
Implementing a Bare-Metal Threading
Library for SHMAC

Håkon Opsvik Wikene

Master of Science in Computer Science

Supervisor: Magnus Jahre, IDI
Co-supervisor: Donn Morrison, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Problem Description

Current multi-core processors are constrained by energy. Consequently, it is not possible to
improve performance further without increasing energy efficiency. A promising option for
making increasingly energy efficient CMPs is to include processors with different capabilities.
This improvement in energy efficiency can then be used to increase performance or lower
energy consumption.

Currently, it is unclear how system software should be developed for heterogeneous multi-core
processors. A main challenge is that little heterogeneous hardware exists. It is possible to use
simulators, but their performance overhead is a significant limitation. An alternative strategy
that offers to achieve the best of both worlds is to leverage reconfigurable logic to instantiate
various heterogeneous computer architectures. These architectures are fast enough to be
useful for investigating systems software implementation strategies. At the same time, the
reconfigurable logic offers the flexibility to explore a large part of the heterogeneous processor
design space.

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) project aims to develop an
infrastructure for instantiating diverse heterogeneous architectures on FPGAs. A prototype
has already been developed, but an important remaining challenge is to evaluate the per-
formance of this prototype. Computers are normally evaluated with test programs called
benchmarks.

The task in this assignment is to implement a functional threading library with the intention
to support multi-threaded applications. If the student has sufficient time, a set of multi-
threaded benchmarks (such as PARSEC) that meet the hardware requirements of SHMAC
can be ported. Furthermore, as the process of setting up a working build environment for
SHMAC is currently both tedious and error-prone, the student should investigate possible
solutions to this problem in order to simplify the process and decrease overhead in new setups.
This may additionally include an automatic test suite framework for SHMAC to be used to
automatically test newly checked in code.

i

Abstract

For decades, Moore’s Law has stood as a symbol of the continued performance increases
achieved through technology scaling. While Moore’s observation has remained true for far
longer than Moore himself predicted, it now seems to be coming to an end. The move
to multi-core processors was motivated by thermal challenges, but is by no means a final
solution. Heterogeneous systems could potentially achieve far greater energy efficiency than
symmetric, multi-core architectures. SHMAC is an FPGA-based architecture that intends to
serve as a platform for exploring the inherent challenges of heterogeneous, single-ISA systems.

Since working with parallel applications on bare-metal platforms can be difficult, a higher
level of abstraction is often preferable. One such abstraction that is familiar to most de-
velopers is the POSIX Threads API. This thesis covers the implementation of a bare-metal
Pthreads library that provides both threading and several other synchronization primitives,
such as condition variables, mutexes and barriers. The implemented library is used to port
several benchmarks from the PARSEC suite; the results from these are presented both to
showcase the current performance of the platform and the capabilities of the Pthreads library.

As a result of the need to verify the correctness and performance of the implemented library,
the need for another tool arose: a profiler. Since none currently existed for SHMAC, one had
to be written from scratch. A fully functional and gprof -compatible profiler was developed.
The features, implementation details and usage of this profiler is described here as well.

Two other contributions to the SHMAC project were made as well. These were intended to
simplify the task of setting up a working development environment and the day-to-day work
with SHMAC, respectively. These are presented in separate reports.

ii

Sammdrag

I mange ti̊ar har Moore’s Lov st̊att som et symbol p̊a den kontinuerlige ytelsesøkningen som
har vært oppn̊add gjennom skalering av eksisterende teknologi. Til tross for at Moore’s Lov
har holdt lenger enn Moore selv hadde forutsett, er det n̊a grunn til å tro at denne utviklingen
g̊ar mot slutten. Overgangen til flerkjerneprosessorer var i hovedsak motivert av termiske
utfordringer, men er ingen endelig løsning p̊a problemet. Heterogene systemer har potensialet
til å oppn̊a langt høyere energieffektivitet enn symmetriske flerkjerneprosessorer kan.

SHMAC er en FPGA-basert arkitektur som har til hensikt å være en plattform for utforsking
av de mulige utfordringene som følger med heterogene, enkelt-instruksjonssett arkitekturer.

Siden det kan være utfordrende å jobbe med parallelle applikasjoner p̊a operativsystemløse
plattformer, kan et høyere abstraksjonsniv̊a ofte være å foretrekke. Et eksempel p̊a et
slikt abstraksjonsniv̊a er POSIX’ applikasjonsprogrammeringsgrensesnitt for tr̊ader. Denne
masteroppgaven omhandler implementasjonen av et operativsystemløst, POSIX-kompatibelt
tr̊adbibliotek som tilbyr b̊ade tr̊ading og flere andre velkjente synkroniseringsprimitiver. Det
implementerte biblioteket brukes deretter til å tilpasse flere eksisterende ytelsestester fra
PARSEC til SHMAC-plattformen. Resultatet av disse presenteres deretter, b̊ade for å demon-
strere ytelsen til plattformen og for å vise tr̊adbibliotekets kapabiliteter.

Behovet for å verifisere korrektheten og vurdere ytelsen til det implementerte biblioteket
gjorde det klart at et verktøy til trengtes: en profilerer. Siden det per dags dato ikke eksisterer
for SHMAC måtte en utvikles fra bunnen av. En fullt kapabel og gprof -kompatibel profilerer
ble utviklet. Implementasjonen og bruken av denne vil ogs̊a beskrives.

To ytterligere bidrag til SHMAC-prosjektet ble ogs̊a gjort. Hensikten bak disse var hen-
holdsvis å forenkle oppsettet av nye utviklingsmiljø og automatisere en del av det daglige
utviklingsarbeidet med SHMAC. Disse bidragene er presentert i to separate rapporter.

iii

Preface

This thesis concludes my Master of Science education in Computer Science at the Norwegian
University of Science and Technology (NTNU). The work was carried out in my 10th semester,
spring 2014, at the Department of Computer and Information Science under the supervision
of associate professors Magnus Jahre and Donn Morrison.

Acknowledgments

I would like to thank my main supervisor Magnus Jahre for giving me the opportunity to
participate in the SHMAC project, which has been both challenging and highly rewarding.
For his continuous support and feedback, co-supervisor Donn Morrison also deserves a special
thanks.

iv

Contents

Problem Description i

Abstract ii

Sammendrag (Norwegian Abstract) iii

Preface iv
Acknowledgments . iv

List of Figures viii

List of Tables ix

List of Listings x

List of Abbreviations xi

1 Introduction 2
1.1 The SHMAC Project . 3
1.2 Assignment Interpretation . 3
1.3 Contributions . 4
1.4 Thesis Organization . 5

2 Background 6
2.1 Processor Design: A Historical Perspective 6
2.2 Recent Steps Toward Heterogeneity . 9

2.2.1 Research Initiatives Into Heterogeneous Hardware 9
2.3 The SHMAC Project . 10

2.3.1 Hardware Platform . 11
2.3.2 Memory Space . 11
2.3.3 Cores and ISA . 12

2.4 A Brief History of Linux Schedulers . 13
2.4.1 The O(n) Scheduler . 14
2.4.2 The O(1) Scheduler . 15
2.4.3 CFS (The Completely Fair Scheduler) 16

2.5 Existing Threading Libraries . 17

v

CONTENTS vi

2.5.1 TinyThread . 17
2.5.2 POSIX Threads for embedded systems (PTE) 19

3 The SHMAC Scheduler 20
3.1 Overall Design . 20
3.2 Components In Detail . 21

3.2.1 Per-Core State . 23
3.2.2 The task struct Struct . 24
3.2.3 The sched entity Struct . 27
3.2.4 Priority Queues . 27
3.2.5 Global PID Hash . 28
3.2.6 Task Blocking . 29
3.2.7 Task Joining . 30
3.2.8 Work Requesting . 32
3.2.9 Core Bootstrapping . 33
3.2.10 Event Logging . 35
3.2.11 Task Prioritization . 37

3.3 Pthreads API . 39
3.4 Project Structure . 42
3.5 Test Coverage . 45
3.6 Known Issues . 46

4 The SHMAC Profiler 47
4.1 Profiler Implementation . 48
4.2 Parsing The Output . 51
4.3 Performance Results . 54

5 Evaluating The SHMAC Scheduler 58
5.1 Sample Applications . 58

5.1.1 Master/Worker . 58
5.1.2 Join Chain . 59

5.2 Performance Results . 59
5.2.1 Master/Worker, 4 threads . 60
5.2.2 Master/Worker, 40 threads . 62
5.2.3 Master/Worker, 400 threads . 62
5.2.4 Join Chain, 40 threads . 65
5.2.5 Join Chain, 400 threads . 66

6 Ported Benchmarks 68
6.1 The PARSEC Suite . 68
6.2 Blackscholes . 69
6.3 Dedup . 71
6.4 x264 . 74

7 Conclusion and Future Work 77
7.1 Conclusion . 77

CONTENTS vii

7.2 Future Work . 78
7.2.1 Pthreads Library . 79
7.2.2 The Profiler . 80
7.2.3 Other Improvements to SHMAC . 80

Appendices 82

A Automating the SHMAC Build Environment Setup 83
A.1 Problem Description . 83
A.2 Implementation . 83
A.3 Usage . 85

B Implementing a Testing Framework for SHMAC 87
B.1 Problem Description . 87
B.2 Introduction . 87
B.3 SHMAC Development . 88
B.4 The Testing Framework . 89

C The schedule() Function 92

D Task Prioritization Functions 94

E Master/worker benchmark 96

F Join chain benchmark 98

G x264 Line-level profile 100

Bibliography 105

List of Figures

2.1 Moore’s Law . 7
2.2 Amdahl’s Law . 8
2.3 The SHMAC architecture . 10
2.4 The SHMAC memory space . 12
2.5 The O(1) scheduler . 16
2.6 The CFS scheduler . 18

3.1 The SHMAC scheduler . 22
3.2 RB-trees vs. hash tables, performance . 29
3.3 Example of task joining schedule . 31
3.4 Example of a schedule with work requesting 33
3.5 Naive scheduling by epoch count . 38
3.6 Fair scheduling by epoch count . 38
3.7 Pthreads code structure . 44

4.1 Profiler internals . 50
4.2 Example of profiler-generated call tree . 53
4.3 Profiler interrupt overhead . 54
4.4 Block size selection for the profiler . 56
4.5 Hash function comparison for the profiler . 57

5.1 The SHMAC tile layout used . 59
5.2 Total scheduler overhead . 61
5.3 Schedule: 4 workers on 4 cores . 61
5.4 Schedule: 40 workers on 4 cores . 63
5.5 Schedule: 40-thread join chain on 4 cores . 65
5.6 Schedule: 400-thread join chain on 4 cores 66

A.1 Toolchain installer folder structure . 84

B.1 SHMAC code structure . 88

viii

List of Tables

2.1 SHMAC tile types . 13

3.1 Pthread implementation coverage . 40
3.2 Pthreads library: lines of code . 43
3.3 Pthreads test coverage status . 45

5.1 Schedule: 4 workers on 4 cores . 62
5.2 Schedule: 40 workers on 4 cores . 63
5.3 Schedule: 400 workers on 4 cores . 64
5.4 Flat profile of schedule(), 400 workers 64
5.5 Schedule: 400-thread join chain on 4 cores 65
5.6 Schedule: 400-thread join chain on 4 cores 67
5.7 Flat profile of schedule(), 400-thread join chain 67

6.1 Benchmarks in PARSEC suite . 69
6.2 Benchmark result: blackscholes . 70
6.3 Flat profile for blackscholes . 71
6.4 Benchmark results: dedup . 72
6.5 Code changes to dedup benchmark . 73
6.6 Per-core busy-time breakdown for dedup . 74
6.7 Flat profile for x264 . 76

ix

List of Listings

2.1 Recalculating timeslices in the O(n) scheduler 14
2.2 prio array definition in the O(1) scheduler 15
3.1 The pthread create function. 33
3.2 The Pthread bootstrapping function . 34
3.3 Event logger sample output . 36
4.1 Profiler data structures . 50
4.2 An example of the kind of output the profiler can generate. 51
4.3 Example invocation of shmac prof . 52
4.4 A textual call tree outputted by shmac prof 52
4.5 Example invocation of shmac prof2gprof 53
6.1 x264 benchmark output . 75
A.1 Sample usage of the setup toolchain.sh script. 85
B.1 Programming a .bin file on the FPGA . 89
B.2 shmac test help text . 91
C.1 The schedule() function . 92
D.1 Scheduler task comparison functions . 94
E.1 The master/worker benchmark . 96
F.1 The join chain benchmark . 98
G.1 Bash oneliner for profiler-annotated source code 100
G.2 Line-level profile of x264:pixel satd wxh 101
G.3 Line-level profile of x264:mc chroma . 102
G.4 Line-level profile of x264:quant 4x4 . 103
G.5 Line-level profile of x264:get ref . 103
G.6 Line-level profile of x264:sub4x4 dct . 104

x

List of Abbreviations

APB Advanced Peripheral Bus, page 13.

API Application Programming Interface, page 6.

ARM ARM Holdings plc, page 11.

CABAC Context-Adaptive Binary Arithmetic Coding, page 74.

CFS Completely Fair Scheduler, page 16.

CMP Chip Multiprocessor, page i.

EECS Energy Efficient Computing Systems, page 3.

EPS Encapsulated PostScript, page 52.

FP Floating Point, page 13.

FPGA Field-Programmable Gate Array, page i.

GOP Group of Pictures, page 74.

MMU Memory Management Unit, page 78.

NFS Network File System, page 11.

NTNU Norwegian University of Science and Technology, page 3.

PARSEC Princeton Application Repository for Shared-Memory Computers, page i.

PC Program Counter, page 48.

PID Process Identifier, page 28.

POSIX Portable Operating System Interface, page 4.

PTE POSIX Threads for Embedded systems, page 19.

RAMP Research Accelerator for Multiple Processors, page 10.

RISC Reduced Instruction Set Computer, page 12.

xi

LIST OF LISTINGS 1

SHMAC Single-ISA Heterogeneous Many-Core Computer, page 3.

SRAM Static Random Access Memory, page 11.

TCG Task Control Groups, page 17.

Chapter 1

Introduction

Since the birth of the modern computing era, there has been a race towards increased perfor-
mance. For decades, this continued trend of exponentially increased performance has been
synonymous with Moore’s Law: the observation that the number of transistors on a chip
roughly doubles every two years [13, 14]. In the early 2000s, several challenges arose1.

To address these challenges, multicore processors were introduced. These offer great perfor-
mance improvements to applications that can leverage multiple threads of execution. How-
ever, they still suffer from certain problems, chief of which is high power consumption.

One suggested solution to this challenge is to incorporate heterogeneous processing cores
on a single chip. Heterogeneous computing can potentially offer superior performance and
power efficiency to that of homogeneous processors. This is the main motivation behind the
SHMAC project.

However, SHMAC is currently missing one feature that has been ubiquitous for around two
decades: software support for multitasking. Applications expect to be able to spawn as many
processes/threads as they want, and they expect those to run concurrently. If the number
of running threads exceed the number of available processing units, the operating system
should provide the illusion of concurrency.

As SHMAC currently does not have an operating system2, writing parallel applications is a
challenge. Porting existing ones is completely unfeasible for all but the simplest applications.

This is the motivation behind developing a bare-metal threading library for SHMAC: to both
simplify application development and the porting of existing applications. This master’s
thesis describes such a threading library.

1See section 2.1 for details.
2Although porting existing operating systems – specifically Linux and Barrelfish [2] – to SHMAC is

ongoing.

2

CHAPTER 1. INTRODUCTION 3

1.1 The SHMAC Project

EECS (Energy Efficient Computing Systems) is a research initiative started at NTNU in
2012 by the Faculty for Information Technology, Mathematics and Electrical Engineering.
Its main focus is on achieving energy efficiency of computing systems by employing a vertically
integrated approach across abstraction layers, from low-level electronics to high-level software.

SHMAC (Single-ISA Heterogeneous Many-Core Computer) [17] is one of EECS’s research
projects, initiated to investigate the challenges posed by heterogeneous architectures. Het-
erogeneity is one solution proposed to tackle the challenge known as Dark Silicon, a limiting
factor in current CMP technology scaling. It is as such an important area of current research.

More specifically, SHMAC is an FPGA-based platform that allows for quick instantiation
of tile-based, heterogeneous architectures. The architectural details of SHMAC are further
detailed in Section 2.3.

1.2 Assignment Interpretation

The problem description presented on page i presents a clear task: implement a threading
library so that multithreaded benchmarks can more easily be ported to the SHMAC platform.
Specifically, two main tasks can be extracted from the description:

Task 1 (mandatory): Implement a functional threading library.

Task 2 (optional): Port one or more existing benchmarks that rely on threading to SHMAC.

The choice of threading library and benchmarks to be ported are left unspecified. As such,
evaluating available threading libraries and making a decision is considered a natural part of
the assignment. This, in turn, will have consequences for the possible benchmarks that can
be ported. Some existing threading libraries are discussed in Section 2.5. Benchmarks are
evaluated in Chapter 6.

Two additional tasks are given in the assignment not related to benchmarking:

Task 3 (mandatory): Investigate ways of simplifying the task of setting up a complete
toolchain and C standard library for development for the SHMAC platform.

Task 4 (mandatory): Implement a testing framework for running automated tests on
SHMAC.

These two tasks are addressed in separate technical reports [21, 22] to keep this thesis focused
on the main task. They are also included as appendixes: Appendix A and Appendix B,
respectively.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

The contributions of this work are as follows:

1. A fully working, POSIX-compliant threading library has been developed. This allows a
large number of benchmarks (and other parallel applications) to more easily be ported
to SHMAC.

2. The toolchain setup process has been automated by a setup script. This simplifies the
previously error-prone task of setting up a complete build environment for SHMAC.

3. A simple test framework has been developed for SHMAC. Previous applications and
benchmarks developed for SHMAC have all been written independently of one another
without regard for a unified build process.

This has led to every application having their own set of idiosyncrasies. For instance, it
was not certain that the default Make 3 rule would build a working application suitable
for testing.

This test framework should encourage users to adhere to certain standards of develop-
ment that makes it easy to integrate new benchmarks into the ever-growing benchmark
suite.

4. A low-overhead profiler was also written to validate the performance of the scheduler.
While not a part of the assignment, it became a necessity to reason about the perfor-
mance of the scheduler and present quantitative results from it.

The profiler combines function instrumentation and link register sampling to provide
a complete4 function-level profile. The profiler output is self-explanatory enough that
anyone can write analysis tools for it. An analyzer capable of printing function-level
statistics, critical paths and call trees was also written. For those more comfortable
working with the familiar gprof [8], a conversion tool was made to convert the output
to gprof ’s binary format.

5. Finally, a set of parallel benchmarks were ported to SHMAC and evaluated using
the newly developed threading library. These can both provide a reference point for
evaluating future accelerators and serve as starting point for extending benchmarks
with accelerator support.

3http://www.gnu.org/software/make/
4Meaning it captures the call tree precisely without statistical inaccuracies and it does not need to make

assumptions about program execution the way GNU Prof does. This is explained further in Chapter 4.

http://www.gnu.org/software/make/

CHAPTER 1. INTRODUCTION 5

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents a brief history of traditional CPU architectures to motivate to need for
heterogeneity. The SHMAC project (and prototype) is then introduced as a research platform
for heterogeneous systems.

Since the main task is to implement a functional threading library, an understanding of
schedulers is essential. Chapter 2 introduces some of the latest schedulers employed by the
Linux kernel, as they provide useful insight into possible scheduler designs and their strengths
and weaknesses.

The chapter is rounded off by a brief description of existing threading libraries intended for
embedded platforms.

Chapter 3 presents the implemented scheduler (and its threading API) in detail. Every
component is described in detail, design decisions are explained and possible alternatives
are evaluated. The API implementation coverage, unit testing coverage and source code
structure are presented as well.

Chapter 4 describes an instrumentation-based profiler that was developed in order to reason
about the performance of the threading library. This was not a part of the assignment, but
might nevertheless be useful in future work on SHMAC and is thus included here. An under-
standing of how the performance results were collected is also useful background information
to have when the scheduler’s performance evaluation results are presented, which is done in
Chapter 5.

In chapter 6, some well-known benchmarks that rely on Pthreads are run on top of the
SHMAC threading library. The results of these are presented and discussed.

Finally, chapter 7 concludes the paper and reiterates important results. Future work is also
suggested.

Chapter 2

Background

This chapter presents some necessary background information, both on the motivation for
heterogeneity and schedulers in general. Recognizing the need for heterogeneous hardware
is essential in understanding the motivation behind the SHMAC project. A short historical
recap of processor designs is given, after which the SHMAC architecture is presented.

Finally, some background information is presented on the topic of task scheduling. The design
decisions behind the scheduler that was implemented are motivated by both the limitations
of the SHMAC platform, as well as existing schedulers and their goals. While the assignment
was to implement a threading library, the core component is a full-fledged scheduler – the
POSIX Threads standard just defines the API. Hence, a basic understanding of existing
schedulers is necessary.

2.1 Processor Design: A Historical Perspective

The single core processor has come a long way since the very first single-chip processor, the
Intel 4004, released in 1971. From the mid-80s until the early 2000s, performance increased
with more than 50% per year. This performance was achieved through a combination of die
shrinking and microarchitectural breakthroughs. Figure 2.1 shows the number of transistors
in a processor since 1971.

As we can see, the number of transistors on chip has stayed in line Moore’s prediction since
the seventies. However, sub-threshold leakage and slowed supply voltage scaling prevents
transistors from achieving similar improvements in the future [4].

