
A Pore Network Investigation of Factors
Influencing the Residual Oil Saturation

Anders Torland

Petroleum Geoscience and Engineering

Supervisor: Carl Fredrik Berg, IGP
Co-supervisor: Ståle Fjeldstad, FEI Trondheim

Department of Geoscience and Petroleum

Submission date: June 2018

Norwegian University of Science and Technology

Preface

This thesis is the final product of the five-year MSc program in Petroleum Geosciences
and Engineering with specialization in Reservoir Engineering and Petrophysics. It was
written at the Department of Geoscience and Petroleum (IGP) at the Norwegian Univer-
sity of Science and Technology (NTNU) in Trondheim, Norway. This master’s thesis is a
natural extension and continuation of the project report ”Implementation and Comparison
of Network Simulations for Permeability and Formation Factor”, written during the fall of
2017.

I would like to express my gratitude to my supervisor, Associate Professor Carl Fredrik
Berg, whose support and advice has been invaluable. Thank you for providing me with an
interesting topic and encouraging me along the way. Second, I would like to thank my co-
supervisor, Ståle Fjeldstad (FEI Trondheim), for sharing his knowledge and experience. I
would also like to thank Sean Hall for proofreading.

Trondheim, June 2018
Anders Torland

i

ii

Summary

In this thesis a pore network modelling approach is used to investigate the correlation
between different pore structure descriptors and the residual oil saturation at the capil-
lary limit. For this study, a range of sandstones, sandpacks and carbonates, including
Fontainebleau, Bentheimer and Berea sandstones, were investigated. A suite of scripts
were developed in Python to perform simulations and calculate different properties on
these network models. The scripts perform a wide variety of tasks, such as potential cal-
culations, streamline and cluster tracking, network manipulation, percolation and plotting.

Primary drainage and waterflooding was simulated at different wetting conditions using
the e-Core software to obtain residual oil saturation. Different flow and geometry based
pore structure descriptors, such as coordination number, constriction factor, aspect ratio
and porosity, were calculated and their correlations with the residual oil saturation at dif-
ferent wetting conditions were compared. The correlation between two different local
aspect ratios and the local residual oil saturation was also investigated.

From the obtained results it is evident that the pore structure has a measurable impact
on the residual oil saturation. However, the trapping mechanisms are complex, and as the
pore structure measures are dependent on each other, it is difficult to find good correlations
based on one sole descriptor. The effective porosity yielded the best correlation, which is
likely due to the relationship between porosity, aspect ratio and coordination number. The
constriction factor, the global aspect ratio and average local aspect ratio exhibit poor cor-
relations with the residual oil saturation. This is partly caused by the carbonates, which
deviates from the results obtained from other networks.

A bond percolation process was used to find the bond percolation threshold of the net-
works studied in this thesis. At the bond percolation threshold, the connectivity through
the network is broken and the oil relative permeability is zero. The associated thresh-
old capillary pressure for snap-off exhibited good correlation with the recorded capillary
pressure at which the oil relative permeability becomes zero during water flooding. This
correspondence indicates that the percolation threshold is the dominating factor for when
the oil-phase lose connectivity. The cluster-size distribution of oil after waterflooding was
also investigated. However, we did not observe any correlations between the cluster-sizes
and the pore structure descriptors.

iii

iv

Sammendrag

I denne oppgaven brukes porenettverksmodellering til å undersøke korrelasjonene mellom
ulike mål på porestruktur og den residuelle oljemetningen ved kapillærgrensen. I denne
studien ble en rekke sandstener, sandpakker og karbonater, blant annet Fontainebleau,
Bentheimer og Berea sandstein, undersøkt. Simuleringer og beregninger av ulike egen-
skaper fra nettverksmodellene ble utført av en rekke egenutviklede skript. Skriptene ble
skrevet i Pyhton og utfører flere ulike oppgaver, blant annet potensialberegninger, sporing
av strømlinjer og oljeansamlinger, nettverksmanipulering, perkolering og visualisering.

For å finne residuell oljemetning ble primær drenering og vannflømming simulert ved
forskjellige fuktingsforhold ved hjelp av programvaren e-Core. Forskjellige flyt- og ge-
ometribaserte porestrukturmål, slik som koordinasjonsnummer (antallet porehalser koblet
til en pore), innsnevringsfaktor, aspektforhold (forholdet mellom pore- og porehalsra-
dius) og porøsitet, ble beregnet og deres korrelasjoner med den residuelle oljemetningen
ved forskjellige fuktingsforhold ble sammenlignet. Korrelasjonen mellom to forskjellige
lokale mål på aspektforholdet og lokal residuell oljemetning ble også undersøkt.

Fra de oppnådde resultatene er det tydelig at porestrukturen har stor påvirkning på den
residuelle oljemetningen. Imidlertid er fangstmekanismene komplekse og målene på pore-
struktur er avhengige av hverandre. Det er derfor vanskelig å finne gode korrelasjoner
basert på kun et mål. Den effektive porøsiteten ga den beste korrelasjonen, noe som
sannsynligvis skyldes forholdet mellom porøsitet, aspektforhold og koordinasjonsnum-
mer. Innsnevringsfaktoren, det globale aspektforholdet og det gjennomsnittlige lokale as-
pektforholdet ga dårlige korrelasjoner med residuell oljemetning. Dette skyldes delvis
karbonatene, som avviker fra resultatene fra de andre nettverkene.

En båndperkoleringsprosess ble brukt for å finne den kritiske perkoleringssansynligheten
for nettverkene som ble studert i denne oppgaven. Ved den kritiske perkoleringssansyn-
ligheten er forbindelsen gjennom nettverket brutt, og oljens relative permeabiliteten er
null. Det assosierte kapillærtrykket for spontan vannfylling av porehalser viste god korre-
lasjon med det målte kapillærtrykket når oljens relative permeabilitet ble null under van-
nflømming. Korrespondansen indikerer at den kritiske perkoleringssansynligheten er den
dominerende faktoren for når oljefasen mister forbindelsen over systemet. Distribusjonen
av oljeansamlingsstørrelsene etter vannflømming ble også undersøkt. Vi observerte ingen
sammenheng mellom porestruktur og størrelsene av oljeansamlinger.

v

vi

Table of Contents

Preface i

Summary iii

Sammendrag v

Table of Contents x

List of Tables xi

List of Figures xiv

Nomenclature xv

1 Introduction 1

2 Literature Review 5
2.1 Digital Rock Physics . 5

2.2 Pore Network Modelling . 6

2.2.1 The History of the Pore Network Model 6

2.2.2 Imaging and Construction of Pore Network Models 8

2.2.3 Pore Network Extraction . 10

2.2.4 Limitations of Pore Network Modelling 11

3 Theory 13
3.1 Pore Network Modelling . 13

3.1.1 Fundamental Theory . 13

vii

3.1.2 Shape Factor . 13

3.1.3 Corner Half-Angles . 15

3.1.4 Nodes and Links . 18

3.1.5 Network Data File Format . 18

3.2 Pore Structure . 19

3.2.1 Coordination Number . 20

3.2.2 Constriction Factor . 20

3.2.3 Aspect Ratio . 22

3.2.4 Tortuosity . 23

3.3 Trapping Mechanisms During Imbibition 24

3.3.1 Snap-Off . 25

3.4 Percolation Theory . 27

3.4.1 Bond Percolation Threshold . 28

3.4.2 Percolation and Snap-Off . 29

4 Method 31
4.1 The Suite of Scripts . 31

4.2 Solving for Potential by Sparse Matrix Inversion 33

4.2.1 Mass Conservation . 34

4.2.2 Boundary Conditions . 34

4.2.3 Hydraulic Conductance . 34

4.2.4 Electrical Conductance and Formation Factor 35

4.2.5 Flow Computation . 37

4.3 Tracking Streamlines . 38

4.3.1 Rules to Determine the Path . 38

4.3.2 Choosing the Next Link . 38

4.3.3 Moving Through the Network 40

4.3.4 Effective Porosity . 41

4.4 Calculating Measures of Pore Structure 42

4.4.1 Coordination Number . 42

4.4.2 Constriction Factor . 43

4.4.3 Aspect Ratio . 44

4.5 Network Manipulation . 44

4.5.1 Reconstruction and Rearrangement Method 46

4.5.2 Read and Write Network Data Files 46

4.5.3 Updating the Network . 47

4.6 The Percolation Process . 48

viii

4.6.1 Radius at the Bond Percolation Threshold 48

4.6.2 Threshold Capillary Pressure for Snap-Off 48

4.7 Cluster-Size Distribution . 49

4.8 e-Core . 50

4.9 Network Models . 50

4.9.1 Original and Updated Networks 51

4.9.2 Network Models from Imperial College London 51

4.9.3 Fontainebleau Network Models 51

5 Results 53

5.1 Validation of the Network Manipulation Process 53

5.2 Difference Between Streamline Tracking Methods 54

5.3 Pore Structure . 56

5.3.1 Coordination Number . 57

5.3.2 Constriction Factor . 58

5.3.3 Global Aspect Ratio . 59

5.3.4 Local Aspect Ratios . 61

5.3.5 Total and Effective Porosity . 65

5.4 Percolation Theory and Sor End-Effect 66

5.5 Cluster-Size Distribution . 68

6 Conclusions 71

References 75

Appendices 81

A Attachments 83

A.1 The Structure of the Network Data Files 83

A.2 Network Percolation Results. 86

A.3 Waterflooding Results from e-Core . 87

A.4 Network Modification Results . 88

A.5 Local Sor vs. Minimum Local Aspect Ratio. 89

A.6 Oil Production After kro = 0 . 92

A.7 Cluster-Size Distribution Results . 93

ix

B Scripts 97
B.1 readme.txt . 97
B.2 netPotential.py . 105
B.3 laplacePN.py . 107
B.4 netStream.py . 114
B.5 streamUtils.py . 122
B.6 netPlot.py . 126
B.7 updateNetwork.py . 129
B.8 netRecon.py . 136
B.9 percolation.py . 148
B.10 clusterTrack.py . 152
B.11 createNetworkXML.py . 156

x

List of Tables

3.1 Coordination numbers for various networks. 21
3.2 Coordination number (Z), bond percolation threshold (pcb) and Bc for

different ideal networks . 29

4.1 Network models from Imperial College London 52
4.2 Fontainebleau network models . 52

5.1 Network manipulation statistics for selected ICL networks 53
5.2 Network manipulation statistics for Fontainebleau networks 54

A.1 Bond percolation threshold (pcb), coordination number (Z) and Bc 86
A.2 Residual oil saturation after waterflooding 87
A.3 Network modification results. 88
A.4 Oil production after kro = 0 . 92

xi

xii

List of Figures

2.1 Ball-and-stick visualization of the pore space. 7

2.2 Micro-CT image of a rock sample. 9

3.1 Shape factor for different shapes. 14

3.2 Shape factor for triangles. 15

3.3 Cross-section of triangular pore. 15

3.4 Description of network elements. 18

3.5 Ideal 2D and 3D network lattices. 21

3.6 Description of the aspect ratio in a pore 23

3.7 Description of tortuosity . 24

3.8 Wetting and non-wetting phase at a cross-section of the pore space. 24

3.9 Wetting phase in the corner of a pore throat. 25

3.10 Entrapment of the non-wetting phase by snap-off. 26

3.11 Bond percolation . 27

3.12 Site percolation . 28

4.1 Overview of the scripts and their dependencies 32

4.2 Electrical conductance of a network element. 36

4.3 Intersecting streamlines. 39

4.4 Angle between inlet and outlet link. 40

4.5 Flowchart of netStream.py . 42

4.6 Intra-link pressures and lengths . 43

4.7 Network reconstruction and rearrangement. 45

4.8 Virus-spreading algorithm. 47

xiii

5.1 Comparison of streamline tracking methods. 55
5.2 The effect of wettability on residual oil saturation 56
5.3 Residual oil saturation vs. coordination number 57
5.4 Residual oil saturation vs. constriction factor 58
5.5 Residual oil saturation vs. global aspect ratio 60
5.6 Residual oil saturation vs. local aspect ratios 61
5.7 Local residual oil saturation vs. minimum local aspect ratio - F8, F13, F18

and F25 . 62
5.8 Local residual oil saturation vs. minimum local aspect ratio - Estaillades,

Ketton, C1 and C2 . 63
5.9 Local residual oil saturation vs. minimum local aspect ratio - F8, F13, F18

and F25 - binned . 64
5.10 Local residual oil saturation vs. minimum local aspect ratio - Estaillades,

Ketton, C1 and C2 - binned . 65
5.11 Residual oil saturation vs. total and effective porosity 66
5.12 Calculated capillary pressure vs. capillary pressure at kro = 0 67
5.13 Cluster-size distribution - F8, S9 and A1 68
5.14 Cluster-size distribution - Various models 69

A.1 Local Sor vs. minimum local aspect ratio - F10, F15, F21 and LV60C . . 89
A.2 Local Sor vs. minimum local aspect ratio - F42A, F42B, F42C and LV60A 89
A.3 Local Sor vs. minimum local aspect ratio - S1, S2, S3 and S4 90
A.4 Local Sor vs. minimum local aspect ratio - S5, S6, S7 and S8 90
A.5 Local Sor vs. minimum local aspect ratio - Bentheimer, Berea, Dodding-

ton, A1 . 91
A.6 Cluster-size distribution - Fontainebleau networks 93
A.7 Cluster-size distribution - ICL Sandstone networks 93
A.8 Cluster-size distribution - ICL Sand Pack networks 94
A.9 Cluster-size distribution - Various ICL sandstone networks 94
A.10 Cluster-size distribution - ICL Carbonate networks 95

xiv

Nomenclature

β = Corner half-angle
γ = Interfacial tension
∆P = Pressure difference
∇p = Pressure gradient
θA = Advancing contact angle
Θ = Angle
κi = Location term of element i
κl = Location term of link l
µ = Fluid viscosity
ν = Fluid velocity
σ = Conductance
σw = Water conductance
σo = Specific rock conductance
τ = Tortuosity
A = Cross-sectional area
Bc = Zpcb, where Z is the coordination number

and pcb is the bond percolation threshold
C = Constriction factor
C(S) = Constriction factor of streamline S
Cs = Hydraulic constriction factor
CIp = Coefficient related to pore geometry
d = Dimension
f(Xi) = Volume fraction of oil trapped in clusters of volume Xi

F = Formation factor
gi = Conductance of element i
gIJ = Conductance of link IJ
gh = Hydraulic conductance
ge = Electrical conductance
G = Shape factor
I = Current
kro = Relative oil permeability

xv

ls = Streamline length
Le = Length of curve
L = Length
Li = Length of element i
LIJ = Length of link IJ
Ni = Number of clusters of size Xi

Ncap = Capillary number
p = Percolation probability
pi = Pressure in element i
pa and pb = Intra-link pressures
pcb = Bond percolation threshold
Pc = Capillary pressure
P sc = Threshold capillary pressure for snap-off
P IcR = Capillary pressure ratio between pore filling and snap-off
P (Xi ≤ Xj) = Cumulative fraction
qIJ = Flowrate in link IJ
q(S) = Flowrate in streamtube S
Q = Flowrate
rt = Radius of throat
rp = Radius of pore
rinsc = Inscribed radius
R = Radius
Sor = Residual oil saturation
V = Voltage
Vtot = Total volume
wg = Conductance weighting factor
Xi = Cluster-size (volume)
Z = Coordination number

DRP = Digital Rock Physics
CT = Computed tomography
BSE = Back-scattered electron
MA = Medial axis
MB = Maximum ball

xvi

Chapter 1
Introduction

The understanding of fluid displacement through porous media is relevant for solving
many problems, both industrial and scientific. Pore-scale techniques can be used to study
capillary trapping and dissolution of CO2 - processes which are regarded as promising
to effectively and safely store CO2 in order to reduce emissions to the atmosphere. The
technology can also be used within fields such as hydrology and radioactive waste disposal
(Blunt et al., 2013). Even though pore-scale technology can be useful within a wide range
of industries, the applications within the petroleum industry will be the scope of this thesis.

End-point saturation is a first order uncertainty in reservoir modeling and simulations. The
economic gain associated with even a slight increase in recovery is huge, and obtaining
reliable estimates for the residual oil saturation is therefore essential. Studying the factors
which determine and influence the distribution and magnitude of the residual oil is crucial
for predictive reservoir modelling.

Residual oil saturation is commonly determined from core analysis. However, there are
many factors affecting the accuracy of such measurements. The core samples are com-
monly cleaned and the wettability is reestablished by aging prior to the experimental de-
termination of the residual oil saturation. This might alter the wettability of the core,
yielding a misrepresentation of the wettability in the reservoir rock. In addition, the resid-
ual oil saturation is dependent on how the core is recovered. In conventional coring, the
core might expulse fluids during transportation.

Performing numerical simulations on digitized rock samples can be be both time and cost

1

Chapter 1. Introduction

saving. In addition, the uncertainty related to the assumption of sister-plugs can be elimi-
nated. This thesis is based on the application of pore network models. Such pore network
models can easily capture wetting layer flow, which has been proven essential for the pre-
diction of end-point saturations (Berg et al., 2017).

Advanced techniques, such as micro-tomography and back-scattered electron imaging, can
be used to capture images of rock samples (Berg et al., 2017). Network representations of
the pore space can be numerically extracted. From these digital representations the pore
structure can be assessed and it would be valuable to be able to predict the residual oil
saturation based on descriptors of the pore microstructure.

After waterflooding oil is trapped within the pore space. The confined oil can be trapped
in single pores or form clusters, spanning multiple pores and throats. Trapping of oil is
highly dependent on the pore structure (Yuan (1981), Sahimi (2011), Tanino and Blunt
(2012), Nie et al. (2016)), and might lead to significantly reduced oil recovery (Blunt,
2017). Snap-off is a common trapping mechanism, especially in water-wet systems, and it
is dependent on the pore structure. Chatzis et al. (1983) presented results for two dimen-
sional regular lattices which indicated that the size and distribution of trapped oil clusters
are linked to the pore structure of porous media. In this thesis, pore network modelling is
used to investigate the correlation between pore structure and residual oil saturation at the
capillary limit.

Several authors (Melrose and Brandner (1974), Larson et al. (1981)) have pointed out the
resemblance between percolation processes and hydrocarbon trapping. Assuming water-
wet conditions and wetting phase connectivity, throats throughout the rock can be snapped-
off. The snap-off trapping mechanism in real porous media is therefore similar to the ran-
dom closing of bonds in a percolation process. By applying a bond percolation process
to a network model, the radius of the link disconnecting the non-wetting phase between
the inlet and the outlet can be found. This radius can be associated with a threshold cap-
illary pressure for snap-off, which should correspond to the recorded capillary pressure at
kro = 0 during waterflooding. When the oil phase becomes discontinuous the relative oil
permeability becomes zero. The oil-phase connected to the outlet can still be produced.
For smaller systems, such as pore network models and possibly even core samples, this
incremental oil production after kro = 0 could be significant. The magnitude of this effect
can not be directly applied to the field scale, and might result in a potential mismatch with
residual oil saturations estimated from smaller systems.

2

In this thesis a suite of scripts are developed to perform simulations and calculate different
parameters from network models. The scripts cover a wide range of tasks, such as pressure
and flowrate calculations, streamline tracking, percolation processes, network manipula-
tion and visualization. The scripts are used to calculate and compare different flow and ge-
ometry based pore structure descriptors, such as coordination number, constriction factor,
aspect ratio, and porosity, with the residual oil saturation at different wetting conditions.
The streamline script is used to calculate effective descriptors, such as the constriction
factor, along the conducting pore space. Local measures of pore structure can also be cal-
culated with the developed scripts.

Structure of the Report

Chapter 2 is mainly based on work conducted in the specialization project, and presents a
brief literature review of Digital Rock Technology and pore network modelling. Chapter
3 presents the theoretical framework which forms the basis for the implementations in the
developed scripts. The governing theory of pore network models is briefly explained, and
the theory behind the pore structure measures, trapping mechanisms and percolation pro-
cesses are presented. Chapter 4 presents the suite of scripts developed in this thesis. This
chapter is meant to link the theory with the implementation. The implemented equations
are derived and the methods of implementation are explained. The different network mod-
els and the software used in this study are also presented. In Chapter 5 the obtained results
are presented and discussed. Chapter 6 presents the main conclusions and recommenda-
tions for further work.

3

Chapter 1. Introduction

4

Chapter 2
Literature Review

This thesis is mainly focused on the development of several pore-scale simulation tools and
the results they yield. A comprehensive literature review is therefore not conducted, but a
brief introduction to Digital Rock Physics (DRP) and especially pore network modelling
is given in this chapter.

2.1 Digital Rock Physics

DRP combines the methods of imaging and analysis of the pore space of a rock sample.
By constructing digital 3D-models of the porous medium, different properties, such as per-
meability and electrical conductivity, can be estimated through simulation of the physical
processes (Andrä et al., 2013). The use of DRP has increased over the last decade, as the
technology is advancing and necessary equipment has become more available (Wilden-
schild and Sheppard, 2013).

There are mainly two different methods of performing simulations on digital represen-
tations of porous media. The most computational demanding is direct simulation on a
grid representation. In this method the simulations are conducted on binarized images of
the pore structure, thus the original geometry of the rock is maintained. Several differ-
ent simulation techniques with varying capabilities exist, and the most popular to date is
the lattice-Boltzmann method (Blunt, 2017). This particle-based method approximates the
Navier-Stokes equation, and is fairly simple to implement (Berg et al., 2017).

5

Chapter 2. Literature Review

The work conducted in this thesis is based on the other method, pore network modelling,
where physical processes are simulated on a network representation of the void space.

2.2 Pore Network Modelling

The highly complex and chaotic nature of porous media is simplified in a pore network
model. The void space of the rock matrix is represented by a network of throats, narrow
passages which through the fluid flow, and pores, larger voids where the throats meet. Pore
network representations of different rocks are illustrated in Figure 2.1. The surface of the
pores and throats can be highly irregular and rough, and can often be composed of differ-
ent materials. Due to the simplification, these details of the void space is not accurately
represented in such a network, but the level of details needed is dependent upon the appli-
cation. When studying the primary drainage and the associated trapping of hydrocarbons
in porous media, the topology of the pore space becomes dominating (Sahimi, 2011). The
topology describes the overall connectivity of porous media. This information can be de-
scribed by a network of pores, and therefore makes network models applicable to study
end-point saturations.

The simple description of the pore space in a network model results in computationally
efficient simulations compared to grid-based simulators. The pore network model can be
applied to any scale which gives it practically infinite resolution. As long as the fine details
of the porous medium is observed by imaging or other experimental techniques, they can
be included in the network model (Xiong et al., 2016).

2.2.1 The History of the Pore Network Model

The pore network model was introduced when Fatt (1956) used a lattice of resistors to
represent the porous media. Fatt (1956) took advantage of the analogy between Poisuille’s
law and Ohm’s law and were able to calculate capillary pressure and relative permeabil-
ity curves that were closer to experimental measurements than the bundle of tubes model
(Valvatne, 2004).

In 1977 Chatzis and Dullien (1977) created a three-dimensional model, as they found out
that the two-dimensional model proposed by Fatt (1956) lacked spatial interconnectiv-
ity and could not accuratley predict flow in three-dimensions. They also noticed that the

6

2.2 Pore Network Modelling

Figure 2.1: Visualizations of the network representations of different rocks. Top row: Synthetic
silica and Estaillades. Bottom row: Bentheimer and Fontainebleau. The networks have total porosity
of 42.9%, 12.7%, 21.7% and 24.5% respectively. The balls represent pore bodies and the sticks
represent pore throats.

breakthrough time was dependent on the coordination number.

Another major advance came when Bryant and Blunt (1992) mimicked real porous media
by packing of equal spheres. They were successfully able to predict relative permeability,
which closely matched existing experimental results. The predictive abilities of their more
realistic models was a major breakthrough in pore-scale modeling (Blunt et al., 2002).
However, the application of the model was restricted to simple porous media with grains
of more or less equal size.

A similar method was proposed by Bakke et al. (1997). They extended the method with
randomly sized spheres, and included numerical modelling of compaction and diagenese.
They based the reconstruction process on grain size distributions extracted from represen-
tative thin-sections (Blunt et al., 2002). This step-wise reconstruction technique yielded
geologic realism and more representative connectivity compared to stochastic models
based on correlation functions (Blunt et al., 2002).

Pore network modelling has emerged in complexity and the technology is still rapidly
advancing, driven by practical application and advances in imaging techniques (Blunt,
2017). Pore network models can be divided into two categories. Dynamic models are

7

Chapter 2. Literature Review

able to model viscous forces by taking time into consideration, while in quasi-static mod-
els all the fluid-fluid interfaces remain static at a given saturation step (Valvatne, 2004).
Today simulations can be performed on irregular lattices and they allow both randomly
distributed wettability and flow in wetting-layers (Blunt et al., 2013).

2.2.2 Imaging and Construction of Pore Network Models

The first process of DRP is to obtain a digital representation of the porous medium. Ad-
vanced techniques, such as micro-tomography (micro-CT) and back-scattered electron
(BSE) imaging, is used to either capture 3D and 2D images respectively. Thin sections
can also be used to reconstruct 3D-models. Reconstructing a representative 3D-model is
crucial in order to obtain reliable properties from the rock. Porosity, grain and pore size
distribution, mineralogy and clay content can be found by analysis of 2D thin sections.
From 3D models effective properties like relative permeability and conductivity can be
estimated (Berg et al., 2017).

There are several imaging and reconstruction techniques available, but as this thesis is
focused more on pore-scale simulation, only a brief overview of the most common meth-
ods will be given. Three different reconstruction methods are described; experimental
reconstruction from micro-CT, statistical and process-based methods. Mercury intrusion
porosimetry and gas adsorption are other non-destructive methods that can be used in the
characterization of the pore space (Xiong et al., 2016).

X-ray Computed Tomography

X-ray computed tomography is an entirely non-destructive technique to obtain a 3D-image
of a rock sample. The principle of the method is to take multiple X-ray images from
different angles in order to reconstruct a three-dimensional image (Berg et al., 2017). This
produces a gray-scale image, like illustrated in Figure 2.2, where the color is proportional
to the X-ray attenuation value of the material (Andrä et al., 2013). These values can be
linked to the density of the material, which enables the distinction between matrix, clay
and air filled pore space. Air has a low density and will therefore be represented by darker
colors, while the rock matrix yield brighter colors. There are mainly three different micro-
tomography systems: medical CT, micro-CT and synchotron micro-tomography, which
all vary in resolution. Medical CT scanners are frequently used for core inspection, but
they are not suited for DRP as their resolution is 200-500 µm. Micro-CT scanners, with
a resolution down to approximately 1 µm, are readily available and more commonly used
for this application (Berg et al., 2017). Some industrial systems can obtain resolution

8

2.2 Pore Network Modelling

better than 100 nm (Wildenschild and Sheppard, 2013). Synchotron based micro-CT
systems can achieve similar resolution as micro-CT scanners, however at a much shorter
acquisition time (Berg et al., 2017). Synchotrons can therefore be used to capture transient
phenomena.

Figure 2.2: An example of a micro-CT image of a rock sample (FEI, 2018).

2D-to-3D Reconstruction

Another method of obtaining a three-dimensional representation of a porous medium is
by using stochastic methods applied to thin sections (2D-images). This method is based
on using statistical information, often correlation functions (Berg et al., 2017), obtained
from analysis of 2D-images of thin sections. This method will not accurately recreate the
heterogeneous features of a porous medium, however it gives the opportunity to generate
multiple models with similar structural properties (Andrä et al., 2013).

Computer Constructed Models

It is also possible to generate digital porous media models based on measurements of grain
size distribution, porosity and other rock properties found from thin section analysis. The
software used in this thesis, e-Core, has such capabilities. In addition to creating sphere
packs, the software can model both compaction and diagenesis. This step-based method
was described by Bakke et al. (1997), and consists of numerical modeling of grain sedi-
mentation, followed by compaction and diagenesis. The first step is based on information
obtained from thin section analysis, where the diameter of all grains are measured and a

9

Chapter 2. Literature Review

grain size distribution is determined. The compaction process is modelled by a downwards
vertical shift applied to every grain in the model, and mimics the overburden stress applied
to the porous medium over time. In the last step, diagenese, quartz overgrowth and clay
coating are modeled.

2.2.3 Pore Network Extraction

Pore networks can be extracted directly from experimentally or numerically generated 3D
images. The constructed models have to reflect the essence of the topology and geometry
of the pore space. It is also important that geometric properties such as shape and size
distribution of pores and throats are adequately represented (Xiong et al., 2016).

Some of the grain-based methods (Bakke et al. (1997); Bryant and Blunt (1992)) have been
discussed in Sections 2.2.1 and 2.2.2. There also exist several non grain-based methods,
where different algorithms are applied to locate the pores and throats from representations
of rock samples. Two of the most used methods are the medial axis algorithm (MA) and
the maximum ball algorithm (MB).

In the MA method the pore space is burned by using different algorithms until the ”spine”
of the object is positioned approximately in the middle of the pore channels (Lindquist
et al., 1996). The pores are then defined as the junctions and the throats as the branches
between them (Xiong et al., 2016). Instead of eroding the pore space, the MB algorithm
locates the largest spheres that can fit in the pore space. Only the largest spheres are
kept, and the smaller spheres, confined inside the larger ones are removed. The remaining
spheres are called maximum balls, where the largest of them defines the pores. The small-
est balls located between the largest balls are defined as throats (Dong and Blunt, 2009).

The different methods will extract different networks with different properties. Dong et al.
(2008) found that the networks constructed with the MA method contained more isolated
and dead-end pores compared to the MB method. The MA method also experienced diffi-
culties in constructing a realistic network for a sample with a high degree of noise. Dong
et al. (2008) also found that the permeability tended to be over-predicted, and that the
under-estimation of tortuosity of the networks resulted in an under-estimation of the for-
mation factor.

10

2.2 Pore Network Modelling

2.2.4 Limitations of Pore Network Modelling

While network modeling is proven to be a powerful tool, there are also limitations to con-
sider. The difference in scale, from the whole field down to the smallest pore is huge.
Porous media are heterogeneous, and the uncertainty associated with applying pore-scale
results to the field scale may be large. As for conventional core analysis, the problem of
upscaling is also an issue for digital rock physics.

In pore network modeling the fluid distribution is determined by contact angles. Obtaining
a representative estimation for these properties for the full range of minerals in a certain
rock sample is nearly impossible. This problem is partly solved by experimentally estimat-
ing a range of contact angles, and then assigning a value to each network element from a
statistical distribution. The contact angle can be measured by a variety of methods. In one
of the most common methods an image of a liquid drop resting on a plane solid surface is
captured, and the contact angle between them is measured directly from the image. In pore
network models the geometry of the pore space is simplified, which can make simulation
results less credible (Xiong et al., 2016).

11

Chapter 2. Literature Review

12

Chapter 3
Theory

3.1 Pore Network Modelling

3.1.1 Fundamental Theory

The ratio between viscous and capillary forces is quantified by the capillary number,Ncap,
which is defined as (Øren et al. (1998), Valvatne (2004)),

Ncap =
µν

γ
(3.1)

where γ is interfacial tension, µ is a fluid viscosity and ν is a fluid velocity. In pore net-
work modelling the viscous forces are assumed to be negligible, and the flow regime is
dominated by the capillary forces. This assumption is valid for processes with low capil-
lary number (10−6 or less), and implies that only a single element is filled at a time (Blunt
et al., 2002). There are several examples where this approximation is not reasonable, i.e.
near wellbore flow or flow in fractures, however in this thesis it is assumed valid.

3.1.2 Shape Factor

An important feature of porous media is the presence of angular corners and crevices that
allow the simultaneous flow of multiple fluids. The wetting layers have a small effect on
the total saturation, but they enable wetting phase connectivity at low saturations (Valvatne,
2004). By modeling the pores and throats as non-circular shapes, like triangles or squares,
wetting layers can be accounted for (Øren et al., 1998). It is not possible to encompass the
exact shape of the pores and throats, but the cross-sectional area, A, and perimeter length,

13

Chapter 3. Theory

P , can be preserved quantitatively through the dimensionless shape factor G (Mason and
Morrow, 1991), which is defined as,

G =
A

P 2
(3.2)

The shape factor is measured by image analysis, using averaged properties along the

A

Figure 3.1: The shape factor is constant for squares and circles, but can vary depending on the shape
of a triangle. Adapted from Valvatne (2004).

pores and throats (Valvatne, 2004). Figure 3.1 illustrates the shape factors of elements
of different cross-section. The shape factor decreases as the pore space becomes more
irregular. This results in smoother elements, which have a higher shape factor, being
modelled as circles. Rougher elements are associated with lower shape factors and are
modelled as triangles. A circle has areaA = πR2 and perimeter length P = 2πR yielding,

Gcircle =
πR2

(2πR)2
=

1

4π
(3.3)

Both circles and squares have constant shape factors and using the same procedure as
above for a square results in Gsquare = 1/16. For triangles the shape factor decreases as
the triangle becomes more slit-like, as illustrated in Figure 3.2. A triangle has a maximum
shape factor when its side-lengths are equal i.e. an equilateral triangle. For an equilateral
triangle with side length l, the area is A = l2sin(π/3) = l2

√
3/4 and perimeter length

P = 3l, yielding,

Gtriangle,max =

√
3l2

4(3l)2
=

√
3

36
(3.4)

Most pores and throats are irregular, and when extracting the networks from the models
used in this thesis it was found that almost every network element was modelled as trian-

14

3.1 Pore Network Modelling

Figure 3.2: As the triangle becomes more slit-like the shape factor decrease from the maximum
value of

√
3/36.

gles by e-Core. Therefore, to ease the implementation every network element is modelled
as triangles.

