
Path Integration in a Swarm of Robots

Anders Søbstad Rye

Master of Science in Computer Science

Supervisor: Pauline Haddow, IDI

Department of Computer and Information Science

Submission date: Januar 2014

Norwegian University of Science and Technology

Anders Søbstad Rye

Path Integration in a Swarm of Robots

Master’s Thesis, January 2014

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

i

Abstract

In this report I propose a method of navigation for differentially wheeled robots
inspired by path integration in certain social insects like bees and ants. It is a very
simple method, intended for use in low-tech robots with very limited hardware,
such as swarm robots. Path integration is essentially dead reckoning as used by
animals, calculating the relative position based on the movements made since
the last known position. It is a tried and true method of navigation that also
has significant flaws, especially in that inaccuracies accumulate and magnify over
time. In this report I want to examine whether communication and information
sharing between robots in a swarm can alleviate some of the drawbacks, and
make it a viable method for navigation for swarm robots over relatively short
distances.

ii

Sammendrag

I denne rapporten foresl̊ar jeg en metode for navigasjon for roboter inspirert
av m̊aten noen sosiale insekter som bier og maur navigerer. Det er en veldig
enkel metode, ment for enkle roboter som har veldig begrenset med instrumenter
tilgjenglelig, som svermroboter. Metoden bygger p̊aen metode som essensielt
er bestikkregning som brukt av dyr, det vil si åberegne sin relative posisjon
basert p̊abevegelser gjort siden sist kjente posisjon. Det er en velkjent metode
for navigasjon brukt av mennesker i århundrene før moderne navigasjonssystemer.
Det har ogs̊astore ulemper, spesielt med hvordan unøyaktigheter akkumulerer og
forstørres over tid. I denne rapporten vil jeg undersøke om kommunikasjon og in-
formasjonsdeling mellom roboter i en sverm kan hjelpe med åminske noen av disse
problemene, og gjøre det til en brukbar metode for navigasjon for svermroboter
over relativt korte avstander.

iii

Preface

This report is my master’s thesis, which concludes my 5-year studies at the
Norwegian University of Science and Technology (NTNU). It is based upon my
specialization project, in which i was part of a group that designed and built,
from the ground up, a robot intended for use in swarm projects. In this project,
I will use that robot to do swarm related experiments.

I would like to thank my supervisor Pauline C. Haddow, for her invaluable support
and feedback throughout this project.

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Thesis Structure . 3

2 Background Theory and Motivation 5
2.1 The ChIRP robot . 5
2.2 Path integration . 7
2.3 Other methods of navigation in swarm robotics 8
2.4 Motivation . 9

3 Architecture 11
3.1 Maintaining vector . 11

3.1.1 Implementation . 12
3.2 Searching . 13

3.2.1 Implementation . 14
3.3 Communicating (sending) . 14

3.3.1 Implementation . 17
3.4 Communicating (receiving) . 17

3.4.1 Measure . 17
3.4.2 Filter . 18
3.4.3 Interpret . 18
3.4.4 Translate . 19
3.4.5 Implementation . 19

3.5 Avoiding collisions . 20
3.5.1 Implementation . 21

3.6 Waiting . 21
3.7 Approaching the box . 21
3.8 Pushing . 22

v

vi CONTENTS

4 Experiments and Results 23
4.1 Experimental Plan . 24

4.1.1 Accuracy, accumulated errors (blind) 24
4.1.2 Communication . 24
4.1.3 Communication + Navigation 25
4.1.4 Cooperative box pushing 26

4.2 Experimental Results . 27
4.2.1 Accuracy, accumulated errors (blind) 27

4.3 Communication . 28
4.3.1 Accuracy . 28
4.3.2 Number of possible messages 29
4.3.3 Errors due to noise . 31
4.3.4 Maximum error during communication 31

5 Evaluation and Conclusion 33
5.1 Evaluation and Discussion . 33
5.2 Conclusion . 34
5.3 Future Work . 34

Bibliography 35

List of Figures

2.1 The ChIRP Robot . 6

3.1 Coordinate system . 12
3.2 A pulse wave. 15
3.3 Communications example . 16
3.4 Vector displacement . 16
3.5 Pulse measurement . 17
3.6 Directions of messages . 19
3.7 Without translation . 20

4.1 Sample results . 27
4.2 Accuracy test 1 . 29
4.3 Accuracy test 2 . 29
4.4 Accuracy test 3 . 30
4.5 Accuracy test 4 . 30
4.6 Sensors . 32
4.7 Worst case scenario . 32

vii

viii LIST OF FIGURES

List of Tables

3.1 Pre programmed messages example 18

4.1 Error measurements . 28

ix

x LIST OF TABLES

Chapter 1

Introduction

1.1 Background and Motivation

Swarm intelligence is the study of the collective behavior that emerges from the
actions of a swarm of decentralized and self organizing individuals. The core
principle of swarm intelligence is that from simple behavior on an individual
level there can emerge advanced behavior on a collective level. This is how ants,
termites and bees can build intricate nests and hives without any central entity
governing their actions, or with any of the individuals having any concept of their
place in the larger picture. They follow simple rules, modified by locally available
information, and from that emerges relatively complex behavior.

Applying the principles of swarm intelligence to robots is called swarm robotics.
Like its counterpart in nature, swarm robot systems consists of many (usually
small) individuals, each running a simple program, following simple rules, from
which a meaningful behavior emerges at the swarm level, rather than the indi-
vidual level.

The main appeals of using a swarm robot system is the following:

• Fault tolerance. A robotic swarm is highly fault tolerant by nature, since
the swarm consists of many identical individuals, should one fail, there will
still be a number of robots left that can perform the same task. Naturally,
this also means there is no single point of failure. Even if you were to
remove half of the robots in a swarm, it would still probably be able to
solve its task, though most likely at a lower efficiency.

