m

]

Figure 6.7: How covariance estimate narrows
Covariance estimate narrows as the fiducial marker gets within camera sight



6.2. STATE ESTIMATOR TUNING 75

altitude and lands on the landing pad. Figure 6.9 highlights a selection of the ArUco
measurements, position estimate and the estimated covariance from figure 6.8 where
the ArUco tag were detectable. As figure 6.8 and 6.9 illustrates, the UAV was oscillating
back and forward during the flight. The oscillations was casing motion blur on the
pictures used for ArUco tracking, making it challenging to detect fiducial markers.
From figure 6.9, it can be seen how the lack of tag detections increases the covariance
compared with the period without oscillations.

A closeup of the estimated and measured north component of the landing pad
velocityvn

l/n,n is given in figure 6.11. As the figure illustrates, there is a time delay of
approximate 3 seconds between the changes in the measured velocity and the estimates
velocity. This may be caused by the constant velocity model used in the Kalman filter
equation derived in section 3.3. To be able to have a more accurate track of the landing
pads during acceleration, the Kalman filter can be extended to a constant acceleration
model.

6.2.3 Summary

Since there is no precise reference measurements in the dataset, such as records from
a motion capture lab or like, there is no straight forward method to validate the state
estimates. However, from the figures in 6.6 and 6.8 it can be seen that the Kalman
filter is able to return smooth and reasonable state estimates. Moreover, several dozens
of tests have been conducted in varying weather conditions such as windy, windless,
snow, bright sun and cloudy. These tests have proven the state estimator to be robust
and generate reliable and accurate navigation estimates.

Moreover, on static landing pads, the sensor bias estimated by the state estimator
does include the position offset between the fiducial marker and the GNSS receiver.
Hence, the local navigation unit can be placed at an arbitrary place near by the landing
pad and the position offset will automatically be included in the bias.



76 CHAPTER 6. RESULTS

0

10

20

30

40

N
o
rt

h
 [
m

]
ArUco GNSS Kalman filter 2

-4

-3

-2

-1

0

1

2

E
a
s
t 
[m

]

0 10 20 30 40 50 60 70 80 90 100 110

Time [s]

-10

0

10

20

30

40

50

60

D
o
w

n
 [
m

]

(a) State estimates, GNSS- and ArUco measurements of relative position
between UAV and LP pnl/u

-0.4

0.6

1.6

2.2

N
o

rt
h

 [
m

]

GNSS Kalman filter 2

-0.6

-0.2

0.2

0.6

E
a

s
t 

[m
]

0 20 40 60 80 100

Time [s]

-0.6

-0.2

0.2

0.6

D
o

w
n

 [
m

]

(b) State estimates and measurements of the
LP velocityvn

l/n

5.5

6

6.5

7

7.5

N
o

rt
h

 [
m

]

Kalman filter 2

0

0.5

1

1.5

E
a

s
t 

[m
]

0 20 40 60 80 100

Time [s]

39.5

41.5

43.5

45.5

D
o

w
n

 [
m

]

(c) Covariance estimate narrows as the fiducial
marker gets within camera sight

Figure 6.8: Results from the navigation filter tuned for a landing pad at speed



6.2. STATE ESTIMATOR TUNING 77

0

5

10

15

N
o
rt

h
 [
m

]

ArUco Kalman filter 2

-4

-3

-2

-1

0

1

2

E
a
s
t 
[m

]

40 45 50 55 60 65 70 75 80 85 90

Time [s]

5

10

15

20

D
o
w

n
 [
m

]

Figure 6.9: Closeup of the ArUco measurements
Closeup of the ArUco measurements, estimated position vector pnl/u and 2σ bound

during camera fix



78 CHAPTER 6. RESULTS

Figure 6.10: Image from the onboard camera affected by motion blur
Image from the onboard camera affected by motion blur due to high angular velocity

of the UAV

10 20 30 40 50 60 70
-0.5

0

0.5

1

1.5

2

2.5

N
o

rt
h

 [
m

/s
]

GNSS Kalman filter 2

Figure 6.11: Delay between the measured and estimated LP velocity
Delay between the measured and estimated north component of the LP velocity

6.3 Controller Tuning

The software modules node_navigation, node_aruco and node_controller described
in section 5.1 are implemented and running in real time locally on the UAV. Tests
are conducted by manual takeoff and flight to a starting point at a distance from the



6.3. CONTROLLER TUNING 79

landing pad. The do land command is then triggered from the work station and the
UAV, running the controller defined in chapter 4 performs autonomous landing. The
parameters listed in 6.1 are used in the implemented state machine.