3.1.3 Corner Half-Angles

The corner half-angles, β, are not uniquely defined for a triangle solely given by a shape
factor. Patzek and Silin (2001) proposed a method to back calculate the corner half-angles
from the shape factor. Consider a triangle with an inscribed circle touching each of the
three bases. Three lines can be drawn from the center of this circle to each of the vertices,
while three lines connect the circle’s center perpendicularly to each of the bases, as illus-
trated in Figure 3.3. The area of the triangle, composed of six smaller triangles, is given
by A = 1

2Prinsc. Thus, the inscribed radius, rinsc, can be given in terms of area and
perimeter (Mason and Morrow, 1991),

rinsc =
2A

P
(3.5)

By scaling rinsc with P , Eq. 3.5 can be rewritten as,

Figure 3.3: The cross-section of a triangular pore and the corner half angles. Adapted from Patzek
and Silin (2001).

15

Chapter 3. Theory

r2
insc = 4GA (3.6)

Using simple trigonometry, the area of each (of the six) triangle, Ai, can be expressed by
the inscribed radius and the corner half angle,

Ai =
1

2
rinsc

rinsc
tan(βi)

(3.7)

the total area of the cross-section is given as the sum of the area of the inner triangles by
applying Eq. 3.7 to all of them,

A = r2
insc

3∑
i=1

1

tan(βi)
(3.8)

Combining Eqs. 3.6 and 3.8 yields,

r2
insc = 4Gr2

insc

3∑
i=1

1

tan(βi)
(3.9)

Since β3 = π/2− β1 − β2 and tan(π2 − θ) = cot(θ), Eq. 3.9 can be rewritten to,

G =
1

4

[
1

1
tan(β1) + 1

tan(β2) + tan(β1 + β2)

]
(3.10)

By rearranging Eq. 3.10 we get,

G =
1

4

[
tan(β1) tan(β2)

tan(β1) + tan(β2) + tan(β1 + β2) tan(β1) tan(β2)

]
(3.11)

By writing the denominator, D, of Eq. 3.11 in terms of sine and cosine, and using the
angle sum identity cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), we get,

D =
1

cos(β1 + β2) + sin(β1) sin(β2)

(
cos(β1) sin(β2) + sin(β1) cos(β2)+

sin(β1 + β2) sin(β1) sin(β2)

cos(β1 + β2)

) (3.12)

16

3.1 Pore Network Modelling

Using the angle sum identity sin(α+β) = sin(α) cos(β) + cos(α) sin(β), we can further
simplify Eq. 3.12 yielding,

D =
sin(β1 + β2)

cos(β1 + β2) + sin(β1) sin(β2)

(
1 +

sin(β1) sin(β2)

cos(β1 + β2)

)
(3.13)

By rearranging Eq. 3.13, we get,

D =
sin(β1 + β2)(cos(β1 + β2) + sin(β1) sin(β2))

cos(β1 + β2)(cos(β1 + β2) + sin(β1) sin(β2))
(3.14)

Eq. 3.14 simplifies to,

D = tan(β1 + β2) (3.15)

Finally, by combining Eq. 3.15 and Eq. 3.11 we get,

G =
1

4
tan(β1) tan(β2) cot(β1 + β2) (3.16)

From Eq. 3.16, Patzek and Silin (2001) derived the formulas for the corner half angles,

β1 = −1

2
β2 +

1

2
arcsin

(
tan(β2) + 4G

tan(β2)− 4G
sin(β2)

)
(3.17)

β2,min = arctan

(
2√
3

cos

(
arccos(−12

√
3G)

3
+

4π

3

))
(3.18)

β2,max = arctan

(
2√
3

cos

(
arccos(−12

√
3G)

3

))
(3.19)

β3 =
π

2
− (β1 + β2) (3.20)

Since the corner half angles are not uniquely defined between an equilateral triangle with
G =

√
3/36 and a slit-like triangle with G = 0, the value of β2 has to be chosen from the

range given by Eqs. 3.18 and 3.19.

17

Chapter 3. Theory

3.1.4 Nodes and Links

In a network representation of a porous medium pores and throats are represented by nodes
and links. A node is a point in the center of the pore body with associated properties. The
geometry of the nodes is described by inscribed radius and shape factor. A throat is a
connection between pores and is bounded by the edges of the pores. The link is defined
as the collective contribution of two pores and one throat, e.g. the conductance of a link
is the harmonic average of the conductance of the pores and throat. In Figure 3.4 the link
is illustrated by the three arrows, describing its path form the center of pore I to pore J .
The length of the link is therefore the length from the center of pore I , through the throat
and to the center of pore J , as can be seen from Figure 3.4. In most cases this distance is
longer than the straight line (red stippled line) between the nodes. While inspecting some
of the data sets in this project, it was indeed found that the link length was longer than
the straight line between the nodes for all non-surface nodes (excluding inlet and outlet
pores).

.

Figure 3.4: Simplified description of two pores connected by a throat in a network model. The
lengths and conductances of the pores and throat are LI , LJ and Lt, and gI , gJ and gt respectively.
The red line illustrates the straight line between the pore centers. Adapted from Valvatne (2004)

3.1.5 Network Data File Format

The commercial software used in thesis, e-Core, generates several ASCII files to describe
the pore network in SI-units. The description of the pores are stored in the node-files,
while the description of the throats are stored in the link-files. This format is also used
by Imperial College London, and sometime referred to as the Statoil format. The most
used files are described below.

link1.dat contains specific information about the throats. The throat’s shape factor,
length, radius and which nodes the throat connects to is given. link2.dat also contains

18

3.2 Pore Structure

information about the throats. As described above, a link is composed of a throat and a
fraction of two connected pores. The lengths of the link associated with these pores are
given in this file. In addition, the volumes and micro-porosity volumes are also included.

The first line in node1.dat contains the total number of pores and total length of the
system in the x-, y- and z-direction. The successive lines are specific to each of the nodes,
containing the coordinates, the coordination number, the indexes of the connected nodes
and throats, and if the node is connected to either the inlet or outlet. The geometric infor-
mation about the nodes is given in node2.dat. Each line consists of the specific nodes
shape factor, inscribed radius, volume and micro-porosity volume.

Several other data files containing various information about the nodes and links exist.
A data file describing the end-point saturation in the nodes, nodesat wf.dat, is used
when studying local residual oil saturation and the cluster-size distribution. Another avail-
able data file, link3.dat, is equivalent to link2.dat, but with information specific
to electrical potential calculation. This file is not used in this thesis.

A more rigorous explanation is given in Section A.1 in Appendix A. The scripts developed
for this thesis are only able to process data files with this specific format.

3.2 Pore Structure

The pore structure of different rocks varies greatly - some rocks are homogeneous and
isotropic, while others are highly chaotic, demonstrating great heterogeneity. In this the-
sis both sandstones and carbonates are evaluated, both displaying different pore structure.
Fontainebleau sandstones are clean and non-complex while, the Ketton limestone is almost
pure calcite and exhibits a large variation in pore size distribution because of intra-particle
porosity.

Linking different measures of pore structure, such as coordination number, constriction
factor, aspect ratio and porosity, to flow properties have been attempted by several authors.
Chatzis and Dullien (1977) found that the breakthrough time was dependent on the coor-
dination number, where networks with lower average coordination number yielded later
breakthrough. Tanino and Blunt (2012) found that residual saturation decreases with de-
creasing aspect ratio and increases with decreasing coordination number. Nie et al. (2016)
proposed that the residual oil saturation in Fontainebleau sandstones are highly correlated

19

Chapter 3. Theory

with the aspect ratio between pore and throat radius. Yuan (1981) and Tanino and Blunt
(2012) found that the residual saturation decreased with decreasing porosity. Yuan (1981)
also found that an increase in porosity yields an increase in average coordination number.
According to Sahimi (2011) the coordination number is the dominating property of the
porous media when modeling residual oil saturation after primary drainage. He also states
that the ratio between the size of the pores and throats (geometry) of the porous media is
important.

Some of the most popular measures of pore structure are;

• Coordination number.

• Constriction factor.

• Aspect ratio - both global and local.

• Porosity - total and effective.

In this thesis all of these are calculated from a wide range of networks, with the purpose of
finding a correlation with residual oil saturation. The different measures of pore structure
are described below.

3.2.1 Coordination Number

The coordination number, Z, is the number of throats connected to a pore. For regular
networks in both two and three dimensions, such as illustrated in Figure 3.5, the coordina-
tion number is fixed at each node or varies in a periodic manner. However, for networks
extracted from real porous media, the coordination number can vary greatly. Jerauld and
Salter (1990) states that the coordination number is typically in the range from 3 to 8. The
coordination number of some of the networks used in this thesis is presented in Table 3.1.
As can be seen, the coordination numbers from real porous media is generally lower than
for ideal three dimensional lattices.

3.2.2 Constriction Factor

The constriction factor describes the variation in cross-sectional area and can be considered
as a measure of heterogeneity. In a network model the throats can be modeled as circular
tubes. For a circular tube with varying cross-section A(x) and length L the variation
of cross-sectional area can be measured by the constriction factor, C, by the following

20

3.2 Pore Structure

Figure 3.5: Different 2D and 3D network lattices and their coordination number, Z. A unit cell is
only illustrated for the BCC and FCC lattices.

Table 3.1: The coordination numbers for some of the networks used in this thesis. Bold numbers
are averaged values of multiple networks.

Rock Z

Fontainebleau 3.91
Berea 3.96
Bentheimer 4.41
Doddington 3.99
Estaillades 4.31
Ketton 4.08
Sandstones 4.07

relation (Berg, 2014),

C =
1

L2

∫ L

0

A(x)2dx

∫ L

0

1

A(x)2
dx (3.21)

The fluid flow is assumed to be approximated by the Hagen-Poiseuille equation, which
can be written as,

Q =
∆PπR4

8µL
(3.22)

21

Chapter 3. Theory

Where Q is the flow rate, L is the length, ∆P is the pressure difference over L and R is
the radius. For a circular pipe, with ∆P

L = ∇p and neglecting gravity, Eq. 3.22 can be
rewritten to,

A2 =
Q8µπ

∇p
(3.23)

The viscosity is constant, and from Eq. 3.23 it can be seen that,

A2 ∝ Q

∇p
(3.24)

By combining Eqs. 3.21 and 3.24 we then obtain,

C =
1

L2

∫ L

0

Q

∇p(x)
dx

∫ L

0

∇p(x)

Q
dx (3.25)

The fluid is assumed to be incompressible yielding constant flow rate, and Eq. 3.25 is thus
simplified to

C =
1

L2

∫ L

0

1

∇p(x)
dx

∫ L

0

∇p(x)dx (3.26)

We want to calculate the constriction factor for the streamlines in the network models. A
streamline at any instant is defined as an imaginary curve in a flow field such that it is tan-
gential to the direction of the instantaneous velocity. The streamlines cannot intersect, and
in steady-state flow the streamlines will be fixed. A streamtube is bounded by streamlines
and have an associated constant volumetric flowrate. In a network model, all streamlines in
a given streamtube will be identical. As proposed by Berg (Berg (2012), Berg (2014)), the
pressure gradient, in Eq. 3.26, is replaced by the the pressure derivative δp/δs = ∇p•u/u
along the streamline, yielding the constriction factor, C(S), for a single streamline as,

C(S) =
1

l2S

∫
S

u

∇p • u
ds

∫
S

∇p • u
u

ds (3.27)

where lS is the streamline length.

3.2.3 Aspect Ratio

The aspect ratio is defined as the ratio of the pore radius to the throat radius (Dong, 2008).
In this thesis the global and two different local aspect ratios have been validated, using
the inscribed radii given in the network data files. The global aspect ratio is the ratio

22

3.2 Pore Structure

between the average pore size and the average throat size. Two types of local aspect ratio
is found. The minimum local aspect ratio is the ratio between the pore radius and the
largest bounding throat radius, while the average local aspect ratio the ratio between the
pore radius and the average of the bounding throat radii.

Figure 3.6: A pore bounded by five throats. The average local aspect ratio is rp/rtavg , while the
minimum local aspect ratio is rp/rt3 since rt3 is the largest bounding throat radius.

3.2.4 Tortuosity

Tortuosity, τ , is a measure of the elongation of streamlines with the respect to the length
of the system they span, and can be defined as (Carman, 1956),

τ =
L

Le
(3.28)

where L is the distance between the ends of a curve with length Le. In the context of
pore network modelling, Le is the cumulative length the network elements a flow path
traverse. Figure 3.7 illustrates flow paths with different tortuosities. For high porosity
and well-connected rocks, a high value of tortuosity is expected. While lower tortuosity
is common for carbonates, where the flow paths through the rock often are more tortuous.
The tortuosity is used to study the differences between streamlines as a result of different
implementation techniques.

23

Chapter 3. Theory

Figure 3.7: The tortuosity increase as the length of the paths (green; Le,1 < Le,2 < Le,3) increase
relative to the system length, L.

3.3 Trapping Mechanisms During Imbibition

The process where a reservoir is filled by oil is known as the primary drainage, and can
span over millions of years. Because of the duration of this process it is reasonable to
assume that the phases have established capillary equilibrium, and the interfacial curvature
between them is constant. This is valid for the curvature in the corners and crevices, arc
menisci (AM), and terminal menisci (TM) crossing a pore or throat (Blunt, 2017). Figure
3.8 illustrates the fluid distribution of wetting and non-wetting phase at a cross-section of
a pore or throat.

Figure 3.8: Wetting phase (a : white) and non-wetting phase (b : green) at a cross-section of a
throat. We can see arc menisci in the corners and the inscribed radius of the throat, rt.

During waterflooding, water is injected into the reservoir and oil is displaced. This process
induce a moderate increase in water pressure and an associated decrease in capillary pres-
sure. For a water-wet sample, the oil is primarily distributed in the center of the the pore
bodies, surrounded by layers of water in the corners as illustrated in Figure 3.8. When the
capillary pressure decreases, mechanisms like bypassing and snap-off can trap oil, and thus

24

3.3 Trapping Mechanisms During Imbibition

Figure 3.9: Detailed view of the wetting phase in the corner of a pore throat, where the corner half
angle, β, and the advancing contact angle, θA, are illustrated.

lead to an increase in residual oil saturation (Chatzis et al., 1983). Bypassing describes the
phenomena where oil is bypassed when the flow chooses a more favorable path, and thus
leaving oil behind.

3.3.1 Snap-Off

As water is injected into the reservoir the water pressure will increase and the wetting
layers (a in Figure 3.8) start to swell slowly. The water saturation will increase uniformly
everywhere in the porous medium. If displacement of oil by direct pore filling is not
possible, the water will continue to swell until the AM’s in the corners meet. In a rapid
process the water fills the narrow part of the pore throat and two TM’s are formed, as
illustrated in Figure 3.10. This mechanism is known as snap-off and the water, now present
in the throat, can block the displacement of oil. Snap-off can potentially prevent further
pore fillings and lead to significantly reduced oil recovery (Blunt, 2017).

For a throat with equal corner half-angles, the threshold capillary pressure at which snap-
off occurs, P sc , is given by (Blunt, 2017)

P sc =
γ cos θA
rt

(1− tan θA tanβ) (3.29)

where θA is the advancing contact angle (the non-wetting phase is being displaced) and rt
is the inscribed radius of the throat, as visualized in Figures 3.8 and 3.9.

After Lenormand et al. (1984) the different pore filling mechanisms are named after how

25

Chapter 3. Theory

Figure 3.10: Snap-off in a triangular pore throat and cross-sections of the narrowest part x at times
t1 < t2. At t1 the oil phase (green) is continuous through the throat, while at t2 two large bodies of
oil are separated.

many oil-filled throats are connected to a certain pore. They are labeled In where n is the
number of oil filled throats. An In mechanism will generally occur at a higher capillary
pressure than an In+1 mechanism, because of the critical radius of curvature needed to fill
the pore (Blunt, 2017). The most favored drainage displacement mechanism is therefore
I1, which has an approximate threshold capillary pressure, Pc, given by (Blunt, 2017),

Pc =
CIpγ cos θA

rp
(3.30)

where CIp is a coefficient (related to pore geometry and contact angle), with numerical
value ranging from 1 to 2, and rp is the inscribed radius of the pore. Snap-off will only
occur if wetting-layers are present and if it is the most favored displacement process. It
is therefore the ratio of threshold capillary pressure, P IcR, between piston-like pore filling,
I1, and snap-off which controls the amount of trapped non-wetting phase. Dividing Eq.
3.29 by Eq. 3.30 yields

P IcR =
rp

CIprt
(1− tan θA tanβ) (3.31)

In any pore, snap-off in the largest bounding throat determines trapping. The ratio above,
for a certain pore, should therefore be considered between I1 and snap-off in the largest

26

3.4 Percolation Theory

adjacent throat. If the ratio is larger than 1 snap-off will happen (Blunt, 2017). The
variables in Eq. 3.31 - contact angle, aspect ratio and corner half-angle - will influence
the amount of trapping. Generally, snap-off is more favored when the aspect ratio is high,
the corners of the pore are sharp and the contact angle is small (wetting conditions). The
amount of trapping will also be larger for a poorly connected pore space, because the oil
will have fewer opportunities to be displaced. Because of the presence of water layers
connected across the reservoir snap-off will be the dominating trapping mechanism in
water-wet systems (Blunt, 2017).

3.4 Percolation Theory

Percolation theory is a mathematical discipline, which can also be used to describe flow
through porous media. Its relevance to modelling of flow in porous media was first rec-
ognized in the seventies (Larson et al. (1981), Sahimi (2011)). In the following decades,
the applications of percolation theory methods to various porous media problems have in-
creased. Through percolation processes the effect of interconnectivity to flow and transport
properties of porous media can be quantified. The theory can also be used in combination
with standard experimental methods, such as mercury porosimetry, to correctly interpret
the results (Sahimi, 2011).

There are two main methods of percolation - bond percolation and site percolation. These
two different methods are illustrated in Figures 3.11 and 3.12. In the context of network
modelling, the bonds are equivalent to the throats or links, and the sites are equivalent to
the nodes or pores.

Figure 3.11: Bond percolation in a square network with different values of p. For a infinite square
network the bond percolation threshold, pcb is exactly 1/2.

27

Chapter 3. Theory

Figure 3.12: Site percolation in a honeycomb 2D network for p = 1/2.

In bond percolation the state of the bonds are defined as either open or closed to fluid flow.
They are open with a probability p and closed with a probability 1−p. For large networks,
p is equal to a random fraction of all the bonds being open. With this definition, two
sites are connected when there is a series of open bonds between them. Site percolation is
similar, but in this case the sites are defined as either open or closed. A cluster is defined
as a group of connected sites confined by closed bonds, such that no connection to the rest
of the network exist. The size of these clusters depends on the value of p (Sahimi, 2011).

3.4.1 Bond Percolation Threshold

The bond percolation threshold, pcb, is defined as the smallest fraction of open bonds nec-
essary to maintain connectivity through the network. At pcb a critical transition of the
global connectivity of the network occurs. For p < pcb there is no connected paths of open
bonds through the network, while for p > pcb a cluster spanning the whole network exists.

Often, especially for three-dimensional networks, there is no exact value of pcb. Estimates,
and some exact values, of the bond percolation threshold for some networks are presented
in Table 3.2. An illustration of these networks can be seen in Figure 3.5. Another quantity
worth to notice, also presented in Table 3.2, is Bc = Zpcb. The value of Bc is dependent
on the dimension, d, of the network,

Bc '
d

d− 1
(3.32)

28

3.4 Percolation Theory

Table 3.2: Coordination number Z, bond percolation threshold and Bc for different ideal two- and
three-dimensional networks (Sahimi, 2011). (∗) Exact results.

Network Z pcb Bc

2D
Honeycomb 3 1− 2 sin(π/18) ' 0.6527* 1.96
Square 4 1/2∗ 2
Triangular 6 2 sin(π/18) ' 0.3473∗ 2.08
3D
Honeycomb Stack 5 0.3093 1.55
Simple Cubic 6 0.2488 1.49
BBC 8 0.1795 1.44
FCC 12 0.119 1.43

thus it should be almost invariant for networks of equal dimensions, with Bc ' 1.5 for
3D networks. From Table 3.2 it can clearly be seen that the bond percolation threshold
is correlated with the coordination number. This is intuitive, as a higher coordination
number leads to more redundant paths, and therefore more bonds can be closed while also
maintaining connectivity through the system.

3.4.2 Percolation and Snap-Off

During water flooding of a completely water wet system, snap-off can happen in any throat
connected through wetting layers. A percolation process where random throats are closed
(snapped off) is therefore similar to trapping of oil where snap-off is the dominating trap-
ping mechanism. The closing of a throat is equivalent to it being filled by water. During
waterflooding the capillary pressure decreases and oil is displaced. Given that wetting-
layers are present throughout the porous medium and snap-off is the favoured trapping
process, the throat with the smallest radius will be snapped off first, according to Eq. 3.29.
Thus by sorting the links by increasing radius, and removing them in that order, one can
find the radius of the link which disconnects the non-wetting phase between the inlet and
the outlet. This happens at pcb. If there is little spatial correlation of throat sizes, at least on
a larger scale, removing the throats sorted by radius will be similar to randomly removing
throats.

Both Melrose and Brandner (1974) and Larson et al. (1981) suggested that a percolation
process can be used to model entrapment of a fluid phase in porous media. This is investi-
gated in this thesis, and the process is described in the following chapter.

29

Chapter 3. Theory

30

Chapter 4
Method

To preform calculations, solve various problems and produce results from the pore network
models a suite of scripts have been written in Python. The scripts are made as simple and
user friendly as possible, but the author recognizes, not being a data scientist, that they
neither are optimal nor perfect. As always, improvements and changes can be done to
both increase the computational efficiency and the intuitiveness of the scripts.

4.1 The Suite of Scripts

The scripts perform a wide variety of tasks, such as potential calculation, streamline and
cluster tracking, network manipulation, percolation and plotting. The executable scripts
are written for a specific task and the naming convention gives an indication of their appli-
cation. This section is meant to give the reader a brief introduction to the different scripts
before explaining the details behind the implementation.

Most of the scripts are executable and require access to auxiliary scripts. The auxiliary
scripts contain functions which are used within other scripts (e.g. the importing of network
data files) and cannot be executed. The interactions among them can be quite complex.
The flowchart in Figure 4.1 gives an overview of the scripts and their dependencies.

The script for calculating the potential and flow rates in a network model was written
as a part of the specialization project leading into this masters thesis, but has later been
adjusted and improved. The script containing the functions for potential calculations is
laplacePN.py, which is closely linked to netPotential.py which imports the

31

Chapter 4. Method

network data files and executes the functions in the former script.

Execut abl e
scr i pt s

Auxi l i ar y scr i pt s

l apl acePN. py

net St r eam. py

net Pot ent i al . py

net Recon. pyupdat eNet wor k. py

streamUtils.pynetPlot.py

per col at i on. py
cr eat eNet wor kXML. py

cl ust er Tr ack. py

pl ot Resul t s. py

pl ot Cl ust Di st . py

Figure 4.1: The dependencies between the scripts are represented by arrows - e.g.
updateNetwork.py is dependent on netRecon.py. Most of the executable scripts are depen-
dent on one or several auxiliary scripts. The auxiliary scripts contain several help-function which
are used within other scripts. Most of the scripts are dependent on netRecon.py, because the
functions for importing network data files were implemented in this script.

The main script for tracking streamlines is netStream.py. Several of the functions used
in this script were written in the auxiliary script streamUtils.py in order to improve
the readability. The pressure field and flowrates are needed for streamline tracking, and
functions from laplacePN.py is therefore utilized. The streamlines tracked through a
network model can be visualized in two dimensions by functions in netPlot.py.

The network data files can contain thousands of lines, which limits the possibilities to
perform manual inspection and modifications. We therefore saw the need to create a set
of functions to automatically perform necessary manipulations to the network data files.
These functions can perform a variety of tasks and were collected in netRecon.py.
The script contains functions for reading, writing and rearrangement of network data files.

32

4.2 Solving for Potential by Sparse Matrix Inversion

In addition to functions for removal of pores with zero coordination number and non-
spanning pores and throats. Several other functions, such as calculation of different pore
structure measures, were also implemented in this script. The network manipulation func-
tions can be executed by running updateNetwork.py.

Functions for conducting bond percolation processes were implemented in percolati-
on.py. The bond percolation threshold was found using the bisection method in order
to increase the computational efficiency. Functions which estimate the threshold capil-
lary pressures for snap-off were also implemented in this script. Functions written in
clusterTrack.py locate the different clusters of trapped oil by utilizing saturation
data from waterflooding simulations. Cluster-size statistics, such as average and maxi-
mum cluster-size, and the cluster-size distribution can be calculated using this script.

To visualize the network models and the simulation results, several different plotting tools
were implemented in various scripts. The two plotting scripts, plotResults.py and
plotClustDist.py, were written specifically to visualize the results obtained in this
thesis. Functions to visualize the pore networks in both two and three dimensions, and the
streamlines going through them, were implemented in netPlot.py.

In this chapter the main equations and solving methods are explained and presented. To
get further insight, the reader is recommended to take a look at the read-me file and study
the code itself. Most of the scripts are attached in Appendix B.

4.2 Solving for Potential by Sparse Matrix Inversion

The potential in each node is solved for by the method proposed by Øren et al. (1998) and
Valvatne (2004). The main equations used in the implementation are given in the following
sections. When the potential of each node is found, the flow in each link can be calculated,
and the permeability or the formation factor in the flow direction can be approximated.

As mentioned, this script was written as a part of the specialization project, but since
then several changes and improvements have been made. The original script was solely
”process-based” and the necessary outputs were saved in order to be used for other appli-
cations. Now, the the script is ”method-based”, and its functions can easily be used within
other scripts.

33

Chapter 4. Method

4.2.1 Mass Conservation

The total flow rate is obtained by solving for the potential in every pore, imposing mass
conservation by Kirchhoff’s law

∑
J

qIJ = 0 (4.1)

where qIJ is the flow rate in link IJ , where J runs over the throats connected to pore I .
This yields a set of linear equations, where pressure is solved for using the conjugate gra-
dient method. When electric potential is applied the volumetric flow rate, q, is substituted
by current, I . The conjugent gradient method (CG) is an effective method for solving
linear sets of equations on the form (Shewchuk, 1994)

Ax = b (4.2)

In our case the coefficient matrix, A, is a square, symmetric and positive-definite matrix.
The vector b is known, while x is unknown. The coefficient matrix is sparse, which means
that it contains relatively few non-zero entries. Iterative methods applied to sparse sys-
tems are often both memory-efficient and quick, and CG is well suited for this purpose
(Shewchuk, 1994). For a more thorough explanation of the CG-method the reader is ad-
vised to Shewchuk (1994). In the script the scipy.sparse.linalg.cg-function is
used.

4.2.2 Boundary Conditions

Every pore body on the inlet side of the network is connected by throats to an imaginary in-
let pore with constant potential. Similarly, all pore bodies on the outlet side of the network
are connected to an imaginary outlet pore (Bakke et al., 1997). The pores which are not
located on the inlet or outlet side of the model are considered as impermable boundaries.
The inlet and outlet potential can be specified in the script netPotential.py.

4.2.3 Hydraulic Conductance

By utilizing the similarity between a pore throat and a long cylindrical pipe, Poiseuille’s
law can be used to express the relation between the pressure gradient ∆P and the flow rate
q,

q =
∆P

L

πR4

8µ
(4.3)

34

4.2 Solving for Potential by Sparse Matrix Inversion

where L is length of the pipe and R is the radius of the pipe. Poiseuille law is valid for
laminar flow, and thus suitable for describing flow in pores (Xiong et al., 2016). The
hydraulic conductance, gh, is analytically given by Eq. 4.3,

gh =
πR4

8µL
(4.4)

In order to approximate the network elements as shapes with either circular, rectangular
or triangular cross-section we want to express the hydraulic conductance as a function of
the shape factor. It is assumed that most network elements have a triangular cross-section,
and the shape factor approximation proposed by Øren et al. (1998) is therefore used,

gh =
3

5

A2G

µ
(4.5)

The area in Eq. 4.5 is the total area of a network element. Since only the inscribed radius is
readily available we need to relate it to the area. According to Mason and Morrow (1991),
the relation between area and inscribed radius is given by Eq. 3.6. Combining Eqs. 4.5
and 3.6 yields,

gh =
3

80

r4
insc

µG
(4.6)

which is the equation used to calculate the hydraulic conductance of all the pores and
throats. Since the permeability is not dependent on the viscosity, the viscosity in Eq. 4.6
can arbitrarily be set to 1

4.2.4 Electrical Conductance and Formation Factor

The close analogy between Poseuille’s law and and Ohm’s law is used to solve for the
electric potential. In Eqs. 4.1 and 4.12 pressure and hydraulic conductance is replaced
by voltage and electrical conductance respectively (Øren et al., 1998). Ohm’s law can be
defined as,

I = V σ (4.7)

where I is the current, V is the voltage and σ is the conductance. The rock matrix is
assumed insulating and the electrical conductance, ge of the network elements is therefore

35

Chapter 4. Method

solely dependent on the geometry, and given by,

ge = σwA (4.8)

where σw is the conductivity of the fluid. Combining Eq. 4.8 with the relation, Eq. 3.6,
by Mason and Morrow (1991) the following equation is obtained,

ge = σw
r2
insc

4G
(4.9)

Eq. 4.9 is applied to every element in the network model. Employing Eq. 4.7, where the
voltage difference is applied over a length L with associated current through the cross-
section A, the specific rock conductance, σo, of the saturated rock can be expressed as,

σo =
IL

AV
(4.10)

Figure 4.2 illustrate how the pores and throats are modeled. The formation factor is defined
by F = σw/σo. The effective rock conductance is proportional to the conductivity of the
fluid it is saturated with, and will not affect the calculation of the formation factor. The
conductivity of the fluid is therefore arbitrarily set to one. By combining the definition of
the formation factor with Eq. 4.10 the following equation is obtained,

Figure 4.2: A pore network element with applied voltage over a length, L, and current through a
cross-section, A.

F =
AV

IL
(4.11)

which is the equation used to calculate the formation factor of the network models.

36

4.2 Solving for Potential by Sparse Matrix Inversion

4.2.5 Flow Computation

The flow between pores is assumed to be laminar. The flow rate between pore I and J can
then be described by (Øren et al., 1998),

qIJ =
gIJ
LIJ

(pI − pJ) (4.12)

where LIJ is the length between the center of node I and J , pI and pJ is the pressure
in node I and J respectively, gIJ is the conductance of the link, which is defined as the
harmonic mean of the conductances of the throat and the associated pore-pair,

LIJ
gIJ

=
Lt
gt

+ wg

(
LI
gI

+
LJ
gJ

)
(4.13)

where wg is the conductance weighting factor, Lt is the length of the pore throat, LI and
LJ is the length of pore I and J respectively, gI and gJ is the conductance of pore I and
J respectively and gt is the conductance of the throat, as illustrated in Figure 3.4.

In the literature there is not exclusively agreement on how the different conductances
should be weighted. Lopez et al. (2003) and Valvatne and Blunt (2004) propose to weight
the conductance of the pores and throat equally when calculating the link conductance,
while Øren et al. (1998) and Blunt et al. (2002) suggest using wg = 0.5. Applying a
weighting factor to the pore conductances can possibly compensate for the fact that the
pores are non-cylindrical and that the flow, from one link to another, not necessarily will
go through the pore centers. This hypothesis was studied in the specialization project, and
it was found that the conductance weighting factor had a notable impact on the results.
However, it only shifted the results and it was not possible to conclude which weighting
factor should be used for general applications. In this thesis it is therefore chosen to weigh
the conductances equally - i.e. applying wg = 1.

Link Conductance at the Boundaries

Since the outlet and inlet pores are imaginary, and therefore do not have an associated
conductance, it is necessary to modify Eq. 4.13 to calculate the inlet and outlet link con-
ductance. The imaginary pores have an associated length, which is added to the throat
length. For a link connecting the inlet or outlet to a pore, the following equation is then

37

Chapter 4. Method

obtained,

LIJ
gi,IJ

=
Lt + Lin/out

gt
+ wg

(
Lc
gc

)
(4.14)

where Lin/out is the associated length of the imaginary inlet or outlet pore, and Lc and
gi,c is respectively the length and conductance of the pore body connected to the outlet or
inlet.

4.3 Tracking Streamlines

In order to calculate local measures of pore structure, a script to track the streamlines
through a network model was written. The main script is netStream.py, which utilize
functions from several other scripts, including laplacePN.py and streamUtils.py.