1

2 CHAPTER 1. INTRODUCTION

• Cost. The nature of swarm intelligence, that complex collective behavior
can emerge from simple individuals means that the robots themselves can
be made very simple

• Scalability Scaling the system to tackle larger problems can be as simple
as adding more robots to the system

In a robot system like this, where cost and complexity needs to be kept to a
minimum, there is little room for relatively advanced hardware such as positioning
systems or cameras. Instead, we must rely on simple hardware, simple software,
and the power in numbers. Navigation in a robot of such limited hardware is
naturally then quite tricky. In an essentially ”blind” robot, in the sense of very
limited sensory capabilities, options are very limited.

Dead reckoning is a method of calculating one’s position by estimating the dis-
tance traveled from a previous, known position. Usually by measuring speed
and heading, and calculating the distance traveled, and in what directions. It is
how sailors navigated the seas for hundreds of years before modern positioning
systems.

In animal navigation, dead reckoning is usually known as path integration. Sev-
eral animals, like geese, mice, and ants have been shown to use path integration
in order to find their way home. The instances I will focus on are certain species
of desert ants who use the sun as a compass and measures their distance traveled
in order to find their way back to the nest, as well as how bees not only can find
their way back to a place they have been, but also communicate this location to
other bees through dance.

In this report I take inspiration from these social insects, and design a simple, low-
tech method of navigation suitable for a swarm of robots. I have no ambitions
of making a system that is pinpoint accurate. In fact, my aim is to make a
method that is at the very least better than no navigation, i.e. random search.
In which case it only needs to be accurate enough to point the robots in the
general direction of their target, and in that way narrowing down the area in
which they’ll need to search. I wish to examine the possibility of using such a
system in a cooperative task, in this case an object retrieval task.

1.2 Goals and Research Questions

The questions I want to answer in this report are the following:

• Can a robot navigate sufficiently accurate over short distances using meth-
ods inspired by path integration in insects?

1.3. THESIS STRUCTURE 3

• Can the accuracy and/or efficiency be improved by using communication
between many robots in a swarm?

In the above question, ”sufficiently accurate” means accurate enough to solve the
task at hand. E.g. if the task is to move a certain distance, then return home,
sufficiently accurate would be to come within the radius necessary to detect home,
or at the very least, narrow down the search area.

By ”efficiency” I mean compared to a random search for the target, do the robots
use less time searching for the target on average.

1.3 Thesis Structure

In this report I will first define and explain the concepts material I will be using
in my report in chapter 2. In chapter 3 I will discuss the architecture and im-
plementation of my system. In chapter 4 I will describe the experiments I want
to perform and their results, and finally, in chapter 5, I will discuss and evaluate
the results of these experiments.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory and
Motivation

2.1 The ChIRP robot

The ChIRP robot[1][2] is a robot that was designed and built here at NTNU by
students, including myself, as a specialization project during the fall of 2012. It
was designed to be a lower-cost alternative to the robots used here for swarm
experiments and education.

It is a small, puck-shaped robot using designed to be as cheap as possible, while
still being useful for use in swarm research. The ChIRP robot was designed with
the following five core requirements in mind:

• Low cost. A low cost is very important when dealing with swarm robots.
With swarm experiments requiring many tens or even hundreds of robots,
using more fleshed out robots can quickly become prohibitively expensive.

• Low complexity. Similarly to the above, when dealing with so many
robots, it is important that each one is easy to build, assemble, use and
maintain. The ChIRP robot can be soldered and assembled by hand, and
has a simple library that gives access to its basic functionality.

• Small Size. The robot needs to me reasonably sized to allow many of
them to work in the same space.

5

6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

• Basic capabilities built in. In it’s most basic configuration (no attach-
ments), the robot

• Expandability . The core functionality of the robot can be enough for
many kinds of experiments. However, we wanted the robot to be as flex-
ible as possible. The robot therefore need some way to attach additional
hardware.

Figure 2.1: The ChIRP Robot

The Robot is made up of several parts. There is a sensor board (the top board,
as seen in figure 2.1) which contains the eight pairs of infrared emitters and
detectors. These are used for obstacle detection, infrared detection, and inter-
robot communication. Attached to the sensor board is a motor board, containing
the hardware that controls the motors. The motors are very standard geared
stepper motors, with a resolution of 512 steps per revolution. Finally, there’s the
battery and the battery charger/booster circuit, which powers the robot. All the
components are held together by a plastic, 3D-printed chassis.

There are in total four micro-controllers on the robot. The main micro-controller,
the one executing the main program controlling the robot, is an Arduino Micro
(which I will refer to as ”Arduino” throughout this report). The rest of the micro-
controllers are ATtiny84s (which i will refer to as ”ATtiny”). Two of the ATtinys
control one half of the sensors each. They are responsible for measuring distances,
communication, and everything else that the sensors need to do. The last ATtiny
is on the motor board, controlling both the motors. All of the micro-controllers
are attached to the same I2C bus. In this way, the Arduino can communicate with
and control the ATtinys, by fetching sensor data and setting the wheel speeds,

2.2. PATH INTEGRATION 7

for example.

To meet the first two requirement, the low cost and complexity, we designed the
robot to require as simple components as possible. There are no advanced hard-
ware like cameras for example, and thus no need for a sophisticated processor.
The Arduino is a relatively low cost microprocessor, that, while not very pow-
erful, is very flexible in its applications. Fortunately, in swarm robotics, there
are no requirements for large computations, so these components does the job
well.

Finally, to meet the expandability requirement, we designed several ways to at-
tach additional hardware to the robot. Two sets of pins on the top expose the I2C
bus, allowing attachment of other I2C compatible hardware, such as bluetooth,
an accelerometer, a compass, etc. In addition, the pins of the main Arduino
micro-controller Are also exposed on the top board, allowing attachment of sim-
pler hardware that can interface directly with the micro-controller, such as LEDs,
ambient light sensors, etc. The robot also has tabs on along the sides of the chas-
sis, which allows attachment of larger components, like for example a gripper
arm.

To make the robot as easy to use as possible, there is a complete library of code
for each of the micro-controllers that allow the user access to the basic features
of the robot, as well as an interface to ease the development of additions to the
robot. This library, as well as other resources, are available at the ChIRP web
site[3].