As we keep scaling down transistors, leakage power becomes a growing problem. When
leakage power dominates the active power, power consumption is roughly proportional to the
transistor count. However, Pollack’s Rule [5] tells us that performance increase is proportional
to only the square root of the die area. These problems of diminishing returns and high

6

CHAPTER 2. BACKGROUND 7

Figure 2.1: Transistor count in typical processors throughout the last few decades, in line
with the predictions of Moore’s Law.

CHAPTER 2. BACKGROUND 8

1

2

4

8

16

32

64

1 2 4 8 16 32 64 128 256

M
ax

im
um

sp
ee

du
p

po
ss

ib
le

Number of processors

Amdahl’s Law

f = 0.90

f = 0.50

f = 0.25

f = 0.10

f =
0.0

1

Figure 2.2: Amdahl’s Law illustrates the maximum attainable speedup for a given serial
fraction f .

power consumption are in part what motivated an industry-wide shift towards multicore
architectures.

The switch to homogeneous multicore processors partly solves the problem of Pollack’s Rule:
we can now scale performance linearly1 as a function of power. In addition, each core can
generally be made simpler if we can compensate by using more than one. This works well for
a few cores, as evident by the abundance of dual- and quad-core processor readily available
on the consumer market. Unfortunately, numerous problems remain.

Amdahl’s Law, for one, presents a bleak view of multi-core architectures: for programs with
an inherently serial fraction f , the speedup will never exceed 1/f . This is illustrated for
different values of f in Figure 2.2. For most problems, the serial fraction of an application
is significant, maybe even dominant. No number of homogeneous cores can improve on this
upper bound.

Another challenge is that most software is not written for parallel execution. Taking advan-
tage of the possible performance benefits from multicore processors require software to be
rewritten, a task that is generally not trivial.

Even for problems that can be split among hundreds of cores, the power consumption would
be too high to dissipate. This problem would suggest the need for lower per-core power con-
sumption, which in turn reduces per-core performance. With this solution, non-parallelizable
applications would suffer.

1As long as the problem to be solved is easily parallelizable.

CHAPTER 2. BACKGROUND 9

Desktop- and server systems are not the only ones that suffer. The emergence of mobile
computing systems has also led to an increased focus on energy efficiency as a goal to achieve
longer battery lives, less heat dissipation and smaller units [7].

From a wider perspective, the last 5-7 years can be seen as a paradigm shift from area-
constrained to energy-constrained computing [16]. Simultaneously increasing performance
and decreasing energy consumption is a significant challenge for the computer industry.

2.2 Recent Steps Toward Heterogeneity

The aforementioned challenges has led to the proposal of heterogeneous computing, in which
processor cores admit some sort of asymmetry. Asymmetric systems are often further clas-
sified as either performance- or functionally asymmetric. Performance-asymmetric cores
can again be partitioned into two groups: cores with identical microarchitectures and cores
with different microarchitectures. Functional asymmetry can be either overlapping or non-
overlapping. This gives us the following gradation of asymmetry:

1. Single-ISA, identical microarchitectures, different power and frequency characteristics.

2. Single-ISA, different microarchitectures. These can be, for instance, have different
pipelines or differ in being out-of-order or supporting speculative execution.

3. Overlapping ISA, but not identical. These often differ in a small subset of instructions.

4. Different ISAs. Examples include integrated CPU/GPU on a single chip, or accelerator-
based architectures such as the IBM Cell.

In general, the more homogeneous the processor the easier it is to program. In contrast, the
more heterogeneous processors can potentially offer more efficiency and speed at the cost of
implementation complexity.

Over the last decade, the questions of how to design and program heterogeneous hardware
have been thoroughly researched. However, not much heterogeneous hardware exist, espe-
cially in the consumer segment.

Previous work has showed that only performance asymmetry can yield a significant increase
in both power efficiency and performance [11, 12]. In fact, most of the benefit of performance
asymmetry can be reaped with as little as two cores [19].

2.2.1 Research Initiatives Into Heterogeneous Hardware

Since Kumar, et. al. first proposed single-ISA heterogeneous multicore processors in 2003,
several projects have been initiated to research new architectures. This subsection provides

CHAPTER 2. BACKGROUND 10

Figure 2.3: An overview of the SHMAC architecture.

a quick overview of some of these.

ATLAS [20] is a FPGA-based platform for CMP research developed at Stanford University.
Using a multi-FPGA board, they provide a system with 8 PowerPC cores running at 100MHz,
capable of running Linux. The ATLAS prototype provides support for transactional memory,
a technique intended to simplify parallel programming. In likeness to SHMAC, they argue
that an FPGA-based research platform provides a tremendous performance advantage over
software simulators.

HAsim [15] intends to accelerate performance modeling of multicore processors by using
FPGAs. It provides a cycle-accurate framework for modeling shared-memory CMPs, among
other contributions. RAMP Gold [18] is another FPGA-based, cycle-accurate architecture
simulator intended for early design-space exploration.

Heracles [10] is a complete, open-source multicore system toolkit. It is intended as a tool
for fast exploration of future multicore processors as well as being a teaching tool. It is also
FPGA-based and written in Verilog. It is modular, in the sense that processing elements,
memory configuration and routing settings can easily be reconfigured. A toolchain is provided
to map applications written in C/C++ onto core units. They provide a graphical user
interface to simplify configuration and the launching of new architectures.

2.3 The SHMAC Project

The SHMAC architecture can succinctly be summed up as a tile-based architecture with
processing- and memory elements laid out in a rectangular grid with a shared memory space
and, optionally, tile-local peripherals. The architecture is displayed in Figure 2.3.

CHAPTER 2. BACKGROUND 11

The current FPGA prototype was developed as a master’s thesis project in 2012 [17]. Since
then, it has undergone some architectural changes. This section will describe the current
design to the level of detail necessary for reasoning about the platform from a software
perspective.

2.3.1 Hardware Platform

The SHMAC prototype is is built on the ARM RealView Versatile Platform. This is a
development platform consisting of a processor (ARM11 MPCore) and I/O devices. For
operating system, it runs Rasbian Linux, kernel version 3.8.8. Since the Versatile Platform
does not have any persistent storage, the root filesystem is mounted over NFS.

The Platform baseboards can also be expanded by adding Logic Tiles2 or Core Tiles3. The
SHMAC prototype runs on a connected Logic Tile: a Xilinx Virtex 5 XC5VLX330 FPGA.
This FPGA is controlled by software on the host system.

A kernel module (shmac.ko) sets up two character devices used to communicate with
SHMAC: /dev/shmac and /dev/ttySHMAC0. These are used to send commands to
SHMAC (reset, load program and read/write memory space) and read/write standard in-
put/output, respectively. This is explained in more detail in Section ??.

2.3.2 Memory Space

SHMAC’s memory layout has been redesigned since Rusten and Sortland’s [17] work. This
section will describe the current layout.

SHMAC has two types of memory: one 32MB SRAM chip (”Z-tile”) that serves as main
memory and memory tiles that each can hold 16kB of data. These memory tiles (”R-tiles”)
use the FPGA’s block RAM. By default, these R-tiles are not used for anything.

The main memory is mapped to the start of the address space, which means that the SRAM
will always occupy the range [0x0, 0x2000000). All the required memory segments should
(most of the time, at least) be mapped into this region. Since each core starts by executing
address 0x0, the startup vector must be placed here. However, other than that, the developer
is free to chose any segment mapping he/she wishes.

Figure 2.4 shows the SHMAC memory space in detail. Every core shares all memory seg-
ments, such as .text, .bss and .data. There is also a shared memory heap. libc protects
the heap from corruption caused by simultaneous access by locking it whenever necessary.

There is no virtual memory or memory protection in place. This means that if core 1 overflows

2arm.com/products/tools/development-boards/versatile/logictiles.php.
3arm.com/products/tools/development-boards/versatile/coretiles.php.

arm.com/products/tools/development-boards/versatile/logictiles.php
arm.com/products/tools/development-boards/versatile/coretiles.php

CHAPTER 2. BACKGROUND 12

Z (32MB) R R R R

0x0 0xf80000000x2000000 0xf9000000 0xfc000000

ST

0xfffe0000 0xffff0000

.text .data .bss heap stacks

irqundefsvcusr

Core 0 Core 1 ... Core N

Figure 2.4: The SHMAC memory space. Z is the external memory space, while R are memory
tiles, each holding 16kB. T and S are memory-mapped components and/or registers that are
either tile-local og system-wide. Each core has four different stacks set up, one for each of
the processor modes that are used

its stack in user mode, core 0 will immediately get a corrupted interrupt-stack4.

Since all tiles (including memory-tiles, both Z and R) are placed in a grid, memory requests
must be routed to the appropriate tile somehow. This is done by simple XY-routing: the
request first moves along the X-axis, then the Y-axis. This affects both the latency of memory
operations and the congestion at different routers in the grid, which is worth keeping in mind.

2.3.3 Cores and ISA

While development of additional cores (and accelerators) is in progress, there was really only
one computational tile ready for use as of writing this: the Amber 25 core. While the Amber
core is originally only ARMv2a compatible, it has been modified to support version 3 of the
instruction set. This is a very simple RISC instruction set. As such, it incorporates the
typical RISC features:

1. Large register file

2. Fixed-length instruction words

3. A simple load/store memory architecture

4As one might imagine, this has been the cause of many interesting bugs.

CHAPTER 2. BACKGROUND 13

Name Description

Amber 25 (A) A 32-bit RISC ARMv2-compatible core No division or
FP support; this is implemented in software.

Turbo Amber [1] (T) A high performance core based on Amber. Adds fast
multiplication, instruction buffer, branch prediction and
more.

Scratchpad Tile (R) A pure on-chip memory tile without processing capabil-
ities. Each scratchpad tile currently has 16kB of mem-
ory.

Dummy Tile (.) Tile containing only a router. This is needed to fill any
”gaps” in the tile layout.

APB Tile (V) A core to interface with the host computer.
Main Memory Tile (Z) Gives SHMAC access to off-chip memory, currently

32MB. In this report, only main memory is used un-
less otherwise stated.

Table 2.1: Tiles currently supported by SHMAC. The letters in parentheses are one-letter
names used in the configuration when synthesizing each layout.

Amber executes most instructions in a single cycle5. For more details on the instruction set,
the reader is referred to the ARM Architecture Reference Manual and OpenCores’ project
page for the Amber core6.

There are a few less desirable traits worth noting at this point: there is no support for integer
division or any type of floating point operations. These operations are provided as software
routines by libgcc.

The current list of supported tiles are shown in Table 2.1.

2.4 A Brief History of Linux Schedulers

A central part of any operating system is the task scheduler, which decides which task to
run and for how to run it. This is a vital – and often rather complex – part of any modern
operating system. Studying several of the existing schedulers served as useful inspiration for
designing one from scratch.

The Linux schedulers are an interesting case study for several reasons:

1. It is open source, so its source code is readily available

2. It has been widely adopted, both on the mobile, embedded, desktop and server market.
One might thus assume that some effort has been put into its design and performance.

5Plus instruction fetch time, which on SHMAC is roughly 17 cycles.
6http://opencores.org/project,amber

http://opencores.org/project,amber

CHAPTER 2. BACKGROUND 14

3. Much has been written about the Linux schedulers, both current and historical ones.

In this section, the recent Linux schedulers will briefly be presented.

2.4.1 The O(n) Scheduler

The O(n) scheduler was used in Linux between version 2.4 and 2.6. Its name stems from the
fact that it schedules task in linear time.

The scheduling is split into epochs, which are periods of time in which every task is allowed
to run for a certain amount of time, called a timeslice. The timeslice is a function of a task’s
priority, which is specified through the task’s nice value: a priority between -19 and 20, where
20 is the ”nicest” (meaning lowest priority).

All tasks are kept in a global runqueue, which is implemented as a linked list. The linear
runtime stems from the scan of the global runqueue that is performed each time a task needs
to be scheduled. The runnable task with the highest goodness() value will be scheduled
next. This function basically adds up the remaining timeslice and the task priority. In
addition, boosts are given to realtime tasks and tasks sharing address space; very large and
fairly small boosts, respectively. A task with p->counter == 0 will return a goodness of
0 and thus not be schedulable.

When no tasks are schedulable any more (used up their timeslice or blocked for some reason,
presumably on I/O), it is recalculated for every task:

1 for_each_task(p)
2 p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);

Listing 2.1: Recalculating timeslices in the O(n) scheduler

That is, the timeslice is calculated from the task priority plus half of what might have been
remaining from the current epoch. This is done to give a slight bonus to I/O bound tasks,
which are likely to have time remaining at the end of an epoch.

Whenever a task forks, its remaining timeslice is split between parent and child. This is to
prevent processes from taking an unfair amount of CPU time by simply forking continuously.

In addition to this linked list, a global hash table is used to quickly map from PID to struct
sched struct* – aptly named pidhash.

This design is appealing for a couple of reasons. One being its simplicity. The scheduler is
small, fairly easy to understand, and works well for many types of systems.

It does, however, have some unfortunate traits. The global runqueue is a point of lock
contention that only gets worse as modern processors add more and more cores. The lin-

CHAPTER 2. BACKGROUND 15

ear runtime of the scheduler is an obvious scalability bottleneck, at least in theory. More
weaknesses are thoroughly described in [6].

2.4.2 The O(1) Scheduler

The O(1) scheduler was written by Ingo Molnar to address the shortcomings of the old O(n)
scheduler; the greatest of which was its linear runtime. As this problem is deeply embedded
in the scheduler design, the O(1) was a complete redesign.

Unlike the older O(n) scheduler, this one can schedule tasks in constant time; hence the
name. It also maintains per-CPU runqueues instead of a single, global one.

Each runqueue consists of two priority arrays: one for active tasks and one for expired tasks.
Active tasks are the ones which have yet to be scheduled in this epoch while expired ones
have. It also contains a lock, pointer to the current and the special idle task, as well as
numerous scheduling-related bookkeeping variables. An overview is shown in Figure 2.5.

Each priority array consists of three variables:

1 unsigned int nr_active;
2 unsigned long bitmap[BITMAP_SIZE];
3 struct list_head queue[MAX_PRIO];

Listing 2.2: prio array definition in the O(1) scheduler

The MAX PRIO macro is the number of distinct priorities used internally by the Linux kernel.
It is the sum of the number of real-time tasks plus the number of distinct user priorities: 100+
40 = 140. BITMAP SIZE is the number of bytes needed to express MAX PRIO+1 different
bits in a bitmap. This bitmap is used to quickly look up the highest-priority list head; this is
done by locating the most significant bit in the bitmap. The nr active variable contains
the number of non-empty runlevels.

The O(1) scheduler always schedules the task with the highest priority from the active array.
Like the O(n) scheduler, different priorities are expressed through variable-length timeslices.
Using the bitmap from the priority array, the highest non-empty queue is quickly located in
constant time. It then selects the head of this queue: a constant time operation.

Once a task is finished, two important things happen:

1. The task’s timeslice is recalculated for the next epoch

2. It is removed from the active array and appended to the expired array

If the newly expired task was the last one in the active array, the active and expired arrays are
swapped by changing the two pointers. All of these operations can be performed in constant
time, making the scheduler vastly more efficient than its predecessor.

CHAPTER 2. BACKGROUND 16

Figure 2.5: The entities involved in the O(1) scheduler. Tasks are gradually moved from
active to expired as they finish. Tasks are maintained in linked lists per static priority,
from 0 through 139. A bitmap is used to keep track of the linked lists that are non-empty
so that the next task can quickly be located.

There are also quite complex heuristics involved in computing the effective priority of a task.
Interactive tasks are given bonuses while CPU-intensive tasks are penalized. While this
sounds simple enough, there are a number of scenarios that must be accounted for to achieve
acceptable levels fairness. The result is a complex array of heuristics that strives to satisfy
the end user. Still, there are complaints about the scheduler’s performance with regard to
interactivity.

2.4.3 CFS (The Completely Fair Scheduler)

The O(1) scheduler was a vast improvement upon the O(n) scheduler, but it still had its
problems. One problem was the large body of code needed to compute heuristics. Ingo
Molnar once again designed a new scheduler, inspired by Con Kolivas’ work on a scheduler

CHAPTER 2. BACKGROUND 17

called the Rotating Staircase Deadline Scheduler.

The new scheduler took a completely new approach to scheduling: it wasn’t based on priority
arrays or runqueues at all. Instead, tasks are kept in a time-sorted red-black tree. Each node
in the tree is keyed by a 64-bit field called vruntime, which expresses the amount of virtual
runtime the task has been given.

With this design, identifying the next task to run is as simple as locating the leftmost node
in the tree. Once it is finished running, its vruntime field can be updated and the tree
rebalanced. Once again, the next task to run is the leftmost node in the tree.

Instead of using priorities directly (by, for instance, maintaining a separate tree for each
priority), the CFS uses priorities as decay factors to the vruntime. That way time passes
slower for high-priority tasks while it passes quicker for low-priority task. The key structures
involved in scheduling are shown in Figure 2.6.

The CFS scheduler also introduced an important feature called group scheduling. Imagine
two users running concurrently on a system, one with a single process and the other with 99.
With traditional scheduling, one user would get 99% of the CPU. Group scheduling allows
us to share the CPU time equally between users before further dividing it among per-user
threads7.

2.5 Existing Threading Libraries

There are some existing threading libraries that could have been ported instead of writing
one from scratch. Some of these will be briefly discussed here.

2.5.1 TinyThread

TinyThread8 is a thread library with support for mutexes, semaphores, condition variables,
message passing and simple threading.

In some ways, the library matches the needs of a scheduler for SHMAC:

1. It is preemptive

2. Since it supports Cortex M0 chips, porting any assembly code should be rather easy

3. It supports thread priorities

7The actual feature introduced, called TCG (Task Control Groups), has wider applicability outside of
CFS.

8https://code.google.com/p/tinythread/

https://code.google.com/p/tinythread/

CHAPTER 2. BACKGROUND 18

Figure 2.6: The entities involved in the CFS scheduler. Tasks are kept in a red-black tree,
ordered by their virtual runtime. Instead of keeping references ”back up” the reference tree
(for instance from rb node to sched entity), this is done using C’s offsetof() macro.

CHAPTER 2. BACKGROUND 19

However, after inspecting the code, it was found to not be of great value to the SHMAC
project. Most of it would have had to be rewritten, either because of architectural differences
or because of API incompatibility. The relevant parts of the project was around 1600 lines
of code. The work involved in porting the code was thought to be comparable to that of
writing similar functionality from scratch.

For that reason,the library was only ever used for inspiration; no code was ever directly taken
from TinyThread.

2.5.2 POSIX Threads for embedded systems (PTE)

PTE9 is an open source implementation of Pthreads designed to be easily portable. The API
compatibility was an attractive quality in PTE and it was therefore considered carefully.

All the platform-specific components that must be provided are commonly referred to as the
OS adaptation layer (OSAL). They must provide Functionality relating to threads, thread-
local storage, mutexes, atomic operations, etc.

Some modifications and additions would have been necessary, but there is not really any good
reason why the SHMAC pthread library could not have been based on PTE. In the end, the
decision boiled down to wanting to write a scheduler from scratch rather than ”filling in the
gaps” of an existing one.

9http://pthreads-emb.sourceforge.net/

http://pthreads-emb.sourceforge.net/

Chapter 3

The SHMAC Scheduler

This chapter will present the scheduler that was implemented for this master thesis. After
explaining its overall design, the scheduler will be described component by component. The
library’s completeness with respect to the POSIX standard is then addressed. The chapter
is rounded off with short descriptions of the source code structure and unit test coverage, as
well as known bugs and issues.

3.1 Overall Design

Before looking at every component in detail, here is a brief overview of how the scheduler
works:

The first time a call to pthread create() is made, the scheduler is initialized1. Up until
that point, cores 1 through N has remained idle while core 0 has been executing main(),
but not under the supervision of a scheduler.

When this function call is made, core 0 initializes all necessary state for all cores and starts
them. Every core maintains its own state and runqueue – there is no centralized queue of
tasks.

When each core starts, it is responsible for scheduling the idle task on itself. When that is
done, it starts a core-local timer that will regularly raise an interrupt to invoke the scheduler.
That is, the scheduler grants equal-length timeslices to all tasks, but varies the number of
timeslices according to task priority. Core 0 has an additional requirement: it has to turn its
own execution of main() into a schedulable task so that it can be preempted and scheduled
like all other tasks in the system.

1There are a few other entry points that will also initialize the scheduler. However, most of the time the
entry point will be pthread create.

20

CHAPTER 3. THE SHMAC SCHEDULER 21

Core 0 then waits for all cores to become ready. When they all are, it proceeds to schedule
the function the user passed in to pthread create().

Each core maintains schedulable tasks in priority queues. Although the storage back-end is
easily replaceable, the one currently used is based on binary heaps where tasks are prioritized
according to the number of times they have been allowed to run before2. Tasks that are
blocked for any reason are temporarily removed from its task heap until it is ready to continue
execution, at which point it is put back into the heap.

All cores can request work from other cores if they become idle. A core is considered idle if
it is executing a special idle-task, which simply executes an infinite while-loop. This task is
just like any other task in terms of scheduling, except in two significant ways:

1. It is pinned to a specific core so it cannot be moved by work requesting from another
core.

2. It is given a special priority 0 (all regular tasks are in the range [1,100]) that means it
will never be selected if there are any other tasks available for scheduling.

In addition to per-core heaps of tasks, all tasks are put in a global hash table indexed by
thread ID. Since the API functions often take a thread identifier as parameter to identify a
task, this is used to quickly locate to internal structure used to store all relevant state.