4.3.1 Rules to Determine the Path

The streamlines are tracked from inlet to outlet, with several rules which determine the
path. A streamline has to be connected to both the inlet and outlet, and therefore cannot
progress through nodes which are disconnected from the outlet. This problem is accounted
for by removing non-spanning pores and links as described in Section 4.5. Fluid moves
from high to low pressure, and a streamline can therefore only traverse through nodes with
decreasing pressure. The pressure field is calculated by the method described in Section
4.2. The cumulative flow rate in the streamtubes can not exceed the total flow rate in the
link. Because of an average coordination number of 3 − 5, multiple outlet links can be
chosen at each junction (node). In the following section the decision logic is described.

4.3.2 Choosing the Next Link

At each node (or junction) a decision of which link the streamline should proceed to has
to be made. In the streamline tracker (netStream.py) the next link can be chosen
based on either the spatial location of the outlet link or the three-dimensional angle be-
tween the inlet link and outlet link. The location-based choosing mechanism was firstly
implemented because of its simplicity. Regardless of its less realistic modelling it is not
removed from the simulator and remains as an option. To improve the realism and avoid
intersecting streamlines, as illustrated in Figure 4.3, it is recommended, and also set to
default, to choose links based on the angles between them. The difference between angle-

38

4.3 Tracking Streamlines

and location-based streamline tracking is studied, and the results are presented and dis-
cussed in Chapter 5.

Figure 4.3: The figure to the left illustrates how the next link can be chosen based on spatial location
and the resulting intersection of streamlines. In the right figure the next link is chosen based on the
angles between inlet and outlet links, resulting in a more realistic flow pattern.

In the example in Figure 4.3, inlet link A has a higher flow rate than the other links. Link
B has a lower flow rate than the outlet links C and D. The figure to the left illustrates
how the next link can be chosen based on spatial location and the resulting intersection
of streamlines. Of the outlet links (C and D), C has the highest location term and is
therefore chosen first from A, which is the first inlet link. Its capacity is filled, which
results in intersection of streamlines B → D and A → C/D. In the right figure the
next link is chosen based on the angles between inlet and outlet links, resulting in a more
realistic flow pattern. Since β < θ < ϕ, the path A → D is first chosen, and the flow
capacity of D is reached. Then θ < ϕ and the path from B to C is chosen. Finally the
remaining capacity is filled by A→ C.

Choosing Links Based on Angles

For each node, a set of inlet and outlet links are defined, and the angles between them are
calculated by the definition of the dot product of two Euclidean vectors,

θ = arccos
a • b
‖a‖‖b‖

(4.15)

Vectors a and b are defined as pointing out of the center of the node being validated. The
angle θ will then be the angle between the two vectors, as illustrated in Figure 4.4 for

39

Chapter 4. Method

vectors a and b. Starting with the smallest angle, flow rates are then allocated from the
inlet links to the outlet links. When the streamlines are tracked in this manner the resulting
streamlines will not intersect.

Figure 4.4: Vector a is the inlet link, while vectors b and c are outlet links. The angles θ and β
between the inlet link and the outlet links are found by taking the dot product of a and the vectors b
and c respectively.

Choosing Links Based on Spatial Location

The other implemented method for choosing which link the streamline should proceed
through is by the spatial location of the outlet link. The location term for element i, κi, is
defined as,

κi =
√
y2
i + z2

i (4.16)

where yi and zi are the y- and z-coordinates of node i respectively. The location term of a
link, κl is defined as the average of the two connected nodes, I and J ,

κl =
κI + κJ

2
(4.17)

The purpose of choosing the next link based on the location is to effectively span the
system, while also minimizing the streamline lengths and avoid intersecting streamlines.
However, as described previously, and illustrated in Figure 4.3, this might yield intersect-
ing streamlines.

4.3.3 Moving Through the Network

The procedures and logic implemented to track the streamlines in netStream.py, can
be somewhat complex. The flowchart in Figure 4.5 illustrates the main steps in the script,

40

4.3 Tracking Streamlines

and a description is given below. The parenthesized numbers in the text refer to their
respective numbers in the figure. Each inlet link (a link conducting flow to a node) has
an associated set of potential outlet links, which are stored in a designated list. All these
lists are stored in a superior list, nextLink, which is used to determine which link the
streamline proceeds to from any inlet link [1]. Each of the inner lists are sorted based on
either angle or location [2], such that the outlet link at the top of each list is the preferred
link. The flowrate assigned to each outlet link is also stored in nextLink [3].

At each junction, the preferred outlet link, nextStep, is added to the stack of links com-
posing the streamline [4], stackLinks, until the streamline can not proceed from the
current nextStep. The streamline is then tracked to either a dead-end or to the outlet
side of the system. If the streamline is tracked to a dead-end, the last chosen nextStep is
removed as a possible outlet link. If more of the links in the current stackLinks make
up the same dead-end, they are also removed as possible outlet links [5]. When a stream-
line is tracked through the model the constriction factor and the tortuosity of the streamline
are calculated by Eqs. 4.22 and 3.28 [6]. The flowrate of the associated streamtube and the
volume of the nodes and links the streamline consists of are also stored.

The tracking process is repeated until the flow capacity of each link is reached [7]. Then
the constriction factor, tortuosity and effective porosity of the system are calculated [8]. By
summarizing the flowrates of each streamtube, the total flowrate of the system is found.
The fractions of unused nodes and links are also found.

4.3.4 Effective Porosity

A key property of porous media is the effective porosity. The effective porosity is defined
as the ratio between the conducting porosity to the total bulk volume (Koponen et al.,
1997). The total porosity can be calculated by adding the volume from each pore and pore
throat found in network data-files. However, to calculate the effective porosity only the
conducting pores and throats must be accounted for. By summarizing the volume of the
pores and throats along each streamline the effective porosity is easily calculated.

41

Chapter 4. Method

Par se ar gument s and
i mpor t net wor k dat a

f i l es
(usi ng net Recon. py)

Sol ve f or pr essur e and
f l ow r at es

(usi ng l apl acePN. py)

Cal cul at e i nt r a- l i nk
pr essur es

(usi ng st r eamUt i l s. py)

Set up next Li nks
(usi ng st r eamUt i l s. py)

Cal cul at e l ocat i on t er m
(?) and angl es bet ween
i nl et and out l et l i nks
(usi ng st r eamUt i l s. py)

Al l ocat e f l owr at es t o
pai r s of l i nks based on

ei t her l ocat i on or
angl es

Remove l i nks whi ch ar e
not assi gned f l owr at es
f r om l i st of possi bl e

next Li nks

Append
next St ep t o
st ackLi nks

Possi bl e
t o cont i nue?

I s
next St ep

an out l et
l i nk?

St ar t f r om
i nl et l i nk

Yes

No

Del et e l ast
el ement i n
st ackLi nks

f r om next Li nk

Possi bl e
t o cont i nue

f r om cur r ent
next St ep?

Yes
No

Rei ni t i al i ze
st ackLi nks

Cal cul at e
const r i ct i on

f act or and
t or t uosi t y of

st r eaml i ne

Tot al f l ow
capaci t y
r eached?

Subt r act
mi ni mum

f l owr at e of
st r eaml i ne
f r om ever y

l i nk i n
st r eaml i ne

YesNo

Cal cul at e
const r i ct i on

f act or and
t or t uosi t y of

syst em

Cal cul at e
ef f ect i ve

per mabi l i t y

End

Yes

No

Rei ni t i al i ze
st ackLi nks

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

St ar t

Figure 4.5: The logic and procedures which tracks the streamlines in netStream.py. The paren-
thesized numbers are explained in Section 4.3.3.

4.4 Calculating Measures of Pore Structure

4.4.1 Coordination Number

The network data file node1.dat contains information about the coordination number of
all the nodes. The coordination numbers are summarized by letting a for-loop run through
node1.dat. The average coordnation number is found by averageing the cummulative
coordination number of the system.

42

4.4 Calculating Measures of Pore Structure

4.4.2 Constriction Factor

In a network model, the pressure gradient and the direction of flow is parallel, simplifying
Eq. 3.27 to,

C(S) =
1

l2S

∫
S

1

∇p
ds

∫
S

∇p ds (4.18)

Figure 4.6: The links are composed of a throat and the two connected pores. The intra-link pressures
pa and pb are defined at the boundary between the throat and the pores. Adapted from Valvatne
(2004)

Each streamline consist of a series of links. As illustrated in Figure 4.6, each link can be
divided into three parts - one associated with the throat and the two others to the connected
pores. Since the flow is incompressible, pa and pb, defined in Figure 4.6, can be found by
applying Eq. 4.12 to link IJ with flow rate qIJ ,

qIJ = (pa − pI)
gI
LI

= (pb − pa)
gt
Lt

= (pJ − pb)
gJ
LJ

(4.19)

pI is known, and pa can therefore be calculated by,

pa = pI −
qIJLI
gI

(4.20)

Similarly, pb is calculated by,

pb = pa −
qIJLt
gt

(4.21)

where the lengthsLt andLI , given in link2.dat, are the associated lengths of the throat
and node I respectively. Since the intra-link elements are the smallest units of measure
along a streamline the properties along them are constant, thus Eq. 4.18 can be written as

43

Chapter 4. Method

a sum,

C(S) =
1

l2S

[∑
links

L2
I

∆p1
+

L2
t

∆pt
+

L2
J

∆p2

]
∆p (4.22)

where ∆p1 = pI−pa, ∆pt = pa−pb and ∆p2 = pb−pJ . The constriction factor for each
streamtube is calculated by Eq. 4.22. As given by Berg (2014) the hydraulic constriction
factor Cs is defined as,

Cs =
1

Q

∫
S

C(S)dQS (4.23)

Since the flow rate in a network model is not infinitesimal, combining Eq. 4.23 with Eq.
4.22 yields,

Cs =

∑
q(S)C(S)

Q
(4.24)

where q(S) is the flow rate in streamtube S, and Q is the total flowrate. Eq. 4.24 is used
to calculate the constriction factor of the network models.

4.4.3 Aspect Ratio

The global aspect ratio is calculated by a for-loop running through both node2.dat and
link2.dat and storing the radii of all the nodes and links in two separate lists. The
global aspect ratio is then found by simply averaging the lists and dividing them by each
other.

The local aspect ratios are found by letting a for-loop run through node1.dat. For each
pore, the radii of the bounding throats are stored in separate lists. To calculate the aver-
age local aspect ratio, each pore radius is divided by the average radius of its respective
bounding throats. The minimum local aspect ratio is found by dividing each pore radius
by the maximum throat radius in its respective list. The local aspect ratios are averaged
for the whole network and plotted against the systems residual oil saturation. The min-
imum local aspect ratio is also plotted against the local residual oil saturation, given in
nodesat wf.dat, for every pore with Sor > 0. These results are presented and dis-
cussed in Chapter 5.

4.5 Network Manipulation

Pore networks extracted from real porous media includes all pores and pore throats, re-
gardless if their coordination number is zero or if they are not connected to both the inlet
and the outlet of the network (non-spanning).

44

4.5 Network Manipulation

The removal of dead-end and non-spanning pores and throats will not affect the permeabil-
ity, formation factor, constriction factor or tortuosity calculations as those parameters are
only dependent upon the conducting porosity. Pores not connected throughout the system
do not conduct flow, and the pressure drop should therefore be zero. However, because of
numerical inaccuracies, the calculation of pressures in dead-end and non-spanning pores
can yield different results. Even with a slight difference in pressure, several problems can
arise. The potentially most critical problem is related to tracking of streamlines, which
can cause the script to crash. The tracking of streamlines can also be computationally
demanding with a high amount of dead-end and non-spanning pores. All scripts can be
used with both original and updated networks except netStream.py, where updated
network data files are required due to the problems described above.

Because of the problems mentioned, a script was written to remove all non-spanning pores
and throats. To maintain the structure of the original data-files, the program also rearranges
the network such that the index of all the pores and throats are consistent with the total
number of pores and throats. The removal and rearrangement process is illustrated in
Figure 4.7.

1
2 3 4

5
6 7

8 9
10 11

12 13 14
15

16

1 2

3 4

5 6

7 8 9
10 11

12 13 14

15 16
17 18 19

1
2 3 4

5 6
7 8

9

1 2

3 4

5 6

7 8

9 10
11

12 13

Figure 4.7: The original network (left) contains both a zero-coordination (node 13) pore and several
non-spanning pores (i.e. nodes 5 or 15) and links (i.e. links 7 or 19). These are removed in the
updated network (right) after the reconstruction and rearrangement process. The indexes of the
pores and throats are updated (i.e. node 10 → 7 or throat 16 → 13) to maintain the consistency of
the network data files.

The removal and rearrangement process can be computationally demanding, primarily the
rearrangement (the re-indexing of pores and throats). The run time increases with increas-
ing number of nodes and links in the network model. However, the process only needs
to be preformed once for each network model. The run time for both pressure calculation
and streamline tracking is reduced because of fewer pores and throats.

45

Chapter 4. Method

To validate the modification and rearrangement process some of the network properties
calculated from the original and updated networks are compared. The permeability, for-
mation factor, average coordination number and global aspect ratio is used in this analysis,
and the results are presented in Chapter 5.

4.5.1 Reconstruction and Rearrangement Method

The script to locate the dead-end and zero coordination number pores utilize the informa-
tion about connected pores in the node1.dat network file. The inlet and outlet nodes
are first identified. Starting from a given set of nodes, the algorithm moves through the
network in a virus-like manner, marking all nodes connected directly or indirectly to the
start nodes. The function, map connections in netRecon.py, is applied to both the
inlet and outlet of the network model. Figure 4.8 illustrates how the algorithm works. The
nodes which are not marked from both the inlet and outlet side are removed, together with
the associated links, from the temporary data files. In this process both non-spanning and
zero coordination number pores and throats are eliminated from the network. However, the
temporary data files do not have the original structure because of the mismatch between
indexes and the new total number of nodes and links.

This problem is solved by applying another algorithm to the temporary network data-files.
Whenever a leap in indexes is encountered in the temporary data files node1.dat or
link1.dat, the associated node or link is given a new index. The update of index is also
applied to rest of the data files, maintaining the correct connections between the nodes. As
the structure of node2.dat and link2.dat are similar to the other data files they are
updated simultaneously.

4.5.2 Read and Write Network Data Files

The data files describing the pores and throats of the network have specific formats. The
function, get network file, which read the different network data files was included
in netRecon.py. Depending on the input data file, the function skips the header lines,
and stores the data in a nested list, where each inner list corresponds to a certain pore or
throat.

When a network is updated the data files are only temporary stored within the program. In
order to use the updated data files, the function, print network to file (included in
netRecon.py), was written to write and export the temporary data files to the standard

46

4.5 Network Manipulation

Figure 4.8: The implemented algorithm spreads through the network in a virus-like manner. For
each iteration the ”infected” nodes are illustratively marked in green or blue. When the algorithm is
applied from both sides of the network, the combined results can be used to identify the nodes and
links, marked in red, which are not connected through the network. The nodes and links marked
from both directions (green and blue) constitute the updated network.

format. Hence, the network updating process only needs to be conducted once. The
original data files are moved to a separate folder.

4.5.3 Updating the Network

All the network manipulation functions are written in netRecon.py, and can be ac-
cessed from any script. The script updateNetwork.py applies several of the functions
mentioned above to update the network. This produces updated network data files, which
do not contain any non-spanning pores or links, and moves the original data files to a pre-
defined location. This script also outputs some information about the non-spanning pores
and throats to the screen.

47

Chapter 4. Method

4.6 The Percolation Process

4.6.1 Radius at the Bond Percolation Threshold

As discussed in Section 3.4.2, by sorting the links by increasing radius, and removing
them in that order, the radius of the link which disconnects the inlet from the outlet can
be found. Since a network can consist of thousands of throats, removing them one by
one is computationally demanding. The bisection method is therefore used to increase
the efficiency. Clearly, if all throats are removed, there will not exist any sample-spanning
cluster. Likewise, if no throats are removed, there will likely be multiple pathways from the
inlet to the outlet. Therefore, initially the upper limit for pcb is set to 1 and the lower limit
is set to 0. Then, half of the throats are removed and the function map connections

is used to check if there are any paths connecting the inlet and outlet. Depending on the
outcome, the lower or upper limit is moved and a new interval for pcb is established. Half
of the throats in the new interval is then removed and the connection through the system
is checked. This is repeated until the bond percolation threshold, and the associated radius
of the largest removed throat, is found. The bond percolation threshold and Bc was found
for all the networks studied in this thesis, and the results are presented in Table A.1 in
Appendix A.

4.6.2 Threshold Capillary Pressure for Snap-Off

Snap-off can occur by either two menisci meeting, or by the meniscus in the sharpest
corner meeting the pinned meniscus. Since it is difficult to know how the menisci will
move in the pore throats, it is assumed that two menisci are free to move. In this case the
threshold capillary pressure at which snap-off occurs is given by (Valvatne, 2004)

P sc =
γ

r

(
cos(θA)− 2 sin(θA)

cot(β1) + cot(β2)

)
(4.25)

The percolation radius is used to calculate P sc , and the interfacial tension and the advanc-
ing contact angle are equal to those used in the waterflooding simulations in e-Core. The
corner half-angles used in Eq. 4.25 are found based on the average shape factor of the
links. The angle β1 is calculated by Eq. 3.17, and β2 is the average of Eqs. 3.18 and 3.19.

The threshold capillary pressure for snap-off found by the percolation process is compared
to the capillary pressure recorded at kro = 0 during waterflooding in e-Core. At the bond

48

4.7 Cluster-Size Distribution

percolation threshold, the oil-phase is not connected through the network, and by defini-
tion the oil relative permeability is zero. The calculated capillary pressure should therefore
correspond to the capillary pressure at which the oil relative permeability becomes zero
during water flooding. This correspondence is studied for all the networks used in this
thesis, and the results are presented and discussed in Chapter 5.

Two different waterflooding simulations, with different advancing contact angles, are con-
ducted for each network model. The associated residual oil saturations are presented in
Table A.2 in Appendix A. In the first simulation a span of advancing contact angles from
20◦ to 60◦ are used, while in the second simulation a fixed advancing contact angle of 30◦

is used. Real porous media have a range of advancing contact angles, which makes the
results from the first simulation more realistic. However, since Eq. 4.25 is dependent on
the advancing contact angle the results from the second simulation are compared to the
calculated capillary pressures. In both simulations every pore is modeled as water-wet.

4.7 Cluster-Size Distribution

After imbibition oil is trapped in clusters of varying sizes. To visualize the cluster-size
distribution, we follow a similar method to the one presented by Chatzis et al. (1983).
Chatzis et al. (1983) defined cluster-size as the number of nodes constituting each cluster.
In most networks the number of clusters consisting of one node (singlets) is large. In
order to obtain a more continuous distribution, the volume of each cluster is found. The
cluster size (volume) is defined asXi, where i is the number of clusters of volumeXi. The
number of clusters of volume Xi is defined as Ni. The total volume, Vtot, of the clusters
is given by,

Vtot =
∑

XiNi (4.26)

The volume fraction of oil trapped in a clusters of volume Xi was calculated by,

f(Xi) =
XiNi
Vtot

(4.27)

The cumulative fraction of clusters of size Xi smaller than Xj is given by,

P (Xi ≤ Xj) =

j∑
i=1

f(Xi) (4.28)

49

Chapter 4. Method

The cumulative cluster-size distribution, P (Xi ≤ Xj) is plotted as a function of the clus-
ters relative size, f(Xi). Some of the results are presented in Chapter 5. The plots for the
remaining models are included in Section A.7 in Appendix A. Chatzis et al. (1983) found
that the the cluster-size distribution was dependent on the average coordination. The num-
ber of singlets increased with increasing coordination number. He also observed an effect
of snap-off on the cluster-size, where higher aspect ratio networks yielded larger relative
fractions of smaller clusters.

The script clusterTrack.py was written to identify the different clusters. The script
is based on the virus-spreading algorithm presented in Section 4.5.1. The total volume of
each cluster is found by summarizing the volume of each node in the cluster. The throat
volumes are minor in comparison to the pore body volumes and are therefore neglected.

4.8 e-Core

The electronic rock core laboratory e-Core is used to extract pore networks from micro-
CT volumes and to conduct various two-phase flow simulations. e-Core is a project-based
software where multiple rocks can be added to each project. All the models used in this
thesis were imported into e-Core.

Before a pore network can be extracted, a micro-CT volume must be imported using Im-

port Micro CT Volume. The grains are then identified using the option Grain Recognition.
When the grains are identified, a pore network can be extracted by selecting New Pore

Network, and different flow simulations, such as primary drainage and waterflooding, can
be conducted.

e-Core was also used to digitally generate pore network models of varying sizes. These
models were used in the development phase to verify the simulations conducted with the
different scripts.

4.9 Network Models

A selection of different network models are used for the simulations in this thesis. The
majority of the models are sandstones, but some carbonates and sand packs are also stud-
ied. All the pore networks are extracted from published micro-CT volumes using e-Core.
Due to the non-uniqueness of pore network models, the results from the simulations in this

50

4.9 Network Models

thesis can differ from published results. A brief overview of the models, and some of their
key properties are presented below.

4.9.1 Original and Updated Networks

As described in this chapter, the network files are manipulated to remove nodes with zero
coordination number and non-spanning nodes and links. The updated networks yield dif-
ferent results for several pore structure measures. The two different networks (both de-
scribing the same network models) are referred to as original and updated throughout
Chapters 5 and 6.

4.9.2 Network Models from Imperial College London

Imperial College London (ICL) have published several micro-CT volumes of different rock
samples (Imperial College London, 2018). Even though the network data files for most of
these models are available, all networks were extracted in e-Core to get a better basis for
comparison. The networks vary in size, where the smallest have approximately 560 nodes
and the largest have 22300 nodes. Most of the models are sandstones, but in order to obtain
more generalized results some carbonates and sand packs are also evaluated. The network
models and some of their inherent properties are presented in Table 4.1. The acronyms
given in Table 4.1 will be used to reference the specific models throughout this thesis.

4.9.3 Fontainebleau Network Models

The other set of network models used for the simulations in this thesis is a series of
Fontainebleau sandstones published by Berg (2016). The networks, and some of their
properites are presented in Table 4.2. The Fontainebleau sandstone is regarded as a non-
complex rock with pure mineral composition, making it a popular choice when studying
the variation of petrophysical properties independently from other parameters (Al Saadi
et al., 2017). These models are digitally reconstructed in e-Core using the exact same
grain distribution, and identical numerical modeling of compaction and diagenese. Thus
the models are fairly similar, with porosities ranging from 8% to 25% by varying the de-
gree of quartz cementation. The similarity between the models is of great benefit when
analyzing the changes between simulations.

51

Chapter 4. Method

Table 4.1: Properties of network models from Imperial College London. The number of nodes and
links are from the original networks.

Network Number of Permeability
[md]

Formation
factor

Total
porosity

Effective
porosityNodes Links

Sandstones

S1 1825 3223 2201.9 40.0 14.1 % 12.8 %
S2 2959 6292 15517.3 11.3 24.6 % 23.7 %
S3 9867 16814 489.1 57.4 16.9 % 14.6 %
S4 10426 16389 427.3 75.8 17.1 % 13.3 %
S5 557 1141 18609.4 20.6 21.1 % 19.3 %
S6 776 2099 22013.3 17.4 24.0 % 22.0 %
S7 1547 3636 25856.2 10.4 25.1 % 24.3 %
S8 2485 6483 41597.2 6.5 34.0 % 32.9 %
S9 699 1372 15413.0 21.4 22.2 % 20.0 %
Bentheimer 19587 43723 2469.6 15.9 21.7 % 20.8 %
Berea 8257 16653 4213.6 23.8 19.7 % 18.5 %
Doddington 6344 12838 2332.5 24.7 19.6 % 18.1 %
A1 6814 19976 45451.1 4.0 42.9 % 41.9 %

Sand Packs

F42A 6620 16644 52227.7 5.6 32.2 % 31.3 %
F42B 6635 17086 50498.6 5.4 33.3 % 32.4 %
F42C 7084 17834 48591.5 5.4 32.9 % 32.0 %
LV60A 18957 51483 33064.4 4.5 36.3 % 35.7 %
LV60C 21339 59007 31403.6 4.3 36.8 % 36.3 %

Carbonates

Estaillades 22300 48389 117.8 212.2 12.7 % 7.2 %
Ketton 7171 14749 3657.9 28.3 13.3 % 12.3 %
C1 5452 13839 6037.4 32.8 23.3 % 18.9 %
C2 7402 14462 398.4 182.9 16.8 % 10.7 %

Table 4.2: Properties of Fontainebleau network models.

Network Number of Permeability
[md]

Formation
factor

Total
porosity

Effective
porosityNodes Links

F8 6548 9892 100.8 297.5 8.6 % 6.0 %
F10 7628 12437 352.8 130.4 10.2 % 8.4 %
F13 9150 16845 1129.6 56.9 12.6 % 11.6 %
F15 10456 21017 3686.2 26.6 15.4 % 14.6 %
F18 11198 23862 6358.0 18.0 17.6 % 17.1 %
F21 11947 27461 11831.2 12.1 20.7 % 20.2 %
F25 11918 29581 21113.8 8.4 24.5 % 24.1 %

52

Chapter 5
Results

5.1 Validation of the Network Manipulation Process

Certain pore structure properties of selected networks were compared in order to validate
the network manipulation process. The numbers of nodes and links removed from the net-
works studied are shown in Table A.3. In Tables 5.1 and 5.2 the coordination number and
the global aspect ratio are compared.

Table 5.1: Difference between network properties of selected original (orig.) and updated (upd.)
ICL networks.

Model
Number of Z Global aspect

ratioNodes Links

Orig. Upd. Orig. Upd. Orig. Upd. Orig. Upd.

Bentheimer 19587 18954 43723 43423 4.41 4.53 1.65 1.67
Berea 8257 6017 16653 12653 3.99 4.15 1.57 1.59
Doddington 6344 7969 12838 16505 3.96 4.07 1.62 1.64
Estaillades 22300 15172 48389 40380 4.31 5.30 1.44 1.50

The permeability and formation factor (not shown here) were exactly the same for simula-
tions conducted on the original and updated networks. These calculations are only depen-
dant upon the conducting porosity and should not be altered by removing non-conducting
pores and throats. This is therefore the best verification that the network manipulation
process was conducted correctly.

53

Chapter 5. Results

Table 5.2: Difference between network properties of original (orig.) and updated (upd.) Fontain-
bleau networks.

Model
Number of Z Global aspect

ratioNodes Links

Orig. Upd. Orig. Upd. Orig. Upd. Orig. Upd.

F8 6548 5678 9892 9187 2.96 3.19 1.75 1.79
F10 7628 6898 12437 11816 3.20 3.38 1.75 1.78
F13 9150 8848 16845 16649 3.62 3.71 1.72 1.74
F15 10456 10275 21017 20922 3.96 4.02 1.69 1.70
F18 11198 11019 23862 23761 4.20 4.25 1.67 1.68
F21 11947 11847 27461 27404 4.54 4.57 1.64 1.65
F25 11918 11848 29581 29547 4.90 4.92 1.62 1.62

The average coordination number changes as expected. The average coordination number
is lower for original networks. This is likely due to the removal of all the zero coordi-
nation number pores. The numbers of nodes and links removed should decrease as the
networks become more well-connected - i.e. higher average coordination number. This is
evident when considering the Fontainebleau-series, where the least amount of nodes are
removed from the F25-network, which also has the highest average coordination number.
In the manipulation of the Estaillades-network the number of links removed exceeds the
number of nodes removed. This could be caused by the number of redundant links (links
connecting the same two nodes) being higher for this network, which is also the case for
the majority of the carbonate-networks.

5.2 Difference Between Streamline Tracking Methods

Even though, as mentioned in Section 4.3.2, the location-based tracking mechanism may
yield less realistic flow pattern through the system, it yields very similar results to the
angle-based mechanism. For both implementations, the cumulative flowrate of all the
streamtubes are very close to the total flow rate (deviation less than 1%) calculated by the
method proposed in Chapter 4. Constriction factor, tortuosity, number of streamlines and
fraction of unused nodes (nodes which do not conduct flow) are compared in the cross-
plots in Figure 5.1. The coefficient of determination (R2) is very close to one for all the
cross-plotted parameters, which indicates that the two different tracking mechanisms yield
streamlines with similar paths through the system.

54

5.2 Difference Between Streamline Tracking Methods

0 200 400 600
Constriction Factor [ang.]

200

0

200

400

600

Co
ns

tri
ct

io
n

Fa
ct

or
 [l

oc
.]

f(x)=0.99x+0.66, R2 = 1.000

0.3 0.4 0.5
Tortuosity [ang.]

0.2

0.3

0.4

0.5

0.6

To
rtu

os
ity

 [l
oc

.]

f(x)=1.01x-0.00, R2 = 0.999

0 10000 20000 30000 40000
Number of streamlines [ang.]

0

20000

40000

Nu
m

be
r o

f s
tre

am
lin

es
 [l

oc
.]

f(x)=1.00x-1.21, R2 = 1.000

0.1 0.2 0.3 0.4
Fraction of unused nodes [ang.]

0.0

0.2

0.4

Fr
ac

tio
n

of
 u

nu
se

d
no

de
s [

lo
c.

]

f(x)=1.00x+0.00, R2 = 1.000

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.1: Cross-plots of different properties obtained by streamline tracking based on the angles
between inlet and outlet links and the location of the outlet links. The correspondence between the
the two different tracking mechanisms is very good, yielding R2-values very close to 1. The sorting
mechanism is given by either [loc.] (location) or [ang.] (angles).

The close correspondence between the two tracking mechanisms were not expected, as
they are based on two independent criteria. However, at average, the number of links
conducting flow from each pore (outlet links) are fairly low. The average coordination
number is about 4, which includes both inlet and outlet links. Therefore, when a stream-
line is tracked to a certain pore, a limited number of outlet links can be chosen. The
average number of outlet connections per node for all the networks studied in this thesis is
2.36. The two tracking mechanisms are independent of each other, and given the limited
number of outlet links to choose between, it is reasonable to believe that the same outlet
links are often chosen at a certain pore.

55

Chapter 5. Results

By forcing the streamlines to increasing yz-location in the location-based tracking mecha-
nism, they will follow relatively straight paths and traverse the system in a parallel manner.
The angle-based tracking mechanism will not yield intersecting streamlines, and result in
an approximately equal density of streamlines.

5.3 Pore Structure

Two different waterflooding simulations were conducted using e-Core, with advancing
contact angles of θA = 20◦ − 60◦ and θA = 30◦ assigned to the water. The interfacial
tension in both simulations was set to 0.03 N/m. The resulting residual oil saturation
from both waterfloods are compared to a wide range of different pore structure measures
in Figures 5.3 through 5.11.

The wettability influences both the flow and distribution of fluids in porous media. The
residual oil saturation after waterflooding is therefore highly dependent on the wettability
of a rock (Anderson, 1987). This dependency was confirmed by conducting three water-
flooding simulations with varying wettability to the F8-model, as can be seen in Figure 5.2.
The correlations and trends between different measures of pore structure and Sor found in
this chapter are therefore not necessarily applicable to rocks of different wettability.

Figure 5.2: Ball and stick plots of the saturation state after waterflooding. The wettability is altered
by varying the fraction of oil-wet pores. The figures, from left to right, have 0%, 50% and 100%
oil-wet pores respectiviely, resulting in residual oil saturations of 70.2%, 69.6% and 31.7%. The
green nodes have residual oil saturation, while the blue nodes are fully water saturated.

56

5.3 Pore Structure

5.3.1 Coordination Number

The correlation between coordination number and residual oil saturation, calculated for
both original and updated networks, can be seen in Figure 5.3. The correspondence is
better for coordination numbers derived from original networks with R2 = 0.675 for
water-wetting conditions and 0.705 for the even more water-wetting scenario. The trend

0.2 0.4 0.6
Sor(A = 20o 60o)

2

4

6

Co
or

di
na

tio
n

nu
m

be
r Z

Original Network

f(x)=-4.00x+5.93, R2 = 0.675

0.2 0.4 0.6
Sor(A = 20o 60o)

3

4

5

6
Co

or
di

na
tio

n
nu

m
be

r Z

Updated Network

f(x)=-3.32x+5.85, R2 = 0.460

0.2 0.3 0.4 0.5 0.6 0.7
Sor(A = 30o)

2

4

6

Co
or

di
na

tio
n

nu
m

be
r Z

f(x)=-4.41x+6.34, R2 = 0.705

0.2 0.3 0.4 0.5 0.6 0.7
Sor(A = 30o)

3

4

5

6

Co
or

di
na

tio
n

nu
m

be
r Z

f(x)=-3.74x+6.23, R2 = 0.502

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.3: Coordination number Z as a function of Sor . A better correlation can be seen for
simulations conducted on original networks (left), than for updated networks (right). In both cases,
the correspondence is better for the simulations conducted with a fixed advancing contact angle of
30◦.

between residual oil saturation and coordination number is evident. A higher average co-
ordination number corresponds to a higher number of redundant loops and thus more es-
cape paths for the oil during imbibition. In addition, when a pore has a high coordination
number it is likely that the radius of at least one of the bounding throats is large, making
other displacement mechanisms more favoured, and thus reduce the residual oil saturation.