Parameter Description Value
Uc,max Maximum UAV approach speed 3m/s
∆1 controller gain 3.0
∆2 controller gain after gain adjust 2.0
h Hover height 15m
rh Radius of the hover sphere 0.5m
hд Gain adjust altitude 8.0m
hf Final stage altitude 4.0m
vd Main decent velocity 0.40m/s
vf Final stage decent velocity 0.30m/s
ch Minimum covariance in hover 100
rl Radius of the landing cylinder 0.20m
hl Height of the landing cylinder 0.50m

Table 6.1: Parameters used in the state machine

Figure 6.12 presents a plot of the relative position estimate between the UAV and
landing pad pnl/u calculated by the state estimator during the test. The states from the
state machine are included in the figure as vertical lines marked with the state name.
Moreover, the Adjust and Final are abbreviations for Gain Adjust and Final Stage.

As indicated in figure 6.3, the first 19 seconds of the flight is carried out manually.
The state machine then enters the intercept state and the UAV starts to fly towards the
hovering point. From the intercept phase in figure 6.12, there is a "jump" in the position
estimate. This is due to filter corrections in the appearance of AruCo measurements.
The state machine goes straight from Intercept state to Lower, not including the Hover
state. This is a result of the high value set as parameter for the minimum covariance in
hover ch . The oscillations in the north and east position caused by the wind affecting
the UAV. During the Gain Adjust phase, the north and east position stabilizes, making
the UAV stable trough the Final state until it finally triggers the Land command.



80 CHAPTER 6. RESULTS

-15

-10

-5

0

N
o

rt
h

 [
m

]

Relative position

-7

-6

-5

-4

-3

-2

-1

0

1

E
a

s
t 

[m
]

0 10 20 30 40 50 60

Time [s]

0

5

10

15

D
o

w
n

 [
m

]

Intercept Lower Adjust Final Land

Figure 6.12: Relative position pnl/u during autonomous landing
Relative position pnl/u during autonomous landing. State machine states indicated by

vertical lines

6.3.1 Summary

Several dozens of physical real-time test on a static landing pad have been con-
ducted using the implemented software modules node_navigation, node_aruco and
node_controller. The autonomous system has given exceptional results, by performing
precise and stable landings with high repeatability. A video of from one of the tests
conducted can be seen at https://youtu.be/H2HTWxUuOW8

https://youtu.be/H2HTWxUuOW8


Chapter 7

Conclusion and future work

The main objective of this thesis is to conduct autonomous and precise landing on a
static landing pad, or at a landing pad in motion.

To measure the pose of the landing pad relative to the UAV, a camera based mea-
surement system for detecting fiducial markers is implemented as an image processing
module. Due to limited measuring range in traditional fiducial markers, a multi fiducial
marker method is developed in this thesis, extending the measurement range. The
imaging processing module has been extensively tested under various scenarios, such
as winter conditions, bright summer sunlight at sea and indoor, all given reliable and
accurate results.

A state estimator based on a Kalman filter has been derived and implemented in
this thesis. The filter has been parameterized and tuned, both for a static landing pad
and for a landing pad in motion. The state estimator is able to fuse measurements
from the UAV, the landing pad and the camera based measurement system, returning
estimates on position, velocity and sensor biases. Never the less, the state estimates
have shown to manage sensor fusion of multiple asynchronous measurements in a
robust way.

The two guidance methods Parallel Navigation Guidance and Optimal Guidance
are discussed and compared using simulations. The Parallel Navigation method is

81



82 CHAPTER 7. CONCLUSION AND FUTURE WORK

by far the easiest to implement, have low computational cost and are proven to be
UGAS. In the Optimal Guidance method it is possible to add constraints, such as
restrictions in the flight area or control output. However, this guidance method has a
high computational cost compared to the Parallel Guidance method and it is harder to
implement. Hence, the Parallel Navigation method was the method of choice in the
implementation on the UAV. Controller logic has been developed to set the desired
UAV trajectory, velocities and controller gains.

The image processing module, the state estimator, the Parallel Navigation method
and the controller logic are all implemented and running in real time on the UAV.
Results from physical tests indicates that the combination of the state estimator and
the Parallel Navigation Guidance method ensures robust and accurate autonomous
landing on a static target. Additionally, results from the tuned state estimator and
simulations indicated that the system is able to carry out autonomous landing on
landing pads in motion. Landing has been conducted both on ground and a surface
vehicles containing world class navigation system, and on a homemade landing pad
containing a low cost navigation system. FFI will use the state estimator, guidance
method and the controller logic developed in this project on their attempt to create
fully autonomous drone swarms.

