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Abstract

In this thesis we will discuss hard computational problems in lattice theory
and relate them to cryptographic constructions. Many of these problems en-
joy average-case hardness which makes them attractive for cryptography. In
addition, lattice based cryptography is a candidate for post-quantum cryp-
tography, as there is no known quantum algorithm which breaks various
hardness theorems.

We build a foundation in algebraic number theory to have the required
background to discuss schemes based on discrete algebraic structures. These
structures are free Z-modules which permits unique factorization in prime
ideals. We relate this algebraic number theory to lattices in Rn so we can
use the theory from algebra to our advantage.

We then define some standard hard computational lattice problems and
show how many of these are related to each other. We prove that these
problems are at least as hard as finding the shortest vector of a lattice,
which we conjecture is computationally infeasible. We then prove a quantum
reduction the learning with errors problem, a problem in machine learning .
We also show that there is a similar reduction for a variant of this problem
over more general rings.
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Sammendrag

I denne oppgaven drøfter vi vanskelige problemer i lattice teori og kobler
dem opp mot kryptografiske konstruksjoner. Mange av disse problemene
er like vanskelige i ’average-case’ som i ’worst-case’. I tillegg er lattice-
basert kryptografi en potensiell mulighet som sikker cryptografi mot kvante-
datamaskiner siden vi ikke har noen algoritme som bryter teoremer for sikker-
het.

Vi begynner med å bygge opp teori fra algebraisk tallteori for å ha den
nødvendige bakgrunnen til å diskutere kryptografi basert p̊a diskrete alge-
braiske konstruksjoner. Disse konstruksjonene er frie Z-moduler som har
unik faktorisering i prim-idealer. Vi relaterer disse til latticer i Rn.

Deretter definerer vi standard, vanskelige lattice problemer og viser hvor-
dan de relaterer til hverandre. Vi viser at disse problemene er mist like
vanskelige som å finne den korteste vektoren i en lattce, noe som vi anntar
er vanskelig. Deretter beviser vi en kvante-reduksjon fra et maskin-læring
problem kalt ’learning with errors’. Vi viser ogs̊a en tilsvarende reduksjon
fra en variant over mer generelle ringer.
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1 Introduction

A lattice is a discrete additive subgroup of Rn. By viewing the basis-vectors
for a basis of Rn as column vectors in a matrix B, a lattice Λ generated by
B is any linear combination of the columns of B with integer coefficients.

Figure 1: Lattice with basis B = {(1, 1), (0, 1)}. This lattice is isomorphic to
the lattice with basis vectors (1, 0) and (−1, 1) (and countably many others).
In some sense, this is the most ’basic’ lattice because it is equal to Z2.

Consider a simple encryption scheme where a lattice point x = Bz is
given and we encrypt it by permuting it by a real vector e

Encrypt(x) = x+ e 6∈ Λ.

To decrypt such a message we need to find the closest lattice vector to x+e,
that is, solve the closest vector problem on Λ. Closely related to this is the
shortest vector problem which is to find the shortest vector in a given lattice.
How hard these problems are depends on how we choose the basis B for Λ.
By providing a ’good’ basis as the private key and ’bad’ basis for the public
key we can make ciphertexts easy to decrypt but hard to attack. We see
that for this to work we need that the problem of finding the closest lattice
vector to an arbitrary point in Rn must be hard. This is one of the problems
we define in Section 4 and show that is at least as hard as conjectured hard
problems.

There is a problem in machine learning called learning with errors (LWE).
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In short, it is to recover a secret s ∈ Znq given equations

b1 = 〈a1, s〉+ e mod q

b2 = 〈a2, s〉+ e mod q

...

for ai
r← Znq and errors e← χ for a distribution χ over R. A simple scheme

based on this problem can be shown to be semantically secure. In addition,
we show a quantum reduction from hard lattice problems to LWE which
strengthens our confidence in schemes based on LWE.

The hardness of these lattice problems lay the foundations for many cryp-
tographic schemes. Most notably is the NTRU (N-Th Degree Truncated
Polynomial Ring) scheme which is known to be insecure if an attacker can
find sufficiently short lattice vectors[HPS98]. In 2005, Oded Regev intro-
duced a simple scheme whose security is based on the LWE problem, and
showed it to be to be semantically secure if LWE is hard. He also proved
a quantum polynomial reduction from standard lattice problems to LWE,
strengthening the claim that the scheme is secure. This was later general-
ized to other rings, and the corresponding problems enjoy similar hardness
theorems[LPR10].

In 2009 Craig Gentry introduced the first so-called fully homomorphic
scheme, a method of encrypting such that both addition and multiplication
is a homomorphic operation under the encryption map[Gen09], and proved
that it could perform arbitrarily many operations without decryption errors.
His ideas has been used to create other fully homomorphic schemes[BGV14,
vDGHV10, LATV17]. Many of these schemes are based on the hardness
of lattice problems and the LWE problem. A good understanding of the
security of lattice based security therefore translates to provably secure fully
homomorphic encryption schemes.

While cryptographic primitives based on integer factorization and discrete
logarithms have been shown to be insecure against quantum computers[Sho97],
there have been little progress in attacking lattice based cryptography with
quantum computers. This makes lattice based cryptography an attractive
alternative in a post-quantum world.

8



1.1 Overview

In Section 2 we introduce the basic algebraic number theory required for
this thesis. We define discrete algebraic structures which permits unique
factorization and some properties of important maps. Next, we define lattices
in Rn and relate them to the algebraic number theory by showing that certain
algebraic structures can be seen as lattices in Rn. In Section 4 we define
standard lattice problems, such as the shortest vector problem (SVP) and
closest vector problem (CVP). For other lattice problems we show how they
relate to these conjectured hard problems. In Section 5 we define the learning
with errors (LWE) problem and show a quantum reduction from SVP to
LWE.

When discussing various lattice problems we do it in the following way:
First we define the problem, then show how we can attempt to break the
problem (subsection attack) and lastly how this problem relates to other hard
problems (subsection hardness). In other words, the attack section describes
an algorithm to solve a given problem without any oracles while the hardness
section describes how we can attack this problem with an oracle.

1.2 Notation

We denote by ||x|| the Euclidean norm of x, and for simplicity we only use
this norm in this thesis. bae denotes the closest integer to a, mapping 1/2 to
1. If a is a vector bae denotes this rounding on each coordinate. The notation
q = poly(n) means that q is polynomial in n. A negligible function f : N→ R
is such that limn→∞ n

cf(n) = 0 for any c > 0, i.e. f is asymptotically smaller
than any polynomial.

We will, with slight abuse of notation, denote by a
r← A to mean that

a is sampled uniformly from a set A. If B is a distribution, e ← B means
that e is sampled according to B. To confuse, we will use the standard
notation from computer science t← t1 to denote that t is assigned the value
of t1. This is done only in algorithms and should be clear from context. An
algorithm/reduction A that uses an oracle O is denoted AO.
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2 Algebraic Number Theory

Algebraic number theory is the study of finite extensions of K of Q. We
generalize the notion of integers by considering the integral closure of Z in
K, study the ideals in this ’new’ ring of integers and extend the notion of
ideal to give the set of ideals a group structure. We end up with that the
ring of integers O (and its ideals) permits a unique factorization of prime
ideals. Throughout this section (and the thesis in general) K denotes a finite
extension of Q which we will call a number field.

In this section we will build the theory required to connect lattices in
Rn to discrete algebraic structures in number fields. In particular, we show
that an ideal I in the ring of integers is a free Z-module and that it can be
embedded into Rn as a lattice.

2.1 Norm, Trace and Geometry

We start by defining the norm and trace of the elements of K.

Definition 2.1 (Norm and Trace). Let K/Q be a finite field extension.
Consider the multiplication map

µα :K → K

x 7→ αx.

By fixing a Q-basis of K, we can define the norm and trace maps to be

NK/Q(α) = det(µα)

TrK/Q(α) = Tr(µα),

respectively. It is easy to verify that the norm map is multiplicative
while the trace map is additive. Both maps are invariant under choice of
basis. Notice that is makes sense to fix a Q basis since the extension is finite.

A number field K = Q(ζ) of index n has exactly n ring embeddings
σi : K → C, by sending ζ to a root of the minimal polynomial f(X) ∈ Q[X]
of ζ. Since the complex roots come in conjugate pairs, so does the embed-
dings. Denote by s1 the number of real embeddings and by s2 the number of
pairs or complex embeddings such that n = s1 + 2s2. By convention, order
the embeddings as follows: σ1, . . . σs1 are the real embeddings. The complex
ones is ordered such that σs1+s2+j = σs1+j for j ∈ {1, . . . , s2}. Therefore, with
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increasing j we have first the s1 real embeddings, then the s2 complex em-
beddings with no conjugates among themselves and lastly the s2 conjugates.
Now we define

σ(x) = (σ1(x), . . . , σn(x)) ∈ Cn

as the canonical embedding of K 7→ Rs1 × C2s2 . We can now get some
geometry on K.

Definition 2.2. The length of an element x ∈ K is given by

||x|| := ||σ(x)||

where σ is the canonical embedding.

Notice that this means that certain elements of K will have unusual
norms, e.g. let K = Q(ζp) be a cyclotomic field. A root of unity ζp, which
has Euclidean norm 1 when viewed as an element in C, will be embedded as

σ(ζp) = (ζp, ζ
2
p , . . . , ζ

n−1
p )

which means that its norm is ||ζp|| = ||(ζp, . . . , ζn−1
p ||2 =

√
n. It can be shown

that the norm and trace of an element in K is given by embeddings,

Tr(x) =
n∑
i=1

σi(x)

N(x) =
n∏
i=1

σi(x).

It is not hard to see that this gives us

Tr(x · y) =
n∑
i=1

σi(x)σi(y) = 〈σ(x), σ(y)〉,

which means that the trace map is a bilinear form like the inner product
on Cn.
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2.2 Ring of Integers

The ring of integers is the integral closure of Z in K, i.e. any roots of monic
polynomials with integral coefficients. To avoid ambiguity we call Z the
rational integers and its integral closure algebraic integers. We drop these
prefixes when the ring considered is clear from context.

Definition 2.3 (Integral Element and Ring of Algebraic Integers). Let K
be a finite extension field of Q. We say that α is an integral element in K if
α is a root of a monic polynomial with rational integer coefficients. The ring
of algebraic integers of K, denoted O is the set of all integral elements of K.

It is not obvious that O is a ring, but the we will prove this foreshadowing
later. Trivially, a rational integer m is the root of x − m and therefore we
have Z ⊆ O. We also have that the ring of integers of K = Q is simply
Z, which is why we call Z the rational integers. We note that the ring of
integers is often denoted OK because it depends on the extension field. This
will not be important for our purposes as the field K is always clear from
context, so we omit this subscript.

It can be shown that the norm and trace of any element α ∈ O is an
integer, we omit the proof.

Proposition 2.4. The norm and trace of α ∈ O are rational integers.

Additionally, N(α) = ±1 ⇔ α ∈ O∗: The norm of an element is ±1 if,
and only if, it is a unit in the ring of integers. We can try to prove that O
is a ring in the following way: Given two elements algebraic integers α1, α2

we can try to find monic polynomials f, g with integer coefficient explicitly
such that f(α1α2) = 0 and g(α1 + α2) = 0. However, this is not easy, so we
prove this is a different way. We devote the rest of this subsection to prove
this, in addition to showing that O is free as a Z-module.

Proposition 2.5. The minimal polynomial of α ∈ K has rational integer
coefficients if, and only if, α is an algebraic integer.

Proof. Assume that the minimal polynomial of α, say g(X) has rational
integer coefficients. Since g(α) = 0 and g is monic by the definition of a
minimal polynomial, α is an algebraic integer.

Assume now that α is an algebraic integer. By definition, there exists
an f(X) ∈ Z[X] such that f(α) = 0. If f(X) is the minimal polynomial
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we are done. Let therefore g(X) be the minimal polynomial of α. We need
to show that g(X) also has integer coefficients. Since g(X) is the minimal
polynomial, we have that

f(X) = g(X)h(X)

for some h(X) ∈ Q[X]. If g(X) has a rational coefficient, then one of them
must be divisible by p (by fundamental theorem of algebra). Assume that
g(X) has rational coefficients, i.e. that at least one denominator is divisible
by a prime p. Let u be the smallest integer such that pug(X) has no de-
nominators divisible by p. Similarly, let v be the smallest integer such that
pvh(X) has no denominators divisible by p. Now, the left side of

pug(X)pvh(X) = pu+vf(X) (1)

has no denominators divisible by p. If we regard (1) as an equation in Zp[X],
since f(X) has integer coefficients, the right side is 0. Since we have removed
all p = 0 ∈ Zp from the denominators of left side, regarding it as polynomials
in Zp makes sense. Therefore,

pug(X)pvh(X) = 0 ∈ Fp[X],

and because we chose u and v to be minimal, neither pug(X) nor pvh(X) are
zero-polynomials. Since Fp[X] has no zero divisors, this leads to a contradic-
tion and we conclude that g(X) ∈ Z[X].

