
Threats to Bitcoin Software

Christian H Kateraas

Master of Science in Informatics

Supervisor: Magnus Lie Hetland, IDI

Department of Computer and Information Science

Submission date: May 2014

Norwegian University of Science and Technology

Preface

This Master thesis is delivered to department of Computer and Information Sci-
ence, at the Norwegian University of Science and Technology. The thesis is part
of the master program in Informatics, and done with guidance from Associate
Professor Magnus Lie Hetland and Per H̊akon Meland from SINTEF.

June, 2014

Abstract

Bitcoins is a decentralized peer-to-peer digital currency, which fascinates and
engages both media, companies, and people. As Bitcoins rises in popularity
and attracts more users, how well suited are the users to fend of attacks against
their Bitcoins? Does the Bitcoin clients provide any protection to its users and
how well protected are the users? An array of attacks, both new and old, are
usable against the users, such as phishing, malware, black mailing, or social
engineering. The focus of this master thesis was to try to forge a Bitcoin client,
which will pass as a legitimate client for the user, and how it is possible to
exploit a user with an evil client. The focus of this master thesis will be to try
to attack an existing Bitcoin client and steal a user’s Bitcoin wallet.

Keywords: Bitcoin, computer security, digital currency, threat modeling.

Acknowledgments

I would like to thank my supervisor Per H̊akon Meland for all his support. All
of our discussions about my thesis and all of your comments on my work has
been paramount for my work. I could not have completed this thesis without
your help! Your understanding and experience helped me

I have also benefited greatly from my other supervisor, Magnus Hetland. Thank
you for helping me getting started with my thesis. Your study techniques helped
me stay disciplined.

Special thanks to Carsten Maartmann-Moe for giving me the idea for this thesis.
The discussions we had before I started my thesis were insightful and inspiring.
They helped me get the thesis on the right track.

A big thank you to Marte Sœther for actually reading through an entire draft
of the thesis, page by page. Your comments and feedback fixed many errors I
would not have seen myself.

A special thanks to my friend Even L̊ate for sharing your phenomenal study
room with me. The countless hours I worked in there were well spent!

A big thank you to all my friends for all the fun we had and the fun we will
have together!

Lastly, I would like to thank my father for helping me stay motivated and
focused. All that I am and all that I have I owe to my father. My deepest
appreciation goes to him. Thank you for believing in me!

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Hypothesis . 2
1.3 Objectives . 2
1.4 Method . 3
1.5 Outline . 3

2 Preliminary studies 5
2.1 What is Bitcoin? . 5

2.1.1 Bitcoin supply . 6
2.1.2 Blocks . 7
2.1.3 Mining . 8
2.1.4 Incentives to mine . 9
2.1.5 Transactions . 10
2.1.6 Exchangers . 10
2.1.7 Adoption and usage . 11
2.1.8 Trust . 14
2.1.9 Anonymity . 14
2.1.10 Commercial usage . 15
2.1.11 Illegitimate and borderline illegal usage 17

2.2 Similar systems . 21
2.2.1 Digital payment systems 21
2.2.2 Alternative coins . 23
2.2.3 Comparison of the payment systems and currencies 25
2.2.4 Wallet alternatives . 25
2.2.5 Comparison of wallets . 27

2.3 Incidents involving Bitcoin or similar systems 28

iii

iv CONTENTS

2.3.1 Incidents involving similar systems 28
2.3.2 Incidents involving Bitcoin 30
2.3.3 Observed existing attack patterns against Bitcoin 39
2.3.4 Commonalities of all attack vectors against Bitcoins . . . 39

2.4 Cryptography . 41
2.4.1 Encryption . 41
2.4.2 Elliptic Curve Digital Signature Algorithm 42
2.4.3 Cryptographic hash functions 42
2.4.4 Usage of cryptographic hash functions 43

3 Methodology 45
3.1 Threat modeling . 46

3.1.1 Misuse case . 47
3.1.2 Attack tree . 50
3.1.3 Data flow diagram . 52
3.1.4 Sequence digram . 53

3.2 Evaluation of Attack Vectors . 55
3.2.1 Threat metrics . 55
3.2.2 Evaluation metrics for misuse-cases 55
3.2.3 Evaluation metrics for attack trees 56
3.2.4 Evaluation of sequence diagrams 57

3.3 Proof of Concept . 58
3.3.1 Requirements for Development 58
3.3.2 Requirements for Evaluation 60
3.3.3 Proof of concept client . 61
3.3.4 Distributing the client . 67

4 Results 73
4.1 Threat modeling . 74

4.1.1 Personae . 74
4.1.2 Misuse case . 78
4.1.3 Attack tree . 88
4.1.4 Sequence diagram . 92

4.2 Evaluation of Attack Vectors . 95
4.2.1 Mindset . 95
4.2.2 Evaluation of misuse-cases 95
4.2.3 Evaluation of attack trees 99
4.2.4 Evaluation of sequence diagrams 102

4.3 Proof of Concept . 103

CONTENTS v

4.3.1 Gaining trust from users 103
4.3.2 Development tools . 104
4.3.3 Getting familiar with MultiBit’s interface 105
4.3.4 MultiBits network usage 108
4.3.5 Analyzing MultiBit’s source code 108
4.3.6 Vulnerabilities uncovered from MultiBit’s source code . . 110
4.3.7 Inserting CoinShifter’s code 113
4.3.8 Testing CoinShifter . 116
4.3.9 Spreading our client . 118
4.3.10 Exploit overview of Multibit 121

5 Discussion 123
5.1 Threat modeling . 123

5.1.1 Misuse-cases . 125
5.1.2 Attack trees . 126

5.2 Evaluation . 127
5.2.1 Probabilities . 127
5.2.2 Bias . 127

5.3 Proof of concept . 128
5.3.1 Execution time and cost 128
5.3.2 Further improving the attack 131
5.3.3 Parallels with credit card fraud 132
5.3.4 Challenges with distributing Bitcoin software 132
5.3.5 Guarding private keys . 133
5.3.6 Improving security . 134
5.3.7 Contact with MultiBit’s lead developer 135

6 Conclusion and future work 137
6.1 Conclusion . 137
6.2 New and emerging threats . 138
6.3 Evaluation . 138
6.4 Improved proof of concept . 139
6.5 Ethical considerations . 139

A 141
A.1 Glossary . 141
A.2 Threat models . 144

A.2.1 Misuse cases . 145

vi CONTENTS

List of Figures

2.1 The market price of Bitcoin from January 2009 to May 2014
measured in USD[1] . 6

2.2 Total number of Bitcoins in circulation[2] 7
2.3 Overview of a Bitcoin transaction 11
2.4 Overview of a legality of Bitcoin across the world[3] 12
2.5 Overview of headlines regarding Bitcoin 13
2.6 Bitcoin address generation . 16
2.7 The Silk Road domain has been seized 18
2.8 This is the image greets users at the new Silk Road 2.0[4] 19
2.9 Trezor’s package design[5] . 27
2.10 The domain http://www.libertyreserve.com/ has been seized . . 28
2.11 The amount of tools made for either stealing Bitcoin wallets or

Bitcoin mining malware as discovered by Kaspersky[6] 31
2.12 The amount attempted attacks with either malware designed for

stealing Bitcoin wallets or Bitcoin mining malware compared to
the number of such attacks, as discovered by Kaspersky[6] 31

2.13 The message on https://www.bitstamp.net after the attack was
discovered . 33

2.14 The message on https://localbitcoins.com after the attack 35
2.15 The message on https://input.io after the attack was discovered 36
2.16 Using hash function together with asymmetric encryption to cre-

ate Alice’s message . 44

3.1 The misuse notation introduced by Guttorm Sindre[7] 48
3.2 An example of an attack tree against Bitcoins 51
3.3 An example of a dataflow diagram 52
3.4 An example of a sequence diagram 54

vii

viii LIST OF FIGURES

3.5 Bitcoin QT’s logo . 62
3.6 The download statistics for the compiled Bitcoin QT client from

Sourceforge[8] from May 2010 to May 2014 63
3.7 Electrum’s logo . 63
3.8 Armory’s logo . 64
3.9 MultiBit’s logo . 64
3.10 The download statistics for the compiled MultiBit client from

MultiBit’s website[8] from April 2011 to March 2014 65
3.11 Hive’s logo . 65
3.12 The front page of https://www.multibit.org 69
3.13 The front page of https://www.electrum.org 70
3.14 The download page for https://bitcoin.org/en/choose-your-wallet 71

4.1 The diagram refinement order . 74
4.2 A use-case between a user, their local client, and a third-party

service . 79
4.3 A misuse-case between Bitcoin software run on a local machine

and an attacker . 81
4.4 A misuse-case between a third-party service and an attacker . . . 84
4.5 A misuse-case between the developers, a dishonest developer, and

an attacker . 86
4.6 Attack tree with the goal of installing malware at a target system 89
4.7 Attack tree with the goal of spoofing a software distribution point 90
4.8 Attack tree with the goal of stealing a Bitcoin wallet backup from

a victim . 91
4.9 Attack tree with the goal of creating a fake CA 92
4.10 Sequence diagram of stealing a victim’s wallet 93
4.11 Sequence diagram of creating a fake certificate authority 94
4.12 A forum post to warn people about a fake Electrum download

site[9] . 104
4.13 A forum post to warn people about fake MultiBit clients[10] . . . 104
4.14 The dialog MultiBit shows to the user when creating a new wallet 106
4.15 The view MultiBit shows to the user when exporting their private

key . 107
4.16 A sequence diagram of how to potentially use man in the middle

against MultiBit users . 112
4.17 Dialog with fake anonymous Bitcoin transfer request 113
4.18 The view once the user has accepted the Bitcoin transfer request 114

LIST OF FIGURES ix

4.19 A sequence diagram of how to spam MultiBit users with Bitcoin
transfer requests . 114

4.20 The method added to KeyCrypterScrypt to send over the keys . 115
4.21 The method added to ECKey to send over the keys 115
4.22 The code used to receive the stolen keys 117
4.23 The keys recovered from the CoinShifter. 118
4.24 Key generated by MultiBit on first start on Ubuntu. It is the

first key in Figure 4.23 . 118
4.25 Key generated by us through the GUI on Ubuntu. It is the second

key in Figure 4.23 . 119
4.26 CoinShifter’s website . 120
4.27 An abstract overview of the MultiBit client’s architecture 122

5.1 Map of Bitcoin ATMs worldwide 124
5.2 A pool table operated by Bitcoin 124
5.3 Fuel pump operated by Bitcoin 125
5.4 A user on Reddit descirebes their loss of bitcoins to CoinThief[11] 130
5.5 A user on Reddit describes their loss of bitcoins to StealthBit[12] 130
5.6 Chart of credit card frauds in Europe during 2012 132

A.1 Distributed network architecture 142
A.2 Centralized architecture . 143

x LIST OF FIGURES

List of Tables

3.1 A textual description of a misuse case 49
3.2 Criteria for comparing Bitcoin clients 66
3.3 A comparison of the popular clients found on Bitcoin.org 66

4.1 Attack tree for case 1.1 Install malware 99
4.2 Attack tree for case 3.1 Spoof distribution point 100
4.3 Attack tree for case 1.4 Steal wallet backup 101
4.4 Attack tree for case 2.3 Create fake CA 101

5.1 Overview of which requirements CoinShifter passed and failed . . 129

A.1 Evaluation for misuse-case 1.1 - Install malware 145
A.2 Evaluation for misuse-case 1.2 - Compromise wallet generation . 146
A.3 Evaluation for misuse-case 1.3 - Gain access to the system 147
A.4 Evaluation for misuse-case 1.4 - Steal wallet backup 148
A.5 Evaluation for misuse-case 1.5 - Weaken cryptography tools . . . 149
A.6 Evaluation for misuse-case 1.6 - Weaken cryptography standards 150
A.7 Evaluation for misuse-case 2.1 -Distributed denial of service (DDoS)151
A.8 Evaluation for misuse-case 2.2 - Masquerade as server 152
A.9 Evaluation for misuse-case 2.3 - Create fake certificate authority 153
A.10 Evaluation for misuse-case 2.4 - Brute force authentication 154
A.11 Evaluation for misuse-case 2.5 - Compromise wallet generation . 155
A.12 Evaluation for misuse-case 3.1 - Spoof distribution point 156
A.13 Evaluation for misuse-case 3.2 - Break into distribution point

(DP) . 157
A.14 Evaluation for misuse-case 3.3 - Gain access to the system 158
A.15 Evaluation for misuse-case 3.4 - Add evil code 159

xi

xii LIST OF TABLES

A.16 Evaluation for misuse-case 3.5 - Trust poisoning 160
A.17 Evaluation for misuse-case 3.6 - Distributed Denial of Service

(DDoS) . 161

Chapter 1

Introduction

This chapter will state this report’s research motivation, our hypothesis, intro-
duce the research objectives, and describe the method we used to complete our
objective. Lastly is an outline of the report.

This report may contain jargon and words unfamiliar to some of the readers.
Appendix A contains a glossary which the reader is encouraged to use if any
words are unfamiliar.

1.1 Motivation
Bitcoin is a fascinating concept - it is a digitally distributed payment system
that allows people across the globe to transfer bitcoins to each other. Bitcoin
uses familiar cryptographic schemes and principles as its building blocks. These
blocks form the foundation of the Bitcoin protocol. The Bitcoin protocol uses
cryptography to manage ownership of bitcoins, and to transfer bitcoins between
parties. These building blocks that the Bitcoin protocol uses are not new, they
are known schemes and algorithms that were adapted to a new context.

It is important to known that the Bitcoin ecosystem is more than just the
Bitcoin protocol. The ecosystem roughly consists of miners, users, and services.
These entities communicate with each other using the Bitcoin protocol. To fa-
cilitate this, they use Bitcoin software, which is made by the community. It is
also important to known that an attacker will see the Bitcoin system as more
than just the protocol, too. An attacker knows that the majority of Bitcoin
clients are run on a version of Windows, Mac OS X, or a Unix-like operating

1

2 CHAPTER 1. INTRODUCTION

system (OS). There already exists a multitude of existing exploits and attacks
against those OSes, which can with minor modifications be used to target Bit-
coin software. This body of existing attacks can also be expanded by discovering
weaknesses in Bitcoin software and implementations. This accumulates into a
large attack surface against Bitcoins and its uses, as both new and old attacks
combine.

The research presented in this report was conducted in an attempt to bolster
Bitcoin’s security and create awareness of the plethora of attacks are possible
to execute against the Bitcoin ecosystem.

1.2 Hypothesis
Our hypothesis was that the most insecure components in the Bitcoin ecosystem
are the software implementation of the Bitcoin protocol. The primary reason
behind this thesis was that all users have in common that they run a client to
manage their bitcoins. This software is responsible for keeping all of the user’s
bitcoins safe and keep the user’s bitcoins in their possession. A challenge for
the clients it that they are run in less than ideal and often hostile environments.
Most users will not have the knowledge to properly secure their systems, which
renders most the Bitcoin clients defenses futile. This is in addition to any bugs
and flaws already present in the software. Another reason is that the Bitcoin
clients are often overlooked in the media, which focuses on attacks against Bit-
coin exchangers. We wanted to bring focus to the clients and assess their level
of security.

1.3 Objectives
The goal of this thesis was to prove that it is relatively easy to create a malicious
Bitcoin client that would steal the user’s Bitcoin wallet. Once the client has
exposed the wallet, it can send the wallet and its content to a predefined server,
which can store all the received wallets and credentials. This information can
later be used to steal the victim’s Bitcoins. Another goal is to establish an
approximation of the most common attacks against Bitcoins that try to manip-
ulate and profit from other attack vectors than cryptography based attacks. We
defined the following objectives for this report:

1 Investigate threat models for common, non-cryptographic attacks.

1.4. METHOD 3

2 Evaluate how different attack vectors are used/could be used against the
Bitcoin system.

3 Prove that it is possible to create a malicious client, which steals the users
wallet and sends it to a designated server.

1.4 Method
We created a set of threat models against the Bitcoin ecosystem, which is from
this thesis’ point of view comprised of Bitcoin clients. We have excluded the
Bitcoin miners from our ecosystem since they do not directly create transactions
or handle Bitcoin wallets. This investigation was done in order to map non-
cryptographic threats against the Bitcoin network. Such threats could originate
from improper implementation, bugs in the software, or the system the software
runs in. Threats in our thesis were the threats that are posed from downloading,
installing, and running Bitcoin software or using a third-party Bitcoin service,
which are the threats that most users will have to face when they want to use
bitcoins as a currency. The proof of concept client was made to determine the
difficulty of executing such an attack.

1.5 Outline
This section is the outline of the report. Most chapters are divided into three
sections, to mimic the three objectives in this report. The sections are Threat
modeling, Evaluation, and Proof of concept. They each correspond to each of
the three objectives in the order they were listed in Section 1.3.

Chapter 2 The second chapter of this report is a literature study and our
preliminary studies, in which relevant papers and articles were read and exam-
ined in order to see what similar research had already been done. Since Bitcoins
was a new phenomenon when this report was written, there were few papers
that had been written on the subject. Most of the information on the subject
was found in various news papers, web pages, forums, wikis, or mailing lists. As
a consequence, some of the sources used in our work are of varying credibility
and origin, but they have been filtered by the author, using cross referencing
between sources as the primary filter. This was sometimes difficult, as some
articles covering a certain incident were based on the same source, making it
harder to verify the information. The second chapter contains an introduction

4 CHAPTER 1. INTRODUCTION

to what Bitcoins is, to give the reader a better understanding of Bitcoin and
how it functions. Following is a summary of similar systems that exist or that
have existed. Then incidents with Bitcoin and the similar systems, a list of
common attack patterns and how they can be modified to target Bitcoins, with
a brief primer on cryptography.

Chapter 3 Chapter 3 contains our methodology and was created after the
preliminary study. The methodology contains an explanation of threat models
such as misuse case, attack tree, sequence diagrams, and data flow. We created
evaluation criteria for our threat models. Then we introduce the proof of concept
client, together with its requirements and client alternatives.

Chapter 4 Chapter 4 presents the results from our experiments. The first
section of the chapter is the threat modeling. It first introduces the personae
that is used while threat modeling. Then we present a diagram together with
a textual description for each threat model. They are then evaluated in the
second section, which also contains an explanation of the mindset used while
evaluating the models. The third section is describes the process of creating
this report’s proof of concept.

Chapter 5 Chapter 5 discusses our work and its findings. The first section of
the discussion is about the thesis’ threat models and how they were shaped by
the author and his supervisor’s opinions. The next section discusses the same
topic in the light of the models’ evaluations. The last section debates the proof
of concept client and its attack vector.

Chapter 6 Chapter 6 concludes the work we did with respect to our hypoth-
esis. After the conclusion are our recommendations and research guidelines for
future work. The future work section contains advice concerning new threats,
improving the evaluation and the proof of concept client. Lastly is the ethical
considerations of our work and its results.

Chapter 7 Chapter 7 is the appendix for this report. It is a glossary for
words and phrases that may be unfamiliar to the reader. After the glossary,
it contains the threat models that were removed from the report to make the
report more readable.

Chapter 2

Preliminary studies

2.1 What is Bitcoin?

Bitcoin is a digital currency and an electronic payment system. Bitcoin can,
roughly, be divided into two parts, the Bitcoin network and the Bitcoin cur-
rency. The network aspect consists of miners and clients. The clients creates
the transaction and the miners verify them. As a Bitcoin user, you will most
likely use Bitcoin software, called Bitcoin clients, to send bitcoins as transac-
tions. The transactions you create are sent to the network where the miners
validate the transaction. Once validated, the transaction is added to the public
Bitcoin ledger. These transactions are the bitcoins that is circulating around the
network between the users, which is the currency aspect of Bitcoins. Each user
is identified with a unique address, which is similar to an account number, that
can be tracked through the public ledger’s transactions. By following bitcoins
as they go to and from your account, you can determine how many bitcoins you
are currently in possession of.

Users can either use a third-party services to manage their bitcoins, or down-
load their own Bitcoin clients to manage their bitcoins by themselves. Bitcoins
hold a real world value and can be exchanged into goods and services, or na-
tional currencies at Bitcoin exchangers. The concept of Bitcoins was created
by Satoshi Nakamoto. Nakamoto released a paper describing Bitcoins at Octo-
ber 31st 2008. The following year, at January 9th 2009, the first open source
Bitcoin client was released to the public [7], which also marked the start of the
first Bitcoin network. The genesis block, the first Bitcoin block ever created,

5

6 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.1: The market price of Bitcoin from January 2009 to May 2014 mea-
sured in USD[1]

was mined 6 days before the client was released.

2.1.1 Bitcoin supply
Bitcoin has a finite amount of coins which will never exceed 21 million Bitcoins.
Coins are created through the process of mining of blocks, see Section 2.1.3.
Figure 2.2 shows how many Bitcoins that have been mined from the birth of
Bitcoin until 13th October 2013. Each block that is mined gives the miners a
predefined reward for mining the block and putting an effort into the mining.
This reward started at 50 BTC in 2009. The reward is halved every 210,000
blocks, or every four year. The current reward for mining a block in 2014 is 25
BTC for each block mined. The reward is scheduled to be halved again in 2017.
This reward is added to the pool of existing Bitcoins by giving them to the
miners. Once the miners are in possession of the new bitcoins, they are free to
spend them like any other bitcoin. The Bitcoin algorithm specifies that it should
take about 10 minutes for all the miners in the network to create a new block.
This regulation exists to control the rate at which Bitcoins are created and keeps
the network from creating Bitcoins too rapidly or too slowly. To counter any
deviation from the algorithm, the difficulty required to mine a block is increased
or decreased. This adjustments are made every 2016 block to keep any sudden
loss or gain of computational power from disrupting the creation of Bitcoins.

2.1. WHAT IS BITCOIN? 7

Figure 2.2: Total number of Bitcoins in circulation[2]

2016 blocks roughly equals an adjustment every 2 weeks, since a single block is
supposed to be mined every 10 minutes. 1 This scheduled adjustment means
that no matter how powerful the nodes in the network are becoming, the rate
at which Bitcoins are created is throttled by the Bitcoin protocol. The power
of the Bitcoin network is measured in the number of hashes the network is able
to create per second. The chance of finding a solution increases as the more
hashes are created per second.

2.1.2 Blocks
Each miner will collect all, or some2, of the unevaluated transactions at that
time and try to validate them. The result of the validation, or mining, is the
creation of a new transaction block. This block contains a record of all new
transactions that are not already validated and not in any of the previous blocks.
Once the block has been made and successfully added to the block chain, it will
never be altered again. The only interaction with old blocks is to read again
later as a proof of that transaction. The block will contain a reference to its
predecessor and which transactions it contains. A transaction to the miner is
also a part of these transaction, as this is the reward for mining the block. This

11 block per 10 min - 6 blocks per hour - 6 * 24 blocks = 144 blocks are made every day.
2016 blocks / 144 blocks per day = 14 days.

2All of the unvalidated transactions in the Bitcoin system may not have reached all of the
node when it started to mine a block.

8 CHAPTER 2. PRELIMINARY STUDIES

privilege of creating Bitcoins are only given to those who successfully mine a
new block. This is done by simply adding a new transaction that gives the
reward sum to the miner’s Bitcoin address. Each block also contains a unique
solution to a computationally demanding challenge, called the proof of work,
which is described in section 2.1.3. A new block cannot be added to the ledger
if it does not contain a solution to the challenge.

Block chain The block chain is a public ledger for all Bitcoin transactions
ever made. Each block can be compared to a side of the ledger. The name block
chain is a result from the fact that all blocks has a reference to its predecessor.
Since all blocks are linked to their predecessor, they create a structure that can
be visualized as a chain. If we follow this chain from its current position at the
end and to the start of the chain, we end up at the genesis block. The genesis
block is the first block created in the Bitcoin ecosystem and is the only block that
is not linked to a previous block, as there is no blocks before the genesis block.
The genesis block was created by Satoshi Nakamoto, as previously mentioned.

Overlapping blocks If two nodes simultaneously completes validation for
the same block, they have both mined the same block. This can be caused from
several reasons, but the Bitcoin network does not care what the true reason was.
The nodes all follow the Bitcoin protocol, which selects the most trustworthy
block. This trust comes from the blocks proof of work, which is described in
section 2.1.3. The block that has the highest amount of work put into it is the
one the nodes will use.

2.1.3 Mining
When the term mining is used in conjunction with Bitcoin it refers to verify-
ing transactions Bitcoin users have made with their Bitcoins. Each transaction
ever made is publicised to all nodes within the Bitcoin network, but needs to
be verified by the community before it is added to the public block chain. This
confirmation is done to create security for the users and stop users from tamper-
ing with transactions, such as double spending of Bitcoins. The confirmation
is performed by checking that the sending user is actually in possession of the
Bitcoins being transferred.

Proof of Work To stop nodes from spamming their own blocks and creating
duplicate block chains, the Bitcoin protocols has added a requirement to every

2.1. WHAT IS BITCOIN? 9

block. Each block needs to contain the solution to a difficult problem. The
nodes are all given a challenge string C, which is the hash of the previous
block. The miners’ challenge is to find a response string R which solves a given
problem. The problem is to get as many leading 0’s in the hash digest D of the
challenge string C concatenated with the response string R. The number of 0
vary depending on how difficult it needs to be to generate a new block. If the
network is slow, the number of 0’s are decreased and increased if the network is
powerful. As the hash algorithm used to solve the problem is a predetermined
cryptographic hash algorithm, it is computationally infeasible to cheat the hash
algorithm. Each node then attempt to find a response string R which gives them
a digest with as many leading 0’s as possible. The more leading 0’s, the more
work is assumed. This could be solved one the first try by sheer coincidence by
the node or it may never be found by the node within the 10 minute time slot
they have to solve it.

To confirm that the solution presented by the miner is in fact a solution, all
the network has to do is to combine the challenge string C and the response
string R and check that the digest meets the set criteria. From the node’s
perspective it is safe to announce their solution as soon as it found one, as
revealing the solution doesn’t give the other nodes any clues as to how they
can improve the solution, as the cryptographic hash algorithm should have a
uniform and arbitrary distribution in the digest, so that the digest does not
reveal anything about the input.

2.1.4 Incentives to mine

Mining is a resource and time consuming work, but is an essential part of the
Bitcoin system. No transaction will be verified without the miners. The Bitcoin
system relies on honest nodes working together and needs nodes to mine each
transaction to verify that the transaction was an authentic payment in order to
prevent fraud and tampering of bitcoins. The Bitcoin network needs a way to
attract new miners and keeping the existing miners, even though it is a costly
operation to mine. The costs of mining are the computational power required to
performed the mining, which requires electricity, and the hardware the mining
is running on. Both these drains the nodes of economical resources and is not
sustainable in the long run, unless the nodes get something in return for their
work. The Bitcoin protocol has two ways of motivating both new and existing
miners, which are described below.