57

Chapter 5. Results

A significant difference between R2 for original and updated networks can be observed
from Figure 5.3. This indicates that both the conducting and the non-conducting pore
space is important when estimating residual oil saturation.

5.3.2 Constriction Factor

Figure 5.4 shows the constriction factor C (for both angle- and location-based tracking) as
a function of the residual oil saturation Sor (for both θA = 20◦−60◦ and θA = 30◦) for all
the networks. The correspondence between constriction factor and residual oil saturation
is poor, indicated by low coefficient of determination in all four cross-plots. The outlying
carbonates affects this correlation, but even if those are excluded the correspondence is
quite poor (R2 = 0.56).

0.2 0.4 0.6
Sor(A = 20o 60o)

200

0

200

400

600

Co
ns

tri
ct

io
n

Fa
ct

or
 C

Sorted by angles

f(x)=315.73x-49.99, R2 = 0.180

0.2 0.4 0.6
Sor(A = 20o 60o)

200

0

200

400

600

Co
ns

tri
ct

io
n

Fa
ct

or
 C

Sorted by location

f(x)=315.03x-49.73, R2 = 0.183

0.2 0.4 0.6
Sor(A = 30o)

200

0

200

400

600

Co
ns

tri
ct

io
n

Fa
ct

or
 C

f(x)=315.29x-67.55, R2 = 0.154

0.2 0.4 0.6
Sor(A = 30o)

200

0

200

400

600

Co
ns

tri
ct

io
n

Fa
ct

or
 C

f(x)=314.57x-67.24, R2 = 0.156

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.4: Constriction factor C as a function of Sor . The results are very similar, and the coeffi-
cients of determination are low, for both the angle-based (left) and the location-based (right) tracking
mechanisms.

58

5.3 Pore Structure

The constriction factor is calculated along the streamlines, thus only the conducting pores
and throats are considered. The non-conducting pores and throats will also contribute to
residual oil saturation, but those are not accounted for. This could be a reason for the poor
correlation.

With significantly higher constriction factors the carbonates deviate from the trendline.
Since the hydraulic constriction factor is proportional to A2 it is very sensitive to large
variations in cross-sectional area. Vugs are commonly encountered in carbonates and will
induce such large variations. The high values of the constriction factor could be caused
by the magnification of the variation of cross-sectional area due to the vugs. In an at-
tempt to reduce this effect the electric constriction factor, which is proportional to A,
was calculated. The correlation with the electric constriction factor was slightly better
with R2 ' 0.3, but the carbonates still yielded significantly higher constriction factors.
The better correlation obtained with the electric constriction factor could indicate that the
residual oil saturation is more linearly dependent on the cross-sectional area along the con-
ducting pore space. However, it does not seem like the constriction factor, both hydraulic
and electric, is suitable for predicting the residual oil saturation for the wide range of mod-
els studied in this thesis.

The script, netStream.py, failed to calculate the constriction factor for a few stream-
lines in certain networks due to numerical inaccuracies in the calculation of intra-link
pressures. However, this does not have a significant impact on the total constriction factor
of the system.

5.3.3 Global Aspect Ratio

Figure 5.5 shows the global aspect ratio as a function of the residual oil saturation Sor
for both original and updated networks. The correlation is poor, both for original and up-
dated networks and both waterflooding simulations. However, a better correspondence is
exhibited for the updated network, where the non-spanning and zero-coordination number
nodes are removed.

Snap-off is dependent on the aspect ratio, and a trend between residual oil saturation
and aspect ratio is therefore expected. However, as the aspect ratio decreases, the trap-
ping mechanism changes from snap-off to bypassing. Therefore the dominating trapping
mechanism in models with low aspect ratios could be bypassing, and they could therefore
deviate from the trend. All the models are water-wet, and the change from snap-off to

59

Chapter 5. Results

0.2 0.4 0.6
Sor(A = 20o 60o)

1.4

1.6

1.8

Gl
ob

al
 a

sp
ec

t r
at

io

Original Network

f(x)=0.22x+1.53, R2 = 0.188

0.2 0.4 0.6
Sor(A = 20o 60o)

1.4

1.6

1.8

Gl
ob

al
 a

sp
ec

t r
at

io

Updated Network

f(x)=0.27x+1.53, R2 = 0.340

0.2 0.4 0.6
Sor(A = 30o)

1.4

1.6

1.8

Gl
ob

al
 a

sp
ec

t r
at

io

f(x)=0.25x+1.50, R2 = 0.204

0.2 0.4 0.6
Sor(A = 30o)

1.4

1.6

1.8

Gl
ob

al
 a

sp
ec

t r
at

io

f(x)=0.31x+1.50, R2 = 0.360

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.5: Global aspect ratio as a function of Sor . Global aspect ratios calculated from the updated
networks (right) display better correspondence with the residual oil saturation than those derived
from the original networks (left). The R2-values are low in all cases, and no strong correlation can
be seen for the range of networks studied.

bypassing is not observed. In the networks studied in this thesis it is only the carbon-
ates that significantly deviate from the trend. Carbonates usually have large vugs, which
would yield high aspect ratios, and snap-off is expected to be the dominating trapping
mechanism. A reason for the deviation could be that there are few large vugs compared
to smaller pores, and their effect on the global aspect ratio will therefore be minor. As
an attempt to account for this, a volume weighted global aspect ratio was calculated. The
correlation yielded R2 ' 0.21, which is only marginally better. Nevertheless, the global
aspect ratio does not seem to be suitable for predicting Sor for the wide range off models
studied in this thesis.

When a network is updated all the zero-connection pores are removed, and generally more

60

5.3 Pore Structure

pores are removed compared to throats. Due to this the average throat size has a larger im-
pact on the global aspect ratio for updated networks, and shifts it to slightly higher values.
This could be a reason for the better correlations obtained from the updated networks.

5.3.4 Local Aspect Ratios

Figure 5.6 shows the two different measures of local aspect ratio as a function of the resid-
ual oil saturation Sor for both waterflooding scenarios. The correlations for the average
local aspect ratios are somewhat poor, indicated by low coefficients of determination.

0.2 0.4 0.6
Sor(A = 20o 60o)

1.75

2.00

2.25

2.50

2.75

Av
er

ag
e

lo
ca

l a
sp

ec
t r

at
io A = 20o 60o

f(x)=0.74x+1.95, R2 = 0.482

0.2 0.4 0.6
Sor(A = 30o)

1.75

2.00

2.25

2.50

2.75

Av
er

ag
e

lo
ca

l a
sp

ec
t r

at
io A = 30o

f(x)=0.80x+1.88, R2 = 0.477

0.2 0.4 0.6
Sor(A = 20o 60o)

1.2

1.4

1.6

M
in

. l
oc

al
 A

sp
ec

t R
at

io

f(x)=0.45x+1.17, R2 = 0.717

0.2 0.4 0.6
Sor(A = 30o)

1.2

1.4

1.6

M
in

. l
oc

al
 A

sp
ec

t R
at

io

f(x)=0.49x+1.13, R2 = 0.723

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.6: Two different local aspect ratios as a function of Sor . Both local aspect ratios are derived
from the original networks, and exhibit similar correspondence with the residual oil saturation. The
R2-values are fairly low in all cases, and no strong correlation can be seen for the range of networks
studied.

The minimum local aspect ratio yields a better correlation, and the carbonates also match
better with the other models. Both the local aspect ratios yield better correlations with

61

Chapter 5. Results

residual oil saturation compared to the global aspect ratio.

Snap-off is directly dependent on the aspect ratio. Since a pore can be filled by another dis-
placement mechanism from the largest throat, even though the other throats are snapped-
off, it is the largest bounding throat (i.e. the lowest aspect ratio) to any pore which deter-
mines if oil is trapped by snap-off. This is probably the reason for why the minimum local
aspect ratio correlate better than the average local aspect ratio.

In Figures 5.7 and 5.8 the minimum local aspect ratio is plotted as a function of the local
residual oil saturation. The plots for some of the Fontainebleau networks, Figure 5.7, and
the carbonates from ICL, Figure 5.8, exhibit no correlation and yields very low coefficients
of determination. The plots for the other models are included in Section A.5 in Appendix
A.

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0
2.5
5.0
7.5

10.0
12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.41x+0.28, R2 = 0.028
F8

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.01x+0.60, R2 = 0.020
F13

0.25 0.50 0.75 1.00
Local Sor

0

5

10

15

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.87x+0.70, R2 = 0.023
F18

0.25 0.50 0.75 1.00
Local Sor

2

4

6

8

10

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.85x+0.74, R2 = 0.038
F25

Figure 5.7: Minimum local aspect ratio as a function of local residual oil saturation for F8, F13,
F18 and F25. The local Sor generally increase with increasing minimum local aspect ratio, but no
evident correlation can be seen.

As a general trend, the local Sor increases as the local minimum aspect ratio increases.

62

5.3 Pore Structure

0.2 0.4 0.6 0.8 1.0
Local Sor

0

10

20

30

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.81x+0.66, R2 = 0.007
Estaillades

0.25 0.50 0.75 1.00
Local Sor

0

5

10

15

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.04x+0.66, R2 = 0.018
Ketton

0.2 0.4 0.6 0.8 1.0
Local Sor

2

4

6

8

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.80x+0.81, R2 = 0.024
C1

0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.26x+0.34, R2 = 0.027
C2

Figure 5.8: Minimum local aspect ratio as a function of local residual oil saturation for Estaillades,
Ketton, C1 and C2. The local Sor generally increase with increasing minimum local aspect ratio,
but no evident correlation can be seen.

The density of the data points are significantly higher for high local residual oil satura-
tions, and the trend can therefore more clearly be seen from the binned scatter plots in
Figures 5.9 and 5.10. In most of these plots (except Ketton) the coefficients of determina-
tion are fairly high. The number of data points in each bin varies greatly, and the plots can
only be regarded as an indication of the observed trend.

Nie et al. (2016) alluded to a correlation between residual oil saturation and aspect ratio.
From the results in this thesis this trend is evident, especially for the minimum local aspect
ratio. The same trend is also observed for the global aspect ratio and the average local
aspect ratio, even though the correlations are somewhat poor.

63

Chapter 5. Results

0.4 0.6 0.8 1.0
Local Sor

1.25

1.50

1.75

2.00

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.70x+0.85, R2 = 0.709
F8 (bin-size =0.05)

0.25 0.50 0.75 1.00
Local Sor

1.2

1.4

1.6

1.8

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.46x+1.04, R2 = 0.571
F13 (bin-size =0.05)

0.25 0.50 0.75 1.00
Local Sor

1.2

1.4

1.6

1.8

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.44x+1.03, R2 = 0.625
F18 (bin-size =0.05)

0.25 0.50 0.75 1.00
Local Sor

1.00

1.25

1.50

1.75

2.00

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.61x+0.93, R2 = 0.811
F25 (bin-size =0.05)

0

1

2
Bi

n-
co

un
t

×103

Bin-count 0

1

2

Bi
n-

co
un

t

×103

Bin-count

0.0

0.5

1.0

1.5

Bi
n-

co
un

t

×103

Bin-count 0.00

0.25

0.50

0.75

Bi
n-

co
un

t

×103

Bin-count

Figure 5.9: Binned plot of minimum local aspect ratio vs. local residual oil saturation for F8, F13,
F18 and F25. The bin size is 0.05. The number of data points in each bin (bin-count) is also plotted.

64

5.3 Pore Structure

0.4 0.6 0.8 1.0
Local Sor

1.2

1.4

1.6

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.43x+0.96, R2 = 0.625
Estaillades (bin-size =0.05)

0.4 0.6 0.8 1.0
Local Sor

1.0

1.5

2.0

2.5

3.0

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=-0.07x+1.49, R2 = 0.002
Ketton (bin-size =0.05)

0.4 0.6 0.8 1.0
Local Sor

1.25

1.50

1.75

2.00

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.48x+1.05, R2 = 0.405
C1 (bin-size =0.05)

0.4 0.6 0.8 1.0
Local Sor

1.2

1.4

1.6

1.8

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.60x+0.89, R2 = 0.576
C2 (bin-size =0.05)

0

2

4

6

Bi
n-

co
un

t

×103

Bin-count 0.0

0.5

1.0

Bi
n-

co
un

t

×103

Bin-count

0

2

4
Bi

n-
co

un
t

×102

Bin-count 0.0

0.5

1.0

1.5

Bi
n-

co
un

t

×103

Bin-count

Figure 5.10: Binned plot of minimum local aspect ratio vs. local residual oil saturation for Estail-
lades, Ketton, C1 and C2. The bin size is 0.05. The number of data points in each bin (bin-count) is
also plotted.

5.3.5 Total and Effective Porosity

In Figure 5.11 both total and effective porosity is plotted as a function of residual oil sat-
uration. The correlation is quite good for both porosities, with effective porosity yielding
slightly better correspondence.

Yuan (1981) stated that an increase in porosity correlates fairly well with an increase in
average coordination number. This was also found for the networks studied in this thesis,
and the correlation yielded R2 = 0.75. It is also possible that the porosity is linked to
the aspect ratio. It is reasonable to believe that the pore space is cemented fairly equally
throughout, which would result in a decrease in porosity associated with an increase in
aspect ratio. The increased residual oil saturation associated with the decrease in porosity
could therefore be due to the associated decrease in average coordination number and
increase in aspect ratio, both of which are conditions favorable to snap-off. As discussed
previously, snap-off is less likely to happen in a well-connected pore space, since the oil

65

Chapter 5. Results

0.2 0.4 0.6
Sor(A = 20o 60o)

0.0

0.2

0.4

To
ta

l P
or

os
ity

t

A = 20o 60o

f(x)=-0.52x+0.43, R2 = 0.852

0.2 0.4 0.6
Sor(A = 30o)

0.0

0.2

0.4

To
ta

l P
or

os
ity

t

A = 30o

f(x)=-0.56x+0.48, R2 = 0.866

0.2 0.4 0.6
Sor(A = 20o 60o)

0.0

0.2

0.4

Ef
fe

ct
iv

e
Po

ro
sit

y
e

f(x)=-0.56x+0.43, R2 = 0.875

0.2 0.4 0.6
Sor(A = 30o)

0.0

0.2

0.4

Ef
fe

ct
iv

e
Po

ro
sit

y
e

f(x)=-0.61x+0.49, R2 = 0.882

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.11: Total (φt) and effective (φe) porosity as functions of residual oil saturation for both
waterflooding scenarios.

has more opportunity to escape, and a higher aspect ratio will also induce more snap-off.

5.4 Percolation Theory and Sor End-Effect

When the oil-phase lose connectivity through the network at the bond percolation thresh-
old the oil relative permeability becomes zero. The calculated threshold capillary pressure
for snap-off, using the percolation radius, should therefore correspond to the recorded cap-
illary pressure at which the oil relative permeability becomes zero during water flooding.
In Figure 5.12 the calculated capillary pressure is compared to the recorded capillary pres-
sure at kro = 0. The correlation is good, indicated by a coefficient of determination of
0.929.

66

5.4 Percolation Theory and Sor End-Effect

400 600 800 1000 1200 1400 1600
Calculated Capillary Pressure [Pa]

500

1000

1500

2000

2500

3000
Ca

pi
lla

ry
 P

re
ss

ur
e

@
 k

ro
=

0
[P

a]

f(x)=1.18x+39.97, R2 = 0.929

Fontainebleau
ICL Sandstones
ICL Sand Packs

ICL Bentheimer
ICL Berea
ICL Doddington

ICL Sythetic Silica (A1)
ICL Carbonates

Figure 5.12: Calculated capillary pressure at the bond percolation threshold as function of the
recorded capillary pressure at kro = 0.

This correspondence indicates that percolation threshold is the dominating factor for when
the oil-phase looses connectivity through the system, at which kro = 0. In the waterflood-
ing simulations conducted using e-Core it was observed that the imbibition continued after
the oil-phase lost connectivity. The oil in the pores and throats which are connected to the
outlet can still be produced. In pore network modelling, where small samples are con-
sidered, this can have a considerable impact on the end-point saturation. Of the total oil
produced, 4.9% and 24.4% was on average produced after kro = 0 for the Fontainebleau
and Carbonate networks respectively. This end-effect is probably of minor significance in
a producing field due to the much larger scale. However, core flooding experiments are
more similar to pore network models in scale, and could be influenced by this Sor end-
effect.

All the simulations are conducted under water-wetting conditions and snap-off is expected
to be the dominating trapping mechanism. A bond percolation process is similar to random
snap-off in the throats, and the threshold capillary pressure for snap-off was calculated by
using the percolation radius. The correspondence obtained in Figure 5.12 is therefore in-
dicative to snap-off being the dominating trapping mechanism. It seems like a percolation
process is suitable for modelling entrapment of the residual phase, and the findings are
therefore in agreement with the suggestions of Melrose and Brandner (1974) and Larson
et al. (1981).

The trend between the percolation threshold and the average coordination number is ev-

67

Chapter 5. Results

ident, with R2 = 0.64 for the networks studied in this thesis. With a high number of
redundant paths through the system more bonds can be closed without loosing connectiv-
ity over the system. A decrease in the bond percolation threshold seems to be correlated
with a decrease in residual oil saturation.

5.5 Cluster-Size Distribution

In Figures 5.13 and 5.14 the cumulative cluster-size distribution P (Xi ≤ Xj) is plotted as
a function of the relative cluster-size F (Xi), as defined in Section 4.7 in Chapter 4.

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

F8 (Z = 3.0)
S9 (Z = 3.8)
A1 (Z = 5.8)

Figure 5.13: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
selected networks with varying average coordination number.

Networks with varying coordination numbers are plotted in Figure 5.13 in order to see the
effect of the coordination number on the cluster-size distribution. In contradiction to the
findings of Chatzis et al. (1983), a correlation between coordination number and cluster-
size is not evident. Of the three networks, A1 has the highest coordination number and
a significantly larger maximum cluster compared to S9. Since the coordination number
is a measure of how well-connected the pore space is, one would expect that the lowest

68

5.5 Cluster-Size Distribution

coordination number would yield the largest maximum cluster-size. This is not the case,
as can be seen in Figure 5.13.

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

F8 (Global aspect = 2.96)
S4 (Global aspect = 1.68)
Doddington (Global aspect = 1.57)
Estaillades (Global aspect = 1.44)

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

F8 (Min. loc. aspect = 1.52)
C2 (Min. loc. aspect = 1.47)
S1 (Min. loc. aspect = 1.42)
Berea (Min. loc. aspect = 1.34)
A1 (Min. loc. aspect = 1.29)
LV60A (Min. loc. aspect = 1.24)

Figure 5.14: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
selected networks with varying global aspect ratio (top) and varying minimum local aspect ratio
(bottom).

In the two plots in Figure 5.14 networks with varying global aspect ratio and minimum
local aspect ratio are plotted. A trend between cluster size and local minimum aspect
ratio is not evident. The F8 and LV60A networks, in the lower plot in Figure 5.14, have
significantly different minimum local aspect ratios and yield relatively similar cluster-size
distributions. In the upper plot in Figure 5.14 is seems like there could be a trend between
the global aspect ratio and the maximum cluster-size. The relative maximum cluster size
increase as the global aspect ratio increases. However, from the findings in this thesis it is
not possible to see a clear correlation between cluster-size and either coordination number
or aspect ratio.

69

Chapter 5. Results

70

Chapter 6
Conclusions

The aim of this thesis was to develop suite of scripts to perform simulations and calculate
different properties on network models. A single phase pore network solver and streamline
tracker were successfully implemented using Python. In this conclusion the most impor-
tant results are presented and recommendations for further work are given. The residual
oil saturation is sensitive to the wettability of the rocks, and the results are therefore not
necessarily applicable to rocks with different wettability.

Network manipulation and rearrangement algorithms were successfully implemented. The
flow field was not affected by removing all the non-spanning pores and throats. This was
confirmed by comparing permeability and formation factor calculations conducted on both
networks which yielded equal results. The calculation of pressure in non-spanning pores
yielded slight numerical inaccuracies. This enabled the streamlines to traverse through
these pores and caused the script, netStream.py, to crash. The updated networks
eliminated these problems related to numerical inaccuracies when tracking streamlines.

The difference between tracking streamlines based on angles and location was minor. The
constriction factor and tortuosity results indicate that the two implementations yield rel-
atively similar paths through the system. This could be due to the limited number of
outlet links from each pore. The similar fraction of unused nodes and the total number of
streamlines indicate that both methods yield a similar density of streamlines. However, by
completely avoiding intersecting streamlines, the angle-based tracking method is assumed
to yield more realistic flow patterns through the pore space.

71

Chapter 6. Conclusions

From the results obtained in this thesis it is evident that the pore structure has a measurable
impact on the residual oil saturation. However, the trapping mechanisms are complex, and
as the pore structure measures are dependent on each other, it is difficult to find good cor-
relations based on one sole descriptor. The effective porosity yielded the best correlation
with residual oil saturation. This could be due to the relationship between porosity, aspect
ratio and coordination number. The constriction factor, the global aspect ratio and average
local aspect ratio does not correlate with the residual oil saturation. This is party caused
by the carbonates which deviates from the results obtained from other networks.

Some of the pore structure measures are derived from both original and updated networks.
The coordination number yields better correlations for the original networks, while the
global aspect ratio yields better results for the updated networks. The reason for this is
not determined, however it indicates that both the conducting and the non-conducting pore
space are important when estimating the residual oil saturation.

It was found that the bond percolation threshold is the dominating factor for when the
oil-phase looses connectivity through the system. By using the percolation radius when
calculating the threshold capillary pressure for snap-off, a good correspondence with the
recorded capillary pressure at kro = 0 was obtained. This indicates that snap-off is the
dominating trapping mechanism in the networks studied in this thesis. The cluster-size
distribution of oil after waterflooding was also investigated. However, we did not observe
any correlations between the cluster-sizes and the pore structure descriptors.

72

Recommendations for Further Work

For further studies it is recommended to:

• Conduct simulations of waterflooding at different wetting conditions in order to fur-
ther investigate the effect of wettability on the correlations between different mea-
sures of pore structure and residual oil saturation.

• The correlations found should be further investigated by considering a wider range
of network models.

• Find a method to relate the bond percolation threshold to the residual oil saturation.

• Continue the investigation of cluster-size distribution to potentially reveal correla-
tions with pore structure measures.

73

Chapter 6. Conclusions

74

References

Al Saadi, F., Wolf, K., Kruijsdijk, C., 2017. Characterization of fontainebleau sandstone:
Quartz overgrowth and its impact on pore-throat framework. Journal of Petroleum &
Environmental Biotechnology 8 (3), 1–12.

Anderson, W. G., 1987. Wettability literature survey-part 6: the effects of wettability on
waterflooding. Journal of petroleum technology 39 (12), 1–605.

Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla,
F., Lee, M., Madonna, C., et al., 2013. Digital rock physics benchmarks—part i:
Imaging and segmentation. Computers & Geosciences 50, 25–32.
URL http://www.sciencedirect.com/science/article/pii/

S0098300412003147

Bakke, S., Øren, P.-E., et al., June 1997. 3-D pore-scale modelling of sandstones and flow
simulations in the pore networks. SPE Journal 2 (02), 136–149.

Berg, C. F., Oct 2012. Re-examining archie’s law: Conductance description by tortuosity
and constriction. Physical Review E 86 (4).
URL https://link.aps.org/doi/10.1103/PhysRevE.86.046314

Berg, C. F., Jul 2014. Permeability description by characteristic length, tortuosity, con-
striction and porosity. Transport in Porous Media 103 (3), 381–400.
URL https://doi.org/10.1007/s11242-014-0307-6

Berg, C. F., 2016. Fontainebleau 3D models. http://www.digitalrocksportal.
org/projects/57.

75

http://www.sciencedirect.com/science/article/pii/S0098300412003147
http://www.sciencedirect.com/science/article/pii/S0098300412003147
https://link.aps.org/doi/10.1103/PhysRevE.86.046314
https://doi.org/10.1007/s11242-014-0307-6
http://www.digitalrocksportal.org/projects/57
http://www.digitalrocksportal.org/projects/57

Berg, C. F., Lopez, O., Berland, H., 2017. Industrial applications of digital rock technol-
ogy. Journal of Petroleum Science and Engineering 157, 131–147.
URL http://www.sciencedirect.com/science/article/pii/

S0920410517305600

Blunt, M. J., 2017. Multiphase flow in permeable media: a pore-scale perspective. Cam-
bridge University Press.

Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A.,
Pentland, C., 2013. Pore-scale imaging and modelling. Advances in Water Resources
51, 197–216.
URL http://www.sciencedirect.com/science/article/pii/

S0309170812000528

Blunt, M. J., Jackson, M. D., Piri, M., Valvatne, P. H., 2002. Detailed physics, predictive
capabilities and macroscopic consequences for pore-network models of multiphase
flow. Advances in Water Resources 25 (8), 1069 – 1089.
URL http://www.sciencedirect.com/science/article/pii/

S0309170802000490

Bryant, S., Blunt, M., Aug 1992. Prediction of relative permeability in simple porous
media. Phys. Rev. A 46, 2004–2011.
URL https://link.aps.org/doi/10.1103/PhysRevA.46.2004

Carman, P. C., 1956. Flow of gases through porous media. Academic press.

Chatzis, I., Dullien, F. A. L., January 1977. Modelling pore structure by 2-D and 3-D
networks with applicationto sandstones. Journal of Canadian Petroleum Technology
16 (01).

Chatzis, I., Morrow, N. R., Lim, H. T., et al., 1983. Magnitude and detailed structure of
residual oil saturation. Society of Petroleum Engineers Journal 23 (02), 311–326.

Dong, H., 2008. Micro-CT imaging and pore network extraction. Ph.D. thesis, Department
of Earth Science and Engineering, Imperial College London.

Dong, H., Blunt, M. J., Sep 2009. Pore-network extraction from micro-computerized-
tomography images. Physical review E 80 (3).
URL https://link.aps.org/doi/10.1103/PhysRevE.80.036307

Dong, H., Fjeldstad, S., Alberts, L., Roth, S., Bakke, S., Øren, P.-E., 2008. Pore network
modelling on carbonate: a comparative study of different micro-CT network extraction

76

http://www.sciencedirect.com/science/article/pii/S0920410517305600
http://www.sciencedirect.com/science/article/pii/S0920410517305600
http://www.sciencedirect.com/science/article/pii/S0309170812000528
http://www.sciencedirect.com/science/article/pii/S0309170812000528
http://www.sciencedirect.com/science/article/pii/S0309170802000490
http://www.sciencedirect.com/science/article/pii/S0309170802000490
https://link.aps.org/doi/10.1103/PhysRevA.46.2004
https://link.aps.org/doi/10.1103/PhysRevE.80.036307

methods. In: International Symposium of the Society of Core Analysts.
URL http://jgmaas.com/SCA/2008/SCA2008-31.pdf

Fatt, I., 1956. The network model of porous media. Petroleum Transactions, AIME 207,
144–181.

FEI, 2018. Lithicon is now part of FEI. https://www.fei.com/

lithicon-is-now-fei/, (Accessed on 13/12/2017).

Imperial College London, 2018. Micro-CT images and networks. (Accessed on
07/10/2017).
URL http://www.imperial.ac.uk/earth-science/research/

research-groups/perm/research/pore-scale-modelling/

micro-ct-images-and-networks/

Jerauld, G. R., Salter, S. J., April 1990. The effect of pore-structure on hysteresis in relative
permeability and capillary pressure: Pore-level modeling. Transport in Porous Media
5 (2), 103–151.
URL https://doi.org/10.1007/BF00144600

Koponen, A., Kataja, M., Timonen, J., Sep 1997. Permeability and effective porosity of
porous media. Phys. Rev. E 56, 3319–3325.
URL https://link.aps.org/doi/10.1103/PhysRevE.56.3319

Larson, R., Scriven, L., Davis, H., 1981. Percolation theory of two phase flow in porous
media. Chemical Engineering Science 36 (1), 57 – 73.
URL http://www.sciencedirect.com/science/article/pii/

0009250981800486

Lenormand, R., Zarcone, C., et al., 1984. Role of roughness and edges during imbibition
in square capillaries. In: SPE annual technical conference and exhibition. Society of
Petroleum Engineers.

Lindquist, W. B., Lee, S.-M., Coker, D. A., Jones, K. W., Spanne, P., 1996. Medial axis
analysis of void structure in three-dimensional tomographic images of porous media.
Journal of Geophysical Research: Solid Earth 101 (B4).
URL http://dx.doi.org/10.1029/95JB03039

Lopez, X., Valvatne, P. H., Blunt, M. J., 2003. Predictive network modeling of single-
phase non-newtonian flow in porous media. Journal of Colloid and Interface Science
264 (1), 256 – 265.

77

http://jgmaas.com/SCA/2008/SCA2008-31.pdf
https://www.fei.com/lithicon-is-now-fei/
https://www.fei.com/lithicon-is-now-fei/
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
https://doi.org/10.1007/BF00144600
https://link.aps.org/doi/10.1103/PhysRevE.56.3319
http://www.sciencedirect.com/science/article/pii/0009250981800486
http://www.sciencedirect.com/science/article/pii/0009250981800486
http://dx.doi.org/10.1029/95JB03039

URL http://www.sciencedirect.com/science/article/pii/

S0021979703003102

Mason, G., Morrow, N. R., 1991. Capillary behavior of a perfectly wetting liquid in irreg-
ular triangular tubes. Journal of Colloid and Interface Science 141 (1), 262–274.

Melrose, J., Brandner, C., 1974. Role of capillary forces in detennining microscopic dis-
placement efficiency for oil recovery by waterflooding. Journal of Canadian Petroleum
Technology 13 (04).

Nie, X., Gundepalli, V., Mu, Y., Sungkorn, R., Toelke, J., 2016. Numerical investigation of
oil-water drainage and imbibition in digitized sandstones. Mechanics & Industry 17 (2).

Øren, P.-E., Bakke, S., Arntzen, O. J., et al., 1998. Extending predictive capabilities to
network models. SPE journal 3 (04), 324–336.

Patzek, T., Silin, D., 2001. Shape factor and hydraulic conductance in noncircular capil-
laries: I. one-phase creeping flow. Journal of Colloid and Interface Science 236 (2), 295
– 304.
URL http://www.sciencedirect.com/science/article/pii/

S0021979700974137

Sahimi, M., 2011. Flow and transport in porous media and fractured rock: from classical
methods to modern approaches. John Wiley & Sons.

Shewchuk, J. R., 1994. An introduction to the conjugate gradient method without the
agonizing pain.

Tanino, Y., Blunt, M. J., 2012. Capillary trapping in sandstones and carbonates: Depen-
dence on pore structure. Water Resources Research 48 (8).
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.

1029/2011WR011712

Valvatne, P. H., 2004. Predictive pore-scale modelling of multiphase flow. Ph.D. thesis,
Department of Earth Science and Engineering, Imperial College London.

Valvatne, P. H., Blunt, M. J., 2004. Predictive pore-scale modeling of two-phase flow in
mixed wet media. Water Resources Research 40 (7), w07406.
URL http://dx.doi.org/10.1029/2003WR002627

Wildenschild, D., Sheppard, A. P., 2013. X-ray imaging and analysis techniques for
quantifying pore-scale structure and processes in subsurface porous medium systems.

78

http://www.sciencedirect.com/science/article/pii/S0021979703003102
http://www.sciencedirect.com/science/article/pii/S0021979703003102
http://www.sciencedirect.com/science/article/pii/S0021979700974137
http://www.sciencedirect.com/science/article/pii/S0021979700974137
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011712
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011712
http://dx.doi.org/10.1029/2003WR002627

Advances in Water Resources 51, 217–246.
URL http://www.sciencedirect.com/science/article/pii/

S0309170812002060

Xiong, Q., Baychev, T. G., Jivkov, A. P., 2016. Review of pore network modelling of
porous media: experimental characterisations, network constructions and applications
to reactive transport. Journal of Contaminant Hydrology 192, 101–117.
URL http://www.sciencedirect.com/science/article/pii/

S016977221630122X

Yuan, H. H., 1981. The influence of pore coordination on petrophysical parameters. In:
SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

79

http://www.sciencedirect.com/science/article/pii/S0309170812002060
http://www.sciencedirect.com/science/article/pii/S0309170812002060
http://www.sciencedirect.com/science/article/pii/S016977221630122X
http://www.sciencedirect.com/science/article/pii/S016977221630122X

80

Appendices

81

82

Appendix A
Attachments

A.1 The Structure of the Network Data Files

e-Core generates several ASCII files to describe the pore network in SI-units. The format
of these files are used by Imperial College London, and are sometimes referred to as the
Statoil format. There exist several network data files, but only those used in this thesis are
described below. The data for the pores are stored in the node-files, while the data for the
throats are stored in the link-files. In the following example the model contains N throats
and M pores.

• link1.dat

• link2.dat

• node1.dat

• node2.dat

link1.dat

Each throat is connected to two pores, below referenced as Pore A and Pore B. The first
line contains the total number of throats, N . The following N lines in the ”link1.dat”-file
is structured as below:

1. Throat index (1 to N)

2. Index Pore A

83

3. Index Pore B

4. Inscribed radius of throat

5. Shape factor of throat

6. Length of link (from center of Pore A to center of Pore B).

link2.dat

This file contains N lines each containing the properties as structured below.