Thread IDs are chosen in increasing order, starting at 16, which is what the MAX CPUS macro
expands to3. All thread identifiers less than 16 are considered idle tasks. When core i creates
and assigns itself an idle task, it chooses the ID i.

Since the first non-idle task to be created is always the main task, this task will always be
given the ID 16. Any IDs greater than that belongs to regular threads, created either by
main or another thread.

The overall design of the scheduler is shown in Figure 3.1.

3.2 Components In Detail

The following subsections will describe each component of the scheduler in greater detail. In
some sections, alternative design choices that could have been made will be discussed.

2A half-truth: see Section 3.2.11 for details
3This is defined in shmac.h. 16 was chosen because the FPGA generally can’t fit more than around 12

cores.

CHAPTER 3. THE SHMAC SCHEDULER 22

Figure 3.1: The overall design of the SHMAC scheduler. Each core stores its state in a
struct core struct. Most important among the members defined here are the three
priority arrays used to hold tasks. Blocked tasks are also held in priority arrays. Inter-core
messaging is lock-free and uses N2 ring buffers in total. Tasks waiting to run (because the
heap potentially has a maximum size) are lined up in a linked list. Tasks waiting for other
tasks to finish are also kept in a linked list.

CHAPTER 3. THE SHMAC SCHEDULER 23

3.2.1 Per-Core State

Every core maintains its own state that is completely independent of the others. The only
time the cores have to communicate is for work balancing purposes. It is a design goal that
they should never lock each other’s queues.

All per-core state is stored in a struct called struct core struct. Its fields are:

state – enum core state
An enum field that keeps track of which state the core is in. The possible values are:

1. NOT IN USE – the core is not to be used for scheduling purposes.

2. NOT READY – the core has begun initialization, but is not ready. It should not be
assigned any work at this point.

3. IDLE – The core is finished with initialization and can be given work.

4. BUSY – The core has started executing its first task, even if that might be the
special idle task.

The states will evolve in monotonically increasing order – a BUSY core will never go
back to being IDLE.

queued tasks – linkedlist t
A linked list of queued tasks. These are the core’s ”backlog” work items, tasks that
haven’t been put into a runqueue yet. Normally this list is always empty because the
runqueue can grow arbitrarily large. This will only be used if the priority queue rejects
new tasks. Tasks are dequeued whenever another task leaves the runqueue.

joined tasks – linkedlist t
A linked list of tasks that have tried to join another thread that is not yet finished.
Tasks are then removed from the runqueue and put here. The scheduler will remove a
task from joined tasks when the thread to be joined finishes. It is then put back
in the runqueue.

has queued msgs – unsigned int
A simple flag to indicate whether the core has pending messages it should process.

queued msgs – ring buffer t[MAX CPUS]
A fixed-size buffer for each possible core in the system (to avoid locking). Overflow is
dropped, so the receiving core must process its messages regularly.

queue – prio array t[3]
A priority queue for each of the three supported scheduling classes. Each on uses its
own ordering function, as described in section 3.2.11.

active queue – prio array t*
A pointer to the queue the current task belongs to.

CHAPTER 3. THE SHMAC SCHEDULER 24

current task – struct task struct*
The task the core is currently executing.

blocked tasks – prio array t[3]
Priority queue used to maintain tasks blocked by calling pthread cond wait,
pthread cond timedwait or pthread barrier wait. Whenever a task needs
to be awaken, the priority queue updates the task’s location in it. The scheduling
function peeks at the next task to decide if it should unblock tasks.

epoch count – unsigned int
The number of times the scheduler has run on this core.

lock object – shmac mutex t
The lock object used to protect the core. Any task wanting to modify a core’s state
should obtain this lock first.

3.2.2 The task struct Struct

As the most important structure in the library, the task struct deserves a close look.

The task object maintains all state that is required to keep track of execution context and
scheduling properties, as well as some useful statistical fields. The fields are:

state – enum task state
The task’s state. Can be one of the following:

1. QUEUED – The task object has been created, but has not been assigned to a core
yet.

2. RUNNING – The task has been assigned to a core and put into the runqueue. It
might not have actually been granted a timeslice yet, though.

3. BLOCKED – The task has been removed (temporarily) from the runqueue because
it called a blocking function.

4. FINISHED – The task has finished, but the scheduler has not started the reaping
process yet. The task is still not joinable in this state.

5. DEQUEUED – When the scheduler finds a task in the FINISHED state, it removes
it from the runqueue and changes its state to DEQUEUED. The task is now joinable.

6. REAPED – When a joinable (not created in detached mode) thread is joined, its
state is set to REAPED before calling free() on it. After this, the task should
never be referenced again.

7. CANCEL PENDING – Some other task has called pthread cancel on this task.
It will be canceled the next time the scheduler runs.

CHAPTER 3. THE SHMAC SCHEDULER 25

8. CANCELED – The scheduler makes the task jump to a cleanup routine. It still
needs to be joined for it to be freed and removed from the global task tree, unless
it was created with PTHREAD CREATE DETACHED.

cpu no – int
The core number the task is assigned to run on.

thread – pthread t*
The pthread t* the user passed to pthread create. This value is used to identify
tasks externally.

attrs – pthread attr t
A copy of the attributes passed to pthread create, or default attributes if NULL
was passed.

stack free – int
Set to 1 if the stack should be freed be the library when a task finishes. If the user
allocated the stack before calling pthread create, this will be 0.

task free – int
Should the task object be freed when it finishes? The only tasks that should not be
freed are the idle tasks for all cores but core 0, because these were allocated on the
stack.

task – void* (*)(void*)
The function the user specified to pthread create.

arg – void*
The argument the user specified to pthread create.

ret – void*
A location for storing the return value of the function task.

waits for – struct task struct*
Set when a thread calls pthread join. It is used to detect possible deadlocks as well
as indicate to the scheduler which task we have to wait for to finish.

join ll item – linkedlist item t*
The linked-list node that is inserted into the list of blocked task if this task should
block. This is allocated here to avoid calling malloc() in the interrupt handler.

pinned – int
A pinned task cannot be moved to another core through work requesting. The idle
tasks are pinned.

blockable – int
This needs to be set to 1 for a task to be removed from the runqueue. This is used to
prevent the scheduler from preempting tasks when in an inconsistent state.

CHAPTER 3. THE SHMAC SCHEDULER 26

cond waiting – int
Set by a thread that called pthread cond wait. The scheduler will detect this and
block the task (if it is blockable).

cond wait timeout – unsigned int
Set by a thread that called pthread cond timedwait. The scheduler will detect
this and block the task (if it is blockable). The task will be placed in a different
priority queue than the tasks that block indefinitely.

barrier waiting – int
Set to 1 whenever a task is blocked at a pthread barrier wait call.

join blocking – int
Set to 1 whenever a task tries to join a task that hasn’t finished yet. The scheduler will
remove the task from the runqueue until the task-to-be-joined (found in waits for)
has finished.

cancel state – int
Decides whether a task is cancelable. A call to pthread cancel for a non-cancelable
task is a no-op.

cancel type – int
Is usually used to determine how the task is to be canceled; either asynchronously or at
a cancellation point. We do not support cancellation points, so this field is never used.
All cancellation is asynchronous, which we take to mean ”the next time the scheduler
is ran”.

register set – irq regs t
Stores the register values of the task at the time the scheduler is run. Used to restore
execution context the next time the task is selected by the scheduler.

cleanup handlers – linkedlist t
Used to hold cleanup functions specified by the user. These are called when a task
finishes, no matter how it finishes.

epoch count – unsigned int
The total number of times this task has been selected by the scheduler to run. Not all
epochs are equally long, as tasks can decide to explicitly invoke the scheduler. This is
done in a few cases when the task would otherwise busy-wait.

se – struct sched entity*
A struct that contains all scheduling-related information. This is disjoint from the
task struct struct to achieve looser coupling, thus simplifying the work of adding
new data storage backends besides the binary-heap.

CHAPTER 3. THE SHMAC SCHEDULER 27

3.2.3 The sched entity Struct

This struct keeps track of anything the scheduler might want to use to prioritize tasks.
The exact definition depends on the data storage used, which is a rather loosely coupled
component of the scheduler. For binary heaps, the structure looks as follows:

task – struct task struct*
A pointer back to the task this entity represents.

epoch sched count – unsigned int
A value similar to epoch count in the task struct, albeit with one important dif-
ference: this one does not necessarily start counting from zero. This is explained in
Section 3.2.11.

vruntime – unsigned int
The total time the task has been allowed to run, measured in clock ticks.

created time – unsigned int
The time the task struct was created.

start – unsigned int
The time the task was first scheduled.

last start – unsigned int
Timestamp representing when the task was last started.

3.2.4 Priority Queues

To keep track of schedulable tasks, three priority queues are used – one for each schedul-
ing class. The three supported classes are: SCHED OTHER, SCHED RR (round-robin),
SCHED FIFO (First in, first out). As previously stated, the data structure used is inter-
changeable as long as supports the required operations. The binary heap is primarily used
in this scheduler.

The semantics of the three scheduling classes are as follows:

SCHED OTHER
This is the normal (default) scheduling class. Tasks are scheduled according to their
priority level among other SCHED OTHER tasks. However, both SCHED RR and
SCHED FIFO will preempt these tasks.

SCHED RR
Will preempt any SCHED OTHER task and be preempted by any SCHED FIFO task.
Tasks are scheduled in round-robin fashion, in equal-length timeslices (as all tasks are
with this scheduler). Priorities do not affect these tasks at all.

CHAPTER 3. THE SHMAC SCHEDULER 28

SCHED FIFO
Will preempt any tasks from the other two scheduling classes. A SCHED FIFO task
can only be preempted by a higher-priority SCHED FIFO task. If no such task is
scheduled, this task runs to completion without being preempted.

The current task to execute is found by popping the highest-prioritized heap. That is,
FIFO > RR > OTHER. When a task is to be preempted, it is pushed back into its priority
queue before popping the next task, possibly from a different queue4.

3.2.5 Global PID Hash

Like the O(n) scheduler had its pidhash array to enable quick lookups by PID, this scheduler
keeps a similar structure for the same reason. This is widely used by the API functions which
take a pthread t as argument.

The O(n) scheduler’s pidhash table is a fixed-size array which handles collisions by chaining.
The SHMAC scheduler uses the same – an array consisting of 16 linked lists. However, this
was a fairly recent choice: originally, a red-black tree was used.

A red-black tree has the benefit of performing lookups in O(log n), while the hash array
requires a full search, requiring O(n). However, insertions are O(1) with the hash array. In
practice, however, it was suspected that hash tables would be faster in spite of its worse
asymptotic runtime.

To make a final decision between the two, some simple benchmarking was performed. The
results are shown in Figure 3.2. As the results show, insertions are faster (although the
logarithmic scales somewhat hides this) by around 25-40% at 8-32 tasks and approaching
50% with hundreds of tasks. The conclusion for searches is also clear: for a reasonable
number of tasks, the hash table is significantly faster.

Another approach based on hashing was also considered, one that would insert in O(log n)
time: once we reach a certain load factor, allocate a new, larger hash table. Make a note
of the PID that caused this, so that lookups could efficiently be partitioned between the
old and new hash table. This scheme works well since we operate with monotonic PIDs.
This extension was however not deemed necessary, as the fixed-size hash table should be fast
enough for all reasonable use cases.

4If the next task to be run is from the same queue as the current one, a combined push/pop is performed
instead, which is faster.

CHAPTER 3. THE SHMAC SCHEDULER 29

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048

T
im

e
(m

s)

Number of tasks inserted/searched

Performance comparison of RB-tree and linked list

Insert Hash
Insert RB-Tree

Search Hash
Search RB-Tree

Figure 3.2: A comparison of red-black trees and hash tables with chaining.

3.2.6 Task Blocking

In addition, there are three priority queues used to keep track of blocked tasks. Tasks can
block when they call pthread cond wait, pthread cond timedwait or
pthread barrier wait. When tasks are blocked, they are removed from their normal
priority queue and put into one of these three instead. On every call to the scheduler, the
root element of every blocking queue is checked to see if it should be rescheduled.

If a task is to be woken up, the following operations are performed (in user mode, not by the
scheduler itself):

1. The core in question is locked (thus preventing the scheduler from interrupting the
process).

2. The blocking queue is scanned until the task is found5.

3. The task has its blocking flag updated and the task is moved towards the head of
the priority queue.

The next time the scheduler runs on the core to which the task belongs, the task will be
woken up and put back into the normal runqueue.

5An unfortunate O(n) operation. This implementation should be optimized

CHAPTER 3. THE SHMAC SCHEDULER 30

3.2.7 Task Joining

Task joining works somewhat differently: There is no priority queue onto which the task is
pushed; rather it is added to a linked list. A task A calling pthread join on a task B
typically goes through the following steps:

1. If B’s PID is higher than that of the most recently started thread, A will busy-wait
until the task exists6.

2. If B is running, queued or blocked, A will suspend itself. This is done by setting
the task joining flag on itself and invoking the scheduler. The scheduler will then
remove A from the runqueue along with a reference to B.

3. Every call to the scheduler will iterate through its list of (A,B) pairs. If task B has
moved to state DEQUEUED, task A will be immediately granted a timeslot.

4. When A resumes, it will collect the return value of B and call free task(B). This
removes B from the global task queue and frees up all memory allocated by B.

Once again, the scheduler will have to perform an O(n) operation: scanning the list of join-
blocked tasks. In practice, the expected number of items is low. For most workloads, it will
be zero or one. Certain workloads, however, could have to scan through tens of tasks – still
a fairly cheap operation.

Two other implementations were considered for task joining:

1. Use a priority queue like, for instance, pthread cond wait does.

2. Add a backward-reference to task A on task B so task B can wake task A up when it
exits.

The first approach was in some ways the simplest, as we could simply reuse the structures
that were already in place to support this. However, it would have required different locking
semantics than the other blocking queues. This would require inter-core locking when a task
was to be woken up. This was deemed too costly.

The second approach has the advantage of being both very simple and elegant. However, it
still requires us to lock another core when adding the reference, in case task B finishes while
we’re in the process of blocking task A. In contrast to the first approach, the looking period
would be constant.

6The standard does not dictate any particular behavior in this case. This implementation chooses to wait
for the task instead of failing immediately.

CHAPTER 3. THE SHMAC SCHEDULER 31

0

1

2

3

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
or

e

Time (s)

Scheduler Event Log

sta
rt

t16

sta
rt

t17

sta
rt

t25

sta
rt

t37

sta
rt

t33

sta
rt

t29

sta
rt

t41

sta
rt

t21

sta
rt

t18

sta
rt

t21

sta
rt

t25

sta
rt

t29

sta
rt

t33

sta
rt

t37

sta
rt

t41

sta
rt

t16
sta

rt
t38

sta
rt

t34

sta
rt

t30

sta
rt

t26

sta
rt

t22

sta
rt

t22

sta
rt

t26

sta
rt

t30

sta
rt

t34

sta
rt

t38
sta

rt
t19

sta
rt

t39

sta
rt

t35

sta
rt

t31

sta
rt

t19

sta
rt

t27

sta
rt

t23

sta
rt

t23

sta
rt

t27

sta
rt

t31

sta
rt

t35

sta
rt

t39
sta

rt
t20

sta
rt

t40

sta
rt

t36

sta
rt

t32

sta
rt

t28

sta
rt

t24

sta
rt

t20

sta
rt

t24

sta
rt

t28

sta
rt

t32

sta
rt

t36

sta
rt

t40

15
20
25
30
35
40
45

Figure 3.3: A program with 25 threads (plus the main thread) each waiting for one another.
Each dot represents a scheduler event, labeled according to type. Each core has its own
“timeline” parallel to the X-axis, which represents time. This particular plot shows the
(relatively) long time spent joining tasks across cores.

The implementation of the second approach would be simple: replace the waits for field
in the task struct with a waited by field. Add some checks to the task finalization pro-
cess to restore the task found in this field, if non-null. This would have the side-effect of
simultaneously (potentially, at least) moving the task to another core.

The relative performance of this second approach to the one currently used was never exam-
ined. For our intents and purposes, the choice seemed arbitrary: both solutions offer more
than acceptable performance. However, the second approach has an elegance to it that makes
it appealing.

Another point worth noting here is related to the explicit invocation of the scheduler. When
task A realizes that task B is not finished, it yields to the next task immediately. Once a
task finishes, it does the same. This leaves us with a very effective scheme for intra-core task
joining: no time is unnecessarily spent busy-waiting.

There is no way to interrupt another core, so inter-core joining does not enjoy the same
benefits. Here task A must wait for the timer interrupts to realize that task B has finished.

Throughout the rest of this thesis, a specific type of event plot will be used to illustrate the
choices the scheduler makes. One such plot is shown in Figure 3.3. Each dot in the plot
represents an event related to a specific task. The type of event and corresponding task ID
is shown in a label next to the dot. Events are colored by task ID, although the coloring
is not consistent between plots. The plots are generally filtered by event type to keep the
them easily readable. Time is represented linearly along the X-axis while the Y-axis shows
different cores. Events at y = 0 has events for core 0, y = 1 for core 1, and so on. Since tasks
can migrate between cores, they can move between different “y-lines” in the plots as well.

As well as introducing the plot figures, Figure 3.3 shows behavior related to task joining. It
illustrates a simple recursive summing scheme, which heavily depends on fast task joining.
Explicitly created tasks are given IDs from 17 through 40. Each one joins its predecessor,

CHAPTER 3. THE SHMAC SCHEDULER 32

except 17, which immediately returns a constant value (one). All other threads return its
predecessor’s return value plus one. The main task (task 16) joins the last task (task 40).

In the 0.2-0.3 second time range, tasks are rapidly created and started. Cores 1 through 3
have synchronized timers whereas core 0 is slightly ahead of the others. When each core starts
scheduling the tasks it has been assigned, they are all suspended quickly once they reach their
respective pthread join calls. One by one, they are awakened as their predecessors finish.

Because of the way tasks are assigned (to the least busy core), tasks on core C always join
a task on core (C − 1) mod 4. With a timer rate of 10Hz, this takes 100ms as long as the
scheduler timers are synchronized. Because of lucky timing differences, core 0 can join tasks
on core 3 in approximately 3ms.

3.2.8 Work Requesting

To balance tasks between cores, there are two basic approaches that can be taken: work
requesting or work stealing.

This scheduler chose work requesting. The main reason for this choice was to avoid locking.
In order for core 1 to steal tasks from core 2, core 1 would have to lock core 2’s runqueue.
Since the scheduler is primarily triggered by synchronized timer events, core 2 would in all
likelihood already have locked its own runqueue. In addition, there could be several other
cores waiting for the same lock – only to find that there might not be work there to be stolen.

For that reason, the more elegant solution of work requesting was chosen. This works the
following way:

1. When a core is about to schedule the idle task, it sends out a work request to another
core7. Each core has N message queues, N being the maximum number of CPUs in
the system. It also sets a flag to signal to the other core that it has pending messages.
This is purely an optimization to avoid having to scan all messages queues every time.

2. On every call, the scheduler function checks to see if the flag has been set. If so, it
scans all N message queues (implemented using ring buffers, overflow messages are
simply dropped). If it has a work request, it checks to see if it has more than two tasks
running. If so, one of them is removed from the runqueue and sent in a response to the
requesting core.

3. The sending core will now see a work response message when the scheduler is invoked
and add it to its own runqueue.

A few things are of importance here:

7Specifically, it is sent to core idle->epoch count % CPU COUNT. This ensures that each core will ask
all other cores in a round-robin fashion as the epoch counter is incremented.

CHAPTER 3. THE SHMAC SCHEDULER 33

0

1

0 0.5 1 1.5 2 2.5 3 3.5

C
or

e

Time (s)

Scheduler Event Log

sta
rt

t16

sta
rt

t17

sta
rt

t25

sta
rt

t19

sta
rt

t23

sta
rt

t24

sta
rt

t20

sta
rt

t18

sta
rt

t21

sta
rt

t21

sta
rt

t23

sta
rt

t25

sta
rt

t19

sta
rt

t18

sta
rt

t24

sta
rt

t20

sta
rt

t20

sta
rt

t24

sta
rt

t23

sta
rt

t21

sta
rt

t16

sta
rt

t25

sta
rt

t25

sta
rt

t21

sta
rt

t24

sta
rt

t20

sta
rt

t23

sta
rt

t23

sta
rt

t20

sta
rt

t16

sta
rt

t24

sta
rt

t24

sta
rt

t20

sta
rt

t16

sta
rt

t23

sta
rt

t0

sta
rt

t25

sta
rt

t16

sta
rt

t25

sta
rt

t16

sta
rt

t1

sta
rt

t26

con
t t26

con
t t26

con
t t26

con
t t26

con
t t26

sta
rt

t1

con
t t1

sta
rt

t22

sta
rt

t17

con
t t17

sta
rt

t22

con
t t22

sta
rt

t17

con
t t17

sta
rt

t22

con
t t22

sta
rt

t17

sta
rt

t22

sta
rt

t1

con
t t1

sta
rt

t18

sta
rt

t19

con
t t19

sta
rt

t18

con
t t18

sta
rt

t19

con
t t19

sta
rt

t18

sta
rt

t1

con
t t1

sta
rt

t21

con
t t21

sta
rt

t1

con
t t1

0
5
10
15
20
25
30

Figure 3.4: Core 1 requesting work from core 0. All tasks are initially given to core 0 (for
illustrative purposes) and core 1 initially starts executing the idle task.

1. A work response is a binding agreement that the receiving core will execute the task it
is given, even if it receives tasks from several cores. This to simplify the semantics of
guaranteeing that no tasks are lost

2. Messages could potentially be lost. Each core can only receive N messages from any
one core. This should not happen as long as the sending core doesn’t ”spam” any one
core, and all cores process their message queues regularly.