10 CHAPTER 2. PRELIMINARY STUDIES

Coin base generation To create an incentive for miners to continue mining,
each block that is made and is successfully added to the block chain gives the
miner a reward in bitcoin. The miner is allowed to add a new transaction of
bitcoins to their Bitcoin address, in the block that was mined, with a predefined
amount of bitcoins. This amount of bitcoins decreases according to the Bitcoin
specification, which halves the reward every 210,000 blocks until it reaches zero.
Miners are left with only transaction fees as rewards for mining once the reward
has reached 0.

Transaction fees When a user creates a new Bitcoin transaction the user
has the option to add a transaction fee. This fee will be given to the node that
mines the block with that transaction. Any transaction fees included in any of
the transactions in a block is given to the miner who created the block. The
transaction fees are also thought to be the incentive for miners in the future,
when the reward for mining a block has greatly diminished or is gone completely.

2.1.5 Transactions
A transaction is a transfer of bitcoin between two entities, which in the Bitcoin
system is two users’ wallets. They are both identified by their public keys,
which serves as an identification for the user. The sender specifies all previous
deposits to his/her wallet to prove that the wallet contains at least the amount
required for this transaction. This is included as a hash digest of the previous
incoming transactions. The sender also specifies a recipient in form of a Bitcoin
address, and how much to give to the recipient. A transaction fee can also be
included, which will be given to the miner that mines the block containing this
transaction.

2.1.6 Exchangers
Exchangers are used in order to convert national currency to Bitcoins. They ac-
cept bitcoins and convert them into their supported currencies. The converted
money is then transferred to the user’s bank account or similar. Exchangers
also exchange the other direction, from national currencies into bitcoin. The
bitcoins are sent to the user’s Bitcoin wallet. The requirements for setting up
an exchanger vary from country to country. Some countries have rules regard-
ing Bitcoin and its legal uses. The countries that have made laws have either
classified bitcoins as a commodity, as a currency, and banned it. Since the rules
depends on where the exchangers are set up, the level of honesty and regulations

2.1. WHAT IS BITCOIN? 11

Figure 2.3: Overview of a Bitcoin transaction

they must follow may vary between exchangers. Figure 2.4 shows a world map
of where Bitcoin is legal. The source for Figure 2.4 is http://bitlegal.net/[3].

2.1.7 Adoption and usage
The exact amount of people who use Bitcoins are hard to estimate, as there
exists no official statistics. One possible indicator of the number of users are
the download count for the popular Bitcoin clients. Many clients do not have
any statistics available, but some do. One of those who do is the official Bitcoin
client. It is hosted on SourceForge, which collects download statistics[8]. These
graphs are only a rough estimates since they do not take into account that a
user may have downloaded a client more than once ,or that users may have
downloaded their client from any other source. Even though, the graphs can be
used to illustrate the growing popularity of Bitcoin.

We also looked for similar statistics in social media. On Facebook we found
several groups associated with Bitcoins[13]. The largest of the groups were
’Bitcoin Users Org’, which is a group with over 260.000 likes in April 2014.3 A
like does not necessary have to be a Bitcoin user, but a like can be used as a
sign of increased popularity for Bitcoin and an increased awareness of Bitcoin

3A like is an expression from a user that he/she supports, or likes, the post, group, picture
or text.

12 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.4: Overview of a legality of Bitcoin across the world[3]

2.1. WHAT IS BITCOIN? 13

Figure 2.5: Overview of headlines regarding Bitcoin

on Facebook. Reddit has a several groups focused on Bitcoins where groups
range from mining, beginners, and tips. The Bitcoin subreddit[14] had 52.000
subscribers in September 2013 and had 117.000 subscribers in April 2014.

Using all of the indicators from above, it is possible to assume an increasing
usage and awareness of Bitcoin. During 2013 there were plenty of mentions of
Bitcoin in the media, which have made the general population more aware of
it. We have found no specific number of users, but we estimate it was grow-
ing between August 2013 and April 2014 based on media covering, number of
downloads of Bitcoin clients, and an increase in number of participants in so-
cial media. See Figure 2.5 for headlines about Bitcoins. The headlines were
collected from different newspapers around the world.

14 CHAPTER 2. PRELIMINARY STUDIES

2.1.8 Trust
When users wanted to use Bitcoin, they needed to trust that they could safely
use Bitcoins and not loose their money by using it. They also had to see a
value in Bitcoins. To establish trust and to represent a value to its users, is a
challenge that any currency will face, digital or not. If the users sees no value or
does not trust to the currency, then users will not use nor adopt the currency,
and the currency will slowly fade away. Bitcoin used transparency to create
trust. The initial white paper, which Bitcoins is based upon, is openly available
and can be read by anyone. The Bitcoin client software is also open-source and
anyone can read through the source code for the Bitcoin clients. Being open
source allows users and developers to scour through the code to check that there
is no malware or other malicious behavior hidden away in the program. The
compiled binaries that users download can be verified using checksums or digital
signatures. This allows a paranoid user to download either the source code and
compile the source code, or verify the signed binary. After the initial adoption
by Bitcoin enthusiasts, the media started writing about Bitcoins, and its user
and popularity, and thus legitimizing Bitcoins for other users. This network
effect caused more people to join.

Open sourced Bitcoin is completely transparent, both the white paper and
the source code is available to all. Any one can download the source code and
compile the code on their own. It also opens up for a peer review of the code,
so that mistakes and any deviations from the specifications can be discovered
and corrected. This can give the users elevated trust, but is not a guarantee
that the code contains no bugs or flaws.

2.1.9 Anonymity
Each user in the Bitcoin network is required to have at least one private key
and one public key, called a key pair. These keys are used to sign transactions
and act as a pseudonym for the user within the Bitcoin system. The public key
is derived from a private key and is used as a base create the address for the
user. The procedure for generating a new address is shown in Figure 2.6. The
key pairs are stored in a special file called the Bitcoin wallet, which hold all the
user’s key pairs. These addresses are publicised every time a user receives or
sends Bitcoins[15] and serves as a pseudonym for the user. An IP address is
linked to each transaction too, which makes it possible to track the user[16][17].
Privacy can be increased if the users uses a new address for each transaction

2.1. WHAT IS BITCOIN? 15

[17][18][16] and by masking you IP address by routing through proxies or similar.
This makes it more difficult to associate your public key to your IP address and
thus hides your physical location.

Bitcoin address generation As shown in Figure 2.6 the Bitcoin address
is derived from the user’s public key. The public key contains the x- and y-
coordinates used in elliptic curve cryptography. The 1 byte preceding the coor-
dinates in the public key is 1 byte with the value 0x04. The public key is first
hashed with SHA-256, then the digest is hashed again with RIPEMD-160. The
resulting digest is a 20 byte value that is the Bitcoin binary address. This is
padded with a network identification byte to specify which network the address
is going to be used within. A checksum is added to the binary address in order
to be able to verify the address’ integrity. This checksum is created from the
double SHA-256 hash of the Bitcoin address. The first 4 bytes from the result-
ing digest form the checksum, which is concatenated at the end of the Bitcoin
address. The resulting 25 bytes are then converted to base58 and the Bitcoin
address is generated.

2.1.10 Commercial usage

Many businesses have adopted Bitcoins and now allow their customers to use
Bitcoins to pay for their services. The reason why a specific business decided
to use Bitcoins may vary.

Wordpress Wordpress is an open source content-management system. It is
a free tool based on PHP and MySQL. As a user you can now use Bitcoins to
pay for upgrades on your Wordpress blog[19]. Wordpress states they chose to
use Bitcoins because[19]: PayPal alone blocks access from over 60 countries,
and many credit card companies have similar restrictions. Some are blocked
for political reasons, some because of higher fraud rates, and some for other
financial reasons. Whatever the reason, we don’t think an individual blogger
from Haiti, Ethiopia, or Kenya should have diminished access to the blogosphere
because of payment issues they can’t control. Our goal is to enable people, not
block them. Bitcoin is a digital currency that enables instant payments over
the internet. Unlike credit cards and PayPal, Bitcoin has no central authority
and no way to lock entire countries out of the network. Merchants who accept
Bitcoin payments can do business with anyone.

16 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.6: Bitcoin address generation

2.1. WHAT IS BITCOIN? 17

Khan Academy As a not-for-profit organisation, Khan Academy accepts Bit-
coins, among other currencies, to aid their operations[20]. Khan Academy aims
at providing free quality education to anyone.

Libre Office The Document Foundation[21] has created Libre Office, which
is a non-profit organisation. The development of Libre Office is by its users and
is free of charge to use. They accept donations to help further develop their
software and they also accept donation through bitcoins[22].

Electronic Frontier Foundation The Electronic Frontier Foundation is a
non-profit organisation and is dependent on donations to keep its operations
running. It has now accepted Bitcoins as donation to continue its cause[23].

Coinbase Coinbase[24] offers to storing, sending, and receiving bitcoins. Coin-
base has U.S. bank integration, which links a user’s Coinbase wallet to their U.S.
bank account[24].

More examples There are plenty of businesses that have added Bitcoin as a
payment option. For an overview, visit www.http://usebitcoins.info.

2.1.11 Illegitimate and borderline illegal usage
There exists many different reasons for why someone would use bitcoins, and
some of those reasons may be illegal. Such as operating an illegitimate busi-
ness, buying illegal services, or similar reasons. Criminals are attracted to the
anonymity that is associated with Bitcoins[16]. This anonymity helps cloak
themselves and their customers, so that their users can participate in their il-
legal operations without revealing their real identification. Also, many of the
operations require a payment system that is not part of the established financial
infrastructure, because using those systems leaves financial traces which can be
used by law agencies to get the criminals convicted.

The most infamous illegal Bitcoin operation run is Silk Road, which got
loads of media attention during the Fall of 2013. It was taken down[25], but it
was soon replaced by Silk Road 2.0[4][26].

Silk Road Silk Road[27][28] was an online black market where costumers
could buy and sell any type of goods and services[28]. Silk Road was most
known for drug trafficking[29] and used the Tor Network[30] to cloak the users.

18 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.7: The Silk Road domain has been seized

2.1. WHAT IS BITCOIN? 19

Figure 2.8: This is the image greets users at the new Silk Road 2.0[4]

Tor allowed users to securely browse to the Silk Road domain without any traffic
monitoring. Bitcoins was used the only option for payments on Silk Road[28],
as it offer more anonymity than other currencies. The founder of Silk Road
was an anonymous character know only as ‘Dread Pirate Robert‘[25]. The
founder of Silk Road was arrested and identified to be Ross Ulbricht[31][25].
The charges pressed against Silk Road included drug distribution, attempted
witness murder and attempted murder for hire[28]. After Silk Road had been
seized, all of Silk Road’s Bitcoins were seized. The total amount of Bitcoins
were 170.000 Bitcoins[28] worth about $34.5 millions at the exchange rate at
that time.

Silk Road 2.0 Silk Road 2.0 was founded by the same pseudonym that
founded the original Silk Road, Dread Pirate Roberts[4][26]. The new Silk
Road was introduced to the world through a tweet by Dread Pirate Roberts[25]
where he informed that Silk Road was back up[32]. For many it was deemed as
inevitable that Silk Road 2.0 would rise, as taking down the original Silk Road

20 CHAPTER 2. PRELIMINARY STUDIES

would not stop drug sales[4]. The new Silk Road is similar to the old one, both
in web page design, layout and purpose.

Sheep Marketplace Sheep Marketplace was an anonymous marketplace hosted
on the Tor network[33][34]. It was established in March 2013[33], but was taken
down when a vendor stole 96,000 bitcoins from their users[34][35].

Russian Anonymous Marketplace (RAMP) RAMP is a Russian alter-
native to Silk Road[36]. RAMP is also hosted on the Tor network and uses
Bitcoins as payment for services on the site.

Online Casinos Many online casinos and gambling sites have embraced Bit-
coins and allow their users to place bets and wagers with Bitcoins. If a user wins,
he or she is rewarded with Bitcoins. Many of the sites boast about the anonymity
of using their sites and points to their security implementations and Bitcoins
as proof. One of the online Bitcoin casinos, is Bitzino[37]. There is not much
information available online, except that they offer an HTML5 solution to gam-
ble online using Bitcoins. Another online Bitcoin casino is CasinoBitco.in[38].
They offer an online solution to place bets on sport events or from card games,
such as blackjack.

2.2. SIMILAR SYSTEMS 21

2.2 Similar systems
There has been a flora of different digital currencies and payment systems both
before and after Bitcoin. System such as Liberty Reserve, e-Gold, Litecoin,
and PayPal are all similar to each other and to Bitcoin, in their own ways.
The difference is most noticeable in the actual implementation and the system’s
architecture. The major differences are a centralized or distributed, and linked
with the bank infrastructure or create their own infrastructure. A feature among
some of the digital currencies is the promise of anonymity and secrecy for their
users. This is a step away from the standard and centralized banking system
which require its users to be identified and verified. The anonymity of a digital
currency is desired because it allows the user to purchase and sell goods or
services online without an audit trail. It is hard to identify the user without a
trail that leads back to the true user. There are several reasons for why a user
desires this anonymity, but that will not be discussed in this report. But not
all digital payment systems or currencies are anonymous. Some of the systems
require verification of their users and emphasize this requirement to prove that
they operate a legitimate business. The opposite is seldom claimed; that they
are an illegal business since they do not require verification. Most of the digital
currencies that came after Bitcoin, are inspired by or based on the Bitcoin
protocol. The spinoff coins are referred to as alternative coins (alt-coins) Some
of these currencies are simply wrappers around the Bitcoin protocol, while other
expand the protocol to add new features and functionality.

2.2.1 Digital payment systems
There are and have been many digital payment systems. Some attempted to
digitize ordinary cash payments to ease online payments, while other tried a
more radical approach and build an entirely new solution.

PayPal

PayPal[39] is an electronic payment system built on top of the existing economic
infrastructure built by the many banks across the world. Since they leverage
this already built system, it is easy for users to join PayPal. The user can chose
to link their PayPal account to their existing bank account, or their credit or
debit card. This allows PayPal to verify your account and eases withdrawing
and depositing money. If you do not have a verified PayPal account, PayPal
adds limits to the amount of money you are able to withdraw or deposit each

22 CHAPTER 2. PRELIMINARY STUDIES

month. Their online system allows users to transfer money across the globe
in real time[40]. PayPal is recognized as a secure system by eBay[41], which
acquired PayPal for $1.5 billion[42]. eBay uses PayPal to offer their users safe
and secure transactions while shopping.

Liberty Reserve

Liberty Reserve[43] was a digital currency based in Costa Rica[44]. Money in-
vested in Liberty Reserve bought the investor an amount of Liberty Reserve
Euros or Liberty Reserve Dollars. It was founded by Arthur Budovsky after his
exchanger ‘Gold Age, Inc.‘ for e-Gold 2.2.1 failed. Budovsky then started Lib-
erty Reserve and built it together with his partners[43]. When a user wanted to
sign up for Liberty Reserve they had to fill in their name, address, and date of
birth. Liberty Reserve required no verification of the users identification, which
is contrary to what traditional banks and other payment systems do[43]. The
user was then free to trade with other Liberty Reserve users. To fund your Lib-
erty Reserve account, you had to send money through third party exchangers.
This was to improve the user’s anonymity, as a direct transfer from the user’s
bank account into the user’s Liberty Reserve account could leave a trail from the
Liberty Reserve user and back to the owner of the account. Users also had to use
the exchangers for withdrawing their Liberty Reserve funds[43]. By only allow-
ing users to deposit and withdraw money though exchangers, Liberty Reserve
could avoid collect any sensitive information on their users. These exchangers
would by large quantities of Liberty Reserve, which they would sell for different
national currencies. Liberty Reserve recommended their users to a few trusted
exchangers, located around the globe. These exchangers tended to be unau-
thorized money transmitting operations, which ran without any governmental
regulations. The third-party exchangers took a small fee for their services, often
in order of 5%. Liberty Reserve themselves made money by taking a 1% from
every transaction made within the Liberty Reserve system.

e-gold

e-gold was founded by Gold $Silver Reserve Inc in 1996[44]. It was a digital
currency based ounces of gold and other precious metals. e-gold allowed its users
to transfer money to other e-gold accounts online[45]. The funds could be used
globally for commerce or transferred between two private entities. To get e-gold,
you had to buy e-gold from exchangers, which converted national currencies into
e-gold. The e-gold scheme is similar to the gold certificates, which are used to

2.2. SIMILAR SYSTEMS 23

verify that the owner of the certificate is in possesses a certain amount of gold
stored in a given bank. The gold, which you buy a part of, was allegedly stored in
Europe. There was no identify verification need to create for an e-gold account,
only a working e-mail account[28]. Since the only identification verification was
an email account, transactions and account owners were anonymous. Users are
traceable through the e-gold system when they try to cash out their e-gold to a
national currency, but the accounts had no trail back to a person.

2.2.2 Alternative coins

There have been several attempts to add or correct functionality of the Bitcoin
protocol. These corrections or additions are referred to as ’alt-coins’, which is
short for alternative coins. Following are a fragment of all the alt-coins available
in December 2013.

Litecoin

Litecoin[46] is based off of Bitcoins and have an identical structure. Litecoin
is, as Bitcoin is, a peer-to-peer distributed digital cryptocurrency. The client
was built from the same code as the official Bitcoin client[46]. The difference
between Bitcoin and Litecoin is that it uses a different hashing algorithm to ver-
ify the miner’s proof of work. Bitcoin uses the SHA-256 hash algorithm, while
Litecoins use Scrypt[47]. Scrypt was designed to be fast, but also more mem-
ory expensive, in order to stop GPU, field programmable gate array (FPGA)
or application specific integrated circuits (ASIC) miners. Scrypt algorithm is
designed to work in a way that is both memory intensive and sequential. This
creates a bottleneck which stops the significant performance boost gained by
custom hardware or parallel execution. It is thus more feasible to mine with
consumer-grade computers with Litecoin than with Bitcoin. Litecoin’s intent
is to produce a new block every 2.5 minutes. This is faster than Bitcoin’s 10
minutes. The time difference is created due to the different hashing algorithms.
The faster block generation will render Litecoin a more viable alternative for
shops, as a confirmation on a transaction will appear faster than a transaction
verification though Bitcoins. This means the customer don’t have to wait as long
for a confirmation on their purchase and is more suitable to real-life scenarios.

24 CHAPTER 2. PRELIMINARY STUDIES

Namecoin

Another open source currency based on Bitcoins is Namecoin[48]. It utilizes
the decentralized system from Bitcoin and uses it to allow its users to transfer
Namecoins instead of Bitcoins. Another feature of Namecoin is to register or
write a value to a specific key. This key/value registration can be used for many
purposes, such as an alternative domain name service, where the key would be
the domain and the value is the IP address of the host. This key/value feature
is built by augmenting the Bitcoin protocol’s features to support the key/value
registration[49].

Primecoin

Primecoin[50][51] is derived from Bitcoin and has replaced Bitcoin’s proof-of-
work with deriving prime numbers. It aims to better utilize all the energy used
to mine Bitcoin into something beneficial. The primes that are found can be
used in many scientific disciplines, such as physics and math[50]. The primes
used as proof-of-work are either Cunningham chain of first kind, Cunningham
chain of second kind, or bi-twin primes. First kind Cunningham chains are
sequences of k primes, where each prime is twice the preceding prime plus one,
such as 2, 5, 11[52].

n + 1, 2n + 1, 3n + 1, . . . , 2kn + 1. (2.1)

The second kind is similar to the first kind, except that it is twice the preceding
prime minus one, such as 2, 3, 5[52].

n− 1, 2n− 1, 3n− 1, . . . , 2kn− 1. (2.2)

Bi-twin chains are a sequence of natural numbers where every number is a prime.

n− 1, n + 1, 2n− 1, 2n + 1, . . . , 2kn− 1, 2kn + 1. (2.3)

A bi-twin chain contains both a first and second order Cunningham chains, as
we can see by adding (2.1) and (2.2).

Once a prime chain has been found that exhibits any of the three desirable
properties, the block can be published. The network then has to confirm the
miner’s proof-of-work, which is done by confirming that the number found are
probably primes. The verification is not a strict primality proof, as that would
require a lot of computation power and slow down the verification process[51].
Primecoin also aims to process a transaction ten times faster than a Bitcoin
transaction.

2.2. SIMILAR SYSTEMS 25

Peercoin

Peercoin[53] is a cryptocurrency based on Bitcoin. The changes that Peercoin
has implemented in the Bitcoin system is how coin mining is done and verified.
Peercoin differs in that is uses a proof-of-stake and proof-of-work hybrid, while
Bitcoin only uses proof-of-work. Coin age is a central concept for proof-of-stake.
Coin age is the amount of coin multiplied with the amount of coin. Coin age
can be used as a proof-of-stake[54]. Proof-of-stake is to require that users prove
they are in possession of the currency. The more money the user holds and the
longer the money has been in the user’s possession, the higher the coin age is
and the higher the proof-of-stake.

2.2.3 Comparison of the payment systems and currencies
The following table contains a comparison of the prior mentioned systems. Par-
tial anonymity is pseudonymity, meaning that wallet holders can be identified.
This wallet and its actions can later be tied to a user, but not necessarily.

Name/System Bitcoin Structure Regulated Anonymity Operating
PayPal No Centralized Yes No Yes
Liberty Reserve No Centralized No Yes No
e-gold No Centralized No Yes No
Bitcoin No Decentralized Depends on country Partial Yes
Litecoin Yes Decentralized No Partial Yes
Primecoin Yes Decentralized No Partial Yes
Namecoin Yes Decentralized No Partial Yes
Peercoin Yes Decentralized No Partial Yes

2.2.4 Wallet alternatives
Below are listed alternatives to relying on Bitcoin clients to manage your wal-
lets. The applications use deterministic algorithms to recreate wallets from
passwords.

Deterministic algorithms

With deterministic algorithms you can avoid that you or a third party need
to manage your wallet. Instead you or a third party managing your wallet,
you remember a password for your wallet. This password is used as a seed

26 CHAPTER 2. PRELIMINARY STUDIES

to generate the wallet’s private and public key, and which in turn is generates
the wallet’s address. If the password is secure, the wallet will not exist on any
computer between sessions, but only in the owner’s mind. Just like an ordinary
wallet the bitcoins that belong to the wallet are stored in the public block chain.
This method of creating and storing your wallet has the downside that a weak
seed can be guessed by an attacker or just by chance from someone else who is
trying to create their own password. A benefit is that the wallet is harder to
access while in storage, as the wallet is not stored on any host system. Hardware
wallets[55][56] and some clients[57][58] use a similar scheme to generate the keys
they store to avoid storing keys in potentially unsafe environments.

Isolated computer

A scheme to prevent malware from accessing the user’s private wallet key is to
use a dedicated and isolated computer for signing transactions. The isolated
computer has restricted external communication to prevent it from contracting
malware. Whenever the user wants to create a new transaction the user must
move the unsigned transaction from their primary computer to their signing
computer. Once the isolated computer receives it, the transaction is signed
with the private key stored on the isolated computer. The user then moves the
signed transaction back to their primary computer and broadcasts the signed
transaction to the Bitcoin network. This scheme requires a special kind of
Bitcoin client, such as Armory[59].

Hardware wallet

A hardware wallet is similar to an isolated computer in that it is an isolated
system for private keys. Examples of these are BitSafe[55] and Trezor[56]. The
hardware wallets receive transaction from the computer they are connected to.
Once the hardware wallets have signed the transaction it is returned to the
computer and broadcast to the Bitcoin network.

2.2. SIMILAR SYSTEMS 27

Figure 2.9: Trezor’s package design[5]

2.2.5 Comparison of wallets
The following table contains a comparison of the prior mentioned wallets.

Name Isolated wallet storage Deterministic Operating
Deterministic algorithms Yes Yes Yes
Isolated Computer Wallet Yes Depends Yes
Hardware wallet Yes Yes Soon

28 CHAPTER 2. PRELIMINARY STUDIES

2.3 Incidents involving Bitcoin or similar sys-
tems

Digital operations that engage with money is an alluring target for attackers.
There are many attack routes which can lead to monetary gains for the attacker.
The following will be a summary of how digital payment systems have been
exploited or taken down by law enforcement. Bitcoin has also been targeted by
criminals and there are multiple occasions where bitcoins have been stolen.

2.3.1 Incidents involving similar systems

Similar system existed before Bitcoin and were attacked too. Below are examples
of how the predecessors of Bitcoin were targeted and attacked.

Figure 2.10: The domain http://www.libertyreserve.com/ has been seized

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 29

Liberty Reserve

Liberty Reserve (LR) was one of the most widely used digital currencies during
its prime[43]. It boasted on its web page, www.libertyreserve.com, that it had
‘millions‘ of users worldwide[43]. It is estimated that they transferred around
$6 billion dollars[28]. Even though LR’s primary operation involved money,
it had not obtained a valid from the United States Department of Treasury.
Without this registration, it is illegal to operate as a money transmitter. It
became a system of choice for criminals and used to fund criminals in several
different ways[28], such as credit card fraud, identity theft, investment fraud and
computer hacking. On May 24 2013, Libery Reserve’s operators were arrested
and charged for conspiracy to commit money laundering and conspiracy and
operation of an unlicensed money transmitting business[44]. The United States
Department of Treasury identified LR as a financial institution of primary money
laundering concern under Section 311 of the USA PATRIOT Act[44], which cuts
LR off from United States economy.

e-gold

e-gold’s operation was affected by the changed introduced by USA’s Patriot Act,
as it made operating a money transmitter business a federal crime if you didn’t
hold a valid state money transmitter license. This law was only regulated in the
states that required such a license. In 2004 Gold & Silver Reserve Inc. requested
the United States Department of the Treasury to identify which regulations e-
gold need to comply with, according to the new changes in the law. 2 years later
the treasury replied that e-gold was not to be acknowledged as a currency. The
following years after the reply, the treasury and the United States Department
of Justice extended the definition of money transmitter in the Patriot Act to
include any system that enables any kind of value to be moved between persons.
This meant that e-gold, which has a value, but is not classified as a currency,
can only be transmitted by entities with a money transmitter license. e-gold was
brought to court under UNITED STATES OF AMERICA v E-GOLD, LTD.
They were accused of operating an unlicensed money transmitting business[60]
and money laundering[28]. e-gold filed a motion to dismiss the case[61], as they
did not agree that their operations fit the definition of a money transmitting
business, as they never deal in cash or currency. A part of the definition in
United States Code is section 5330 and defines a money transmitting business
as one that is required to report certain cash or currency transactions to the
Internal Revenue Service. The motion was denied and in 2008[28] the company

30 CHAPTER 2. PRELIMINARY STUDIES

was fined with $3.7 million for ‘operation of an unlicensed money transmitting
business‘ and ‘conspiracy to engage in money laundering‘[44].