1. Throat index (1 to N)

2. Index Pore A

3. Index Pore B

4. Length of Pore A

5. Length of Pore B

6. Length of throat

7. Throat volume

8. Micro-porosity volume in throat

node1.dat

This file contains M + 1 lines. The first line contains the total number of pores, M , total
length in the x-, y- and z-direction. The following M lines each contain the properties as
structured below.

1. Pore index (1 to M)

2. x-coordinate

3. y-coordinate

4. z-coordinate

5. Number of connected pores

6. For a pore with C connections:

(a) The following C entries are the indices of the connected pores.

84

(b) Entry (C + 1) is the inlet-flag: 1 if the pore is connected to the inlet, 0 if not.

(c) Entry C + 2 is the outlet-flag: 1 if the pore is connected to the outlet, 0 if not.

(d) The following C entries are the indices of the connected throats.

A pore which is flagged as connected to a inlet/outlet, is connected to the inlet/outlet
reservoir by a pore throat. The index of the inlet/outlet reservoir is -1 (inlet) or 0 (outlet).

node2.dat

This file contains M lines each containing the properties as structured below.

1. Pore index (1 to M)

2. Volume of pore

3. Inscribed radius of pore

4. Shape factor of pore

5. Micro-porosity volume in pore

85

A.2 Network Percolation Results.

Table A.1: Coordination number Z, bond percolation threshold andBc for the network models used
in this thesis.

Model Z pcb Bc

F8 2.96 0.63 1.88
F10 3.20 0.55 1.76
F13 3.62 0.41 1.49
F15 3.96 0.34 1.34
F18 4.20 0.25 1.04
F21 4.54 0.23 1.04
F25 4.90 0.18 0.87
S1 3.42 0.37 1.27
S2 4.15 0.17 0.69
S3 3.34 0.50 1.68
S4 3.07 0.52 1.61
S5 3.94 0.23 0.92
S6 5.26 0.21 1.11
S7 4.57 0.21 0.96
S8 5.11 0.17 0.86
S9 3.80 0.28 1.08
F42A 4.94 0.18 0.90
F42B 5.06 0.18 0.93
F42C 4.95 0.19 0.93
LV60A 5.37 0.15 0.80
LV60C 5.47 0.14 0.78
Bentheimer 4.41 0.20 0.87
Berea 3.96 0.22 0.86
Doddington 3.99 0.25 0.99
A1 5.79 0.13 0.74
Estaillades 4.31 0.42 1.79
Ketton 4.08 0.06 0.26
C1 5.02 0.15 0.76
C2 3.82 0.47 1.78

86

A.3 Waterflooding Results from e-Core

Table A.2: The residual oil saturation in the networks after two different (θA = 20◦ − 60◦ and
θA = 30◦) waterflood simulations in e-Core.

Sor

θA

Model 20◦-60◦ 30◦

F8 70.2 % 72.3 %
F10 66.2 % 69.5 %
F13 59.3 % 62.7 %
F15 50.6 % 53.6 %
F18 45.5 % 51.1 %
F21 39.7 % 43.9 %
F25 31.8 % 37.0 %
S1 44.9 % 52.4 %
S2 27.6 % 34.6 %
S3 54.9 % 61.9 %
S4 57.1 % 62.6 %
S5 34.4 % 43.3 %
S6 47.0 % 54.7 %
S7 31.7 % 43.4 %
S8 22.2 % 26.0 %
S9 43.6 % 47.2 %
F42A 20.0 % 26.9 %
F42B 19.1 % 24.1 %
F42C 18.1 % 26.7 %
LV60A 17.9 % 24.8 %
LV60C 18.2 % 24.4 %
Bentheimer 40.3 % 45.2 %
Berea 42.1 % 49.9 %
Doddington 44.0 % 50.0 %
A1 21.4 % 27.1 %
Estaillades 61.7 % 60.9 %
Ketton 50.2 % 55.5 %
C1 31.5 % 39.6 %
C2 56.8 % 59.8 %

87

A.4 Network Modification Results

Table A.3: Number and percentage of nodes and links removed from the networks.

removed % removed

Model Nodes Links Nodes Links

F8 870 705 13.3 % 7.1 %
F10 730 621 9.6 % 5.0 %
F13 302 196 3.3 % 1.2 %
F15 181 95 1.7 % 0.5 %
F18 179 101 1.6 % 0.4 %
F21 100 57 0.8 % 0.2 %
F25 70 34 0.6 % 0.1 %
S1 54 34 3.0 % 1.1 %
S2 79 47 2.7 % 0.7 %
S3 525 342 5.3 % 2.0 %
S4 1063 758 10.2 % 4.6 %
S5 29 18 5.2 % 1.6 %
S6 29 22 3.7 % 1.0 %
S7 28 13 1.8 % 0.4 %
S8 79 50 3.2 % 0.8 %
S9 37 25 5.3 % 1.8 %
F42A 112 63 1.7 % 0.4 %
F42B 61 33 0.9 % 0.2 %
F42C 31 17 0.4 % 0.1 %
LV60A 99 44 0.5 % 0.1 %
LV60C 91 51 0.4 % 0.1 %
Bentheimer 633 300 3.2 % 0.7 %
Berea 288 148 3.5 % 0.9 %
Doddington 327 185 5.2 % 1.4 %
A1 110 63 1.6 % 0.3 %
Estaillades 7128 8009 32.0 % 16.6 %
Ketton 888 675 12.4 % 4.6 %
C1 1370 2045 25.1 % 14.8 %
C2 2550 2639 34.5 % 18.2 %

88

A.5 Local Sor vs. Minimum Local Aspect Ratio.

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.16x+0.48, R2 = 0.024
F10

0.2 0.4 0.6 0.8 1.0
Local Sor

2

4

6

8

10

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.70x+0.85, R2 = 0.018
F15

0.25 0.50 0.75 1.00
Local Sor

0
2
4
6
8

10

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.80x+0.75, R2 = 0.027
F21

0.25 0.50 0.75 1.00
Local Sor

0.0
2.5
5.0
7.5

10.0
12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.86x+0.74, R2 = 0.056
LV60C

Figure A.1: Local Sor vs. minimum local aspect ratio for F10, F15, F21 and LV60C.

0.00 0.25 0.50 0.75 1.00
Local Sor

2

4

6

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.00x+0.68, R2 = 0.080
F42A

0.00 0.25 0.50 0.75 1.00
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.92x+0.70, R2 = 0.046
F42B

0.25 0.50 0.75 1.00
Local Sor

2

4

6

8

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.66x+0.86, R2 = 0.058
F42C

0.25 0.50 0.75 1.00
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.80x+0.78, R2 = 0.058
LV60A

Figure A.2: Local Sor vs. minimum local aspect ratio for F42A, F42B, F42C and LV60A.

89

0.2 0.4 0.6 0.8 1.0
Local Sor

2

4

6

8
M

in
. l

oc
al

 a
sp

ec
t r

at
io f(x)=0.52x+1.07, R2 = 0.008

S1

0.25 0.50 0.75 1.00
Local Sor

2

4

6

8

10

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.56x+1.08, R2 = 0.015
S2

0.2 0.4 0.6 0.8 1.0
Local Sor

0
2
4
6
8

10

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.00x+0.65, R2 = 0.028
S3

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.10x+0.57, R2 = 0.025
S4

Figure A.3: Local Sor vs. minimum local aspect ratio for S1, S2, S3 and S4.

0.2 0.4 0.6 0.8 1.0
Local Sor

2

4

6

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.84x+0.02, R2 = 0.091
S5

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.39x+0.45, R2 = 0.038
S6

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.24x+0.49, R2 = 0.042
S7

0.25 0.50 0.75 1.00
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.69x+0.30, R2 = 0.066
S8

Figure A.4: Local Sor vs. minimum local aspect ratio for S5, S6, S7 and S8.

90

0.25 0.50 0.75 1.00
Local Sor

0

5

10

15

20

25
M

in
. l

oc
al

 a
sp

ec
t r

at
io f(x)=1.13x+0.62, R2 = 0.027

Bentheimer

0.2 0.4 0.6 0.8 1.0
Local Sor

0

5

10

15

20

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.74x+0.85, R2 = 0.014
Berea

0.25 0.50 0.75 1.00
Local Sor

0

100

200

300

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=0.40x+1.34, R2 = 0.000
Doddington

0.2 0.4 0.6 0.8 1.0
Local Sor

0.0

2.5

5.0

7.5

10.0

12.5

M
in

. l
oc

al
 a

sp
ec

t r
at

io f(x)=1.71x+0.28, R2 = 0.092
A1

Figure A.5: Local Sor vs. minimum local aspect ratio for Bentheimer, Berea, Doddington and A1.

91

A.6 Oil Production After kro = 0

Table A.4: Oil produced after kro = 0 during waterflooding simulations using e-Core. The percent-
age of oil produced after kro = 0 is calculated by (So[@kro = 0]− Sor)/(Soi − Sor)

Model
Soi Sor

So Oil produced
Average

@ kro = 0 after kro = 0

F8 93.3 % 72.3 % 73.3 % 4.61 %
F10 96.4 % 69.5 % 71.2 % 6.18 %
F13 98.9 % 62.7 % 64.3 % 4.34 %
F15 99.4 % 53.6 % 56.4 % 6.06 %
F18 99.6 % 51.1 % 53.6 % 5.02 %
F21 99.7 % 43.9 % 46.0 % 3.85 %
F25 99.8 % 37.0 % 39.6 % 4.06 % 4.87 %

S1 99.0 % 52.4 % 58.8 % 13.76 %
S2 99.5 % 34.6 % 40.4 % 8.96 %
S3 97.0 % 61.9 % 62.9 % 2.91 %
S4 94.9 % 62.6 % 63.7 % 3.19 %
S5 99.7 % 43.3 % 54.9 % 20.60 %
S6 99.5 % 54.7 % 56.8 % 4.80 %
S7 99.6 % 43.4 % 44.7 % 2.22 %
S8 99.7 % 26.0 % 37.1 % 15.04 %
S9 99.6 % 47.2 % 62.4 % 29.02 % 11.17 %

F42A 99.8 % 26.9 % 28.5 % 2.17 %
F42B 99.8 % 24.1 % 26.2 % 2.75 %
F42C 99.9 % 26.7 % 28.4 % 2.27 %
LV60A 99.7 % 24.8 % 25.8 % 1.31 %
LV60C 99.8 % 24.4 % 27.2 % 3.70 % 2.44 %

Bentheimer 99.6 % 45.2 % 47.3 % 3.95 %
Berea 99.0 % 49.9 % 51.3 % 2.81 %
Doddington 99.0 % 50.0 % 52.9 % 5.90 %
A1 99.7 % 27.1 % 30.6 % 4.75 % 4.35 %

Estaillades 80.5 % 60.9 % 63.7 % 14.18 %
Ketton 98.5 % 55.5 % 59.2 % 8.71 %
C1 89.0 % 39.6 % 56.8 % 34.81 %
C2 78.7 % 59.8 % 67.3 % 39.74 % 24.36 %

92

A.7 Cluster-Size Distribution Results

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

F8
F10
F13
F15
F18
F21
F25

Figure A.6: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
the Fontainebleau networks.

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

S1
S2
S3
S4
S5
S6
S7
S8
S9

Figure A.7: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
the ICL Sandstone networks.

93

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

F42A
F42B
F42C
LV60A
LV60C

Figure A.8: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
the ICL Sand Pack networks.

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

Bentheimer
Berea
Doddington
A1

Figure A.9: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
different ICL sandstone networks.

94

10 5 10 4 10 3 10 2 10 1 100

f(Xi)

0.0

0.2

0.4

0.6

0.8

1.0

P(
X i

X j
)

Estaillades
Ketton
C1
C2

Figure A.10: Cumulative cluster-size distribution P (Xi ≤ Xj) vs. relative cluster-size F (Xi) for
ICL Carbonate networks.

95

96

Appendix B
Scripts

B.1 readme.txt

###

This is the readme-file for the suite of scripts developed to conduct

calculations on network models.

All scripts has to be located in the same folder, and called from a

folder with network data files.

Anders Torland, anderstorland@gmail.com, 2018

##

CONTENTS

1. SCRIPTS.

1.1. laplacePN.py

1.2. netPotential.py

1.3. netStream.py

1.4. streamUtils.py

1.5. netPlot.py

1.6. netRecon.py

1.7. updateNetwork.py

1.8. percolation.py

1.9. clusterTrack.py

97

1.10. calcPoreStruct.py

1.11. createNetworkXML.py

1.12. plotResults.py

1.13. plotCumDist.py

2. SPECIAL PACKAGES.

12.1. tqdm

3. STRUCTURE OF DIRECTORY.

4. NETWORK DATA FILES.

5. ORIGINAL AND UPDATED NETWORKS.

1. SCRIPTS

...

1.1. laplacePN.py :

.....................................

This script constists of functions used to to calculate the solution of

the Laplace equation on a network model by sparse matrix inversion.

The functions in this script is used in ’netPotential.py’ and in ’

netStream.py’.

...

1.2. netPotential.py :

.....................................

This script is executable and use the functions in ’laplacePN.py’. The

script has an argument parser with several optional and mandatory

arguments, given below:

-h, --help: show this help message and exit

-initialguess INITIALGUESS: Set initial guess: Either ’linear’ or

’zero’

-solvefor SOLVEFOR: Solve for permeability or formation factor

(’perm’ or ’FF’).

-plot2D: Plot 2D pore network (Z vs. Y)

-plot3D: Plot 3D pore network

-plotAspect: Plot aspect ratio vs. Sor

-output: If text output is wanted.

-network NETWORK: Specify if calculations should be conducted on ’

original’ or ’updated’ network data files.

Execution example: ’python netPotential.py -solvefor perm -output -plot2D

-network original’

98

This would calculate the pressure in each pore and det permeability of the

original network which the script is executed from. A 2D plot of the

nodes and links would also be produced and opend, and a text output of

the most used properties would be written to the terminal.

...

1.3. netStream.py :

.....................................

This script is executable and tracks the streamlines/tubes in a network

model. In order to avoid numerical instabilities and problems during

the tracking it is recommended to run this script on updated network

files (see ’netRecon.py’ and ’updateNetwork.py’ below). The plotting

is performed in ’netPlot.py’.

Arguments:

-h, --help: show this help message and exit

-plot: Plot streamlines on 2D model.

-sort SORT: Sort links by either ’location’ or ’angles’

Execution example: ’python netStream.py -sort angles - plot’

This would track the streamlines based on the angle between the inlet link

and the outlet link, and plot the streamlines in 2D.

...

1.4. streamUtils.py :

.....................................

A set of help-functions used in ’netStream.py’

...

1.5. netPlot.py :

.....................................

A script with functions to plot the streamlines in 2D through a network

model and the full network model in either 2D or 3D.

...

1.6 netRecon.py :

.....................................

The script contains several different functions to extract information and

modify network data files.

Some of the functions are given and explained below:

99

- get_network_file

Reads the network data files (’node1.dat’, ’node2.dat’, ’link1.dat

’ and ’link2.dat’). Automatically skips the headers.

- get_surface_nodes

Returns the index of the inlet and outlet nodes.

- get_dimensions

Returns the dimensions of the network model (length, width, depth)

- get_zero_coord_nodes

Return the number of nodes with zero coordination number

- map_connections

A "viurs-spreading" algorithm to map connectivity between nodes

from a given set of starting nodes.

- remove_nonSpanning

This function utilize multiple other functions in the same script

to remove all nodes and links which are not connected to both

the inlet and the outlet (i.e. non-spanning).

- print_network_to_file

This function will print a network file to a new ’.dat’ file. Used

when networks are updated and saved. The original data files

are automatically moved to ’originalNetworks/’ by the function

’move_network_files’.

- rearrange_network

When the network data files are updated this function will

renumber all nodes and links such that the numbering

convention is consitent with 1 to N and 1 to M (N=total number

of nodes, M=total number of links).

- get_coordination_number

Returns the average coordination number

- get_redundant_links:

Finds the number of redundant links which connect the same two

pores.

Not used and computationally demanding. Shound be rewritten

similarly to how the effective porosity or number of unused

nodes are calculate in ’netStream.py’.

- get_local_aspect_ratio

Returns the average local aspect ratio and the minimum local

aspect ratio.

The script currently only extracts these quantities from the

original network. Can be rewritten to calculate values from

updated networks (’nodesat_wf.dat’ has to be reduced to only

contain the nodes in the updated network data files.)

- output_network_mod_file

Print some of the network modification parameters to a text-file

after a network is updated.

- print network_statistics

100

This function calculates the most important network statistics

such as:

- Number of nodes & links (and inlet/outlet nodes/links)

- Global aspect ratio

- Average local aspect ratio (of original network)

- Minimum local aspect ratio (of original network)

- Average connection number

- Node and link radius metrics.

- get_coord

Returns all the coordinates of all the nodes.

...

1.7. updateNetwork.py :

.....................................

This script is executable and should be executed before tracking

streamlines with ’netStream.py’. The script only need so be executed

once for each network. This script use the functions in ’netRecon.py’

to update (remove non-spanning), rearrange and print new network files

. The script has to be run from a folder with original data files.

...

1.8. percolation.py :

.....................................

This script is executable and finds the bond percolation treshold. The

bonds (links) are sorted from smallest to largest by radius, and

removed in acending order until the connection between outlet and

inlet is found. The function ’map_connections’ (in ’netRecon.py’) is

used to check the connectivity of the network. A triangular pore

throat shape is assumed (% of non-triangular pores is outputted) and

the angles of the triangle are calculated by method propesed by Patzek

and Silin (2001). A interfacial tension and contact angle has to be

specified within the scripts. The threshold capillary pressure for

snap-off for the percolation radius is calculated (the threshold

capillary pressure for snap-off assuming an equilateral triangle is

also calculated).

In order to reduce the runtime the bisection method is used.

...

1.9. clusterTrack.py :

.....................................

This script is semi-executable. Since it was developed towards the end of

my master’s thesis, it is not completely finished. The script contains

101

several functions (described below), whereas some of them are used

with in other scripts (from ’createNetworkXML.py’). To execute

functions in this script the functions has to be manually called from

the bottom of the script.

This script has two main functions:

1) This script locates the oil clusters after waterflooding in a

network model using the e-Core data file ’nodesat_wf.py’. The

script counts all oil saturated nodes (So>0), locates all the

clusters (with the index of each node in it), the average

cluster size, number of singlet clusters (’clusters’ with only

one node) and the size of the maximum cluster. It also

calculates the relative size of the maximum cluster and the

oil saturated nodes.

Functions:

- get_cluster_size()

- locate_clusters()

- print_cluster_stats(...)

2) The script calculates the cumulative cluster-size distribution.

Functions:

- get_cumulative_clust_dist()

- plot_cumulative_clust_dist(...)

- print_cumulative_dist(...)

...

1.10. calcPoreStruct.py :

.....................................

Can plot local aspect ratio vs. local Sor. Uses the e-Core data file ’

nodesat_wf.py’ after waterflooding. Two methods of data-binning are

used: equal count binning and equal interval binning. The size of the

bins can be specified in the script. Linear regression is also

conducted on the data-sets. The plots are saved in ’<network X>/output

’.

The script is used with in ’plotResults.py’.

...

1.11. createNetworkXML.py :

.....................................

This script is written to produce ball and stick models using the Windows

10 application ’Ball&Stick’ by ’fourelem’. The script write XML-files

files. If no argument is given all the nodes and links will be plotted

using the classical red-and-white layout.

102

The script has an argument parser with the following arguments:

-h, --help: show this help message and exit

-colorResidual Color nodes with residual oil saturation.

-onlyResidual Only show nodes with residual oil saturation.

-onlyWater Only show nodes with water saturation = 1.

Execution example: ’python createNetworkXML.py -colorResidual

This would create an XML-file of the network where only the oil filled

nodes are colored. (The water bearing nodes are also plotted to

maintain the size of the models. They are plotted with a white color

so they are not visible when using a white background.)

...

1.12. plotResults.py :

.....................................

The script plots the results for my master thesis. The results are loaded

from text files. The script is written specifically for these results,

and can not easily be used for other purposes.

...

1.13. plotCumDist.py :

.....................................

The script plots the results for cumulative cluster-size distribution for

my master thesis. The results are loaded from text files. The script

is written specifically for these results, and can not easily be used

for other purposes.

2. SPECIAL PACKAGES

...

12.1. tqdm :

.....................................

’tqdm’ is a packaged used to display a progress bar in the terminal window

. It is used to keep track, and estimate the remaining time, of time-

consuming processes (for-loops).

If you do not wish to install/use ’tqdm’ you can delete the import command

and the use of it in the scripts. This will not affect the results.

103

Installation and usage:

For mac users (like myself) ’tqdm’ can be installed via pip (if you do not

have pip; pip can be installed by running ’sudo easy_install pip’ in

the terminal window) with the command: ’pip install tqdm’. Once

installed it needs to be imported into the scripts where its used by

writing: ’from tqdm import *’.

To use ’tqdm’ with a for-loop, simply write tqdm(...) around the range of

the loop. Example: ’for i in tqdm(range(1,10)):’

3. STRUCTURE OF DIRECTORY

<network-X>

\output (1)

\originalNetworks (2)

(1) The output folder must be created manually. This is where most

of the plots and text outputs are stored.

(2) This folder will be created by running ’updateNetwork.py’.

Most of the scripts check if this folder exists to check if

updated networks are created. If it exists and is empty some

the scripts will not work. Therefore if updated networks are

removed and replaced by original networks it is recommended to

delete or rename the folder.

4. NETWORK DATA FILES

Required network data files:

- ’node1.dat’

- ’node2.dat’

- ’link1.dat’

- ’link2.dat’

Optional files (required for ’clusterTrack.py’ and the argument ’

plotAspect’ in ’netPotentialpy’):

- ’nodesat_wf.dat’

104

5. ORIGINAL AND UPDATED NETWORKS

Some scripts use the updated networks, while others use the original. Even

though the user, in most cases, is notified when the wrong network is

used, it is highly recommended to update all networks by running ’

updateNetwork.py’. This way both networks can be accessed by the

scripts.

B.2 netPotential.py

1 import sys

2 import os

3 import argparse

4 import numpy as np

5 import scipy

6 import scipy.sparse as sparse

7 import scipy.sparse.linalg

8 import time

9 import csv

10 import matplotlib.pyplot as plt

11 import math

12
13 # Selfwritten scripts

14 import netRecon

15 import laplacePN

16 import netPlot

17
18 parser = argparse.ArgumentParser(prog=’laplacePN.py’, description=’A

program to calculate permeability and flowrate in a pore network.’)

19 parser.add_argument("-initialguess", type=str, help="Set initial guess:

Either ’linear’ or ’zero’", default=’zero’)

20 parser.add_argument("-solvefor", type=str, help="Solve for permeability or

formation factor (’perm’ or ’FF’).", default=’perm’)

21 parser.add_argument("-plot2D", action=’store_true’, help="Plot 2D pore

network (Z vs. Y)", default=0)

22 parser.add_argument("-plot3D", action=’store_true’, help="Plot 3D pore

network", default=0)

23 parser.add_argument("-output", action=’store_true’, help="If text output

is wanted.")

24 parser.add_argument("-network", type=str, help="Specify if calculations

should be conducted on ’original’ or ’updated’ network data files.",

default=’original’)

25 args = parser.parse_args()

26

105

27 start = time.clock() # Stating the clock

28
29 t1 = time.clock()

30 print "Importing network files..."

31 dest = os.getcwd()+’/originalNetworks’

32 if args.network == ’original’:

33 if os.path.exists(dest):

34 node1 = netRecon.get_network_file(’originalNetworks/node1’)

35 node2 = netRecon.get_network_file(’originalNetworks/node2’)

36 link1 = netRecon.get_network_file(’originalNetworks/link1’)

37 link2 = netRecon.get_network_file(’originalNetworks/link2’)

38 else:

39 node1 = netRecon.get_network_file(’node1’)

40 node2 = netRecon.get_network_file(’node2’)

41 link1 = netRecon.get_network_file(’link1’)

42 link2 = netRecon.get_network_file(’link2’)

43 elif args.network == ’updated’:

44 if os.path.exists(dest):

45 print "*"*80, "WARNING: Network statistic calculations should be

conducted on original network"

46 print "*"*80

47 node1 = netRecon.get_network_file(’node1’)

48 node2 = netRecon.get_network_file(’node2’)

49 link1 = netRecon.get_network_file(’link1’)

50 link2 = netRecon.get_network_file(’link2’)

51 else:

52 print "*"*80

53 print "ERROR: Updated network not created. Run ’updateNetwork.py’ "

54 print " to remove non-spanning nodes and links."

55 print "*"*80

56 sys.exit()

57 else:

58 print "*"*80

59 print "ERROR: Specify valid network: ’original’ or ’updated’."

60 print "*"*80

61 sys.exit()

62 t2 = time.clock()

63 print "Time to import network files: %.2f sec." % (t2-t1)

64
65 p_in = 2

66 p_out = 1

67
68 xvec, g_nodes, g_throats, gL_link, g_inlet, g_outlet, in_nodes, out_nodes,

cum_pore_radius, cum_throat_radius, link_length, in_link, out_link =

laplacePN.calc_potential(node1, node2, link1, link2, 2,1, args.

solvefor)

106

69 inflow, outflow, inlet_counter, outlet_counter = laplacePN.

calc_surface_flowrates(g_inlet, g_outlet, in_nodes, out_nodes, p_in,

p_out, xvec)

70 perm_mdarcy = laplacePN.calc_permeability(p_in, p_out, inflow)

71 avg_pore_radius, max_pore_radius, min_pore_radius, avg_link_radius,

avg_con_num, porosity = laplacePN.calc_network_statistics(node1, node2

,link1,link2)

72 q_vec = laplacePN.calc_flowrate(link1, gL_link, p_in, p_out, xvec)

73
74 # Output of results.

75 if args.output:

76 print "-+-+ Results (",args.network, "network)", "-+"*23

77 if args.solvefor == ’perm’:

78 print "Permeability = %.2f mD" % perm_mdarcy

79 if args.solvefor == ’FF’:

80 # Calculation of formation factor

81 FF = laplacePN.calc_formation_factor(p_in, p_out, inflow)

82 print "Formation factor: %.2f" % FF

83 print "F poro. approx.: %.2f" % (1/(porosity/100)**2)

84 print "Flowrate - Inlet: %.4E m3" % inflow

85 print "Flowrate - Outlet: %.4E m3" % outflow

86 print " "

87 netRecon.print_network_statistics(node1, node2, link1, link2, args.

network)

88
89 if args.plot2D+args.plot3D!=0:

90 if args.plot2D:

91 netPlot.plot_network(’2D’)

92 elif args.plot3D:

93 netPlot.plot_network(’3D’)

B.3 laplacePN.py

1 ##

2 #

3 # A code to calculate the solution of the Laplace equation on a

4 # network model by sparse matrix inversion.

5 # Anders Torland, anderstorland@gmail.com, 2018

6 #

7 import numpy as np

8 import scipy

9 import scipy.sparse as sparse

10 import scipy.sparse.linalg

11 import time

12 import math

107

13
14 # Selfwritten scripts

15 import netRecon

16
17 start = time.clock() # Stating the clock

18 def calc_potential(node1, node2, link1, link2, p_in, p_out, solvefor, **
saturation):

19 # Calculating conductivity, g, for all pores and throats

20 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990 and Eq. 18 from Oren

1998

21 visc = 1 #IF CHANGED: CHANGE IN ’calc_permeability(..)’

22 def calc_g_nodes(node2, argument):

23 g_nodes=[]

24 cum_pore_radius = []

25 for i in range(len(node2)):

26 if argument == ’perm’:

27 g_nodes.append((3*node2[i][2]**4)/(80*node2[i][3]*visc))

28 #g_nodes.append((3*(math.pow((math.pi*node2[i,2]**2),2))*node2[i

,3])/(5*1))

29 elif argument == ’FF’:

30 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990

31 g_nodes.append(node2[i][2]**2/(4*node2[i][3]))

32 if ’bodySaturation’ in saturation:

33 g_nodes.append(saturation[’bodySaturation’][i]*node2[i

][2]**2/(4*node2[i][3]))

34 else:

35 g_nodes.append(node2[i][2]**2/(4*node2[i][3]))

36 #g_nodes.append(math.pi*node2[i,2]**2)

37 cum_pore_radius.append(node2[i][2])

38 return g_nodes, cum_pore_radius

39
40 def calc_g_throats(link1, argument):

41 g_throats=[]

42 cum_throat_radius = []

43 for i in range(len(link1)):

44 if argument == ’perm’:

45 g_throats.append((3*link1[i][3]**4)/(80*link1[i][4]*visc))

46 #g_throats.append((3*(math.pow((math.pi*link1[i,3]**2),2))*link1[i

,4])/(5*1))

47 elif argument == ’FF’:

48 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990

49 if ’throatSaturation’ in saturation:

50 g_throats.append(saturation[’throatSaturation’][i]*link1[i

][3]**2/(4*link1[i][4]))

51 else:

52 g_throats.append(link1[i][3]**2/(4*link1[i][4]))

108

53 #g_throats.append(math.pi*link1[i,3]**2)

54 cum_throat_radius.append(link1[i][3])

55 return g_throats, cum_throat_radius

56
57 def calc_g_link(link1,link2,g_nodes, g_throats):

58 # Calculating link-conductivity (Oren, 1998)

59 gL_link=[]

60 gL_link_solv=[]

61 denominator=0

62 link_length=[]

63 g_weigth=1

64 # for-loop: Running through the total number of links.

65 for i in range(len(link1)):

66 if g_throats[i]<=0.0:

67 gL_link.append(0.0)

68 # The link-cond/length was scaled by 1e15. Not needed anymore.

69 gL_link_solv.append(0.0)

70 else:

71 # if: Checking if link is flagged as "inlet".

72 if int(link2[i][1])==-1:

73 if g_nodes[int(link2[i][2])-1]<=0.0:

74 gL_link.append(0.0)

75 gL_link_solv.append(0.0)

76 else:

77 denominator=(((link2[i][5]+link2[i][3])/g_throats[i])+g_weigth

*(link2[i][4]/g_nodes[int(link2[i][2])-1]))

78 gL_link.append(1/denominator)

79 gL_link_solv.append(1/denominator)

80 # if: Checking if link is flagged as "outlet".

81 elif int(link2[i][2])==0:

82 if g_nodes[int(link2[i][1])-1]<=0.0:

83 gL_link.append(0.0)

84 gL_link_solv.append(0.0)

85 else:

86 denominator=(((link2[i][5]+link2[i][4])/g_throats[i])+g_weigth

*(link2[i][3]/g_nodes[int(link2[i][1])-1]))

87 gL_link.append(1/denominator)

88 gL_link_solv.append(1/denominator)

89 else:

90 if g_nodes[int(link2[i][1])-1]<=0.0 or g_nodes[int(link2[i][2])

-1] <= 0.0:

91 gL_link.append(0.0)

92 gL_link_solv.append(0.0)

93 else:

94 denominator=((link2[i][5]/g_throats[i])+g_weigth*((link2[i

][3]/g_nodes[int(link2[i][1])-1])+(link2[i][4]/g_nodes[int

109

(link2[i][2])-1])))

95 gL_link.append(1/denominator)

96 gL_link_solv.append(1/denominator)

97 link_length.append(link1[i][5])

98 return gL_link_solv, gL_link, link_length

99
100 def create_equation_matrix(node1, gL_link, gL_link_solv, p_in, p_out):

101 num_node=int(node1[-1][0])

102 # Defining different indexing vectors.

103 row=[]

104 col=[]

105 data=[]

106 b_vec=[]

107 g_inlet=[]

108 g_outlet=[]

109 in_nodes=[]

110 in_link=[]

111 out_nodes=[]

112 out_link=[]

113
114 # for-loop: Running through the total number of nodes.

115 for i in range(num_node):

116
117 num_con=int(node1[i][4])

118 # Setting up b-vector.

119 # if: True if inlet.

120 if int(node1[i][5+num_con]) == 1:

121 ind=node1[i].index(-1)

122 b_vec.append(-p_in*gL_link_solv[int(node1[i][ind+num_con+2])-1])

123 row.append(i)

124 col.append(i)

125 data.append(-gL_link_solv[int(node1[i][ind+num_con+2])-1])

126
127 ## For rate calculations over inlet

128 g_inlet.append(gL_link[int(node1[i][ind+num_con+2])-1])

129 in_nodes.append(i+1)

130 in_link.append(int(node1[i][ind+num_con+2]))

131 # if: True if outlet

132 elif int(node1[i][6+num_con]) == 1:

133 ind=node1[i].index(0)

134 b_vec.append(-p_out*gL_link_solv[int(node1[i][ind+num_con+2])-1])

135 row.append(i)

136 col.append(i)

137 data.append(-gL_link_solv[int(node1[i][ind+num_con+2])-1])

138
139 ## For rate calculations over outlet

110

140 g_outlet.append(gL_link[int(node1[i][ind+num_con+2])-1])

141 out_nodes.append(i+1)

142 out_link.append(int(node1[i][ind+num_con+2]))

143
144 else:

145 b_vec.append(0)

146 # for-loop: Running "connection number"-times through each line,

147 # finding all connected nodes to current node, and setting up p-

matrix.