3. A core could potentially idle for two timeslices waiting for a response to come.

The work requesting process is shown in Figure 3.4. As the figure illustrates, a core can
potentially end up with more than one task. In this case, core 1 had time to send out two
work requests to core 0, both of which were responded to.

3.2.9 Core Bootstrapping

The SHMAC starts with a single core active: core 0. This core has to manually trigger the
other cores to start by setting a memory mapped register to 1: *SYS READY = 1. When
core 0 starts, it is not executing a schedulable task: there is no timer-triggered scheduler
active on the core.

All the bootstrapping is done when core 0 first makes a call to pthread create. The
entire function can be seen in Listing 3.1.

1 int pthread_create(pthread_t *t, const pthread_attr_t *attrs,
2 void *(*func)(void *), void *arg)
3 if (!boot_pthreads_called()) {
4 boot_pthreads();
5 }
6

7 sched_entity_t *se = task_create(t, attrs, func, arg, 1, 1, 0,
8 PTHREAD_CANCEL_ENABLE);
9 if (se == NULL) {

10 errno = ENOMEM;

CHAPTER 3. THE SHMAC SCHEDULER 34

11 return ENOMEM;
12 }
13

14 if (se->task != NULL && task_enqueue(se)) {
15 return 0;
16 }
17

18 return ENOMEM; // probably
19 }

Listing 3.1: The pthread create function.

The first if-block is the interesting part: it is responsible for initializing the rest of the cores
the first time the function is called. The entire boot pthreads function looks like this:

1 void boot_pthreads()
2 {
3 assert(!boot_pthreads_called());
4

5 sched_init();
6 start_cores();
7 schedule_me();
8 wait_for_cores();
9 }

Listing 3.2: The four steps involved in bootstrapping the threading library.

These four steps bootstrap all cores, set up necessary per-core state and wait for it all to get
ready. In more detail, this is what happens:

1. sched init() initializes global task state and calls core init() for each core.
This function sets up all core-specific state, such as locks and runqueues.

2. start cores() is the one that actually sets *SYS READY = 1. It also sets a global
variable main function to the address each core should start executing from. There
is a check in crt0.S that will branch to this address if it is non-zero, otherwise main()
is executed. This is where the rest of the core’s execution deviates from the first core’s.

3. This branch target schedules the idle task on the local core. It then starts the local
timer, which will periodically invoke the scheduler. It also sets the core state to ready.
If the calling core is not 0, the function enters an infinite loop at this point, waiting for
the scheduler to change context. For core 0, the function returns normally.

4. Subsequently, schedule me() is called. This is a special function that makes the
current execution context a schedulable task. In this case, the context is core 0’s
execution of main(). This step is required to put core 0 in the same state as the other
cores; ready to execute tasks assigned by the scheduler.

5. When core 0 returns from schedule me() as a scheduler controlled task, it calls
wait for cores(), which blocks until the other cores are ready. They are typically
already ready, so this waiting period is short.

CHAPTER 3. THE SHMAC SCHEDULER 35

3.2.10 Event Logging

A simple event logging mechanism was included to help analyze the internals of the scheduler.
If compiled with -DENABLE EVENT LOGGING, the library will register events such as thread
creation, preemption, joining and exiting. A call to dump log() (or dump log mem(),
which stores it to memory) will print a chronologically merged view of all logs.

To get as precise event timestamps as possible (and to avoid possible deadlocks), the library
is lock-free. Each core has two event logs: one for user mode and one for privileged mode
(used in IRQ/supervisor mode). When dump log() is called, the logs are merged according
to timestamps.

Each event contains the following fields:

1. A timestamp, measured in ticks.

2. The core the event was triggered on.

3. The actual event, represented both as an integer and a string.

4. Optional: the thread in-memory address and ID that was associated with the event.

5. Optional: event-specific parameters.

The output is dumped as comma-separated values which can easily be plotted, for instance
with Gnuplot8. An example output is shown in Listing 3.3.

Since there are no easy way to debug on SHMAC other than using printf statements,
the event logging mechanism was the foremost source of data used for debugging purposes.
printf is problematic for several reasons:

1. If used lock-free, the outputs from different cores will collide and result in unreadable
output.

2. If locking is added to prevent that problem, deadlocks can easily occur if printing is
used in both user mode and interrupt mode, which it typically is.

3. printf statements add substantial overhead, both because of locking and because out-
putting text is relatively slow. If the cause of a bug is timing-related, this is particularly
unfortunate. Printing a single log statement like the ones shown in Listing 3.3 takes
around 1ms. Logging the same data to memory takes around 25 to 35µs, depending
on the number of optional parameters.

These shortcomings were the reason a logging mechanism was implemented in the first place.

8http://www.gnuplot.info/

http://www.gnuplot.info/

CHAPTER 3. THE SHMAC SCHEDULER 36

/* The columns are:

* - timestamp (in ticks; there are 60e6/1024 ticks per second)

* - core ID (all cores are numbered from 0 through N-1)

* - event ID (a unique integer ID for each event type)

* - event string (a short, textual representation meant for plotting)

* - task address (the in-memory address of the task)

* - task ID (the thread ID (pthread_t) as exposed to the user)

* Additionally, each event can specify extra integer parameters.

*/

114110,3,12,irqs,0x1f9ba14,3 // irq start on core 3
114120,3,3,cont,0x1f9ba14,3 // task 3 (idle) continues on core 3
114123,3,16,irqf,0x1f9ba14,3 // irq finishes on core 3
114179,1,12,irqs,0x1fdba14,1 // irq start on core 1
114190,1,18,mqreqr,0x0,0,0 // core 1 received request from core 0
114206,1,18,mqreqr,0x0,0,2 // core 1 received request form core 2
114228,1,3,cont,0x1fdba14,1 // task 1 (idle) continues on core 1
114231,1,16,irqf,0x1fdba14,1 // irq finishes on core 1
114239,0,12,irqs,0x27f08,0 // irq starts on core 0
114253,0,18,mqreqr,0x0,0,3 // core 0 received request from core 3
114276,0,4,stop,0x27f08,0 // core 0 stops the idle task
114279,0,11,jnviv,0xb4080,16,56 // core 0 wakes task 16 because 56 is finished
114286,0,2,start,0xb4080,16 // core 0 starts task 16
114289,0,16,irqf,0xb4080,16 // irq finishes on core 0
114293,0,9,jnd,0xb4080,16,56 // task 16 joined task 56 (user-space event)

Listing 3.3: A sample output from the event logger. The comments are not part of the
output. The event names are abbreviated so they can easily fit in an event plot.

CHAPTER 3. THE SHMAC SCHEDULER 37

3.2.11 Task Prioritization

In order to decide which task to schedule, the binary heap needs a way to establish a par-
tial ordering of tasks. This is done differently for each scheduling class. This is a fairly
straightforward process, at least for the RR and FIFO classes.

The SCHED OTHER prioritization function is the most complex. It compares two schedu-
lable entities (s1, s2) according to the following rules:

1. If s1 or s2 represents the idle task, select the other one.

2. Otherwise, compare with respect to the following ’goodness’ function:
goodness(s) = s->epoch sched count / s->task->prio.
Return the one with the lowest value.

Where s->epoch sched count is (essentially) the number of times the task has been
scheduled. It does, however, deviate from the true count in one significant way: it is initialized
to the value of the calling thread when the task is created. The following case illustrates the
purpose of this slight modification:

Imagine a system with a single CPU and two threads of equal priority. The first thread is
started at t = 0, while the second thread is started at t = 5s. With a timer frequency of,
say, 10, this first task will have been re-chosen by scheduler 49 times already. The second
task will have a count of zero and will thus have to ”catch up” with the first thread. The
first thread will then wait five seconds before it is scheduled again.

This is obviously not what we want. Instead, each task’s internal counter should optimally be
reset whenever a new task starts. Or equivalently, the new task can start its epoch counter
roughly equal to that of the currently running task (and adjusted to account for possibly
different task priorities).

The difference between these two cases are shown in Figure 3.5 and Figure 3.6. Both plots
illustrate what happens when four tasks are scheduled (task 17 through 20). Tasks are created
with fixed intervals and each perform a fixed amount of work. Figure 3.5 shows how task 18
is granted the same amount of time task 17 has already run for. This is obviously not an
acceptable trait in a scheduler.

Figure 3.6 shows the result of copying the counter from the active task each time a new task
is assigned to the same core. Once task 18 is spawned, it is immediately sharing its CPU
time evenly with task 17.

The comparison for SCHED RR tasks is simpler: simply chose the one that has been sched-
uled the fewest number of times. This is identical to the previous function, minus the ”idle”
task special case and dividing by p->prio.

The comparison for SCHED FIFO simply orders tasks (of equal priority) by when they were

CHAPTER 3. THE SHMAC SCHEDULER 38

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
or

e

Time (s)

Scheduler Event Log

ass
ign

t0

ass
ign

t16

sta
rt

t16

ass
ign

t17

ass
ign

t18

ass
ign

t19

ass
ign

t20

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t16

sta
rt

t0

sta
rt

t16

ass
ign

t1

sta
rt

t17

sta
rt

t18

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t18

sta
rt

t17

sta
rt

t18

sta
rt

t20

sta
rt

t19

sta
rt

t20

sta
rt

t17

sta
rt

t18

sta
rt

t17

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t18

sta
rt

t17

sta
rt

t18

sta
rt

t20

sta
rt

t19

sta
rt

t20

sta
rt

t1

0
5
10
15
20

Figure 3.5: Scheduling tasks by selecting the one that has been allowed to run the fewest
number of times. This allows task 18, 19 and 20 to run for approximately 0.5 seconds each
before better balancing is achieved.

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
or

e

Time (s)

Scheduler Event Log

ass
ign

t0

ass
ign

t16

sta
rt

t16

ass
ign

t17

ass
ign

t18

ass
ign

t19

ass
ign

t20

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t16

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t16

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t0

sta
rt

t16

ass
ign

t1

sta
rt

t17

sta
rt

t18

sta
rt

t17

sta
rt

t18

sta
rt

t19

sta
rt

t18

sta
rt

t17

sta
rt

t18

sta
rt

t20

sta
rt

t19

sta
rt

t20

sta
rt

t17

sta
rt

t18

sta
rt

t17

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t18

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t18

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t20

sta
rt

t19

sta
rt

t20

sta
rt

t1

0
5
10
15
20

Figure 3.6: Choosing task to run by using the modified task sched count field, instead
of the true count as in 3.5. As a result, tasks are perfectly balanced immediately.

CHAPTER 3. THE SHMAC SCHEDULER 39

created
(p->created time), effectively turning the heap into a FIFO queue.

The three ordering functions can be found in Appendix D.

3.3 Pthreads API

The previous sections described the inner workings of the scheduler. It is now time to take
a look at the external interface used to interact with the scheduler: the Pthreads API.

There was no fixed goal regarding function implementation coverage before starting this
work. Obviously as much as possible should be implemented, but 100% coverage was never
thought of as a feasible goal.

This stems both from the fact that architectural limitations would render some functions
impossible to implement9 and the limited time available on this project. However, many
Pthreads functions are infrequently used – implementing the top 10-20 functions alone would
suffice for a very high degree of compatibility.

The Newlib header file pthread.h consist of function definitions from draft 10 of the
POSIX.1c standard (IEEE Std. 1003.1c-1995). Two functions are present in the standard
but not in the header file: pthread kill and pthread sigmask. Thread signaling is
thus not included in the implementation.

So while not all functions were implemented, a large enough subset to support most applica-
tions is considered to be fully functional. Table 3.1 shows all functions mentioned in Newlib’s
pthread.h header file, their implementation status and possibly a related comment. A sta-
tus of ”Ok” means that the function should be fully POSIX compliant. A status of ”Ok*”
means that the function exists, but should not be expected to behave in a useful manner.
It is likely a dummy function that has no actual effect. This status is typically applied to
functions that cannot be implemented due to either SHMAC or software platform limitations
(no operating system).

Similarly, ”Missing” means that the function is completely absent from the library and could
probably be implemented. However, a status of ”Missing*” indicates that a function is
missing for a good reason.

9Without a complete operation system, it makes little sense to implement the functions that relate to
processes. The lack of virtual memory and memory protection makes stack guard implementations too
inefficient to implement.

CHAPTER 3. THE SHMAC SCHEDULER 40

Table 3.1: Implementation coverage of Newlib’s
pthread.h header file.

Function Impl. status Comment
pthread atfork Missing* No processes, no forking

pthread attr destroy Ok
pthread attr getdetachstate Ok

pthread attr getguardsize Ok* No memory segments, dummy function
pthread attr getinheritsched Ok
pthread attr getschedparam Ok
pthread attr getschedpolicy Ok

pthread attr getscope Ok* No processes, no scope
pthread attr getstack Ok

pthread attr getstackaddr Ok
pthread attr getstacksize Ok

pthread attr init Ok
pthread attr setdetachstate Ok

pthread attr setguardsize Ok* No memory segments, dummy function
pthread attr setinheritsched Ok
pthread attr setschedparam Ok
pthread attr setschedpolicy Ok

pthread attr setscope Ok* No processes, no scope
pthread attr setstack Ok

pthread attr setstackaddr Ok
pthread attr setstacksize Ok

pthread barrierattr destroy Ok
pthread barrierattr getpshared Ok* No processes, no sharing

pthread barrierattr init Ok
pthread barrierattr setpshared Ok* No processes, no sharing

pthread barrier destroy Ok
pthread barrier init Ok

pthread barrier wait Ok
pthread cancel Ok

pthread cleanup pop Ok
pthread cleanup push Ok

pthread condattr destroy Ok
pthread condattr getpshared Ok* No processes, no sharing.

pthread condattr init Ok
pthread condattr setpshared Ok* No proocesses, no sharing.

pthread cond broadcast Ok
pthread cond destroy Ok

pthread cond init Ok
pthread cond signal Ok

pthread cond timedwait Ok
Continued on next page

CHAPTER 3. THE SHMAC SCHEDULER 41

Table 3.1 – continued from previous page
Function Impl. status Comment

pthread cond wait Ok
pthread create Ok
pthread create Ok
pthread detach Ok
pthread equal Ok

pthread exit Ok
pthread getcpuclockid Missing* No clockid t in Newlib.

pthread getschedparam Ok
pthread getspecific Ok

pthread join Ok
pthread key create Ok
pthread key delete Ok

pthread mutexattr destroy Ok
pthread mutexattr getprioceiling Ok*

pthread mutexattr getprotocol Ok*
pthread mutexattr getpshared Ok* No processes, no sharing.

pthread mutexattr gettype Ok*
pthread mutexattr init Ok

pthread mutexattr setprioceiling Ok*
pthread mutexattr setprotocol Ok*
pthread mutexattr setpshared Ok* No processes, no sharing.

pthread mutexattr settype Ok*
pthread mutex destroy Ok

pthread mutex getprioceiling Missing
pthread mutex init Ok
pthread mutex lock Ok

pthread mutex setprioceiling Missing
pthread mutex timedlock Ok

pthread mutex trylock Ok
pthread mutex unlock Ok

pthread once Ok
pthread rwlockattr destroy Ok

pthread rwlockattr getpshared Ok* No processes, no sharing.
pthread rwlockattr init Ok

pthread rwlockattr setpshared Ok* No processes, no sharing.
pthread rwlock destroy Ok

pthread rwlock init Ok
pthread rwlock rdlock Ok

pthread rwlock timedrdlock Missing No timeout support implemented.
pthread rwlock timedwrlock Missing No timeout support implemented.

pthread rwlock tryrdlock Ok
pthread rwlock trywrlock Ok

Continued on next page

CHAPTER 3. THE SHMAC SCHEDULER 42

Table 3.1 – continued from previous page
Function Impl. status Comment

pthread rwlock unlock Ok
pthread rwlock wrlock Ok

pthread self Ok
pthread setcancelstate Ok
pthread setcanceltype Ok

pthread setschedparam Ok
pthread setspecific Ok

pthread spin destroy Ok Spinlocks are just wrappers
pthread spin init Ok for pthread mutex *.
pthread spin lock Ok Both are spin locks, there is no

pthread spin trylock Ok scheduler cooperation here.
pthread spin unlock Ok

pthread testcancel Ok* All cancellation is asynchronous

Some functions that are not in Newlib’s pthread.h were implemented. These functions
are marked as ”non-portable” by including the ” np” suffix to the function same, such as
”pthread setaffinity np”.

The non-portable functions included are:

pthread delay np
This is a simple sleep function that delays execution by the specified struct timespec

*interval. Internally, it is a busy-wait loop.

pthread num processors np
Returns the number of processors in the system.

Unfortunately, the most useful of the non-portable functions are missing: those that control
task affinity. This is a useful mechanism to control which cores a task can be run on.

Internally, the scheduler supports task pinning, but not full affinity control. This is not
implemented because Newlib does not provide the required type definition (cpu set t) and
the related functions to modify CPU sets.

3.4 Project Structure

As a starting point for possible future work on the library, an overview of the source code
is included. Figure B.1 shows the source code’s placement in the overall SHMAC project
structure. Figure 3.7 shows the folder structure of the project.

CHAPTER 3. THE SHMAC SCHEDULER 43

Folder SLOCCount GNU wc

src/ 1,652 2,286
src/data/ 828 1,425
src/sched/ 262 419
src/external/ 2,157 2,825
src/tests/ 1,380 1,955
Total 6,279 8,910

Table 3.2: The amount of code per folder in the project.

The Makefile provides two important rules: pthread.a and test. The default rule is pthread.a,
which builds the library as an archive. The test rule creates a test binary. This application
can be run on SHMAC and will perform a series of unit tests.

bin/ contains a collection of scripts10 that can be used to analyze scheduler logs. For instance,
all event plots in this thesis is generated by shmac timeline. There are other scripts that
extract several other kinds of useful data as well.

src/ is the main source code folder. All files related to core scheduler features are placed
directly in this folder, such as boot.c, task.c and timer.c. Header files are placed next to their
corresponding .c files, not in a separate directory.

The data/ sub-folder contains data structures commonly used by the scheduler. The complete
list in shown in the figure.

sched/ contains all common header files used, definitions of the task t and core t structs
and implementation of the heap backend. If one were to write a second backend, (say, one
based on linked lists) one would add linkedlist.{c,h} here and add a few lines in sched.h to
incorporate it.

external/ defines all functions found in pthread.h. Most of them are fairly short functions
that interact with either the scheduler or the task t struct in some way.

The tests/ folder contains unit tests. These are logically grouped into source code files and
each declare one top-level invocation function. test.c contains the code that calls each of
these top-level unit test functions in turn. All tests are based on assertions, as defined in
assert.h.

obj/ contains all object files generated by the compiler. It duplicates the folder structure
from src/.

The total amount of code per folder (as counted by SLOCCount11 and GNU wc12) is shown
in Table 3.2.

10Mostly Perl, with one or two exceptions in Bash.
11http://www.dwheeler.com/sloccount/
12https://www.gnu.org/software/coreutils/manual/html_node/wc-invocation.html

http://www.dwheeler.com/sloccount/
https://www.gnu.org/software/coreutils/manual/html_node/wc-invocation.html

CHAPTER 3. THE SHMAC SCHEDULER 44

pthreads/

obj/

tests/

external/

sched/

data/

boot.o,core.o,event log.o,...

src/

tests/

...
pthreads misc.{c,h}
pthreads threading.{c,h}
test.{c,h}

external/
pthread create.c

sched/
heap.{c,h}
{enums,task,sched}.h

data/

ring buffer.{c,h}
rb tree.{c,h}
linked list.{c,h}
heap.{c,h}

boot.{c,h},core.{c,h},event log.{c,h},...

bin/

...

shmac timeline

shmac irq

Makefile

Figure 3.7: The code structure of the Pthreads library project.

CHAPTER 3. THE SHMAC SCHEDULER 45

Library component Unit test status

Data structures
Red-black trees Very good
Binary heaps Very good
Ring buffer Very good
Linked lists Very good

Core components
Basic threading (create/join/exit/cancel/etc.) Very good
Scheduling behavior (prioritization/fairness) None
Thread-local storage (get-/setspecific) Very good
Mutexes Very good
Spin-locks None
Condition variables None
R/W-locks None
Barriers None

Table 3.3: Test coverage status by library component.

3.5 Test Coverage

There are some basic unit tests included in the project. These tests cover the internal data
structures used, such as red-black trees and heaps, as well as the external Pthread API
functions. The test coverage is unfortunately not complete. Table 3.3 shows test coverage
status by library component.

In addition to writing unit tests from scratch, many were copied from the POSIX threads for
Embedded Systems project. Some tests were excluded because they were either too similar
to one another or because they went beyond the Pthread specification and tested behavior
specific to that implementation.

As table 3.3 shows, scheduler behavior is generally not verified through unit testing. This
area has been easier to confirm by extracting data from the event logs and verifying that
the scheduler does what it is expected to. The scheduler has been thoroughly verified in this
fashion.

The overall status of the library is that the core features are thought to be bug-free. More
peripheral features, such as R/W-locks and barriers, are less extensively tested.

CHAPTER 3. THE SHMAC SCHEDULER 46

3.6 Known Issues

The goal of the library should of course be to be completely bug-free. While this is unfor-
tunately hard to verify, there are currently no known bugs. Unit tests and general usage of
the library for the purposes of porting existing applications have given reasonable confidence
that the core features of the library behave as expected and perform well.

One serious bug was discovered, but as it seemed to be related to the hardware platform
rather than the software, it will not be discussed here. This bug is presented in Chapter 6.