Towards a goal of proving that O is a ring, we use a relationship between
an algebraic integer α and Z[α].

Proposition 2.6. Let α ∈ K. Then α is an algebraic integer if, and only if,
Z[α] is finitely generated as a Z-module.

Proof. Assume α is an algebraic integer, and let g(X) be its minimal poly-
nomial. Let deg(g) = m. By Proposition 2.5 we have that g(X) is monic
with integer coefficients and can therefore write

g(X) = Xm + ĝ(X)

for some ĝ(X). Because g(α) = 0 we can write αm = −ĝ(α) where deg ĝ(X) <
deg g(X). This means that any αu can be written as a Z-linear combination
of {1, α, α2, . . . , αm−1} which therefore generate Z[α], i.e. Z[α] is free.
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Now assume that Z[α] is free as a Z-module with basis elements {a0, a1, . . . , am−1}.
Let fi(X), i = 0, . . .m − 1 be such that ai = f(α) for an α ∈ K. Now pick
an N > deg fi for all i = 0, . . . ,m− 1. Since Z[α] is free

αN =
m−1∑
i=0

aibi for some bi ∈ Z.

Choose

f(X) = XN −
m−1∑
i=1

fi(X)bi.

Because we chose N to be larger than all deg fi(X), f(X) is monic and has
integer coefficients. Furthermore, f(α) = 0 so α is an algebraic integer.

We now have the required machinery to prove that the ring of integers is
indeed a ring.

Theorem 2.7. The ring of integers O of a finite extension field K of Q is
a ring.

Proof. Let α, β ∈ O. By Proposition 2.6 we have that Z[α] and Z[β] are
finitely generated, and therefore Z[α, β] is finitely generated. Regarding
Z[α, β] as a ring, we have that αβ, α ± β ∈ Z[α, β]. Now, since Z[αβ] and
Z[α± β] are both subrings of Z[α, β], they are finitely generated. By Propo-
sition 2.6 again, we conclude that αβ and α ± β are algebraic integers and
O is therefore a ring.

If we let the field be Q then the ring of integers equals the rational integers
Z. To see this, Gauss’ lemma gives us that every root of a monic polynomial
with rational coefficients is a rational integer. As Z ⊆ O this is the simplest
form the ring of integers can have. O might, however, be more complicated
than this. Without any restrictions on the field K, the ring of integers can be
quite hard to determine. We use the rest of most of this section to determine
some of the structure of O and its ideals.

Proposition 2.8. Let K be a number field with ring of integers O. Then
QO = K.

14



Proof. Clearly QO ⊆ K.
K ⊆ QO: Assume α ∈ K. Let f(X) ∈ Z[X] be the minimal polynomial

of α. Let d be the least common multiple of the coefficients of f(X). Now,
define the polynomial g(X) by

g(X) := ddeg f(X)f(
X

d
).

By design, df(X) will have only integer coefficients and ddeg f(X)f(X/d) will
be monic. Additionally, g(αd) = f(α) = 0 so g(X) is a monic polynomial
with integer coefficients that has αd as a root. By Proposition 2.6 we get
that αd ∈ O ⊆ QO which we wanted to prove.

From this proof we get a small, but important, corollary:

Proposition 2.9. For any α ∈ K, there exists d ∈ Z such that αd ∈ O.

Proof. See proof of Proposition 2.8. Construct d the same way as in the
proof.

Notice that the d ∈ Z acts as a denominator: Multiplying α by d ’cancels
the denominators’ of the element α. In other words, an element from the
extension field K = Q(ζ) has ’denominators’ which can be canceled by a
rational integer to get an algebraic integral element in the ring O. This
strengthens the intuition that O is an extension of the rational integers Z.
We have foreshadowed that O is free and we finally prove it.

Theorem 2.10. The ring of integers O is a free abelian group of rank n =
[K : Q]

Proof. We know that there exists a Q-basis {α1, . . . , αn} of K with αi ∈ O for
all i = 1, . . . n, namely take a Q-basis of K and multiply each basis element
with an appropriate d to get an element in O as per Proposition 2.9. By
fixing the basis {α1, . . . , αn}, there exists a unique basis {α̂1, . . . , α̂n} ⊆ K
such that 〈αi, α̂j〉 = δij where δij is the Kronecker delta. Now write

x =
n∑
i=1

aiα̂i ai ∈ Z

15



and by the linearity of the inner product that

〈αi, x〉 = 〈αi,
n∑
i=1

aiα̂i〉 = ai for all i = 1, . . . n.

Now because 〈αi, x〉 ∈ Z we get that ai ∈ Z for all i = 1 . . . n. Therefore

Z[α1, . . . , αn] ⊆ O ⊆ Z[α̂1, . . . , α̂n]

where the first inclusion is obvious. Since O is a subgroup of a free abelian
group, O is itself a free abelian group. It contains at least n linearly inde-
pendent elements, namely {α1, . . . , αn} so its rank is at least n. However, its
rank cannot exceed Z[α̂1, . . . , α̂n] so we conclude that the rank of O is n.

We also have that any ideal I ⊆ O is free of rank n by the following
diagram

I� _

��

� s

&&
Z[α1, . . . , αn] �

� // O � � // Z[α̂1, . . . , α̂n]

and similar arguments as above. To make this rigorous we need to show that
any ideal I contain at least n linearly independent elements. We omit the
details.

2.3 Ideals of Ring of Integers

We now know that O is a ring which is finitely generated as a Z-module.
Note that this also means that O is Noethrian, which in turn means that
any set of ideals of O contains a maximal element. In this section we want to
show that any ideal can be uniquely factored into prime ideals. In addition,
we extend the notion of an ideal to create a set of ideal-like object with group
structure.

We begin by defining the norm of an ideal.

Definition 2.11 (Ideal Norm). The norm of a non-zero ideal a ⊆ O is

N(a) = |O/a|
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It can be shown that the norm of an ideal is finite[Ogg10]. We see that a
’large’ ideal in the subset sense will have a small norm, e.g. the ’large’ ring
O ⊆ O has ideal norm 1.

For primes in Z we have two equivalent definitions: A number is prime if
p = ab =⇒ a or b is a unit or p|ab =⇒ p|a or p|b. However, this definition
does not generalize[Ogg10]. In the general case, we differentiate between
these two properties, and call the first one irreducible and the second one
prime. We define a prime ideal as follows:

Definition 2.12 (Prime Ideal). An ideal p is prime if, for any elements
a, b ∈ p,

ab ∈ p⇒ a ∈ p or b ∈ p.

A special property of non-zero prime ideals in O is that they are all
maximal.

Proposition 2.13. Every non-zero prime ideal in O is maximal.

Proof. Any ideal I ⊆ O is maximal if, and only if, the quotient O/I is a field.
We therefore show that O/p is a field. Take x ∈ O/p. Because p is prime,
O/p is an integral domain. Therefore, the kernel of the multiplication map
µx : O/p→ O/p is 0 and thus µx is injective. Since O/p is finite, µx is also
surjective so it is a bijection. Take x−1 = µ−1

x (1). Now xx−1 = xµ−1
x (1) = 1.

Hence every element of O/p has an inverse, and it is a field. We conclude
that p is maximal.

Note that we, crucially, need that O/p is a finite set which is special in our
setting. We eventually want to prove that any ideal is the unique product of
prime ideals up to order of the factors. Towards this goal we show a simpler
inclusion.

Proposition 2.14. Let I be a non-zero ideal of O. Then there exists non-
zero prime ideals p1, . . . pr of O such that

p1p2 . . . pr ⊆ I

Proof. Let S be the set of all ideals which do not contain a such product
of non-zero prime ideals. We want to prove that S is empty. Because O is
Noetherian, S contains a maximal element, say I. Note that I is maximal
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with respect to the elements of S, not necessarily a maximal ideal in O. By
assumption on I ∈ S, I is not prime. Hence there exists α, β ∈ I such that
αβ ∈ I but neither α nor β is in I. Define two new ideals

J1 = αO + I ) I J2 = βO + I ) I.

Because α, β 6∈ I we have strict inclusions. In addition we have that J1J2 ⊆
I. Since we chose I to be maximal in S, neither J1 nor J2 are in S. This
means that there exists p1, . . . , pr and q1, . . . , qs such that p1 . . . pr ⊆ J1 and
q1 . . . qs ⊆ J2. But then

p1 . . . prq1 . . . qs ⊆ J1J2 ⊆ I.

so p1 . . . prq1 . . . qs ⊆ I, a contradiction. Therefore S does not contain a
maximal element, which means that S is empty since O is Noetherian.

We eventually want a group structure on ideals, but for ’normal’ ideals,
called integral ideals, there is not always an inverse. We therefore extend the
notion of an ideal.

Definition 2.15 (Fractional Ideal). Let R be an integral domain, K its field
of fractions. Then an R-submodule I ⊆ K is a fractional ideal if there exists
a non-zero d ∈ R such that dI ⊆ R.

The element d ∈ R in the above definition can be thought of as ’cancelling’
the denominators in I. We can therefore view fractional ideals as ideals on
the form 1

d
J for an integral ideal J .

Letting R = Z, K = Q and choosing I = 1
2
Z we can pick the element

r = 2 ∈ Z such that

rI = 2 ·
(

1

2
Z
)

= Z ⊆ R = Z

and hence 1
2
Z is a fractional ideal in Q.

We extend the notion of the norm to fractional ideals.

Definition 2.16 (Norm of Fractional Ideal). Let I be a fractional ideal, i.e.
there exists d′ such that d′I ⊆ R. Let d be the smallest such d′. We define
the norm

N(I) =
N(dI)

N(〈d〉)
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Notice that dI is an ideal, and so is 〈d〉 so the norm is well defined. The
norm of a fractional ideal need not be an integer, but this is still the case for
integral ideals.

By the definition of an ideal we have that IO = I. Now, if there exist a
fractional ideal J such that

IJ = O,

we say that I is invertible since O acts an an identity. If an ideal is invertible,
the inverse has a special form. We first prove this for prime ideals.

Proposition 2.17. Let p be a non-zero prime ideal of O. Define

p−1 = {x ∈ K | xp ⊆ O}.

Then we have that

1. p−1 is a fractional ideal of O.

2. O ( p−1

3. p−1p = O

Proof. 1. Pick a non-zero a ∈ p ⊆ K. By definition of p−1, ap−1 ⊆ O.
Therefore ap−1 is an integral ideal and p−1 is a fractional ideal of O

2. Clearly O ⊆ p−1. It is enough to find an element of p−1 which is not an
algebraic integer. Let 0 6= a ∈ p. By Proposition 2.14 we can choose
the minimal r such that

p1 . . . pr ⊆ 〈a〉 for non-zero pi

Since 〈a〉O ⊆ p and p is prime, we get that pi ⊆ p for some 1 ≤ i ≤ r.
Without loss of generality, let i = 1. Now, since prime ideals are
maximal by Proposition 2.13, p1 = p. Removing p1 from the product
of prime ideals yields

p2 . . . pr 6⊆ 〈a〉

by the minimality of the index r. We can therefore find b ∈ p2 . . . pr
with b 6∈ 〈a〉. We now claim that ba−1 is in p−1 but not in O. Since
p = p1, we have that bp ⊆ 〈a〉O so ba−1p ⊆ O and ba−1 ∈ p−1. Since
b 6∈ 〈a〉 we have that ba−1 6∈ O. We have therefore found an element,
namely ba−1, which is in p−1 but not in O. We conclude that O ( p−1.
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3. Here we prove that p−1 is indeed the inverse of p. We have that

p = pO ⊆ pp−1 = p−1p ⊆ O

Since p is maximal by Proposition 2.13 we have that pp−1 is either
equal to p or O. We proceed by showing that p = pp−1 is not possible.
Assume that p = pp−1. Let {β1, . . . , βr} be a set of generators of p
as an O-module. Pick d := ab−1, the same element as in the previous
point, which is in p−1 but not in O. We get that

dβi ∈ p−1p = p and dp ⊆ p−1p = p.