148 for j in range(num_con):

149 # if: True if connection number for current node > 0

150 # AND connected node is NOT inlet/outlet.

151
152 if int(node1[i][5+j])>0 and int(node1[i][4])>0:

153 # For the connecting nodes

154 row.append(i)

155 col.append(int(node1[i][5+j])-1)

156 data.append(gL_link_solv[int(node1[i][7+num_con+j])-1])

157 # the node itself

158 row.append(i)

159 col.append(i)

160 data.append(-gL_link_solv[int(node1[i][7+num_con+j])-1])

161
162 # Constructing the sparse matrix from col,row and data

163 mtx = sparse.csc_matrix((data, (row, col)), shape=(num_node,num_node))

164 b_v=np.asarray(b_vec)

165 return mtx, b_v, g_inlet, g_outlet, in_nodes, out_nodes, in_link,

out_link

166
167 def create_initial_guess(node1,guess, p_in, p_out):

168 num_node=int(node1[-1][0])

169 def linear_initial_guess(num_node,p_in,p_out):

170 length, width, depth = netRecon.get_dimensions()

171 p_L=(p_in-p_out)/length

172 for i in range(num_node):

173 x0vec[i]=p_in-node1[i][1]*p_L

174 return x0vec

175
176 x0vec = np.zeros(num_node,dtype=np.float)

177 if guess == ’linear’:

178 x0vec = linear_initial_guess(num_node,p_in,p_out)

179
180 def CG_potential_solver(mtx, b_v, initial_guess, tolerance):

181 #Solving by CG-method.

182 tic=time.clock()

183 # Solving for pressures with CG.

111

184 xvec = scipy.sparse.linalg.cg(mtx, b_v, initial_guess, tol=tolerance)

185 toc=time.clock()

186 CG_runtime=toc-tic

187 return xvec[0]

188
189 g_nodes, cum_pore_radius = calc_g_nodes(node2, solvefor)

190 g_throats, cum_throat_radius = calc_g_throats(link1, solvefor)

191 gL_link_solv, gL_link, link_length = calc_g_link(link1,link2,g_nodes,

g_throats)

192 mtx, b_v, g_inlet, g_outlet, in_nodes, out_nodes, in_link, out_link =

create_equation_matrix(node1, gL_link, gL_link_solv, p_in, p_out)

193 x0vec = create_initial_guess(node1,’linear’, p_in, p_out)

194 xvec = CG_potential_solver(mtx, b_v, x0vec, 1E-15)

195
196 return xvec, g_nodes, g_throats, gL_link, g_inlet, g_outlet, in_nodes,

out_nodes, cum_pore_radius, cum_throat_radius, link_length, in_link,

out_link

197
198 def calc_surface_flowrates(g_inlet, g_outlet, in_nodes, out_nodes, p_in,

p_out, xvec):

199 # Calculating flowrate at inlet and outlet

200 inflow=0

201 outflow=0

202 inlet_counter=0

203 outlet_counter=0

204 # for-loop: Running through all inlet pores.

205 # Calculating flowrate at current inlet-pore.

206 for i in range(len(in_nodes)):

207 inflow+=(g_inlet[i]*(p_in-xvec[int(in_nodes[i])-1]))

208 inlet_counter+=1

209 # for-loop: Running through all outlet pores.

210 # Calculating flowrate at current outlet-pore.

211 for i in range(len(out_nodes)):

212 outflow+=(g_outlet[i]*(p_out-xvec[int(out_nodes[i])-1]))

213 outlet_counter+=1

214 return inflow, outflow, inlet_counter, outlet_counter

215
216 def calc_permeability(p_in, p_out, inflow):

217 # Permeability calculation

218 length, width, depth = netRecon.get_dimensions()

219
220 dP=p_in-p_out # Pressure difference over inlet.

221 area=width*depth # Inlet area: total_y_length *
total_z_length

222 visc=1 # Viscosity: Defined as 1 throughout.

223 perm=(inflow*length*visc)/(area*dP) # Permeability: By Darcys Law (in SI

112

-unit: mˆ2)

224 perm_mdarcy=perm*1.01*10**15 # Permeability: In Darcy-unit: mD

(1.01*12ˆ-12 mˆ2 = 1 mD)

225
226 return perm_mdarcy

227
228 def calc_formation_factor(p_in, p_out, inflow):

229 length, width, depth = netRecon.get_dimensions()

230 area=width*depth

231 FF=((area*(p_in-p_out))/(inflow*length))

232 return FF

233
234 def calc_network_statistics(node1,node2,link1,link2):

235 length, width, depth = netRecon.get_dimensions()

236 area=width*depth

237 num_node=int(node1[-1][0])

238 # Porosity calculation and link/node statistics

239 pore_volume=0

240 pore_radius=[]

241 link_radius=0

242 total_connections=0

243 # for-loop: Running through all links.

244 for i in range(len(link2)):

245 pore_volume+=link2[i][6]+link2[i][7]

246 link_radius+=link1[i][3]

247 # for-loop: Running through all pores.

248 for i in range(len(node2)):

249 pore_volume+=node2[i][1]+node2[i][4]

250 pore_radius.append(node2[i][2])

251 total_connections+=node1[i][4]

252 avg_pore_radius=(sum(pore_radius)/num_node)*10**6

253 max_pore_radius=max(pore_radius)*10**6

254 min_pore_radius=min(pore_radius)*10**6

255 avg_link_radius=(link_radius/int(link1[-1][0]))*10**6

256 avg_con_num=total_connections/num_node

257 porosity=(pore_volume*100)/(length*area)

258 return avg_pore_radius, max_pore_radius, min_pore_radius,

avg_link_radius, avg_con_num, porosity

259
260 def calc_flowrate(link1, gL_link, p_in, p_out, xvec):

261 # Set up q in each link

262 q_vec=[]

263 # for-loop: Running through all inlet pores.

264 for i in range(int(link1[-1][0])):

265 c1=int(link1[i][1])

266 c2=int(link1[i][2])

113

267 if c1==-1:

268 q_vec.append(gL_link[i]*(p_in-xvec[c2-1]))

269 elif c2==0:

270 q_vec.append(gL_link[i]*(xvec[c1-1]-p_out))

271 else:

272 q_vec.append(gL_link[i]*(xvec[c2-1]-xvec[c1-1]))

273 q_vec=np.asarray(q_vec)

274 q_vec=abs(q_vec)

275
276 return q_vec

B.4 netStream.py

1 ##

2 #

3 # A code to trace the network-streamlines and then calculate

4 # tortuosity and constriction factor.

5 # Anders Torland, anderstorland@gmail.com, 2018

6 #

7 import sys

8 import os

9 import argparse

10 import numpy as np

11 import math

12 from numpy import linalg as LA

13 import time

14 import matplotlib.pylab as plt

15 from tqdm import *
16 from operator import itemgetter

17
18 #Selfwritten scripts

19 import netRecon

20 import netPlot

21 import laplacePN

22 import streamUtils

23
24 parser_stream = argparse.ArgumentParser(prog=’netStream.py’, description=’

A script to track streamlines in a pore network.’)

25 parser_stream.add_argument("-plot", action=’store_true’, help="Plot

streamlines on 2D model.")

26 parser_stream.add_argument("-sort", type=str, help="Sort links by either ’

location’ or ’angles’", default=’angles’)

27 parser_stream.add_argument("-solvefor", type=str, help="Solve for

permeability or formation factor (’perm’ or ’FF’).", default=’perm’)

28 parser_stream.add_argument("-phaseConductancePD", action=’store_true’,

114

help="Calcualate conductance on the water-phase only. Need

additionally the files linksat_pd.dat and nodesat_pd.dat.")

29 parser_stream.add_argument("-saveResultsToFile", action=’store_true’, help

="Save most important results to the text file output.txt.")

30 args_stream = parser_stream.parse_args()

31
32 mainTic = time.clock()

33 foldername = os.path.basename(os.getcwd())

34 filename = os.path.basename(__file__)

35 print "::::: Running %s on network model: %s :::::" % (filename,

foldername)

36 print args_stream.phaseConductancePD

37
38 dest = os.getcwd()+’/originalNetworks’

39 if not os.path.exists(dest):

40 print "*"*80

41 print "WARNING:\tModified network not created, and may contain non-

spanning\n\t\tnodes and links. Run ’updateNetwork.py’ to delete \n\t

\tunreachable nodes and links."

42 print "*"*80

43
44 link1 = netRecon.get_network_file(’link1’)

45 link2 = netRecon.get_network_file(’link2’)

46 node2 = netRecon.get_network_file(’node2’)

47 node1 = netRecon.get_network_file(’node1’)

48
49 # Using laplacePN.py to solve for the pressure.

50 print "Solving for potential...",

51 sys.stdout.flush()

52 tic = time.clock()

53 p_in = 2

54 p_out = 1

55 if args_stream.phaseConductancePD:

56 throatSaturationPD=netRecon.get_saturation_file(’link’,’pd’)

57 bodySaturationPD=netRecon.get_saturation_file(’node’,’pd’)

58 pres, g_nodes, g_throats, gL_link, g_inlet, g_outlet, in_nodes,

out_nodes = laplacePN.calc_potential(node1, node2, link1, link2,

p_in, p_out, args_stream.solvefor,throatSaturation=

throatSaturationPD,bodySaturation=bodySaturationPD)[0:8]

59 else:

60 pres, g_nodes, g_throats, gL_link, g_inlet, g_outlet, in_nodes,

out_nodes = laplacePN.calc_potential(node1, node2, link1, link2,

p_in, p_out, args_stream.solvefor)[0:8]

61 q_vec = laplacePN.calc_flowrate(link1, gL_link, p_in, p_out, pres)

62 inflow_laplace = laplacePN.calc_surface_flowrates(g_inlet, g_outlet,

in_nodes, out_nodes, p_in, p_out, pres)[0]

115

63 presDiff = [p_in, p_out]

64 q_vec=np.asarray(q_vec)

65 toc = time.clock()

66 print " [DONE] - %.2f sec." % (toc-tic)

67
68 print "Setting up for streamline tracking...",

69 sys.stdout.flush()

70 tic = time.clock()

71 numberOfNodes = int(node2[-1][0])

72 # Setting pressures at inlet/outlet to 1 and 2

73 pres = np.insert(pres, 0, presDiff[1])

74 pres = np.insert(pres, len(pres), presDiff[0])

75
76 ## Setting up vectors for connected links to the current link.

77 #-> Also creating vectors for the "location"-term

78 linkLocTerm, inletLinks, outletLinks = streamUtils.get_locationTermVector

()

79
80 locTerm_inlet = [linkLocTerm[i-1] for i in inletLinks]

81 inletLinks = [x for y, x in sorted(zip(locTerm_inlet, inletLinks))]

82 inletLinks.reverse()

83
84 link_connectedNodes, link_lengths, link_nodeLengths, link_pressure,

link_nodePressure = streamUtils.ConstrictionLinkPressures(pres,

g_nodes, g_throats, q_vec)

85
86 # Finding the out and in-links of each node

87 node_out_links = []

88 node_in_links = []

89 avg_out_links = 0.0

90 for i in range(len(node1)):

91 numOfConnections = int(node1[i][4])

92 temp_node_out_links = []

93 temp_node_in_links = []

94 for j in range(numOfConnections):

95 if (pres[int(node1[i][0])] >= pres[int(node1[i][5+j])]):

96 temp_node_out_links.append(int(node1[i][7+numOfConnections+j]))

97 else:

98 temp_node_in_links.append(int(node1[i][7+numOfConnections+j]))

99 node_out_links.append(temp_node_out_links)

100 node_in_links.append(temp_node_in_links)

101 avg_out_links += len(temp_node_out_links)

102 avg_out_links = avg_out_links/numberOfNodes

103
104 nextLink = streamUtils.get_nextLink(link_connectedNodes, linkLocTerm, pres

, q_vec)

116

105
106 angles, out_links = streamUtils.get_LinkAngles(link_connectedNodes,

link_nodePressure, pres)

107
108 q_vec_in = np.copy(q_vec) # making copies of q_vec to keep track of in

and out rates

109 q_vec_out = np.copy(q_vec)

110 q_vec_in_loc = np.copy(q_vec) # making copies of q_vec to keep track of

in and out rates

111 q_vec_out_loc = np.copy(q_vec)

112
113 sort_key = args_stream.sort

114
115 for i in range(numberOfNodes):

116 SortVec = []

117 for j in range(len(node_in_links[i])):

118 if len(node_out_links[i]) > 0:

119 for k in range(len(angles[node_in_links[i][j]-1])):

120 if sort_key == ’angles’:

121 SortVec.append([node_in_links[i][j], out_links[node_in_links[i][

j]-1][k], angles[node_in_links[i][j]-1][k]])

122 elif sort_key == ’location’:

123 SortVec.append([node_in_links[i][j], out_links[node_in_links[i][

j]-1][k], linkLocTerm[out_links[node_in_links[i][j]-1][k

]-1]])

124 SortVec = sorted(SortVec, key=itemgetter(2))

125 # Associating volumes to each link

126 for x in range(len(SortVec)):

127 from_link = SortVec[x][0]

128 to_link = SortVec[x][1]

129
130 if q_vec_in[from_link-1]>q_vec_out[to_link-1]:

131 nextLink[from_link-1][2][out_links[from_link-1].index(to_link)]=

q_vec_out[to_link-1]

132 q_vec_in[from_link-1]-=q_vec_out[to_link-1]

133 q_vec_out[to_link-1]-=q_vec_out[to_link-1]

134 else:

135 nextLink[from_link-1][2][out_links[from_link-1].index(to_link)]=

q_vec_in[from_link-1]

136 q_vec_out[to_link-1]-=q_vec_in[from_link-1]

137 q_vec_in[from_link-1]-=q_vec_in[from_link-1]

138
139 for i in range(len(nextLink)):

140 k=0

141 while 0 in nextLink[i][2]:

142 if nextLink[i][2][k] == 0:

117

143 nextLink[i][0].pop(k)

144 nextLink[i][1].pop(k)

145 nextLink[i][2].pop(k)

146 else:

147 k+=1

148 if ((i+1) in outletLinks):

149 nextLink[i][0].append(0)

150 nextLink[i][1].append(0)

151
152 # Sorting each line in nextLink_ang from high to low flow rates.

153 for i in range(len(nextLink)):

154 nextLink[i][0] = [x for y, x in sorted(zip(nextLink[i][2], nextLink[i

][0]), reverse= True)]

155 nextLink[i][2] = sorted(nextLink[i][2], reverse=True)

156
157 toc = time.clock()

158 print " [DONE] - %.2f sec." % (toc-tic)

159
160 totalQ = 0.0

161 constrictionSum = 0.0

162 totalTortVolume=0.0

163 tortSum = 0.0

164
165 listOfStacks = []

166 listOfNodes = []

167 streamlineLength = []

168 length, width, depth = netRecon.get_dimensions()

169
170 tic = time.clock()

171 print "Tracking streamlines... (from %s inlet links)" % (len(inletLinks))

172
173 for i in tqdm(range(0,len(inletLinks))):

174 # Possible links avaiable

175 while len(nextLink[inletLinks[i]-1][0]) > 0:

176
177 qStack = []

178 stack = []

179 stackLinks = []

180 nextStep = inletLinks[i]

181 stackLinks.append(nextStep)

182
183 while len(nextLink[nextStep-1][0]) > 0 and nextStep not in outletLinks

: #true

184 if nextLink[nextStep-1][1][0] != 0:

185 stack.append(nextLink[nextStep-1][1][0])

186 stackLinks.append(nextLink[nextStep-1][0][0])

118

187 qStack.append(nextLink[nextStep-1][2][0])

188 nextStep = nextLink[nextStep-1][0][0]

189
190 if nextStep not in outletLinks:

191 stackLinks.pop(-1)

192 while len(stackLinks) > 0 and len(nextLink[nextStep-1][0]) == 0: #

lengde av vec

193
194 nextLink[stackLinks[-1]-1][0].pop(0)

195 nextLink[stackLinks[-1]-1][1].pop(0)

196 nextLink[stackLinks[-1]-1][2].pop(0)

197 nextStep = stackLinks[-1]

198 stackLinks.pop(-1)

199
200 else:

201 smallestQ = np.min(qStack)

202 totalQ += smallestQ

203 listOfStacks.append(stackLinks)

204 listOfNodes.append(stack)

205 pathLength = []

206 orgStack = []

207
208 pathConst = 0.0

209
210 for j in range(0,len(stackLinks)-1):

211 link = stackLinks[j]

212 pathLength.append(link1[stackLinks[j]-1][5])

213 nextLink[stackLinks[j]-1][2][0] -= smallestQ

214
215 if nextLink[stackLinks[j]-1][2][0] <= 0 and nextLink[stackLinks[j

]-1][0][0] != 0:

216 nextLink[stackLinks[j]-1][0].pop(0)

217 nextLink[stackLinks[j]-1][1].pop(0)

218 nextLink[stackLinks[j]-1][2].pop(0)

219
220 if ((link_nodePressure[link-1][0]-link_pressure[link-1][0]) == 0

or (link_pressure[link-1][0]-link_pressure[link-1][1]) == 0 or

(link_pressure[link-1][1]-link_nodePressure[link-1][1]) == 0)

:

221 print "*"*80

222 print "WARNING: Zero-division encountered in calculation."

223 print "Current streamline (#%i) constriction factor ignored." %

i

224 print "*"*80

225 else:

226 pathConst += (link_nodeLengths[link-1][0]**2)/(link_nodePressure

119

[link-1][0]-link_pressure[link-1][0]) + (link_lengths[link

-1]**2)/(link_pressure[link-1][0]-link_pressure[link-1][1])

+ (link_nodeLengths[link-1][1]**2)/(link_pressure[link

-1][1]-link_nodePressure[link-1][1])

227
228 pathConst*=1/(sum(pathLength)**2)

229 pathConst*=smallestQ

230 streamlineLength.append(sum(pathLength))

231 tortSum += length/sum(pathLength)

232 constrictionSum+=pathConst

233
234 toc=time.clock()

235 print "Time to track streamlines: %.3f sec. \n" % (toc-tic)

236
237 #effective porosity calculation

238 poro_nodes = []

239 poro_links = []

240
241 for stack in listOfNodes:

242 poro_nodes.extend(stack)

243 poro_nodes = set(poro_nodes)

244 for stack in listOfStacks:

245 poro_links.extend(stack)

246 poro_links = set(poro_links)

247
248 eff_pore_volume = 0

249 for node in poro_nodes:

250 eff_pore_volume += node2[node-1][1]+node2[node-1][4]

251 for link in poro_links:

252 eff_pore_volume += link2[link-1][6]+link2[link-1][7]

253 eff_porosity=(eff_pore_volume/(length*width*depth))*100.0

254
255 if args_stream.phaseConductancePD:

256 eff_phase_volume = 0

257 for node in poro_nodes:

258 eff_phase_volume += (node2[node-1][1]+node2[node-1][4])*
bodySaturationPD[node-1]

259 for link in poro_links:

260 eff_phase_volume += (link2[link-1][6]+link2[link-1][7])*
throatSaturationPD[link-1]

261 eff_phase_porosity=(eff_phase_volume/(length*width*depth))*100.0

262
263 phase_volume = 0

264 for i in range(0,len(node2)):

265 phase_volume += (node2[i][1]+node2[i][4])*bodySaturationPD[i]

266 for i in range(0,len(link2)):

120

267 phase_volume += (link2[i][6]+link2[i][7])*throatSaturationPD[i]

268 phase_porosity=(phase_volume/(length*width*depth))*100.0

269
270 por_volume = 0

271 for i in range(0,len(node2)):

272 por_volume += (node2[i][1]+node2[i][4])

273 for i in range(0,len(link2)):

274 por_volume += (link2[i][6]+link2[i][7])

275 por_porosity=(por_volume/(length*width*depth))*100.0

276
277 ## Check for unused nodes

278 numUnusedNodes = len(node1)-len(poro_nodes)

279 numUnusedLinks = len(link1)-len(poro_links)

280 numStr_node = (((float(numUnusedNodes)/numberOfNodes)*100), numUnusedNodes

, numberOfNodes)

281 numStr_link = (((float(numUnusedLinks)/len(link1))*100), numUnusedLinks,

len(link1))

282
283 mainToc = time.clock()

284 print "* Streamline tracking statistics:"

285 print "Streamlines tracked based on *%s* of links" % sort_key

286 print "Number of streamlines: %s" % len(listOfStacks)

287 print "Unused nodes: %.1f%% (%s/%s)" % numStr_node

288 print "Unused links: %.1f%% (%s/%s)\n" % numStr_link

289 print "* Pore structure measures:"

290 print "Constriction factor: %.2f" % (constrictionSum/totalQ)

291 print "Tortuosity: %.4f" % (tortSum/len(listOfStacks))

292 print "Effective porosity: %.2f %% " % eff_porosity

293 print "Average outlet links: %.2f \n" % avg_out_links

294 if args_stream.phaseConductancePD:

295 print "Effective phase poro: %.2f %%" % eff_phase_porosity

296 print "Phase poro: %.2f %%" % phase_porosity

297 print "Network poro: %.2f %%" % por_porosity

298 print "Effective saturation: %.2f %% \n" % (100.0*eff_phase_porosity/

phase_porosity)

299 print "* Flowrate calculations:"

300 print "Streamline flowrate: %.7E" % totalQ

301 print "Steady-state flowrate: %.7E" % inflow_laplace

302 print "- Flowrate difference: %.7E" % (inflow_laplace-totalQ)

303 print "- Error: %.2f%% Elapsed time: %.2f sec." % (((inflow_laplace

-totalQ)/inflow_laplace)*100, (mainToc-mainTic))

304 if args_stream.solvefor == ’FF’:

305 FF = laplacePN.calc_formation_factor(p_in, p_out, inflow_laplace)

306 print "Formation factor: %.2f" % FF

307 else:

308 perm_mdarcy = laplacePN.calc_permeability(p_in, p_out, inflow_laplace)

121

309 print "Permeability = %.2f mD" % perm_mdarcy

310
311 if args_stream.saveResultsToFile:

312 outfile=open(’output/netStream_output.txt’,’w’)

313 if args_stream.solvefor == ’FF’:

314 outfile.write("%.4f\n" % FF)

315 else:

316 outfile.write("%.4f\n" % perm_mdarcy)

317 outfile.write("%.4f\n" % (constrictionSum/totalQ))

318 outfile.write("%.4f\n" % (tortSum/len(listOfStacks)))

319 outfile.write("%.4f\n" % (por_porosity/100.0))

320 outfile.write("%.4f\n" % (eff_porosity/100.0))

321 if args_stream.phaseConductancePD:

322 outfile.write("%.4f\n" % (eff_phase_porosity/100.0))

323 outfile.write("%.4f\n" % (phase_porosity/100.0))

324 outfile.write("%.4f\n" % (eff_phase_porosity/phase_porosity))

325 outfile.close()

326
327 if args_stream.plot:

328 netPlot.plot_streamline(listOfNodes)

B.5 streamUtils.py

1 import numpy as np

2 import math

3 from numpy import linalg as LA

4 import time

5 import netRecon

6
7 link1 = netRecon.get_network_file(’link1’)

8 link2 = netRecon.get_network_file(’link2’)

9 node2 = netRecon.get_network_file(’node2’)

10 node1 = netRecon.get_network_file(’node1’)

11
12 def get_locationTermVector():

13 #Calculates the location-term for each link

14 inletLinks = []

15 outletLinks = []

16 locationTerm = [np.sqrt(item[2]**2 + item[3]**2) for item in node1]

17 linkLocTerm = []

18 for i in range(len(link1)):

19 if link1[i][1] != -1 and link1[i][2] != 0:

20 linkLocTerm.append((locationTerm[int(link1[i][1])-1]+locationTerm[

int(link1[i][2])-1])/2)

21 elif link1[i][1] == -1:

122

22 linkLocTerm.append(locationTerm[int(link1[i][2])-1])

23 inletLinks.append(int(link1[i][0]))

24 elif link1[i][2] == 0:

25 linkLocTerm.append(locationTerm[int(link1[i][1])-1])

26 outletLinks.append(int(link1[i][0]))

27 return linkLocTerm, inletLinks, outletLinks

28
29 def ConstrictionLinkPressures(pres, g_nodes, g_throats, q_vec):

30 # Calculating the pressures needed for constriction factor calculation.

31 link_connectedNodes = []

32 link_nodeLengths = []

33 link_nodeConductivity = []

34 link_nodePressure = []

35 link_lengths = []

36 link_conductivity = []

37 link_pressure = []

38
39 for i in range(len(link1)):

40 tempCon = [int(link1[i][1]), int(link1[i][2])]

41 tempPressures = [pres[tempCon[0]], pres[tempCon[1]]]

42 tempLengths = [link2[i][3], link2[i][4]]

43 if -1 in tempCon or 0 in tempCon: # Finding the pressures between

each object.

44 g1 = g_nodes[max(tempCon)-1] # l1 ll l2

45 g2 = g1 # g1 gl g2

46 else: # __ __

47 g1 = g_nodes[tempCon[0]-1] # /1 \--------/2 \

48 g2 = g_nodes[tempCon[1]-1] # __/--------__/

49 tempConduc = [g1,g2] # p1 pa pb p2

50
51 link_lengths.append(link2[i][5])

52 link_conductivity.append(g_throats[i])

53
54 link_connectedNodes.append([x for y, x in sorted(zip(tempPressures,

tempCon))])

55 link_connectedNodes[-1].reverse()

56 link_nodeLengths.append([x for y, x in sorted(zip(tempPressures,

tempLengths))])

57 link_nodeLengths[-1].reverse()

58 link_nodeConductivity.append([x for y, x in sorted(zip(tempPressures,

tempConduc))])

59 link_nodeConductivity[-1].reverse()

60 link_nodePressure.append(sorted(tempPressures))

61 link_nodePressure[-1].reverse()

62
63 Q = q_vec[i]

123

64 if -1 in tempCon:

65 pb = (Q*link_nodeLengths[-1][1])/link_nodeConductivity[-1][1] +

link_nodePressure[-1][1]

66 pa = pb+(Q*link_lengths[-1])/link_conductivity[-1]

67 else:

68 pa = link_nodePressure[-1][0]-(Q*link_nodeLengths[-1][0])/

link_nodeConductivity[-1][0] # NB! q=h*(p1-pa)

69 pb = pa-(Q*link_lengths[-1])/link_conductivity[-1]

70
71 p2check = pb- (Q*link_nodeLengths[-1][1])/link_nodeConductivity[-1][1]

72 link_pressure.append([pa,pb])

73 return link_connectedNodes, link_lengths, link_nodeLengths,

link_pressure, link_nodePressure

74
75 def get_nextLink(link_connectedNodes, linkLocTerm, pres, q_vec):

76 nextLink = []

77 for i in range(len(link1)):

78 prefNode = link_connectedNodes[i][-1]

79 nextNode_q = q_vec[i]

80 nextLink_temp = []

81 nextNode = []

82 if prefNode > 0: # If the link in flow direction is connected by links

to other nodes.

83 prefNodeInfo = node1[prefNode-1] # storing the connected nodes info

in list.

84 numOfConnections = int(prefNodeInfo[4])

85 for j in range(numOfConnections):

86 # Checking if the connected node has lower potential and that it

is not an inlet node

87 if (pres[int(prefNodeInfo[0])] > pres[int(prefNodeInfo[5+j])] and

int(prefNodeInfo[5+j]) not in [0,-1]):

88 nextNode.append(int(prefNodeInfo[0]))

89 nextLink_temp.append(int(prefNodeInfo[7+numOfConnections+j]))

90 if int(prefNodeInfo[5+j]) == 0:

91 nextNode.append(int(prefNodeInfo[0]))

92 nextLink_temp.append(int(prefNodeInfo[7+numOfConnections+j]))

93 elif prefNode == 0:

94 nextNode.append(0)

95 nextLink_temp.append(0)

96 nextLink.append([nextLink_temp, nextNode, [0]*len(nextNode)])

97 return nextLink

98
99 def get_LinkAngles(link_connectedNodes, link_nodePressure, pres):

100 # Calculates the angles between inlet link and possible outlet links

101 # Format: [[list of angles from link 1 to link 1 to N],...

102 # ,[list of angles from link N to link 1 to N]]]

124

103 in_links = []

104 out_links = []

105 in_nodes = []

106 out_nodes = []

107 out_nodes_coord = []

108 angles = []

109 coord_all, coord_in, coord_out, coord_nonsurf = netRecon.get_coord(node1

)

110 inletPrefCount = 0

111
112 for i in range(len(link1)):

113
114 if -1 in link_connectedNodes[i]:

115 prefNode = link_connectedNodes[i][-1]

116 center_node = prefNode

117 in_vec = coord_all[center_node-1]-np.array([0.01,0,0])-coord_all[

center_node-1] #coord_all[center_node-1]-np.array([0.01,0,0])-

coord_all[center_node-1]

118 else:

119 prefNode = link_connectedNodes[i][-1]

120 center_node = prefNode

121 in_node = link_connectedNodes[i][0]

122 in_vec = coord_all[in_node-1]-coord_all[center_node-1]

123 in_link = i+1

124 nextLink_temp = []

125 nextNode = []

126
127 if prefNode > 0: # If the link in flow direction is connected by links

to other nodes.

128 prefNodeInfo = node1[prefNode-1] # storing the connected nodes info

in list.

129 numOfConnections = int(prefNodeInfo[4])

130 temp_in_links = []

131 temp_out_links = []

132 temp_in_nodes = []

133 temp_out_nodes = []

134 temp_out_nodes_coord = []

135
136 for j in range(numOfConnections):

137 if (pres[int(prefNodeInfo[0])] > pres[int(prefNodeInfo[5+j])]):

138 temp_out_links.append(int(prefNodeInfo[7+numOfConnections+j]))

139 temp_out_nodes.append(int(prefNodeInfo[5+j]))

140 if int(prefNodeInfo[5+j]) == 0:

141 temp_out_nodes_coord.append(coord_all[center_node-1]+np.array

([0.01,0,0]))

142 else:

125

143 temp_out_nodes_coord.append(coord_all[int(prefNodeInfo[5+j])

-1])

144 out_links.append(temp_out_links)

145 out_nodes.append(temp_out_nodes)

146 out_nodes_coord.append(temp_out_nodes_coord)

147
148 temp_angles = []

149 in_vec_norm = in_vec/LA.norm(in_vec)

150 for k in range(len(out_links[-1])):

151 out_vec = out_nodes_coord[-1][k]-coord_all[center_node-1]

152 out_vec_norm = out_vec/LA.norm(out_vec)

153 dot_prod = np.dot(in_vec_norm, out_vec_norm)

154 if abs(dot_prod) > 1:

155 print "*"*80

156 print "WARNING: Absolute value of dot product is over 1 and is"

157 print "therefore set to %i. (Dot product: %.16f)" % (int(

dot_prod), dot_prod)

158 print "*"*80

159 dot_prod = int(dot_prod)

160 angle = math.acos(dot_prod)*(180/math.pi)

161 temp_angles.append(angle)

162 angles.append(temp_angles)

163
164 elif prefNode == 0:

165 out_nodes.append([])

166 out_links.append([])

167 angles.append([])

168 elif prefNode == -1:

169 inletPrefCount += 1

170 out_nodes.append([])

171 out_links.append([])

172 angles.append([])

173 return angles, out_links

174
175 def print_nextLink_ang(nextLink_ang):

176 for i in range(len(nextLink_ang)):

177 print "Link %s | links: %s | nodes: %s | rates: %s" % ((i+1),

nextLink_ang[i][0], nextLink_ang[i][1], nextLink_ang[i][2])

B.6 netPlot.py

1 import numpy as np

2 import time

3 from tqdm import *
4

126

5 import matplotlib.pylab as plt

6 import matplotlib.ticker as ticker

7 from mpl_toolkits.mplot3d import Axes3D

8
9 import netRecon

10
11
12 link1 = netRecon.get_network_file(’link1’)

13 link2 = netRecon.get_network_file(’link2’)

14 node2 = netRecon.get_network_file(’node2’)

15 node1 = netRecon.get_network_file(’node1’)

16
17 def get_streamline_vec(listOfNodes, coord_all):

18 streamline_vec = []

19 for i in range(len(listOfNodes)):

20 x_coord = []

21 z_coord = []

22 for j in range(len(listOfNodes[i])):

23 x_coord.append(coord_all[listOfNodes[i][j]-1][0])

24 z_coord.append(coord_all[listOfNodes[i][j]-1][2])

25 streamline_vec.append([x_coord,z_coord])

26 return streamline_vec

27
28 def plot_streamline(listOfNodes):

29 tic = time.clock()

30 coord_all, coord_in, coord_out, coord_nonsurf = netRecon.get_coord(node1

)

31 streamline_vec = get_streamline_vec(listOfNodes, coord_all)

32
33 scatter_size = -0.0014*len(coord_all)+15.4

34 fig = plt.figure()

35 plt.scatter(coord_in[:,0], coord_in[:,2], alpha=1,label=’Inlet pores’, s

=scatter_size, marker="o")

36 plt.scatter(coord_out[:,0], coord_out[:,2], alpha=1, label=’Outlet pores

’, s=scatter_size, marker="o")

37 plt.scatter(coord_nonsurf[:,0], coord_nonsurf[:,2], alpha=1, label=’Non-

surface pores’, s=scatter_size, marker="o")

38
39 print "Plotting streamlines..."