Chapter 4

The SHMAC Profiler

To get a clear picture of how well the scheduler performed, some kind of profiler was needed.
The logging mechanism described in section 3.2.10 is good for examining program flow in a
very coarse-grained fashion, but there are some limitations to it:

1. The timestamps included are not precise enough for general profiling.

2. The log event function is too heavy to be called tens or hundreds of times per second.

3. To be used for profiling, the programmer would have to manually insert log statements
at every point to be profiled.

For these reasons, a full-fledged profiler was written. Two approaches were considered:

1. Add support for GCC’s -pg flag, which makes the application profile itself through a
combination of instrumentation and sampling. The application will then record every
call arc, but not function returns. The application will write its profile to a file called
gmon.out to be read by GNU gprof.

2. Use GCC’s -finstrument-functions flag to have GCC insert special function
calls to every function: cyg profile func enter and cyg profile func exit.
Use this to trace the call tree. The sampler can then increment a counter for the current
node in the tree.

The first approach has the clear benefit of being able to utilize the existing profiler gprof.
However, -pg only registers when a function starts, not when it exits. As such it does not
have a precise trace of the program’s execution. It uses sampling to gauge how much time a
function takes, but it cannot tell several calls to the same function apart, and thus assumes
that a function’s execution time is independent of where it was called from.

47

CHAPTER 4. THE SHMAC PROFILER 48

It also requires that an instrumented version of libc is available, called libc p. In addition,
it requires a modified version of the startup script, gcrt0. Finally, the profile is written to
disk by a exit routine installed by atexit().

The requirements would then be:

1. Modify Newlib to compile the addition libc p archive.

2. Modify our current startup script and compile it to gcrt0.

3. Implement Newlib’s I/O function stubs to write to an in-memory file which we can
then extract afterwards.

It was decided that it would be easier to write a minimal profiler using -finstrument-
functions and a simple program to produce the profile output in a human-readable fashion.
This solution is also more flexible since the user has complete control over which functions
are instrumented. On the other hand, the required instrumentation will be more expensive
than the one required for -pg.

4.1 Profiler Implementation

The profiler uses the special function calls inserted by GCC to trace program execution. This
data is used to create an in-memory call tree.

Every distinct function1 is represented by its own node in the call tree. Every node stores
the following:

• A reference to its parent node

• The address of the function this node represents

• The address this node (function) was called from

• A list of pointers to child function nodes

• Two fields used for statistical purposes: call arc traversal count and PC (Program
Counter) sample counter

The current state of the tracing is stored by keeping a reference to the current node in
the tree. This reference will be updated on every call to the enter/exit routines. On enter, it
will look up a call in the children list. If a match is found, the current pointer is updated

1Two function nodes are indistinct if and only if their respective functions have the same address and
were reached through the exact same call path. A call arc is uniquely identified by its (lr, pc) tuple.

CHAPTER 4. THE SHMAC PROFILER 49

to point to that node. If no match is found, an entry is created before current is updated.
On exit, it will use the parent reference to move up one level.

An interesting design decision is thus how child references are stored. Every call to the enter
function will need to do a lookup in this list to check if a given call arc has been traversed
before. This is an important decision with regards to performance.

It was decided that hashing by function call address was likely the best option. However,
since reallocating memory in the enter/exit functions can cause spurious delays in the in-
strumentation functions, a solution that didn’t rely on growing memory at profile-time was
needed. The solution became a linked list of fixed-size blocks, each having room for 16
function calls. The hashing logic thus became:

1. Check at index hash(lr, pc) in the first block. If a match is found, use this index.

2. If no match is found, check index hash(lr, pc) in the next block (if it exists). If a match
is found, return this index and a reference to the block. If not, keep following the linked
list of blocks and checking index hash(lr, pc) for a match.

3. If the end is reached without finding a match at index hash(lr, pc), default to scanning
each block sequentially, but starting at index hash(lr, pc) + 1 and stopping at index
hash(lr, pc)− 1 (accounting for wrap-around to index 0, of course).

This gives us an open-addressing scheme that allows for functions to have a virtually unlimited
number of function calls in them. The hashing function is:

hash(lr, pc) = (lr/4) mod CHILD BLOCK SIZE

We obviously expect the compiler to optimize this into right shifts and bitwise AND, since
SHMAC executes divisions (and modulo) in software.

Also note that we are not using the program counter in the hashing. For normal function
calls, this is not important since the link register uniquely identifies it. However, this is not
true in the case of function pointers. The profiler does look at both the LR and PC values to
check for uniqueness so indirect function calls would not be coalesced by accident. However,
extensive use of indirect jumps from the same function node could potentially lead to slow
hash table lookups. In the interest of keeping the common case as fast as possible, PC was
not included in the hash function.

The actual data structures are shown in Listing 4.1. The constant CHILD BLOCK SIZE is
set to 16. Figure 4.1 illustrates how this works for a block size of 2.

Buffers of both these structs are allocated and zeroed out when the profiler is initialized
to avoid the cost of doing so mid-profiling. The rather arbitrary constant sizes chosen for
these two struct buffers are 8,192 and 16,384. This means that the call tree can contain no
more than 8,192 functions, and, on average, each one of these can take no more than two

CHAPTER 4. THE SHMAC PROFILER 50

1 struct call_list {
2 struct function_node *calls[CHILD_BLOCK_SIZE];
3 struct call_list *next_block;
4 struct call_list *first_block; // same as function_node.calls
5 };
6

7 struct function_node {
8 struct function_node *parent;
9 unsigned int sample_count; // incremented by irq

10 unsigned int call_count; // incremented in ’enter’ function
11 void *pc;
12 void *lr;
13

14 struct call_list *calls;
15 };

Listing 4.1: The data structures used to represent an in-memory call tree. Each
function node can contain any number of call lists, which are chained in a linked
list. All structures are pre-allocated.

schedule@0xf0

0x130 0x134 0x1200 0x12f4

lock@0x1000 core_get@0x2000

NULL 0x12fc

choose_task@0x5000 request_work@0x5000 log_event@0x3f00

NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL

Figure 4.1: A visualization of how functions and call lists, as defined in Listing 4.1, relate to
one another. This example shows the schedule function calling five other functions.

CHAPTER 4. THE SHMAC PROFILER 51

1 (
2 calltree=(
3 pc=0,lr=0,samples=491,calls=0,
4 children=[
5 (
6 pc=8dd8,lr=92c4,samples=0,calls=7,
7 children=[
8 (pc=2ca4,lr=8e08,samples=0,calls=7,children=[])
9]

10),(...)
11]
12),
13 histogram=(
14 1198,1360,13dc,145a0,1748,1718,
15 16fc,1a10,1ab0,1a80,1d40,1db4,
16 1d20,20e0,20e0,2368,23c8
17)
18)

Listing 4.2: An example of the kind of output the profiler can generate.

call lists (32 function calls). For these constants, the profiler will require 1,312kB of
memory plus whatever it estimates for the histogram, which is typically anywhere from 10kB
to 1MB.

In addition to the tree, every PC sample is stored in a histogram. When the profile output
is finalized, the histogram is scanned and addresses with non-zero sample counts are printed
(possibly repeatedly). Since GCC does not provide us with any symbols to determine the
exact size of the .text segment, we use data start (and the assumption that .text
starts at address zero) to estimate the size of the .text. We allocate a buffer of this size to
serve as our histogram; the PC register is used directly to index it during a timer interrupt
event.

Just like its in-memory representation, the profiler produces a tree-like output format. Instead
of using a binary format like gprof, the output is human-readable. An example is shown in
Listing 4.2. The whitespace is added here for clarity.

4.2 Parsing The Output

A simple Python program (named shmac prof) was written to generate a call tree and print
some useful statistics. It currently supports the following outputs:

• Printing the critical path along with time spent in each function.

• Printing the full call tree, annotated will timing information.

CHAPTER 4. THE SHMAC PROFILER 52

• Printing a flat list of all functions and how much time was spent in each one.

In addition, some functionality exists to print only the interesting parts of the call tree. An
example is shown in Listing 4.3.

1 shmac_prof --pt -u core_tq_update_current \
2 --uc 2 -f ./shmac.elf <prof.txt

Listing 4.3: An example invocation of the shmac prof program.

--pt prints the call tree and -u specifies that we are specifically looking for the
core tq update current function in the call tree. --uc 2 means that the tree should
be pruned to be only two levels deeper than the functions specified with -u. -f specifies
the binary that produced the profiling output in prof.txt. This is needed to look up function
names by their addresses using addr2line. Finally, the instrumentation data is read from
standard input.

An example of the output is shown in Listing 4.4.

1 schedule (0x0) - 100.00% (20074) - 13.95% (2800) - 0 calls
2 pick_from_heap (0x6fc4) - 9.65% (1937) - 2.99% (601) - 14984 calls
3 core_tq_update_current (0x6e2c) - 2.01% (404) - 1.57% (315) - 14984 calls
4 update_active_queue (0x28a8) - 0.44% (89) - 0.44% (89) - 14984 calls
5 push_residual_tasks (0x297c) - 0.00% (0) - 0.00% (0) - 9591 calls
6 linked_list_head (0x25b8) - 0.00% (0) - 0.00% (0) - 9591 call

Listing 4.4: A textual representation of the call tree, as outputted by the SHMAC profiler.

The output in Listing 4.4 contains:

• Function name.

• Where the function was called from.

• Percentage of samples that belong to this node or a child node.

• Number of samples that belong to this node or a child node.

• Percentage of samples that were taken in this function.

• Number of samples taken in this function.

• Number of times the function was called through this exact call path.

For a more graphical representation, --pt-graph $filename can be used to generate
a call tree and save it as an EPS file. This requires graphviz to be installed. An output
example from this function is showed in Figure 4.2. Note that this representation coalesces
nodes slightly more than the textual output does: if a function A makes three calls from

CHAPTER 4. THE SHMAC PROFILER 53

schedule
2800 (13.9 %)

of 20074 (100.0 %)

pick_from_join_blocked
400 (2.0 %)

of 1418 (7.1 %)

1/19985

pick_from_heap
601 (3.0 %)

of 1937 (9.6 %)

1/14984

process_mq
1182 (5.9 %)

of 10721 (53.4 %)

1/19985

core_tq_get_current
380 (1.9 %)

of 380 (1.9 %)

3/59955

join_block_failed
1 (0.0 %)

of 1 (0.0 %)

1/5

core_tq_force_current
103 (0.5 %)

of 103 (0.5 %)

1/5001

core_tq_update_current
315 (1.6 %)

of 404 (2.0 %)

1/14984

core_tq_push
534 (2.7 %)

of 534 (2.7 %)

1/5629

core_tq_get_current
0 (0.0 %)

of 0 (0.0 %)

1/5

Figure 4.2: An example of a call tree generated by the profiler. This one is pruned to only
contain the functions marked in red (and grey-filled) boxes. Each edge is annotated with the
number of distinct call sites and total call count. Each node contains sample counts, both
excluding and including children nodes.

different locations to function B, this will only show up as a single node in the call tree
(although the number of distinct call sites are shown in edge labels).

Recognizing that this utility might not provide all features the user is looking for, a tool to
convert the profile data into a GNU prof compatible file was written. shmac prof2gprof
converts output like the one shown in Listing 4.2 into a binary file gprof understands. An
example is shown in Listing 4.5.

1 shmac_prof2gprof --sample-rate 250 -o gmon.out <./prof.txt
2 arm-none-eabi-gprof --brief --flat-profile shmac.elf gmon.out

Listing 4.5: An example of how the shmac prof2gprof tool can be used.

One final thing to keep in mind when it comes to profiling is that function instrumentation
skews the timing behavior of the functions being profiled – the small functions will appear
to be, relative to their uninstrumented counterparts, a lot slower. Program counter sampling
alone does not have this effect. For that reason, it might some times be worth considering
running the profiler with just the sampling enabled (not compiled with -finstrument-
functions). This gives an output profile that does not contain a call tree, but still has a
complete histogram. This can then be converted to a gprof -compatible file.

This was done in the case of the x264 benchmark (see Section 6.4), which, on average,
performed 20,000 function calls per second. The enter/exit functions became the most
time-consuming functions in the application, causing almost a 100% increase in runtime.
Disabling instrumentation and running only with PC sampling brought the overhead back
down to around 1.3%.

CHAPTER 4. THE SHMAC PROFILER 54

0
1
2
3
4
5
6
7
8
9

10
11
12

0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
ve

rh
ea

d
(%

)

Sampling rate

Timer overhead as function of sampling rate

Sampling overhead

Figure 4.3: The overhead incurred by the profiler, measured as a function of program counter
sampling rate.

4.3 Performance Results

The performance is obviously an extremely important metric by which to judge the profiler.
A profiler should have as little impact on the application being profiled as possible. To
investigate how well the scheduler performed, two tests were run:

• One that tests the overhead incurred by the sampling process.

• One that tests the cost of the enter/exit functions that are inserted into every function.

The results of the first test is shown in Figure 4.3. As expected, the overhead increases linearly
with the sampling rate. 1% overhead is reached at around 160Hz. It should be noted that the
interrupt service routine used is shared between all applications, including the scheduler. As
such, it needs to push the complete register set to the stack before calling the profiler-specific
interrupt routine. Since the profiler only needs the PC register, the pushing and popping of
the other ∼16 registers incurs undue overhead.

Since Figure 4.3 shows overhead relative to a timer rate of 0, the cost of instrumentation (the
enter/exit functions) is still present in the baseline. The overhead caused by instrumentation
is completely different from that of the timer: rather than being sampling rate dependent, it
depends on the application being profiled.

To gauge the overhead of this instrumentation, two different approaches were taken:

CHAPTER 4. THE SHMAC PROFILER 55

1. Compare the runtime of an instrumented application (without timer interrupts) to a
version without instrumentation. If the total number of instrumented function calls are
known, we can calculate the cost per instrumentation call.

2. Use the profiler to measure how often the program counter samples fall within the
instrumentation functions. Even if these functions are not stored in the call tree, their
samples will still be readily available in the histogram. Knowing the total number of
function calls in the profiled application and the application runtime, we can calculate
the cost of a single instrumentation call.

Both methods require knowing the number of instrumentation calls made for a given appli-
cation. This is readily available from the profile data. The second approach also needs the
total runtime. This is found by multiplying the number of PC samples to the sample rate.

For testing this, a Sudoku solver application was run to solve a fairly difficult puzzle; one that
takes 3-4 seconds to solve with a backtracking algorithm (and without compiler optimization).

Running the application without any instrumentation took a total of 3,258.47 milliseconds.
Running it with instrumentation and without PC sampling took 3,356.35 milliseconds –
3.00% more. The instrumentation results can tell us that a total of 2,660 enter functions
were called (equally many exit calls, of course). That is, each enter/exit pair has a cost of
36.80µs, or 2,208 clock cycles. For comparison, we can calculate the cost of a single interrupt
event using data from Figure 4.3:

time/irq =
time for 1,800 irqs

1,800
=

11.12%
100%+11.12%

1, 800
= 55.6µs

So an interrupt event is 51% more expensive than a combined enter/exit function call.

The second approach was ran six times at a sample rate of 1,500. Over these six runs,
the average number of samples captured was 5,526 (a runtime of 3,684ms). On average, 52
samples fell in the enter routine and 35 in the exit function.

Combining these two sample counts with the known total cost of 2,208 cycles, we can now
split the cost between them: cyg profile func enter takes approximately 1,320 cycles
while cyg profile func exit takes∼890 cycles. Considering that a single-cycle Amber
instruction takes 17 cycles (because of instruction fetch latency), this translates into upper
bounds of 78 and 53 instructions executed in the enter/exit functions, respectively. This
seems like very acceptable performance results.

After having profiled the Sudoku application, we can examine how well the hashing mecha-
nism worked. For that we need a metric by which to measure misses in our lookup function.
These will either lead to a hashed lookup in a subsequent block or – in the worst case – a
sequential scan.

The metric used to judge the hashing by is simply the number of slots considered minus one.
This gives an optimal cost of zero and no upper bound on the cost. The goal should obviously

CHAPTER 4. THE SHMAC PROFILER 56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32

H
it

ra
te

Call block size

Hash table hit rate for different block sizes

hit rate1.47

0.89

0.52

0.15
0.00 0.00

Figure 4.4: The hit rate for different block sizes. As the figure shows, sizes greater than 8
achieved perfect hit rates in the Sudoku application. Applications with a higher degree of
function call fan-out might need even bigger block sizes to achieve this.

be an average that is far closer to zero than to one. We plot this metric for different values of
CHILD BLOCK SIZE. This is shown in Figure 4.4. In the case of Sudoku, there is no point
in using block sizes greater than 16.

To compare the simple hashing function used to one that takes the branch target into account,
we take a closer look at the hash table lookup distance distribution for two different hash
functions. The first hash function is the one described so far, and the second XORs the two
registers together. This is shown in Figure 4.5. The second hash function performs better in
the case of indirect function calls, but is more expensive to compute. In terms of the hit rate
metric just described, the results for these two algorithms are 0.80 and 0.52, respectively.

CHAPTER 4. THE SHMAC PROFILER 57

1
2
4
8

16
32
64

128
256
512

1024
2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#
of

oc
cu

re
nc

es

Hash table search distance

Hash table distance distribution for x264

(lr/4) mod CHILD_BLOCK_SIZE
((lr/4) xor (pc/4)) mod CHILD_BLOCK_SIZE

Figure 4.5: The distance distribution for the profiler’s in-memory call tree for the x264
benchmark, for two different hash functions. All in all, the results are decent for both
functions. Hit rates are similar for a distance of zero or one, while the second hash function
is more or less an order of magnitude better after this point.

Chapter 5

Evaluating The SHMAC Scheduler

To evaluate the scheduler, a few sample applications will be used throughout that hopefully
capture a range of typical usage patterns. For each case, the behavior of the scheduler
will be presented in detail and evaluated in terms of performance. Each sample application
is compiled without data- and instruction cache, which strongly affects its performance:
previous work suggests that instruction cache alone can yield a 10× speedup.

5.1 Sample Applications

Two threading patterns were thought to be enough to capture the most important perfor-
mance characteristics of the scheduler. Those two patterns, master/worker and join chain,
are briefly described here.

5.1.1 Master/Worker

Perhaps the most common of all thread creation/joining patterns: a single thread serves as
master and creates worker threads as necessary. The master will typically just immediately
join the worker threads once they are launched.

In this application, different numbers of workers will be used. Typically, the number of
workers will be equal to the number of cores. However, it is also worth testing how well the
scheduler performs if there are significantly more threads than cores. The core layout used
for testing is showed in Figure 5.1. The timer tick rate used will be 10Hz. The benchmark
code is included in Appendix E.

58

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 59

· A3 ·

A1 Z A2

V A0 ·

(0,2) (2,2)

(0,0) (2,0)

Figure 5.1: The 4-core layout used for testing purposes. Ai are Amber cores, V is the APB
tile and Z is main memory. The dot represents a tile with just a router, containing neither
functional capabilities nor memory storage.

5.1.2 Join Chain

In this test, the master core spawns a number of threads. The first thread immediately
returns a constant, while all other threads X joins thread X−1, adds a constant to its return
value before itself returning. The master thread joins the last of the worker threads. The
code is shown in Appendix F.

5.2 Performance Results

This section presents the performance results the sample applications yielded. For each one,
different sizes will be tested to give an impressions of how well the scheduler scales.

All results are extracted from event logs generated by the logging facility described in Sec-
tion 3.2.10. The plots are generated by filtering events and plotting them using Gnuplot.

The tables contain information extracted from the event logs. Specifically, each interrupt
start and stop event can be used to extract detailed information about interrupt handling
time. Note that this does not include all overhead involved in an interrupt event, just the
call to schedule().

Since the event logger is only capable of tracing what happens inside of schedule(), an
alternative test was used to capture the total overhead from the scheduler. A single worker
thread was run on core 0 and work requesting was disabled. This way, both the main thread
and the worker thread are pinned to core 0, but with the main thread blocked, waiting for
the worker to finish. Then, the total time the application took to finish was measured for
different scheduler rates. The results are shown in Figure 5.2.

The first plot shows the total application overhead (compared to the theoretical runtime of

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 60

a 0Hz scheduler, found by linear regression), measured in percent. The second plot shows
the total overhead (measured in ms) divided by total number of interrupts, which is the
total time per interrupt. The straight line shows the average time spent in schedule(),
according to the event logger. The difference between these last two (the filled region in
Figure 5.2) is the overhead caused by:

1. Switching to interrupt mode, invoking a pre-registered interrupt handler.

2. Pushing registers r0− r12, lr, pc, spsr and cpsr to the stack.

3. Switching to supervisor mode1, but retaining a pointer to the irq stack where the
registers are pushed.

4. Calling the global C-function that handles all interrupts.

5. Let said C-function call the appropriate timer tick handler.

6. Move the register structure to the svc stack.

7. Clear the interrupt flag and re-enable interrupts.

8. Disable interrupts.

9. Copy the register structure back to the irq stack.

10. Return to the interrupt handler.

11. Popping all registers from the stack.

12. Returning to user mode.

The schedule() function is called between steps 7 and 8. All these steps account for
roughly a third of the total overhead, as Figure 5.2 shows. As this overhead is constant, it
is not re-computed for all future performance benchmarks in this Chapter; all future results
refer only to the time spent in schedule().

5.2.1 Master/Worker, 4 threads

In this test, only four worker threads are created – one per core. The master thread will
immediately join all worker threads and thus not be granted any timeslots until the slaves
finish. Each worker is given a fixed (and equal) size of work to do. The schedule selected for
this workload is shown in Figure 5.3.