2.3.2 Incidents involving Bitcoin

There are confirmed attacks performed against Bitcoin entities, such as the
clients or services who provide them, and the protocol itself.[62][63]. Most of
the attacks have been fixed by code changes in the clients or through protocol
updates. Kaspersky published a report of financial threats in 2013[6]. They
collected anonymous data from Kaspersky Security Network[64]. The network
contains users and voluntary participants from around the world. From their
data they observed that the number of malware detected had increased, starting
in the second half of 2012. This is shown in Figure 2.11. As the hash rate
of the Bitcoin network rose, the number of Bitcoin mining malware attacks
decreased and the number of wallet stealing malware increased, as shown in
Figure 2.12. This is probably due to the decreasing yield from using regular
desktop computers to mine bitcoins, even though the processing power is free.[6]
Kaspersky’s findings correlate with Dell SecureWorks Counter Threat Unit’s
findings[65]. They also conclude that malware designed to steal cryptocurrency
is the fastest-growing categories of malware. They found that the most common
way of stealing large quantities of cryptocurrencies is through hacking exchanges
or marketplaces[65]. Among the most common malware is the wallet stealing
malware, which searches for default locations of Bitcoin wallets. These default
locations are the standard directories used by the popular Bitcoin clients to save
the wallets. Once a wallet is found, it is sent to the attacker’s server and all
coins in the wallet is transferred to the attackers address[65]. They also found
that most antivirus programs are ineffective against the cryptocurrency stealing
malware[65] because the malware is often unique or a modified version of known
malware, which makes fingerprinting the malware difficult.

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 31

Figure 2.11: The amount of tools made for either stealing Bitcoin wallets or
Bitcoin mining malware as discovered by Kaspersky[6]

Figure 2.12: The amount attempted attacks with either malware designed for
stealing Bitcoin wallets or Bitcoin mining malware compared to the number of
such attacks, as discovered by Kaspersky[6]

32 CHAPTER 2. PRELIMINARY STUDIES

Attacks concerning Bitcoin exchangers and services

Bitcoin exchangers are used to convert national currencies into Bitcoins, or vice
verca. The exchangers often require you to register and verify your identity to
use their services. Registration means creating an account for the users in their
service and often a Bitcoin wallet associated with that account. The user logs
into the service using their user name and password. Once they are logged in,
the user can manage their bitcoins. Using an online Bitcoin exchanger often
involves trusting the service with your wallet and access to all your bitcoins.

Transaction malleability A software implementation that was heavily ex-
ploited was called ‘transaction malleability’[66]. The attack was done by an
attacker who change the contents of a transaction without affecting the trans-
action’s signature. This results in a new hash for the same transaction, which
is still valid within the Bitcoin network. This is possible because a transaction
only signs some of its information, not on all the fields in the transaction. The
recipient, sender, and amount of bitcoin transferred remains untouched, even
if the content is slightly modified. The problem with this malleability arises
when the exchanger uses a transaction’s original hash as the only identifier for a
transaction. The attacker can demand a withdrawal of their Bitcoins from the
exchanger, which the exchanger will remember by the transactions’ original and
unique hash. The attacker then changes the transaction’s hash. The attacker
will still receive the bitcoins withdrawn from the exchanger and their balance
at the exchanger is reduced with the amount withdrawn. The attacker then
contacts the exchanger and claims they never received their bitcoins. If the ex-
changer looks up the transaction for verification of the customer’s claims, their
transaction identifier points to a non-existing transaction in the block chain,
and the attacker gets their money refunded. This can be repeated until the
attacker has gotten enough bitcoins or the exchanger is out of money.

• MtGox Mt.Gox was a popular exchange and was heavily targeted with
transaction malleability attacks[67][68][69]. As a result of the attacks,
their operations ceased. It is estimated that 750,000 bitcoins were stolen[68][69].
Using the bitcoin’s value at the time the value of the stolen bitcoins was
estimated to $575 million USD.

• Bitstamp Bitstamp was also affected and they reported inconsistencies
due to transaction malleability[70]. It was later uncovered that they were
not affected by transaction malleability in their software[71]. Any loss of
money were from balances that were in Mt.Gox’ care[71].

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 33

Figure 2.13: The message on https://www.bitstamp.net after the attack was
discovered

Distributed Denial of Service (DDoS) Exchangers are public and as an
economic entity, a Bitcoin exhcanger can be a desirable target for attackers.
While Bitcoin was building up a foundation and gaining popularity, criminals
could try to affect the value of Bitcoins through disrupting the ecosystem by
DDoSing the popular exchangers[72][73]. This attack could cause the value
of Bitcoins to fall as users are afraid of using either Bitcoins or the popular
exchanger and hence sell their Bitcoins. If the attackers sold all their Bitcoins
just prior to launching the DDoS attack, they can, after the attack has lowered
the prices, buy even more Bitcoins from their profits. This process can be rinsed
and repeated until the attackers feels they have gain enough profits. The DDoS
affects the users negatively by rendering them unable to access the exchangers
services, and if the attack lasts long enough, the users may panic and sell their
bitcoins as soon as the service is available. This creates a sharp decline in value,

34 CHAPTER 2. PRELIMINARY STUDIES

which the attackers can exploit to buy even more Bitcoins.

Malicious services The level of trust between you and the service should be
high since you, as their user, trusts the service with your bitcoins. If this trust is
unfounded, the result could be a loss of some or all of your bitcoins. This is what
happened to users of GBL[74], which was a Chinese bitcoin trading platform. It
established itself, gained users, and then vanished into thin air with all of their
users’ bitcoins. In total, GBL got $4.1 million USD from its users. There are
reports of warning signs against GBL[75], as GLB did not receive their official
license to operate as a financial service. These malicious services can be hard
to spot for a user and poses a threat to Bitcoin users.

Software exploits It is often difficult to properly assert an online service’s
security. An attacker only needs one flaw in the defenses to compromise the
service. And this is not reserved to only the application, but the hosting and
the people responsible for its operations. The entire stack that runs the server
can be targeted.

• Input.io A software exploit happened to Inputs.io[76][77], where $1.2
million were stolen or a total of 4100BTC. The exact reasons are unknown.
Figure 2.15 contains the message left after the attack was discovered.

• Bitcash.cz Bitcash.cz was also targeted by attackers[78]. The attack was
performed in late 2013 and emptied 4000 Bitcoin wallets.

• LocalBitcoins LocalBitcoins’ hosting provider was requested to restart
LocalBitcoins’ server[79]. The restart request was performed but, at the
time of writing, none of the customer’s bitcoins are stolen. The attack
was believed to originate from spoofed emails to Localbitcoins’ hosting
provider. Figure 2.14 shows the message on their website after the attack.

• Mining pools Mining pools are groups of miners who work together and
share their profit. Give Me Coins lost Litecoins valued to be $230,000
USD[80].

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 35

Figure 2.14: The message on https://localbitcoins.com after the attack

36 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.15: The message on https://input.io after the attack was discovered

Refusing to uphold deals All confirmed Bitcoin transactions are irreversible,
which means that they cannot be undone. The only way to return bitcoins is by
creating a new transaction that sends back the same amount of bitcoins. The
irreversible nature of Bitcoin transactions opens up a venue of attacks where
a seller won’t perform the service the customer has payed for. Once the seller
receives their bitcoins, the seller can break their end of the deal and leave with
the stolen bitcoins.

Attacks targeting Bitcoin software

A user needs to use a Bitcoin client to spend their bitcoins. The software can
either be local or run on another host. This means all Bitcoin users will have to
interact with at least one client each, either locally or remotely. The software is
a component that can be exploited by attackers. Social engineering, especially
spoofing and phishing, are useful tools to lure victims to your malicious clients.

Malicious clients An ideal situation for an attacker is to make the victim
uses a client that was design to reveal their wallet to the attacker. There have
been reported incidents where the attacker has modified known software and
used it to steal bitcoins.

• CoinThief A malware designed for Mac OSX called CoinThief[81] has
been spread through several mediums. Cointhief has piggybacked popular

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 37

OSX apps that has been distributed through other channels than the
OSX’s official appstore. The sites used to distribute the malware were
sites such as Download.com and MacUpdate.com[81].

Malware Increase in malware against cryptocurrencies as they gained pop-
ularity. The malware either steals the victim’s wallet or uses their computing
power to mine bitcoins for the attacker. The wallet stealing malware is often ac-
companied by a keystroke logger, which can steal the password used to encrypt
the wallet.

• BadLepricon A couple of Android apps included Bitcoin mining malware[82],
which mined bitcoins for the attacker on the phone. The applications were
removed from Google’s app store[82]. It tried to be courteous and not over-
load the phone by constantly mining. Instead it checked whether there
were sufficient battery left, that the screen was off, and that the phone
was connected to the internet[82].

• Pony A computer virus, Pony[83], steals Bitcoin wallets and wallets from
other digital currencies. It also acts as a keylogger and send all recovered
credentials back to a central server[83].

• Keyloggers Encryption is futile against keyloggers, as noted by Dell
SecureWork[65]. The keyloggers steal the password used to encrypt the
wallet. The keystroke logger sends its logs and the wallet back to a central
server where the attacker proceeds to steal the contents of the wallets.

Spoofing and social engineering Social engineering can be used to lure
victims onto sites where they download malware, often without suspecting that
it is malware[84]. These attacks often use a one-off or custom malware, which
makes antivirus program’s fingerprinting methods ineffective[84][65].

• MtGox leaked files A .zip archive was released after MtGox4, a popular
bitcoin exchanger, was taken down[67]. The attackers claimed it contained
database dumps and software to access MtGox’ data remotely. It was
instead malware designed to steal wallets[85].

• Reddit An attacker left a bait on a Bitcoin trader’s forum[84], which
said that Mt.Gox, a popular exchanger at the time, was going to support

4https://www.mtgox.com/

38 CHAPTER 2. PRELIMINARY STUDIES

Litecoins. The bait linked to a link to a live chat where they could discuss
the topic. The linked site mimicked the layout of Mt.Gox and prompted
visitors to update their Java5 plugin and then offered a forged Adobe6

updater, which contained a trojan[84].

False repositories Attackers can lure victims into downloading an evil client
by using a domain name similar or indistinguishable from the original client’s
name. Another opportunity is to find a medium or network that the client is
not using, e.g. another popular distribution site or repository. A popular choice
for attacker is SourceForge7 because it permits hosting compiled binaries.

• MultiBit A false project was made on SourceForge with the name MultiBit[86].
The project normally resides on Github[87] and on their website[88]. It
was contained a malicious version of MultiBit. The project site was used
to spread their malicious version of MultiBit. They have been reported
and is no longer available for download. The exact malware added is also
unknown.

• Electrum A fake Electrum website was discovered[89]. The attacker had
bought advertisements on Yahoo8 and Duck Duck Go 9, The advertise-
ments lead the victims to electrum-bitcoin.org instead of https://electrum.org/.
Electrum is normally available on Github[90] and their website[91].

Unauthorized mining Mining is a source of bitcoin, but mining requires
computational power to operate. A miner’s chance of successfully mining can
be improved by adding more hardware. But this costs money, which might not
be available. So an attacker can instead outsource the mining to their victims
using malware. This means an attacker can harvest the bitcoins mined and the
victims supply the attacker with extra computational power.

• Yahoo Mining malware was spread through advertising on Yahoo’s sites[92].
This malware made the recipients into Bitcoin miners.

• Android Several applications for Android included mining software, which
mined while the phone was charging.

5http://www.java.com/en/
6http://www.adobe.com/
7http://www.sourceforge.net
8https://www.yahoo.com/
9https://duckduckgo.com/

2.3. INCIDENTS INVOLVING BITCOIN OR SIMILAR SYSTEMS 39

• Social networks Minig malware have also been spread using social media[93].
The links are camouflaged to look more legitimate to lure users in and look
as if they could have been sent from a friend, who wants to show you a
picture.

• Botnets Criminals that own botnets can use their bots’ computer to
mine[83].

2.3.3 Observed existing attack patterns against Bitcoin
Many people have attacked Bitcoin infrastructure and its components, and we
assume more attacks are coming. Below are some of the attack patterns that
we have observed by looking through news papers, Bitcoin forums, and looking
Bitcoin exchangers.

Currency exchange rate An exchanger or a middleman can tamper with
the exchanges rates to give themselves a high profit margin from transactions
or conversion.

Unencrypted communication channels We found exchangers that did not
encrypt any traffic between their server and our browser. The network traffic
between a user and the exchanger could contain sensitive information used to
authenticate the user. This is not an attack in itself, but can open up to many
different types of attacks.

Malware Many attackers have copied existing clients[89][86], added malware
to it and then attempted to spread the client. The malware that is added
either sends logs of the victim’s keystrokes or the victim’s wallet to a central
server[6][65]. The malware may also be circulated without being added to a
client and serve the same purpose.

Social engineering Attackers try to lure both expert and inexperienced users
to hand over their bitcoins. The attackers send phishing emails[94], create false
advertisements on search engines[89], or spoof websites[10] to lure their victims.

2.3.4 Commonalities of all attack vectors against Bitcoins
For each type of attack, the main target is either to get the user’s credentials
for his/her Bitcoin wallet or access to the user’s private key. Once the attacker

40 CHAPTER 2. PRELIMINARY STUDIES

is in possession of either one of the two, the attacker can:

• Masquerade as the victim and purchase goods for the victim’s bitcoins.

• Transfer bitcoins from the victim to the attacker.

No matter which attack vector the attacker chooses to use, the motivation of an
attacker is ultimately to get as much of the victim’s bitcoins as possible. Since
Bitcoin is a digital currency this opens up for many routes of attack.

Some attackers differ from the desription above, such as government attack-
ers. Instead of trying to collect as many bitcoins as possible, they are interested
in information. The information they are interested in are who the users are,
where they spend and receive their bitcoins from, and such.

2.4. CRYPTOGRAPHY 41

2.4 Cryptography
Bitcoin relies on many cryptographic schemes and algorithms. Below is a few
of the core cryptographic terms explained. The focus of this report is not to
teach cryptography, so each section will be brief. The reader is encouraged to
read more about cryptography if they want to better grasp some of the omitted
details.

2.4.1 Encryption
The act of encrypting a message is to conceal the message’s content to protect
it from any eavesdropping from unwanted parties. Encryption is done using an
encryption algorithm with an encryption key and the plain text message. The
encrypted message is called a cipher text. A decryption algorithm is used to
decrypt the cipher text in order to recover the original content. This decryption
algorithm requires a decryption key and the cipher text and produces the plain
text message. Since a decryption key is needed to decrypt the cipher text, only
entities who have knowledge of this key are able to decrypt the message. This
key should only be given to authorized parties using secure channels to make
sure that only the intended entities can read the encrypted messages. Given
that the shared decryption key is distributed correctly, only authorized persons
are able to read the message and any adversary is unable to determine anything
about the message’s original content.

There are two primary schemes within encryption, symmetric and asymmet-
ric. Below follows a brief explanation of each of them.

Symmetric encryption In symmetric encryption, both encryption and de-
cryption use the same key. This means that both parties needs to know the
key prior to sending or receiving any messages. The distribution of the shared
keys can be a challenge, since they need to be given to the other parties without
being compromised or leaked to any adversaries.

Asymmetric encryption Asymmetric cryptography requires that each en-
tity has its own key pair; one public key and one private key. Both the private
and the public key can be used for either encryption or decryption. Whichever
key is used to encrypt a plain text, the other key has to be used for decryp-
tion of the cipher text. The public key can be shared to anyone and can be
distributed to friends and adversaries without any risk. The private key must
be guarded and should never be given to any authorized party. This scheme

42 CHAPTER 2. PRELIMINARY STUDIES

relies on the secrecy of the private key and once the private key is compromised,
the scheme fails. If done correctly, this can guarantee that anything encrypted
with the private key originated from the owner of the private key. It can also
guarantee that anything encrypted with the public key can only be decrypted
by the owner of the private key.

2.4.2 Elliptic Curve Digital Signature Algorithm
Elliptic curve digital signature algorithm is an asymmetric encryption scheme.
The private key is a randomly generated number and the corresponding public
key is a two dimensional point on the elliptic curve derived from the private
key. Bitcoin uses this scheme to sign transactions with the private key and then
verify it with the public key. This signing algorithm is based on elliptic curve
cryptography which uses algebraic structures of elliptic curves over finite fields.
It leverage the assumption that computing a point multiplication is easy, but
difficult to find the multiplicand given the original the product points.

2.4.3 Cryptographic hash functions
A hash function[95] can be seen as a mathematical grinder, which takes an
input and hashes it into something unrecognisable. This hashed output is called
a digest. A good digest and the hash function should exhibit a certain set of
characteristics in order for the hash algorithm to be classified as a cryptographic
hash algorithm. These characteristics include:

Speed The algorithm needs to be effective and fast when calculating the digest
of an input.

Pre-image resistance If an attacker is in possession of a digest D, it should
be difficult to find any message M such that D = hash(M).

Second pre-image resistance Given a message M it should be difficult to
find another M’ such that hash(M) = hash(M’). This implies collision resistance.

Collision resistant A collision between two hashes is when two different
inputs create the same digest. This is impossible to avoid, as the input set
to the hash function is infinite and the output of the algorithm is finite, but
it should be infeasible for an attacker to find a similar digest from a different
input.

2.4. CRYPTOGRAPHY 43

Avalanche effect That changing one bit in the input message changes the
digest drastically. The strict avalanche criterion is satisfied when changing one
bit in the input changes each output bit with a 50 percent probability.

An algorithm which meets all these requirements is a cryptographic algo-
rithm.

2.4.4 Usage of cryptographic hash functions
A wide variety of applications use cryptographic hash function, such as integrity
protection, message authentication and to create digital signatures. Each of the
applications use the hash function to guard against tampering and to validate
the integrity of the data. As an example, lets say Alice wants to send Bob a
private message. The message contains sensitive information so Alice want to
make sure that:

• The message can only be read by Bob

• Bob is able to verify that the message came from Alice

• Bob is able to verify that the message has not been tampered with

The process of making this message is show in Figure 2.16. Alice first
composes the message M. She then creates the digital signature for the message
by hashing M to create the message’s digest D. To prevent tampering of the
digest, Alice encrypts the digest with her own private key. This lets Bob know
that the digest must have been made by Alice, since she is the only one in
possession of her private key. Next, she creates a random session key for the
rest of Alice and Bob’s session. This key is a symmetrical key and is sent to Bob
by encrypting it with his public key. This lets Alice rest assured that only Bob
is able to read the session key, since only Bob is in possession of his private key.
The message M is then encrypted using the same session key. The encrypted
session key and the encrypted message makes up the digital envelope of the
message and the digital signature is added to this. This forms the final message
which is sent to Bob. It meets all the criterion set above and allows for a safe
transmission of the sensitive data.

The reason for not using asymmetric encryption for all applications we use
cryptographic hash functions is because of speed. To verify a message using
asymmetric encryption takes magnitudes longer time than using symmetric
cryptography.

44 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.16: Using hash function together with asymmetric encryption to create
Alice’s message

Chapter 3

Methodology

This chapter describes the methodology that will be used to reach the objectives
specified in Chapter 1. Section 3.1 contains a few examples of different threat
models that were relevant to this report. The types of threat modeling we
explain in section 3.1 are:

• Misuse-case diagram

• Attack tree

• Data flow diagram

• Sequence diagram

In Section 3.2 presents the metrics that we used to evaluate all of the attack
vectors we found through our threat collection process. Each type of model
has their own set of metrics. Section 3.3 is about the proof of concept client.
The section contains all the requirements for development and evaluating the
finished client. A list of the Bitcoin clients are listed after the requirements. The
clients are compared and evaluated to select the client we used for our proof of
concept client.

45

46 CHAPTER 3. METHODOLOGY

3.1 Threat modeling
Threat modeling are methods that visualize all, or most, of the threats to a
system, its users and stakeholders. The model is used to create a security
overview for the system’s designers, maintainers or users. Each type of threat
model are different from each other, from their point of view, how abstract the
diagram is, and who the intended viewers are. In the context of threat modeling,
a threat represents a possible attack on a system. The result from a threat
modeling may vary, depending on which perspective you have chosen for your
assessment of the system. It is possible to analyze a system from the view of an
attacker, the system’s resources, or as the defender. These are complementing
views that allow stakeholders to assess what defenses to implement and which
can be ignored.

3.1. THREAT MODELING 47

3.1.1 Misuse case

Misuse case diagrams[96][7] are an extension of the use case diagram. The use
case diagrams are made in UML and is used to describe a scenario or a set of
requirements for a software system being developed. Use cases are often used to
portray the requirements for a software system as an aid for the developers so
they can discuss and understand certain aspects or scenarios of the system they
are developing. This discussion can also include the system’s stakeholders. The
use case shows the different external actors in the scenario and their interaction
with the system. All actors in the use case diagram are stakeholders in the
system The misuse case introduces bad or negative actions to the use case
diagram and negative actors. The negative actions which represent attacks and
vulnerabilities against the systems being modeled in the use case. They usually
leverage existing use case actions into exploits or attacks against the system.
Security requirements can also be included in a misuse diagram. The misuse
case adds an emphasis on security to the use case diagrams by mapping the
possible attacks and the security requirements to the system. This can in turn
be used to help aid the developers in designing a more secure system.

Misuse case notation The notation used in a misuse is similar to the nota-
tion used in the use case diagram. The new concepts that misuse cases intro-
duced are[7]:

• Mis-actor: A malicious user that poses a threat to the system. This is an
unwanted actor that only wants to cause exploit the target system.

• Misuse case: Represents an action that the system should not allow, as
an opposite to the use case. Performing this action can cause harm to the
system, its resources or a stakeholder.

The new notation for drawing a misuse case are shown in Figure 3.1[7].

48 CHAPTER 3. METHODOLOGY

Figure 3.1: The misuse notation introduced by Guttorm Sindre[7]

Otherwise it follows the same layout as a use case. The textual description
of a misuse case only adds ‘Basic path‘, which is the actions the misuser used
to compromise the system. A textual misuse case is shown in Table 3.1.

3.1. THREAT MODELING 49

Preconditions:
pc1 The system has a special user ’operator’ with extended authorities.
pc2 The system allows the operator to log on over the network.
Assumptions:
as1 The operator uses the network to log on to the system as operator (for all paths.)
as2 The operator uses his home phone line to log on to the system as operator (for ap2.)
as3 The operator uses his home phone line to log on to the system as operator (for ap3.)
Worst case threat (postcondition):
wc1 The crook has operator authorities on the e-shop system for an unlimited time,
i.e., she is never caught.
Capture guarantee (postcondition):
cg1 The crook never gets operator authorities on the e-shop system.
Related business rules:
br1 The role of e-shop system operator shall give full privileges on the e-shop system,
the e-shop system
computer and the associated local network host computers.
br2 Only the role of e-shop system operator shall give the privileges mentioned in br1.
Potential misuser profile: Highly skilled, potentially host administrator with criminal intent.
Stakeholders and threats:
sh1 e-shop
· reduced turnover if misuser uses operator access to sabotage system
· lost confidence if security problems get publicized (which may also be the misuser’s intent)
sh2 customer
· loss of privacy if misuser uses operator access to find out about customer’s shopping habits
· potential economic loss if misuser uses operator access to find credit card numbers
Scope:
Entire business and business environment.
Abstraction level:
Mis-user goal.
Precision level:
Focused

Table 3.1: A textual description of a misuse case

50 CHAPTER 3. METHODOLOGY

3.1.2 Attack tree
An attack tree[97][98] is a tree where each node represents an attack, It branches
off into children nodes which represents the next step in the attack. Each node
may have as many children as needed to show the full spectrum of possible next
steps. An attack tree may be very abstract or full of details, the scope of the
tree depends on the purpose of the tree. A specific attack may require a highly
detailed tree, but a tree created for an overview may have less detail. This is
used to convey which conditions must be true for the attack to be a threat. If
the system is able to prevent a condition in the tree from every being true, then
the path through the node and its children is stopped. This does not mean the
attack itself is impossible to perform, but the attack vector though the blocked
path is impossible. In order for an attack in the attack tree to be complete, a
path of satisfied nodes through the tree must be made from a leaf node up to
the root node. To make a node satisfied, the node’s condition must be meet.
Note that there a disjunctive and conjunctive nodes, which function like logical
set operators. A conjunction node requires all its direct children nodes to be
satisfied. A disjunction node is satisfied when at least one of its direct child
nodes has its condition satisfied. The only exception is leaf nodes, which are
satisfied by having their own condition meet. By using an attack tree it is easier
to see the route of an attack and where it is possible to implement a barrier to
stop an attack. But to mitigate an attack, new routes may open up and create
a new set of possible attacks against the system. It then becomes important to
determine whether it is worth the risk to implement the barrier. Each leaf node
can also have an assigned value, which value varies depending on which metric
is used to estimate it. Typical metrics are show below:

Attack Cost The cost associated with carrying out the attack.

Protection Cost The cost for implementing the barriers needed to mit-
igate the attack.

Probability The chance that an attack would actually happen.

Impact/Consequence The consequences of a successful attack.

The Figure 3.2 shows an example of an attack tree. The first black box is
the root node of the attack and states the intention of the attack, which is to
steal Bitcoins. The root node has two children, as the attacker needs a victims
wallet to be able to steal Bitcoins in our example. The wallets are distributed in
two ways, either on the victims own system or the victim is using a third-party

3.1. THREAT MODELING 51

Figure 3.2: An example of an attack tree against Bitcoins

service to manage his/her wallet. The left branch is attacks against the victims
own computer, while the right branch is attacks against a third-party service.

Attack-Defense Tree

An expansion on the attack tree is the attack-defense tree[98]. It uses the same
principles as the attack tree, but adds in defense nodes and countermeasure
nodes among the existing attack nodes. A defense nodes contains a method
to mitigate or dampen the attack in the parent node. A defense node can
be placed under an attack node and illustrates one way in which the attack
can be completely or partially stopped. A countermeasure is a counter attack
to the parent. An attack node’s counter is defense and the defense’s counter
is an attack node. But introducing new components to protect the system
may also open up new attack routes, either as an attack against the protection
component itself or because introducing the defense expands the total attack
surface for the system. New notation has been added to visually emphasize a
node’s role; an attack node is a white square, a defense node is a green rectangle
and countermeasures are connected to the countered node using an arrow.

52 CHAPTER 3. METHODOLOGY

Figure 3.3: An example of a dataflow diagram

3.1.3 Data flow diagram
Data flow diagrams are visual aids for understanding of how data and informa-
tion flows through a system. The system is divided into smaller components,
which are referred to as agents. An agents can be either external or internal.
Each agent is either a source of data or a sink where the data ends up. The data
flow diagram shows how this information flows between system components and
outside agents. The notation for the different components are:

• Function A circle with the function name in its center.

• External entity A rectangular box with the entity’s name in its center.

• Database Two parallel lines with the database’s name in its center.

• Flow Arrows that lead from on component to another

Boundaries can be added to the data flow diagram, which can highlight critical
components and the system’s attack surface. This can be used to assess where
data is vulnerable and which communication channels, both in and out of the
system, are more exposed to outside attacks.

Why we did not use data flow diagrams This report does not include
any data flow diagrams. The reason for omitting data flow diagrams was that
the information that could be portrayed through such a diagram would not add
necessary new information or perspective for the reader.