The end result is a robot that, while very simple, can perform the basic require-
ments for many swarm research projects just as well as its more advanced and
expensive counterparts.

2.2 Path integration

Many animals have the ability to navigate very accurately, even over huge dis-
tances. Migratory birds regularly migrate thousands of kilometers to and from
their breeding grounds. All without any maps or instruments. Animals use
many different techniques in order to navigate, such as the earths magnetic field,
landmarks, the sun and even odour.

I will focus primarily on how bees and desert ants navigate. Bees and ants can use
both the sun and the polarization of the light in the sky as a compass[5]. It is not
completely understood exactly how desert ants measure their distance traveled[6],

8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

but flying bees seem to measure their distance by using optical flow[7](that is,
they see how fast they are moving compared to the ground).

With these tools to measure both heading and distance traveled, these ants and
bees use a form of vector navigation to find their way back to the nest[4]. The
insect then use a kind of accumulator to record their position relative to the
nest. This can be modeled like a coordinate system with the origin at the nest.
One model of the accumulator has the insects continually update their position
relative to the nest as they travel. To return to the nest, they would then have
to travel towards the origin of the coordinate system again.

This is the model I will base my implementation on, as it is the most straight
forward one. Other models allow certain insects to return by the same path they
came by ”resetting” their position and ”flipping” their compass, but this model
is not that useful in my case.

2.3 Other methods of navigation in swarm robotics

There have been many different approaches to the problem of navigation in a
swarm of robots.

One of them is based on the concept of trophallaxis[8]. Trophallaxis in insects is
mouth-to-mouth feeding. Given an area with a ”nest” and a food source, robots
can use this technique to find a path from the nest to the food source. It works
in the following way: each robot keeps track of its ”energy” level. When a robot
finds the food source, it will fill up its energy level and then try to find the way
back. When the robot travels it expends energy, meaning the further away from
the food source, the less energy it will have left.

When the robot meets another, it can then ”feed” the other robot, sharing its
energy. A robot can use this to navigate towards the food source, if that robot
then finds another robot with a higher energy level, it will know it is going in
the right direction. This essentially creates an energy gradient in the arena, and
robots can find the target by following the rising levels of energy, and then back
by following the falling energy levels.

Another method I looked at was having the robots themselves form the path
between two points (the ”nest” and ”prey”)[9]. When a robot finds the nest, the
robot waits there. When another robot finds the first robot, it will ”attach” to
it, by waiting next to it at the end of its sensory range. Other robots can then
attach to the outer robot, and a chain is formed.

2.4. MOTIVATION 9

In the beginning, several different chains will extend from the nest in random
directions. Robots at the end of a chain has a chance to abort and resume
wandering, to avoid that a chain ends up in a dead end. Eventually one of the
chains will hit the prey, and a chain between nest and prey is formed. The other
robots can then follow the chain to the prey and back.

For the box pushing task, my work will build primarily on a master’s thesis by
NTNU students Jannik Berg and Camilla Haukenes Karud from 2011[10], but
I’ve also looked at earlier work by Gross and Dorigo[11] as well as Kube and
Bonabeau[12].

2.4 Motivation

The obvious, and biggest drawback with dead reckoning is how errors will accu-
mulate while traveling, causing the accuracy to rapidly decline. What I want to
examine in this report is whether dead reckoning can be used to navigate sim-
ple robots accurately enough over relatively short range. And also whether the
inaccuracies inherent in dead reckoning navigation can be alleviating by commu-
nicating between robots. I don’t expect to be able to navigate over long ranges
like this, but for example using a swarm of robots to explore or search in an area,
and the return home, like the desert ant does. Or sharing location information
with other robots, limiting their search area, like the bee does.

There are three main reasons why I think adding communications between robots
in this task may improve the system, which I want to examine in this report:

• Spread of information. I hope to see landmark information spread within
the swarm faster than it would if each robot were to be required to discover
each landmark for itself

• Failure detection. If a robot receives conflicting reports from several
other robots, it can assume that it is off course, and can then reset and
restart

• Error correction. If the robot receives other information that deviates
from its own, but agree with each other, the robot can possibly use this to
correct its own information.

10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Chapter 3

Architecture

In this project, I will use the ChIRP robot described in 2.1. I will use the ChIRP
library that I helped develop in an earlier project as a base. I will be using an
earlier revision of the software (revision 109), as it is the one I am most familiar
with, and because the current revisions are still under active development.

In order to simplify the implementation of the experiments below, I will imple-
ment a number of atomic sub-tasks, which can be combined and used to define
the behaviors needed for each of the experiments. These sub-tasks are described
in detail in this section.

3.1 Maintaining vector

In order to determine determine the direction and distance to the target or home
relative to itself, each robot needs to maintain a vector (i.e. both distance and
angle) pointing to the target. Whenever the robot moves or turns, it needs to
recalculate this vector.

In order to simplify these calculations while the robot needs to maintain a vector,
it will only move in discrete movements, i.e. it will either turn or move, not both
at simultaneously.

11

12 CHAPTER 3. ARCHITECTURE

3.1.1 Implementation

In practice, this is not too complicated. It works by keeping track of positions
relative to the robot’s starting position and heading. It is essentially a coordinate
system with it’s origin at the robots starting position, with its X-axis pointing in
the direction the robot is initially facing.

Figure 3.1: The coordinate system with origin at the robot’s starting point, and
the x-axis pointing in the direction of the starting heading.

Every time the robot has moved, it will update its position using based on its cur-
rent heading and the distance it traveled. This is achieves using basic trigonom-
etry:

x = x + StepsTravelled ∗ cos(CurrentHeading)
y = y + StepsTravelled ∗ sin(CurrentHeading)

Additionally, every time the robot turns, it simply updates the heading with
the amount it has turned. So, if the robot moves 1000 steps directly ahead
from its starting position, its new internal position is then [1000, 0]. If the robot
then turns 90 degrees and moves 500 more steps, its internal position will be
[1000, 500].