Now, since dp ⊆ p we have

dβi =
r∑
j=1

cijβj ∈ p, i = 1, . . . , r

where cij ∈ O. Equivalently

0 =

(
r∑

j=1,j 6=i

cijβj

)
+ βi(cii − d).

For each j we get an equation, and we can write them in matrix form
as

C · β :=


c11 − d . . . c1r

c21 . . . c2r
...

. . .
...

cr1 . . . crr − d




β1

β2
...
βr

 = 0. (2)

Therefore, the determinant of C is 0, while it is an equation of degree
r in the variable d. O is integrally closed, and therefore d ∈ O, a
contradiction. We conclude that pp−1 = O.

We proceed by proving the statement for all fractional ideals. This means
that the set of all fractional ideals of K, denoted FK , forms a group under
ideal multiplication where the ring O is the identity element. Because O is
abelian we get that IJ = J I, i.e. FK is abelian.
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Proposition 2.18. The set FK of all fractional ideals of a number field K
forms a group under ideal multiplication.

Proof. It is obvious that the identity element is O. By Proposition 2.17 we
have that all prime ideals are invertible. Pick therefore a non-prime integral
ideal I, with the additional property that its norm is minimal. I is included
in a maximal ideal p which, by Proposition 2.13 is also prime. Therefore

I ⊆ p−1I ⊆ p−1p = O,

again by Proposition 2.17. We want to show that I 6= p−1I such that the
first inclusion is strict. Assume that I = p−1I. By Proposition 2.17 we can
pick a d ∈ p−1 but not in O. Denote by {β1, . . . , βr} the set of generators of
I as a O-module. We can write

dβi ∈ p−1I = I dI ⊆ p−1I = I

and by the same argument as in Proposition 2.17 we get that d ∈ O which
contradicts our assumption. Therefore I ( p−1I and hence

N(I) > N(p−1I).

Since we picked I to be the ideal of minimal norm which was not invertible,
we get that p−1I is invertible. Let J ∈ FK be its inverse. But this means
that J p−1I = O, and because we, in our case, have associativity of ideal
multiplication we conclude that (Jp−1)I = O, so I does have an inverse.

The only thing that remains now is to show that any fracional ideal is
invertible. Let I be a fractional ideal. We have that I can be written as 1

d
J

for some integral ideal J and d ∈ O. Therefore, since J −1 exists, dJ −1 is
the inverse of I.

Now we are ready to prove an important theorem, namely that we can
factor any integral ideal in prime factors uniquely, up to permutation of
ordering.

Theorem 2.19. Any non-zero integral ideal I ⊆ O can be written uniquely,
up to ordering, as a product of prime ideals of O.

Proof. We start with proving existence. Let I be a maximal integral ideal
of O which does not factor in prime ideals. If I is maximal, then it is prime
by Proposition 2.13, but then it would be a product of prime ideals, namely
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itself. Therefore there exists a prime (and maximal) ideal p ) I. We then
have that Ip−1 ( O is an integral ideal and I ( Ip−1 ( O. Now, the first
inclusion is strict because if I = Ip−1 then p−1 = O. Since we assumed I
was a largest ideal which did not have a factorization, Ip−1 must have one.
Call it

Ip−1 = p2 . . . pr

but then

I = pp2 . . . pr

and we get a contradiction. We conclude that any integral ideal I has a
factorization of prime ideals.

We move on to proving the uniqueness of this factorization. Assume we
have two distinct factorizations for an ideal I

p1p2 . . . pr = I = q1q2 . . . qs.

Let p1 differ from all qj. Then we pick αj ∈ qj but which is not in p1 and
consider ∏

αj ∈
∏

qj = I ⊆ p1.

The last inclusion holds because p1 is prime and therefore maximal. But
since p1 is prime and

∏
αj ∈ p1, by the definition of a prime ideal one of the

αj must lie in p1, a contradiction. We conclude that p1 must be equal to one
of the qi, say q1. Then we get that

p2 . . . pr = q2 . . . qs

and, by induction, we conclude that r = s and that the factorization is unique
up to ordering.

2.4 Class Group

Now let PK denote the subgroup of principal fractional ideals of all fractional
ideals of O, i.e. ideal generated by one element. We construct the class
group of K as the quotient of the group of fractional ideals on the subgroup
of principal fractional ideals.
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Definition 2.20 (Class Group). Let O be the ring of integers for a field
K, FK the group of fractional ideals PK ⊆ FK the subgroup of principal
fractional ideals. The quotient group

CLK = FK/PK

is called the class group of K.

Observe that if O is a principal ideal domain then CLK is trivial. The
order of CLK therefore measures, in some sense, in what degree the domain
O fails to be a principal ideal domain. An important number in algebraic
number theory is the class number of a field K. This is defined to be the
size of the corresponding class group CLK , denoted h(K) = |CLK |. It is
desirable and conjectured that h(K) is not very big. This is a long-standing
open problem.

2.5 Chinese Remainder Theorem

We recall the Chinese Reminder Theorem for ideals of O, and state some of
its properties that we are going to need later.

Theorem 2.21 ([Ogg10]). Let I =
∏m

i=1 I
ei
i be the factorization of an ideal

I ⊆ O with Ii 6= Ij for i 6= j. Then there exists an isomorphism

O/I →
m∏
i=1

O/Ikii .

The two following proposition give us an way of (efficiently) compute a
isomorphism between ideals I/qI and J /qJ for any fractional ideals I and
J .

Proposition 2.22. Given two ideals I and J in a ring R, there exists a
t ∈ I such that t · I−1 is coprime to J .

Such a t can be computed efficiently given I and the prime factorization
of J [LPR10]. The following Proposition gives a way of ’canceling’ the ideal
I.
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Proposition 2.23. Let I and J be ideals in R and let t ∈ I be such that
t · I−1 is coprime to J . Let M be any fractional ideal of K. The map

θt :K → K

u 7→ t · u

induces an isomorphism from M/JM to IM/IJM as R-modules.

In particular

θt : O/J → I/IJ

is an isomorphism. This is achieved by choosing M = O the multiplicative
identity. Furthermore, choosing the ideal J = 〈q〉 for a q ∈ Z gives a bijection

θt : R/〈q〉 → I/〈q〉I,

that is a bijection between the ring modulo 〈q〉 and an ideal modulo 〈q〉. This
proposition can be thought of as ’canceling the ideal’ I since the two quotients
are isomorphic. Because any ring is a module over itself, considering M as
a ring instead of a module, we get a ring bijection (not necessarily a ring
isomorphism).

2.6 Cyclotomic Number Fields

Here we recall some facts about cyclotomic fields. A cyclotomic number field
is K = Q(ζm) where ζm is an m-th primitive root of unity, i.e. a primitive root
of the polynomial Xm − 1. Then K is the splitting field of this polynomial.
We define

φm(X) =
∏

(j,m)=1

(X − ζjn)

to be the m-th cyclotomic polynomial, where (j,m) denotes the greatest com-
mon divisor. We then have that

Xm − 1 =
∏
d|m

φd(X).

and that K is the splitting field of φm(X) over Q. The dimension of K
over Q is ϕ(m), the Euler totient function of m. There are no real embeddings
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in the canonical embedding and ϕ(m)/2 pairs of complex ones. In this case we
get that the ring of integers is simply OK = Z[ζm] ' Z[X]/〈Xm−1〉[Was82].

We want to use cyclotomic number fields primarily because computa-
tion is very efficient in such fields. The case where m = 2k is a power of
two is currently the most widely used case, because m/2 is a also power of
two and arithmetic modulo φm(X) can be done in O(n log n) time (see e.g.
[LMPR08a, LPR13]). However, one needs to be careful when using cyclo-
tomic number fields. Some lattice problems have more efficient algorithms in
this case or achieve better approximated results [CDPR16, Bia15, BS16]. On
the other hand, some reductions required the field to be cyclotomic [LPR10].
We come back to these points later.
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3 Lattices

Lattices is a field of mathematics which was studied long before it was used
in cryptography. An important reason to study lattices is that cryptographic
system based on lattice theory has shown to be resistant to quantum com-
puters, as there is yet to be found an efficient quantum algorithm for solving
hard problems in lattices. In contrast, schemes based on integer factorization
have been shown to be completely insecure to quantum computers[Sho97].

The most well known lattice problem is the shortest vector problem. In
his seminal paper[Ajt96] Ajtai provided reductions between SVP and other
lattice problems (see Section 4). Moreover, he showed that if there is an oracle
who can solve a certain lattice problem, called shortest integer solutions, in
the average case, then we can solve SVP in the worst case. This made
lattices as a basis for cryptography particularly interesting, as it showed that
essentially all instantiations of lattice problems are hard. This is not always
the case for other cryptographic primitives.

Several cryptographic primitives have been based on lattices. Such schemes
are very useful as we are able to achieve average-case hardness. Ajtai con-
structed a hash-function and proved that solving hard lattice problems re-
duced to finding a preimage[Ajt96], and was later proven by [GGH11] to be
collision-resistant. By imposing more structure to the lattice we can make
the hash-functions more effective, but this also invalidates any proof of se-
curity. As an example, [LM06] proved that if we use lattices which are also
ideals in Z[X]/〈Xn − 1〉 then there exists one-way hash functions based on
lattices. However, it was later shown that these schemes were not collision
resistant. This is an example of how imposing more structure to increase
efficiency can break the security of the scheme. In this particular case, the
hash-functions were modified by [LMPR08b] to achieve collision resistance.

In this section we will introduce basic lattice theory and relate it to the
algebraic number theory from Section 2. We will also define some useful
lattice-quantities and introduce some tools, in particuilar some properties
of the Fourier transform which relates to lattices, that we require for the
reductions in Section 5.1.

3.1 Basic Lattice Theory

A lattice is a set of points in Rn with periodic structure. We define a lattice
to be the Z-span of a set of linearly independent vectors of Rn.
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Definition 3.1 (Lattice). Let B = {b1, b2, . . . , bn} ∈ Rm be a set of linearly
independent vectors. The lattice Λ generated by B is

Λ = Λ(B) =
{ n∑

i=1

aibi | ai ∈ Z
}
.

We use the notation Λ(B) to denote the lattice generated by the matrix B.
If the basis is clear we drop is from the notation.

Therefore, a lattice is a discrete additive subgroup of Rn and it is not hard
to see that a lattice is isomorphic to Zn as Z-modules by mapping coefficients
of basis vectors to a coordinate of Zn. By convention, we regard the basis
elements bi as column vectors, and hence B ∈ Rm×n. We will interchangeably
use the same notation B for a matrix of with basis elements as lattices and
for a set of basis vectors. This should be clear from context. We call m the
dimension and n the rank of the lattice. If we have that m = n then we call
Λ a full rank lattice. We will mostly concern ourselves with full rank lattices.

Definition 3.2 (Fundamental Parallelepiped). Given a basisB = {b1, b2, . . . , bn},
the fundamental parallelepiped is defined to be

P (B) =

{
m∑
i=1

aibi | ai ∈ [0, 1)n
}

The volume of the fundamental parallelepiped is defined to be the de-
terminant of the lattice, i.e. det(Λ) =

√
BTB and if the matrix is full rank

det(Λ) = | det(B)|.
Lattices have a dual associated to them, and many lattice quantities

depends on the structure of the dual lattice.

Definition 3.3. Let Λ be a lattice. The dual lattice associated to Λ, denoted
Λ∨, is the set

Λ∨ = {y ∈ Rn | 〈x,y〉 ∈ Z for all x ∈ Λ} .

It is not hard to see that (Λ∨)∨ = Λ. It can be seen directly or by the
following proposiiton.

Proposition 3.4. For a full rank lattice Λ with basis B, its dual lattice Λ∨

has basis B∨ = (B−1)T , where T denotes transposition.
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Figure 2: Two lattices. Two different bases which span the same lattice. The
shaded area is the fundamental parallelepiped of one of them. Both lattices
are equal to Z2 and are in fact dual of each other.

Proof. Let

B = (b1|b2| . . . |bn) B−1 = (β1|β2| . . . |βn) .

By definition and linear algebra, B−1B = I means that

〈i-th row of B−1, j-th column of B〉 = δij

and therefore

〈i-th column of (B−1)T , j-th column of B〉 = δij.

By the linearity of the inner product we get the claim.

From this proposition is follows that det(Λ) = 1/ det(Λ∨). We denote the
basis for the dual lattice B∨ = {b∨1 , b∨2 , . . . , b∨n}. This basis is unique, given
a basis B, and has a special form.