40 for i in tqdm(range(len(streamline_vec))):

41 plt.plot(streamline_vec[i][0],streamline_vec[i][1], c=’r’,alpha=0.1,

linewidth=0.7)

42
43 plt.legend(scatterpoints=1)

44 fig.tight_layout()

45 axes = plt.gca()

127

46 axes.set_xlim([0-max(coord_all[:,0])/10,max(coord_all[:,0])+max(

coord_all[:,0])/10])

47 axes.set_ylim([0-max(coord_all[:,1])/10,max(coord_all[:,1])+max(

coord_all[:,1])/10])

48 toc=time.clock()

49 print "Time to plot streamlines:", "%.3f" % (toc-tic)

50 plt.show()

51
52 def plot_network(dim):

53 start_plt = time.time() # Stating the clock

54 # Importing data

55 coord_all, coord_in, coord_out, coord_nonsurf = netRecon.get_coord(node1

)

56
57 if dim == ’3D’:

58 fig = plt.figure()

59 ax = fig.add_subplot(111, projection=’3d’)

60 ax.scatter(coord_in[:,0],coord_in[:,1],coord_in[:,2], c=’r’, marker=’ˆ

’, label=’Inlet pores’)

61 ax.scatter(coord_out[:,0],coord_out[:,1],coord_out[:,2], c=’r’, marker

=’o’, label=’Outlet pores’)

62 ax.scatter(coord_nonsurf[:,0],coord_nonsurf[:,1],coord_nonsurf[:,2], c

=’b’, marker=’o’, label=’Non-surface pores’)

63
64 for i in range(int(link1[-1][0])):

65 if (int(link2[i][1])+int(link2[i][2]))>0:

66 c1=int(link1[i][1])

67 p1=coord_all[c1-1,:]

68 c2=int(link1[i][2])

69 p2=coord_all[c2-1,:]

70 ax.plot([p1[0], p2[0]],[p1[1], p2[1]],[p1[2], p2[2]],c=’k’,alpha

=0.4)

71
72 ax.legend(scatterpoints=1)

73 #ax.set_axis_off()

74 time_plt = float(time.time()-start_plt)

75 print "Time elapsed to plot network = ", "%.4f" % time_plt, "sec"

76 plt.show()

77 elif dim == ’2D’:

78 fig = plt.figure()

79 plt.scatter(coord_in[:,0], coord_in[:,2], alpha=0.5,label=’Inlet pores

’)

80 plt.scatter(coord_out[:,0], coord_out[:,2], alpha=0.5, label=’Outlet

pores’)

81 plt.scatter(coord_nonsurf[:,0], coord_nonsurf[:,2], alpha=0.5, label=’

Non-surface pores’)

128

82
83 for i in range(int(link1[-1][0])):

84 if (int(link2[i][1])>0 and int(link2[i][2]))>0:

85 c1=int(link1[i][1])

86 p1=coord_all[c1-1,:]

87 c2=int(link1[i][2])

88 p2=coord_all[c2-1,:]

89 plt.plot([p1[0], p2[0]],[p1[2], p2[2]], c=’k’,alpha=0.5)

90
91 plt.legend(scatterpoints=1)

92 fig.tight_layout()

93 axes = plt.gca()

94 axes.set_xlim([0-max(coord_all[:,0])/10,max(coord_all[:,0])+max(

coord_all[:,0])/10])

95 axes.set_ylim([0-max(coord_all[:,1])/10,max(coord_all[:,1])+max(

coord_all[:,1])/10])

96 plt.show()

97
98 else:

99 print "Please select either ’2D’ or ’3D’ in the variable ’dim=’"

B.7 updateNetwork.py

1 ##

2 #

3 # A code to calculate the solution of the Laplace equation on a

4 # network model by sparse matrix inversion.

5 # Anders Torland, anderstorland@gmail.com, 2018

6 #

7 import numpy as np

8 import scipy

9 import scipy.sparse as sparse

10 import scipy.sparse.linalg

11 import time

12 import math

13
14 # Selfwritten scripts

15 import netRecon

16
17 start = time.clock() # Stating the clock

18 def calc_potential(node1, node2, link1, link2, p_in, p_out, solvefor, **
saturation):

19 # Calculating conductivity, g, for all pores and throats

20 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990 and Eq. 18 from Oren

1998

129

21 visc = 1 #IF CHANGED: CHANGE IN ’calc_permeability(..)’

22 def calc_g_nodes(node2, argument):

23 g_nodes=[]

24 cum_pore_radius = []

25 for i in range(len(node2)):

26 if argument == ’perm’:

27 g_nodes.append((3*node2[i][2]**4)/(80*node2[i][3]*visc))

28 #g_nodes.append((3*(math.pow((math.pi*node2[i,2]**2),2))*node2[i

,3])/(5*1))

29 elif argument == ’FF’:

30 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990

31 g_nodes.append(node2[i][2]**2/(4*node2[i][3]))

32 if ’bodySaturation’ in saturation:

33 g_nodes.append(saturation[’bodySaturation’][i]*node2[i

][2]**2/(4*node2[i][3]))

34 else:

35 g_nodes.append(node2[i][2]**2/(4*node2[i][3]))

36 #g_nodes.append(math.pi*node2[i,2]**2)

37 cum_pore_radius.append(node2[i][2])

38 return g_nodes, cum_pore_radius

39
40 def calc_g_throats(link1, argument):

41 g_throats=[]

42 cum_throat_radius = []

43 for i in range(len(link1)):

44 if argument == ’perm’:

45 g_throats.append((3*link1[i][3]**4)/(80*link1[i][4]*visc))

46 #g_throats.append((3*(math.pow((math.pi*link1[i,3]**2),2))*link1[i

,4])/(5*1))

47 elif argument == ’FF’:

48 #Using A=r_inc**2/(4*G) from Mason and Morrow 1990

49 if ’throatSaturation’ in saturation:

50 g_throats.append(saturation[’throatSaturation’][i]*link1[i

][3]**2/(4*link1[i][4]))

51 else:

52 g_throats.append(link1[i][3]**2/(4*link1[i][4]))

53 #g_throats.append(math.pi*link1[i,3]**2)

54 cum_throat_radius.append(link1[i][3])

55 return g_throats, cum_throat_radius

56
57 def calc_g_link(link1,link2,g_nodes, g_throats):

58 # Calculating link-conductivity (Oren, 1998)

59 gL_link=[]

60 gL_link_solv=[]

61 denominator=0

62 link_length=[]

130

63 g_weigth=1

64 # for-loop: Running through the total number of links.

65 for i in range(len(link1)):

66 if g_throats[i]<=0.0:

67 gL_link.append(0.0)

68 # The link-cond/length was scaled by 1e15. Not needed anymore.

69 gL_link_solv.append(0.0)

70 else:

71 # if: Checking if link is flagged as "inlet".

72 if int(link2[i][1])==-1:

73 if g_nodes[int(link2[i][2])-1]<=0.0:

74 gL_link.append(0.0)

75 gL_link_solv.append(0.0)

76 else:

77 denominator=(((link2[i][5]+link2[i][3])/g_throats[i])+g_weigth

*(link2[i][4]/g_nodes[int(link2[i][2])-1]))

78 gL_link.append(1/denominator)

79 gL_link_solv.append(1/denominator)

80 # if: Checking if link is flagged as "outlet".

81 elif int(link2[i][2])==0:

82 if g_nodes[int(link2[i][1])-1]<=0.0:

83 gL_link.append(0.0)

84 gL_link_solv.append(0.0)

85 else:

86 denominator=(((link2[i][5]+link2[i][4])/g_throats[i])+g_weigth

*(link2[i][3]/g_nodes[int(link2[i][1])-1]))

87 gL_link.append(1/denominator)

88 gL_link_solv.append(1/denominator)

89 else:

90 if g_nodes[int(link2[i][1])-1]<=0.0 or g_nodes[int(link2[i][2])

-1] <= 0.0:

91 gL_link.append(0.0)

92 gL_link_solv.append(0.0)

93 else:

94 denominator=((link2[i][5]/g_throats[i])+g_weigth*((link2[i

][3]/g_nodes[int(link2[i][1])-1])+(link2[i][4]/g_nodes[int

(link2[i][2])-1])))

95 gL_link.append(1/denominator)

96 gL_link_solv.append(1/denominator)

97 link_length.append(link1[i][5])

98 return gL_link_solv, gL_link, link_length

99
100 def create_equation_matrix(node1, gL_link, gL_link_solv, p_in, p_out):

101 num_node=int(node1[-1][0])

102 # Defining different indexing vectors.

103 row=[]

131

104 col=[]

105 data=[]

106 b_vec=[]

107 g_inlet=[]

108 g_outlet=[]

109 in_nodes=[]

110 in_link=[]

111 out_nodes=[]

112 out_link=[]

113
114 # for-loop: Running through the total number of nodes.

115 for i in range(num_node):

116
117 num_con=int(node1[i][4])

118 # Setting up b-vector.

119 # if: True if inlet.

120 if int(node1[i][5+num_con]) == 1:

121 ind=node1[i].index(-1)

122 b_vec.append(-p_in*gL_link_solv[int(node1[i][ind+num_con+2])-1])

123 row.append(i)

124 col.append(i)

125 data.append(-gL_link_solv[int(node1[i][ind+num_con+2])-1])

126
127 ## For rate calculations over inlet

128 g_inlet.append(gL_link[int(node1[i][ind+num_con+2])-1])

129 in_nodes.append(i+1)

130 in_link.append(int(node1[i][ind+num_con+2]))

131 # if: True if outlet

132 elif int(node1[i][6+num_con]) == 1:

133 ind=node1[i].index(0)

134 b_vec.append(-p_out*gL_link_solv[int(node1[i][ind+num_con+2])-1])

135 row.append(i)

136 col.append(i)

137 data.append(-gL_link_solv[int(node1[i][ind+num_con+2])-1])

138
139 ## For rate calculations over outlet

140 g_outlet.append(gL_link[int(node1[i][ind+num_con+2])-1])

141 out_nodes.append(i+1)

142 out_link.append(int(node1[i][ind+num_con+2]))

143
144 else:

145 b_vec.append(0)

146 # for-loop: Running "connection number"-times through each line,

147 # finding all connected nodes to current node, and setting up p-

matrix.

148 for j in range(num_con):

132

149 # if: True if connection number for current node > 0

150 # AND connected node is NOT inlet/outlet.

151
152 if int(node1[i][5+j])>0 and int(node1[i][4])>0:

153 # For the connecting nodes

154 row.append(i)

155 col.append(int(node1[i][5+j])-1)

156 data.append(gL_link_solv[int(node1[i][7+num_con+j])-1])

157 # the node itself

158 row.append(i)

159 col.append(i)

160 data.append(-gL_link_solv[int(node1[i][7+num_con+j])-1])

161
162 # Constructing the sparse matrix from col,row and data

163 mtx = sparse.csc_matrix((data, (row, col)), shape=(num_node,num_node))

164 b_v=np.asarray(b_vec)

165 return mtx, b_v, g_inlet, g_outlet, in_nodes, out_nodes, in_link,

out_link

166
167 def create_initial_guess(node1,guess, p_in, p_out):

168 num_node=int(node1[-1][0])

169 def linear_initial_guess(num_node,p_in,p_out):

170 length, width, depth = netRecon.get_dimensions()

171 p_L=(p_in-p_out)/length

172 for i in range(num_node):

173 x0vec[i]=p_in-node1[i][1]*p_L

174 return x0vec

175
176 x0vec = np.zeros(num_node,dtype=np.float)

177 if guess == ’linear’:

178 x0vec = linear_initial_guess(num_node,p_in,p_out)

179
180 def CG_potential_solver(mtx, b_v, initial_guess, tolerance):

181 #Solving by CG-method.

182 tic=time.clock()

183 # Solving for pressures with CG.

184 xvec = scipy.sparse.linalg.cg(mtx, b_v, initial_guess, tol=tolerance)

185 toc=time.clock()

186 CG_runtime=toc-tic

187 return xvec[0]

188
189 g_nodes, cum_pore_radius = calc_g_nodes(node2, solvefor)

190 g_throats, cum_throat_radius = calc_g_throats(link1, solvefor)

191 gL_link_solv, gL_link, link_length = calc_g_link(link1,link2,g_nodes,

g_throats)

192 mtx, b_v, g_inlet, g_outlet, in_nodes, out_nodes, in_link, out_link =

133

create_equation_matrix(node1, gL_link, gL_link_solv, p_in, p_out)

193 x0vec = create_initial_guess(node1,’linear’, p_in, p_out)

194 xvec = CG_potential_solver(mtx, b_v, x0vec, 1E-15)

195
196 return xvec, g_nodes, g_throats, gL_link, g_inlet, g_outlet, in_nodes,

out_nodes, cum_pore_radius, cum_throat_radius, link_length, in_link,

out_link

197
198 def calc_surface_flowrates(g_inlet, g_outlet, in_nodes, out_nodes, p_in,

p_out, xvec):

199 # Calculating flowrate at inlet and outlet

200 inflow=0

201 outflow=0

202 inlet_counter=0

203 outlet_counter=0

204 # for-loop: Running through all inlet pores.

205 # Calculating flowrate at current inlet-pore.

206 for i in range(len(in_nodes)):

207 inflow+=(g_inlet[i]*(p_in-xvec[int(in_nodes[i])-1]))

208 inlet_counter+=1

209 # for-loop: Running through all outlet pores.

210 # Calculating flowrate at current outlet-pore.

211 for i in range(len(out_nodes)):

212 outflow+=(g_outlet[i]*(p_out-xvec[int(out_nodes[i])-1]))

213 outlet_counter+=1

214 return inflow, outflow, inlet_counter, outlet_counter

215
216 def calc_permeability(p_in, p_out, inflow):

217 # Permeability calculation

218 length, width, depth = netRecon.get_dimensions()

219
220 dP=p_in-p_out # Pressure difference over inlet.

221 area=width*depth # Inlet area: total_y_length *
total_z_length

222 visc=1 # Viscosity: Defined as 1 throughout.

223 perm=(inflow*length*visc)/(area*dP) # Permeability: By Darcys Law (in SI

-unit: mˆ2)

224 perm_mdarcy=perm*1.01*10**15 # Permeability: In Darcy-unit: mD

(1.01*12ˆ-12 mˆ2 = 1 mD)

225
226 return perm_mdarcy

227
228 def calc_formation_factor(p_in, p_out, inflow):

229 length, width, depth = netRecon.get_dimensions()

230 area=width*depth

231 FF=((area*(p_in-p_out))/(inflow*length))

134

232 return FF

233
234 def calc_network_statistics(node1,node2,link1,link2):

235 length, width, depth = netRecon.get_dimensions()

236 area=width*depth

237 num_node=int(node1[-1][0])

238 # Porosity calculation and link/node statistics

239 pore_volume=0

240 pore_radius=[]

241 link_radius=0

242 total_connections=0

243 # for-loop: Running through all links.

244 for i in range(len(link2)):

245 pore_volume+=link2[i][6]+link2[i][7]

246 link_radius+=link1[i][3]

247 # for-loop: Running through all pores.

248 for i in range(len(node2)):

249 pore_volume+=node2[i][1]+node2[i][4]

250 pore_radius.append(node2[i][2])

251 total_connections+=node1[i][4]

252 avg_pore_radius=(sum(pore_radius)/num_node)*10**6

253 max_pore_radius=max(pore_radius)*10**6

254 min_pore_radius=min(pore_radius)*10**6

255 avg_link_radius=(link_radius/int(link1[-1][0]))*10**6

256 avg_con_num=total_connections/num_node

257 porosity=(pore_volume*100)/(length*area)

258 return avg_pore_radius, max_pore_radius, min_pore_radius,

avg_link_radius, avg_con_num, porosity

259
260 def calc_flowrate(link1, gL_link, p_in, p_out, xvec):

261 # Set up q in each link

262 q_vec=[]

263 # for-loop: Running through all inlet pores.

264 for i in range(int(link1[-1][0])):

265 c1=int(link1[i][1])

266 c2=int(link1[i][2])

267 if c1==-1:

268 q_vec.append(gL_link[i]*(p_in-xvec[c2-1]))

269 elif c2==0:

270 q_vec.append(gL_link[i]*(xvec[c1-1]-p_out))

271 else:

272 q_vec.append(gL_link[i]*(xvec[c2-1]-xvec[c1-1]))

273 q_vec=np.asarray(q_vec)

274 q_vec=abs(q_vec)

275
276 return q_vec

135

B.8 netRecon.py

1 ##

2 #

3 # A script to import, export and modify network data files.

4 # This script contains several functions, such as: removal of non-spanning

nodes and links, rearrangement

5 # of the network to the standard format, reading and writing data files,

calculation of different pore

6 # structure measures.

7 #

8 # Anders Torland, anderstorland@gmail.com, 2018

9 #

10 import shutil

11 import os

12 import numpy as np

13 import linecache

14 import time

15 from tqdm import *
16 from operator import itemgetter

17
18 def get_network_file(file):

19 filename = file+’.dat’

20 if ’link’ in file:

21 if ’original’ in filename:

22 numberOfLines = int(linecache.getline(’originalNetworks/link1.dat’,

1))

23 else:

24 numberOfLines = int(linecache.getline(’link1.dat’, 1))

25 elif ’node’ in file:

26 if ’original’ in filename:

27 numberOfLines = int(linecache.getline(’originalNetworks/node1.dat’,

1).split()[0])

28 else:

29 numberOfLines = int(linecache.getline(’node1.dat’, 1).split()[0])

30 else:

31 print "File type not recognized!"

32
33 if ’1’ in file:

34 skip = 1

35 else:

36 skip = 0

37
38 outfile = []

39 for i in range(numberOfLines):

40 line=linecache.getline(filename, i+1+skip).split()

136

41 numLine = [float(i) for i in line]

42 outfile.append(numLine)

43 return outfile

44
45 def get_saturation_file(networkElements,floodingCycle):

46 filename = networkElements+’sat_’+floodingCycle+’.dat’

47 if ’link’ in networkElements:

48 values = np.loadtxt(filename)

49 returnVector=values[:,3]

50 elif ’node’ in networkElements:

51 values = np.loadtxt(filename, skiprows=1)

52 returnVector=values[:,3]

53 return returnVector

54
55 def get_surface_nodes(node1):

56 numberOfNodes = len(node1)

57 #print "length:", numberOfNodes

58 inletNodes = []

59 outletNodes = []

60 for i in range(numberOfNodes):

61 #print "line:", node1[i][4]

62 numberOfConnections = int(node1[i][4])

63 if node1[i][5+numberOfConnections] == 1:

64 inletNodes.append(int(node1[i][0]))

65 elif node1[i][6+numberOfConnections] == 1:

66 outletNodes.append(int(node1[i][0]))

67 return inletNodes, outletNodes

68
69 def get_dimensions():

70 line1=linecache.getline(’node1.dat’, 1).split()

71 length = float(line1[1])

72 width = float(line1[2])

73 depth = float(line1[3])

74 return length, width, depth

75
76 def get_zero_coord_nodes(node1):

77 zero_coord_nodes = 0

78 for line in node1:

79 if line[4] == 0:

80 zero_coord_nodes +=1

81 return zero_coord_nodes

82
83 def map_connections(fromNodes, node1):

84 def append_connected_nodes(ap_node):

85 connectionNumber = int(node1[ap_node-1][4])

86 connectedNodes = node1[ap_node-1][5:5+connectionNumber]

137

87
88 for i in range(len(connectedNodes)):

89 connectedNodes[i] = int(connectedNodes[i])

90 connectedNodes = sorted(connectedNodes, reverse=True)

91 for i in connectedNodes:

92 if i > 0 and i not in checkNodes and i not in usedNodes:

93 checkNodes.append(i)

94 usedNodes.append(i)

95 conMap = [0]*len(node1)

96 checkNodes = []

97 usedNodes = []

98 for node in fromNodes:

99 checkNodes.append(node)

100 usedNodes.append(node)

101 while len(checkNodes)>0:

102 append_connected_nodes(checkNodes[0])

103 conMap[checkNodes[0]-1] = 1

104 checkNodes.remove(checkNodes[0])

105 return conMap

106
107 def delete_unreachable_nodes(nodesToRemove, node1, node2):

108 for node in nodesToRemove:

109 node1.pop(node-1)

110 node2.pop(node-1)

111 numNodesRemoved = len(nodesToRemove)

112 return numNodesRemoved, node1, node2

113
114 def delete_unreachable_links(nodesToRemove, link1, link2):

115 linksToRemove = []

116 for i in range(len(link1)):

117 conNode1 = link1[i][1]

118 conNode2 = link1[i][2]

119 if conNode1 in nodesToRemove or conNode2 in nodesToRemove:

120 linksToRemove.append(i+1)

121 linksToRemove = sorted(linksToRemove, reverse=True)

122 numLinksRemoved = len(linksToRemove)

123
124 for link in linksToRemove:

125 link1.pop(link-1)

126 link2.pop(link-1)

127 return numLinksRemoved,link1, link2

128
129 def get_unreachable_nodes(inMap, outMap, node1):

130 combMap = [0]*len(node1)

131 unreachableNodes = []

132 unreachInlet = 0

138

133 unreachOutlet = 0

134 unreachBoth = 0

135 for i in range(len(combMap)):

136 if inMap[i] == 1 and outMap[i] == 1:

137 combMap[i] = 1

138 else:

139 unreachableNodes.append(i+1)

140
141 if inMap[i] == 0:

142 unreachInlet += 1

143 elif outMap[i] == 0:

144 unreachOutlet += 1

145 if inMap[i] == 0 and outMap[i] == 0:

146 unreachBoth += 1

147 unreachableNodes = sorted(unreachableNodes, reverse=True)

148 return unreachableNodes, unreachInlet, unreachOutlet, unreachBoth

149
150 def remove_nonSpanning(node1,node2,link1,link2):

151 print "Removing non-spanning pores and throats..."

152 inletNodes, outletNodes = get_surface_nodes(node1)

153 zero_coord_nodes = get_zero_coord_nodes(node1)

154 inletConMap = map_connections(inletNodes, node1)

155 outletConMap = map_connections(outletNodes, node1)

156 nodesToRemove, unreachInlet, unreachOutlet, unreachBoth =

get_unreachable_nodes(inletConMap,outletConMap, node1)

157 numNodesRemoved, node1, node2 = delete_unreachable_nodes(nodesToRemove,

node1, node2)

158 numLinksRemoved, link1, link2 = delete_unreachable_links(nodesToRemove,

link1, link2)

159
160 # Some network reconstruction statistics.

161 print "%s nodes are not reached from inlet." % unreachInlet

162 print "%s nodes are not reached from inlet." % unreachOutlet

163 print "%s nodes are not connected through network." % numNodesRemoved

164 print "%s links are not connected through network." % numLinksRemoved

165 print "%s nodes connected to either inlet or outlet." % unreachBoth

166 print "%s nodes have zero coordination number." % zero_coord_nodes

167
168 return node1, node2, link1, link2, numNodesRemoved, numLinksRemoved,

unreachInlet, unreachOutlet, nodesToRemove, unreachBoth

169
170 def print_network_to_file(network_file, name):

171 if os.path.isfile(name):

172 move_network_files(name)

173 orgFilePath = ’originalNetworks/’+name

174 firstLine = linecache.getline(orgFilePath,1).split()

139

175 if int(firstLine[0]) != 1:

176 firstLine[0] = len(network_file)

177 firstLine = str(firstLine).strip(’[]’)

178 firstLine = firstLine.replace(",", "")

179 firstLine = firstLine.replace("’", "")

180 file = open(name, ’w’)

181 file.write(firstLine+’\n’)

182 else:

183 file = open(name, ’w’)

184
185 for item in network_file:

186 string = str(item).strip(’[]’)

187 string = string.replace(",", "")

188 file.write(string+’\n’ % item)

189 file.close()

190 print "%s created!" % name

191
192 def move_network_files(name):

193 source = os.getcwd()

194 dest = os.getcwd()+’/originalNetworks’

195 if not os.path.exists(dest):

196 os.makedirs(dest)

197 files = os.listdir(source)

198 for f in files:

199 if f == name:

200 if os.path.isfile(dest+’/’+name):

201 dest += ’/duplicate’

202 if not os.path.exists(dest):

203 os.makedirs(dest)

204 shutil.move(f, dest)

205
206 def rearrange_network(node1, node2, link1, link2):

207 def change_connected_nodes(new, old, oldConnectedNodes,

oldConnectedLinks):

208 for i in range(len(node1)):

209 if node1[i][0] in oldConnectedNodes:

210 connectionNumber = int(node1[i][4])

211 connectedNodes = node1[i][5:5+connectionNumber]

212 nodeRange = np.arange(5,5+connectionNumber)

213 if old in connectedNodes:

214 for j in nodeRange:

215 if node1[i][j] == old:

216 node1[i][j] = new

217
218 for i in range(len(link1)):

219 if link1[i][0] in oldConnectedLinks:

140

220 connections = [int(link1[i][1]), int(link1[i][2])]

221 nodeRange = np.arange(1,3)

222 if old in connections:

223 for j in nodeRange:

224 if link1[i][j] == old:

225 link1[i][j] = new

226 link2[i][j] = new

227
228 def change_connected_links(new, old, connections):

229 for i in range(len(node1)):

230 if node1[i][0] in connections:

231 connectionNumber = int(node1[i][4])

232 connectedLinks = node1[i][7+connectionNumber:7+2*connectionNumber]

233 linkRange = np.arange(7+connectionNumber,7+2*connectionNumber)

234 if old in connectedLinks:

235 for j in linkRange:

236 if node1[i][j] == old:

237 node1[i][j] = new

238
239 print "Rearranging the network..."

240 # Changeing node numbers in both node and link file

241 print "Rearranging nodes..."

242 for i in tqdm(range(len(node1))):

243 if node1[i][0] != (i+1):

244 newNumber = i+1

245 oldNumber = node1[i][0]

246 connectionNumber = int(node1[i][4])

247 oldConnectedNodes = node1[i][5:5+connectionNumber]

248 oldConnectedLinks = node1[i][7+connectionNumber:7+2*connectionNumber

]

249 node1[i][0] = newNumber

250 node2[i][0] = newNumber

251 change_connected_nodes(newNumber,oldNumber, oldConnectedNodes,

oldConnectedLinks)

252
253 print "Rearranging links..."

254 for i in tqdm(range(len(link1))):

255 if link1[i][0] != (i+1):

256 newNumber = i+1

257 oldNumber = link1[i][0]

258 connections = [link1[i][1],link1[i][2]]

259 link1[i][0] = newNumber

260 link2[i][0] = newNumber

261 change_connected_links(newNumber,oldNumber, connections)

262 return node1, node2, link1, link2

263

141

264 def get_coordination_number(node1):

265 total_connections = 0

266 for i in range(len(node1)):

267 total_connections += node1[i][4]

268 avg_con_num = 1.0*total_connections/len(node1)

269 return avg_con_num

270
271 def get_redundant_links(link1):

272 paths = []

273 numRedundantPaths = 0

274 for line in link1:

275 path = [line[1],line[2]]

276 path = sorted(path)

277 if path in paths:

278 numRedundantPaths += 1

279 paths.append(path)

280 return numRedundantPaths

281
282 def get_local_aspect_ratio(): #needs original networkfiles

283 def print_sor_aspect_to_file(sor,aspect):

284 file = open(’output/sor_aspect_min.txt’, ’w’)

285 for i in range(len(sor)):

286 string = str(sor[i])+’\t’+str(aspect[i])

287 file.write(string+’\n’)

288 file.close()

289 nodesat_wf = np.loadtxt(’nodesat_wf.dat’, skiprows=2)

290
291 dest = os.getcwd()+’/originalNetworks’

292 if os.path.exists(dest):

293 path = ’originalNetworks/’

294 link1 = get_network_file(path+’link1’)

295 link2 = get_network_file(path+’link2’)

296 node2 = get_network_file(path+’node2’)

297 node1 = get_network_file(path+’node1’)

298 print "Found original network data files."

299 else:

300 print "Plese locate original network data files."

301 sys.exit()

302
303 if len(nodesat_wf) != len(node1):

304 print "ERROR: The length of the node1.dat and nodesat_wf.dat is not

equal!"

305 print "Maybe updated network files are used."

306
307 numberOfNodes = len(nodesat_wf)

308 temp_min_aspect_sor = []

142

309 min_loc_aspect_ws = [] # The minimum local aspect ratio in the non water

saturated nodes.

310 loc_sor_ws = []

311 loc_aspect_avg = []

312 loc_sor_all = []

313 loc_avg_aspect = []

314 loc_aspect_min = []

315
316 # for-loop: Running through the total number of nodes.

317 for i in range(numberOfNodes):

318 num_con=int(node1[i][4])

319 loc_aspect_current_node= []

320 for j in range(num_con):

321 # If the node is not in/outlet and coordination number > 0

322 if int(node1[i][5+j])>0 and int(node1[i][4])>0:

323 loc_aspect_current_node.append(node2[i][2]/link1[int(node1[i][7+

num_con+j])-1][3])

324
325 if len(loc_aspect_current_node)>0:

326 # Store average and minimum aspect for every node

327 loc_aspect_avg.append(np.average(loc_aspect_current_node))

328 loc_aspect_min.append(np.min(loc_aspect_current_node))

329 loc_sor_all.append(1-nodesat_wf[i][6])

330
331 if nodesat_wf[i][6] < 1 :

332 temp_min_aspect_sor.append([loc_aspect_min[-1], 1-nodesat_wf[i

][6]])

333
334 else: # fully watersaturated nodes

335 min_loc_aspect_ws.append(loc_aspect_min[-1])

336 loc_sor_ws.append(1-nodesat_wf[i][6])

337
338 min_loc_aspect = [] # The average local aspect ratio in the non water

saturated nodes.

339 loc_sor = [] # The Sor in the non water saturated nodes.

340
341 temp_min_aspect_sor = sorted(temp_min_aspect_sor, key=itemgetter(1))

342 for i in range(len(temp_min_aspect_sor)):

343 min_loc_aspect.append(temp_min_aspect_sor[i][0])

344 loc_sor.append(temp_min_aspect_sor[i][1])

345
346 # The average of the local minimum aspect ratio

347 avg_all_min_loc_aspect = np.average(loc_aspect_min)

348 avg_all_loc_aspect = np.average(loc_aspect_avg)

349 print_sor_aspect_to_file(loc_sor,min_loc_aspect)

350 return avg_all_min_loc_aspect, avg_all_loc_aspect

143

351
352 def output_network_mod_file(numNodesRemoved, numLinksRemoved, unreachInlet

, unreachOutlet, unreachableNodes, unreachBoth, zero_coord_nodes):

353 foldername = os.path.basename(os.getcwd())

354 file = open(foldername + ’_netRecon.txt’, ’w’)

355 file.write(’Network reconstruction data for network: ’+foldername+’\n\n’

)

356 file.write(’%s nodes not reached from inlet. \n’ % unreachInlet)

357 file.write(’%s nodes not reached from outlet. \n’ % unreachOutlet)

358 file.write(’%s nodes not reached from both inlet and outlet. \n’ %

unreachBoth)

359 file.write(’%s nodes with zero coordination number. \n’ %

zero_coord_nodes)

360 file.write(’%s nodes removed. \n’ % numNodesRemoved)

361 file.write(’%s links removed. \n \n’ % numLinksRemoved)

362 file.write(’Index of nodes removed: \n’)

363 for node in unreachableNodes:

364 file.write(str(node)+’\n’)

365 file.close()

366
367 def print_network_statistics(node1, node2, link1, link2, network):

368 inletNodes, outletNodes = get_surface_nodes(node1)

369 numInletNodes = len(inletNodes)

370 numOutletNodes = len(outletNodes)

371 length, width, depth = get_dimensions()

372 area=width*depth

373 num_node=int(node1[-1][0])

374 # Porosity calculation and link/node statistics

375 pore_volume = 0.0

376 link_volume = 0.0

377 pore_radius = []

378 link_radius = []

379 pore_radius_vol = []

380 link_radius_vol = []

381 total_connections = 0

382 # for-loop: Running through all links.

383 for i in range(len(link2)):

384 link_volume += link2[i][6]+link2[i][7]

385 link_radius.append(link1[i][3])

386 if link2[i][6] > 0:

387 link_radius_vol.append(link1[i][3]*link2[i][6])

388
389 # for-loop: Running through all pores.

390 for i in range(len(node2)):

391 pore_volume += node2[i][1]+node2[i][4]

392 pore_radius.append(node2[i][2])

144

393 pore_radius_vol.append(node2[i][2]*node2[i][1])

394 total_connections += node1[i][4]

395
396 avg_pore_radius = np.average(pore_radius)*10**6

397 avg_link_radius = np.average(link_radius)*10**6

398 glob_aspect_vol = ((np.sum(pore_radius_vol)/pore_volume)/(np.sum(

link_radius_vol)/link_volume))

399 avg_all_min_loc_aspect, avg_all_loc_aspect = get_local_aspect_ratio()

400 max_pore_radius = max(pore_radius)*10**6

401 min_pore_radius = min(pore_radius)*10**6

402 max_link_radius = max(link_radius)*10**6

403 min_link_radius = min(link_radius)*10**6

404 avg_con_num = total_connections/num_node

405 porosity = ((pore_volume+link_volume)/(length*area))*100.0

406
407 if network == ’updated’:

408 porosityString = "Total porosity (wo/non-span.): %.2f" % porosity + "

%"

409 networkString = "\tThe network data files are updated: Non-spanning (

non-span) nodes \n \tand links are removed."