To make the robot accurately rotate so that its internal heading matches the real
one, I measured the wheel diameter and the distance between the middle of the
wheels. To make the wheel measurement as accurate as possible , I measured the
wheels at several points and used the average, in case of uneven wheels. I used

3.2. SEARCHING 13

this to calculate the number of steps needed to rotate the robot fully:

StepsPerTurn = StepsPerRevolution ∗ RobotCircumference
WheelCircumference

where StepsPerTurn is defined in the motor specifications. In addition, to improve
accuracy by reducing wheel slippage both when turning and moving, the motors
accelerate and decelerate gradually every time the motors change speeds.

If the robot detects an obstacle it will stop and poll the motor drivers for the num-
ber of steps actually taken, and use that to update the position before changing
direction away from the obstacle and moving on.

Since the robot will only move in straight lines, and turn while in place, no more
advanced calculations are needed, and the only thing the robot needs to keep
track of is its current heading and position.

With this very basic framework at the bottom, I can then use this to record
positions of landmarks (nest, food source, etc) and calculate the path from the
current position to any of the recorded landmarks.

Of course, the robot in its basic configuration has no sensors to detect external
influences on it, such as a compass or accelerometer. This means that this system
is dependent on that each of the robots movements are initiated by itself. If
the robot is displaced or rotated significantly by an outside force, by colliding
with another robot, for example, any positioning, heading and landmark data is
instantly rendered useless.

Two things are therefore vitally important for a system like this to work:

• Obstacle avoidance
The robot needs to be able to detect obstacles and especially other robots
well before making contact with them.

• Failure detection
The robot needs to be able to determine whether it has come off course,
either by arriving at a target position without finding a target, or by receiv-
ing conflicting data from several other robots, at which point it will reset
position, heading and landmark data and start from scratch.

3.2 Searching

The searching phase is simply a random walk. From it’s starting position, the
robot will alternate between moving a random distance and turning a random
distance.

14 CHAPTER 3. ARCHITECTURE

3.2.1 Implementation

As it is implemented now, the robot simply turns in a random direction by a
random factor in the range between 60 and 180 degrees. It then moves 1000
steps, before it repeats the process.

Alternatively, but not implemented, if the robot is not maintaining a vector at
the time (before it has found any landmarks), the random walk can be achieved
by simply randomly altering the ratio between the wheel speeds, giving the robot
a smooth random walk. Without having to stop before turning, this is probably
more efficient.

3.3 Communicating (sending)

In order to achieve communication between the robots using the built in IR-LEDs,
I wanted a simple but sturdy communications protocol with very little overhead
and other caveats. This because the robots preferably need to communicate while
on the move with other robots that might also be moving, so communication needs
to be swift, with little overhead.

While it is possible to transmit data explicitly over IR, which I did consider, it
requires a relatively complex communications protocol. In our previous project
with these robots, we did briefly experiment with data transmission between
robots. Robots need to discover each other, then stop and align to ensure a
steady signal, then establish a connection using a simplified TCP-like protocol.
Messages need to be error-checked and acknowledged or retransmitted, before
the robots can disconnect and continue.

In my case I want to be able to continually broadcast a simple message to any
robots that may or may not be nearby. In this use case, the data transmis-
sion protocol above is very much overkill. Instead, I will use a much simpler
method.

Communication between robots is achieved by simply pulsing the IR-LEDs. By
varying the pulse duration and duty cycle of the pulse wave, the robot can com-
municate different messages to the recipient robot. To achieve this, different pulse
widths correspond to different, pre-programmed messages in the recipient. For
example, a pulse width of 40ms of can correspond to message A, while a pulse
width of 50ms can correspond to message B, and so on. In addition, the time
between pulses can be used in the exact same manner, so two messages can be
communicated at the same time, as seen in fig 3.2.

3.3. COMMUNICATING (SENDING) 15

Figure 3.2: A pulse wave with a pulse duration of 40ms, and time between pulses
of 60ms

Essentially, what this does is allow the sending of two integers, in the form of the
duration of the HIGH and LOW phases of the pulse, very quickly between two
robots. These two integers must then be interpreted by the receiving robot. In
these experiments, I want to use this method to communicate very rough ”coordi-
nates” between robots. A basic example is the following: A robot has found some
landmark and wants to share its location with other robots in the swarm. The
robot then determines which IR-LED is currently pointing towards the landmark
and starts pulsing that LED using a pulse-with that is pre-programmed to mean
”towards”. Also, the LED on the opposite side pulses with a different pulse-width,
sending the message ”away from”. This can be seen in figure 3.3.

Of course, the direction alone is not enough if the recipient robot wants hold and
maintain this new vector. It also needs the distance, otherwise the direction will
be displaced whenever the robot moves (figure 3.4). This is where the second
transmitted number comes in. Instead of having certain ranges of pulse-withs
correspond with certain messages, in this case I want to use the raw number
itself to roughly communicate the distance to the target. If each millisecond of
pulse-with for example corresponds with 100 steps of distance, it will give the
estimate a resolution of roughly 2.6cm.

When deciding on the resolution of the distance, it is important to keep in that
since there is a number to transmit directly corresponds with the pulse-with of
the signal, it will naturally take longer to transmit a larger number. In my case,
the arena is smaller than about 1.7m meters at its widest point, so the pulse-
width will never be more that roughly 65ms. Adding 40-60ms for the other part
of the message, it means that in the worst case, it will take roughly 120ms to
transmit the message.

16 CHAPTER 3. ARCHITECTURE

Figure 3.3: Black arrows denote the robot’s heading. Robot A has found a
landmark (square) and is pulsing its IR-LEDs both towards and away from the
landmark at using different pulse-widths. Robot B receives the ”away from”-
signal through its left receiver, and can using that calculate the direction to the
landmark (dashed line arrow).

Figure 3.4: Robot B moves without having any distance data. Vector cannot
be corrected and remains pointing in the same direction relative to the robot’s
heading, but no longer pointing towards the target.