3.1. THREAT MODELING 53

3.1.4 Sequence digram

A sequence diagram[99] is used to convey how processes interact with each
other and in which order. Figure 3.4 shows an example of a sequence diagram.
The depicted sequence diagram shows a Bitcoin transaction from a user and
follow the transaction’s process out to the miners, who verified the transaction.
Different entities are shown in the sequence diagram as parallel vertical lines
and each event performed by one of the entities is shown as a horizontal line.
Each event is drawn underneath the previous to show which order the events
happen in. The objects interact with each other by sending messages to each
other. When a message is received, the recipient reacts to the message and
does the associated action(s). The messages that are being sent in the sequence
diagram can either be synchronous or asynchronous messages. Synchronous
means that the sender waits on a reply from the moment the message was sent.
An asynchronous message means the sender can continue without waiting on a
reply. UML represents the different aspects and operations of message sending
with its own notation.

• Asynchronous Messages have an open arrow head.

• Synchronous Messages typically represent operation calls and are shown
with a filled arrow head.

• The reply message from a method has a dashed line.

• Object creation Message has a dashed line with an open arrow.

• Lost Messages are described as a small black circle at the arrow end of
the Message.

• Found Messages are described as a small black circle at the starting end
of the Message.

This was taken from the OMG UML guide[99].

54 CHAPTER 3. METHODOLOGY

Figure 3.4: An example of a sequence diagram

3.2. EVALUATION OF ATTACK VECTORS 55

3.2 Evaluation of Attack Vectors
Each attack vector has different desirability depending on which metric or met-
rics is used to evaluate it. We evaluated each attack vector using each of the
metrics. This evaluation helped us assess the most likely attacks and guided
us towards which attack route to further investigate. Which path an actual
attacker would chose does not necessarily correspond to the one found in this
report, as an attacker’s resources and motivations may differ from those we had
in this paper. That may lead the attacker to a different conclusion of what is
the best attack route.

3.2.1 Threat metrics
The criteria listed in the next section, was the metrics we used to evaluate our
attack models. A metric is for making measurement, and in this context it
is used to measure the overall risk of an attack. Using the metrics on a set
of threats can help us understand those threats and give us a visualization of
how potent an attack is and how likely it is. This information can again be
used to build defenses to mitigate the most dangerous and imminent threats.
We aimed to make distinct and unambiguous metrics, even though some of the
metrics may be subjective and hard to quantify properly. Our metrics’ point of
view is based on the attacker’s point of view and ignores the metrics that would
be more beneficial to a defender, since we have put on our black hat and are
about to attack Bitcoin software! Metrics that we ignored are such as cost of
mitigating, implementing defenses, consequence of an attack, and other metrics
which are commonly used when defending the system is in focus. Our attack
is not concerned with what costs we give to our victims, we are only concerned
about ourselves and our attack. It could be an interesting metric to add to our
analysis, as the most expensive defense would be the less likely attack route as
seen by the defender. This could yield a bigger reward if executed, since they
are the least likely defenses to be implemented by a defender. But they are
often ignored as they are either difficult to execute or not a potent attack. We
have omitted them, as such analysis is system dependent and may require more
knowledge of the victim than an attacker could be assumed to possess.

3.2.2 Evaluation metrics for misuse-cases
Each attack vector that will be evaluated will be measured using the following
metrics. The metrics will affect and influence each other, but this is hard to

56 CHAPTER 3. METHODOLOGY

avoid as they are all different aspects of the same thing.

Probability The chance of someone actually performing such an attack. At-
tacks that have already been performed can give us an indication of what an
attack’s probability is. The ranks used in the evaluation was low, medium, high.

Dependencies An attack which requires a large set of variables to match up
will be harder to pull of than a simple and more straight forward attack with
less requirements. Given that the yield from the attacks are the same, it is
favorable to go for the simpler attack. The ranks used in the evaluation was
few, medium, high.

Extent This is an expansion of the previous point, as an attack which is aimed
at common and more widely deployed software will affect a larger portion of the
Bitcoin ecosystem and thus give the attacker a broader pool of targets to chose
from. The ranks used in the evaluation was narrow, small, medium, wide.

Knowledge If the attack requires a high level of expertise, then the attack
will be less likely to appear in the same magnitude as a cheaper and easier
attack. The ranks used in the evaluation was low, medium, high.

Cost Some attacks require extra resources, such as more powerful hardware
or special software, which often comes with a price. Attacks that requires more
money will deter attackers from executing the attack. The ranks used in the
evaluation was low, medium, high.

Discretion How likely is it that someone will be able to react to the attack
before it is too late? The ranks used in the evaluation was low, medium, high.

3.2.3 Evaluation metrics for attack trees
When the attack trees were evaluated, we evaluated the leaf nodes and the cost
propagated up the tree to the root node.

Probability How likely the attack is possible to successfully execute.

Cost The cost of executing the attack.

3.2. EVALUATION OF ATTACK VECTORS 57

3.2.4 Evaluation of sequence diagrams
The sequence diagrams were evaluated by comparing the attack trees they were
built on. If a sequence diagram is built of more than one attack tree, then it is
the cumulative cost of all trees that represents the diagrams evaluation.

58 CHAPTER 3. METHODOLOGY

3.3 Proof of Concept

This section will highlight the requirements and decision that was made regard-
ing the making of the proof of concept. The proof of concept was to spread a
malicious client served from a spoofed distribution point. We called our client
CoinShifter.

We needed to build the malicious client, and for this a base client was chosen.
The base client was the foundation from which we built CoinShifter. There are
several clients in the Bitcoin system, but we only needed one. CoinShifter’s base
client was selected using the metrics described in Section 3.3.3. The available
clients are shown in Section 3.3.3. First is the set of requirements for the client,
both requirements for the development and the requirements for evaluating the
client once it is finished. The client comparison criteria is after the requirements
and then applied to filter the clients.

3.3.1 Requirements for Development

These requirements were made to aid us during the development of the client
and provided a set of conditions for gauging the finished client. The overall
intention behind the requirements was to point the client in the right direction,
towards a surreptitious and evil client that could steal sensitive information
from the user without alerting the user of what the client was doing. All this
while appearing to be a normal client. The Bitcoin ecosystem is rooted on
trusting unknown peers, and this trust is used to figure out who the honest and
sincere actors are and separate them from those who want to scam you. This
emphasis on trust, among users and services, is needed due to the large degree
of anonymity in the Bitcoin ecosystem and its lack of regulations. Therefore
it is essential to retain the user’s confidence to our client so that our client
may be adopted by the Bitcoin community and spread through it. Alerting any
of the users that the client they’re using may be corrupt and bad-mannered
will cause the users to report our client as malicious and advise other against
using our client, which would counter our attack. There already exists a list
of trusted and recommended clients, which the Bitcoin community embraces.
These recommended clients are the mature clients that have been through peer-
reviews and tested in the real world by a large body of users. The Bitcoin Wiki
hosts an online list[100] of these clients with links to their respective owner’s
sites. Overall, our goal for the client was to make changes that the user will not
easily notice and steal what’s required to recreate the victim’s wallet.

3.3. PROOF OF CONCEPT 59

Mimic existing and trusted clients We can base our malicious client of one
of the existing and trusted clients, as most of them are open sourced. Once it is
finished and distributed, we can misuse the trust that the Bitcoin community
has developed to the original client. If the changes we made did not change
anything in the user interface, the user may not notice any unusual behavior if
we are careful. The changes we make need to be made so that the changes are
hard to notice for the average user, and preferably for expert users too. The
user mostly interacts with the client through the graphical user interface (GUI)
and thus all of the design in the user interface needed to remain untouched and
behave in the same manner as in the original client. The attack does not require
any changes in the GUI, as all the information happens underneath the hood
of the application, where most users tends to not look. Our client may even
offer the same security features as the original client does, but that does not
mean that we will not be able to exploit the user. We can intercept clear text
messages and read unencrypted wallets, which removes all of the benefits of the
security.

Requirement #1.1 The graphical user interface’s design is identical
to that of the original client.

Requirement #1.2 The graphical user interface’s behavior is identical
to that of the original client.

Discrete malicious behavior Users should not be able to easily determine
whether the client is performing malicious behavior or normal behavior. Ex-
amples of things that can trigger suspicion from users are unexpected, sporadic
or high volumes of network traffic, creating and deleting arbitrary files, adding
new binaries, trigger anti-virus programs, or similar. One thing to note is that
not all users will know, or care, how to act when they notice such odd behavior,
but those who do, and advanced or expert user, will most likely take action
once the user has observed the suspicious behavior. In order to overcome any
type of user, the program’s actions should be camouflaged so it can avoid draw-
ing attention to itself. This can be done in many ways, examples of such is
piggy-backing data in packages to hide network traffic in the normal traffic, or
try to convince the user that the behavior is normal or needed through the use
of the GUI by messages or prompts. Firewalls[101] are also a concern, as the
client is expected to use a certain port, while other ports may be blocked from
both inbound and outbound traffic, but the client’s original port should not be
blocked if the victim intends to use the client.

60 CHAPTER 3. METHODOLOGY

Requirement #2.1 The client should avoid from creating any additional files.
Requirement #2.2 The client should use the client’s default port.
Requirement #2.3 Any additional network traffic should be

disguised as ordinary traffic to another peer.

Only take what is needed This requirement is an expansion of the previous
point, and is added to emphasize that we do not try to steal more than we need.
Going overboard with what we take may cause behavior that alerts the users and
thwarts our operation. In stead, we should aim to get the minimum amount of
what we need. The security of the cryptography, on which the Bitcoin protocol
relies, is based on the security of the private key. There are no longer any
guarantee of security once the private key has been compromised. When we try
to steal Bitcoin, it is enough to only take the private keys from the victim. The
corresponding public keys are not sensitive, and can either way be derived from
the private key, so we do not need to steal the public key, nor any other file on
the victim’s machine.

Requirement #3.1 The client should avoid from stealing more
than the unencrypted private key.

Convincing the user When a user downloads the compiled binary, which
is our target audience, they are often judging the site’s integrity by its visual
attributes, such as design and color[102]. The spoofing site that was built tried
to incorporate familiar design from other Bitcoin sites, such as showing the
Bitcoin logo, linking to source repositories, and offering hash digests of the
binaries.

3.3.2 Requirements for Evaluation
The evaluation of the finished client should involve all requirements set for
the Development phase, but also a few extra requirements. These additional
requirements follow below.

Does it work Stealing Bitcoins is unmoral and illegal, and thus we cannot
actually test the client in the wild. We must test the client in a controlled and
closed system, and then confirm that the client actually is able to steal a user’s
private keys. A successful client should be able transmit the private key, in clear
text, and be able to do so from a computer with the malicious client running

3.3. PROOF OF CONCEPT 61

on any operating system. The host system should be configured according to
security recommendation and best practices at that time.

Requirement #4.1 The client should be able to transmit a clear text
private key to the receiving server.

Requirement #4.2 The client should still performed its task, even if
the client and host is securely configured using
online guides and tutorials.

Requirement #4.3 The client should be able to exploit all the operating
system the client is expected to run on.

3.3.3 Proof of concept client

A choice had to be made in order to create a proof of concept. We needed a
website to distribute the client and to make the client itself. The website was
expected to be easily made, but the client was expected to be more work. It
had to covertly steal from the user and appear like a legitimate client. The first
question was whether the client should be built from scratch or be based on
one of the existing clients? There are several benefits and drawback to using
either. An existing client offers a good foundation for development, as it is
already a complete, multi-platform client that adheres to the Bitcoin protocol.
The drawbacks is the effort to understand the large body of code and how
data flows through it. Another, but negligible, drawback is setting up the
build environment required for the client. The benefits of building a client
from scratch is complete understanding and the possibility of tightly integrate
the purpose of our proof of concept into the client. The drawbacks are the
vast amount of time needed to develop it and the knowledge needed. Another
important aspect is trust, which is essential to get new users for our client. Both
experienced and novice Bitcoin users will converge towards the more trusted
clients, since it has had more time to polish out bugs, flaws and security issues.
The new client need to prove its worth before the majority will accept it. The
users must be confident that the client they are using is not stealing from the
them, and that it is keeping their wallet safe from others. We can leech trust
by using an existing as a foundation and get a head start. We chose to build
CoinShifter from an existing client.

62 CHAPTER 3. METHODOLOGY

Available clients

We had to look at what clients were available before we chose which client we
wanted to base our client on. Since there is no regulations and no clear owner
of the Bitcoin ecosystem, the technology is open and free to all. Anyone can
create their own client. As a results there is no official client, but some are
more popular than other. Some are recommended at Bitcoin.org[100], which
is the list we have based our selection of client on. The reason for using that
list was that Bitcoin.org is the official website for Bitcoin and is one of the top
results when searching online for the term Bitcoin. We compared each of the
clients and then chose which would form the foundation of our new and evil
client CoinShifter.

Figure 3.5: Bitcoin QT’s logo

Bitcoin QT (bitcoind) The Bitcoin.org’s client is referred to as the Bitcoin
QT client[103][104], the Satoshi Nakamoto client, or the official client. When
the QT client is run without the UI and only as a background process, it is
referred to as bitcoind, which is short for Bitcoin daemon1. The client’s code is
hosted on Github[103], and at Sourceforge[105] as both source code and binary.
Only Sourceforge has the statistics over the total number of downloads[8], and
its statistics are show in Figure 3.6. It had 4.5 million downloads and the
client is well known within the community. It is mentioned on Bitcoin.org’s
website[100], the Bitcoin wiki[106], and in several forum threads and blogs.
The Bitcoin QT client operates by downloading the entire public block chain
in order to synchronize with the Bitcoin network. This means the setup time
for the client is slow, as the user has to download the entire block chain, which
is several gigabytes big and increasing every day. The client will take up disk
space equal to the size of the block chain and the compiled binary for the client.

1A daemon is UNIX terminology for a background process

3.3. PROOF OF CONCEPT 63

It allows the user to check their wallets’ balance, send and receive Bitcoins, and
view their transactions.

Figure 3.6: The download statistics for the compiled Bitcoin QT client from
Sourceforge[8] from May 2010 to May 2014

Figure 3.7: Electrum’s logo

Electrum The Electrum client depends on public Electrum servers, which
manages the block chain for the clients. The client on the other hand only
cares for blocks that include transactions that include the user’s addresses. The
Electrum servers can be set up by anyone, as the code is freely available[107].
This mean that if your client cannot find any Electrum servers, you can set
one up yourself. There are no publicly available statistics of either downloads
or usage for the Electrum client. Wallets are made from seeds or passwords
that the user can submit to Electrum’s deterministic algorithms. Their code is
hosted on Github.

64 CHAPTER 3. METHODOLOGY

Figure 3.8: Armory’s logo

Armory Armory is a client built around the Bitcoin QT client[104]. Armory
uses the Bitcoin QT client to interact with the Bitcoin network, which means
that the developers does not need to reinvent the wheel for their client. Instead
they could focus on wallet security, which is their primary focus[104]. They have
integrated the option of using a dedicated and isolated computer for signing
transactions. Armory cannot run without a Bitcoin QT and since Bitcoin QT
needs the entire block chain to operate, it means that Armory also requires
the entire block chain to be downloaded by the back-end before it can operate.
Their code is hosted on Github.

Figure 3.9: MultiBit’s logo

MultiBit MultiBit is a light weight Bitcoin client. Key can be encrypted,
but the users private keys are not encrypted when they are created[108]. Multi-
Bit does not download the entire block chain, which means the client is up
and running much faster than those clients who need the block chain. Like
Electrum it only downloads the blocks that contains transactions that involves
the user. It offers the functionality a Bitcoin client is expected to have, such
as making wallets, transactions, view balance, receive transactions, and so on.
Their source code is hosted on Github. MultiBit’s lead developer, Jim Burton,
released details about the download statistics[109]. The amount of MultiBit
downloads increased when MultiBit became one of the clients recommended on
bitcoin.org[109]. The statistics are shown in Figure 3.10

3.3. PROOF OF CONCEPT 65

Figure 3.10: The download statistics for the compiled MultiBit client from
MultiBit’s website[8] from April 2011 to March 2014

Figure 3.11: Hive’s logo

Hive Hive[110] is a native OS X client that offers all the standard features of
a Bitcoin client; receive, send, and view your Bitcoin balance. It also handles
your wallet, offering integration into the native features of OS X, such as letting
the operating system handle your keys. Their code is hosted on Github.

Client comparison criteria

As seen there are many client in the Bitcoin ecosystem, but we focused our
efforts on only one. We created a set of criteria to help us narrow down the

66 CHAPTER 3. METHODOLOGY

selection of clients to only one. Some of the criteria is inspired by the criteria
used by Bitcoin wiki[106] when they discuss and compare clients. From their
list of criteria we adopted the following criteria: maturity. Two new criteria
was added: dependencies, and platform. Each of the criteria are described in
Table 3.2.

Criteria Description
Maturity A measure of how long the project has been under development.
Dependencies Which other clients the client relies on.
Platforms Which operating systems the client runs on.

Table 3.2: Criteria for comparing Bitcoin clients

Comparing the clients

Using the criteria shown above, we compared all the mentioned clients. The
result is shown in Table 3.3.3.

Name Maturity Dependencies Platform
Bitcoin QT Started in 2009[103] None Unix, Windows, OSX
Armory Started in 2011[111] Bitcoin QT Unix, Windows, OSX
Electrum Started in 2011[112] None Unix, Windows, OSX
MultiBit Started in 2011[113] None Unix, Windows, OSX
Hive Started in 2013[114] None OSX

Table 3.3: A comparison of the popular clients found on Bitcoin.org

All of the clients are in some point in contact with the user’s unencrypted
wallet, which is a crucial feature for our evil client. Bitcoin security is based
on the confidentiality and integrity of the user’s private key, so stealing the
key allows us a direct path to the access and control the victim’s bitcoins. We
can transfer the victim’s private key to our own server, and steal any Bitcoins
stored in that wallet once the key is transferred. The transaction is irreversible,
meaning the victim cannot get their money back unless we send it back. To
prevent the victim from finding us and making us send the money back, we
could tumble the Bitcoins to make tracking it infeasible. Keys can also be
generated from seeds, or passwords, and for such clients it is enough to just
steal the password used as the seed. Once the seed is received, we can use the
known and deterministic algorithm to recreate the key.

3.3. PROOF OF CONCEPT 67

Choosing a client

Table 3.3.3 shows the different clients contrasted against each other. MultiBit
was chosen as the base client because it was cross-platform, written in Java, and
was familiar to the author. It is vital to understand that MultiBit could easily
be replaced by any of the other clients. Creating the proof of concept client
from MultiBit only serves as an example of a possible attack.

Modifying the client

The GUI of the application remained untouched to avoid any suspicion from
the user when running the program. If the user follows any manual, tutorial,
or guide for how to use or set up MultiBit, all screenshots and descriptions
that should be identical, in order to not make the user suspicious of whether
the client is original and legit. It also has no benefits for us to add or remove
any elements visible to the user when our target is to stealthily steal the user’s
wallet. All changes were performed beneath the user interface.

3.3.4 Distributing the client
Once the client had the evil code and was ready to wreak havoc, it needed
to be spread out to potential victims. There are several means for circulating
the client. We chose to copy MultiBit’s website and create a spoof website for
CoinShfiter. The website we created boasts about the our client. From studying
the other distribution sites we learned the common techniques used to convince
the user that the software is high quality, such as emphasizing their efforts on
security, padlock images, links to their Github repositories, user testimonials,
and such. An attacker may also create a website from scratch and fake the
entire site’s content. We chose to base our site upon MultiBit’s because it could
have been used to deceive users to believe they are on MultiBit’s real website.

Common distribution site features

By looking through several of the popular client’s websites, we found several
commonalities used to advertise a client. As an example, Hive[110] has a mod-
ern site design and uses contextual icons to underline their messages, such as
a padlock for security, a smiley for ease of use, and a wallet for the Bitcoin
wallet[110]. The other sites have less pictures and icons, and instead relies
on a written overview of features. A common feature is that they all link to
their Github repository and offer checksums on their binaries. This is a gesture

68 CHAPTER 3. METHODOLOGY

to show the users they have nothing to hide and are transparent about their
intentions.

MultiBit Figure 3.12 shows how MultiBit’s front page looks like. They offer
their client along with steps needed to verify the downloaded binary. MultiBit’s
page also offers a guide of how to do the verification in case the user in unfamiliar
with the process. For verification they offer SHA1 signatures signed with GPG.
They use pgp.mit.edu as their keyserver.

Electrum Figure 3.14 shows Electrum’s front page. They offer the same
as MultiBit, with checksums and signatures. They do not offer guides on
how to perform the process. Their key server is bitcoin-otc.com and pool.sks-
keyservers.net.

Bitcoin.org Bitcoin.org links to a set of Bitcoin clients, not just one. The
client’s links take you to the client’s website, with exception to Bitcoin Core.
The link for Bitcoin Core leads to a download page which offers a signature for
the binaries and a link to the source code.

3.3. PROOF OF CONCEPT 69

Figure 3.12: The front page of https://www.multibit.org

70 CHAPTER 3. METHODOLOGY

Figure 3.13: The front page of https://www.electrum.org

3.3. PROOF OF CONCEPT 71

Figure 3.14: The download page for https://bitcoin.org/en/choose-your-wallet

72 CHAPTER 3. METHODOLOGY

Chapter 4

Results

This chapter is dedicated to the results of the research, with a detailed analysis
of each of the attack vectors and an evaluation for each them. The first sec-
tion contains threat models created against the Bitcoin ecosystem; first misuse-
cases, then attack trees, and sequence diagrams lastly. The targets for the
threat models were third party services, local clients, and the user. Their at-
tackers’ personae are described before the attack models. The second section
will evaluate and compare each of the threat models against each other, using
the criteria in Section 3.2.2 and Section 3.2.3. The last section will be about
the implementation of the proof of concept client.

73

74 CHAPTER 4. RESULTS

4.1 Threat modeling

In this section, we present the threat models we have created. First, an abstract
overview is presented through a misuse-case. The misuse-cases have been evalu-
ated and a few was picked out as more plausible attacks. These resulting attacks
was then further expanded into attack-defense trees to add more detail to the
attack. Once the attack trees were evaluated and a set of routes were found, the
final route was described using a sequence diagram. This final sequence diagram
was made to give the reader a more detailed view about the technical aspect of
the attack. Each attack vector is evaluated using the criteria from this report
and the S.H.I.E.L.D.S. report[115]. This approach was visualized in Figure 4.1.

Figure 4.1: The diagram refinement order

4.1.1 Personae

A selection of different personae were created to show how different actors have
different perspectives on the attacks and thus rank them differently. Some per-
sonae have sparse resources, which might make them incapable of performing
a certain attack. Also, each persona has their own motivation for their ac-
tions and their own desired outcome. Different types of risks and rewards are
associated with each attack, which in turn attracts a different types of attack-
ers to each attack. Attackers may range from government founded attackers,
organized criminals, an unhappy employee, a dishonest developer, to a script
kiddie[116]. Each of these also have their own set of resources available and will
try to accomplish their own unique goals.

4.1. THREAT MODELING 75

Government attacker - George

George is the head of state of a western country. A year after his election, he
is notified about the emerging digital currency, Bitcoin, and its uses. He elects
a committee to investigate Bitcoin to determine whether Bitcoin is a threat to
the country. The committee should also establish what rules and regulations
should be made for Bitcoins should it be deemed legal. George does not have
any personal affection towards Bitcoin. He knows only what he reads in the
media and what his advisers tell him.

As Bitcoins became more popular, governments had to rule whether Bit-
coin could be used as legal currency and which regulations to place on it. A
government may also see Bitcoin as a currency used by criminals and try to
either prevent it from being used within their borders or try to keep the users
under observation. They often have vast resources, both in time, money, and
knowledge[117][118]. This makes them a formidable force with a capability to
take on most systems. Their goals may vary, but it is most likely not money,
as most governments already have possession of a large amount money. A more
valuable resource for governments is information and we have assumed that
their motivation is information.

Organized criminal - Eve

Eve wants to use Bitcoins because they allow her to transfer money globally with
low fees. She can tumble her Bitcoins through an array of wallets to make it hard
to track. Additionally, she has people at her disposal that can convert bitcoins
for her, which makes it even harder to track. Organized criminals are often
attracted to digital currencies, which in this context is Bitcoin, because of the
promise of anonymity and untraceable transactions. Bitcoin allows criminals to
trade outside the established infrastructure of the banks and thus avoid leaving
trails within the banks. Their reasons for using Bitcoin are to launder money,
sell drugs[27], receiving funds from different sources, such as ransoms[119] or
threats, or money transfers from across the globe. The goals of a criminal
organization is money. Eve will do anything that can benefit herself and her
organization, be it legal or not.

Criminal - Jim

Jim is not a part of a big group of criminals, but has a small circle of friends
that he operates with. He has high school education and has a job to pay for his
expenses. The criminal operations is a side job to get some more money to Jim

76 CHAPTER 4. RESULTS

and his friends. Jim and his friends targeted Bitcoin because they could steal it
without having to resort to burglary or violence. This persona is similar to the
organized criminals, with one exceptions; they are smaller groups of criminals
or just a single individual. They do not possess the same amount of resources,
which makes the more elaborate and advanced attacks difficult or infeasible.
Their goals and intentions remains the same as the organized criminals; money.

Unhappy employee - Sarah

Sarah has a bachelors degree in computer science and has been working for her
employer for 8 years. She feels exploited by the employer, as she has worked
long and hard hours with no rewards for her efforts. Sarah needs her job and
cannot afford to lose it, but she still wants to attack her company in some way.
She chooses Bitcoins as a potential mean, as she knows the company will have
problems with tracing the Bitcoins back to her. She can now plant malware
to blackmail, threaten, or ransom the company for Bitcoins. There are many
employees within all the corporations and organizations across the globe. Some
of these may not be particularly happy about their current situation, which
may cause them to take abusive actions against their employers. The employee
may have access to sensitive information with relative ease, which may be well
guarded from outsiders. Their goals may be to get back on the company that
did them wrong, either by sabotage, logical bombs[120], or similar.

Dishonest developer - David

David is his mid-twenties and a student working on his masters degree. He has
been active within the open-source community for a couple of years, but has
not revealed his true identity online. David decides to use his position to sneak
in malware into the compiled binary and resign it with the team’s key. David
knows the other developers will not routinely check whether the hash of the
binary has changed. The malware adds a key logger looking for Bitcoin users
and tries to steal their wallets and their passwords. David’s motivation is that
he does not have enough money to make ends meet. He cannot risk breaking
the law and not finish his masters degree, so David choose to turn his online
pseudonym into a criminal. David believes he has covered his tracks well enough
to not be tracked if his actions are revealed. The origin of a dishonest developer
varies, some have used trust poisoning[121] to gain their position from the very
start, or they may have become annoyed with the project they develop, similar
to the unhappy employees. Either way, their intentions are to cripple the project

4.1. THREAT MODELING 77

to an extent. The discretion the developer uses depends on them; humans tend
to not think clearly when angry or frustrated.

Script kiddie - Michelle

Michelle is 15 years old and still in high school. She wants to show her friends
that she is a skillful hacker, as seen in the movies. She does not have any
programming skills, but she knows how to use search engines to find sites and
forums where people posts pre-made hacking programs. She downloads the tools
and shows her friends that she can DDoS any site she types into the program.
Juveniles can download scripts and programs to DDoS or to deface websites.
Their knowledge of the software they use and its side-effects is limited, but the
consequences of their attacks can still be serious. They possess little resources
expect from the basic needed to perform their attack. Their goal is often to
gain respect among their peers, or just for fun.