Proposition 3.5. Let {b1, . . . , bn} be a basis for the lattice Λ. Then a basis
for Λ∨ is the unique set {b∨1 , . . . , b∨n} such that

bi · b∨j = δij

where δij is the Kronecker delta.
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Proof. We first show that {b∨i } is a basis. Let x =
∑n

i1
cib
∨
i = 0. Applying

the inner product from the left, 〈bi,−〉, yields

〈bi,x〉 =
n∑
i=1

〈cibi, b∨i 〉 = ci = 〈bi, 0〉 = 0

and hence ci = 0 for all i = 1, . . . , n and {b∨i } are linearly independent.
From elementary linear algebra we have that any set of linearly independent
vectors can be extended to a basis, but since we have n dual vectors, they are
already a basis. Now, forw ∈ Rn write it asw =

∑
cib
∨
i . Thenw ·bi = ci, so

claiming that w is in Λ∨ is equivalent to ci ∈ Z for all i = 1, . . . n. Therefore
Λ∨ is the Z-span of all the b∨i -s, i.e. Λ∨ is a lattice.

Figure 3: Two lattices (in large dots) and their dual (in small dots). The left
and right large-dot lattices are spanned by {(2, 0), (2, 2)} and {(2, 0), (2.2, 2)}
respectively. Observe that the dual is a sublattice in the left figure but not
in the right. We have that det(Λ) det(Λ∨)−1 = 1 so the dual of a lattice with
’long’ basis vectors will have ’short’ basis vectors.

A variation of lattices is called q-ary lattices, which are lattices with
coefficients modulo an integer.

Definition 3.6 (q-ary lattice). Given a basis B of Rn, the q-ary lattice
generated by B is defined as

Λq(B) = {x = Ba mod q for some a ∈ Zn}
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q-ary lattices are finite sets, as opposed to lattices in Rn. If the lattice
is full rank then a q-ary lattice contains qn elements. They are therefore
very useful in applications. In addition, many problems related to standard
lattice problems have a natural modulus associated with them, making q-ary
lattice an obvious candidate for reductions.

3.2 Number Field Lattice

In this section we will prove that discrete structures in K, called number
field lattices, are also lattices in Rn under the canonical embedding σ. We
do this by introducing an intermediate vector space K → H → Rn.

Proposition 3.7. Consider the subspace H ⊆ Rs1 × C2s2 given by

H :=
{

(x1, . . . xn) ∈ Rs1 × C2s2 | xs1+s2+j = xs1+j ∀j ∈ {1. . . . , s2}
}
.

Any discrete, additive subgroup of H is isomorphic to a lattice in Rn.

Proof. Endowing H with the inner product 〈x,y〉 =
∑
xiyi in the ambient

space Cn implies that H is a real inner product space. This means that it is
isomorphic to Rn by an appropriate rotation. Any discrete additive subspace
of H will therefore be isomorphic to a lattice in Rn.

Observe that H is the image of the canonical embedding: It contains real
coordinates and pairs of complex coordinates which are conjugates of each
other. Let us describe this isomorphism explicitly with a small example.
Consider

H =
{

(x, y) ∈ C2 | x = y
}
.

Now define the map ϕ : H → R2 by

ϕ(x, y) =

(
x+ y

2
,
x− y

2i

)
=

(
x+ x

2
,
x− x

2i

)
= (Re(x), Im(x))

By the design of H, ϕ(x, y) ∈ R2. It is not hard to see that this is an isomor-
phism. In general we map any real coordinates of H to its own coordinate,
and pair the complex in real and imaginary part. Because of the isomorphism
above we consider lattices as discrete subspaces of either Rn or H.

We now relate lattices in H with discrete structures in K = Q(ζ) because
we want to make use of the nice properties of ideals from Section 2.
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Definition 3.8 (Number Field Lattice). Let K be a number field of degree
n. A lattice Λ in K is the Z-span of a Q-basis of K

Notice the similarities with lattices in Rn. A lattice in Rn is the Z-span
of a R-basis of Rn. Because the trace map is a bilinear form like the inner
product, we define the dual lattice similarly as before.

Definition 3.9. The dual lattice of a number field lattice Λ is

Λ∨ = {x ∈ K | TrK/Q(xy) ∈ Z for all y ∈ Λ}

It can be shown that the canonical embedding of a dual of a number field

lattice is σ(Λ∨) = σ(Λ)
∨
. Finally we can use our theory from Section 2.

Proposition 3.10. The ring of integers O is a number field lattice.

Proof. Let {b1, . . . , bn} be a Z-basis for O. Since QO = K this is also
a Q-basis for K, and it follows that O is a number field lattice from the
definition.

Because the canonical embedding maps σ : K → H ⊆ Cn, and a number
field lattice is a discrete subspace of K we might expect that the embedding
of a number field lattice under σ is a lattice in H. This is indeed the case.

Proposition 3.11. A number field lattice Λ is a lattice in H under the
canonical embedding.

Proof. Let B = {u1, . . . , un} be a Q-basis for K. Consider

σ(B) := {σ(u1), . . . , σ(un)},

the image of the basis vectors (columns of B) under the canonical embedding.
To see that the set σ(B) is linearly independent assume that

σ(u1) =
n∑
i=2

αiσ(ui) αi ∈ R.

Since σ is linear and keeps αi ∈ R fixed we have

σ(u1) = σ

(
n∑
i=2

αiui

)
.
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but since σ is injective, this means that

u1 =
n∑
i=2

αiui

which is impossible because {ui} is a basis. We conclude that the set {σ(ui)}
is linearly independent.

Now by the definition of H we have that σ(ui) ∈ H. Since H ' Rn and
we have n linearly independent vectors σ(ui) we conclude that the Z-span of
σ(B) is a lattice in H.

This means that any number field lattice is a lattice in H under the
canonical embedding, which in turn is isomorphic to a lattice in Rn. In
particular, the ring of integers O and its ideals are lattices in Rn in this way.
We can now permit ourselves to talk about various lattice quantities in all
these lattices. For instance, the shortest vector of O is defined to be the
shortest vector in the corresponding lattice in Rn.

Let us see how the ring of integers of a cyclotomic field is a lattice in
Rn. Let ζ be the 3-rd root of unity, ζ3 = 1. Then the ring of integers in
K = Q[ζ] is equal to O = Z[ζ] = spanZ{1, ζ}. We have the two embeddings
σi : K → C

σ1 : ζ 7→ ζ

σ2 : ζ 7→ ζ2

with σ1 = σ2. The image of the basis for O becomes

σ(O) = spanZ{σ(1), σ(ζ)} = spanZ{
(

1
1

)
,

(
ζ
ζ2

)
} ∈ H.

By now applying the isomorphism described in Proposition 3.7 we finally
get

φ(1, 1) = (1, 0)

φ(ζ, ζ2) = (−1/2, 1/2)

which is a basis for R2. The Z-span of this basis is therefore a lattice,
shown in Figure 4.
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Figure 4: Embedding the number field lattice O = Z[ζ3] into R2.

3.3 Ideal Lattices

A problem with cryptosystems based on lattices is that the key size is often
large, making lattice based cryptography inefficient. However, by using more
structured lattice we can hope to reduce the key-size. See an example of this
in [RS10]. By imposing more structure on the lattice we invalidate the proof
of security, and new analysis is required.

A widely used such lattice is an ideal lattice. This is a lattice which comes
from an ideal of the ring of integers.

Definition 3.12 (Ideal Lattice). Let σ : K → Cn be the canonical embed-
ding. A lattice Λ in H is an ideal lattice if there exists an ideal I ⊆ O such
that σ(I) ' Λ.

By this definition an ideal lattice corresponds to an ideal in O. We also
have the converse: any ideal in O corresponds to a full rank lattice in H.

Proposition 3.13. Every ideal I of O is corresponds to a full rank lattice
in H.

Proof. Let I = spanZ{b1, . . . , bn}. Embedding I with σ yields

σ(I) = {σ(b1), . . . , σ(bn)}

which is a linearly independent set because σ is an injection and {bi} is a
basis. Since there are n vectors we conclude that it forms a basis for H and
hence Z · σ(I) is a lattice in H of rank n.
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We will make use of a bound of short vectors in ideal lattices, namely
that for any ideal I ⊆ O, the length λ1(I) of the shortest vector is bounded.

Proposition 3.14. For an ideal lattice Λ, λ1(I) ≥
√
n · N(I)1/n

and in particular for the ring of integers itself

λ1(O) ≥
√
n.

See Section 4 for the definition and discussion of λ1(O). Because the length
of a lattice point in a number field lattice is defined as the length of the
embedded vector in Rn, any ideal lattice satisfies this bound. Note that for
any general lattice in Rn, we are free to scale the basis elements to create
a new lattice of the same rank with shorter vectors. Therefore the above
bound does not hold in general, but is nevertheless useful when we are in the
ideal lattice case.

3.4 Fourier Transform

We use the Fourier transform as a tool in the reductions in Section 5. For a
discrete distribution D, the Fourier transform of x ∈ Rn is defined to be

f(x) :=
∑
y D

D(y) exp(2πi〈x,y〉) = E[D(y) exp(2πi〈x,y〉)]

where the second equality is from the definition of the expectation. Given
enough samples y1, . . . ,yN it can be shown that we can approximate the
Fourier transform by

f(x) ≈ 1

N

N∑
j=1

exp(2πi〈x,yj〉)

By using the same idea for samples from DΛ,r we can approximate the Fourier
transform for DΛ,r by sampling from DΛ,r. Denote the Fourier transform of
DΛ,r by f1/r. If 1/r is sufficiently small it can be shown that we have the
approximation

f1/r(x) ≈ exp
(
−π(r · dist(Λ∨,x))2

)
.
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Observe that the Fourier transform depends on the distance to the dual
lattice Λ∨. For x ∈ Λ∨ we get that f1/r(x) ≈ 1. Indeed, for any x ∈ Λ∨ we
get that

f(x) =
∑
y D

D(y) exp(2πi〈x,y〉) =
∑
y D

D(y) = 1

because 〈x,y〉 ∈ Z when x ∈ Λ∨.
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4 Interesting Lattice Problems

The most well known lattice problem is the shortest vector problem (SVP),
where we are given a basis for a lattice and are required to output the shortest
vector in the lattice. Closely related is the closest vector problem (CVP)
where we are required to find the closest lattice point to an arbitrary point
in Rn. In this section we will present standard lattice problems, together with
simple attacks or references to such attacks. Then we will show reductions
between the problems to build an understanding of how the problems are
related.

GapSVPζ,γ
// LWE // SIS

SIVPγ

Q

88

CVP

SVPγ

ff OOOO

Figure 5: Problem Tree. The arrows indicate directions of reduction. Quan-
tum reductions are indicated with a Q. This is not the complete picture, but
illustrates what we do in this thesis.

In this section we will present many of the standard lattice problems.
The description of the problems are threefold. Firstly we describe define the
problem, secondly we describe standard attacks to illustrate how well we can
solve them and thirdly we provide reductions between the problems to show
how they relate to each other.

4.1 Shortest Vector Problem

The most well known computational problem in lattice theory is the shortest
vector problem. We start by defining a very useful lattice quantity which
measures the shortest length of a set of linearly independent vectors in the
lattice.
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Definition 4.1 (Successive Minima). Let Λ be a lattice and B(0, r) the ball
of radius r centered at 0. The n-th succesive minimum, denoted, λn, is the
smallest r such that B(0, r) ∩ Λ contains n linearly independent elements.

Note that λ1(Λ) is the length of the shortest vector in the lattice. On the
other hand, λ2(Λ) is not necessarily the length of the second shortest vector
because such a vector might be linearly dependent on the shortest.

Definition 4.2 (SVP). Let B be a basis for the lattice Λ. The shortest
vector problem is, given B, to output a vector of length λ1(Λ).

Definition 4.3 (SIVP). Let B be a basis for the lattice Λ. The shortest in-
dependent vector problem (SIVP) is to output n linearly independent vectors
{x1, . . . ,xn} ∈ Λ such that ||xi|| ≤ λn(Λ) for i = 1, . . . , n.

If the lattice Λ is clear from context we denote λn(Λ) by λn. It is easy to
see that 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. How hard these problems are depends to a
large extent on which basis describes the lattice we are given as input. For
instance, consider a lattice spanned by an orthogonal basis. It is not hard
to see that the shortest vector in such a lattice would be one of the basis
vectors. Finding the successive minima is equivalent to sorting the basis by
length, which can be done in O(n log n) time. In the general case, given a
basis B for a lattice we can try to make B orthogonal, or as orthogonal as
possible, and solve SVP in this way. However, there is no known polynomial
algorithm that solves neither SIVP nor SVP in this way. If we instead are
required to output approximations of short vectors up to a factor γ then it
can be done.

