
TurtleBot

1 The TurtleBot application

At its very core is the TurtleBot application a combined integrated development environment and
simulator, enabling children to explore the world of robotics and programming. The application
was created with extendability in mind, having two distinct methods for creating programs, the
possibility of extending the existing block language, several programming languages, and different
visual setups depending on your preference and needs.

1.1 Basic screen layout

The application is divided into three major components; header, body and footer(figure 1).

In order to make the application easy to use by people unfamiliar to programming and robotics it
utilizes a block programming interface as its default input method. With this input method the
user can drag codeblocks from the header, down to the body/programming area. After the blocks
has been placed in the programming area they may be moved around to change the program or
deleted by dragging them back to the header.

As seen in figure 1 the application starts with four codeblocks the first time. These blocks are the
move-blocks in the application. Everytime one of these blocks are executed by the simulator it will
move the robot around.

In order for you to get more familiar with the layout we have highlighted the different components,
and provided a simple description of them below figure 1.



Figure 1: Graphics view.
NB: button 6 has been moved to the left side

1 This is the available codeblocks for your program.

2 The startblock. This is a special kind of codeblock. It may not be moved or removed, and must
always be the first codeblock in the program.

3 The program. This part consists of one of more codeblocks, and are the part which tells the
robot what to do. An explaination of the different codeblocks can be seen in section 1.3.1 and
section 1.3.2.

4 The Options menu.

5 The Run button. Pressing this button run the program.

6 The Clear button. This button will remove all blocks except the startblock.

7 The Input mode button. This button will change the input view. If you are working in the
graphics view it will change to the textual view, and vise versa.

1.2 Views

The header/programming area in the application has three different views, which all serve a dif-
ferent purpose. The view shown in figure 1 is the graphics view, here programming is done by
drag’n’drop as explained. The second view is the textual view, as seen in figure 2. The textual view

Page 2



provides the textual counterpart to the graphics view, and when used with block programming you
are able to switch between the two without losing your program. The view also supports an alter-
native programming language for more experienced users. The textual view is considered harder to
understand, and it is therefore recommended that most people start with the graphics view. The
final view is the simulator view. This view takes on many different visual appearances, depending
on the state of the application and different options. In its most basic form it will look like figure 5,
but depending on what has been done previously in the application it may have changed. A list of
all the different simulator appearances can be seen in section 1.4.

Figure 2: The textual view when extended mode is on.

1.3 Programming

1.3.1 Normal mode

When starting the application for the first time, it will start in what is called normal mode showing
the graphics view. In normal mode you have four codeblocks available to you:

FWD - Forward BACK - Backward
TL - Turn Left TR - Turn Right

FWD and BACK makes the robot move forward and backward respectively. The input value
determines how far the robot will go. TL and TR makes the robot turn either left of right. The
input value determines how many degrees it will turn.

In figure 1 you can see an example where all these four codeblocks are used. The resulting picture
from this program can be seen in figure 3. For examples of textual program please see section 1.6.

Page 3



Figure 3: The result from running the program in figure 1

1.3.2 Extended mode

In extended mode you will see five new codeblocks appear as available (figure 4). These blocks are
related to programs that need variables, procedures and loops. The usage of these blocks and how
they work is beyond the scope of this introduction, but it should be easy to figure out for anyone
with previous experience with programming.

Figure 4: The main view when extended mode is on.

1.3.3 Javascript mode

The javascript mode is a purely textual mode, and only recommended for those who have mastered
using the extended mode in textual form, or have previous knowledge about programming. This
mode utilized an architectural artifact within the application to allow for writing pure and real

Page 4



javascript code directly into the application. To use the javascript mode; change your view to the
textual view and add //#javascript as the first line and you are good to go.

1.4 The simulator

As mentioned previously the simulator has many different appearances which depends on the current
state of the application. Here is a list of the current simulator modes:

1.4.1 Always simulator

With the always simulator mode the simulator is shown regardless of the state of your application.

Figure 5: The simulator view.

1.4.2 Bluetooth adaptive headsup display

The bluetooth adaptive headsup display changes its appearances depending on wether the application
is connected to a robot via bluetooth or not. In the case where it is not connected to a robot it will
show the default simulator view, as seen in figure 5. When the application is connected it will just
show the current task of the robot, as seen in figure 6

Page 5



Figure 6: The bluetooth headsup display.