Developer - Jakob

Jakob has finished his bachelor in computer science and is now working full
time for a large software company. He is developing Bitcoin software on his free
time and is very enthusiastic about Bitcoin. He agrees with Bitcoin’s values
and thinks Bitcoin has a bright future. Jakob is willing to give of his free
time to something he is passionate about. But Jakob has other commitments
which means he cannot devote all of his free time to Bitcoin and things related
to Bitcoin. This delays some of his contributions, as he has to tend to other
obligations or just wants to enjoy his free time.

User - Maria

Maria is finished with her masters degree in physiotherapy. She got a job a few
years after her graduation and is now steadily employed. She heard of Bitcoin
through the media and asked her friends for more information. One of her
friends introduced her to a Bitcoin app for her phone. Maria now tried to use
her new app to pay for her morning coffee and when shopping online. She has
not completely understood what Bitcoins are or how it works. She downloaded
the Bitcoin app for her phone because her friends recommended it to her.

78 CHAPTER 4. RESULTS

Third party - Clarence

Clarence is an entrepreneur with education in physics and saw an opportunity
to build a company when Bitcoin became popular. His interest in Bitcoin came
from reading about Bitcoin in the media. Soon after seeing it in the media,
Clarence read and learned about Bitcoin on his own. He had learned pro-
gramming during his studies at the university, and Clarence also found a few
open-source libraries to help him with the challenging parts of the Bitcoin pro-
tocol. He creates a prototype and then gathers up a few of his friends to help
him finish the project.

4.1.2 Misuse case

Before we started with the misuse-cases, we made a simple use-case between a
user, their local client, and a third party service. This is followed by a misuse-
case for the local client, then for a third-party service, and last a misuse-case
aimed at the developers of Bitcoin software.

4.1. THREAT MODELING 79

Figure 4.2: A use-case between a user, their local client, and a third-party
service

The misuse cases were built upon the use-case shown in Figure 4.2, which
shows a basic overview of how the Bitcoin ecosystem works for an average user.
Mining is excluded from the misuse case, as we focused on operational insecurity
between entities in the Bitcoin ecosystem. A user is able to download Bitcoin
software, install it and execute the software. A user may be either an individual,
or a group of individuals, operating for a service or on their own. Both a local
user and a third-party service need to follow the same initial step if they want
to use a pre-compiled Bitcoin binary, and therefore both actors are part of
the ‘User’ actor showed in Figure 4.2. The distinction between the two actors
becomes clear once they start using the software, as their intended use differs
from each others. A third-party service will add additional features on top of
the binary to extend it to suit their operation, while a user will run the binary
without any modification.

The activities given to the local user by the Bitcoin software, portrayed
as the ‘Local client’ actor, are receive and transfer Bitcoins, view a wallet’s

80 CHAPTER 4. RESULTS

balance, and create new wallets. A user may encrypt their wallets, which can
enhance the security of the user. The third party service has the same activities
and expands upon them. This is in order to facilitate the additional features
needed for operating as an online Bitcoin service. The most critical of these
features are authentication and authorization of users through a log in service.
Additional elements that may also be added on top of the Bitcoin client are
HTML, CSS, and Javascript for rendering the site in the browser, hosting for
the server, and such. All these extra elements add a bigger attack surface, if not
implemented properly. Many services also accept payments in other currencies
than Bitcoin to let their users send and receive funds between currencies. For
this, it is required to gain proper licenses to operate as a money exchange or
money transmitter, and establish a connection with existing bank infrastructure
to support the features legally. The use-case represented in Figure 4.2 serves as
the foundation for all of our misuse cases, which isolates each actor in their own
misuse case, and add threat activities and exploits to that specialization of the
use-case.

Misuse-case against a local client

This first misuse-case, shown in Figure 4.3, contains the threats towards using
a local client. Following the misuse-case in Figure 4.3 are textual descriptions
of the misuse-cases presented.

4.1. THREAT MODELING 81

Figure 4.3: A misuse-case between Bitcoin software run on a local machine and
an attacker

Name 1.1 - Install malware.
Summary Malware attacks contains many different types of

attack routes, such as social engineering, Trojans,
computer viruses, or through malicious websites.

Pre-conditions None
Basic path Infect a target system with malware

through social engineering.
Alternative path Add malware to existing software
Primary actor The victim, as the attacker only

sets the trap, but the victim engages the attack.
Mitigation Teach users to avoid suspicious sites

and avoid running unknown executables.
Post-conditions The target system has been

infected with malware.

82 CHAPTER 4. RESULTS

Name 1.2 - Compromise wallet generation.
Summary Make the wallet generation predictable by

weakening components that are utilized for generating
safe and secure wallets.

Pre-conditions Fulfilled 1.3 - Gain access to system.
Basic path Gain access to the system and set a new

and known seed for the random number generator.
Primary actor The attacker initiates the attack.
Mitigation Mix sources of entropy.
Post-conditions The target system’s wallet generation

is predictable by the attacker.

Name 1.3 - Gain access to system.
Summary Give the attacker access to a target

system where the attacker is able to read/write/execute files.
Pre-conditions None.
Basic path Analyze system to find vulnerabilities

and exploit any found vulnerability.
Primary actor The attacker initiates the attack.
Mitigation Keep software up-to-date and employ strict access schemes

to the system.
Post-conditions The attacker may access the system at their leisure

Name 1.4 - Steal wallet backup.
Summary Give the attacker custody of the victim’s wallets
Pre-conditions None.
Basic path Analyze system to find vulnerabilities

and exploit any found vulnerability.
Primary actor The attacker initiates the attack.
Mitigation Keep software up-to-date and employ strict access schemes.

to the system.
Post-conditions The attacker can read the unencrypted wallet

and operate it as the attacker sees fit.

4.1. THREAT MODELING 83

Name 1.5 - Weaken cryptography tools.
Summary Deliberately breaking or weakening security tools, such as

open source libraries or software.
Pre-conditions Gained authority to add code patches.
Basic path Join company or group that is responsible for maintaining,

or developing a preferably popular cryptographic tool set.
Primary actor The attacker initiates the attack.
Mitigation Review of developers, their code, and peer reviews

of the system.
Post-conditions The attacker has added one or more vulnerabilities

that can be exploited by the attacker.

Name 1.6 - Weaken cryptography standards.
Summary Deliberately breaking or weakening security standards

and algorithms.
Pre-conditions Gained authority to modify and/or create official

cryptographic and security standards.
Basic path Join company or group that is responsible for maintaining,

or developing the official security standards.
Primary actor The attacker initiates the attack.
Mitigation Review of developers, their suggestions, and peer reviews

of the finished standards and algorithms.
Post-conditions The attacker has added one or more vulnerabilities

that can be exploited by the attacker.

Misuse-case against a third-party service

The next misuse-case, in Figure 4.4, targets online services that offer Bitcoin
services, such as managing a users wallet, generating wallets, and so on. Textual
descriptions follow the figure.

84 CHAPTER 4. RESULTS

Figure 4.4: A misuse-case between a third-party service and an attacker

Name 2.1 - DDoS.
Summary The attacker denies access to an online service.
Pre-conditions Access to tools and resources for a DDoS.
Basic path Download tools and pay for access to botnet.
Alternative path Create tools and/or botnet.
Primary actor The attacker initiates the attack.
Mitigation Special hardware/software.
Post-conditions The attacker has denied access to an online service.

Name 2.2 - Masquerade as server.
Summary The attacker impersonates the server for the victim

and lure the victim into downloading an evil binary.
Pre-conditions Lack of authorization between the connection’s end points.
Basic path Set up WiFi router or other network gateway to redirect traffic.
Alternative path Create similar URL.
Primary actor The attacker initiates the attack.
Mitigation Employ stronger authorization on both ends of the connection.
Post-conditions The attacker lured to client to download the evil client.

4.1. THREAT MODELING 85

Name 2.3 -Create fake certificate authority (CA).
Summary The attacker makes a malicious CA.
Pre-conditions Funds to operate the CA.
Basic path Create CA and use the clients’ keys to

circumvent any encryption used by
the clients.

Alternative path Buy access to CA.
Primary actor The attacker initiates the attack.
Mitigation Do not trust any random CA.
Post-conditions The attacker can decrypt their client’s encrypted

traffic and can perform attacks, such as
man-in-the-middle attacks, using their certificates
and keys.

Name 2.4 - Brute force authentication.
Summary The attacker tries to guess user credentials.
Pre-conditions None.
Basic path Try different combinations of user names and passwords

on an online log in page.
Alternative path Brute force against offline password hashes.
Primary actor The attacker initiates the attack.
Mitigation Employ restrictions on how many times a user is

allowed to fail a log in.
Post-conditions The attacker has obtained valid user credentials.

Name 2.5 - Man in the middle attack.
Summary The attacker eavesdrops and relays communication between

the end points.
Pre-conditions Lack of authorization between the connection’s end points.
Basic path Set up a WiFi network, proxy, or other network component,

between the two end point entities.
Alternative path Find public unsecured WiFi.
Primary actor The attacker initiates the attack.
Mitigation Stricter authentication between end points.
Post-conditions The attacker have successfully eavesdropped on the

connection and was able to inject messages.

86 CHAPTER 4. RESULTS

Misuse-case against developers

This misuse-case, in Figure 4.5, represents the issues and threats posed toward
the development of Bitcoin software. Textual descriptions follow the figure.

Figure 4.5: A misuse-case between the developers, a dishonest developer, and
an attacker

Name 3.1 - Spoof distribution point.
Summary The attacker lures the victim into believing the attacker’s

fake site is the legitimate site.
Pre-conditions None.
Basic path The attacker sends out phising emails, or similar, to

lure the victim into visiting the fake site and download the evil client.
Alternative path Intercept and redirect connection to the legitimate site.
Primary actor The attacker initiates the attack.
Mitigation Avoid links in emails, use authorization between endpoints.
Post-conditions Victims download the evil client from the attacker’s

distribution point.

4.1. THREAT MODELING 87

Name 3.2 - Break into distribution point.
Summary Give the attacker access to a target

system where the attacker is able to read/write/execute files.
Pre-conditions None.
Basic path Analyze system to find vulnerabilities

and exploit any found vulnerability.
Primary actor The attacker initiates the attack.
Mitigation Keep software up-to-date and employ strict access schemes

to the system.
Post-conditions The attacker may access the system at their leisure

Name 3.3 - Replace with evil client.
Summary The developer(s) manages to use their access to replace the

binary with their own evil client.
Pre-conditions Developer has access to modify binary.
Basic path The developer(s) compiles their own evil client and replaces

the distribution point’s client with the evil client.
Primary actor The developer(s) initiates the attack.
Mitigation Enforce schemes were no one single developer can

remove/replace binaries and/or signatures.
Post-conditions Victims download the evil client from the developer(s)’s

distribution point.

Name 3.4 - Add evil code.
Summary The developer(s) manages to use their privileges to modify

the source code to contain malicious code.
Pre-conditions Developer(s) can add own code.
Basic path The developer(s) add their own evil code
Primary actor The developer(s) initiates the attack.
Mitigation Peer-review existing and new code. Test the program

before releasing it.
Post-conditions The client is compiled, and distributed, with the evil code

distribution point.

88 CHAPTER 4. RESULTS

Name 3.5 - Trust poisoning.
Summary An individual, or a group, are able to escalate their

privileges through social dynamics.
Pre-conditions Anonymous system with trust gained from peers.
Basic path The attacker(s) create several accounts to increase credit

and trust to one or more of the attacker’s accounts.
Primary actor The attacker(s) initiates the attack.
Mitigation Require certain criteria before granting relatively new users

additional authorization.
Post-conditions The attackers gain privileges of developers in the project.

Name 3.6 - DDoS.
Summary The attacker denies access to an online service.
Pre-conditions Access to tools and resources for a DDoS.
Basic path Download tools and pay for access to botnet.
Alternative path Create tools and/or botnet.
Primary actor The attacker initiates the attack.
Mitigation Special hardware/software.
Post-conditions The attacker has denied access to an online service.

4.1.3 Attack tree

The attack tree will add more details to a selection of the attacks outlined in the
previous section. They were selected based on an evaluation which is described
in the next section of this chapter. In particular the attack that involved stealing
the user’s wallet were selected. It is possible to expand all the trees that we
made, but they were pruned to only contain the relevant attacks.

Attack tree for installing malware

The attack tree in Figure 4.6 represents the goal and sub-goals of installing
malware at a target system, and countermeasures for stopping such an attack.
It was based on misuse-case 1.1 Install Malware in Table 4.2.3

4.1. THREAT MODELING 89

Figure 4.6: Attack tree with the goal of installing malware at a target system

Attack tree for spoofing a software distribution point

This attack tree, in Figure 4.7, represents the goal and subgoals for spoofing
a distribution point, and countermeasures for stopping such an attack. It was
based on misuse-case 3.1 Spoof distribution point in Table 4.1.2

90 CHAPTER 4. RESULTS

Figure 4.7: Attack tree with the goal of spoofing a software distribution point

Attack tree for stealing a Bitcoin wallet backup

This attack tree, in Figure 4.8, represents the goal and subgoals for stealing a
Bitcoin wallet backup from a victim, and countermeasures for stopping such an
attack. It was based on misuse-case 1.4 Steal wallet backup in Table 4.2.3

4.1. THREAT MODELING 91

Figure 4.8: Attack tree with the goal of stealing a Bitcoin wallet backup from
a victim

Attack tree for creating a fake certificate authority (CA)

This attack tree, in Figure 4.9, represents the goal and subgoals for stealing
a Bitcoin wallet backup from a victim, and countermeasures for stopping such
an attack. It was based on misuse-case 2.3 Create fake certificate authority in
Table 4.2.3

92 CHAPTER 4. RESULTS

Figure 4.9: Attack tree with the goal of creating a fake CA

4.1.4 Sequence diagram

Here are the sequence diagrams for stealing a Bitcoin wallet and creating a fake
CA. The sequence diagram offer a more technical view on how an attack is
executed.

Sequence diagram of stealing a Bitcoin wallet

Figure 4.10 was based on the attack tree described in Section4.1.3. The attack
was a combination of several attack. The attack is a mix of 3.1 Spoof distribution
point, 1.1 Install malware and 1.4 Steal wallet backup. The attack requires
little knowledge and resources to be executed, but can still be an effective and
plausible attack. The sequence diagram of the attack is shown in Figure 4.10.

4.1. THREAT MODELING 93

Figure 4.10: Sequence diagram of stealing a victim’s wallet

Sequence diagram of creating a fake certificate authority

Figure 4.11 shows a refinement of the attack tree of Create fake certificate au-
thority from Section 4.1.3. The refinement is the added details about the actors
and the introduction of time. As mentioned previously, this is an expensive at-
tack and a possible attacker needs to be in possession of a lot of resources. The
certificate authority needs to be hosted, their certificates distributed, and trust
gained. The payback is enormous if the CA is accepted and widely used. The
owners of the CA can use their certificates to rig up man-in-the-middle attacks,
spoofing websites, and create spoofed digital signatures. The snooper actor in
Figure 4.11 is a device the attacker can plant to intercept network traffic. The
snooper is an active man in the middle attacker and reports back all traffic it
has intercepted to a central server.

94 CHAPTER 4. RESULTS

Figure 4.11: Sequence diagram of creating a fake certificate authority

4.2. EVALUATION OF ATTACK VECTORS 95

4.2 Evaluation of Attack Vectors
This section evaluates each of the proposed threat models from Section 4.1;
starting with the misuse-cases and attack trees. The first section introduces
the reader to the mindset we used when we evaluated the threat models. It is
followed by an evaluation of each misuse-case from Section 4.1.2. Then attack
trees were chosen from the highest ranking misuse-cases. Both the misuse-cases
and the attack trees are described using text. Sequence diagrams are selected
from the highest ranking attack trees, but were not evaluated. This was because
the sequence diagrams are used as extensions of the highest ranking attack trees.

4.2.1 Mindset
The attack should follow the criteria laid out in Section 3.2.2 and try to be easy
to execute. An elaborate attack will the lower the probability of someone suc-
cessfully executing the attack. An attack should also be effective, which means
maximizing the returns of an attack while trying to keep the risk associated
with the attack low. As a victim, you should not be able to notice the attack
before it is too late and the attack has already succeeded. For us, as an attacker,
this means we need to be swift and discrete during our attack and grab only
what’s needed before leaving. It is important to reduce the number of traces
left behind after the attack to help minimize the risk.

4.2.2 Evaluation of misuse-cases
The misuse-cases’ evaluations have been placed in the appendix to enhance the
readability and can be found in Appendix A. A collection of threat models were
laid out in Section 4.1, which were evaluated in this section. There is a textual
description for each misuse case, followed by an evaluation according to the
criterion laid out in Section 3.2.2. Each evaluation is performed by the author
and his supervisor. The textual description is to add context to the attack
and the following evaluation. The misuse-cases that score the highest will be
selected for further refined as an attack tree.

Misuse-case against a local client

The local client’s communication is mostly secure, as the client will mostly
operate on it own. The only network traffic needed by most clients is to receive
the block chain, create transactions, and receive blocks to keep the block chain

96 CHAPTER 4. RESULTS

up to date. An attacker could spoof the victim’s block chain when the victim
is synchronizing their client or receiving a new block, but this would be futile,
as any transaction performed on the spoofed block chain would be invalid in
the main Bitcoin network. This leaves the client with little data being sent
or received that the attacker could exploit, without needed a lot of computing
power to either break the encryption or group up together to form a colluding
mining group[122] in order to be able to change the block chain. The remaining
data that an attacker could exploit is then any transactions made by the victim.
Here, the attacker could add themselves to the transaction, but this must happen
before the transaction is signed by the victim. Otherwise, the attacker need to
break the victim’s encryption and encrypt a new and spoofed transaction where
the attacker is added as a recipient to the transaction. This requires tremendous
resources, so tampering with an already sent transaction is likely infeasible for
an attacker. In order to do this, the attacker must modify the victim’s client to
always include a transaction to the attacker. The local client is not completely
safe, even though the outbound communication is mostly secure. There are
still plausible attacks, as shown in Figure 4.3. An attacker can compromise
the client’s host system, which offers a big attack surface. Much of the client’s
security is built on the operating system, such as the random number generator,
firewalls, safe storage, and anti-virus. To compromise the operating system
removes the foundations for the client’s security. Once the host is compromised,
the local client is no longer safe. The attacks in Figure 4.3 mainly target the
storage of the victim’s wallet, which is where the victim’s private key is stored.
Once the attacker has obtained the key, the attacker can operate the funds in
the victim’s wallet as the attacker sees fit, and transfer all the bitcoin in the
victim’s wallet to a wallet the attacker control. The money can then be tumbled
to make tracing the attacker difficult.

Evaluation of attacks against a local client The following tables describe
each misuse-case using the criterion from section 3.2.2. A more detailed overview
can be found in Appendix A.

4.2. EVALUATION OF ATTACK VECTORS 97

Case Probability Dependencies Extent Knowledge Cost Discretion Overall
1.1 High Few Wide Medium Low High Great
1.2 Low Medium Broad High Low High Decent
1.3 Medium Medium Wide Medium Low Medium Good
1.4 High Few Wide Low Medium Medium Great
1.5 Low High Wide High High Medium Good
1.6 Low High Wide High High Medium Good

Misuse-case against a third-party service

A third-party service is exposed to the same threats as the local client, as
the service is likely to use the same software components as the client. The
service’s threats will then be an expansion based upon the client’s threats. The
service is vulnerable to most of the attacks targeting the local user, as they
also need to download the client, install it, and then run the client. But the
service has increased its attack surface by adding new features and components
on top of the Bitcoin binary. These additional features, such as a web server
to host the service, create new attack vectors, can create new attack vectors or
augment existing vectors. When clients want to use the new service, they need to
connect to the service’s server. This connection adds additional components and
communication channels that needs to be secured. An attacker can exploit these
vulnerabilities to redirect traffic, eavesdrop on communication, or inject packets
into the connection. Encryption can be added to the traffic in an attempt to
boost the security, but if the server’s TLS/SSL[123] configuration is not correct,
it can still leave the traffic exposed. Improper TLS/SSL configuration may
expose weak ciphers to the client or it may lack strict authentication of each
end of the connection. If the client cannot authenticate the server and the
server cannot authenticate the client, then it is possible to execute a man in
the middle attack[124]. The web server also needs to be able to stop common
attacks, such as cross side scripting, request forging[123], SQL-injections[123],
and so on[125]. It should not expose any sensitive information without properly
authenticating and authorization of the user. This may prove difficult and it
is close to impossible to remove all weaknesses from an application. This is
especially true for smaller companies that does not have the funds to conduct
proper security investigations and audits.

Evaluation of attacks against a third-party service The following tables
describe each misuse-case using the criterion from section 3.2.2. A more detailed

98 CHAPTER 4. RESULTS

overview can be found in Appendix A.

Case Probability Dependencies Extent Knowledge Cost Discretion Overall
2.1 High Low Broad Low Low Medium Poor
2.2 Medium Medium Broad Medium Medium Medium Decent
2.3 Low High Wide High High High Great
2.4 High Low Broad Low Medium High Poor
2.5 Medium Medium Broad High Medium Medium Decent

Misuse-case against developers

The developers of a Bitcoin client or service have a responsibility to not misuse
their users’ trust. They are in a position to exploit a potentially large group of
users, in which there are users that don’t know how to react or notice that the
software they use are abusing them. An attacker can try to exploit this and try
to join the developers as a dishonest developer. As a dishonest developer the at-
tacker can build trust from the other developers by building a good image. This
online image is created by contributing to the team, by submitting beneficial
code patches and generally being a positive factor to the other developers. The
other developers may not be as scrutinizing when new code patches submitted
by the attacker, as the attacker gains more trust by the other developers. The
developers can also make honest mistakes and add insecure code. Other honest
mistakes are to host the code or program on an insecure distribution point,
which enables the attacker to spoof the server for the users, or break into it.

Evaluation of attacks against developers The following tables describe
each misuse-case using the criterion from section 3.2.2. A more detailed overview
can be found in Appendix .

Case Probability Dependencies Extent Knowledge Cost Discretion Overall
3.1 High Low Wide Medium Medium Medium Good
3.2 Low Medium Narrow High Medium Medium Decent
3.3 Low Low Small Medium Low Medium Decent
3.4 Low Low Small Medium Low Medium Low
3.5 Low Medium Medium Medium Low High Decent
3.6 High Low Wide Low Low Low Poor

4.2. EVALUATION OF ATTACK VECTORS 99

Node name Probability Cost
Install malware (OR) Difficult Medium
1 - Execute binary (AND) Difficult Medium
1.1 - Download script/binary to target system (OR) Possible Low
1.1.1 - Social engineering (OR) Possible Low
1.1.1.1 - Email attachment Possible Low
1.1.1.2 - Spoofing Possible Low
1.1.2 - Malicious website/ad (OR) Possible Low
1.1.3 - Bundle with other software (OR) Possible Low
1.2 - Able to execute commands on target system (OR) Difficult Medium
1.2.1 - Improper configuration (OR) Difficult -
1.2.2 - Known weakness in software (OR) Difficult Medium
1.2.2.1 - Zero-day exploit Difficult Medium
1.2.2.2 - Old version with weakness Difficult Medium

Table 4.1: Attack tree for case 1.1 Install malware

4.2.3 Evaluation of attack trees

From the misuse-case evaluation we took all of the highest scoring cases and
expanded them. This was done by recreating them as attack trees. From the
evaluation done the highest scoring misuse-cases were Table A.1, Table A.4,
Table A.12, and Table A.9. The reason for refining the misuse-cases were to
better explain the attack’s approach and its details. An important thing to
note is that all of the attack trees can be evaluated differently, depending on
which personae you take on while evaluating. Each personae in Subsection 4.1.1
will view the attack trees differently and evaluate them differently. For the
evaluations below, we saw the attack tree through the eyes of the criminal,
Jim. The reason for choosing Jim was because he represented a middle ground
between the resourceful (Government and organized criminal) and those without
any resources (Script kiddies, dishonest developer).

Each of the attacks trees were evaluated using metrics laid out in Sec-
tion 3.2.3. Each attack tree was evaluated through a walk through of the tree
and an assessment of that node. Each attack tree was evaluated top down. An
disjunctive node was given the value of its cheapest child, while an conjunctive
node was given the cumulative value of its children.

100 CHAPTER 4. RESULTS

Node name Probability Cost
Spoof distribution point (AND) Possible Low
1 - Host a replicated distribution site (OR) Possible Low
1.1 - Create a new site Possible Low
1.2 - Mimic a known distribution site (AND) Difficult Low
1.2.1 - Mimic site design Possible Low
1.2.2 - Mimic site URL Difficult Low
2 - Create a malicious client (OR) Possible Low
2.1 - Create client for scratch Difficult Low
2.2 - Base client on existing client’s source code Possible Low
2.3 - Inject malware into existing client Possible Low

Table 4.2: Attack tree for case 3.1 Spoof distribution point

Case 1.1 Install malware

There are several plausible paths through Figure 4.6. Malware is an widely used
attack of varying finesse.

Case 1.4 Steal wallet backup

There are several plausible paths through Figure 4.8. The paths all require
access to the backup in some way, either physical or digital. Physical access
means being able to lay hands onto the actual item in this context, not in
proximity of it.

Case 2.3 Create fake CA

There are several plausible paths through Figure 4.9. This could be an easy
vector for a government to pursue, but we, nor average attackers, do not pos-
sess all the resources required to successfully execute such a large attack. The
evaluation below was made based on Jim’s perspective, where most paths were
difficult. But the same tree, seen as a government or a large criminal organiza-
tion, would yield a different result with lower scores.

Case 3.1 Spoof distribution point

There are several plausible paths through Figure 4.7. Most are easy, as they
require no vast resources and can be done with relative ease. The main challenge
is to lure people to use it after it has been built.

4.2. EVALUATION OF ATTACK VECTORS 101

Node name Probability Cost
Steal wallet backup (OR) Difficult Medium
1 - Steal physical backup (OR) Difficult Medium
1.1 - Gain access to backup’s location (OR) Difficult -
1.1.1 - Break in Difficult -
1.1.2 - Get access from insider Difficult -
1.2 - Get backup from insider Difficult -
2 - Steal digital backup Difficult -
2.1 - Grain access to system with backup (OR) Difficult Medium
2.1.1 - Gain physical access Difficult -
2.1.2 - Log in Impossible -
2.1.3 - Backdoor Difficult Medium

Table 4.3: Attack tree for case 1.4 Steal wallet backup

Node name Probability Cost
Create fake CA (AND) Difficult High
1 - Gain users (OR) Difficult High
1.1 - Gain trust among users (OR) Difficult High
1.1.1 - Get approval from respected clients (OR) Difficult High
1.1.1.1 - Bribe Impossible High
1.1.1.2 - Threaten Impossible -
1.1.1.3 - Use on own sites Possible High
1.1.2 - Marketing Difficult High
2 - Create and host a CA (AND) Possible Medium
2.1 - Create certificates and keys Possible Low
2.2 - Host website (OR) Possible Medium
2.2.1 - Buy hosting Possible Medium
2.2.2 - Own hosting Possible High

Table 4.4: Attack tree for case 2.3 Create fake CA

102 CHAPTER 4. RESULTS

4.2.4 Evaluation of sequence diagrams
The sequence diagrams themselves were not evaluated. They were instead com-
pared to each other based on their attack tree(s), as they were only an expansion
of the attack trees. The were created to display a more detailed view of the se-
lected attack.