Definition 4.4 (SVPγ). Given a basis B for a lattice Λ, output a non-zero
vector of length at most γ · λ1(Λ) for γ = γ(n).

Definition 4.5 (SIVPγ). Given a basis B of a lattice λ, output n linearly
independent vectors all of length at most γλn for γ = γ(n).

By setting γ = 1 we get the exact versions of SIVP. For these relaxed
versions we have some interesting attacks.

4.1.1 Attack

There is a polynomial time algorithms which achieves exponential γ: Use the
revered δ-LLL algorithm to recover a O(2n)-approximate set if short, linearly
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independent elements in Õ(n6) time where n is the lattice dimension[KLWLL82].
This lattice reduction algorithm calculates the so-called LLL-reduced basis,
a ’nearly orthogonal’ basis of elements sorted length. We illustrate the idea
in the case n = 2.

Assume we have a basis B = {b1, b2} for a lattice in R2 and that ||b1|| ≤
||b2||. If this is not the case we just flip their order. Now compute the Gram-
Schmidt coefficient µ21 = 〈b2, b1〉/||b1||2 and reduce the length of the longest
vector by computing b2 = b2 − bµ21eb1. Repeat this step until we are no
longer able to reduce the basis. The same idea is used in higher dimensions
but some more care needs to be taken[KLWLL82].

Figure 6: Two equal lattices Λ with different bases. To the right is the
LLL-reduced basis.

In Figure 6 we see a lattice generated by a basis and its LLL-reduced
counterpart. Notice that, in this case, we have an exact (γ = 1) solution of
the SVPγand SIVPγ, namely the LLL-reduced basis vectors. This is because
there exists an orthogonal basis for this lattice. In general however, we expect
an exponential approximation.

The hardness of SVPγ(and SIVPγ) for polynomial γ is what we base many
of the cryptographic schemes on. Indeed, Ajtai showed that the exact SVP is
NP-hard under randomized reductions, increasing our confidence that SVP
is a hard problem[Ajt98]. There exists no polynomial time algorithm, neither
classical nor quantum, for SIVP that achieves a polynomial approximation
factor γ. We therefore conjecture that SVP and SIVP are hard, even for
quantum algorithms.
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4.1.2 Variants of SVP

We briefly mention the decision version of SVP which is to determine whether
λ1 is smaller than a given d or larger than γ · d. If neither of these are true
any answer is accepted.

Definition 4.6 (GapSVPγ). Given a basis for a lattice Λ and a real d > 0,
determine whether λ1(Λ) ≤ d or λ1(Λ) > γ · d. It is a YES instance in the
former case and NO instance in the latter.

We have a trivial reduction from GapSVPγ to SVP: If we are able to
recover the shortest vector in a lattice then it is easy to check its length.
There is no known reduction in the other direction.

4.2 Closest Vector Problem

Closely related to SVP is the closest vector problem. We denote by dist(Λ,y)
the distance from an arbitrary y ∈ Rn to the lattice Λ.

Definition 4.7 (CVPγ). Given a basis B of a lattice Λ and a vector y ∈ Rn,
output a non-zero vector x such that ||y − x|| ≤ γ · dist(Λ,y).

Again by choosing γ = 1 we get an exact version of CVP. There is a poly-
nomial time algorithm for CVPγ using a LLL-reduced basis and an algorithm
often referred to as ”Babai’s nearest plane algorithm’ due to Babai[Bab86].
This algorithm achieves an exponential approximation factor. We omit any
discussion of this algorithm.

4.2.1 Hardness

We expect that there is a reduction from CVP to SVP: Use a CVP oracle
to output the closest lattice point to 0. Since 0 ∈ Λ this algorithm would
just output 0 which is not a solution to SVP. We can construct an algorithm
with some slight modifications. Let B be a basis of the lattice Λ. Let Λ(B(i))
denote the lattice generated by B(i) = {b1, . . . , 2bi, . . . , bn}, i.e. the same
lattice but with its i-th basis vector scaled by a factor 2. It is easy to see
that both

u ∈ Λ(B(i)) ⇒ v = u− bi ∈ Λ(B) (3)
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and

v =
n∑
i=1

αi · bi such that αj is odd for j ⇒ u = v − bj ∈ Λ(B(j)). (4)

We show this reduction in the case where γ = 1 for simplicity.

Proposition 4.8. There is a polynomial time reduction from SVP to CVP.

1 SVPCVP(B)
2 for i = 1 to n do
3 B(i) ← {b1, . . . , 2bi, . . . , bn}
4 xi ← CVP(B(i), bi)

5 end
6 return min{xi − bi}

Figure 7: SVP to CVP reduction.

Proof. The algorithm is shown in Figure 7. Suppose that v =
∑
αi · bi

is the shortest vector in Λ(B). If every coordinate of v is even then v′ =
v/2 ∈ Λ(B) and is shorter. Hence at least one coordinate is odd, say α1.
In the lattice Λ(B(1)) we have that v + b1 is the closest vector to b1 by (4).
CVP(B(1), b1) will therefore output w = v + b1, which, by (3) is a vector in
Λ(B). Since we know the basis elements we can easily recover v = w−b1.

This means that SVP is at least as hard as CVP.

4.2.2 Variant of CVP

There is a variant of the CVPγ is called bounded distance decoding. In this
problem, the challenge y is sufficiently close to the lattice such that the
solution is unique.

Definition 4.9 (Bounded Distance Decoding Problem (BDDγ)). Let B be
a basis for a lattice Λ. Given a point y ∈ Rn such that (γ + 1) · dist(Λ,y) <
λ1(Λ), output the unique x ∈ Λ closest to y.
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In other words, given a x = y + e for a y ∈ Λ and a bounded ’perturba-
tion’ e, recover x. The solution is unique because if ||y−x|| < λ1(Λ)/(γ+1)
then for any z ∈ Λ\{x}

||y − z|| ≥ ||x− z|| − ||y − x|| > γ · λ1(Λ)/(γ + 1) > γ · dist(Λ,y)

Clearly we have a reduction from BDDγ to CVPγ . Solving CVPγ can
only be easier if we know that the solution is close to the challenge point.

A very simple algorithm to solve BDD is, on input basis B and vector
t ∈ R, is called the round off algorithm and it simply outputs B · b(B∨)T ·ye.

Proposition 4.10. Let Λ be a lattice in Rn with basis B, and let y = x+e ∈
Rn be such that 〈b∨j , e〉 ∈

[
−1

2
, 1

2

)
for all j for v ∈ Λ. Then the round-off

B · b(B∨)T · ye = x

returns the desired element x.

Proof. Recall that B−1 = (B∨)T . Because x is in the lattice have have that
x = Bz for some integer vector z ∈ Zn. Compute

b(B∨)T · ye = bz + (B∨)T · ee.

since B−1 = (B∨)T . On the assumption on 〈bj, e〉 is small, we get that

b(B∨)Tye = bz + (B∨)T · ee = z

because z is an integer vector and each coordinate of (B∨)Te is in [−1/2, 1/2).
Since z was the vector of integer coefficients of x we compute Bz = x.

The assumption on 〈b∨j , e〉 is quite strict so this attack has limited uses.
It is nevertheless useful in some contexts, e.g. in [CDPR16]. Before we move
on to more, less standard lattice problems we need a short intermesso into
the world of probability.

4.3 Probability

In this subsection we define an important distribution for the hardness theo-
rems, reductions and applications. We also state some additional properties
from statistics, such as the statistical distance between distributions and how
uniform distributions behave under bijective maps.
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4.3.1 Statistical Tools

We often need to guarantee that samples drawn in a particular way come
from a desired distribution. However, by allowing samples to come from
a distribution which is essentially the same we give ourselves a bit more
freedom. We formalize this by introducing a metric on the set of probability
spaces.

Definition 4.11. For two distributions P and Q on the sample set X, the
statistical distance between P and Q is

∆(P,Q) := sup
A⊆X
|P (A)−Q(A)|

We say the two distributions are statistically indistinguishable if ∆(P,Q) < ε
for some negligible ε.

In many of the attacks we describe, we require that uniform distributions
remain uniform under bijective maps.

Proposition 4.12. Let f : A→ B be a map between sets A and B. Assume
|f−1(b)| = n ∈ N is constant for all b ∈ f(A). If a

r← A then the distribution
of f(a) is uniform.

Proof. Assume, for simplicity, that A and B are finite, such that each element
a ∈ A is assigned probability 1/|A|. Since every preimage of elements B
contains n elements in A, f(a) is assigned probability n/|A|. We conclude
that f(a) is uniform on f(A) ⊆ B.

In particular, if f is a bijection then |f−1(b)| = 1 and f(A) = B so the
distribution of f(a) is uniform (with the same probability assigned to each
element) on all of B.

4.3.2 Gaussian Distributions

A particular distribution we are going to discuss is the Gaussian distribution
of width r, Dr. We first define the Gaussian function

ρr(x) := exp(−π||x||2/r2).
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It it not hard to see that the measure of ρr over Rn is rn. The Gaussian
distribution Dr should be the distribution proportional to ρr, which is ob-
tained by scaling: Dr(x) = ρr(x)/rn. We similarly define the Gaussian DΛ,r

where samples are lattice points x ∈ Λ.

DΛ,r(x) =
ρr(x)

ρr(Λ)
x ∈ Λ.

Even though we can sample from the Gaussian Dr easily, sampling its
discrete counterpart DΛ,r is not always trivial.

Definition 4.13 (DGSΛ,r). The discrete gaussian sampling problem (DGS)
with width r over the lattice Λ is to output a sample from DΛ,r.

However, for large enough r we can sample from DΛ,r is classical polyno-
mial time. We omit the proof.

Proposition 4.14. There exists an efficient algorithm that, given any n-
dimensional lattice Λ and r ≥ 22nλn(Λ), outputs a sample from a distribution
that is within distance 2−Ω(n) of DΛ,r.

Proof. See [Reg09, Lemma 3.2].

The Gaussian distribution is used because it gives provable security ([Pei16,
Reg09, LPR10]) when the errors are sampled from a correctly chosen DΛ,r.
Because of the exponential decay of DΛ,r, a sample from a Gaussian of nar-
row width will, with high probability, be short. We show how this relates to
standard lattice problems in 4.5.

Proposition 4.15. For any n-dimensional lattice Λ, any sample fromDΛ,r

has Euclidean norm at most r
√
n except with probability 2−2n.

Proof. See [Cai03, Lemma 1.5]. This is not surprising because of the expo-
nential decay of the distribution.
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Figure 8: Gaussians DΛ,r with the same width r = 5 over a lattice and its
dual. Here z-value indicates probability.

4.4 Lattice Quantities

Micciancio and Regev[RM07] defined a lattice parameter, called the smooth-
ing parameter, which determines the smallest r such that for larger r, the
statistical distance between DΛ,r and the uniform distribution on the lattice
is negligible.

Definition 4.16. For a lattice Λ and an ε > 0 the smoothing parameter
ηε(Λ) is the smallest r > 0 such that

ρ1/r(Λ
∨\{0}) ≤ ε.

The reason for why the smoothing parameter for a lattice depends on the
image of (most of) its dual under ρ is because we have the relation[RM07],
called the Poissons summation formula,

ρ(Λ) = det(Λ∨)ρ̂(Λ∨),

where ρ̂ denotes the Fourier transform. This relates the two quantities. The
smoothing parameter is important in analyzing security, as it gives us a
measure on whether an attacker sees Dr or a uniform one. This is illustrated
in the following proposition.
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Proposition 4.17. For any lattice Λ, ε > 0 and a width r > ηε(Λ), the
statistical distance between the Dr mod Λ and the uniform distribution U(Λ)
on Λ is less than ε/2.

∆(Dr mod Λ, U(Λ) mod Λ) ≤ ε/2

Proof. See [RM07, Lemma 4.1]

For samples from Dr with width r which exceeds the smoothing param-
eter, an attacker cannot distinguish these samples from uniform ones. Ad-
ditionally, for an encryption scheme which on input x ∈ Λ encrypts it by
adding some noise x + e with e ← Dr, then decryption becomes impos-
sible if r exceeds ηε(Λ). Choosing the correct r is therefore essential. We
state some bounds for the smoothing parameter, connecting it to previously
defined lattice quantities.

Proposition 4.18. For an n-dimensional lattice Λ we have that

ηε(Λ) ≤
√

log(n/ε)λn(Λ) 0 < ε < 1

In particular, using the notation ω(f) to represent a function growing
more rapidly than f , we have that ηε(Λ) ≤ ω(

√
log n)λn(Λ). From [RM07]

we get a similar upper bound of the smoothing parameter but depending
inversely on the shortest vector of the dual ideal.