1.4.3 Bluetooth adaptive blackout

The bluetooth adaptive blackout display has similar characteristics to the bluetooth adaptive heasdup
display, but even removes the heasdup display. While the program is runnin all focus will be at the
robot as the screen will at this point not show any useful information.

Figure 7: The bluetooth blackout display.

1.4.4 Just trace simulator

This mode is does not send any information to the robot even if it is connected. Instead this mode
can be used for rapid debugging of your program. This mode skips all fancy animations that other
modes may have, and draws the a trace of the robots movement as fast as it can. The end image
will be very similar to those of the normal simulator.

1.5 Options

The options panel allows you to change the behaviour of the application at runtime, change the
inital setup, and connect to an external robot. If the yellow Connect button does not appear then

Page 6



check the bluetooth settings on your device, as this button only appears if the application detects
a device with bluetooth.

Figure 8: The options view.

The following attributes are exposed through the options menu:

Attribute Description Default
Use extended mode Allows the user to toggle between nor-

mal and extended mode.
unchecked(normal
mode)

Show procedure invokations Determines wether or not to show the
blocks from the extended mode during
simulation.

unchecked(dont
show)

Default view Allows the user to set the textual view
as default.

#program(graphics
view)

Smart keyboard Turns on different modes for the on
screen keyboard.

none(dont show)

Simulator selection Allows the user to change which simu-
lator mode that are used.

bluetooth adap-
tive headsup

1.5.1 Connecting to a robot

To connect to an external robot; click on the Connect button and wait for a list of robots to show
up on the screen(figure 9), click on the desired robot and wait for the connection to happen. If
everything works fine the Connect button should turn green, this is an indication that the application
is in contact with the robot(figure 10).

Page 7



Figure 9: The list of available robots.

Figure 10: The options view when connected to a robot.

1.5.2 On screen keyboard

This is fallback solution, if the native keyboard doesn’t work correctly.

Page 8



Figure 11: The on screen keyboard for numeric input.

Figure 12: The on screen keyboard for alphanumeric input.

1.6 Textual code examples

All the example below will draw a square with side length of 100, and return to the original starting
position and facing the same way as when it started.

Page 9



1.6.1 Normal mode

1 FWD 100

2 TL 90

3 FWD 100

4 TL 90

5 FWD 100

6 TL 90

7 FWD 100

8 TL 90

Listing 1: Normal mode.

1.6.2 Extended mode

1 REP 4

2 FWD 100

3 TL 90

4 END

Listing 2: Extended mode using loops.

1 PROC A

2 FWD 100

3 TL 90

4 END

5 REP 4

6 CALL A

7 END

Listing 3: Extended mode using procedures and loops.

1 SET NUM 4

2 SET LENGTH 100

3 SET ANGLE 90

4 PROC SEGMENT

5 FWD LENGTH

6 TL ANGLE

7 END

8 REP NUM

9 CALL SEGMENT

10 END

Listing 4: Extended mode using procedures loops and variables.

Page 10



1 var icount = 0;

2
3 SET("NUM", 4);var NUM = 4;

4 SET("LENGTH", 100);var LENGTH = 100;

5 SET("ANGLE", 90);var ANGLE = 90;

6
7 function SEGMENT () {

8 icount ++;

9 if (icount > 30000){return ;}

10 FWD(LENGTH);

11
12 icount ++;

13 if (icount > 30000){return ;}

14 TL(ANGLE);

15 END();

16 }

17
18 REP(NUM);

19 for (var generated_55033 = 0; generated_55033 < NUM;generated_55033 ++) {

20 CALL("SEGMENT");

21 SEGMENT ();

22 END();

23 }

Listing 5: The internal representation of the previous program.

1.6.3 Javascript mode

1 //#javascript

2 var num = 4;

3 var length = 100;

4 var angle = 90;

5 function segment (){

6 FWD(length);

7 TL(angle);

8 }

9 for (var i = 0; i < num; i++){

10 segment ();

11 }

Listing 6: Javascript mode

Page 11


	The TurtleBot application
	Basic screen layout
	Views
	Programming
	Normal mode
	Extended mode
	Javascript mode

	The simulator
	Always simulator
	Bluetooth adaptive headsup display
	Bluetooth adaptive blackout
	Just trace simulator

	Options
	Connecting to a robot
	On screen keyboard

	Textual code examples
	Normal mode
	Extended mode
	Javascript mode