The first sequence diagram, depicted in Figure 4.10, is a combination of
attacks, as mentioned in Section 4.1.4. The attack is a mix of 3.1 Spoof dis-
tribution point in Table 4.2, 1.1 Install malware in Table 4.2.3, and 1.4 Steal
wallet backup in Table 4.2.3.

The other sequence diagram, shown in Figure 4.11, is 2.3 Fake CA in Ta-
ble 4.2.3.

Seen through the eyes of our persona, Jim, stealing the wallet is an easier
attack than creating a fake certificate authority. This can be seen from the
tables for each attack tree. Our proof of concept will then be a malicious client
served from a spoofed website. This client will steal the victim’s wallet and send
it back to a central server. Once there, we are free to do what we want with the
wallet and the bitcoins it contains.

4.3. PROOF OF CONCEPT 103

4.3 Proof of Concept

This section will build on what we covered in the previous sections, where the
attack vectors were created and evaluated. Each attack vector was compared
to the others, and the highest ranking was selected as attack candidates. From
this small selection of possible attacks we created our final attack. The attack
was a combination of the remaining attacks; to spoof a distribution point which
leads the victim to an evil client. The proof of concept is named CoinShifter
and is based on the MultiBit[88] Bitcoin client. The CoinShifter client will,
once installed and running, steal the user’s unencrypted wallets and send them
to our central server. The CoinShifter client will appear to the user as if it was
MultiBit, which is the client it mimics.

It is important to emphasize that we are not specifically targeting MultiBit
in this report - we could have used any of the other available clients.

4.3.1 Gaining trust from users

Many users in the Bitcoin ecosystem may find it suspicious that we distribute
a clone of a known client from another site than their official site. It is not
only redundant, but also highly suspicious, as they have no reason to trust us.
They have to trust a new party to securely distribute secure software. And in
addition, they can already get the software from a trusted partner. Why should
they even bother using us when faced with such risk? We have to mitigate this
obstacle and to do this we need trust from the users. To build the user’s trust
and establish our new position, we can fool our the visitors into believing that
we offer have something unique, something that makes it worth the users’ time
to download the client from us. Such claims can be back by that we either
have a new and improved GUI, added an incredible optimization, or fixed an
awful bug. Either way, such lies can entice the user to trust us a bit more and
help us create a foothold for our service. To amplify the trust, we can offer
them the usual security measures offered by other Bitcoin websites. By doing
that we appear similar to the other sites, as is customary among the Bitcoin
distribution sites[126][127]. Another route for gaining trust is to spoof your
website so that the victim believes they ended up on the right website. This can
be done in several ways, such as using advertisements on search engines, online
forums, phishing, or similar URL or name. We chose to spread CoinShifter
through a spoofed website. The reason was that we had seen this been done in
several reported incidents[89][9][10]. Figure 4.12 and Figure 4.13 are screenshots

104 CHAPTER 4. RESULTS

Figure 4.12: A forum post to warn people about a fake Electrum download
site[9]

Figure 4.13: A forum post to warn people about fake MultiBit clients[10]

from Bitcoin talk forum1 and were warnings to people about fake and malicious
versions of either MultiBit or Electrum.

4.3.2 Development tools

For modifying the code, we used Intellij IDEA2, but it could be replaced by
any other text editor or another IDE3. Project management was handled by

1https://bitcointalk.org/
2http://www.jetbrains.com/idea/
3IDE is an acronym of integrated development environment

4.3. PROOF OF CONCEPT 105

Apache’s Maven4 and source code was downloaded using Git5. For our spoofed
distribution site we used a browser to download MultiBits website and edited
the HTML with a text editor.

4.3.3 Getting familiar with MultiBit’s interface
To change MultiBit, we first had to get an understand of how the client worked
and in which part of the client it would be easiest to add our exploit. We
compiled MultiBit and started it on OS X 10.9.1. Once it was up and running
we performed the actions available through MutliBit’s GUI. A sample of the
actions we did were creating a new wallet, check the balance for the wallet, create
a new transaction from a wallet and exporting/importing a wallet. By testing
these features in the user interface, we got a mental model of how the different
components of MultiBit interacted with each other. To further enhance our
understanding, we analyzed the log generated by MultiBit as it ran. MultiBit
has excellent debugging implemented, which made it easy to what had been done
and by whom. Most of these observations were made by first noting the current
state of the debug log, performing an action and then look back at the new
entries in the log. From these new entries we could find the code sections that
were involved in the operation. This was valuable for understanding MultiBit,
but also for later in the process, when we needed to add our own code into
MultiBit.

Creating a new wallet

We created a new wallet through the UI. MultiBit showed us the dialog shown
in Figure 4.14. The user is prompted for a path to save the wallet and a name
to be associated with the wallet. The user is never asked for a password, which
means that the initial version of the wallet is unencrypted, both in memory and
when first written to the disk. This gives attackers a window of opportunity to
go after the wallet before it is encrypted. This was noted as a place where we
can add our CoinShifter’s code.

Exporting a private key

MultiBit lets the user export their private key and optionally encrypt the ex-
ported key. This is another place where the program interacts with the key. The

4http://maven.apache.org/
5http://git-scm.com/

106 CHAPTER 4. RESULTS

Figure 4.14: The dialog MultiBit shows to the user when creating a new wallet

key is exported as a Base58 encoded string, a space and then the date. After
the user has exported their private key(s) it can be imported in any application
that can read the Base58 encoded string. The keys are, optionally, encrypted
with AES CBC-256 bit encryption. Figure 4.15 shows MultiBit’s view when
exporting the key. This was also noted as a place for a possible exploit.

Importing a private key

The file in which the key is stored may be encrypted. MultiBit will decrypt it,
if needed, and then recreate a wallet from the private key. This was another
place noted as a possible place for CoinShifter.

Importing and exporting keys outside MultiBit’s interface

MultiBit stores all its information in its data directory. Inside the data directory
there are all of the user’s wallets, the user’s settings, and backups. Wallets can
be manually added or removed as long as MultiBit’s configuration file is updated
to reflect the changes. If the key is not encrypted, then it can be parsed into
another instance of MultiBit. This means an attacker can try their luck and
look for .wallet files in hope of finding a unencrypted wallet.

4.3. PROOF OF CONCEPT 107

Figure 4.15: The view MultiBit shows to the user when exporting their private
key

108 CHAPTER 4. RESULTS

4.3.4 MultiBits network usage
A bit more testing of MultiBit was done before the code was inspected. To
check for any open ports that might be useful for CoinShifter. We used nmap
to do network analysis on MultiBit. It was discovered that MultiBit, by default,
opens port 8331. This port listens for other instances of MultiBit.

Nmap on running host The network mapping tool Nmap can scan a host
for open connections, perform analysis on the host, and lots of other tricks.
We simply used it to see whether MultiBit opened any listening sockets. We
scanned the host and noted all open connections. MultiBit was then started
and we scanned once more using:

nmap localhost -p-

The scan returned one new port that was previously not open, port 8331. A
quick search through the running processes on the host

netstat -l (listening ports) -p (show process id) |grep 8331

confirmed that a MultiBit process created the new port. More details on how
to misuse this open socket is described in Section 4.3.6. The requests received
through port 8331 can also be disabled through MultiBit’s options.

4.3.5 Analyzing MultiBit’s source code
After getting familiar with MultiBit’s GUI we started looking at the source
code. The code is available online and is open sourced. MultiBit’s source code
was downloaded with Git and inspected using Intellij IDEA. From playing with
the GUI and the entries in the debug log we were able to quickly identify classes
that were interacting with a possibly decrypted key. These are areas of interest
for us, as access to unencrypted private keys is our main target.

Initial analysis

The analysis started with MultiBit’s main function, which is the entry point for
code execution on Java. We followed the code as it branched out and found
several places of interest. This was not as challenging as the task may sound,
thanks to the initial investigations of MultiBit’s GUI and the readable source
code. As a reminder, the code for CoinShifter could have been inserted into the
client anywhere the wallet is unencrypted. Which, in MultiBit’s case, is when

4.3. PROOF OF CONCEPT 109

either the user needs to use the key or when they create a new key. This happens
when the user engages the actions through the GUI and then the corresponding
actions are performed behind the scenes in MultiBit’s core. This gives us two
places of interest; the code responsible for the GUI actions in MultiBit or the
code that each GUI action executes.

MultiBit relies on bitcoinj for handling the cryptographic data structures and
wallets. This gave us the option of inserting CoinShifter into bitcoinj. A few
spots stood out as plausible places to insert CoinShifter from looking around in
the code. The two classes selected where the class responsible for creating new
wallets and the class responsible for decrypting/encrypting wallets for MultiBit.

Another option for where to insert CoinShifter is into one of the user actions
that require MultiBit to have access to a decrypted private key. Such actions
as when the user wants to create a new wallet, export or import a wallet, or for
sending a transaction. All of these actions are represented as their own class
within MultiBit and have access to the unencrypted wallet.

We chose to modify bitcoinj because it would give Jim, our persona, less
hassle in case he wanted to upgrade his false client to a newer version of MultiBit,
for whatever reason he might have for that. If Jim initially modified MultiBit
and the new version of MultiBit added a new function, then Jim has to add
CoinShifter to the new action. If he instead had chosen to modify bitcoinj he
could avoid having to modify any code. Since the underlying library is infected,
the new action would also exploited without requiring Jim to invest any effort
into analyzing the new action’s behavior or its code.

Interactions with the private key

There are several places where MultiBit interacts with the user’s key. We found
these ares by looking through the source code and using MultiBit’s user inter-
face.

bitcoinj The bitcoinj library contains most of the cryptographic primitives
and algorithms that MultiBit uses. The wallets are made using the elliptic
curve key implementation from bitcoinj. MultiBit relies heavily on bitcoinj
and if the bitcoinj library is exploited, then any keys used in MultiBit can be
compromised. Most interactions in bitcoinj are with an unencrypted key.

MultiBit There are several places where MultiBit handles the user’s unen-
crypted key, such as when creating a new key, signing with the key, or when

110 CHAPTER 4. RESULTS

exporting the key. These are areas that could be exploited to send the unen-
crypted key to the designated evil server. But since keys can be either created
or imported into MultiBit, and one operation does not include the other, the
evil code needs to be injected at all the unique places a key can be introduced.
If there exist a route through MultiBit which does not capture all keys the users
uses, then it is a loss for the attacker. E.g. if the attacker attempts to only steal
keys when the user signs a transaction, the attacker will not steal any unused
keys, which the victim may be using as a backup wallet or similar.

MultiBit dependencies

MultiBit is a large application and have used a couple of external libraries to
ease development. Most notable of them are bitcoinj, a Java library that handles
transactions, networking, and communication with the Bitcoin network. Since
this is a crucial library, Enforcer Rules was added to make sure the library has
not modified.

Bitcoinj MultiBit uses their own fork of a Bitcoin Java library called bitcoinj[87].
The reason MultiBit relies on their own fork instead of the original library “is
due to legacy wallet serialization issues and the MultiBit team are working to-
wards a complete integration“[87]. The library is maintained by the developers
of MultiBit, but has not been modified since May 27, 2012[128]. The original
library is, on the other hand, continuously being developed on[129]. MultiBit
uses this library to create private keys, manage the block chain, create and sign
transactions.

Bitcoinj Enforcer Rules The bitcoinj library is a valuable target, as the
library is responsible for spending your bitcoins and creating your private keys.
If an attacker could sneak in a corrupted and malicious version of the library, the
attacker could steal private keys and all bitcoins. Also, any third-party library
can be compromised if they know you use the a given library in your application
Enforcer rules verifies each library’s integrity by comparing safe hashes against
the hash from the downloaded library.

4.3.6 Vulnerabilities uncovered from MultiBit’s source code
These attacks were found by coincidence while looking through the source code.
None of the attacks are threatening, but they can be a misused and can be a
nuisance to MultiBit users.

4.3. PROOF OF CONCEPT 111

Spoofed update reply

MultiBit is hardcoded to trusts all certificates presented to it, which means a
man in the middle attack is possible. An example attack would be to find a
victim, who you know or suspect is using MultiBit, then set up a proxy between
the victim and the rest of the internet. You may then intercept any traffic from
the victim, including traffic from the victim’s MultiBit client. MultiBit will
automatically call home to check whether there are any new updates available
by checking https://www.multibit.org/version.txt?version=[client version]. But
since MultiBit trusts any HTTPS certificate, the attacker can stop the message
and reply with their own message. The client has already given the attacker
their version number, so the attacker only needs to increment it to raise the alert
notification in the victim’s MultiBit client. Once the victim sees the message,
the victim may try to go to www.multibit.org to download the new and updated
client. The attack can then redirect the victim to their own evil server. If
the victim asks for HTTPS version of the website, then the attacker needs a
certificate signed by a certificate authority the victim’s browser trusts to perform
the attack. Once the victim is connected to the evil replica of www.multibit.org,
then the attacker can lure the victim to download their evil server. Figure 4.16
illustrates the attack. HTTPS makes this attack difficult and is a possible way
to stop it. They code also hints to a signature in the message received, but this
was not present throughout March of 2014.

Spoofed Bitcoin transfer request

As mentioned by our nmap investigations, MultiBit creates a new socket when
it starts up. By looking in the code we found the origin of the socket, which
was created from a class called ApplicationInstanceManager. This class is used
by MultiBit to check whether there already is a running instance of MultiBit
on the machine. If there is, the new MultiBit instance passes its command line
arguments to the already running instance of MultiBit. The running instance’s
socket will read incoming messages from the socket and attempt to parse them
to a bitcoin transfer request. The request contains the amount of money to
send, the receiver’s address, and a name for the transaction. But it can also
contain any other tag, which will be added to a map within the Bitcoin transfer
object in MultiBit. Before parsing, messages read from the socket must start
with a specific prefix and end with a given suffix to be valid. Once the message
has been successfully read and parsed as a bitcoin transfer request, the user is
asked whether they want to open accept the request. This dialog is shown in

112 CHAPTER 4. RESULTS

Figure 4.16: A sequence diagram of how to potentially use man in the middle
against MultiBit users

4.3. PROOF OF CONCEPT 113

Figure 4.17: Dialog with fake anonymous Bitcoin transfer request

Figure 4.17. If the user has accepts, the user it taken to the send panel, which
then is filled with the information from the transfer request. This is shown in
Figure 4.18. This open port means that any MultiBit user that has not blocked
or reassigned MultiBit’s port 8331 can be spammed with transfer requests from
any origin. The attack is presented as a sequence diagram in Figure 4.19.

Spoof exchangers

MultiBit uses a library called XCange for managing Bitcoin exchangers. It
trusts all HTTPS certificates, which makes a man in the middle attack easy
since there is not authentication of the end points. An attacker can spoof the
currency rates the target receives. This can be especially useful if the victim is
sending bitcoins to the attacker.

4.3.7 Inserting CoinShifter’s code

Since MultiBit is open source, their source code was available online from their
Github repository[87]. After getting accustomed to using the MultiBit interface
and black box testing it a bit, we looked through the code. The only obstacle
from adding a simple method for sending to us is the wallet encryption. Our
criminal persona, Jim, is not expected to feasibly overcome the encryption used
by MultiBit. To overcome the encryption, we added the code in Figure 4.20 in
places where we knew the wallet was decrypted. The reason we knew the key
was decrypted is because we chose places where MultiBit needs the key for its
operations, such as signing a transaction and generating new keys.

114 CHAPTER 4. RESULTS

Figure 4.18: The view once the user has accepted the Bitcoin transfer request

Figure 4.19: A sequence diagram of how to spam MultiBit users with Bitcoin
transfer requests

4.3. PROOF OF CONCEPT 115

Figure 4.20: The method added to KeyCrypterScrypt to send over the keys

Figure 4.21: The method added to ECKey to send over the keys

116 CHAPTER 4. RESULTS

Client code Figure 4.20 shows the method added to one of the construc-
tors of the com.google.ECKey and Figure 4.21 is the code added to the class
com.google.bitcoin.crypto.KeyCrypterScrypt. Both those classes are from the
bitcoinj library. KeyCrypter encrypts and decrypts the key, while ECKey is the
model for the keys. Both places have access to the secret bytes that represent
the private key. Both methods are similar and the added code is simple and
minimal. It creates a new thread which sends the private key to a central Coin-
Shifter server. The reason for why CoinShifter starts a new thread was to avoid
our network code from executing on MultiBit’s main thread. The main thread
is used for rendering the GUI and the application be noticeably slowed down
from our executing our code. So it was offloaded on another thread to remain
discrete and not affect the GUI’s rendering. Both methods sends the bytes that
make up the private key to the central CoinShifter server.

Server code Figure 4.22 shows the code used to receive the private key. The
encode and keyToString methods are there to recreate the formatting that Multi-
Bit uses when they print the user’s keys. This will make it easier for the readers
to verify that the recovered key from CoinShifter is the same key as MultiBit
uses.

4.3.8 Testing CoinShifter
After we had added the code for CoinShifter to bitcoinj, we compiled MultiBit.
Once the compilation was finished, we set out to test the client. The compiled
client was tested on Ubuntu 13.08, OS X 10.9.2, and Windows 8. The Coin-
Shifter server was ran on an OS X 10.9.2 laptop. All the platforms were set
up using the guides For each platform we simply started up MultiBit. Then
we created a new key through MultiBit’s interface. It is the new keys that are
shown in the figures below.

Recovered keys

To test CoinShifter, we ran both the server and the client. A snippet of the
results are shown in Figure 4.23 There are 6 keys depicted in the figure, where
two keys come from each operating system. The first two are from Ubuntu,
then two from OSX, and the last two are from Windows. The first of the two
in each pair is the initial key generated by MultiBit when it starts for the first
time. The second is a key we generated ourselves through the GUI. For brevity
we have omitted the screen shots of the exported keys from OSX and Windows.

4.3. PROOF OF CONCEPT 117

Figure 4.22: The code used to receive the stolen keys

118 CHAPTER 4. RESULTS

Figure 4.23: The keys recovered from the CoinShifter.

Figure 4.24: Key generated by MultiBit on first start on Ubuntu. It is the first
key in Figure 4.23

Each of those keys correspond to one of the three private keys from three
different clients on three different platforms. The content in each figure is the
contents of an unencrypted export of a private key using MultiBit’s interface.

Based on the results of our testing, CoinShifter client passes all the require-
ment for the finished client, which are described in Section 3.3.2. This evaluation
was completed in Chapter 5.

4.3.9 Spreading our client
There are several venues we could have used to notify people of CoinShifter, but
we chose to not do use either of them because CoinShifter is illegal. We did not
want to risk that our client was actually used and stole any bitcoins. Instead
we created a very simple spoofed website to show that it was easy to replicate
a website. We also included examples of how other malicious clients previously
have been spread. The following are examples of methods used by real-world
attackers to spread word of their malicious clients. The attackers have used
online forums[130][131], false advertisements in search engines[89], and spoofing

4.3. PROOF OF CONCEPT 119

Figure 4.25: Key generated by us through the GUI on Ubuntu. It is the second
key in Figure 4.23

or social engineering to lure their victims[132].

CoinShifter’s website

To create the website for CoinShifter we copied MultiBit’s HTML and CSS files.
These were the files responsible for rendering the website in the browser. When
we had acquired them, we could manipulate them as we wanted. The end result
is shown in Figure

Online forum

There are several forum[130][131] where Bitcoin users hang out and talk. Many
clients have been introduced[133], tested and discussed through such forums.
But the forums can also be used together with social engineering to convince
users to try your new client[133].

Search engines

A search engine is useful when you are searching for a specific Bitcoin client, but
attackers may use the search engine to link or advertise an evil version of the
client you intended to find. By manipulating the rankings or advertising their
client on the search engines, an attacker can lure a victim to their evil client.

Phishing

If an attacker suspects they are in possession of emails belonging to Bitcoin
client users, the attacker can spam the users with phishing emails. The emails

120 CHAPTER 4. RESULTS

Figure 4.26: CoinShifter’s website

4.3. PROOF OF CONCEPT 121

can link to malicious sites or contain attachments with malware.

Spoofing

This approach tries to obtain URLs or hosting that are similar to the original
client and lure users to the seemingly legitimate site. Many clients and software
have official channels where they propagate their clients and its updates. This
may be an URL with the client’s name or a project hosted at a popular code
hosting site, such as SourceForge. But even though the developer favors one
particular medium, it does not mean that all users know that the developer
favors that site. This opens up for an attack where the attacker uses another
popular sites to spread their evil client. These other sites may even be popular
sites that the developer have chosen to not use - which means search engines
will link to them.

4.3.10 Exploit overview of Multibit
Figure 4.27 is an abstract overview of the exploits we discovered on MultiBit’s.
The concrete details about MultiBit’s architecture was omitted with the ex-
ception for the affected components. The remaining components in the figure
are either responsible for interacting with the user’s sensitive information or
external communication with improper authentication.

122 CHAPTER 4. RESULTS

Figure 4.27: An abstract overview of the MultiBit client’s architecture

Chapter 5

Discussion

This chapter presents a discussion about the results found from our work. The
objectives of our work was set out with the aim of mapping attack vectors
against the Bitcoin network and its components. Most existing attacks vectors
can be modified to target Bitcoin users and their bitcoins.

We experienced an interest about Bitcoin during our work and we have been
contacted by both media and other students. They were curious about what
Bitcoin was, how it worked, and where you could use them. We responded to
all request and answered their questions. We noticed an abundance of articles
and stories about Bitcoins in the media during the making of this report. Many
of the articles have been about new applications for Bitcoin, such as physical
applications for Bitcoins. Examples are fluid dispensers, ATMs, pool tables,
exchangers, etc. The map in Figure 5.1 is a map of Bitcoin ATMs[134] globally.
Figure 5.2 shows a Bitcoin operated pool table made by Liberty Games Labs1.
The fuel pump in Figure 5.3 is a fluid dispenser made by Andy Schroder[135].

There have also been wide coverage of incidents about attacks against Bit-
coin, both individuals, exchangers, and companies.

5.1 Threat modeling
Many incidents against Bitcoin were reported before, during and probably af-
ter this report was made. We anticipate that most of the new incidents will
continue to be malware, keyloggers, and phishing, because they seem to be

1http://www.libertygames.co.uk/

123

124 CHAPTER 5. DISCUSSION

Figure 5.1: Map of Bitcoin ATMs worldwide

Figure 5.2: A pool table operated by Bitcoin

5.1. THREAT MODELING 125

Figure 5.3: Fuel pump operated by Bitcoin

the dominating type of attack at the time of writing. We have noticed that
the number of applications that use Bitcoins or interface with it have increased
alongside Bitcoin’s rise of popularity. These new applications change old vectors
and bring in new attack vectors. This gives attackers a larger attack surface
against Bitcoin users. Hardware wallets are one of those new inventions that
emerged. A change of common attack vectors can occur when hardware wallets
are introduced and if they begin to see mass adoption. This is because they
make most of the malware used today ineffective because the malware can no
longer access the private key since it is stored on the hardware wallet. This will
likely make hardware wallets a desirable target for attackers. Malware needs to
adapt and become more specialized to take on hardware wallets.

5.1.1 Misuse-cases

The misuse-cases does not contain a complete collection of all possible actors,
activities, or threat activities. The diagrams can be refined to contain more
actors, activities, and threat activities. The content were chosen because they
were able to precisely convey the intended attack vectors while remaining ab-
stract and understandable. The diagram was intended to be understandable
by both novice and expert readers. All of the components in the misuse-case
diagram were gauged by the author and his supervisor.

126 CHAPTER 5. DISCUSSION

5.1.2 Attack trees
The attacks trees does not exhaust all the possible nodes that could be placed
as children nodes. We did not include all available paths because this would
render the trees unreadable. Instead we narrowed the selection of nodes in the
attack trees down to nodes that were relevant attack paths. A node’s relevance
was determined by the author and his supervisor.

5.2. EVALUATION 127

5.2 Evaluation
There were challenges when creating the evaluations for this report. The pri-
mary challenge was that we did not have enough data to accurately assess each
attack’s evaluation, but was instead performed the evaluation with an educated
guess. This guess was based on the report’s author and his supervisor’s opinions.
The most notable challenge with this approach was estimating the probabilities
for each attack, which may contain an unwanted bias as it is based on opinions
and not facts.

5.2.1 Probabilities
The reason the probabilities were hard to estimate due to the lack of data. There
have been numerous incidents reported in the media, but they seldom presented
their sources or mentioned their data. Kaspersky2 and Dell Secureworks3 both
released an analysis of attacks that targeted cryptocurrencies. The data from
those reports were used when evaluating the attacks, but were mostly applicable
for malware attacks. There is still more entities in the Bitcoin ecosystem that
we did not have enough any reliable data on, such as attacks on exchangers and
distribution points.

5.2.2 Bias
Each attack’s evaluation was set by the author and his supervisor and may thus
be subject to bias. This bias may have been amplified due to the lack of data.
This data could have been collected if more resources had been available.

2http://www.kaspersky.com/
3http://www.secureworks.com/

128 CHAPTER 5. DISCUSSION

5.3 Proof of concept
Evaluation of CoinShifter was done during and after we finished CoinShifter.
The evaluation was done to assess the development process and to determine
that CoinShifter operated as intended. Section 3.3.1 presented requirements
for development and Section 3.3.2 contained requirements for evaluation of the
finished client.

The overview of which requirements CoinShifter passed and failed is in Ta-
ble 5.1. From the table, it can be seen that the only requirement that was
failed was 2.3. Requirement 2.3 failed due to our simple implementation, which
simply sends the private key to our server on the MultiBit port. This can, on
the surface, look like traffic to another peer, but its true intent will not remain
hidden if the user inspects the package’s content. Also, the package is not sent
during regular syncing with other peers, but whenever a new key is initialized
in the code or decrypted/encrypted. If we had sent the key whenever the client
was synchronizing or otherwise communicating with its peer, we could have
better camouflaged the transmission. Since we did not camouflage it, an avid
users can detect the anomaly by keeping an eye on our client’s network usage,
which happens whenever the user interacts with on of their wallets. All other re-
quirements are met; CoinShifter is indistinguishable from MultiBit and behaves
just like it. CoinShifter also passed a laboratory testing where it successfully
received compromised wallets from other CoinShifter clients.