3.4. COMMUNICATING (RECEIVING) 17

3.3.1 Implementation

As it is now, only the most basic functionality is implemented for testing purposes.
Only the ATtinys that control the sensors have been programmed to emit a hard-
coded type of signal as described above.

What’s missing is the interface between the Arduino main processor running
the main program and the sensor controllers. Which would allow any program to
change and control the message being sent through each of the eight LEDs.

3.4 Communicating (receiving)

This task takes care of measuring the pulse width of incoming IR-light in all
directions, filtering, interpreting and translating the results. This part is split
into two parts, one running on the main Arduino itself (collecting and using the
results) and one on the sensor board ATtinys (measuring, filtering and storing
the results).

3.4.1 Measure

Measuring the pulse is done by the sensor-driver ATtinys. They continually mea-
sure incoming light in each of the I-receivers. The incoming signal is interpreted
as either HIGH or LOW depending on if the light received is over a certain thresh-
old. The last state for each of the receivers are recorded, and if the state differs
the next time the light is measured (i.e. a change has occurred), one of several
things happens depending on the change, which can be seen in figure 3.5.

Figure 3.5: When the pulse changes from LOW to HIGH (1), a time stamp is
recorded. When the pulse changes from HIGH to LOW (2) the time difference is
calculated and stored. Additionally another time stamp is stored for calculating
the duration of the LOW pulse. When the pulse changes from LOW to HIGH
again (3), that time difference is also stored, and the cycle begins from the top.

18 CHAPTER 3. ARCHITECTURE

Pulse width range (ms) Message
25 - 34 towards
35 - 44 away from

Table 3.1: Pre programmed messages example

The last measured times are stored for each of the IR-receivers, and can then be
retrieved by the main program running on the Arduino.

3.4.2 Filter

In order to reduce the impact of noise from other IR sources (other robots, pri-
marily), some sort of filtering should be implemented. I will use a running median
to eliminate outlying measurements. This means I will store the last 3-5 mea-
surements and then calculate the median each time the Arduino requests the
results. To help calculate the running median I am using a slightly modified
public domain library[13].

Of course, this also means several measurements are required before the Arduino
can fetch the results, adding a slight delay. As long as the length of transmis-
sions are kept relatively short, and the number of value stored to calculate the
median is not too much, this will still keep the transmission time in the sub-500ms
range.

3.4.3 Interpret

When the Arduino itself has received the results from the ATtinys, it needs to
interpret them in order to use them. To do this, the program needs a list of
pre-programmed messages, and pulse-widths that correspond to them. To deal
with inaccuracies in the measurements, each message should have a range of
pulse-widths that correspond to them. A simple example can be seen in table
3.1

If for example a robot detects a signal in its front facing IR-detector, and measures
it to be 41ms HIGH time and 15ms LOW time. It can then look up in the table
and see that it is a signal denoting that it’s going away from the target. Since it
receives the signal in it’s front facing IR-detector, it can conclude that the target
lies in front of it. From the 15ms LOW time, it can calculate a distance of 1500
steps (about 39cm) to the target. See figure 3.6.

3.4. COMMUNICATING (RECEIVING) 19

Figure 3.6: Directions of messages

3.4.4 Translate

Of course, I need to take into account the heading of the robot when it receives
the message. If the robot is pointing towards the signal, like in the example in
figure 3.6, no translation is required. However if the robot is pointing in any other
direction when it receives the signal, it needs to translate it, so it makes sense
in its coordinate system. If, for example the recipient robot receives the signal
through its left IR-detector, like in figure 3.7, it will know that the sending robot’s
heading is 90 degrees to the left compared to its own heading. the received vector
must therefore be translated 90 degrees to the right before it is stored.

3.4.5 Implementation

On the ATtinys, I have implemented the measuring and filtering systems as de-
scribed above. The actual measuring is performed repeatedly in the loop section
of the program. Filtering is performed when the Arduino requests the data. For
filtering I used a running median using 4 stored values.

On the Arduino side I have only implemented requesting and outputting the data
from the ATtinys for testing purposes, for reasons I will go into more detail with
in section 4.3.

20 CHAPTER 3. ARCHITECTURE

Figure 3.7: Without translation, the robot will think the target is in front of it.

3.5 Avoiding collisions

In order to maintain an accurate vector, avoiding collisions with obstacles or
other robots is critical. To detect obstacles, the robots will periodically use their
IR-sensors. Obstacle detection works by simply flashing the lights and measuring
the amount of light that is reflected back. If the returned light is above a certain
threshold, an obstacle is detected.

Something which is important to keep in mind is that the sensor board and IR-
LEDs that are needed to perform this obstacle detection is also needed for the
communication. Since I want the robots to move while doing communication, It
will also need to be running this obstacle detection during communication.

While it would probably be possible to run the obstacle detection in ”parallel”,
and filter out the extra noise caused by the extra flashes on the recipient side,
there is a more elegant solution. Since the obstacle detection only requires that
the LEDs are on periodically, I can measure the light returned during a pulse
while communicating instead. So while the pulse is high, measure any returned
light to detect obstacles.

Unfortunately, detecting other robots is not quite that simple. Because of the
semi-transparent chassis of the robots, they do not reflect light very well. To
detect other robots, the robots can instead try to detect the signals emitted by
the other robots since they will also periodically emit light to detect obstacles.

3.6. WAITING 21

Either that or attach reflective surfaces to the robots.

3.5.1 Implementation

I have only implemented the basic obstacle avoidance, simply turning in a random
direction whenever an obstacle detected. But I have not implemented the more
advanced features, like obstacle detection during communication.

3.6 Waiting

In some of the experiments I have considered having the robots wait in place
for signals from other robots before they continue. This behaviour in itself is
rather simple, however it is important to avoid stagnation, so I do not end up in
situations where all robots are waiting.

To avoid stagnation I will implement a rule that the robots will not wait indef-
initely. They will have a random chance to abort waiting and search for the
target every few seconds. This chance can increase over time. This can be used
to adjust how many robots should be out searching while the others wait, by
adjusting the chance to abort waiting.

This sub-task has not been implemented.