Proposition 4.19. For a lattice Λ of dimension n we have that

ηε(Λ) ≤
√
n/λ1(Λ∨)

Consider an encryption scheme where we encrypt by adding Gaussian
noise to a lattice point. If we add too much noise, then the distribution
of the resulting ciphertext will be essentially uniform and we are no longer
able to decrypt correctly. The bound above therefore tells us how much
noise we can add to a message and still be able to decrypt correctly, and
it depends inversely on the shortest vector in the dual lattice. Minimizing
λ1(Λ∨) therefore permits us to add a large amount of noise while still being
able to decrypt.
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4.5 More Lattice Problems

Recall that from Proposition 4.15, a sample from DΛ,r will have length≥ r
√
n

with high probability. By choosing r sufficiently small and sampling from
DΛ,r we expect to get a small lattice vector. Proposition 4.18 gives us that

ηε(Λ) ≤ ω(
√

log n)λn(Λ).

Now choosing

γ = ηε(Λ) · Õ(1/α) ≤ ω(
√

log n)λn(Λ) · Õ(1/α)

and observing that

γ
√
n = Õ(

√
n/α)λn(Λ)

means that a sample from DΛ,γ will have length γ
√
n = Õ(

√
n/α)λn(Λ)

with high probability. Such a sample gives us a Õ(
√
n/α)-approximated

shortest vector because λ1 ≤ λn. This gives us a reduction from SVP√n/α
to DGSγ. By drawing multiple samples vi ← DΛ,γ we expect to get linearly
independent, short samples when we draw more than n samples. This is
similar to how choosing random integer vectors ai

r← Zn quickly result in a
linearly independent set {ai} when we draw slightly more than n samples. A
(quit technical) proof of this is found in [Reg09]. Because we have conjectured
that SVP is hard then so is DGSΛ,r for narrow with r.

For completeness we define the shortest integer solution (SIS) problem.

Definition 4.20 (Shortest Integer Solution (SIS)). Given ai ∈ Znq and β > 0,
find integers z ∈ Zn such that

z1a1 + z2a2 + · · ·+ znan = 0 ∈ Znq (5)

and ||z|| < β. In other words, Az = 0 mod q for a small integer vector z.

This is equivalent to finding an appropriate integer vector in the lattice

Λq(A)⊥ := {x ∈ Z | Ax = 0 mod q}

Note that even though we need to find small z, this does not immediately
mean that the lattice vector Az is small. A small lattice vector can have
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large coefficients. To illustrate a reduction from decision-LWE to SIS, a
SIS oracle can recover a w ∈ 1

q
Λ(A)⊥ for A the matrix from LWE and

modulus q. We can then check what the distribution of 〈b,w〉 mod Z is for a
decision-LWE samples b. See [RS10] for details. As mentioned in the start of
this section, Ajtai[Ajt96] showed a reduction from worst-case approximated
lattice problems to average case SIS.
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5 Learning With Errors

In Section 4 we discussed the relationship between many standard lattice
problems. In this section, we will see how these problems relate to the learn-
ing with errors (LWE) problem. In particular, we have a quantum reduction
from SIVPγ to LWE due to Regev[Reg09]. It uses an iterative step to pro-
duce samples from more and more narrow Gaussians DΛ,r which means that,
eventually, one of the samples is small by Proposition 4.15. The first part
consists on solving a BDD instance on the dual lattice Λ∨ by making use
of an LWE oracle. This is done by scaling samples from DΛ,r by 1/q and
approximating the Fourier transform of the scaled distribution 1

q
DΛ,r. The

Fourier transform of a vector x from 1
q
DΛ,r depends, in some way, on the

closest vector in Λ∨ to x. By using the LWE oracle we can get rid of the
errors from approximations and recover x, solving the BDD instance.

The second step is quantum, and uses the BDD algorithm above to make a
quantum state of a Gaussian DΛ,r′ with r′ < r/2. This state can be measured
to get a sample from DΛ,r′ . By applying this procedure multiple times we
end up with samples which have short length.

5.1 Learning With Errors

In computer science, and in particular in machine learning, there is a problem
called learning from parity with errors (LPE) which is to find a ’secret’ s

r←
Zn2 given access to equations

〈s,a1〉 ≈ε b1 mod 2

〈s,a2〉 ≈ε b2 mod 2

...

for ai
r← Zn2 where each equation is correct with probability 1 − ε. If ε = 0

then this can be solved in polynomial time by, say, Gaussian elimination. To
solve this for general ε > 0 we can try the following method: Find a set S
of ai-s such that

∑
S ai = (1, 0, . . . , 0). Computing the corresponding

∑
S bi

gives a guess for the first bit of s. However, this is correct with probability
1/2 + 2−O(n). We therefore need 2O(n) such guesses to be confident that it is
correct. This sketch gives us an algorithm that requires 2O(n) equation and
runs in 2O(n) time. There are improvement to this algorithm, in particular one
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by Blum, Kalai and Wasserman [BKW03] who provided a sub-exponential
time algorithm which runs in 2O(n/ logn) time.

A generalization of LPE is to extend the modulus from 2 to a general
integer q. Such a system is described by the following set of equations.

b1 = 〈s,a1〉+ e1

b2 = 〈s,a2〉+ e2

...

bm = 〈s,am〉+ em

(6)

where ai
r← Znq , the ei ← χ for some distribution χ over R and s

r← Znq .
The addition in the bi terms is in R/qZ, i.e. modulo q. The set of equations
become non-singular with high probability when m is slightly larger than n.
Again, without the error terms this can be solved easily in polynomial time.
The problem becomes much harder when we include the error terms.

Definition 5.1 (LWE sample). Pick s
r← Znq and e ← χ for a distribution

χ over R. An LWE-sample is a pair (a, b) where a
r← Znq and b = 〈s,a〉 +

e mod qZ. We say that (a, b) is sampled from the distribution As,χ over
Znq × R/qZ.

We define two problems related to LWE. The first is the recover s which
one may think of as the secret key in a scheme based on LWE. The second
problem is to distinguish LWE samples from uniform samples.

Definition 5.2 (Search LWE). Given access to m LWE-samples from As,χ,
recover s.

Definition 5.3 (Decision LWE). Given access to m LWE-samples (ai, bi),
determine whether they are samples from As,χ or samples where from the
uniform distribution on Znq × R/qZ.

We note that these problems are originally defined so that χ is sampled
form a distribution of distributions, but we omit this detail for clarity. If we
can show that decision-LWE is hard then LWE samples look uniform to a
potential attacker. By doing this we can prove that a cryptographic scheme
is semantically secure. We will see an example of this later.

If we assume that the dimension n is not too large and the modulus q is
prime and polynomial in n then the search and decision versions of LWE are
equivalent.
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Proposition 5.4. Assume that the modulus q = poly(n) and prime. Then
search-LWE=decision-LWE.

Proof. search-LWE≤decision-LWE: This is trivial because if we can recover
s, then we can calculate e = b−As and check if e is uniformly distributed.

decision-LWE≤search-LWE: Let s = (s1, . . . , sn). Pick an r
r← Zq. Trans-

form the sample (a, b) to

a′ = a+ (r, 0, . . . , 0)

b′ = 〈s,a〉+ e+ r · k

where k ∈ Zq. Since r was chosen uniformly, a+ (r, 0, . . . , 0) is also uniform.
Similarly, r · k will also be uniformly distributed so b′ becomes a uniform
sample because multiplication by k is a bijection when q is prime. However,
if k = s1 we get that

b′i = b+ r · k = 〈s,a〉+ e+ r · s1

= 〈s+ (s1, 0, . . . , 0),a+ (r, 0, . . . , 0)〉+ e

which is another sample from As,χ. We can now use the decision-LWE oracle
to determine what the distribution of (a′, b′) for different values of k. When
k = s1 the oracle will decide that the sample is from As,χ and we have
recovered s1. Since there are only q values k can take and q = poly(n), this
happens fairly quickly. If do a similar step for the other coordinates of s to
recover the whole vector.

This means that if q is prime we can regard both problems as one,
which we will denote by LWE. Notice that we always have that decision-
LWE≤search-LWE. We also have average case hardness of decision-LWE,
which means that if an attacker is able to solve a random instance of LWE,
then they can solve any instance of LWE.

Proposition 5.5. decision-LWE is as hard in the average case as it is in the
worst case.

Proof. Let As,χ denote the distribution of an LWE-sample. Assume there is

some set S ⊆ Znq such that LWE-samples where s′
r← S, decision-LWE is

easy. Assume also that |S|/|Znq | = 1/poly(n), i.e. S is not too small. This
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means that we have a distinguisher A which can distinguish samples drawn
from As′,χ from uniform samples for s′

r← S. It is easy to see that the sample

{a, b+ 〈a, t〉/q} is a sample from As+t, χ. Therefore, given any s
r← Znq , pick

a uniformly random t
r← Znq , and query A on

{a, b+ 〈a, t〉/q}.

Since S is sufficiently large, we will, with high probability, eventually have
that s+ t ∈ S and A will be able to decide from which distribution (a, b) is
sampled from. This means that if there exists a sufficiently large set S where
decision-LWE is easy, then decision-LWE is easy for all of Znq .

We will show later that there exists reductions from lattice problems that
we assume are hard to LWE (see Figure 5), meaning that if LWE is easy
in the average case, then so is many conjectured hard lattice problems. We
conclude that LWE is average-case hard. Note that, by the above proof,
there might exists a set S of negligible size where LWE is easy, but as n gets
large this set is vanishingly small.

5.1.1 Other Versions of LWE

We mention two other versions of LWE which are also used. Instead of
sampling continuous errors we can let χ be a distribution over Zq, sample a
and s like before and let

b = 〈a, s〉+ e ∈ Zq.

We call this the discrete variant of LWE.
The original definition given in [Reg09] was to let χ be a distribution over

R/Z (modulo 1) and set an LWE sample to be

a
r← Znq

b = 〈a, s〉+ e mod Z

for s
r← Znq . We will continue to use the version from Definition 5.1. We

do not expect any of these versions to provide different security, and it was
shown in [LPR13, Reg09] that all three variants enjoy the same hardness.
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5.1.2 Attack

We now give examples of two attacks on LWE which will provide us with some
restrictions on the error distribution. Given a LWE-sample (a, b = 〈s,a〉+e)
and a divisor q′|q, we can reduce the sample modulo q′ to obtain

a′ = a mod q′Z
b′ = 〈s′,a′〉/q + e mod q′Z

where s′ = s mod q′ · Z. If we let q′ = 1 then 〈s′,a′〉 = 0 so b = e mod Z.
We now have two potential attacks. Firstly, a distinguishing attack. Because
reducing modulo a divisor of q is a map satisfying the condition of Proposition
4.12, bi mod q′ is uniform if bi is. Checking whether bi mod q′ is non-uniform
is therefore a distinguishing attack.

Secondly, we have a potential search attack. Assume that the errors from
χ usually does not wrap around modulo Z, that is the probability that an
error is outside the interval [−1/2, 1/2) is small. Symbolically,

Pr

[
e 6∈

[
−1

2
,
1

2

)]
≤ ε

for a small ε. Let ê be an such an error. Because ê does not wrap around, b−
ê = 〈s,a〉 modulo q. This gives us an error-less LWE-sample, and collecting
enough such errors gives a system of linear equations which can be solved
easily. Since the probability that an error does not wrap around is small, we
can find sufficiently many such errors quickly.

These two attack also work similarly for other divisors of q that is not
too large, but for simplicity we have described it for q′ = 1. From these
two attack we get two requirements for the error distribution χ: It must be
statistically indistinguishable from uniform modulo Z, and the sufficiently
many errors must wrap around modulo Z.

Let χ = Dr be the Gaussian of width r exceeding the smoothing param-
eter of Z, r ≥ ηε(Z). We can for instance let r = αq > 2

√
n ≥ η2−n(Λ) as

described in Theorem 5.6. These errors wrap around modulo Z with high
probability because the distribution is sufficiently wide and b mod Z are sta-
tistically close to uniform by the choice of the width of Dr (Proposition 4.17).

5.1.3 Hardness

We want to base the hardness of LWE on well known problems for lattices.
This can be done by a reduction from LWE, where the errors are sampled
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from Gaussian distributions, to SIVPγ with γ = poly(n). This reduction has
a quantum step.