5.3.1 Execution time and cost
An important lesson from our work was the time and cost required to execute
this attack from scratch. A knowledgeable attacker can, with ease, create a
malicious copy of a client and spread it. The attacker does not need intimate
knowledge of how Bitcoin or the client works to use the attack. All the attacker
needs to know is basic programming, and some knowledge about common ways
Bitcoin clients are circulated, how to send the wallet back to the attacker, and
how to setup a server. Those are issues that can be answered by a quick search
in a search engine. The total amount of resources spent by the attacker is low,
which makes it a cheap and viable attack. The low cost of the attack means that
the income needed for a profit also is lower. So even though most users may
avoid a brand new and untested client, or clients circulated on online forums, an
attacker only needs to lure a couple of users to fall in the trap to be profitable.
This low threshold makes the attack more feasible. Such attacks have happened
before and successfully stolen bitcoins, as shown in Figure 5.4 and Figure 5.5.

5.3. PROOF OF CONCEPT 129

Requirement #1.1 Pass
The graphical user interface’s design is identical to that of
the original client.

Requirement #1.2 Pass
The graphical user interface’s behavior is identical to that of
of the original client.

Requirement #2.1 Pass
The client should avoid from creating any additional files.

Requirement #2.2 Pass
The client should use the client’s default port.

Requirement #2.3 Fail
Any additional network traffic should be disguised as
ordinary traffic to another peer

Requirement #3.1 Pass
The client should avoid from stealing more than the
unencrypted private key.

Requirement #4.1 Pass
The client should be able to transmit a clear text private
key to the receiving server.

Requirement #4.2 Pass
The client should still performed its task, even if the client
and host is securely configured using online guides
and tutorials.

Requirement #4.3 Pass
The client should be able to exploit all the operating the
client is expected to run on.

Table 5.1: Overview of which requirements CoinShifter passed and failed

130 CHAPTER 5. DISCUSSION

Figure 5.4: A user on Reddit descirebes their loss of bitcoins to CoinThief[11]

Figure 5.5: A user on Reddit describes their loss of bitcoins to StealthBit[12]

5.3. PROOF OF CONCEPT 131

This report never tried to distribute the proof of concept client. Thus we
are not sure how long a spoofed website must be live to become effective or
how long it would stay live. This could take substantial time or be fruitless. We
cloned and edited MultiBit’s official website into CoinShifter’s website. This was
done to prove that spoofing the website is straight forwards. Looking through
incidents regarding presenting and sharing spoofed clients, we found that a
common strategy was to use Internet forums[10] or find alternative distribution
sites that the client is not currently using[10][9]. Many users and developers[88]
warn users from downloading Bitcoin software from unofficial channels, but
the incidents we found suggests that there still are people who download the
suspicious software regardless. This makes this type of attacks more feasible,
since the cost of creating the attack is so low that even a low yield is beneficial.
If the attacker can create the client, server, and website within a day, then
even a single victim can give the attacker a profit. The spoofed client can be
even more devastating if the development was backed by a state or a large
criminal organization. The additional resources could make development and
distribution easier.

5.3.2 Further improving the attack

CoinShifter is a basic example of a spoofed client. It uses a simple method with
marginal finesse to steal the user’s wallet. If the attacker was backed by a larger
group, such as a criminal organization, the client can be more disastrous. The
attackers could invest resources into finding flaws and bugs within the client, or
try to introduce them to the source code by joining the development team. Coin-
Shifter could also be improved to operate more discretely or even try to infect
other peers it connects to. A criminal organization can also improve the method
used for distributing CoinShifter. If, say, the backer has access to a certificate
authority or able to access any computer system they desire, then the attacker
can circumvent most common defenses used to safely distribute and use Bitcoin
software. Such as only downloading software from sites over HTTPS, and only
trust software signed by the developer’s key. Users can be easily deceived If
either of those, or any other pillar of security, is exploitable. The new client,
which is distributed from the main site over HTTPS with spoofed certificates
and signed by the developer’s stolen private key, has all the qualifications for
trust that most Bitcoin client sites requires.

132 CHAPTER 5. DISCUSSION

Figure 5.6: Chart of credit card frauds in Europe during 2012

5.3.3 Parallels with credit card fraud
A parallel between the threats against Bitcoin and credit card fraud can be
made. This parallel exists because CoinShifter and credit card fraud both share
the purpose of scamming money from their victims. Any Bitcoin transactions
are irreversible, so any bitcoins that are successfully transferred from the vic-
tim’s wallet are lost. It is up to the individual services to chose whether they
refund any bitcoins lost due to scams, frauds, or attacks.

The European Central Bank[136] released a report showing that online credit
card frauds increased in 2012 from previous years. The total share of fraud re-
mains similar, but the distribution of the different kinds of frauds differ[136].
The types of frauds are card-not-present (CNP), point-of-sale (POS), and au-
tomated teller machine (ATM). Their overview chart can be seen in Figure 5.6.

5.3.4 Challenges with distributing Bitcoin software
Bitcoin, which is a distributed system without trust, relies on a system based on
trust to safely distribute itself. The system for spreading the software depends
on HTTPS[123] to prevent tampering of the communication. All Bitcoin clients
are also signed to further reinforce security, which require a safe storage for the
private key used to sign the client, to prevent identity theft. Both HTTPS and

5.3. PROOF OF CONCEPT 133

keeping the keys safe are not immune to errors. Both of the two can be and
have been attacked, which means the two main options of authentication and
verifying Bitcoin software are vulnerable. If either is compromised, then the
client can be altered before reaching the end-user.

SSL and TLS incidents

HTTP Secure (HTTPS)[123] relies on TLS[123] or SSL[123] to secure the com-
munication between participating hosts. It is used on all of the inspected client’s
websites to prevent tampering of the communication and provide authentica-
tion of the server. But it is not immune to attacks and have previously been
exploited. We do not mention all of them, but rather just the two most recent
events. More can be found by searching online and through scientific journals.

Heartbleed Heartbleed[137] was a programming mistake in a popular secu-
rity library called OpenSSL4. The bug leaked memory and exposed its content
to specially crafted messages. Up to 66%[137] of the active parts of the internet
was vulnerable at the time of discovery.

Forged certificates Carnegie Melon University published a paper together
with Facebook5[138]. They analyzed data from TLS connection establish to
Facebook’s servers and found that 6845 out of 3.45 millions connection was
made with forged certificates.

5.3.5 Guarding private keys
There are many methods for keeping private keys safe. They all have in common
that they build on trust to the system they are in. Examples are attackers
who have gained access to your server by using social engineering against the
server’s hosting providers. This circumvents any security you have on your
server, as the attacker was given root access to your server by the hosting
provider. Another example is a landlord giving out the apartment’s universal
key to let the new neighbor into their apartment. Instead the attacker breaks
into another apartment and steals the isolated computer designated to signing
transactions. These examples were just for illustration that there exists many
different routes to gain unauthorized access to private keys.

4http://www.openssl.org/
5https://www.facebook.com

134 CHAPTER 5. DISCUSSION

5.3.6 Improving security

To help safely distribute Bitcoin software we need a system with the same
qualities as Bitcoin itself. The system needs to be distributed and require as
little trust between each node as possible. We can also prevent theft of the wallet
if the security of the wallet’s host system was improved, such as a dedicated or
isolated computer dedicated to signing transactions.

Web of trust

One possibility is to extend the net of trust that is used with PGP[139] and
GPG6. Those systems use transitive trust, where if you trust person A and
person A trust person B, then you can assume that person B is trustworthy.
This can be used to circulate the Bitcoin software, so that if the Bitcoin software
you download is signed by anyone you trust, you can trust the software. This is
already used today by most Bitcoin clients, in which one of the lead developers
signs a checksum[123] for the binary. The signing key can be verified through
obtaining keys from key servers or your web of trust.

Dedicated signing computers

There already exists software that allows users to store their private keys on an
offline computer. Armory uses this setup to bolster security for their users[59].
The offline computer has a reduced attack surface compared to an online com-
puter, as most of the external communication is cut. The only interaction is
through physical contact with the computer. The offline computer is desig-
nated to signing transactions with the user’s private key. After the transaction
is signed, another online computer sends the signed transaction out to the Bit-
coin network. This setup prevents the signing computer from being infected by
malware and if it was infected, the malware has difficulties communicating with
the attackers server. The security comes at the expense of usability, as it is a
tedious effort to sign transactions with that scheme. It might be a too much
hassle for the average to use this security scheme. This might be useful for a
savings account, but may be an obstacle if it is used for all transaction if Bitcoin
seeks to become a mainstream method of online payments.

6https://www.gnupg.org/

5.3. PROOF OF CONCEPT 135

Hardware wallet

A hardware wallet is a device made specially for storing Bitcoin wallets. It is
similar to a dedicated signing computer, except it is smaller, more portable, and
limited external communication. Examples of hardware wallets are Trezor[56]
and Bitsafe[55]. A hardware wallet reduces the threat of malware on the system
that stores the wallet by offering an isolated system with limited external com-
munication. The external communication happens whenever the users needs
the hardware wallet to sign a transaction.

5.3.7 Contact with MultiBit’s lead developer
All of our findings were reported to MultiBit’s lead developer, Jim Burton. He
acknowledged our findings and noted that there are a lot of potential threats
against the users of Bitcoin. Jim noted he had seen examples which are similar
to that of CoinShifter. The attacker had downloaded all of the client’s code
and added malware to steal wallets. Jim said that MultiBit, Armory, Electrum,
CoinBase, and Blockchain.info have all been attacked by:

• False advertising on a search engine leading to a trojan

• Trojan published on Reddit

• Trojan published on SourceForge

The most common attack vector was malware which steal password com-
bined with sending wallets to a central server. The community’s response to
an attack have been pretty good. The system’s administrators take down the
malware pretty quickly, which stops the attack.

Burton brought up MultiBit’s successor, MultiBit HD, which is planned
feature tight cooperation with hardware wallets, which are described in Sec-
tion 5.3.6. MultiBit specifically targets to integrate with Trezor[56]. This would
remove wallets from the user’s machine, which would hopefully make most of
the common malware attacks seen today ineffective.

136 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion and future work

This chapter concludes our work and is dedicated to approaches for further
research. It contains the research directions recommended by the author and
his supervisor.

6.1 Conclusion
The report’s hypothesis was that Bitcoin clients are the most vulnerable com-
ponent of the Bitcoin ecosystem. Through the development of CoinShifter, we
have established that the threshold for creating malware against Bitcoin is low.
The low threshold also means that attackers can easily create unique and cus-
tom malware, which renders most antivirus programs’ fingerprinting algorithms
ineffective.

This low cost also means that attackers can invest in the development of
new malware without risking big losses and without substantial capital.

For users this low threshold can lead to a swarm of malware that targets
Bitcoin. This may in turn lead to theft of their bitcoins. Unlike conventional
banking, there are few actors that insures bitcoin and any loss of bitcoins. Once
a Bitcoin transaction is public and verified, the transaction is permanent.

Our findings correlates with Dell Secureworks’ report[65] and Kaspersky’s
report[6] findings; that malware that targets cryptocurrencies are rising. The
malware often attempts to steal the user’s wallet or the user’s credentials through
keystroke logging.

It is important to note that even though we based CoinShifter on MultiBit,

137

138 CHAPTER 6. CONCLUSION AND FUTURE WORK

it is possible to generalize this attack vector and transfer it to all of the other
Bitcoin clients available.

Malware and keylogger attacks can be dampened with hardware wallets or
isolated computers dedicated to signing transactions. The dedicated hardware
for the devices makes it hard for malware to access and steal the wallet. The
shielded environment of either options makes it much more troublesome for
keystroke loggers to steal wallet passwords or other sensitive data, too. But
users with hardware wallets or isolated signing computers are still susceptible
to attacks, such as malware able to bridge the gap between the systems or theft
of the hardware wallet.

6.2 New and emerging threats
If new software, applications, trends, or actors emerge in the Bitcoin ecosystem,
then the evaluations done in this report needs to be revised. These new models
may expose new weaknesses, which creates a new or improves an existing attack
vector. This new attack vector may render the proof of concept client from this
report obsolete. Such change may require CoinShifter and the treat models to be
redesigned. Either way, such an advancement will help evaluate the overall and
changing attack surface of the Bitcoin ecosystem. New applications and services
that uses Bitcoin as a part of its operation also expand the attack surface and
should be incorporated into the models.

We also found evidence that other components within the Bitcoin ecosystem
are vulnerable, too. Exchangers and services are also being targeted as they are
public entities which are presumed to be in possession of a lot of bitcoins.

6.3 Evaluation
The metrics can be expanded to include more metrics or the existing metrics
can be fleshed out a bit more, in case they are ambiguous. To augment the
evaluation it is recommended to gather more incident data. This would reduce
or completely remove any bias that are present in the evaluation. The data
can be collected by contacting exchangers, services, or other entity that are
part of the threat models and ask them for data regarding attacks. This may
be difficult as the entities have no incentive for releasing such sensitive data.
They will probably not want to release their incident data as it may injure their
reputation. Once the incident data has been accumulated and analyzed it can

6.4. IMPROVED PROOF OF CONCEPT 139

be put into the models and their evaluations, so the models’ evaluations more
accurately reflect reality.

6.4 Improved proof of concept
CoinShifter’s code may need an update once another version of the base client
is released. If the client CoinShifter is based on is discontinued and no longer
in use, then CoinShifter needs to be ported to the successor of the client. A
new version of CoinShifter can be created for MultiBit HD, the successor of
MultiBit, when MultiBit HD is released. A different approach for the proof of
concept client could be to find a bug in one of the big clients instead of creating
a new malicious client. This would remove the need for distributing the client
and avoids all the challenges associated with distributing the client. Also, there
already exist a large body of users that use that client, which would be open
for attacks.

6.5 Ethical considerations
It is important that the results of our work is not misused. We have no intentions
of testing CoinShifter outside our laboratory settings, as CoinShifter’s purpose
is both unethical and illegal. But even though CoinShifter is untested outside
our lab, we believe that it can still be used and operate efficiently based on
our observations of CoinShifter. For this reason we have close sourced the
implementation of CoinShifter, with the exception of the screen shots taken of
the code. We have reported all of our findings to the lead developer of MultiBit
and he have acknowledged all of our findings.

140 CHAPTER 6. CONCLUSION AND FUTURE WORK

Appendix A

Any additional information that were either omitted from the report or to help
readers understand the content of the report.

A.1 Glossary
bitcoin and Bitcoin bitcoin, with a lower case B, refers to the currency.
Bitcoin, with capital B, refers to the other aspects, such as the network, the
miners, and the concept.

Bitcoin client Software used to interact with the Bitcoin network.

Bitcoin service - A service which accepts Bitcoins as payment.

Bitcoin exchanger - A service which converts Bitcoin into national currency.

RNG Random Number Generator. Used to generate a random and uniform
distribution of numbers.

HTTPS HTTP enhanced with security mechanism[123], usually SSL[123] or
TSL[123].

Distributed architecture - No central command node, instead all nodes
communicate with each other. This architecture is shown in Figure A.1.

141

142 APPENDIX A.

Figure A.1: Distributed network architecture

Centralized network architecture - Many peripheral nodes connect to a
central command node. This is shown in Figure A.2.

Malware Malware[140][123], or malicious software, is a broad term that incor-
porates all software designed to steal sensitive information, gain unauthorized
access to a system, or simply interrupt a computer’s function. Malware is a
broad term and, to help emphasize the diversity within the malware category,
the more known types of malware are computer viruses, torjans, spyware, ad-
ware, and keyloggers.

Social engineering Social engineering[141][123] is the act of manipulating
people into doing something they should not be doing, such as granting access
to restricted areas, sensitive information, or access to a system. Social engi-
neering is, like malware, a broad term. It includes spoofing, baiting, phishing,
blackmailing, and much more. All the attacks have in common that they ma-
nipulate one or more humans, since they often are the weak part of the system.

Phishing Phishing[123] is to try to acquire the credentials or other sensitive
information from a victim by posing as trusted source to the victim. This is
often done through digital communication, such as emails, where the attackers
can send out thousands of emails in the matter of seconds. Common phishing
tricks is to send mail from what appears to be a legitimate service, with just a

A.1. GLOSSARY 143

Figure A.2: Centralized architecture

small typo separating it from the real service such as mail from example.com
and exampIe.com (with a capital i instead of a lower case L). In the mail, the
recipient is often encouraged to reply with sensitive information. This can target
Bitcoin by including malware in the attachments that are urgent updates for
the users, or asking the recipient to email back their passwords and user names.

Spoofing The act of spoofing[123] is to pretend to be someone else similar to
phishing. This can be used to lure the victim into giving the attacker access to
sensitive information, such as man-in-the-middle attacks or spoofing emails to
look like they are from a trusted source and lure the victim to either download
malware or send over sensitive information.

Trust poisoning Trust poisoning[121] is to build up a false reputation for an
individual, which in this context is one of the attackers online accounts. Trust
poisoning can be used to hijack code repositories, but that is a complex scheme,
which requires lots of work from an attacker. If the attacker can gain access to
modify a public repository then the attacker can insert malicious code. But for
the attacker’s account to get the privilege to modify the repository the attacker
needs to do a lot of work to build up the trust to that account. This can be done
by social manipulation, or by creating lots of dummy accounts that attempt to
verify the original account.

144 APPENDIX A.

Baiting Leaving a malware infected digital medium, such as USB flash drive,
CD-ROM or an external hard drive, in a public location to lure a victim to pick
it up[123]. The result the attacker wants is that the victim who picks it up
plugs it into their machine and runs its contents. If the victim does not plug it
in their own computer, the victim might pass the device on to who the victim
believes the true owner of the device is, which might plug in and run the device.

A.2 Threat models

Here are the threat models that had been cut out of the report. They were cut
out to increase readability.

A.2. THREAT MODELS 145

A.2.1 Misuse cases

Threat 1.1 - Install malware
Probability Malware is daily installed on a multitude of
High systems through a vast array of attack vectors.
Dependencies The attack can be performed in many different
Few ways, ranging from inexpensive attacks to

high-priced and extravagant attacks.
They usually have few dependencies, usually
that the victim runs a specific operating
system and a specific version of a vulnerable
program

Extent A single malware attack often targets a
Wide specific operating system and/or version of

a program, but the multitude of attacks
available makes this attack viable over a
host of systems.

Knowledge An attacker can buy the required knowledge,
Low/Medium which lowers the bar. It costs more to create

a new and novel attack.
Cost A basic attack does not necessarily cost a lot,
Low novel attack, blueprint may be found online or the

malware may be bought online. On the other side,
an attack can also require vast resources.

Discretion An attack’s level of discretion depends on which
High defenses the defender have employed and how

refined the attack is. Some malware exist
for years without being discovered [142].

Overall Using malware as an attack vector is a good
Good strategy, but malware is very broad term and

the attack should be refined and further analyzed
with more context.

Table A.1: Evaluation for misuse-case 1.1 - Install malware

146 APPENDIX A.

Threat 1.2 - Compromise wallet generation
Probability The attack requires either that
Low the victim uses a known weak RNG, or

that their RNG is compromised, which both
are attacks that have happened before[143].
The attacker also needs access to the
victim’s system.

Dependencies The victim must have, and be
Medium using an RNG. Also, this exploit needs to

be in place before the victim creates their
wallets.

Extent All Bitcoin clients requires an operating
Broad system with an RNG to create wallets.
Knowledge An attacker needs to know which
High type of RNG the victim’s client is using,

how to gain access to the system.
Once the victim uses the compromised RNG,
the attacker needs to find which bits from the
RNG’s stream were used to create the wallet.

Cost If the victim mixes sources of entropy
Low then those sources needs to be compromised

too. Also, the attack may need to create
several wallets before finding the one that
was generated by the client, as the RNG
may have been used by other applications.

Discretion The attacker only need access once
High to the RNG to compromise it and the

victim can not easily spot a compromised
RNG by observing its output.

Overall This attack is a specialized attack, which
Decent requires a lot of work and access to

the victim’s system. But once executed
It is very difficult to spot by the victim.

Table A.2: Evaluation for misuse-case 1.2 - Compromise wallet generation

A.2. THREAT MODELS 147

Threat 1.3 - Gain access to the system
Probability The attack requires either that
Medium the victim uses known weak software,

that their system is not properly configured.
Both are probable scenarios.

Dependencies Varies from case to case.
Medium Some may require more than others.
Extent Most Bitcoin clients will operate on
Wide a system with an internet connection,

which will leave them vulnerable to this attack.
Knowledge An attacker needs to know which
Medium type of software the victim is using,

and how to exploit that software.
These are things that can be found
using search engines, but novel
attacks require more knowledge.

Cost Any computer may be used to
Low gain access to another. The major difference

is how long time the attack will take to complete.
Discretion The discretion depends on the
Medium defenses implemented by the victim.
Overall This attack is a gateway attack
Good which opens up to many other attacks.

It is a necessary step in some of the other attacks
we describe in this report.

Table A.3: Evaluation for misuse-case 1.3 - Gain access to the system

148 APPENDIX A.

Threat 1.4 - Steal wallet backup
Probability Most Bitcoin users have either a digital
High or physical backup of their wallet.

It is also a security recommendation[18],
and considered good practice. Many
an offline PC or a paper wallet[144].

Dependencies The victim must have taken a
Few backup of their wallet, which is

a common practice.
Extent Many users take backup of their
Wide wallets, either digital or physical.

Some Bitcoin services store their
customer’s wallets, which leaves
them exposed to theft.

Knowledge An attacker needs to know whether
Low the victim has a backup, where it

is and how to access it.
Cost The cost depends on which defenses
Medium the attacker needs to overcome.

Social engineering can overcome some/all
of the obstacles.

Discretion The attacker can create a
Medium replica of the key, with a camera or

copy it to a flash drive, which can make it
hard to discover the theft.

Overall This attack can target a large audience
Good in the Bitcoin system and many times the

backups are only defended by humans,
which may pose a security risk.

Table A.4: Evaluation for misuse-case 1.4 - Steal wallet backup

A.2. THREAT MODELS 149

Threat 1.5 - Weaken cryptography tools
Probability The probability of a state intentionally
Low disrupting or sabotaging cryptographic project

is unknown. The reason is that there is
no data available on such occurrences.

Dependencies The attacker must have resources
High to fund a team of skilled attackers to

infiltrate the project.
Extent The extent depends on which
Wide project they target, but an attacker

will most likely target important projects
to maximize the disruption.
Such projects create tools and libraries
that are used all over the globe in
both production and hobby projects.

Knowledge The hired attackers needs to know
High cryptography and social engineering

to disturb the project’s development.
Cost The cost of this attack covers the costs for
High a discrete team to sabotage and

misdirect a cryptographic tool.
Discretion The discretion depends on the attackers,
Medium but will most likely be high to

avoid trails back to the backers,
which would cause unwanted attention.

Overall This attack can target tools used ubiquitous
Good on the Internet and affects many users.

But the attack is expensive and requires
a lot of resources.

Table A.5: Evaluation for misuse-case 1.5 - Weaken cryptography tools

150 APPENDIX A.

Threat 1.6 - Weaken cryptography standards
Probability The probability of a state intentionally
Low disrupting or sabotaging cryptographic standards

is unknown. The reason is that there is
no data available on such occurrences.

Dependencies The attacker must have resources
High to fund a team of security researchers and

professors to infiltrate the standards
committee.

Extent If the standards that are being sabotaged
Wide are popular, the attack has a large

extent and affect many people.
Knowledge The hired personnel needs to know
High cryptography and social engineering

to disturb the standards committee.
Cost The cost of this attack covers the costs for
High a team to sabotage and

misdirect development and discussion
about cryptographic standards.

Discretion The discretion depends on the attackers,
Medium but will most likely be high to

avoid trails back to the backers,
which would cause unwanted attention.

Overall This attack can alter and weaken
Good algorithms and schemes used throughout

the Internet.

Table A.6: Evaluation for misuse-case 1.6 - Weaken cryptography standards

A.2. THREAT MODELS 151

Threat 2.1 - Distributed denial of service (DDoS)
Probability DDoS is a common attack
High but they do not necessarily target Bitcoin

specifically.
Dependencies The attacker needs to have
Low access to a network of computer able

to generate the flood of connections needed
to take down the target system. This can also be
done by acquiring or purchasing a botnet.

Extent Services that must be available
Broad to their users can be targeted and taken down.

It can also undermine the site’s reputation as
reliable.

Knowledge Entry level for DDoS is low, as all the
Low components can be purchased online.
Cost To create a botnet is expensive, but
Low not buying it. Or just using your

own computer as source.
Discretion The attack itself will be noted quickly,
Medium but the attacker remains hidden.
Overall A simple attack which is costly to be
Poor targeted by and costly to mitigate.

Table A.7: Evaluation for misuse-case 2.1 -Distributed denial of service (DDoS)

152 APPENDIX A.

Threat 2.2 - Masquerade as server
Probability Between the user and the
Medium server there exist many components that

an attacker can use to deceive a victim.
Dependencies The attacker needs to have
Medium access to equipment able

to spoof the target server.
Extent A large host of servers, which all are
Broad potential targets, exists.
Knowledge The attacker must know how
Medium to forge and imitate the target

website. They must also be able to
redirect the victim to their site.

Cost The attacker must have hosting
Medium and create the website.
Discretion The level of discretion is up to
Medium the attacker and whether the

attacker is able to not trigger
suspicious from either the browser
or the user.

Overall Most of this is speculations

Table A.8: Evaluation for misuse-case 2.2 - Masquerade as server

A.2. THREAT MODELS 153

Threat 2.3 - Create fake certificate authority (CA)
Probability The attacker risks their credibility
Low if they get exposed as evil, but if they are

discrete they can circumvent any encryption or
authentication using any keys they sign.

Dependencies The attacker must have a hosting
High service and staff for their CA and resources

to operate it as a regular CA.
Extent CAs are needed throughout the internet,
Wide as they form the backbone of internet security.
Knowledge The attacker needs to prevent theft
High of their sensitive data, be able to create certificates,

help their customers with problems, and more.
This adds up to a challenging task.

Cost Costs include hosting the CA and
High the staff needed to operate the CA.
Discretion If the CA is run as a regular CA,
High then it will be difficult to prove it true intentions.
Overall A specialized and difficult attack, but
Great if it is successful, it can have a huge

impact.

Table A.9: Evaluation for misuse-case 2.3 - Create fake certificate authority

154 APPENDIX A.

Threat 2.4 - Brute force authentication
Probability The attacker can either
High target the victim’s online log in page,

or try to get a copy of their password database.
Dependencies The attacker needs to have
Low access to equipment able

to spoof the target server.
Extent Any online site that requires users
Broad to log in to access restricted resources.
Knowledge Any of our attacker personae
Low can create themselves or download

a basic brute force script.
Cost Many modern GPUs have a high
Medium power/cost ratio, and are ideal

for brute forcing, but still cost money.
An attacker can also steal or rent
cloud services for the brute forcing.

Discretion If the service has implemented
High defenses, the attacker’s attempt may

be throttled or blocked.
If the attacker is brute forcing
offline, then there are no signs
of the attack.

Overall A plausible attack, but
Poor it requires undisturbed access

to the site or hashes. It can also
require an enormous amount of
time to try all the possible passwords.

Table A.10: Evaluation for misuse-case 2.4 - Brute force authentication

A.2. THREAT MODELS 155

Threat 2.5 - Compromise wallet generation
Probability The attacker can either
Medium try their online log in page,

or get a copy of their password hashes.
Dependencies The attacker needs to have
Medium access to equipment able

to spoof the target server.
Extent Most operating systems have an
Broad RNG, and if the user is a Bitcoin

user, then the user makes wallets,
then the user can be attacked.