3.7 Approaching the box

In one of my experiments I plan to use a square IR-light emitting box, which the
robots will need to approach from the right angle. This box is described in more
detail in chapter 4.

If the box has been detected, but the robot is on the wrong side of the box, it will
need to find a way to move around and approach it from the right angle. One
way to do this is circling around the box at the ”edge” of the emitted light, by
attempting to keep a distance to the box while moving around it in a counter-
clockwise direction.

Can use code similar to line following robots, i.e. continually measuring the
light from the box while correcting its direction. To maintain the vector while
doing this, the robot should make periodic measurements and discrete move-
ments.

22 CHAPTER 3. ARCHITECTURE

This sub-task has not been implemented.

3.8 Pushing

Related to the previous task, when the robot is aligned correctly in relation to
the box, the robot should push. This sub-task also needs stagnation avoidance,
and can use a similar technique as was used in the waiting sub-task.

This sub-task has not been implemented.

Chapter 4

Experiments and Results

In this section, I will detail each of the experiments I wish to perform, and how
I intend to perform them.

In the following experiments, I will be using one or more of the following compo-
nents:

• ChIRP Robot. This is the ChIRP robot as described in section 2.1.

• Light shield. An optional add on to the ChIRp robot that attaches to the
top of the robot and contains 8 Light Emitting Diodes as well as 8 light
sensors that can detect differences in ambient light. For example from an
overhead lamp.

• Arena. 121.5 cm by 121.5 cm square walled arena. It has a smooth surface
surrounded by gray walls

• Food source or ”box”. 25cm by 25cm square box made of clear plastic.
Inside are 12 IR-diodes, 3 on each side, pointing outwards through the
box. The diodes emit a constant light that can be sensed by nearby robots.
Depending on the detection threshold in the robots, the range of detection
is around 30cm from each wall of the box.

• Target. This is either a smaller IR-light emitting target that the robots
can sense using their IR-receivers, or an overhead light source that the
robots can detect using the light shield. These marks points of interest in
the arena, such as nest, food source or similar.

23

24 CHAPTER 4. EXPERIMENTS AND RESULTS

4.1 Experimental Plan

4.1.1 Accuracy, accumulated errors (blind)

Using:

• 1 robot

• Arena

This experiment will measure the accuracy of a single robot running blind (i.e.
using only its own distance measures, and obstacle detectors to avoid obstacles).
The robot will run a set distance, maneuvering a set amount of times along the
way, before attempting to return to its starting point.

The intention of this experiment is to measure the errors accumulated along the
way, by measuring its distance from the starting point when it finishes.

By changing the following variables I can determine how each influence the final
result:

• Total distance. The distance traveled by the robot.

• Total turn distance. The total distance turned by the robot.

• Number of maneuvers. The number of times the robot stops and turns
while traveling

4.1.2 Communication

Using:

• 2 robots

This experiment will test the performance of the simple communications protocol
described in section 3.3. Primarily to examine the following properties of the
protocol:

• Reliability of interpretation of incoming signals. The robot needs to
somewhat reliably differentiate between the incoming frequencies in order
to use the information. This means I need to measure the following:

• Accuracy. The amount of times the interpreted message matches the sent
message.

4.1. EXPERIMENTAL PLAN 25

• Number of different messages. How does the number of different mes-
sages (or total width of the pulses bands) impact accuracy

• Tolerance for noise. How does noise from external sources or other robots
impact accuracy.

• Errors during communication. How accurate is the actual information
transferred. What is the worst case scenario in difference between sent
angle vs received angle.

4.1.3 Communication + Navigation

Using:

• 2+ robots

• Arena

• 2 Targets

Robots will start within one target, then randomly traverse the arena in search
of the other target. When a robot finds the target, it will attempt to travel
back home while broadcasting the rough direction of the target to any robot that
might wander into it’s range. On arrival at the home node, it will continue back
and forth between the targets while broadcasting.

Alternatively, some robots can wait at the ”nest” (home node) while some robots
search the area for the target. They will wait there until one of the scout robots
return, analogous to how bees communicate possible nest locations with other
bees.

The main object of this test is to compare the efficiency of the system with
and without using communication. Thus several runs will have to be made in
each case, and the efficiency of the system will be measured in the following
ways.

• Average time to find the target. My hypothesis is that this time will
decrease with the use of communication, as it will in theory limit the search
area of the robots.

• Travel time between the targets.

• Failure rate. I.e time spent in a ”failed” state, which means having lost
the targets and/or time spend with erroneous information.

26 CHAPTER 4. EXPERIMENTS AND RESULTS

4.1.4 Cooperative box pushing

Using:

• 2+ robots

• Arena

• Box

• Target

In this experiment the robots will use all of the defined sub-tasks. The object of
the test is to use the navigation to solve a cooperative task, which in this case
is to move an object (box) to a target location (nest). The box is too heavy for
one robot to move, and thus requires cooperation.

In this experiment all robots start at the ”nest”. In its simplest incarnation, all
robots randomly traverse the arena in search of the box. When a robot finds the
box, it will navigate to the side of the box opposite of the target and attempt to
push it towards the target. Like in the previous experiment, a variation includes
one where most of the robots will wait at the nest, occasionally sending out
”scouts” to find the box and report back. Stagnation detection is important here
to avoid waiting or pushing indefinitely.

In order to cope with the many inaccuracies, this experiment can also be at-
tempted to be done iteratively by the robots, in the sense that they will periodi-
cally abort and reset. So if the robots are pushing the box in the wrong direction,
or even the right direction, they will abort and restart. My hypothesis is that
this may allow the robots to make corrections if off course, and gradually push
the box towards the target.

Again, the main object of the experiment is to compare the system with and
without using communication. This also requires measures of efficiency of the
total system, which can be done in the following ways:

• Time to achieve the goal. Which in this case is to push the box to the
target location.

• Time to find the box.

• Failure rate. As with the previous experiment.