Further work

To achieve autonomous landing of a multirotor UAV on a platform in motion, several
topics requires further investigation.

• Large-scale testing and tuning of the state estimator, Parallel Navigation method
and controller logic on a landing pad in motion. Kalman filter may be tuned by
running a full scale tests with a high accuracy motion capture system measuring
the pose of the UAV and the landing pad.

• Extending the Kalman filter given in 3.3.2 Position, linear velocity and bias state
estimation, by include relative heading between the UAV and landing pad in the
filter equations.



83

• Investigate the multirotor UAV dynamics near touchdown.

• Add additional communication methods between the UAV and the landing pad.
Enables the landing pad to broadcast its position to the UAV if the UAV is out of
reach on the 5GHz network.

• Derive and implement accurate covariance models for all measurements.

• If the landing pad is autonomous, information from the path planner on the
landing pad can be included to improve the UAV controller.

• Add condition monitoring and fault detection system to the UAV controller,
detecting and act on unexpected behavior.



84 CHAPTER 7. CONCLUSION AND FUTURE WORK



References

AG, D. (2017). The mercedes-benz vision van. [Online; accessed 16-December-2017].
URL: https://www.daimler.com/innovation/specials/vision-van/en/

Araar, O., Aouf, N. and Vitanov, I. (2017). Vision based autonomous landing of multiro-
tor uav on moving platform, Journal of Intelligent & Robotic Systems 85(2): 369–384.

Beard, R. W. and McLain, T. W. (2012). Small unmanned aircraft: Theory and practice,
Princeton university press.

Belleter, D. J. (2016). Control of underactuated marine vehicles in the presence of
environmental disturbances.

Borowczyk, A., Nguyen, D.-T., Nguyen, A. P.-V., Nguyen, D. Q., Saussié, D. and Ny, J. L.
(2016). Autonomous landing of a multirotor micro air vehicle on a high velocity
ground vehicle, arXiv preprint arXiv:1611.07329 .

Breivik, M. (2010). Topics in guided motion control of marine vehicles.

Breivik, M. and Fossen, T. I. (2007). Applying missile guidance concepts to motion
control of marine craft, IFAC Proceedings Volumes 40(17): 349 – 354. 7th IFAC
Conference on Control Applications in Marine Systems.
URL: http://www.sciencedirect.com/science/article/pii/S1474667015321200

Brown, R. G. and Hwang, P. Y. (1997). Introduction to random signals and applied
Kalman filtering: with MATLAB exercises and solutions.

85

https://www.daimler.com/innovation/specials/vision-van/en/


86 REFERENCES

Cai, G., Chen, B. M. and Lee, T. H. (2011). Unmanned rotorcraft systems, Springer
Science & Business Media.

Egeland, O. and Gravdahl, J. T. (2002). Modeling and simulation for automatic control,
Vol. 76, Marine Cybernetics Trondheim, Norway.

Foss, B. and Heirung, T. A. N. (2013). Merging optimization and control, Lecture Notes .

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John
Wiley & Sons, Ltd.

Garrido-Jurado, S., noz Salinas, R. M., Madrid-Cuevas, F. and Marín-Jiménez, M. (2014).
Automatic generation and detection of highly reliable fiducial markers under occlu-
sion, Pattern Recognition 47(6): 2280 – 2292.
URL: http://www.sciencedirect.com/science/article/pii/S0031320314000235

Gibbs, S. and agencies (2016). First successful ship-to-shore drone delivery takes place
in new jersey. [Online; accessed 16-December-2017].
URL: https://www.theguardian.com/technology/2016/jun/24/

first-successful-ship-to-shore-drone-delivery-new-jersey

Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated navigation
systems, Artech house.

Huang, R., Tan, P. and Chen, B. M. (2015). Monocular vision-based autonomous
navigation system on a toy quadcopter in unknown environments, Unmanned
Aircraft Systems (ICUAS), 2015 International Conference on, IEEE, pp. 1260–1269.

Itseez (2018). Open source computer vision library, https://github.com/itseez/
opencv.

Khalil, H. K. (2015). Nonlinear systems.

Line, V. (2017). Autonomous takeoff and landing of a multirotor uav on a platform in
motion.