Knowledge The attacker needs to know
High how to gain access to the system,

which seed to set, and which wallets
would likely be generated by the
application running in the system
the victim uses.

Cost Depends on how many
Medium are affected by the attack;

if the effort targets a single user
on a single machine, the cost per
victim is high. If the RNG was used
by a popular Bitcoin service, the
price would drop significantly.

Discretion Once the attack is executed
High there are few ways to discover that

a new seed was given to the RNG.
Unless the attack is spotted
during execution, the attack
is very discrete.

Overall A plausible attack, but
Decent it requires undisturbed access

to the site or hashes. It can also
require an enormous amount of
time to try all the possible passwords.

Table A.11: Evaluation for misuse-case 2.5 - Compromise wallet generation

156 APPENDIX A.

Threat 3.1 - Spoof distribution point (DP)
Probability The attacker can either
High host their own DP or use an already existing

DP to host their client.
Dependencies The attacker needs to have
Low access host able

to spoof the target server.
This includes any certificates or other
means of authentication.

Extent All Bitcoin software are distributed
Wide through the internet. This means all

clients are susceptible to this attack.
Knowledge The attacker needs to know
Medium how to gain access to the system,

which seed to set, and which wallets
would likely be generated by the
application running in the system
the victim uses.

Cost Depends on how well
Medium the host they attempt;

to spoof is prepared to counter spoofing.
Discretion The attack may be discovered
Medium if the client is attentive. It is difficult if the

attacker can create fake and valid HTTPS
HTTPS certificates.

Overall A plausible attack, but
Good it may require access to certificate authorities

to completely forge a well protected site.
Very effective once successfully executed
and have been performed by attackers before.

Table A.12: Evaluation for misuse-case 3.1 - Spoof distribution point

A.2. THREAT MODELS 157

Threat 3.2 - Break into distribution point (DP)
Probability The attack requires either that
Low the victim uses known weak software,

that their system is not properly configured.
Both are probable scenarios.

Dependencies Varies from case to case.
Medium Some may require more than others.
Extent Most Bitcoin clients will operate on
Narrow a system with an internet connection,

which will leave them vulnerable to this attack.
Knowledge An attacker needs to know which
Medium type of software the victim is using,

and how to exploit that software.
These are things that can be found
using search engines, but novel
attacks require more knowledge.

Cost Any computer may be used to
Medium gain access to another. The major difference

is how long time the attack will take to complete.
Discretion The discretion depends on the
Medium defenses implemented by the victim.
Overall This attack is a gateway attack
Poor which opens up to many other attacks.

It is a necessary step in some of the other attacks
we describe in this report.

Table A.13: Evaluation for misuse-case 3.2 - Break into distribution point (DP)

158 APPENDIX A.

Threat 3.3 - Replace with evil client
Probability The probability increases with the number
Low of people who have access to the compiled binary

that is being distributed.
The probability is unknown due to lacking data
about this type of attacks.

Dependencies The attacker needs access to the
High server hosting the binary, either

illegal or legitimate access.
Extent Most Bitcoin clients are spread over a
Small network and storing the software on one or

more servers.
Knowledge The attack can be carried out
Medium with minimal knowledge about the client

and about Bitcoins. The more knowledge, the more
refined the attack will be.

Cost Equipment to modify the client and
Low access the server hosting the software.
Discretion The discretion depends on how
Medium subtle the attack implemented in the client

is and how fast it is discovered.
Overall This is an attack which may remove
Decent all trust and confidence in the developer

if the attack and attacker is revealed.
But the reward can be high.

Table A.14: Evaluation for misuse-case 3.3 - Gain access to the system

A.2. THREAT MODELS 159

Threat 3.4 - Add evil code
Probability The probability increases with the number
Low of people who have access to the source code

that is being distributed.
The probability is unknown due to lacking data
about this type of attacks.

Dependencies The attacker needs to have
High access to the server/service hosting

the source code, preferably legitimate access.
Legitimately added code will cause less suspicion.

Extent Most Bitcoin clients have open sourced
Wide their code and allow other developers to help.
Knowledge The attack can be carried out
Medium with minimal knowledge about the client

and about Bitcoins. The more knowledge, the more
refined the attack will be.

Cost Cost of the equipment to modify
Low the code and add it to the repository.
Discretion The discretion depends on how
Medium subtle the attack implemented in the client

is.
Overall This is an attack which may remove
Decent all trust and confidence in the developer

if the attack and attacker is revealed.
But the reward can be high.

Table A.15: Evaluation for misuse-case 3.4 - Add evil code

160 APPENDIX A.

Threat 3.5 - Trust poisoning
Probability This attack requires a long
Low term commitment, which makes it less

desirable than faster attacks.
Dependencies Personnel that is skilled
Medium with social dynamics and programming.
Extent Can target any host that is
Medium involved with the distribution

site.
Knowledge The attacker must be able to
Medium participate with the development

and also understand how to perform social
engineering.

Cost The attacker needs to focus
Low part of their time to build trust with

the target.
Discretion If the attacker does not
High get to greedy and only tamper with

the required code, then the attack can be
very discrete.

Overall A plausible attack, but
Decent it requires a long term

commitment to the attack.
The attacker must be careful to not overstep
and misuse their trust, which
will reveal and counter the attack.

Table A.16: Evaluation for misuse-case 3.5 - Trust poisoning

A.2. THREAT MODELS 161

Threat 3.6 - Distributed Denial of Service (DDoS)
Probability Software for creating DDoS attacks
High is available and have been widely deployed.
Dependencies The attacker needs to find
Low a weakness at one of the target

systems or their dependencies.
The attacker also need the knowledge
to find the weakness and how to
exploit it.

Extent Can target any host that is
Wide involved with the distribution

site.
Knowledge The attacker only needs to
Low know how to download, install , and

run the DDoS software.
Cost The costs are the expenses of
Low the bandwidth used.

An attacker can use a botnet to amplify the attack
which uses the bots resources instead.

Discretion The attack will be noticed once
Low the packets reach the target.

If the attacker uses a botnet then the
attacker can remain hidden.

Overall A common attack, but
Poor it requires access to vast bandwidth

resource.

Table A.17: Evaluation for misuse-case 3.6 - Distributed Denial of Service
(DDoS)

162 APPENDIX A.

Bibliography

[1] (2013, November) Market price for bitcoins (usd). [Online]. Available:
http://blockchain.info/charts/market-price

[2] (2013, November) Total bitcoins in circulation. [Online]. Available:
http://blockchain.info/charts/total-bitcoins

[3] (2014, April) Bitlegal. [Online]. Available: http://bitlegal.net/

[4] (2013, November) Silk road redux. [Online]. Available: http://
allthingsvice.com/2013/11/07/remember-remember-silk-road-redux/

[5] (2014, February) Trezor: Bitcoin hardware wallet. [Online]. Available:
https://bitcointalk.org/index.php?topic=122438.0

[6] (2014, April) Financial cyber threats in 2013.
[Online]. Available: http://media.kaspersky.com/en/
Kaspersky-Lab-KSN-report-Financial-cyber-threats-in-2013-eng-final.
pdf

[7] A. L. O. Guttorm Sindre, “Capturing security requirements through mis-
use cases.”

[8] (2013, October) Download statistics for bitcoin qt. [Online]. Avail-
able: http://sourceforge.net/projects/bitcoin/files/stats/timeline?dates=
2008-11-09+to+2013-12-03

[9] (2014, April) Fake electrum download site (taken down). [Online].
Available: https://bitcointalk.org/index.php?topic=573135.0

[10] (2013, April) Fake multibit sites and scams appearing. [Online]. Available:
https://bitcointalk.org/index.php?topic=188153.0

163

164 BIBLIOGRAPHY

[11] (2014) I was bored so i made... [Online]. Avail-
able: https://pay.reddit.com/r/Bitcoin/comments/1wqljr/i was bored
so i made bitcoin stealth addresses/

[12] (2014) My wallet just emptied into this address.. [On-
line]. Available: http://www.reddit.com/r/Bitcoin/comments/1xf2qj/
my wallet just emptied into this address/

[13] (2013, October). [Online]. Available: https://www.facebook.com/
bitcoinusers

[14] (2013, 16th of October). [Online]. Available: http://www.reddit.com/r/
bitcoin

[15] (2013, December) Bitcoin wiki about privacy. [Online]. Available:
https://en.bitcoin.it/wiki/Anonymity

[16] F. B. of Investegation Directorate of Intelligence, “Bitcoin virtual cur-
rency: Unique features present distinct challenges for deterring illicit ac-
tivity,” 24 April 2013 2013.

[17] (2013, October) Bitcoin.org’s privacy recommendations. [Online].
Available: http://bitcoin.org/en/protect-your-privacy

[18] (2013, October) Bitcoin.org’s security recommendations. [Online].
Available: http://bitcoin.org/en/secure-your-wallet

[19] (2013, November) Pay another way: Bitcoin. [Online]. Available:
http://en.blog.wordpress.com/2012/11/15/pay-another-way-bitcoin/

[20] (2013, November) Contribute to khan academy. [Online]. Available:
https://www.khanacademy.org/donate

[21] (2013, November). [Online]. Available: http://www.documentfoundation.
org/

[22] (2013, November) Contribute to libre office. [Online]. Available:
http://donate.libreoffice.org/index.php

[23] (2013, November) Eff will accept bitcoins to support digital
liberty. [Online]. Available: https://www.eff.org/deeplinks/2013/05/
eff-will-accept-bitcoins-support-digital-liberty

BIBLIOGRAPHY 165

[24] (2014) Coinbase. [Online]. Available: https://coinbase.com/

[25] (2013, October) How the feds took down the dread pirate
roberts. [Online]. Available: http://arstechnica.com/tech-policy/2013/
10/how-the-feds-took-down-the-dread-pirate-roberts/

[26] (2013, November) Silk road is resurrected. [On-
line]. Available: http://news.cnet.com/8301-1023 3-57611227-93/
silk-road-is-resurrected-with-a-new-dread-pirate-roberts/

[27] (2013, November) Silk road. [Online]. Available: http://en.wikipedia.org/
wiki/Silk Road (marketplace)

[28] (2013, Novembero) Beyond silk road: Potential risks,
threats, and promises of virtual currencies. [On-
line]. Available: http://www.hsgac.senate.gov/hearings/
beyond-silk-road-potential-risks-threats-and-promises-of-virtual-currencies

[29] (2011, January) The underground website where you can buy
any drug imaginable. [Online]. Available: http://gawker.com/
the-underground-website-where-you-can-buy-any-drug-imag-30818160

[30] (2013, November) Tor. [Online]. Available: https://www.torproject.org/

[31] (2013, October) How fbi closed in on suspect ross ulbricht. [Online].
Available: http://www.bbc.co.uk/news/technology-24371894

[32] (2013, November) Twitter. [Online]. Available: https://twitter.com/
DreadPirateSR/status/398134233907994624

[33] (2013, April) Drugs, porn, and couterfeits. [On-
line]. Available: http://www.theverge.com/2013/4/29/4281656/
silk-road-black-market-reloaded-tor-marketplaces

[34] (2013, December) Dark marketplace closes. [Online]. Available: http:
//www.bbc.com/news/technology-25185225

[35] (2013, December) Two guys on reddit...
[Online]. Available: http://www.businessinsider.com/
220-million-sheep-marketplace-bitcoin-theft-chase-2013-12#!IJcpg

[36] (2013, April) Competition hotting up. [On-
line]. Available: http://allthingsvice.com/2013/04/23/
competition-for-black-market-share-hotting-up/

166 BIBLIOGRAPHY

[37] (2013, November) Bitzino. [Online]. Available: https://bitzino.com/

[38] (2013, November) Casinobitco.in. [Online]. Available: http://casinobitco.
in/

[39] (2013, November) Paypal. [Online]. Available: https://www.paypal.com/
uk/webapps/mpp/home

[40] (2013, November) Paypal - about us. [Online]. Available: https:
//www.paypal.com/uk/webapps/mpp/about

[41] (2013, November) Paypal and ebay. [Online]. Available: http:
//pages.ebay.com/jp/en-us/paypal/

[42] (2013, November) ebay picks up paypal for $1.5 billion. [Online].
Available: http://news.cnet.com/2100-1017-941964.html

[43] (2013, November) Us justice department indictment against liberty
reserve (redacted). [Online]. Available: http://www.justice.gov/usao/
nys/pressreleases/May13/LibertyReservePR/Liberty\%20Reserve,\%
20et\%20al.\%20Indictment\%20-\%20Redacted.pdf

[44] E. L. III, “Testimony of edward lowery iii before the united states senate
committee on homeland security and governmental affairs,” November
2013.

[45] (2011, June) Affidavit of roy dotson. [Online]. Avail-
able: https://egoldclaimsprocess.com/Portals/0/Documents/E-Gold%
20%20Affidavit.pdf

[46] (2013, November) Github repo for litecoin client. [Online]. Available:
https://github.com/litecoin-project/litecoin

[47] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions.”

[48] (2013, November) What is namecoin. [Online]. Available: http:
//namecoin.info/

[49] (2013, November) Github repo for namecoin client. [Online]. Available:
https://github.com/namecoinq/namecoinq/

[50] (2013, November) Primecoin faq. [Online]. Available: https://github.
com/primecoin/primecoin/wiki/FAQ

BIBLIOGRAPHY 167

[51] (2013, November) Primecoin: Cryptocurrency with prime number proof-
of-work primecoin: Cryptocurrency with prime number proof-of-work
primecoin: Cryptocurrency with prime number proof-of-work. [Online].
Available: http://primecoin.org/static/primecoin-paper.pdf

[52] (2013, November) Cunningham chains. [Online]. Available: http:
//primes.utm.edu/glossary/page.php?sort=CunninghamChain

[53] (2013, November) Peercoin. [Online]. Available: http://www.ppcoin.org/

[54] S. N. Sunny King, “Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake,” August 2012.

[55] (2014) Bitsafe. [Online]. Available: http://www.butterflylabs.com/
bitcoin-hardware-wallet/

[56] (2013) Trezor the bitcoin safe. [Online]. Available: http://www.
bitcointrezor.com/

[57] (2013, November) Carbon wallet. [Online]. Available: http:
//carbonwallet.com/

[58] (2013, November) Bitcoin dark wallet. [Online]. Available: http:
//www.indiegogo.com/projects/bitcoin-dark-wallet

[59] (2013, December) Armory. [Online]. Available: https://bitcoinarmory.
com/

[60] (2013, November) Digital currency business e-gold indicted for
money laundering and illegal money transmitting. [Online]. Available:
http://www.justice.gov/opa/pr/2007/April/07 crm 301.html

[61] (2011, June) e-gold compaint. [Online]. Avail-
able: https://egoldclaimsprocess.com/Portals/0/Documents/E-Gold%
20Complaint.pdf

[62] (2013, November) Common vulnerabilities and exposures. [Online]. Avail-
able: https://en.bitcoin.it/wiki/Common-Vulnerabilities-and-Exposures

[63] (2013, November) List of bitcoin heists. [Online]. Available: https:
//bitcointalk.org/index.php?topic=83794

[64] Kaspersky security network. [Online]. Available: http://www.kaspersky.
com/images/KESB Whitepaper KSN ENG final.pdf

168 BIBLIOGRAPHY

[65] (2014, February) Cryptocurrency-stealing malware landscape. [On-
line]. Available: http://www.secureworks.com/cyber-threat-intelligence/
threats/cryptocurrency-stealing-malware-landscape/

[66] (2014, May) Transaction malleability. [Online]. Available: https:
//en.bitcoin.it/wiki/Transaction Malleability

[67] (2014, February) Bitcoin exchange mt.gox subpoe-
naed. [Online]. Available: http://nypost.com/2014/02/26/
bitcoin-exchange-mt-gox-subpoenaed-after-cyber-attacks/

[68] (2014, March) Bitcoin exchange mt.gox. [Online].
Available: http://www.telegraph.co.uk/finance/currency/10686698/
Bitcoin-exchange-MtGox-faced-150000-hack-attacks-every-second.html

[69] (2014, March) Bitcoin exchange mt.gox. [Online]. Available: http:
//phys.org/news/2014-03-bitcoin-exchange-mtgox.html

[70] (2014, February) Bitcoin withdrawal processing sus-
pended. [Online]. Available: https://www.bitstamp.net/article/
bitcoin-withdraws-suspended/

[71] (2014, February) Statement by bitstamp. [On-
line]. Available: https://www.bitstamp.net/article/
Statement-by-Bitstamp-regarding-MtGox-insolv/

[72] (2013, November) It’s been an epic few days: What happened? [Online].
Available: https://www.mtgox.com/press-release-20130404.html

[73] (2013, November) Ddosers tried to take down bitcoin ex-
change. [Online]. Available: http://www.theregister.co.uk/2013/10/
17/bitcoin-exchange-ddos-flood/

[74] (2013, November) 4.1 million dollars goes miss-
ing. [Online]. Available: http://www.coindesk.com/
4-1m-goes-missing-chinese-bitcoin-trading-platform-gbl-vanishes/

[75] (2013, November) Problems for bitcoin in china as hk trader goes down.
[Online]. Available: http://www.wantchinatimes.com/news-subclass-cnt.
aspx?id=20131105000045\&cid=1102

[76] (2013, November) Site down. [Online]. Available: https://inputs.io/

BIBLIOGRAPHY 169

[77] (2013, November) Hackers steal 1.2m dollars of bitcoins
from inputs.io. [Online]. Available: http://www.coindesk.com/
hackers-steal-bitcoins-inputs-io-wallet-service/

[78] (2013, November) Czech bitcoin exchange bit-
cash.cz hacked and up to 4,000 user wal-
lets emptied. [Online]. Available: http://www.coindesk.com/
czech-bitcoin-exchange-bitcash-cz-hacked-4000-user-wallets-emptied/

[79] (2014, May) Localbitcoins received a very dangerous attack. [Online].
Available: https://localbitcoins.com/

[80] (2014, January) 10,000 litecoins were stolen.
[Online]. Available: http://blog.spiderlabs.com/2014/01/
10000-litecoins-worth-230000-usd-were-stolen.html

[81] (2014, April) Osx/cointhief. [Online]. Available: http://www.securemac.
com/Remove-CoinThief-Trojan-Horse-Instructions.php

[82] (2014, April) Badlepricon: Bitcoin gets the mobile... [Online]. Available:
https://blog.lookout.com/blog/2014/04/24/badlepricon-bitcoin/

[83] (2014, February) Pony botnet. [Online]. Available: http://www.reuters.
com/article/2014/02/24/us-bitcoin-security-idUSBREA1N1JO20140224

[84] (2014, April) Hide your kids, hide your btc.
[Online]. Available: http://arstechnica.com/security/2013/04/
hide-your-kids-hide-your-btc-bitcoin-stealing-malware-emerges/

[85] (2014, March) Analysis of, malware from the mtgox leak archive.
[Online]. Available: http://www.securelist.com/en/blog/8196/Analysis
of Malware from the MtGox leak archive

[86] (2014, April) Malware copy of multibit. [Online]. Available: https:
//bitcointalk.org/index.php?topic=255122.0

[87] (2014, March) Github repo for multibit. [Online]. Available: https:
//github.com/jim618/multibit

[88] (2013, December) Multibit. [Online]. Available: https://multibit.org/

[89] (2013, December) Fake electrum website. [Online].
Available: http://theblogpirate.wordpress.com/2013/12/23/
warning-a-fake-electrum-website-with-malware-is-advertising-on-duckduckgo-and-yahoo/

170 BIBLIOGRAPHY

[90] (2014, May) Github repo for electrum. [Online]. Available: https:
//github.com/spesmilo/electrum

[91] (2013, December) Electrum. [Online]. Available: http://electrum.org

[92] (2014, January) Yahoo malware. [Online]. Avail-
able: http://www.theguardian.com/technology/2014/jan/08/
yahoo-malware-turned-europeans-computers-into-bitcoin-slaves

[93] (2013, May) Bitcoin malware still at large.
[Online]. Available: http://www.cyberoam.com/blog/
bitcoin-malware-still-at-large-now-targeting-popular-social-media-with-new-attack-methods-cyberoam-threat-research-labs/

[94] (2014, March) Spam emails from multibit.org. [Online]. Available:
https://bitcointalk.org/index.php?topic=513749.0

[95] B. Preneel, “Analysis and design of cryptograhic hash functions,” Febru-
ary 2003.

[96] L. Røstad, “An extended misuse case notation: Including vulnerabilities
and the insider threat.”

[97] B. Schneier. (December 1999) Attack trees. [Online]. Available:
https://www.schneier.com/paper-attacktrees-ddj-ft.html

[98] P. M. Allessandra Bagnatio, Barbara Kordy, “Attribte decoration of
attack-defense trees,” April-June 2012.

[99] O. M. Group, “Omg unified modeling language (omg uml) superstruc-
ture,” August 2011.

[100] (2013, December) Choose your wallet. [Online]. Available: http:
//bitcoin.org/en/choose-your-wallet

[101] (2014, January) Firewall. [Online]. Available: http://en.wikipedia.org/
wiki/Firewall (computing)

[102] R. G. Carlos Flavian, Miguel Guinaliu, “The role played by perceived us-
ability, satisfaction and consumer trust on website loyalty,” NTNU, 2004.

[103] (2013, November) Github repo for bitcoin qt client. [Online]. Available:
https://github.com/bitcoin/bitcoin

BIBLIOGRAPHY 171

[104] (2013, December) Armory and bitcoin-qt. [Online]. Available: https:
//bitcoinarmory.com/about/armory-and-bitcoin-qt/

[105] (2013, December) Sourceforge repo for bitcoin qt client. [Online].
Available: http://sourceforge.net/p/bitcoin/code/HEAD/tree/

[106] (2013, December) Bitcoin wiki about clients. [Online]. Available:
https://en.bitcoin.it/wiki/Clients

[107] (2013, December) Electrum server. [Online]. Available: https://github.
com/spesmilo/electrum-server

[108] (2013, December) Multibit features. [Online]. Available: https:
//multibit.org/features.html

[109] (2014, March) Multibit downloads reach 1.5 million. [Online]. Avail-
able: https://multibit.org/blog/2014/03/10/multibit-downloads-reach-1.
5m.html

[110] (2014) Introducing hive. [Online]. Available: https://www.hivewallet.
com/

[111] (2014, February) First github commit for armory. [On-
line]. Available: https://github.com/etotheipi/BitcoinArmory/commit/
6e54e8e7af7dd1b4b527410bd42d9de0be311329

[112] (2014, February) First github commit for electrum. [On-
line]. Available: https://github.com/spesmilo/electrum/commit/
6db1a31e58ee15c448448139e7d3a9e72b14268f

[113] (2014, February) First github commit for multibit.
[Online]. Available: https://github.com/jim618/multibit/commit/
75fb14dcaf4c1dc96732cd876d7aadc7736222ee

[114] (2014, February) First github commit for hive osx. [On-
line]. Available: https://github.com/hivewallet/hive-osx/commit/
32b32b030f039273e1072d97be74d0a688b36573

[115] E. S. L. TXT, “Final shields approach guide,” Shields Project, 2010.

[116] (2014, January) Script kiddies. [Online]. Available: http://en.wikipedia.
org/wiki/Script kiddie

172 BIBLIOGRAPHY

[117] (2013, December) The nsa’s elite hackers. [On-
line]. Available: http://www.theverge.com/2013/12/30/5256636/
nsa-tailored-access-jacob-appelbaum-speech-30c3

[118] (2013, December) Nsa reportedly intercepting laptops. [On-
line]. Available: http://www.theverge.com/2013/12/29/5253226/
nsa-cia-fbi-laptop-usb-plant-spy

[119] (2014, January) Ransomware. [Online]. Available: http://en.wikipedia.
org/wiki/Ransomware (malware)

[120] (2013, December) Logic bomb. [Online]. Available: http://en.wikipedia.
org/wiki/Logic bomb

[121] P. Meland, “Service injection: A threat to self-managed complex systems,”
pp. 1–6, 2011.

[122] E. G. S. Ittay Eyal, “Majority is not enough: Bitcoin mining is vulnera-
ble,” November 2013.

[123] (2007, August) Internet security glossary, version 2. [Online]. Available:
http://tools.ietf.org/html/rfc4949

[124] (2014, February) Man-in-the-middle attack. [Online]. Available: http:
//en.wikipedia.org/wiki/Man-in-the-middle attack

[125] (2013, June) Top 10 2013-top 10. [Online]. Available: https:
//www.owasp.org/index.php/Top 10 2013-Top 10

[126] (2014, January) Download electrum. [Online]. Available: https:
//electrum.org/download.html

[127] (2014, February) Download armory. [Online]. Available: https:
//bitcoinarmory.com/download/

[128] (2014, March) Change list for multibit’s bitcoinj. [Online]. Available:
https://code.google.com/r/jimburton618-bitcoinj-coinbase-tx/source/list

[129] (2014, Mar) Change list for bitcoinj. [Online]. Available: https:
//code.google.com/p/bitcoinj/source/list

[130] (2013, December) Bitcoin forum. [Online]. Available: https://bitcointalk.
org/

BIBLIOGRAPHY 173

[131] (2014, March) Bitcoin subreddit. [Online]. Available: http://www.reddit.
com/r/Bitcoin/

[132] (2014, March) Multibit spam emails. [Online]. Available: https:
//bitcointalk.org/index.php?topic=513749.0

[133] (2014, February) Osx malware. [Online]. Available: https://bitcointalk.
org/index.php?topic=454903.0

[134] (2014) Bitcoin atm map. [Online]. Available: http://bitcoinatmmap.com/

[135] (2014) The bitcoin fluid dispenser ii. [Online]. Available: http:
//andyschroder.com/BitcoinFluidDispenser/

[136] (2014, February) New report on card fraud shows online fraud increased
in 2012. [Online]. Available: https://www.ecb.europa.eu/press/pr/date/
2014/html/pr140225.en.html

[137] (2014, April) Heartbleed. [Online]. Available: http://heartbleed.com/

[138] L.-S. H. A. R. E. E. C. Jackson, “Analyzing forged ssl certificated in
the wild,” IEEE Symposium on Security and Privacy, 2014. [Online].
Available: https://www.linshunghuang.com/papers/mitm.pdf

[139] (2007, November) Openpgp message format. [Online]. Available:
http://www.ietf.org/rfc/rfc4880.txt

[140] (2014, April) Malware. [Online]. Available: http://en.wikipedia.org/wiki/
Malware

[141] (2014, April) Social engineering. [Online]. Available: http://en.wikipedia.
org/wiki/Social engineering (security)

[142] (2014, February) The careto/mask apt. [Online]. Avail-
able: http://www.securelist.com/en/blog/208216078/The Careto Mask
APT Frequently Asked Questions

[143] (2014, January) Random number generator attack. [Online]. Available:
http://en.wikipedia.org/wiki/Random number generator attack

[144] (2014, January) Paper wallet. [Online]. Available: https://en.bitcoin.it/
wiki/Paper wallet

	Title Page
	masteroppgave.pdf