4.2. EXPERIMENTAL RESULTS 27

4.2 Experimental Results

4.2.1 Accuracy, accumulated errors (blind)

To measure the errors accumulated in this experiment, I set up the arena with
a paper target denoting the starting point of the robot. In this target I marked
the center of the robot (middle of the wheels) and wheel starting positions, so
that the robot started in the same position each time.

I then set the parameters I defined in section 4.1.1 and placed the robot in the
center of the target. The robot then made its maneuvers and eventually returning
to the paper target, where I marked its new wheel positions. I repeated this 10
times for each set of parameters.

I then took the paper target and marked the center of each of the sets of wheel
positions. Then I measured the distance from each of these center positions to
the center position of the starting point. A sample of this can be seen in figure
4.1.

Figure 4.1: Sample of the results from one of the experiments. Shows the spread
of final ending points (center of final wheel positions, marked by +) and the
central starting point (marked by solid dot). The other lines are ending wheel
positions

The results from these experiments are summarized in table 4.1

28 CHAPTER 4. EXPERIMENTS AND RESULTS

Maneuvers Steps /
Maneuver

Rotation /
Maneuver

Total dis-
tance (cm)

Avg Error
(cm)

Median
Error (cm)

4 1000 120 103.9 1.4907 1.5
8 1000 120 207.9 1.667 1.67
12 1000 120 311.7 8.19 7.68

Table 4.1: Error measurements

4.3 Communication

In this experiment I was supposed to evaluate the feasibility of my communica-
tions protocol for use with my later two experiments. To do this I outlined a
number of possible issues in section 4.1.2 that I wanted to examine, which I will
go through stepwise here.

4.3.1 Accuracy

Accuracy in this sense mean how often the senders intended message matches
the recipients interpreted message. I.e how often the measured pulse width falls
within the window corresponding to the message intended by the sender. This
depends on the accuracy of the measurements.

I measured the accuracy by transmitting the same message roughly 5000 times
from one robot to another, using different pulse widths and outputted the pulse
width measured by the recipient robot. I took this data and counted the number
of occurrences of each of the measured pulse widths.

In the first test I set the targets high, pulsing 333ms HIGH, then 300ms LOW.
The results can be seen in figures 4.2 and 4.3.

In the second test I set the targets in the lower range: pulsing 30ms HIGH and
40ms LOW. These results can be seen in figures 4.4 and 4.5.

There are some odd results in these tests. Especially in the latter two cases, where
the target value was outpaced by its neighbors. However, all of the measurements
fell within a window of ± 3ms from the target value. This is sufficiently accurate
to hit the window I defined in the communication example in section 3.1.1 of ±
5ms.

4.3. COMMUNICATION 29

Figure 4.2: Test results from the first test. This is the HIGH portion of the
signal. the target was 333ms. These are all the measurements, i.e. there were no
occurrences of values outside of the chart.

Figure 4.3: Test results from the first test. This is the LOW portion of the signal.
the target was 300ms. Again, These are all the measurements, i.e. there were no
occurrences of values outside of the chart

4.3.2 Number of possible messages

The number of possible messages is limited by the accuracy of the pulse width
measurements. Based on the accuracy measured above, I can assume that I will

30 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.4: Test results from the second test. This is the HIGH portion of the
signal. the target was 30ms. These are all the measurements, i.e. there were no
occurrences of values outside of the chart.

Figure 4.5: Test results from the second test. This is the LOW portion of the
signal. the target was 40ms. Again, These are all the measurements, i.e.there
were no occurrences of values outside of the chart

need a window of at least 7ms per pre-defined message (target ± 3ms).

In theory you can have a pulse width as long as you like, and thus also have as

4.3. COMMUNICATION 31

many possible messages as you like, but, of course, a longer pulse-width means it
will take longer to transmit the message. So it’s preferable to keep the maximum
pulse-width as short as possible. In my case, I considered using at most 8 different
messages (one for each of the IR-LEDs. In that example I would need at most
a 7ms*8 = 56ms pulse width, which is an entirely reasonable time frame in this
context.

4.3.3 Errors due to noise

Unfortunately, due to a lack of robots available to me when I was testing this, I
did not have an opportunity to test this properly.

4.3.4 Maximum error during communication

This is where my biggest problems showed itself during testing. Of course, when
transmitting these directional messages, there is no guarantee that the robots
are perfectly aligned, i.e. the sending robot is pointing directly into the recipient
robot. I had considered this problem, but this system was never intended as a
particularly accurate system. It was enough that the robots could point each
other in the general direction of the target, so the robots could at least start
searching in the right area.

To calculate the maximum error I measured both the spread of the IR-light from
the diodes, as well as the field of view (i.e. the maximum angle from which it
can receive signals) of the IR-detector. The spread from the IR-light I measured
to be ± 12 degrees around the center (roughly 25 degrees total), which is within
reasonable limits. However, when measuring the field of view of the IR-sensor,
I found it to be about ± 60 degrees around the center (figure 4.6), which is too
large spread to be useful for navigation.

This amount of spread makes the worst case scenario not very useful for naviga-
tion, as seen in figure 4.7

I tried several solutions to reduce this problem. One was to make some sort
of blinders out of paper, to make a tunnel around each of the IR-receivers to
narrow down the angle at which it could receive signals. However, for one this
worked very poorly and irregularly, but it was also very finicky to do, and goes
against one of the main principles of the ChIRP robot, namely ease of assembly
and use. I discarded this idea after testing it briefly and noting little to no
improvement.

32 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.6: IR-LEDs spread (A) and IR-receiver field of view (B)

Figure 4.7: Worst case scenario. Receiving the signal at the maximum possible
angle. Dashed lines represent the direction each robot calculates the object is in.

Another solution I tried was to use multiple sensors detect whether the signal was
coming in from a wide angle. If the exact same incoming signal hit more than one
neighboring IR-receiver, you could safely assume the signal was coming in from
a wide angle and could thus be discarded. However, the design of the chassis, as
well as the spread of the IR-LEDs makes this solution less useful. The chassis
obscures some of the detectors from wide angles, meaning that if the light hits
the neighboring detectors at a wide angle, the obscured detectors won’t detect it.
In addition, the spread of the IR-LEDS means that from further away, the light
is going to hit more than one detector, even if it shines directly into one.