1To enable nested interrupts, we need to move all state to the supervisor mode stack and continue handling
the interrupt from this mode.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 61

0
1
2
3
4
5
6
7
8
9

10
11

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.2

0.4

0.6

0.8

1

O
ve

rh
ea

d
(%

)

T
im

e
(m

s)

Scheduler rate (Hz)

Scheduler overhead

Application overhead
Time in interrupt mode
Avg. time in schedule()

Figure 5.2: The total overhead induced by the scheduler. The first plot shows total applica-
tion overhead in percent along the left y-axis. The two next plots show per-interrupt time
(in ms), plotted along the right y-axis.

0

1

2

3

0 1 2 3 4 5 6

C
or

e

Time (s)

Scheduler Event Log

sta
rt

t16

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t17

sta
rt

t16

sta
rt

t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

con
t t18

sta
rt

t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

con
t t19

sta
rt

t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

con
t t20

16
16.5
17
17.5
18
18.5
19
19.5
20

Figure 5.3: Scheduling 4 worker threads on 4 cores with 10Hz timer rate.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 62

Core
0 1 2 3

Number of interrupts 58 56 56 55
Total program time (ms) 5487 5420 5419 5383
Total time in interrupts (ms) 21.814 13.332 12.756 12.433
Total time in interrupts (%) 0.398 0.246 0.235 0.231
Average time in interrupts (ms) 0.376 0.238 0.228 0.226
Interrupts per second 10.6 10.3 10.3 10.2
Shortest interrupt (ms) 0.322 0.204 0.204 0.221
Longest interrupt (ms) 0.543 0.695 0.475 0.492

Table 5.1: Statistics gathered from running 4 worker threads on a 4-core computer with a
10Hz timer.

This is in itself fairly uninteresting: the threads are mapped directly to a core and stay there
until finished. Some statistics relating to the scheduler are shown in Table 5.1.

There is no simple standard to judge these performance metrics by. In general, the scheduler
should incur negligible overhead. This test revealed an average overhead per core of 0.28% at
a reasonable timer rate and very light load. It is hard to say whether this is ”good enough”.
Then again, this metric is dependent on the computer’s general performance. Turning on
instruction cache would likely drop the same percentage down to well below 0.1%. At this
point it is probably best to say that the performance is acceptable, as long as it scales well.
That means that even with hundreds of threads, the percentage should be in the 1 − 2 %
range. Subsequent tests will determine this.

5.2.2 Master/Worker, 40 threads

This is the same test as in section 5.2.1, only with ten times as many threads. To keep the
application runtime fairly low (which keeps the plots somewhat readable), each thread’s work
size was reduced by a factor of 10. The schedule and performance results can be found in
Figure 5.4 and Table 5.2, respectively.

As we can see, the average time in interrupts increased from 0.278 to 0.550 ms, an increase
of 98% – roughly a 2x performance loss at a 10x increase in work.

5.2.3 Master/Worker, 400 threads

A final benchmark of the scheduler’s performance with the master/worker configuration will
be with 400 threads – a hundred threads per core. This should be well beyond what one
would ever do on an embedded platform, but it serves us well in stress testing the scheduler.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 63

0

1

2

3

0 1 2 3 4 5 6

C
or

e

Time (s)

Scheduler Event Log

sta
rt

t16

sta
rt

t17

sta
rt

t53

sta
rt

t25

sta
rt

t41

sta
rt

t45

sta
rt

t29

sta
rt

t49

sta
rt

t21

sta
rt

t33

sta
rt

t37

sta
rt

t37

sta
rt

t33

sta
rt

t45

sta
rt

t53

sta
rt

t17

sta
rt

t41

sta
rt

t25

sta
rt

t21

sta
rt

t29

sta
rt

t49

sta
rt

t49

sta
rt

t29

sta
rt

t17

sta
rt

t33

sta
rt

t37

sta
rt

t53

sta
rt

t45

sta
rt

t21

sta
rt

t41

sta
rt

t25

sta
rt

t25

sta
rt

t41

sta
rt

t37

sta
rt

t29

sta
rt

t49

sta
rt

t33

sta
rt

t17

sta
rt

t21

sta
rt

t53

sta
rt

t45

sta
rt

t45

sta
rt

t53

sta
rt

t49

sta
rt

t41

sta
rt

t25

sta
rt

t29

sta
rt

t37

sta
rt

t21

sta
rt

t33

sta
rt

t17

sta
rt

t17

sta
rt

t16

sta
rt

t33

sta
rt

t49

sta
rt

t25

sta
rt

t16

sta
rt

t53

sta
rt

t45

sta
rt

t41

sta
rt

t37

sta
rt

t29

sta
rt

t21

sta
rt

t16

sta
rt

t53

sta
rt

t33

sta
rt

t37

sta
rt

t16

sta
rt

t53

sta
rt

t16

sta
rt

t16

sta
rt

t18

sta
rt

t54

sta
rt

t26

sta
rt

t42

sta
rt

t46

sta
rt

t30

sta
rt

t50

sta
rt

t22

sta
rt

t34

sta
rt

t38

con
t t38

sta
rt

t34

sta
rt

t46

sta
rt

t54

sta
rt

t18

sta
rt

t42

sta
rt

t26

sta
rt

t22

sta
rt

t30

sta
rt

t50

con
t t50

sta
rt

t30

sta
rt

t18

sta
rt

t34

sta
rt

t38

sta
rt

t54

sta
rt

t46

sta
rt

t22

sta
rt

t42

sta
rt

t26

con
t t26

sta
rt

t42

sta
rt

t38

sta
rt

t30

sta
rt

t50

sta
rt

t34

sta
rt

t18

sta
rt

t22

sta
rt

t54

sta
rt

t46

con
t t46

sta
rt

t54

sta
rt

t50

sta
rt

t42

sta
rt

t26

sta
rt

t30

sta
rt

t38

sta
rt

t22

sta
rt

t34

sta
rt

t18

con
t t18

sta
rt

t34

sta
rt

t50

sta
rt

t46

sta
rt

t26

sta
rt

t54

sta
rt

t38

sta
rt

t42

sta
rt

t30

sta
rt

t22

sta
rt

t30

sta
rt

t50

con
t t50

sta
rt

t54

sta
rt

t19

sta
rt

t55

sta
rt

t27

sta
rt

t43

sta
rt

t47

sta
rt

t31

sta
rt

t51

sta
rt

t23

sta
rt

t35

sta
rt

t39

con
t t39

sta
rt

t35

sta
rt

t47

sta
rt

t55

sta
rt

t19

sta
rt

t43

sta
rt

t27

sta
rt

t23

sta
rt

t31

sta
rt

t51

con
t t51

sta
rt

t31

sta
rt

t19

sta
rt

t35

sta
rt

t39

sta
rt

t55

sta
rt

t47

sta
rt

t23

sta
rt

t43

sta
rt

t27

con
t t27

sta
rt

t43

sta
rt

t39

sta
rt

t31

sta
rt

t51

sta
rt

t35

sta
rt

t19

sta
rt

t23

sta
rt

t55

sta
rt

t47

con
t t47

sta
rt

t55

sta
rt

t51

sta
rt

t43

sta
rt

t27

sta
rt

t31

sta
rt

t39

sta
rt

t23

sta
rt

t35

sta
rt

t19

con
t t19

sta
rt

t35

sta
rt

t51

sta
rt

t47

sta
rt

t27

sta
rt

t55

sta
rt

t39

sta
rt

t43

sta
rt

t31

sta
rt

t23

sta
rt

t31

sta
rt

t51

sta
rt

t55

sta
rt

t51

sta
rt

t20

sta
rt

t56

sta
rt

t28

sta
rt

t44

sta
rt

t48

sta
rt

t32

sta
rt

t52

sta
rt

t24

sta
rt

t36

sta
rt

t40

con
t t40

sta
rt

t36

sta
rt

t48

sta
rt

t56

sta
rt

t20

sta
rt

t44

sta
rt

t28

sta
rt

t24

sta
rt

t32

sta
rt

t52

con
t t52

sta
rt

t32

sta
rt

t20

sta
rt

t36

sta
rt

t40

sta
rt

t56

sta
rt

t48

sta
rt

t24

sta
rt

t44

sta
rt

t28

con
t t28

sta
rt

t44

sta
rt

t40

sta
rt

t32

sta
rt

t52

sta
rt

t36

sta
rt

t20

sta
rt

t24

sta
rt

t56

sta
rt

t48

con
t t48

sta
rt

t56

sta
rt

t52

sta
rt

t44

sta
rt

t28

sta
rt

t32

sta
rt

t40

sta
rt

t24

sta
rt

t36

sta
rt

t20

con
t t20

sta
rt

t36

sta
rt

t52

sta
rt

t48

sta
rt

t28

sta
rt

t56

sta
rt

t40

sta
rt

t44

sta
rt

t32

sta
rt

t24

sta
rt

t32

sta
rt

t52

sta
rt

t56

sta
rt

t52

15
20
25
30
35
40
45
50
55
60

Figure 5.4: Scheduling 40 worker threads on 4 cores with 10Hz timer rate.

Core
0 1 2 3

Number of interrupts 73 65 66 66
Total program time (ms) 5564 5504 5503 5503
Total time in interrupts (ms) 38.318 36.944 36.605 36.622
Total time in interrupts (%) 0.689 0.671 0.665 0.665
Average time in interrupts (ms) 0.525 0.568 0.555 0.555
Interrupts per second 13.1 11.8 12.0 12.0
Shortest interrupt (ms) 0.322 0.237 0.187 0.204
Longest interrupt (ms) 1.187 0.746 0.678 0.678

Table 5.2: Statistics gathered from running 40 worker threads on a 4-core computer with a
10Hz timer.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 64

Core
0 1 2 3

Number of interrupts 157 160 162 157
Total program time (ms) 5907 5909 5917 5905
Total time in interrupts (ms) 81.572 83.048 82.437 77.688
Total time in interrupts (%) 1.381 1.405 1.393 1.316
Average time in interrupts (ms) 0.520 0.519 0.509 0.495
Interrupts per second 26.6 27.1 27.4 26.6
Shortest interrupt (ms) 0.237 0.187 0.204 0.187
Longest interrupt (ms) 1.340 3.850 0.916 0.899

Table 5.3: Statistics gathered from running 400 worker threads on a 4-core computer with a
10Hz timer.

Function Time (%s)

pick from heap 48.37 %
retire current task 15.86 %
core tq unblock tasks 12.20 %
process mq 4.13 %
pick from join blocked 3.58 %
core tq get current 1.79 %
core lock 1.24 %
task tick hook 0.96 %
should cancel 0.60 %
core tick 0.87 %
core unlock 0.64 %
join block failed 0.09 %
flush finished task 0.00 %

Table 5.4: Time spent in each of the functions called directly from the main schedule()
function for the 400-thread master/worker benchmark.

The results are displayed in Table 5.3. The plot is omitted since it would contain too much
data to plot in any meaningful fashion.

A load factor of 100 brought the average time in interrupts down from 0.550 to 0.511 ms: a
decrease of 7% compared to 40 threads. This is surprising, to say the least.

The average time spent in the scheduler increased beyond one per cent for the first time:
1.37%. This is due to the increased number of interrupts, not because each interrupt took
any longer than before. With that in mind, these results are a pleasant surprise.

A detailed profile is shown in Table 5.4. As expected, swapping tasks on the heap is by far
the most expensive operation.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 65

0

1

2

3

0 0.5 1 1.5 2

C
or

e

Time (s)

Scheduler Event Log

ass
ign

t0

ass
ign

t16

ass
ign

t17

ass
ign

t18

ass
ign

t19

ass
ign

t20

ass
ign

t21

ass
ign

t22

ass
ign

t23

ass
ign

t24

ass
ign

t25

ass
ign

t26

ass
ign

t27

ass
ign

t28

ass
ign

t29

ass
ign

t30

ass
ign

t31

ass
ign

t32

ass
ign

t33

ass
ign

t34

ass
ign

t35

ass
ign

t36

ass
ign

t37

ass
ign

t38

ass
ign

t39

ass
ign

t40

ass
ign

t41

ass
ign

t42

ass
ign

t43

ass
ign

t44

ass
ign

t45

ass
ign

t46

ass
ign

t47

ass
ign

t48

ass
ign

t49

ass
ign

t50

ass
ign

t51

ass
ign

t52

ass
ign

t53

ass
ign

t54

ass
ign

t55

ass
ign

t56

jnd
t18

jnd
t21

jnd
t25

jnd
t29

jnd
t33

jnd
t37

jnd
t41

jnd
t45

jnd
t46

jnd
t49

jnd
t53

jnd
t16

ass
ign

t1

jnd
t22

jnd
t30

jnd
t38

jnd
t50

jnd
t54

ass
ign

t2

jnd
t19

jnd
t23

jnd
t26

jnd
t27

jnd
t31

jnd
t34

jnd
t35

jnd
t39

jnd
t42

jnd
t43

jnd
t47

jnd
t51

jnd
t55

ass
ign

t3

jnd
t20

jnd
t24

jnd
t28

jnd
t32

jnd
t36

jnd
t40

jnd
t44

jnd
t48

jnd
t52

jnd
t56

0
10
20
30
40
50
60

Figure 5.5: Scheduling 40 threads on 4 cores with 10Hz timer rate, where each thread joins
its predecessor. The gaps illustrate points of time where the cores have to schedule the idle
task (not explicitly shown). The jnd event occurs when a thread has joined another. This,
along with assign, is the only event type shown.

Core
0 1 2 3

Number of interrupts 39 21 40 37
Total program time (ms) 1746 1690 1690 1690
Total time in interrupts (ms) 24.799 15.673 23.544 20.491
Total time in interrupts (%) 1.420 0.927 1.393 1.213
Average time in interrupts (ms) 0.636 0.746 0.589 0.554
Interrupts per second 22.3 12.4 23.7 21.9
Shortest interrupt (ms) 0.356 0.356 0.221 0.221
Longest interrupt (ms) 1.408 1.306 1.120 1.153

Table 5.5: Statistics gathered from running a 40-thread join chain on a 4-core computer with
a 10Hz timer.

5.2.4 Join Chain, 40 threads

While this is highly inefficient use of threads, it serves as a benchmark for thread cre-
ation/joining performance. Optimally, the speed at which we can join threads should be
limited only by our timer frequency, as we have no efficient inter-core communication mech-
anism.

The event plot from this test is shown in Figure 5.5. The statistics is shown in Table 5.5.
The entire test took around two seconds. With an average scheduling frequency of 20.1Hz,
this is very close to what we could have predicted: 40threads/20.1Hz ≈ 2s. The somewhat
higher Total time in interrupts (%) stems from this increased effective scheduling rate.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 66

0
20
40
60
80

100
120

0 5 10 15 20 25 30

Lo
ad

Time (s)

Core Load

Core 0
Core 1
Core 2
Core 3

Figure 5.6: Scheduling 400 threads on 4 cores with 10Hz timer rate where each thread joins
its predecessor. The plot illustrates the load factor for each core.

5.2.5 Join Chain, 400 threads

Once again, this is just a longer version of the previous test. The results are shown in
Figure 5.6 and Table 5.6. Since using event plots are not feasible with this number of
threads, a different visualization is provided: the load factor for each core over time.

Profiling the scheduler execution yields some interesting information about what actually
takes time. The somewhat surprising results are shown in Table 5.7. As expected, most time
was spent iterating through the tasks that have called pthread join and deciding if they
can wake up (pick from join blocked). If this fails, the scheduler tries to pick from the
running tasks (pick from heap), which it spends almost as much time doing.

The surprise is number three on the list, core tq unblock tasks. This is the function
that processes tasks blocking on condition variables, which in this test is an empty list. This
part of the scheduler should probably be optimized in some way.

Number four and five on the list are as expected. With lots of idling, the cores are going to
send a large number of messages to other cores, so process mq was expected to take some
time to process. retire current task decides if the current task should be switched out
and, if so, saves its register set.

CHAPTER 5. EVALUATING THE SHMAC SCHEDULER 67

Core
0 1 2 3

Number of interrupts 441 406 453 502
Total program time (ms) 28326 28425 28326 28425
Total time in interrupts (ms) 350.884 320.199 316.365 357.228
Total time in interrupts (%) 1.239 1.126 1.117 1.257
Average time in interrupts (ms) 0.796 0.789 0.698 0.712
Interrupts per second 15.6 14.3 16.0 17.7
Shortest interrupt (ms) 0.390 0.221 0.221 0.221
Longest interrupt (ms) 6.988 4.716 2.188 1.340

Table 5.6: Statistics gathered from running a 400-thread join chain on a 4-core computer
with a 10Hz timer.

Function Time (%)

pick from join blocked 22.58
pick from heap 16.47
core tq unblock tasks 14.60
process mq 14.60
retire current task 11.21
core tq get current 3.40
core lock 1.36
task tick hook 1.19
core tick 1.19
core unlock 1.19
should cancel 0.85
flush finished task 0.00
join block failed 0.00

Table 5.7: Time spent in each of the functions called directly from the main schedule()
function for the 400-thread join chain benchmark.

Chapter 6

Ported Benchmarks

To prove that the Pthreads library works with existing benchmarks as-is, some benchmarks
had to be evaluated. While the foremost goal of this was to ensure that the library works as
expected, the performance results obtained are obviously also of interest.

This chapter presents the benchmark suites that were considered. Some benchmarks that
were considered appropriate for the platform were ported to SHMAC, run and evaluated,
These findings are presented here.

6.1 The PARSEC Suite

PARSEC [3] was an obvious candidate for porting. It is a benchmark suite intended for CMPs
that covers a wide range of working sets, data sharing and off-chip traffic patterns. As the
most widely known parallel benchmark it was an obvious candidate for porting.

The main challenge in selecting benchmarks are the limitations inherent in the SHMAC
platform:

1. No I/O support. This means that applications must fit entirely in memory. It is a plus
if rewriting the benchmarks to be I/O-free is fairly straightforward.

2. Limited memory: all benchmark data must fit in 32MB of RAM. This is a significant
limitation as many benchmarks have data sets of considerable size, such as x264.

3. No floating point support. This means that floating point-intensive applications will
suffer poor performance.

These factors limit the choice of benchmarks quite a bit. Table 6.1 sums up the benchmarks
found in PARSEC. Only two benchmarks do not use floating point operations: dedup and

68

CHAPTER 6. PORTED BENCHMARKS 69

Program Problem size
Instructions (Billions) Synchronization

Total FLOPS Rds Wrts L B C
blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0
bodytrack 4 frames,

4,000 particles
14.03 4.22 3.63 0.95 114,621 619

canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0
dedup 184 MB data 37.1 0 11.71 3.13 158,979 0 1,619
facesim 1 frame,

372,126 tetrahedra
29.90 9.10 10.05 4.29 14,451 0 3,137

ferret 256 queries,
34,973 images

23.97 4.51 7.49 1.19 345,778 0 1255

fluidanimate 5 frames,
300,000 particles

14.06 2.49 4.80 1.15 17,771,909 0 0

freqmine 990,000
transactions

33.45 0.00 11.31 5.24 990,025 0 0

streamcluster 16,384 points per
block, 1 block

22.12 11.6 9.42 0.06 191 129,600 127

swaptions 64 swaptions,
20,000 simulations

14.11 2.62 5.08 1.16 23 0 0

vips 1 image,
2662× 5500 pixels

31.21 4.79 6.71 1.63 33,586 0 6,361

x264 128 frames,
640× 360 pixels

32.43 8.76 9.01 3.11 16,767 0 1,056

Table 6.1: The benchmarks in the PARSEC benchmark suite, table copied from [3]. Rds =
Reads, Wrts = Writes, L = Locks, B = Barriers, C = Conditions.

freqmine. Unfortunately, freqmine is the only benchmark listed in Table 6.1 that does
not use Pthreads. For that reason it was excluded from further consideration.

Since floating point acceleration is an ongoing effort, it was thought that at least one bench-
mark should be fairly floating point intensive. blackscholes was selected for this purpose
and was ported to SHMAC. It, along with its results, are presented in Section 6.2.

Since freqmine does not support Pthreads, only dedup was left as a floating point-free
alternative. For that reason it was also ported to SHMAC. It is discussed in Section 6.3.

Porting a video encoding benchmark such as x264 would also be a nice contribution to
SHMAC’s benchmark suite. This benchmark was ported without threading so that it could
be accurately profiled1. The x264 benchmark and its results are found in Section 6.4.

6.2 Blackscholes

blackscholes is a floating-point intensive benchmark that calculates the price of European
options using the Black-Scholes formula. The work division is simple: the input set is divided
equally between N worker threads.

1Since the profiler is currently only capable of running at a single core.

CHAPTER 6. PORTED BENCHMARKS 70

Threads Time Time*

1 33.43 34.79
2 81.76 18.00
3 42.53 12.16
4 – 9.29
5 – 8.63
6 – 11.01
7 – 9.00
8 – 9.29

Table 6.2: The time (in seconds) the benchmark took to run for different thread counts.
In each case, the number of options was set to 24 and the number of runs was 100. Error
checking was turned on.

Since it is almost entirely made up of floating point operations and transcendental functions
on floating point numbers, its performance is not expected to be great. It is, however, a nice
benchmark to gauge the speedup of accelerators, such as an FPU accelerator. Researching
accelerators for SHMAC is a parallel effort to this thesis.

Results

The performance of blackscholes was poor, as expected. Table 6.2 shows the results.
Breaking the (single-threaded) execution time down with the SHMAC profiler did not yield
any surprises. The top time-consuming functions are listed in Table 6.3.