410 conNumString = "(NB! Non-span. removed.)"

411 else:

412 porosityString = "Total porosity: %.2f" % porosity

413 networkString = "The network data files are original."

414 conNumString = ""

415
416 print "-+-+- Network statistics", "-+"*27

417 print "INFO:", networkString

418 print " "

419 print "Number of nodes: %s | Inlet nodes: %s, Outlet nodes: %s" % (

len(node1), numInletNodes, numOutletNodes)

420
421 print "Number of links: %s" % (len(link1))

422 print " "

423 print "Global aspect ratio: %.4f (average(p_r)/average(l_r))" % (

avg_pore_radius/avg_link_radius)

424 print "Global aspect ratio (vol): %.4f " % (glob_aspect_vol)

425 print "Avg. local aspect ratio: %.4f (p_r/average(bounding(l_r))" %

avg_all_loc_aspect

426 print "Local (minimum) aspect ratio: %.4f (p_r/maximum(bounding(l_r)

)" % avg_all_min_loc_aspect

427 print "Average connection number: %.4f " % avg_con_num,

conNumString

428 print ""

429 print porosityString

430 print " "

145

431 print "* Node metrics"

432 print "- Average node radius: %.2f micro-meter" % avg_pore_radius

433 print "- Maximum node radius: %.2f micro-meter" % max_pore_radius

434 print "- Minimum node radius: %.2f micro-meter" % min_pore_radius

435 print "* Link metrics"

436 print "- Average link radius: %.2f micro-meter" % avg_link_radius

437 print "- Maximum link radius: %.2f micro-meter" % max_link_radius

438 print "- Minimum link radius: %.2f micro-meter" % min_link_radius

439
440 def check_location_of_surface_nodes(node1):

441 inletNodes, outletNodes = get_surface_nodes(node1)

442 in_tot_x = 0

443 in_tot_y = 0

444 in_tot_z = 0

445 out_tot_x = 0

446 out_tot_y = 0

447 out_tot_z = 0

448
449 for node in inletNodes:

450 in_tot_x += node1[node-1][1]

451 in_tot_y += node1[node-1][2]

452 in_tot_z += node1[node-1][3]

453
454 for node in outletNodes:

455 out_tot_x += node1[node-1][1]

456 out_tot_y += node1[node-1][2]

457 out_tot_z += node1[node-1][3]

458 print "Inlet nodes:"

459 print "Total x-dist: %.2f" % in_tot_x

460 print "Total y-dist: %.2f" % in_tot_y

461 print "Total z-dist: %.2f" % in_tot_z

462 print ""

463 print "Outlet nodes:\n"

464 print "Total x-dist: %.2f" % out_tot_x

465 print "Total y-dist: %.2f" % out_tot_y

466 print "Total z-dist: %.2f" % out_tot_z

467
468 def get_coord(node1):

469 num_node=int(node1[-1][0])

470 coord_all=np.zeros((num_node, 3))

471 coord_in=[]

472 coord_out=[]

473 coord_nonsurf=[]

474 for i in range(num_node):

475 temp=node1[i]

476 num_con=int(temp[4])

146

477 coord_all[i,:]=([temp[1], temp[2], temp[3]])

478 if int(temp[5+num_con]) == 1:

479 coord_in.append(([temp[1], temp[2], temp[3]]))

480 elif int(temp[6+num_con]) == 1:

481 coord_out.append(([temp[1], temp[2], temp[3]]))

482 else:

483 coord_nonsurf.append([temp[1], temp[2], temp[3]])

484 coord_in=np.asarray(coord_in)

485 coord_out=np.asarray(coord_out)

486 coord_nonsurf=np.asarray(coord_nonsurf)

487 return coord_all, coord_in, coord_out, coord_nonsurf

488
489 def bin_data(x_data, y_data, binType, bin_size):

490 # Binning parameters:

491 #bin_interval = 0.05 # For EQUAL INTERVAL binning

492 #bin_count = 100 # For EQUAL COUNT binning

493 if binType == ’EI’:

494 # Equal interval bin

495 bin_ticker_EI = bin_size

496 temp_bin_x = []

497 temp_bin_y = []

498 binned_x = []

499 binned_y = []

500 data_points_in_bin = []

501
502 for i in range(len(y_data)):

503 if x_data[i] <= bin_ticker_EI:

504 temp_bin_x.append(x_data[i])

505 temp_bin_y.append(y_data[i])

506 else:

507 if len(temp_bin_x) > 0:

508 binned_x.append(np.average(temp_bin_x))

509 binned_y.append(np.average(temp_bin_y))

510 data_points_in_bin.append(len(temp_bin_x))

511 temp_bin_x = []

512 temp_bin_y = []

513 temp_bin_x.append(x_data[i])

514 temp_bin_y.append(y_data[i])

515 bin_ticker_EI += bin_size

516
517 binned_x.append(np.average(temp_bin_x))

518 binned_y.append(np.average(temp_bin_y))

519 data_points_in_bin.append(len(temp_bin_x))

520
521 if binType == ’EC’:

522 # Equal count bin

147

523 bin_count = bin_size

524 bin_ticker_EC = 0

525 temp_bin_x = []

526 temp_bin_y = []

527 binned_x = []

528 binned_y = []

529 data_points_in_bin= []

530
531 for i in range(len(aspect)):

532 if bin_ticker_EC < bin_count:

533 temp_bin_x.append(sor[i])

534 temp_bin_y.append(aspect[i])

535 bin_ticker_EC += 1

536 else:

537 binned_x.append(np.average(temp_bin_x))

538 binned_y.append(np.average(temp_bin_y))

539 data_points_in_bin.append(len(temp_bin_x))

540 temp_bin_x = []

541 temp_bin_y = []

542 temp_bin_x.append(sor[i])

543 temp_bin_y.append(aspect[i])

544 bin_ticker_EC = 1

545
546 binned_x.append(np.average(temp_bin_x))

547 binned_y.append(np.average(temp_bin_y))

548 data_points_in_bin.append(len(temp_bin_x))

549 return binned_x, binned_y, data_points_in_bin

B.9 percolation.py

1 import numpy as np

2 import math as m

3 import os

4 import sys

5 import time

6 from operator import itemgetter

7 from tqdm import *
8
9 import netRecon

10
11 dest = os.getcwd()+’/originalNetworks’

12 if os.path.exists(dest):

13 path = ’originalNetworks/’

14 link1 = netRecon.get_network_file(path+’link1’)

15 link2 = netRecon.get_network_file(path+’link2’)

148

16 node2 = netRecon.get_network_file(path+’node2’)

17 node1 = netRecon.get_network_file(path+’node1’)

18 print "Found original network data files."

19 else:

20 print "Plese locate original network data files."

21 sys.exit()

22
23 avg_con_num = netRecon.get_coordination_number(node1)

24
25 def sort_links_by_radius(link1):

26 linkRadi = []

27 for i in range(len(link1)):

28 linkRadi.append([int(link1[i][0]), link1[i][3]])

29 linkRadi = sorted(linkRadi, key=itemgetter(1))

30 return linkRadi

31
32 def remove_link(removeLink, node1, inletNodes, outletNodes):

33 conNodes = [int(link1[removeLink-1][1]), int(link1[removeLink-1][2])]

34 if -1 in conNodes or 0 in conNodes:

35 if max(conNodes) in inletNodes:

36 inletNodes.remove(max(conNodes))

37 if max(conNodes) in outletNodes:

38 outletNodes.remove(max(conNodes))

39
40 for node in conNodes:

41 if node != -1 and node != 0:

42 connectionNumber = int(node1[node-1][4])

43 connectedLinks = node1[node-1][7+connectionNumber:7+2*
connectionNumber]

44 removeNodeIndex = 5+connectedLinks.index(removeLink)

45 removeLinkIndex = 7+connectionNumber+connectedLinks.index(removeLink

)

46 node1[node-1].pop(removeLinkIndex)

47 node1[node-1].pop(removeNodeIndex)

48 node1[node-1][4] = node1[node-1][4]-1

49 return node1

50
51 def check_connectivity(inletConMap, outletConMap):

52 connected = False

53 for i in range(len(inletConMap)):

54 if inletConMap[i] == 1 and outletConMap[i] == 1:

55 connected = True

56 break

57 return connected

58
59 def check_link_for_link(node1, inletNodes):

149

60 for i in tqdm(range(len(linkRadi))):

61 node1 = remove_link(linkRadi[i][0], node1)

62 inletConMap = netRecon.map_connections(inletNodes, node1)

63 outletConMap = netRecon.map_connections(outletNodes, node1)

64 print "Connected?", check_connectivity(inletConMap, outletConMap)

65 if check_connectivity(inletConMap, outletConMap) == False:

66 print "Link to break connectivity:", linkRadi[i], "which is the", i

+1, "of", len(linkRadi), "link to be removed."

67 break

68 return linkRadi[i]

69
70 def find_percolation_radius(node1):

71 inletNodes, outletNodes = netRecon.get_surface_nodes(node1)

72 original_inletConMap = netRecon.map_connections(inletNodes, node1)

73 original_outletConMap = netRecon.map_connections(outletNodes, node1)

74 linkRadi = sort_links_by_radius(link1)

75 node1 = netRecon.get_network_file(path+’node1’)

76 radiFound = False

77 upLim = len(linkRadi)

78 lowestUpLim = 0

79
80 print "Finding percolation radius..."

81 t1 = time.clock()

82 while radiFound == False:

83 for i in range(upLim):

84 node1 = remove_link(linkRadi[i][0], node1, inletNodes, outletNodes)

85 inletConMap = netRecon.map_connections(inletNodes, node1)

86 outletConMap = netRecon.map_connections(outletNodes, node1)

87
88 if check_connectivity(inletConMap, outletConMap) == False:

89 highestUpLim = upLim

90 upLim = lowestUpLim + int((highestUpLim - lowestUpLim)/2)

91 elif check_connectivity(inletConMap, outletConMap) == True:

92 lowestUpLim = upLim

93 upLim = lowestUpLim + int((highestUpLim - lowestUpLim)/2)

94
95 prev_node1 = node1

96 node1 = netRecon.get_network_file(path+’node1’)

97 inletNodes, outletNodes = netRecon.get_surface_nodes(node1)

98
99 print "Difference between limits: %6s (%5.2f/100 %%)" % ((

highestUpLim-lowestUpLim), 100-1.0*((highestUpLim-lowestUpLim)

*100)/len(linkRadi))

100 if (highestUpLim - lowestUpLim) <= 1:

101 radiFound = True

102

150

103 t2 = time.clock()

104 print "\nTime to find percolation radius: %.2f sec.\n" % (t2-t1)

105 return linkRadi[lowestUpLim]

106
107 percolationRadius = find_percolation_radius(node1)

108 linkRadi = sort_links_by_radius(link1)

109
110 print "* PERCOLATION RESULTS"

111 print "Radius of link to break connectivity: %.4E micro-meter (Link # %s)

" % (percolationRadius[1], percolationRadius[0])

112 p_cb = 1-(1.0*linkRadi.index(percolationRadius)/len(linkRadi))

113 print "Bond percolation threshold: %.4f (%s of %s links removed)" % (

p_cb, linkRadi.index(percolationRadius), len(linkRadi))

114 print "Average connection number: %.2f" % avg_con_num

115 print "B_c %.2f" % (avg_con_num*p_cb)

116
117 interfacialTension = 30.0/1000

118 advContAng = m.radians(30)

119 print "\n* FLUID PROPERTIES"

120 print "Interfacial tension %.1E [N/m]" % interfacialTension

121 print "Contact angle: %.2f [rad.]" % advContAng

122
123 capPres = ((interfacialTension*m.cos(advContAng))/percolationRadius[1])

*(1-m.tan(advContAng)/m.sqrt(3))

124 print "\n* ASSUMING EQUILATERAL TRIANGLE:"

125 print "Threshold capillary pressure: %.3f [Pa]" % capPres

126
127 def find_corner_half_angles(link1):

128 shapeFac_link = []

129 notTri = 0

130 for i in range(len(link1)):

131 shapeFac_link.append(link1[i][4])

132 if link1[i][4] > m.sqrt(3)/36:

133 notTri += 1

134 print "\n* FOLLOWING METHOD BY PATZEK AND SILIN (2001):"

135
136 avg_shapeFac = np.average(shapeFac_link)

137 b2_min = m.atan((2/np.sqrt(3)) * m.cos(((m.acos(-12*m.sqrt(3)*
avg_shapeFac)) / (3)) +(4*m.pi)/3))

138 b2_max = m.atan((2/np.sqrt(3)) * m.cos(((m.acos(-12*m.sqrt(3)*
avg_shapeFac)) / (3))))

139 print "The shape factor limits for triangles are [%s,%.3f]" % (0, m.sqrt

(3)/36)

140 print "The average shape factor is: %.3f" % avg_shapeFac

141 print "Number of non-triangular elements: %s - %.1f %% of total." % (

notTri, (1.0*notTri/len(link1))*100)

151

142
143 b2 = np.average([b2_min,b2_max])

144 if avg_shapeFac > m.sqrt(3)/36:

145 print "*"*80

146 print "WARNING: Average shape factor is larger than for triangular

elements!"

147 print "*"*80

148
149 b1 = 0.5*m.asin(((m.tan(b2)+4*avg_shapeFac)/(m.tan(b2)-4*avg_shapeFac))*

m.sin(b2))-0.5*b2

150 b3 = m.pi/2-(b1+b2)

151
152 print "This corresponds to a triangle with corner half angles of:"

153 print "b1 = %.2f [deg.]" % m.degrees(b1)

154 print "b2 = %.2f [deg.]" % m.degrees(b2)

155 print "b3 = %.2f [deg.]" % m.degrees(b3)

156 print " -----"

157 print "Sum = %.2f [deg.]" % (m.degrees(b1)+m.degrees(b2)+m.degrees(b3)

)

158 return b1, b2, b3

159
160 def calc_cap_pres(b1,b2,b3,interfacialTension,advContAng,radius):

161 PC_SO_1 = (interfacialTension/radius)*(m.cos(advContAng)- (2*m.sin(

advContAng))/(1/m.tan(b1)+1/m.tan(b2)))

162 print "Threshold capillary pressure (with G): %.3f [Pa]" % PC_SO_1

163
164 b1,b2,b3=find_corner_half_angles(link1)

165 calc_cap_pres(b1,b2,b3,interfacialTension,advContAng,percolationRadius[1])

B.10 clusterTrack.py

1 import numpy as np

2 import matplotlib.pylab as plt

3 import time

4 import os

5 import sys

6 import argparse

7 from tqdm import *
8 import netRecon

9
10 # The cluster track script use the original network files.

11 dest = os.getcwd()+’/originalNetworks’

12 if os.path.exists(dest):

13 path = ’originalNetworks/’

14 link1 = netRecon.get_network_file(path+’link1’)

152

15 link2 = netRecon.get_network_file(path+’link2’)

16 node2 = netRecon.get_network_file(path+’node2’)

17 node1 = netRecon.get_network_file(path+’node1’)

18 print "Found original network data files."

19 else:

20 print "Plese locate original network data files."

21 sys.exit()

22
23 nodesat_wf = np.loadtxt(’nodesat_wf.dat’, skiprows=2)

24 def locate_clusters():

25 def map_connections(fromNodes, marker):

26 def append_connected_nodes(ap_node):

27 connectionNumber = int(node1[ap_node-1][4])

28 connectedNodes = node1[ap_node-1][5:5+connectionNumber]

29 for i in range(len(connectedNodes)):

30 connectedNodes[i] = int(connectedNodes[i])

31 connectedNodes = sorted(connectedNodes, reverse=True)

32 for i in connectedNodes:

33 if i > 0 and i not in checkNodes and i not in usedNodes and

oil_sat[i-1] != 0:

34 checkNodes.append(i)

35 usedNodes.append(i)

36 conMap = [0]*len(node1)

37 checkNodes = []

38 usedNodes = []

39 clusters = []

40 for node in tqdm(fromNodes):

41 # Exit condition to avoid unneccasary loops.

42 exit = False

43 for i in range(len(clusters)):

44 if node in clusters[i]:

45 exit = True

46 break

47 if exit == True:

48 continue

49 temp_cluster = []

50 checkNodes = []

51 usedNodes = []

52 if node not in usedNodes and node not in checkNodes and oil_sat[

node-1] != 0:

53 checkNodes.append(node)

54 usedNodes.append(node)

55
56 while len(checkNodes)>0:

57 append_connected_nodes(checkNodes[0])

58 conMap[checkNodes[0]-1] = 1

153

59 temp_cluster.append(checkNodes[0])

60 checkNodes.remove(checkNodes[0])

61 temp_cluster = sorted(temp_cluster)

62 if temp_cluster not in clusters:

63 clusters.append(temp_cluster)

64 return conMap, clusters

65
66 oil_sat = []

67 oil_sat_nodes = []

68 for i in range(len(nodesat_wf)):

69 oil_sat.append(1-nodesat_wf[i][6])

70 if nodesat_wf[i][6] != 1:

71 oil_sat_nodes.append(i+1)

72
73 conMap, clusters = map_connections(oil_sat_nodes,1)

74 return clusters, oil_sat_nodes

75
76 def get_cluster_size():

77 clusters, oil_sat_nodes = locate_clusters()

78 oil_nodes = 0

79 max_cluster = 0

80 max_cluster_idx = []

81 cluster_size = []

82 for i in range(len(clusters)):

83 oil_nodes += len(clusters[i])

84 cluster_size.append(len(clusters[i]))

85 if len(clusters[i]) > max_cluster:

86 max_cluster = len(clusters[i])

87 max_cluster_idx = clusters[i]

88
89 cluster_size = sorted(cluster_size, reverse=True)

90 cluster_size = np.array(cluster_size)

91 unique_clusters = np.unique(cluster_size)

92 singlet_clusters = len(np.where(cluster_size == 1)[0])

93 return cluster_size, max_cluster_idx, clusters, oil_nodes

94
95 def print_cumulative_dist(unique_clusters, P_dist, name):

96 file = open(’output/cumulative_cluster_dist’+name+’.txt’, ’w’)

97 for i in range(len(unique_clusters)):

98 string = str(unique_clusters[i])+’\t’+str(P_dist[i])

99 file.write(string+’\n’)

100 file.close()

101
102 def get_cumulative_clust_dist():

103 cluster_size, max_cluster_idx, clusters, oil_nodes = get_cluster_size()

104 # Volume weighted

154

105 cluster_vol = []

106 for cluster in clusters:

107 cluster_vol_temp = 0.0

108 for node in cluster:

109 cluster_vol_temp += node2[node-1][1]

110 cluster_vol.append(cluster_vol_temp)

111
112 print "Number of unique clusters: %s" % len(cluster_vol)

113 print "Number of clusters of unique volume: %s" % len(np.unique(

cluster_vol))

114 tot_cluster_vol = np.sum(cluster_vol)

115 print "Total volume of clusters: %.3f" % tot_cluster_vol

116
117 cluster_vol = np.array(cluster_vol)

118 unique_clusters_vol = np.unique(cluster_vol)

119 cluster_vol_dist = []

120 cluster_vol_unique = []

121 num_eq_cluster_vol = 0

122 for cluster in unique_clusters_vol:

123 num_eq_cluster_vol = len(np.where(cluster_vol == cluster)[0])

124 cluster_vol_dist.append([cluster, num_eq_cluster_vol])

125 cluster_vol_unique.append(cluster*num_eq_cluster_vol)

126 cluster_vol_unique.sort()

127
128 print "Vol. frac. of largest cluster: %.2f" % (cluster_vol_unique[-1]/

tot_cluster_vol)

129
130 P=0

131 f_cluster_vol = []

132 P_dist_vol = []

133 x_val = []

134 for cluster in cluster_vol_unique:

135 f_cluster_vol.append((cluster)/tot_cluster_vol)

136 P += f_cluster_vol[-1]

137 P_dist_vol.append(P)

138
139 print_cumulative_dist(f_cluster_vol,P_dist_vol, ’vol’)

140
141 # CLUSTER DIST. BASED ON NUMBER OF NODES IN EACH CLUSTER

142 #unique_clusters = np.unique(cluster_size)

143 #cluster_dist = []

144 #f_cluster = []

145 #P_dist = []

146 #P=0

147 #

148 #for cluster in unique_clusters:

155

149 # num_eq_cluster = len(np.where(cluster_size == cluster)[0])

150 # cluster_dist.append([cluster, num_eq_cluster])

151 # f_cluster.append((cluster_dist[-1][0]*cluster_dist[-1][1])/(oil_nodes

*1.0))

152 # P += f_cluster[-1]

153 # P_dist.append(P)

154 #f_cluster.reverse()

155
156 def plot_cumulative_clust_dist(f_cluster, P_dist):

157 fig = plt.figure(figsize=(9,4))

158 ax = plt.subplot(111)

159 ax.semilogx(f_cluster,P_dist)

160 plt.ylim((0,1))

161 plt.xlim((0,np.max(f_cluster)))

162 plt.show()

163
164 def print_cluster_stats(cluster_size, max_cluster_idx, clusters, oil_nodes

):

165 print "Oil saturated nodes: %s (%.1f %% of all nodes)" % (oil_nodes,

oil_nodes*100.0/len(node1))

166 print "Number of clusters: %s" % len(clusters)

167 print "Average cluster size: %.4f" % ((oil_nodes*1.0)/len(clusters))

168 print "Size of maximum cluster: %s (%.1f %% of cluster nodes)" % (len(

max_cluster_idx),len(max_cluster_idx)*100.0/oil_nodes)

169 print "Number of singlet ’clusters’: %s" % len(np.where(cluster_size ==

1)[0])

170
171 cluster_size, max_cluster_idx, clusters, oil_nodes = get_cluster_size()

172 print_cluster_stats(cluster_size, max_cluster_idx, clusters, oil_nodes)

173 #get_cumulative_blob_dist()

174 #plot_cumulative_clust_dist(f_cluster_vol,P_dist_vol)

B.11 createNetworkXML.py

1 import numpy as np

2 import os

3 import sys

4 import time

5 import argparse

6
7 import netRecon

8
9 parser = argparse.ArgumentParser(prog=’createNetworkXML’, description="A

program to create XML-files for plotting ball & stick representations

of the networks. The files can be imported into the ’Ball & Stick’ app

156

for Windows 10 by fourelem.")

10 parser.add_argument("-colorResidual", action=’store_true’, help="Color

nodes with residual oil saturation.", default=False)

11 parser.add_argument("-onlyResidual", action=’store_true’, help="Only show

nodes with residual oil saturation.", default=False)

12 parser.add_argument("-onlyWater", action=’store_true’, help="Only show

nodes with water saturation = 1.", default=False)

13 args = parser.parse_args()

14
15 node1 = netRecon.get_network_file(’originalNetworks/node1’)

16 node2 = netRecon.get_network_file(’originalNetworks/node2’)

17 link1 = netRecon.get_network_file(’originalNetworks/link1’)

18 link2 = netRecon.get_network_file(’originalNetworks/link2’)

19
20 foldername = os.path.basename(os.getcwd())

21 if args.colorResidual == True:

22 xmlFileName = foldername + ’_ballAndStick_residual.xml’ # e.g. F8_plot.

xml or node22_plot.xml

23 elif args.onlyResidual == True:

24 xmlFileName = foldername + ’_ballAndStick_OnlyRes.xml’

25 elif args.onlyWater== True:

26 xmlFileName = foldername + ’_ballAndStick_OnlyWat.xml’

27 else:

28 xmlFileName = foldername + ’_ballAndStick.xml’ # e.g. F8_plot.xml or

node22_plot.xml

29
30 file=open(’output/’+xmlFileName, ’w+’)

31 file.write(’<?xml version="1.0" encoding="utf-8"?>\n<Model xmlns="http://

atom.fourelem.com/ns/2016">\n’)

32 file.write(’\t<Group>\n’)

33
34 if args.onlyResidual == True:

35 t1 = time.clock()

36 print "Locating maximum cluster ..."

37 import clusterTrack

38 cluster_size, max_cluster_idx, clusters, oil_nodes = clusterTrack.

get_cluster_size()

39 print " [DONE] - %.2f sec." % (time.clock()-t1)

40
41 tic = time.clock()

42 print "Creating XML-file...",

43 sys.stdout.flush()

44
45 # Ball properties

46 ballSizeFactor = 10e3

47 ballColor = "Red"

157

48 ballNames = "N"

49 locationMult = 10000

50
51 ballColorOil = "Lime" #"LawnGreen"

52 ballColorOilMax = "SaddleBrown"

53 ballColorWat = "RoyalBlue"

54
55 if args.colorResidual == True or args.onlyResidual == True or args.

onlyWater == True:

56 nodesat_wf = np.loadtxt(’nodesat_wf.dat’, skiprows=2)

57
58 oil_node_idx = []

59 wat_node_idx = []

60 for i in range(len(nodesat_wf)):

61 if nodesat_wf[i][6] < 1:

62 oil_node_idx.append(i+1)

63 else:

64 wat_node_idx.append(i+1)

65
66 # Stick properties

67 stickSizeFactor = 0.5*10e3

68 stickColor = "GhostWhite"

69 stickColorOil = "OliveDrab"

70 stickColorWat = "DodgerBlue"

71 stickNames = "S"

72
73 # Node/link plot stats

74 numOnlyResNodes = 0

75 numOnlyWatNodes = 0

76 numOnlyResLinks = 0

77 numOnlyWatLinks = 0

78
79
80 for i in range(len(node1)):

81 if args.colorResidual == True:

82 if nodesat_wf[i][6] < 1:

83 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult,

node1[i][2]*locationMult, node1[i][3]*locationMult, node2[i][2]*
ballSizeFactor, ballColorOil))

84 else:

85 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult,

node1[i][2]*locationMult, node1[i][3]*locationMult, node2[i][2]*
ballSizeFactor, ballColorWat))

86 elif args.onlyResidual == True:

158

87 if nodesat_wf[i][6] < 1:

88 if ((i+1) in max_cluster_idx):

89 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult

, node1[i][2]*locationMult, node1[i][3]*locationMult, node2[i

][2]*ballSizeFactor, ballColorOilMax))

90 else:

91 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult

, node1[i][2]*locationMult, node1[i][3]*locationMult, node2[i

][2]*ballSizeFactor, ballColorOil))

92 numOnlyResNodes += 1

93 else:

94 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult,

node1[i][2]*locationMult, node1[i][3]*locationMult, 0, "White"))

95 elif args.onlyWater == True:

96 if nodesat_wf[i][6] == 1:

97 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult,

node1[i][2]*locationMult, node1[i][3]*locationMult, node2[i][2]*
ballSizeFactor, ballColorWat))

98 numOnlyWatNodes += 1

99 else:

100 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s"

Color="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult,

node1[i][2]*locationMult, node1[i][3]*locationMult, 0, "White"))

101 else:

102 file.write(’\t\t<Ball Id ="%s%s" Position="%s,%s,%s" Radius="%s" Color

="%s"/>\n’ % (ballNames, (i+1), node1[i][1]*locationMult, node1[i

][2]*locationMult, node1[i][3]*locationMult, node2[i][2]*
ballSizeFactor, ballColor))

103 file.write(’\t</Group>\n’)

104 file.write(’\t<Group>\n’)

105 for i in range(len(link1)):

106 if args.onlyResidual == True:

107 if int(link1[i][1]) != -1 and int(link1[i][2])!= 0 and (int(link1[i

][1]) in oil_node_idx) and (int(link1[i][2]) in oil_node_idx):

108 file.write(’\t\t<Stick Id ="%s%s" BallIds="N%s,N%s" Radius="%s"

Color="%s"/>\n’ % (stickNames, (i+1), int(link1[i][1]), int(

link1[i][2]), link1[i][3]*stickSizeFactor, stickColorOil))

109 numOnlyResLinks += 1

110 elif args.onlyWater == True:

111 if int(link1[i][1]) != -1 and int(link1[i][2])!= 0 and (int(link1[i

][1]) in wat_node_idx) and (int(link1[i][2]) in wat_node_idx):

112 file.write(’\t\t<Stick Id ="%s%s" BallIds="N%s,N%s" Radius="%s"

159

Color="%s"/>\n’ % (stickNames, (i+1), int(link1[i][1]), int(

link1[i][2]), link1[i][3]*stickSizeFactor, stickColorWat))

113 numOnlyWatLinks += 1

114 else:

115 if int(link1[i][1]) != -1 and int(link1[i][2])!= 0:

116 file.write(’\t\t<Stick Id ="%s%s" BallIds="N%s,N%s" Radius="%s"

Color="%s"/>\n’ % (stickNames, (i+1), int(link1[i][1]), int(

link1[i][2]), link1[i][3]*stickSizeFactor, stickColor))

117 file.write(’\t</Group>\n’)

118 file.write(’</Model>’)

119 file.close()

120 toc = time.clock()

121
122 print " [DONE] - %.2f sec. \n" % (toc-tic)

123 print " * Nodes *"

124 if args.colorResidual == True:

125 print "Nodes plotted: %s" % len(node1)

126 print "Color of oil sat. nodes: %s (So>0)" % ballColorOil

127 print "Color of water sat. nodes: %s \n" % ballColorWat

128 elif args.onlyResidual == True:

129 print "Only oil saturated nodes (So>0) are plotted."

130 print "Nodes plotted: %s" % numOnlyResNodes

131 print "Color of oil sat. nodes: %s (So>0) \n" % ballColorOil

132 elif args.onlyWater == True:

133 print "Only fully water saturated nodes are plotted."

134 print "Nodes plotted: %s" % numOnlyWatNodes

135 print "Color of water sat. nodes: %s \n" % ballColorWat

136 else:

137 print "Nodes plotted: %s" % len(node1)

138 print "Color of nodes: %s \n" % ballColor

139 print " * Links *"

140 if args.colorResidual == True:

141 print "Links plotted: %s" % len(link1)

142 print "Color of links: %s\n" % stickColor

143 elif args.onlyResidual == True:

144 print "Only oil saturated links are plotted."

145 print "Links plotted: %s" % numOnlyResLinks

146 print "Only oil saturated links: %s \n" %stickColorOil

147 elif args.onlyWater == True:

148 print "Only water saturated links are plotted."

149 print "Links plotted: %s" % numOnlyWatLinks

150 print "Color of water sat. links: %s \n" % stickColorWat

151 else:

152 print "Links plotted: %s" % len(link1)

153 print "Color of sticks: %s \n" % stickColor

154

160

155
156 print "File (’%s’) saved to output folder." % xmlFileName

161

	Preface
	Summary
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Literature Review
	Digital Rock Physics
	Pore Network Modelling
	The History of the Pore Network Model
	Imaging and Construction of Pore Network Models
	Pore Network Extraction
	Limitations of Pore Network Modelling

	Theory
	Pore Network Modelling
	Fundamental Theory
	Shape Factor
	Corner Half-Angles
	Nodes and Links
	Network Data File Format

	Pore Structure
	Coordination Number
	Constriction Factor
	Aspect Ratio
	Tortuosity

	Trapping Mechanisms During Imbibition
	Snap-Off

	Percolation Theory
	Bond Percolation Threshold
	Percolation and Snap-Off

	Method
	The Suite of Scripts
	Solving for Potential by Sparse Matrix Inversion
	Mass Conservation
	Boundary Conditions
	Hydraulic Conductance
	Electrical Conductance and Formation Factor
	Flow Computation

	Tracking Streamlines
	Rules to Determine the Path
	Choosing the Next Link
	Moving Through the Network
	Effective Porosity

	Calculating Measures of Pore Structure
	Coordination Number
	Constriction Factor
	Aspect Ratio

	Network Manipulation
	Reconstruction and Rearrangement Method
	Read and Write Network Data Files
	Updating the Network

	The Percolation Process
	Radius at the Bond Percolation Threshold
	Threshold Capillary Pressure for Snap-Off

	Cluster-Size Distribution
	e-Core
	Network Models
	Original and Updated Networks
	Network Models from Imperial College London
	Fontainebleau Network Models

	Results
	Validation of the Network Manipulation Process
	Difference Between Streamline Tracking Methods
	Pore Structure
	Coordination Number
	Constriction Factor
	Global Aspect Ratio
	Local Aspect Ratios
	Total and Effective Porosity

	Percolation Theory and Sor End-Effect
	Cluster-Size Distribution

	Conclusions
	References
	Appendices
	Attachments
	The Structure of the Network Data Files
	Network Percolation Results.
	Waterflooding Results from e-Core
	Network Modification Results
	Local Sor vs. Minimum Local Aspect Ratio.
	Oil Production After kro=0
	Cluster-Size Distribution Results

	Scripts
	readme.txt
	netPotential.py
	laplacePN.py
	netStream.py
	streamUtils.py
	netPlot.py
	updateNetwork.py
	netRecon.py
	percolation.py
	clusterTrack.py
	createNetworkXML.py