Lozano, R. (2013). Unmanned aerial vehicles: Embedded control, John Wiley & Sons.

https://www.theguardian.com/technology/2016/jun/24/first-successful-ship-to-shore-drone-delivery-new-jersey
https://www.theguardian.com/technology/2016/jun/24/first-successful-ship-to-shore-drone-delivery-new-jersey
https://github.com/itseez/opencv
https://github.com/itseez/opencv


REFERENCES 87

Martin, P. and Salaün, E. (2010). The true role of accelerometer feedback in quadrotor
control, Robotics and Automation (ICRA), 2010 IEEE International Conference on, IEEE,
pp. 1623–1629.

MATLAB (2017). Matlab optimization toolbox version 8.0. The MathWorks, Natick,
MA, USA.

Nicolai, L. M. and Carichner, G. (2001). Fundamentals of aircraft and airship design,
American Institute of Aeronautics and Astronautics,.

Open Source Robotics Foundation (2018a). About ros.
URL: http://www.ros.org/about-ros/

Open Source Robotics Foundation (2018b). Mavros.
URL: http://wiki.ros.org/mavros

Roumeliotis, S. I., Sukhatme, G. S. and Bekey, G. A. (1999). Circumventing dynamic
modeling: Evaluation of the error-state kalman filter applied to mobile robot localiza-
tion, Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference
on, Vol. 2, IEEE, pp. 1656–1663.

Shneydor, N. (1998a). Chapter 4 - parallel navigation, in N. Shneydor (ed.), Missile
Guidance and Pursuit, Woodhead Publishing, pp. 77 – 100.
URL: https://www.sciencedirect.com/science/article/pii/B9781904275374500095

Shneydor, N. (1998b). Introduction, in N. Shneydor (ed.), Missile Guidance and Pursuit,
Woodhead Publishing, pp. xiii – xvi.
URL: https://www.sciencedirect.com/science/article/pii/B9781904275374500058

Spong, M. W., Hutchinson, S. and Vidyasagar, M. (2006). Robot modeling and control,
Vol. 3, Wiley New York.

Tailanian, M., Paternain, S., Rosa, R. and Canetti, R. (2014). Design and implementation
of sensor data fusion for an autonomous quadrotor, Instrumentation andMeasurement
Technology Conference (I2MTC) Proceedings, 2014 IEEE International, IEEE, pp. 1431–
1436.



88 REFERENCES

Tiemann, J., Schweikowski, F. and Wietfeld, C. (2015). Design of an uwb indoor-
positioning system for uav navigation in gnss-denied environments, Indoor Position-
ing and Indoor Navigation (IPIN), 2015 International Conference on, IEEE, pp. 1–7.

Tørdal, S. S. and Hovland, G. (2017). Relative vessel motion tracking using sensor
fusion, aruco markers, and mru sensors.

Vik, B. (2009). Integrated satellite and inertial navigation systems, Department of
Engineering Cybernetics, NTNU .

Zou, J.-T., Wang, C.-Y. and Wang, Y. M. (2016). The development of indoor positioning
aerial robot based on motion capture system, Advanced Materials for Science and
Engineering (ICAMSE), International Conference on, IEEE, pp. 380–383.


	Preface
	Abstract
	Sammendrag
	Introduction
	Motivation
	Literature Review
	Problem description
	Background and Contributions
	Outline

	Modeling and Notations
	Notation
	Reference Frames
	Euler angles
	Unit Quaternions
	Geodetic coordinates
	Skew Symmetric Matrix
	Dynamic Modeling of a Quad-Rotor

	Navigation
	Fiducial Markers and Camera
	Multi marker system

	Sensor input
	GNSS
	Inertial Measurement Unit
	Barometer
	UAV and Landing Pad Sensors

	State estimators
	Position and linear velocity state estimation
	Position, linear velocity and bias state estimation
	Full state estimation
	State Estimation for Static Landing Pad


	Controller
	Controller Logic
	State machine

	Guidance Methods
	Parallel Navigation Guidance
	Optimal Guidance


	Implementation and Test Setup
	Implementation
	Robotics Operating System
	Implemented Nodes

	Test Setup
	Communication
	Quadcopter
	Landing Pads

	Simulation Setup

	Results
	Guidance Simulations
	Constant Velocity
	Accelerating
	Random Driving
	Summary

	State estimator tuning
	Static Landing Pad
	Landing Pad in Motion
	Summary

	Controller Tuning
	Summary


	Conclusion and future work
	References