In the end I could not find a satisfactory solution to this problem without switch-
ing out the IR-sensors to ones with narrower fields of view. Because of this I could
not complete the final two experiments.

Chapter 5

Evaluation and
Conclusion

5.1 Evaluation and Discussion

Unfortunately, I never got to test my complete system properly. However, I did
learn several things during this project.

For one, I was surprised at how accurate the bare path integration part worked.
Inaccuracies of between than 1.5cm and 8cm after traveling blind up to 3 meters
was better than I had expected, and more than accurate enough for my purposes.
Of course, it is important to keep in mind the environment in which these tests
were performed. In an entirely flat arena, devoid of anything the robot could get
stuck on or collide with. It is clear that this most basic method would not work
very well on rough terrain. At least not without additional sensors such as an
accelerometer and compass to make corrections along the way. Of course, in my
case it is a bit of a moot point, as the ChIRP robot is not capable of traversing
rough terrain to begin with.

This method can still be useful in indoors environments, also in ones that are
much larger than the arena I used.

As for the communication, my method of directional communication obviously
did not work out, which is disappointing, because it is because of a problem I
should have seen much earlier than I did. Still, I think the underlying protocol
can be useful in other applications where you would need a quick method to

33

34 CHAPTER 5. EVALUATION AND CONCLUSION

communicate pre-defined messages or small amounts of data between robots, with
the condition that the data sent does not need to be completely accurate.

5.2 Conclusion

Although I never did find out what I set out to find out in this project, I still
learned a few useful things.

First, path integration/dead reckoning is not as inaccurate as i first assumed,
even running blind. I think it is feasible to use this in the future in other swarm
applications.

Second, as mentioned above, while my communications protocol failed to work as
intended in my project, I think the idea can still work in other applications where
the direction of the incoming transmission is not important. As a way to quickly
broadcast a message and a small amount of data to neighboring robots with very
little overhead, I imagine it can be very useful in other swarm applications.

5.3 Future Work

There is of course a lot of work that is possible to do on this project.

First and most importantly, is to find a workable solution to communicate direc-
tions between robots. One solution could be to use different IR-receivers with
narrower fields of view. Of course, this would mean replacing the ones on the
robot, which is not really feasible on the ChIRP robots.

Another possible solution would be to align the robots’ IR LEDs and receivers
before transmitting, by turning on a LED and then rotating slowly in place until
the robot finds the point at which the signal is the strongest. At which point
the two robots should be aligned to a sufficient degree. Thes means a significant
increase in overhead in the communications protocol, of course.

One of the biggest issues with this blind navigation, is how easily all the data
is rendered useless if the robot collides with or snags onto something. The best
way I think to alleviate this problem would be to attach a compass to the robot,
to make corrections whenever the robot is thrown off course.

Bibliography

[1] H̊avard Schei, Robert Versvik, Anders S Rye. CHIRP: A small, modular, low-
cost robot for swarm research and education. Specialization project, NTNU,
fall 2012

[2] Christian Skjetne, Pauline C Haddow, Anders S Rye, H̊avard Schei, Jean-
Marc Montanier . The ChIRP Robot: a Versatile Swarm Robot Platform. The
2nd International Conference on Robot Intelligence Technology and Applica-
tions 2013

[3] ChIRP website: http://chirp.idi.ntnu.no/

[4] Collett, Matthew, and Thomas S. Collett. How do insects use path integration
for their navigation?. Biological cybernetics 83.3 (2000): 245-259.

[5] Von Frisch, Karl. The dance language and orientation of bees. (1967).

[6] Ronacher, Bernhard, et al. Lateral optic flow does not influence distance esti-
mation in the desert ant Cataglyphis fortis. Journal of Experimental Biology
203.7 (2000): 1113-1121.

[7] Esch, Harald, and John Burns. Distance estimation by foraging honeybees.
Journal of Experimental Biology 199.1 (1996): 155-162.

[8] Schmickl, Thomas, and Karl Crailsheim. Trophallaxis within a robotic swarm:
bio-inspired communication among robots in a swarm. Autonomous Robots
25.1-2 (2008): 171-188.

[9] Nouyan, Shervin, and Marco Dorigo. Chain based path formation in swarms
of robots. Ant Colony Optimization and Swarm Intelligence. Springer Berlin
Heidelberg, 2006. 120-131.

[10] Jannik Berg, Camilla Haukenes Karud Swarm intelligence in bio-inspired
robotics. Master’s thesis, NTNU, 2011

35

36 BIBLIOGRAPHY

[11] Gross, Roderich, and Marco Dorigo. Towards group transport by swarms of
robots. International Journal of Bio-Inspired Computation 1.1 (2009): 1-13.

[12] Kube, C. Ronald, and Eric Bonabeau. Cooperative transport by ants and
robots. Robotics and autonomous systems 30.1 (2000): 85-101.

[13] robtillaart, A runningMedian Class for Arduino.
http://playground.arduino.cc/Main/RunningMedian

	Introduction
	Background and Motivation
	Goals and Research Questions
	Thesis Structure

	Background Theory and Motivation
	The ChIRP robot
	Path integration
	Other methods of navigation in swarm robotics
	Motivation

	Architecture
	Maintaining vector
	Implementation

	Searching
	Implementation

	Communicating (sending)
	Implementation

	Communicating (receiving)
	Measure
	Filter
	Interpret
	Translate
	Implementation

	Avoiding collisions
	Implementation

	Waiting
	Approaching the box
	Pushing

	Experiments and Results
	Experimental Plan
	Accuracy, accumulated errors (blind)
	Communication
	Communication + Navigation
	Cooperative box pushing

	Experimental Results
	Accuracy, accumulated errors (blind)

	Communication
	Accuracy
	Number of possible messages
	Errors due to noise
	Maximum error during communication

	Evaluation and Conclusion
	Evaluation and Discussion
	Conclusion
	Future Work

	Bibliography