The two different time columns are due to a bug that was discovered: sometimes, the appli-
cation froze completely. This is denoted as ”–” in the table. Interestingly, it was discovered
that the application could be ”woken back up” by simply running shmac dump in the back-
ground. The exact command that was used to run this benchmark was:

./shmac.sh && while :; do shmac dump 0 0x1f00000 /dev/null; done

The third column thus denotes the runtime of the benchmark with shmac dump running in
the background. This probably degrades the performance of memory operations somewhat.
The bug also means that the data in the second column does not represent a correct execution
of the benchmark. The third column, however, shows the exact behavior one would expect
from such a parallelizable problem.

This bug does not seem to be caused by software, neither from the Pthreads library nor the
blackscholes benchmark. It is more likely that it is a bug in the memory subsystem of
the architecture. If this is the case, the bug should be investigated further.

CHAPTER 6. PORTED BENCHMARKS 71

% Time Self Seconds Function

61.09 20.98 aeabi dmul
8.79 3.02 ieee754 sqrt
6.80 2.34 mulsf3
6.12 2.10 adddf3
4.52 1.55 aeabi ddiv
2.91 1.00 ieee754 exp
1.90 0.65 aeabi fadd
1.25 0.43 divsf3
1.04 0.36 CNDF(float)
0.94 0.32 ieee754 log
0.69 0.24 exp
0.62 0.21 aeabi d2f
0.45 0.16 cmpdf2
0.43 0.15 extendsfdf2

Table 6.3: The top time-consuming functions in the blackscholes benchmark. As ex-
pected, libgcc’s math functions dominated the execution time.

6.3 Dedup

dedup is a parallel benchmark that performs compression in a pipelined fashion. Specifically,
it works by splitting the task into five stages stages that run as separate threads2. The five
stages are as follows:

Fragment
Read input and break it up into coarse-grained chunks. These chunks serve as work
units for further processing. This is a serial stage.

FragmentRefine
The second stage uses Rabin-Karp fingerprints [9] to locate finer-grained data blocks
within each input chunk. These fine-grained chunks are sent to the next stage.

Deduplicate
The third stage calculates SHA1-hashes of each chunk. These are used to identify
possible duplicate chunks.

Compress
The fourth stage is compression. Each unique block is compressed only once since the
previous stage does not send duplicates to this one.

Reorder
The final stage assembles the output stream from the distinct, possibly out-of-order
blocks it receives from the fourth stage. This stage is inherently serial.

2Groups of threads, to be precise, as the benchmark pools threads for each stage.

CHAPTER 6. PORTED BENCHMARKS 72

Input
Size

Threads Output
Size

Compression
Ratio1 2 3 4

1k 16.83 7.85 4.47 2.50 919 1.11x
2k 26.75 8.66 8.22 4.49 1.67k 1.20x
4k 44.45 13.75 7.78 3.38 3.21k 1.25x
8k 79.28 20.38 9.12 - 6.39k 1.25x

16k 180.47 44.19 - - 13.22k 1.20x

Table 6.4: The runtime (in seconds) for the dedup benchmark for different input sizes and
thread counts. ”-” means the benchmark failed to run, at least intermittently.

The benchmark supports three types of compression: gzip, bzip2 and none. gzip was chosen
for this particular test case. This created an extra dependency: zlib. Fortunately, compiling
zlib for SHMAC was as straightforward as exporting the correct CC and CFLAGS variables
before building.

The input size listed in Table 6.1 of 184MB was not possible since SHMAC only has 32MB
of RAM. This limitation notwithstanding, any input size in this order of magnitude would
have taken too long to run in any case. It was decided that an input size between 1k and
16k was more appropriate.

It would obviously be beneficial to run the benchmark with different thread counts. Un-
fortunately, running with five threads caused memory allocation errors. Thus, the results
presented are for one through four threads.

Results

Table 6.4 summarizes the results for different input sizes and thread counts. In general, the
speedup results are linear, except for the switch from one to two threads, which is consistently
superlinear. The reason for this was not investigated.

In addition, compression ratios are generally poor – this is due to the changes that were made
in order to make the benchmark run at all. Table 6.5 details the changes that were made.
This was necessary because the default values caused too coarse-grained partitioning of the
input data, leaving one worker thread to do all the work.

Table 6.4 also shows that some benchmarks failed to run. This seemed to be due to memory
errors. There were failures with four threads even without the changes listed in Table 6.5,
which makes it unlikely that these changes caused the failures. In all likelihood, these errors
are caused by the same bug that was discovered in the blackscholes benchmark.

Another issue that came to light was related to initializing the hash table. By default, the
application used almost 60 seconds in the initialization phase, before a single thread was
spawned. It spent 99% of this time initializing mutexes – apparently, the benchmark uses

CHAPTER 6. PORTED BENCHMARKS 73

Constant In File Original Value Changed To

NWINDOW rabin.h 32 4
MinSegment rabin.h 1024 128
RabinMask rabin.h 0xfff 0xff
QUEUE SIZE dedupdef.h 1M 512k
MAXBUF dedupdef.h 128M 128
ANCHOR JUMP dedupdef.h 2M 8
ITEM PER FETCH dedupdef.h 20 1
ITEM PER INSERT dedupdef.h 20 1
CHUNK ANCHOR PER FETCH dedupdef.h 20 1
CHUNK ANCHOR PER INSERT dedupdef.h 20 1
Size parameter to hashtable create encoder.c 65536 1024

Table 6.5: Necessary changes to the dedup benchmark in order to achieve parallelism for
our input sizes. The change in hash table size was not strictly speaking necessary, but it
saves a lot of memory and startup time. It had no measurable effect on performance.

almost 100,000 of them by default. Since our Pthread library implementation stores these
internally in red-black-trees, this takes some time to set up. While the necessity of 100,000
mutexes is debatable, the mutex library should probably handle this behavior better.

An interesting point is how well this pipelined, multi-threaded pattern maps to the different
cores. The question of interest is: with four cores and four threads per stage, are we able to
utilize all cores efficiently?

Taking advantage of the Pthreads logging mechanism described in Section 3.2.10, we can
extract this information from the scheduler. Table 6.6 shows the results.

Disappointingly, a large fraction of the time is spent idling. Apart from the idle task, the
compression stage is the dominant one. It would be interesting to see the effect of doubling
the number of threads. Unfortunately, the benchmark failed to run with any more than four
threads3.

The benchmark exhibited optimal work distribution when only two threads were used (the
total idle percentage among the cores was ∼200), while three threads did nothing to decrease
that number. It could very well be that tuning the knobs in Table 6.5 would have resulted
in better performance, although this was not tested.

It is also hard to exclude the possibility that the aforementioned bug caused this subpar
performance, like it did with blackscholes. In this regard, Table 6.4 is ambiguous. On
one hand, the super-linear speedups are unexpected. On the other hand, there are no spurious
jumps in time like blackscholes exhibited.

3Possibly due to the bug discovered by blackscholes.

CHAPTER 6. PORTED BENCHMARKS 74

Core
Task

Idle Main Frag. Fragm. Ref. Dedup. Comp. Reorder

0 57.6 % 14.4 % 5.3 % 6.2 % 1.8 % 14.3 % 0.4 %
1 35.6 % - - 3.1 % 1.3 % 56.6 % 3.4
2 68.9 % - - 5.8 % 0.1 % 25.1 % -
3 69.0 % - - 3.0 % 1.3 % 26.7 % -

Table 6.6: Busy-time breakdown for each core, running a 4-threaded dedup benchmark on
input of size 2kB. Main is the task that calls Encode. Fragmentation and Reorder are the
sequential first and last steps of the pipeline. Reorder migrated to core 1, as the only task
to migrate during the benchmark.

6.4 x264

x264 is a lossy video encoder for the H.264/AVC codec. The standard was finalized in 2003
and it is today one of the most common video compression formats available. Its widespread
use makes it an important application to benchmark. It also represents a fairly substantial
increase in complexity compared to the previous applications described. For these reasons,
it was ported to SHMAC.

H.264 is a block-oriented (with macroblocks being 16×16 pixels), motion compensation-based
codec. Motion compensation is an important technique to reduce temporal redundancy in
the video stream and often the most time-consuming part of the compression. In H.264,
frames are compressed in one of the three following ways:

I-Frames: These are frames that do not reference other frames at all. Frames are encoded
using intra-prediction, meaning that it uses previously compressed blocks in the same
frame as reference.

P-Frames: P-frames use a previous I- or P-frame to encode the current one. Like I-frames,
P-frames also use intra-prediction for compression. The added feature of referencing
previous frames is called inter-prediction. These frames can typically attain a compres-
sion ratio of 50% compared to I-frames.

B-Frames: These use both previous and next I- or P-frames to construct the current one,
thus achieving even better compression.

The typical GOP arrangement is IBBPBBP. . . BBI, although newer versions of the standard
and modern encoders offer some more flexibility here. Other improvements over previous
video encoding standards include CABAC, higher bit-depth color coding and variable block-
size motion compensation.

CHAPTER 6. PORTED BENCHMARKS 75

Results

The benchmark was run on a 80× 60 movie consisting of 125 frames. This file was generated
by scaling PARSECs eledream 640x360 128.y4m sample input file using ffmpeg4.

The application was compiled with -O2. Without any profiler instrumentation or PC sam-
pling, this took 1,351 seconds to run – the complete output is shown in Listing 6.1. The
exact commandline used to run the benchmark was:

./x264 -q 13 -o output.mkv eledream 80x60 128.y4m --progress

The application was also run with instruction cache turned on, which resulted in a 5.6×
speedup. The results in this section will however refer to the cache-free version, as in the
rest of this thesis.

1 PARSEC Benchmark Suite
2 yuv4mpeg: 80x60@25/1fps, 0:0
3 x264 [warning]: width or height not divisible by 16 (80x60), compression
4 will suffer.
5 x264 [info]: using cpu capabilities: none!
6 x264 [info]: profile Main, level 1.0
7 x264 [info]: slice I:3 Avg QP:10.00 size: 2772 PSNR Mean Y:51.17
8 U:57.88 V:58.33 Avg:52.50 Global:52.50
9 x264 [info]: slice P:125 Avg QP:13.00 size: 1219 PSNR Mean Y:47.62

10 U:54.40 V:54.61 Avg:48.95 Global:48.90
11 x264 [info]: mb I I16..4: 0.0% 0.0% 100.0%
12 x264 [info]: mb P I16..4: 0.0% 0.0% 3.6% P16..4: 42.4% 21.4% 27.8%
13 0.0% 0.0% skip: 4.7%
14 x264 [info]: SSIM Mean Y:0.9954008
15 x264 [info]: PSNR Mean Y:47.703 U:54.482 V:54.693 Avg:49.030
16 Global:48.956 kb/s:251.16
17

18 encoded 128 frames, 0.09 fps, 251.95 kb/s

Listing 6.1: Output generated by running the x264 benchmark.

When the application was profiled with a sampling rate of 200 – but no instrumentation
– the total execution time was 1,368 seconds, an overhead of 1.26%. Table 6.7 shows the
most time consuming functions. The top two causes of poor performance seem to be lack
of out-of-order- and speculative execution. There are a lot of small loops here that would
benefit from vectorization and/or superscalar, speculative execution. The top five functions
are shown, annotated with a line-level profile, in Appendix G.

Whereas the blackscholes benchmark clearly hit an achilles heel, this is not the case
with x264. There are (virtually) no floating point operations and there are not enough
multiplications for that to became an issue. Ways to increase performance further include

4http://www.ffmpeg.org/

http://www.ffmpeg.org/

CHAPTER 6. PORTED BENCHMARKS 76

% Time Seconds Name Comment

15.04 205.73 pixel satd wxh No time-consuming operations
12.57 171.89 mc chroma Spends 90% of its time in mul
7.01 95.93 quant 4x4 95% in mul
5.99 81.96 get ref mul is slowest part, but not by much
4.97 67.92 sub4x4 dct Would benefit from OoO/speculation
4.40 60.12 add4x4 idct Would benefit from OoO/speculation
3.62 49.50 block residual write cabac
3.37 46.09 hpel filter
3.22 44.09 memcpy
3.15 43.03 dequant 4x4
2.56 35.01 x264 pixel ssd 16x16
2.35 32.18 pixel hadamard ac
2.28 31.20 x264 pixel sad x4 16x16
2.26 30.87 x264 pixel sad x4 8x8
1.78 24.28 x264 cabac encode decision c
1.75 23.97 ssim 4x4x2 core
1.62 22.11 x264 pixel sad x4 8x16
1.60 21.83 x264 pixel sad x4 16x8
1.39 19.04 x264 pixel ssd 8x8
1.13 15.44 x264 pixel sad x3 16x16

Table 6.7: Single-threaded, flat profile of the x264 benchmark. Only the most time-
consuming functions are shown.

1. Increasing multiplication performance.

2. Turning on instruction cache.

3. Fixing the data-cache bug that is causing us to currently run without any form of data
cache.

4. Making a higher-performance core with advanced microarchitectural features, such as
branch prediction, speculation, out-of-order execution and superscalar execution.

5. Writing accelerators for some of the most time-consuming functions. The profiler can
be used to identify possible candidates.

The task of making a high-performance core is ongoing, in a project called Turbo Amber [1].
This core improves on the standard Amber core by adding an instruction fetch buffer, a
multiscalar frontend, branch prediction, faster multiplications and a return address stack for
faster function returns. These features will, in general, result in a 4x speedup. x264 was in
that regard no different, achieving a speedup just below 4x.

Chapter 7

Conclusion and Future Work

This thesis has presented an implementation and evaluation of a threading library for SHMAC,
a platform for research into heterogeneous systems. While the library includes several syn-
chronization primitives, the focus of this thesis has been on describing the arguably most
important one: the preemptive task scheduler. Other notable contributions of this work in-
clude a fully-fledged profiler and a few automation tools to simplify certain SHMAC-related
tasks.

This final chapter will reiterate some of the more important findings and relate these to the
initial task assignment. The work that resulted in this thesis has also uncovered some areas
that might be of interest for future work. These suggestions are proposed in Section 7.2.

7.1 Conclusion

Section 1.2 presented four distinct tasks that should be addressed. This section will address
each one in turn and answer the question of how it has been solved.

Threading Library
The main goal of this work was to simplify the task of porting and/or implementing
parallel benchmarks for the SHMAC platform. To that end, an abstraction layer was
needed on top of the bare-metal platform SHMAC currently is.

The solution was to implement a POSIX-compliant library capable of scheduling and
multiplexing tasks without any operating system support. This enables existing bench-
marks built on top of Pthreads to be easily ported to SHMAC. It also provides a familiar
abstraction to new developers working on SHMAC.

Chapter 3 has, in elaborate detail, explained the heart of the Pthreads library: the task
scheduler. Section 3.3 details the status of the library with respect to API compatibility.
It is thought that – in its current state – the library will be compatible with practically

77

CHAPTER 7. CONCLUSION AND FUTURE WORK 78

all existing applications that might be considered for porting. Most of the shortcomings
are due to a lack of an MMU (Memory Management Unit) and virtual memory. Other
functions do not make sense to implement without the existence of processes, something
SHMAC obviously does not have.

The threading library has been verified through a series of unit tests as well as porting
existing benchmarks.

Port existing benchmarks
This task was contingent on there being enough time once the other tasks were com-
pleted. It turned out to be enough time to port a couple of benchmarks: blackscholes
and dedup from the PARSEC suite. The benchmarks are their respective results are
presented in Chapter 6.

Simplify toolchain setup process
This task came to be as a result of many hours spent – by many parties – setting up a
working toolchain complete with a libc implementation. As it turns out, this can be a
challenge when using legacy instruction sets such as ARMv3.

The solution to this problem is described in [21].

Implement a testing framework
For hardware developers, it is often necessary to verify the correctness of certain
changes. The existing suite of ported benchmark can here serve as a tool for regression
testing. The challenge was that the build process for these benchmarks was not well
unified: a simple call to make often either failed or produced applications that required
in-depth knowledge to run.

A testing framework was intended to simplify the task of running a series of applications
and verify that they all run correctly without requiring user intervention. The solution
to this problem is described in [22].

Another contribution was made that is thought to be useful for future SHMAC work: the
implementation of a profiler. The need for a profiler came from needing to verify the per-
formance of the scheduler, rather than an explicit assignment task. This initial purpose
notwithstanding, the profiler is completely generic in nature. An important part of working
with SHMAC is inarguably performance analysis – a field in which a profiler is an invaluable
tool. Chapter 4 has presented the profiler’s implementation in detail.

7.2 Future Work

As the SHMAC project is still fairly young, there are several places where there is room for
improvement – some of which were discovered during this work.

CHAPTER 7. CONCLUSION AND FUTURE WORK 79

While there is ample room for improvement to the works described in this thesis, a few sug-
gestions can be made to the platform in general as well. This section will provide suggestions
both to the SHMAC project in general and to the contributions presented by this paper.

7.2.1 Pthreads Library

In general, the Pthreads library seems to perform admirably at the most central tasks it
provides: creating and joining threads. There are other components of the library that do
not perform equally well.

The blackscholes benchmark revealed that the red-black trees used internally to keep
track of mutexes, condition variables and locks did not perform very well: in this benchmark,
we managed to initialize condition variables at a rate of ∼ 1600/s. An alternative would be
the allocate all necessary state on the heap and put the pointer to this state in the handles
passed to the API functions. For instance, a pthread mutex t could contain a pointer to
a pthread internal t struct that store the necessary state. This approach has not been
evaluated in detail, but should provide a substantial performance gain.

There are also no scheduler-assisted mutexes in the library. That is, the scheduler is
happy to run a task that will spend its entire timeslice busy-waiting on a mutex. This is
the way it is because the mutex library implementation predates the Pthreads library. The
Pthreads library was thus written as a simple wrapper for the existing SHMAC mutex library.
Additionally, the spinlocks are simply wrapping the mutex library.

A better solution would be the let the spinlocks wrap the existing SHMAC mutexes and
reimplement the Pthreads mutexes with scheduler support.

The R/W lock component of Pthreads are missing two functions:
pthread rwlock timedrlock and pthread rwlock timedwlock. Extending the li-
brary with these functions is not particularly hard, it was just not a prioritized task. They
should be implemented.

As SHMAC is a platform for heterogeneous research, a threading library should preferably
possess architectural awareness, so it can schedule tasks at the appropriate tile types to
maximize performance or energy efficiency. While the Pthread library does not expose any
such facilities, it could be implemented without the client being aware. This would, however,
require the hardware platform to expose more detailed information about the underlying
tile configuration at runtime. This can be done the same way it currently exposes certain
information, such as tile identifiers and XY coordinates: through memory-mapped, tile-local
registers.

CHAPTER 7. CONCLUSION AND FUTURE WORK 80

7.2.2 The Profiler

The profiler’s feature set is to some extent dictated by architectural limitations. For instance,
no core can start a timer on a different core. This imposes the limitation that each core must
start its own instance of the profiler.

Second, the profiler is completely threading-unaware. The reason for this is twofold:

1. There are no threads in privileged modes, so there would always be a need to be able
to profile a core without requiring a thread context. The interrupt routine found in
crt0.S was written to support nested interrupts, which is needed for profiling in
privileged processor modes.

2. More importantly, each core does not start out by executing a thread. The threading
library is an optional library that will (probably) more often be excluded from an
application than not.

Optimally, the profiler should be able to detect the use of threads and adapt. The difficulty
here lies in making the scheduler and profiler work well together without making either
dependent on the other.

Currently, the profiler works on a single core that is decided at compile-time. A simple,
iterative improvement on the profiler would be to make it profile all cores, not just the
one calling prof init. Because of the aforementioned need for all cores to start their own
timer, all cores would still have to initialize their own profiler instance. The output format
would have to be adapted to support a variable number of cores and both shmac prof and
shmac prof2gprof would need some modifications.

7.2.3 Other Improvements to SHMAC

What is thought to be a fairly serious memory bug was uncovered when porting the
blackscholes and dedup benchmarks to SHMAC. This bug caused either complete sys-
tem freeze or unstable performance. Running shmac dump in the background seemed to
make the application continue normally. This behavior could point to a bug in the memory
subsystem of the platform rather than a software bug. This issue should be investigated
further.

Inter-core interrupts was perhaps the most sorely missed feature from the hardware plat-
form in implementing the scheduler. With the current implementation, a task invokes the
scheduler explicitly in a number of cases. This ensures that the next task can be started
immediately rather than having to wait for the next timer interrupt. For instance, this leads
to highly efficient create/join performance on a single core.

CHAPTER 7. CONCLUSION AND FUTURE WORK 81

However, the fact that cores cannot interrupt one another creates situations were one simply
has to wait for the other core to reach a timer interrupt event. Figure 5.5 illustrates the
problem well; when a task that is being joined exits, it cannot inform the joining task’s
core that it can immediately schedule said task. Instead, it has to wait for the scheduler to
discover that by itself.

While this feature would have been beneficial to the scheduler, it also has wider applicability
in inter-core communications.

Appendices

82

Appendix A

Automating the SHMAC Build
Environment Setup

A.1 Problem Description

As the SHMAC project grows, a number of people have had to independently set up a working
cross-compiler in order to work on SHMAC software development. This is a cumbersome
process for several reasons:

1. SHMAC uses an old instruction set (ARMv3) for which all of GCC’s features do not
compile out of the box.

2. The memory map used by SHMAC does not match the standard ARM memory map.

3. In addition to a cross-compiler, a working standard library implementation is usually
needed. This process of compiling GCC with a third-party C standard library imple-
mentation is not entirely intuitive.

For these reasons, a way of automating this setup process was needed. This reduced the
overhead involved in setting up a new development environment and introduces a common
toolchain for all developers.