Theorem 5.6. Let ε = ε(n) be some negligible function in n, α ∈ (0, 1) be a
real, q = q(n) be some integer such that qα > 2

√
n. Given an efficient (pos-

sibly quantum) algorithm that solves LWEq,Dr , then there exists an efficient
quantum algorithm for solving SIVPÕ(n/α) and SVPÕ(n/α).

By being able to sample from a Gaussian DΛ,r of sufficiently small width
we can sample a small vector in the lattice Λ. Regev’s reduction[Reg09] does
this by making use of an LWE oracle. Specifically, given nc samples from DΛ,r

we use a LWE oracle to get nc samples from DΛ,r·
√
n/αq. With the condition

that αq > 2
√
n this gives us that

r′ := r ·
√
n

αq
< r ·

√
n

2
√
n

= r/2.

The requirement on αq makes sure that we need to perform this iterative
step not too many times, as we reduce the width by a factor of 2 each step
reducing the width exponentially fast.

Theorem 5.7 (Iterative step [Reg09]). Let α > 0 and q ≥ 2 be an integer.
There exists an efficient quantum algorithm that, given a lattice Λ and a
number r >

√
2q · ηε(Λ) for some negligible ε = ε(n) such that r′ := r ·

ω(
√

log n)/(αq), an oracle to LWEq,Dr , and nc samples from the discrete
Gaussian distribution DΛ,r, outputs nc samples from DΛ,r′.

An overview of the algorithm is shown in Figure 10. We try here to fill
in the details. Essentially, we want to generate samples from a Gaussian
distribution DΛ,r′ given samples from DΛ,r of larger width. If we can sample
from DΛ,r/q we are done, as r/q is even smaller than r′. To do this, draw
nc samples from Dr and divide them by q. However, this gives us samples
y ← DΛ/q,r/q which is close, but not quite what we want to sample from.

Define the distribution (a,y)← D̃ as

y ← DΛ/q,r/q

a
r← Znq such that y ∈ Λ + Λa/q.

By scaling the lattice by 1/q we partition it in qn parts, which means that
we can describe the lattice Λ/q by qn translations of Λ: Λ/q = {Λ + Λa/q}
where a ∈ Znq . An illustration of this is shown in Figure 9.
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Figure 9: A lattice (large dots) and its scaled counterpart (small dots). Scal-
ing factor q = 2 yelds q2 = 4 translates of the lattice.

To obtain the samples y ← DΛ+Λa/q,r/q we just take the original samples
from Dr and divide by q. It can be shown that that the distribution of
a sampled this way is essentially uniform. We can therefore modify our
sampling scheme to

a
r← Znq uniformly

y ← DΛ+Λa/q,r/q

which gives us, essentially, the same distribution. According to [Reg09], a
routine calculation shows that the Fourier transform of DΛ+Λa/q,r/q is given
by

exp(2πi〈a, τ(x)〉) · fq/r(x) (7)

where

τ(x) = (B∨)−1κΛ∨(x) mod q

that is, the coefficient vector of the closest vector κΛ∨(x) of x in Λ∨. This is
the Fourier transform of DΛ,r/q multiplied by a phase. Now, recovering τ(x)
would mean that we have found the closest vector to x modulo q. By using
the algorithm described in Figure 11 we can then recover x.

To recover τ(x) we use the LWE oracle in the following way. From the def-
inition of the Fourier transform we can view the Fourier transform of DΛ+Λa/q
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as the expectation of exp(2πi〈x,y〉) over y ← DΛ+Λa/q,r/q. In symbols

E [exp(2πi〈x,y〉)] = exp(2πi〈a, τ(x)〉/q) · fq/r(x)

by (7). Now take x ∈ Λ∨. The above equation means that

〈x,y〉 = 〈a, τ(x)〉/q mod 1

deterministically, which means that

〈a, τ(x)〉 = q · 〈x,y〉 mod q.

Sampling enough y ← DΛ+Λa/q,r/q gives us enough linear equations and we
are able to recover τ(x). Now in the more interesting case that x 6∈ Λ∨ then
we get equations

〈a, τ(x)〉 ≈ bq · 〈x,y〉e mod q

where the rounding is because of the fq/r-term in (7). To recover τ(x) we
now use the LWE-oracle on these samples. To do this rigorously we need to
be assured that (a,y) are indeed samples from a valid distribution to make
use of the LWE-oracle. See [Reg09] for details.

For completion we describe the second part of the iterative step. To do
this we start by creating a quantum state∑

x∈Rn
f1/r|x〉

corresponding to the Fourier transform of DΛ,r. We then transform this back
into a state corresponding to ∑

y∈Λ

DΛ,r(y)|y〉 (8)

by using the quantum Fourier transform. However, to do this in a ’reversible’
way, we need a BDD-oracle on Λ∨. We can use the oracle described in the
first step, and therefore create this state. By measuring the state (8) we can
get a sample from DΛ,r.

Why does this algorithm stop? When we recover x, its distance from the
dual lattice Λ∨ has to be smaller than 1/r, this is the condition r

√
2qηε(Λ).

The iterative steps makes r smaller resulting in larger 1/r. Eventually 1/r
is so large that we no longer can solve BDDΛ∨,1/r. The algorithm therefore
stops.
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Figure 10: Iterative Step. We produce samples from the discrete Gaussian
Dr of progressively narrower width.

5.1.4 More remarks

In the above reduction we showed how to solve BDD on the dual lattice
modulo q.

Definition 5.8. The q-BDDΛ,d problem is: given an instance y of BDDΛ,d

that has solution x, find x mod q

It is indeed enough to solve BDDΛ,d modulo q.

Proposition 5.9. There is a polynomial reduction BDDΛ,d from to q-BDDΛ,d.

Proof. The algorithm is described in Figure 11. We are given as input a
point x ∈ Λ within distance d of Λ. Denote by κ(x) the closest lattice point
to x. Now we want to define a sequence x1,x2, . . . in the following way: Let
ci = B−1κ(xi) be the coefficient vector of the the closest vector of xi. Notice
that we do not know ci, but we can access a q-BDD oracle to find ci mod q.
Do this, and define

xi+1 = (xi − ci mod q))/q.

Notice that the coefficient-vector

ci+1 := (ci − (ci mod q))/q ∈ Znq
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is such that Bci+1 ∈ Λ and is the closest vector to xi+1. Again, we do not
know ci, and these are exactly the vectors we want to compute. Now, the
distance from xi+1 to Λ is at most d/qi since we assumed that x1 was within
d of Λ. After n steps we have found a point xn+1 which is within distance
d/qn of Λ. Using a polynomial time algorithm for CVPγ such as Babai’s
nearest plane algorithm[Bab86] we can recover the lattice point closest to
xn+1 with approximation factor 2n. This yields a lattice point Bc within
distance

2n · d/pn < d < λ1(Λ)/2

of xn+1. Hence, Bcn+1 is the closest point to xn+1. Retracing our steps by
computing

cn = pcn+1 + (cn mod q)

gives us cn, cn−1, . . . , c1. Since c1 was the coefficient vector of the closest
lattice point of x1 = x, Bc1 is the closest lattice point to x.

1 BDDq-BDD(B,x)
2 x1 ← x
3 for i = 1 to n do
4 ci mod q ← q-BDD(B,xi)
5 xi+1 ← (xi −B(ci mod q))/q

6 end
7 cn+1 ← CVP2n(xn+1)
8 for n = 1 to 1 do
9 cn ← qcn−1 + (cn mod q)

10 end
11 return Bc1

Figure 11: BDD to q-BDD reduction.

5.1.5 Classical Reduction

The algorithm and reduction above from SIVPγ to LWEq,Dr is quantum, but
we also have a classical polynomial time reduction from a particular lattice
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problem problem to LWE. We introduce this for perspective and completion
without going into any detail. The algorithm is due to Peikert[Pei09]. We
define a special version of the decision version of SVPγ.

Definition 5.10 (ζ-to-γ-GapSVP). For functions ζ(n) ≥ γ(n) ≥ 1, basis B
of lattice Λ and a distance d such that 1 ≤ d ≤ ζ(n)/γ(n), we are asked to
determine whether λ1(Λ) ≤ d or λ1(Λ) > γ(n) · λ1(Λ). We say that it is a
YES instance in the former case and a NO instance in the latter.

In this problem we are tasked to determine the length of the shortest
vector relative to various parameters, without needing to find it. Obviously
there is a trivial reduction from ζ-to-γ-GapSVP to SVPγ. If we know the
shortest vector, we can just calculate the length and decide. Peikert proved
a classical reduction from ζ-to-γ-GapSVP to LWE. However because of the
introduction of the additional parameter ζ(n), this reduction is not as con-
vincing as we would like it to be. However, if q ≥ O(2n) then there is a
reduction to ’ordinary’ GapSVP[Pei09].

5.2 Applications

Regev[Reg09] proposes a simple public-key cryptographic scheme based on
LWE. It consists of three algorithms (K, E ,D) for key-generation, encryption
and decryption respectively shown in Figure 12. K generates the secret key
s and the public key (a, b). Encryption E : {0, 1} → Znp × Zp is only applied
to bits. Note that we use the discrete version of LWE here.

The public key has size O(mn log p) = Õ(n2) and the private has size
Õ(n) and encryption increases the size of the message by a factor O(n). If
we choose the distribution to be the discrete variant of χ = Dα then the
probability of decryption error is negligible. Additionally, it can be shown
that if there exists an attacker who can distinguish between encryptions of
0 and 1, then there exists an attacker on decision-LWE which (assuming the
modulus q is prime) gives us a quantum attacker on SIVPγ.

5.3 Learning With Errors Over Rings

Recall that K is a finite extension of Q. The scheme described above has
a key size of Õ(n2). However, by having the public key {ai} come from
a different ring can reduce the key size to O(n). Before we describe the
ring variant of LWE we show where the errors are sampled from. The error
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1 K(n, q,m, χ)
2 s← Znq
3 for i = 1, . . .m do
4 ai ← Znq
5 ei ← χ
6 bi = 〈ai, s〉+ ei mod q

7 end
8 return s, (ai, bi)

1 E(m, (ai, bi))
2 S ← subset of {1, . . . ,m}
3 a =

∑
i∈S ai

4 if m = 0 then
5 b =

∑
i∈S bi

6 else if m = 1 then
7 b = b q

2
c+

∑
i∈S bi)

8 end
9 return (a, b)

1 D(s, (a, b))
2 d = b− 〈a, s〉
3 if d closest to 0 then
4 return 0
5 else if d closest to b q

2
c then

6 return 1
7 end

Figure 12: Key generation, encryption and decryption of Regev’s scheme
[Reg09].

terms are sampled from the space KR := K ⊗ R. By fixing a Q-basis for K,
{u1, . . . , un}, we can write any α ∈ K as α = q1u1 + · · · + qnun for qi ∈ Q.
Now any element e ∈ KR is of the form

e = (q1, q2, . . . , qn)⊗ x = (q1x, q2x, . . . , qnx)

for x ∈ R. Since qix ∈ R, we get that KR is a vector space over R with n
linearly independent elements and hence isomorphic to Rn as vector spaces.
Intuitively, we want to sample elements s and a from a discrete space and add
some ’continuous’ noise. Since KR ' Rn it acts as this continuous domain.

Definition 5.11 (Ring-LWE (R-LWE)). Let q be an integer, Iq = I/qI for

any ideal I and χ be a distribution over KR. Pick a secret s
r← O∨q and

sample a
r← Oq. An R-LWE sample is the pair (a, b) where

b = a · s+ e mod qO∨ ∈ KR/qO∨.
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As before, the search version is the recover s and the decision version is to
distinguish an R-LWE sample (a, b) from one where (a, b)

r← Oq ×KR/qO∨.

R-LWE is a special case of LWE in the following way: Let B be a Z-basis
for O, then for any a ∈ O, we get that multiplication by a is represented by
a matrix relative to the basis B, say Aa, and similarly for s. Now, given a
R-LWE sample (a, b = s · a+ e mod qO∨) we get n LWE samples

(Aa, b = Aa · s+ e).

after fixing bases, one for each coordinate. Notice that it is not obvious that
the distribution of the columns of Aa are uniformly distributed or that the
coordinates in e is independent.

By sampling ai and s from O and O∨ respectively we have reduced the
key size by a factor of n. However, we do not have the same hardness
theorems from Section 5.1 because we have introduced more structure. How-
ever, [LPR10] shows that we can get similar reductions depending on the
parameters and the amount of structure on O. See Section 5.3.3 for further
discussion. Notice that the secret s comes from the dual ideal O∨. We will
come back to why this is the ’correct’ ring to sample from in Section 5.3.6.

5.3.1 Other Versions of R-LWE

Let φ be a distribution over O∨q . We can define a discretized version of R-
LWE where we generate samples (a, b) by sampling a and s as usual, sampling
e← φ and computing

b = a · s+ e ∈ O∨q .

It is clear that if there is an attack on the discrete variant of R-LWE then
there is an attack on the variant in Definition 5.11. Any attacker can simply
discretize the samples. We might want to use the discrete variant in appli-
cations to get exact representation of elements, e.g. an error in O∨ can be
represented by the integer coefficient of a basis for O∨.

We can also define a variant akin to the variant of LWE where b ∈ R/Z
is modulo 1. For this version of R-WE the error distribution is over KR/O.
It was shown in [LPR13] that attacks on either of these variants leads to an
attack on R-LWE defined in Definition 5.11. We continue using this definition
forward.
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5.3.2 Error Distribution

In the reduction from SIVPγ to LWE in the Section 5.1 we saw that we
required error samples to be from Dr of appropriate width to guarantee
hardness. Since we can view an R-LWE error e ∈ KR as a vector e ∈ Rn

by fixing bases and get n LWE samples, we want a similar distribution on
the coordinates of e We therefore choose the distribution on KR such that
each coordinate of e is sampled from Dr with similar parameters as the
hardness-theorem of LWE. Call this distribution Dr.

5.3.3 Attack

The simplest attack on R-LWE is to reduce R-LWE samples to regular LWE-
samples by fixing bases as described earlier. Each R-LWE sample then gives
us n LWE samples. If an attacker can recover useful information from these
LWE-samples, such as the secret s ∈ Znq , then it is easy to recover the
corresponding elements in the rings. We therefore need to have that any
instantiations of R-LWE cannot be transformed into insecure instantiations
of LWE.

Similar to the two attacks on LWE described in Section 5.1 we have two
potential attacks on R-LWE, one on search and one on decision. Let q be an
ideal divisor of O∨. Given R-LWE samples

(ai, bi = s · ai/+ ei mod qO∨)

we transform them into samples modulo q by setting a′i = ai mod q and
b′i = bi mod q. Now, b′i = s′ ·a′i+ei for s′ = s mod q. We have that reduction
modulo q satisfies the condition from Proposition 4.12 and therefore maps
uniform samples to uniform samples. Now if χ mod q is detectably non-
uniform, we immediately have a distinguishing attack. For each candidate
ŝ ∈ O/q for s′ check whether b′i − ŝ · a′i are non-uniform. If such an ŝ exists,
conclude that the distribution on the original bi is not uniform. If q = O
then we only need to check one such representative.

If χ has one or more coordinates that does not ’wrap around’ modulo
q, then we can attack search by reducing the R-LWE samples to error-less
LWE samples. If we can do this enough times we can solve LWE by, e.g.,
Gaussian elimination. Similarly to LWE, we choose χ to be a distribution of
n-tuples where each coordinate is a Gaussian of width ri ≤ r. Denote this
distribution by Dr. By choosing r ≥ ηε(q) we get that each coordinate wraps
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around with high probability and in addition that b mod q are statistically
close to uniform by Proposition 4.17.

5.3.4 Hardness

Analogously to LWE we have a quantum reduction from SIVP to R-LWE.
We present the main theorem of [LPR10].

Theorem 5.12. Let K be an arbitrary number field of degree n, α ∈ (0, 1)
and let q ≥ 2 be such that qα ≥ 2 · ω(

√
log n). For some negligible ε > 0

there is a probabilistic polynomial time quantum reduction from DGSγ to
R-LWEq,Dα, where

γ = max
{
ηε(I) · (

√
2/α) · ω(

√
log n),

√
2n/λ1(I∨)

}
This theorem is essentially the same as the main hardness theorem from

LWE, Theorem 5.6, where necessary modifications are done because we are
in the R-LWE setting. We use a similar method as for regular LWE: A reduc-
tion from BDDd,I∨ to LWEq,Dr on the dual lattice given discrete Gaussian
samples, and the quantum step to sample from a discrete Gaussian of nar-
rower width. Doing this step many times allows us to sample a short vector
in I. The quantum step is more or less identical to that of [Reg09], and we
therefore focus on the first reduction.

Similarly to LWE, we only need to find the solution modulo q (See Propo-
sition 5.9). Given a q-BDDI∨,d instance y = x + e with x ∈ I∨ we want to
make use of an R-LWE oracle L and a DGS oracle DI,r to recover x. Start
by computing t such that t · I−1 is coprime to 〈q〉. Now we use the R-LWE
oracle L as follows: L will request samples until it is confident that it has a
solution. For each of these requests, sample z ← DI,r and compute the pair
(a, b) by

a = θ−1
t (z mod qI)

b = (z · y)/q + e′ mod O∨.

When L is confident that it has a solution it will output s ∈ O∨. Finally
compute θ−1

t (s) ∈ I∨q . To make use of the LWE oracle we need to guarantee
that (a, b) is a valid LWE-sample. We do this for a by showing that it is
uniform. Since r ≥

√
2q · ηε(Λ) we have that DI,r is statistically close to

uniform. In other words, if each sample is assigned probability β in the

62



1 BDDL(a, r)
2 t← t ∈ I such that t · I−1 coprime to 〈q〉
3 while L requests samples do
4 z ← DI,r
5 e′ ← Dα/

√
2

6 a← θ−1
t (z mod qI)

7 b← (z · y)/q + e′ mod R∨

8 (a, b)→ L
9 end

10 s← L
11 return θ−1

t (s)

Figure 13: BDD to R-LWE reduction. R-LWE oracle is denoted as L. Line
8 signifies that we provide the LWE oracle L a sample (a, b) and wait for the
response.

uniform distribution, any z ← DI,d will be assigned probability β ± δ for
some small δ. If this was not the case, then the distance between the two
distributions would not be negligible. Now, since θt is a bijection and z is
essentially uniform, a = θ−1

t (z mod qI) is also statistically close to uniform
by Proposition 4.12. To finish this proof we need to show that b is sampled
from a distribution statistically close to the desired distribution. This proof
if quite technical, see [LPR10] for details.

Without going into detail, if the field K is cyclotomic then we can show
that there is a reduction from R-LWE to decision-R-LWE. This is done by
finding the secret s relative to one ideal factor of 〈q〉. Because the field is
cyclotomic, we can use the field automorphism to then find s relative to all
ideal factors of 〈q〉. This enables us to recover s. Details are in [LPR10,
Section 5].

5.3.5 Secure Instantiations of R-LWE

A simple attack is to reduce the R-LWE samples to regular LWE samples as
we described above. Let B∨ be a basis for O∨. Then its dual is B such that
σ(B)∗ = σ(B∨)−1 where ∗ denotes conjugate-transpose. Because e ∈ Rn is
the coefficient vector of e ∈ KR relative to the chosen bases we get that

e = σ(B∨)−1 · σ(e) = σ(B)∗ · σ(e)
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Since we are considering ideal lattices, the length of elements are bound from
below by

√
n i.e. therefore ||σ(bj)|| ≥

√
n for the basis element bj. If the

errors e were sampled from a continuous Gaussian Dr then its counterpart e
will be sampled from σ(B)∗ · σ(Dr). This means, since each bj ≥

√
n, that

each coordinate of e is sampled from a Gaussian of width at least r ·
√
n. By

choosing r ≥ 2 we achieve precisely the hardness condition from LWE[Reg09],
meaning that any attack on R-LWE will lead to an attack on LWE. This
again gives a quantum algorithm to solve SIVPγ which we have conjectured
is hard.

The condition r ≥ 2 also renders the attack by reducing samples modulo
an ideal of O∨ useless. The authors of [Pei16] shows that this holds when
the norm of the ideal divisor is not too large, specifically less than 2n which
is a pretty mild constrait.

5.3.6 Keys from the Dual Lattice

In our definition of R-LWE, the secret key is an element from the dual lattice
O∨. However, a definition where the samples are all taken from the non-dual
O is equivalent to this definition, up to the error distribution χ[Pei16]. From
Proposition 2.23 we have that there exists a bijection

θt : O∨q → Oq
θt(u) = t · u,

which we can extend to a map

κt : KR/qO∨ → KR/qO

naturally. We use κt to transform a R-LWE sample (ai, bi = s · ai + ei) by

b′i = κt(bi) = t · bi = s′ · ai + e′i

and doing nothing with ai. Let Dr be the distribution of e. Notice that
κt(s) = θt(s) because s ∈ O∨, and since θt is a bijection, we get that s′

is distributed uniformly (because s was). This is therefore a valid R-LWE
sample with error distribution t·Dr and with secret from the non-dual lattice.
Because θt is an efficiently invertible bijection, finding s′ immediately yields
s, so solving search for the transformed sample (with errors from t · Dr) is
equivalent to solving search for the original samples. Additionally, because κt
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sends uniform samples to uniform samples we get that the decision versions
are equivalent as well.

However, even though we are able to transform a ’dual’ sample to a ’non-
dual’ sample, the errors come from a new error distribution t · χ. So if Dr

itself satisfies the hardness properties of R-LWE, t ·Dr might not. Consider
an error e← Dr. Under κt this becomes t · e and has norm

||te|| = ||σ(te)|| = ||(σ1(te), . . . , σn(te)||
= || (σ1(t)σ1(e), . . . , σn(t)σn(e)) ||

In the trivial case where t ∈ Z we get that t · χ is just a scaled version
of χ, meaning a spherical distribution remains spherical but with different
width. In general, however, t ∈ O∨. Now if χ is spherical, t · χ need not
be since each i-th coordinate is scaled by σi(t). We might try to scale each
coordinate by the largest σi(t) such that we get a wider spherical distribution.
However, this means that we need to change other parameters of the system
to guarantee security or that the errors get so large that we end up with
decryption errors.

Recall that if we sample from a Gaussian with width r which exceeds the
smoothing parameter for the lattice, decryption becomes impossible because
samples are essentially uniform. The amount of noise we can allow while still
doing this depends inversely on λn of the dual ideal, because

ηε(Λ) ≤
√
n/λ1(Λ∨) ≤

√
n/λn(Λ∨)

from Proposition 4.18. Therefore, by guaranteeing a small bound for
λn(Λ∨) we get a large smoothing parameter which allows us to sample from
a Gaussian with large width. If we restrict ourselves to cyclotomic fields, O
contains n roots of unity {1, ζ, . . . , ζn−1} all of norm

√
n. We therefore get

that λn(O) =
√
n. In addition we have from Proposition 3.14

λ1(O) ≥
√
n

and in particular

λn(O) ≥
√
n

which means that this is the optimal value for λn. Sampling from O∨ there-
fore gives us the largest bound on the smoothing parameter, allowing us to
decrypt correctly for large errors.
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5.3.7 Applications

We describe a simple cryptographic scheme based on R-LWE and prove that
it is semantically secure. Let χ be a distribution over KR. Fix the ring
R = Z[X]/〈Xn − 1〉, which is self-dual for n a power of 2. Let Rq = R/qR

and s, e← χ. We generate keys by choosing a
r← Rq and setting

s as secret key

(a, s · a+ e) as public key.

The encryption algorithm samples r, e1, e2 ← χ, computes

u = a · r + e1 mod q and v = b · r + e2 + bq/2e · z mod q

and outputs (u, v) by viewing a cipher text z ∈ {0, 1}n as coefficients in a
polynomial in R. The decryption algorithm, on input (u, v), computes

v − u · s = (r · e− s · e1 + e2) + bq/2e · z mod q.

This is essentially the same scheme as for regular LWE described in Section
5.1. If we chose parameters correctly, the coefficients of r · e− s · e1 + e2 have
magnitude less than q/4 (with high probability), so we can recover the bits
of z by checking if the coefficient is closer to 0 or to bq/2e.

It can be show that decision-R-LWE is hard even when s ← χ. An
attacker can therefore not determine whether a pair (a, b) ∈ R2

q is from the
distribution above of uniform. Therefore, the message an attacker sees is
a ·r+e1 mod q and b ·r+e2 +bq/2e, which are R-LWE samples with secret r
and are also hard to distinguish from uniform samples. This gives us semantic
security.

66



6 Conclusion

In these thesis we have looked various lattice problems and how they relate to
each other. We showed simple reductions between standard lattice problems
and how they can be attacked to get an overview of their hardness. Then
we showed that both LWE and R-LWE are at least as hard as quantum
solving hard lattice problems. This means that cryptographic schemes based
on LWE and R-LWE are provably hard when instantiated correctly. We also
saw how sampling the secret s from the dual ideal O∨ in R-LWE is the correct
way to instantiate this scheme.
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