A.2 Implementation

The obvious solution to the problem was chosen: script the install process. This includes
doing sanity checks to determine if all required dependencies (such as GNU Make, a C++
compiler and libgmp) are in place, as well as downloading all the needed tarballs.

83

APPENDIX A. AUTOMATING THE SHMAC BUILD ENVIRONMENT SETUP 84

shmac toolchain/

build root/

tarballs/

build/

newlib obj/

gcc-4.8.2 obj/

gcc-4.8.2/

binutils-2.24 obj/

binutils-2.24/

patches/
gcc libunwind.diff

binutils linkerscript.diff

newlib/ newlib-2.0.0.0/

bin/
shmac test

shmac run

setup toolchain.sh

Figure A.1: The (top-level) folder structure of the toolchain installer. bin/ contains binaries
related to the testing framework that can optionally be installed. newlib/ is a modified ver-
sion of Newlib that compiles for SHMAC. Finally, the patches/ are applied to GCC/Binutils
once these are downloaded and unpacked. build root/ is the temporary folder used to compile
everything. While the shown location is the default, it can be specified when the script is
invoked.

In addition to the install script, some additional data was needed: the patches we need to
apply and Newlib. We chose two different approaches to patching GCC/Binutils and Newlib:
GCC and Binutils are patched when the compiler toolchain is installed. Newlib, on the other
hand, is included in the installer as an already-patched folder.

The toolchain setup is included in the pre-existing repository used for all SHMAC-related
development, where it can be found in the toolchain or master branch. On one of those
branches, a folder structure as shown in Figure A.1 can be found in shmac/software/sh-
mac toolchain.

The entire setup process goes as follows:

1. First, sanity-check the host environment. This includes checking for the required build
tools, such as GNU Make and texinfo. It also that the three required library header files
are found: libgmp >= 4.2, libmpfr >= 2.4.0 and libmpc >= 0.8.0. If any requirement
is found to be missing, the build process terminates immediately.

2. If all requirements are satisfied, the installer downloads the two required tarballs: GCC
and Binutils. These are downloaded and extracted to a temporary build folder.

3. Subsequently, GCC and Binutils are patched. This includes patching GCC’s libunwind
to make sure it compiles for ARMv3. The Binutils linker script code is patched to

APPENDIX A. AUTOMATING THE SHMAC BUILD ENVIRONMENT SETUP 85

ensure that the built-in linker script satisfied SHMAC’s requirements.

4. We are now ready to compile our binary utils, which include tools like ld, cpp, readelf,
ranlib, etc.

5. The process is compiling GCC and Newlib is not entirely obvious. We need to cross-
compile Newlib for the SHMAC architecture, but for that we need a working cross-
compiler. Having a working cross-compiler includes having a C library (Newlib) com-
piled for SHMAC.

This cyclicity requires us to split the GCC compilation process into stages. First, we
compile a partial compiler (the Make rule called all-gcc). Then we use our partial
cross-compiler to compile Newlib. Once that is done, we can return to building a fully
working compiler with our recently compiled Newlib as its standard library.

In short:

(a) Compile GCC (stage 1)

(b) Compile Newlib using the GCC from stage 1

(c) Compile the full version of GCC

6. Finally, the installer will ask if the user wants to install two additional binaries (shmac run
and shmac test). These are not directly related to the toolchain, but provides a mech-
anism for automatically running applications on SHMAC. This is primarily intended
for benchmarking and regression testing. The shmac run utility, intended to be run
on the SHMAC host, requires the Python module serial.

At this point, a working cross-compiler for the arm-none-eabi target has been installed to
/usr/local (unless the user specified another path to the setup script). Using arm-none-eabi-
gcc (or g++), the user should now be able to compile applications that run on SHMAC.

A.3 Usage

The setup toolchain.sh script can be run without additional parameters. If it is invoked
in this fashion, it will use ./build root/ as a temporary working directory and install the
toolchain to /usr/local/.

If the user wants to change either of these parameters, they can be supplied to the script.
Two sample invocations are shown in Listing A.1.

1 # will install to /usr/local using /tmp/shmac as working directory
2 ./setup_toolchain.sh /tmp/shmac
3

4 # will install to $HOME/toolchain
5 ./setup_toolchain.sh ./build_root $HOME/toolchain

Listing A.1: Sample usage of the setup toolchain.sh script.

APPENDIX A. AUTOMATING THE SHMAC BUILD ENVIRONMENT SETUP 86

The script does not clean up its working directory when it is finished. This is by design, as
this might be useful if the user finds it necessary to make any changes at a later point. If
this is not the case, the directory can be deleted once the installation is finished.

Appendix B

Implementing a Testing Framework
for SHMAC

B.1 Problem Description

As the number of applications and benchmarks ported to SHMAC grows, running each one
manually becames an increasingly tedious task. Hardware developers might want to quickly
run a regression suite to verify the correctness of a hardware change, but the current suite
of benchmarks is diverse and lacks consistency with regard to the compilation process. In
addition, some benchmarks require user input during the benchmark run. Thus, running
benchmarks often requires an in-depth understanding of each benchmark or, at the very
least, more knowledge than should be required to run a simple benchmark.

This report details the implementation of a solution to this problem.

B.2 Introduction

The problem description outlines two distinct problems:

1. Automating the task of running several applications/benchmarks, verifying that each
one runs correctly.

2. The need to be able to run each benchmark without requiring any form of user input.

The testing framework consists of a fairly simply tool to achieve both of these goals. Before
looking at the implementation, an understanding of the typical development workflow is
useful.

87

APPENDIX B. IMPLEMENTING A TESTING FRAMEWORK FOR SHMAC 88

/

...

projectB/
main.c

Makefile

projectA/

...

main.c

Makefile

common/

libs/

...
sha1

crc32

jpeg

pthreads

syscalls/

...
gettimeofday.c

read.c

write.c

exit.c

shmac/

...
prof.c

mutex.c

timer.c

shmac.c

Figure B.1: The current SHMAC project structure. common contains code that is typically
shared across projects.

B.3 SHMAC Development

The project structure is shown in Figure B.1. Every project has its own source files and
Makefile. Optionally, they might choose to include the shmac.a archive and other libraries.
syscalls.a is required as long as the project is compiled with libc since it contains stubs
required by Newlib.

Every project currently has its own Makefile. An extremely simple Makefile typically provides
the following rules:

1. A rule to compile source code into object files. The implicit built-in rule could also be
used here.

2. A rule to combine the object files into an ELF (Executable and Linkable Format) file,
optionally linking it with libc and common.a.

APPENDIX B. IMPLEMENTING A TESTING FRAMEWORK FOR SHMAC 89

3. A rule to dump the ELF file as a raw binary.

This binary file is the one that is copied over to the Versatile Board, which is the development
platform SHMAC uses. It is basically a normal computer running Linux with an FPGA
attached to a COM port. The host operating system communicates with the FPGA via a
set of utility programs (which again communicate with a kernel module, shmac.ko):

shmac dump
A program used to extract data from SHMAC’s memory space

shmac program
A program used to write to SHMAC’s memory space

shmac reset
A program used to toggle the reset signal to every SHMAC core

Running a program on SHMAC thus typically consists for the following sequence of opera-
tions:

1 shmac_reset on
2 shmac_program 0 shmac.bin
3 shmac_reset off

Listing B.1: Programming a .bin file on the FPGA

Where shmac.bin is the binary file produced by our project Makefile. The kernel module
exposes SHMAC’s I/O facilities through a TTY device, /dev/ttySHMAC0. Any serial
communication program can be used to communicate with SHMAC.

B.4 The Testing Framework

The testing framework is very much based on the existing work flow. It automates the task
of compiling the test binary, scp-ing it to the SHMAC host, running the application and
capturing output and exit code. Finally, it presents the status to the user. If the test failed,
the entire output is shown.

Every project in the root folder has the responsibility of implementing a test version of
itself (or not – developer’s choice). Some times, applications will require user input during
execution. For instance in the case of an image benchmark application, the application might
ask the user to supply the image early on in the execution. For a test application, all of this
has to be automated.

While this problem is left to the project developer, the general strategy will often be to
compile any resources into object files and link them statically. Finally, the application could

APPENDIX B. IMPLEMENTING A TESTING FRAMEWORK FOR SHMAC 90

be compiled with a special flag that instructs it to use the linked resource instead of asking
for user input.

The test framework is really just an application that scans a given folder for projects that seem
to provide a test feature. The way the test framework locates tests is to simply recursively
scan a given directory for Makefiles that provide a test rule. If it finds this, it is assumed to
be a SHMAC test.

The test framework consists of two binaries: shmac test and shmac run.
shmac test is the main test binary and is run locally on the development system1. shmac run
is an application that is run on the SHMAC host. Its responsibility is to run a given binary
on SHMAC and echo output until the application exits. The exit() routine is expected to
print “exit code: $code” as its final output. When shmac run reads this, it exits with the
same status code.

This binary was designed to be easily executed remotely. If the developer has a local test.bin
file, he can simply execute:

ssh shmac host shmac run < test.bin && echo $?

This will execute the remote shmac run utility, echo any output and exit with the correct
status code. This is the process the shmac test utility automates.

In short, this is what shmac test does:

1. It scans a given directory for Makefiles that provide a test target. For each one, it does:

(a) chdir to the project folder.

(b) Execute “make test”. If this fails, the user is informed that the compilation stage
failed. Otherwise, this stage is expected to produce a test.bin file.

(c) Execute test.bin remotely using ssh and shmac run. For this to be seamless,
the user should install his ssh key on the SHMAC host computer.

(d) If ssh exits with status code 0, the test is assumed to have passed. If it does not,
the exit code and output is echoed to the user.

Listing B.2 shows the relevant parameters shmac test accepts. This, along with the de-
scription for each parameter, should give some insight into its intended usage.

1That is, the developer’s local system, not the Versatile board

APPENDIX B. IMPLEMENTING A TESTING FRAMEWORK FOR SHMAC 91

1 usage: shmac_test [-h] [-d host] [-r rule_name] [-o] [-c] [-s] [-v]
2 [root_directory]
3

4 A simple utility for running automated tests on SHMAC.
5

6 positional arguments:
7 root_directory The directory under which to look for test
8 applications.
9 Defaults to the current directory

10

11 optional arguments:
12 -h, --help show this help message and exit
13 -d host The remote host to upload test cases to.
14 -r rule_name The make rule to invoke.
15 -o, --compile-only Do not actually run the test.
16 -c, --clean Run ’make clean’ before ’make test’?
17 -s, --scan-only Does not compile or run any tests, just scans
18 for projects that would have been run.
19 -v, --verbose

Listing B.2: The help text produced by shmac test -h.

Appendix C

The schedule() Function

1 void schedule(irq_regs_t *registers)
2 {
3 if (!core_lock(ID, TRYLOCK)) {
4 join_block_failed();
5 log_task(IRQ_FAILED_CORE_LOCK, core_tq_get_current());
6 return;
7 }
8

9

10 log_task(IRQ_STARTED, core_tq_get_current());
11

12 process_mq();
13 core_tq_unblock_tasks(NONE);
14

15 task_t *current_task = core_tq_get_current();
16

17 if (current_task == NULL)
18 {
19 pick_from_heap(registers);
20 }
21 else if (should_cancel(current_task))
22 {
23 cancel(registers, current_task);
24 }
25 else
26 {
27 task_tick_hook(current_task);
28

29 int switch_task = 0;
30 if (current_task->state == FINISHED) {
31 flush_finished_task(current_task);
32 switch_task = 1;
33 } else {
34 switch_task = retire_current_task(registers, current_task);
35 }
36

92

APPENDIX C. THE SCHEDULE() FUNCTION 93

37 if (switch_task) {
38 if (!pick_from_join_blocked(registers)) {
39 pick_from_heap(registers);
40 }
41 } else {
42 // not switching, but request work if continuing idle task
43 if (is_idle_task(current_task)) {
44 request_work(current_task);
45 }
46 }
47 }
48

49 core_tick(ID);
50 core_unlock(ID, 1);
51

52 log_task(IRQ_FINISHED, core_tq_get_current());
53 }

Listing C.1: The schedule() function.

Appendix D

Task Prioritization Functions

1 #define se2t(ts,se) struct task_struct *(ts) = \
2 (struct task_struct*)((struct sched_entity*)(se))->task
3

4

5 /* Comparison function for SCHED_OTHER */
6 static int task_comparator_heap_other(void *task1_se, void *task2_se)
7 {
8 se2t(task1,task1_se);
9 se2t(task2,task2_se);

10

11 int s1 = task1->attrs.schedparam.sched_priority,
12 s2 = task2->attrs.schedparam.sched_priority;
13

14 // special case for idle function: always down-prioritize
15 if (s1 == 0 && s2 != 0) return -1;
16 if (s2 == 0 && s1 != 0) return 1;
17

18 // if tasks have different priorities, order them by
19 // ’t->epoch_sched_count / t->priority’ (in increasing order).
20

21 // note that mul is slow on the Amber core: 33 cycles _with_
22 // cache and almost 600 cycles without cache.
23 int t1 = ((sched_entity_t*)task1_se)->epoch_sched_count * s2;
24 int t2 = ((sched_entity_t*)task2_se)->epoch_sched_count * s1;
25

26 return (t1 < t2) ? 1 : (t1 > t2 ? -1 : 0);
27 }
28

29

30 /* Comparison function for SCHED_RR */
31 static int task_comparator_heap_rr(void *task1_se, void *task2_se)
32 {
33 // round-robin scheduling is simply ordering by
34 // the number of times a task has been run.
35 int t1 = ((sched_entity_t*)task1_se)->epoch_sched_count,
36 t2 = ((sched_entity_t*)task2_se)->epoch_sched_count;

94

APPENDIX D. TASK PRIORITIZATION FUNCTIONS 95

37

38 return (t1 < t2) ? 1 : (t1 > t2 ? -1 : 0);
39 }
40

41 /* Comparison function for SCHED_FIFO */
42 static int task_comparator_heap_fifo(void *task1_se, void *task2_se)
43 {
44 // order by (priority, created_time)
45 se2t(task1,task1_se);
46 se2t(task2,task2_se);
47

48 int t1 = ((sched_entity_t*)task1_se)->created_time,
49 t2 = ((sched_entity_t*)task2_se)->created_time;
50

51 int s1 = task1->attrs.schedparam.sched_priority,
52 s2 = task2->attrs.schedparam.sched_priority;
53

54 if (s1 != s2)
55 return (s1 > s2) ? 1 : (s1 < s2 ? -1 : 0);
56 else
57 return (t1 < t2) ? 1 : (t1 > t2 ? -1 : 0);
58 }

Listing D.1: The functions used to establish a partial ordering of tasks in the three task
heaps in the scheduler.

Appendix E

Master/worker benchmark

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <assert.h>
4

5 #include "shmac/prof.h"
6

7 #define THREADS 1
8 #define FIXED_WORK 1000000
9 #define PROFILE_SAMPLE_RATE 500

10

11 void *fixed_work(void *ptr) {
12 volatile unsigned long work = FIXED_WORK;
13 while (work--);
14 return NULL;
15 }
16

17 int main(void) {
18 // initialize the profiler here, but don’t start it. It is started
19 // early on in the schedule() function and stopped at the end of it.
20 // That way we collect only the data we want.
21 prof_init(PROFILE_SAMPLE_RATE, 0);
22

23 // Create all threads, assert that everything works as expected
24 pthread_t ts[THREADS];
25 for (int x = 0; x < THREADS; x++) {
26 assert(pthread_create(&ts[x], NULL, &fixed_work, NULL) == 0);
27 }
28

29 // wait for all tasks to finish
30 for (int x = 0; x < THREADS; x++) {
31 assert(pthread_join(ts[x], NULL) == 0);
32 }
33

34 // Stop the profiler and print its output
35 char *ptr;
36 unsigned int len;

96

APPENDIX E. MASTER/WORKER BENCHMARK 97

37 prof_finalize(&ptr, &len);
38 printf("Profile is at 0x%x, read %d bytes.\n",
39 (unsigned int)ptr, len);
40

41 return 0;
42 }

Listing E.1: The master/worker benchmark

Appendix F

Join chain benchmark

1 #include <stdio.h>
2 #include <assert.h>
3 #include <pthread.h>
4

5 #include "shmac/shmac.h"
6 #include "shmac/prof.h"
7

8 #define THREADS 1
9 #define PROFILE_SAMPLE_RATE 500

10

11 void *recurse(void *arg) {
12 if ((int)arg == 0) {
13 return (void*)1;
14 } else {
15 int nn;
16 assert(pthread_join(pthread_self() - 1, (void**)&nn) == 0);
17 return (void*)(nn + 1);
18 }
19 }
20

21 int main(void) {
22 // initialize the profiler here, but don’t start it. It is started
23 // early on in the schedule() function and stopped at the end of it.
24 // That way we collect only the data we want.
25 prof_init(PROFILE_SAMPLE_RATE, 0);
26

27 // Create all threads, assert that everything works as expected
28 pthread_t ts[THREADS];
29 for (int x = 0; x < THREADS; x++) {
30 assert(pthread_create(&ts[x], NULL, &recurse, (void*)x) == 0);
31 }
32

33 // Join only the last one and print its return value
34 unsigned int sum = 0;
35 assert(pthread_join(ts[THREADS -1], (void**)&sum) == 0);
36 assert(sum == THREADS);

98

APPENDIX F. JOIN CHAIN BENCHMARK 99

37

38 // Stop the profiler and print its output
39 char *ptr;
40 unsigned int len;
41 prof_finalize(&ptr, &len);
42 printf("Profile is at 0x%x, read %d bytes.\n",
43 (unsigned int)ptr, len);
44

45 return 0;
46 }

Listing F.1: The join chain benchmark

Appendix G

x264 Line-level profile

To annotate the source code, it was necessary to extract the raw samples from the profile
format described in Section 4.2. The following one-liner does that:

1 egrep -o "histogram=(.*)" prof.txt | \
2 sed -e ’s/histogram=(//g;s/)//g;s/,/\n/g’ | \
3 perl -pe "s/ˆ/0x/g" | \
4 addr2asm -a x264.elf | \
5 arm-none-eabi-addr2line -sfpe x264.elf | \
6 grep "ˆquant_4x4 at" | \
7 shmac_annotate -c 2 -f ./x264/src/common/quant.c

Listing G.1: A Bash oneliner to extract samples from the profile. This specific script anno-
tates the function quant 4x4, found in quant.c.

Two custom applications were used here:

1. addr2asm reads samples from standard input, uses the given ELF file to look up the
instruction type and prints out a adjusted sample. For instance, mul instructions often
take a long time. If they are followed by a add instruction, the program counter will
stall at the add instruction while the core is actually busy performing the mul. This
script uses knowledge of each instruction’s execution time to adjust for this fact. While
this approach is not perfect (it can wrongly shift a sample to the previous instruction
when it shouldn’t have), it certainly improves the result’s precision.

2. shmac annotate parses output from addr2line, correlates it with the source file and
prints the annotated version shown in the listings shown below.

The following series of listings show the most time consuming functions from x264, in de-
scending order.

100

APPENDIX G. X264 LINE-LEVEL PROFILE 101

1 #define HADAMARD4(d0,d1,d2,d3,s0,s1,s2,s3) {\
2 int t0 = s0 + s1;\
3 int t1 = s0 - s1;\
4 int t2 = s2 + s3;\
5 int t3 = s2 - s3;\
6 d0 = t0 + t2;\
7 d2 = t0 - t2;\
8 d1 = t1 + t3;\
9 d3 = t1 - t3;\

10 }
11 0.0 %: static int pixel_satd_wxh(
12 0.0 % uint8_t *pix1, int i_pix1, uint8_t *pix2,
13 0.0 % int i_pix2, int i_width, int i_height)
14 0.4 %: {
15 0.0 %: int16_t tmp[4][4];
16 0.0 %: int x, y;
17 0.0 %: int i_satd = 0;
18 0.0 %:
19 1.8 %: for(y = 0; y < i_height; y += 4)
20 0.0 %: {
21 3.3 %: for(x = 0; x < i_width; x += 4)
22 0.0 %: {
23 0.0 %: int i;
24 0.0 %: uint8_t *p1 = pix1+x, *p2 = pix2+x;
25 0.0 %:
26 5.6 %: for(i=0; i<4; i++, p1+=i_pix1, p2+=i_pix2)
27 0.0 %: {
28 4.1 %: int a0 = p1[0] - p2[0];
29 2.2 %: int a1 = p1[1] - p2[1];
30 2.2 %: int a2 = p1[2] - p2[2];
31 4.9 %: int a3 = p1[3] - p2[3];
32 30.1 %: HADAMARD4(tmp[i][0],tmp[i][1],tmp[i][2],tmp[i][3],a0,a1,a2,a3);
33 0.0 %: }
34 2.2 %: for(i=0; i<4; i++)
35 0.0 %: {
36 0.0 %: int a0,a1,a2,a3;
37 32.3 %: HADAMARD4(a0,a1,a2,a3,tmp[0][i],tmp[1][i],tmp[2][i],tmp[3][i]);
38 9.2 %: i_satd += abs(a0) + abs(a1) + abs(a2) + abs(a3);
39 0.0 %: }
40 0.0 %:
41 0.0 %: }
42 0.5 %: pix1 += 4 * i_pix1;
43 0.9 %: pix2 += 4 * i_pix2;
44 0.0 %: }
45 0.0 %:
46 0.0 %: return i_satd / 2;
47 0.1 %: }

Listing G.2: The most time consuming function in x264. It spends most of its time in the
HADAMARD4 macro.

APPENDIX G. X264 LINE-LEVEL PROFILE 102

1 0.0 %: static void mc_chroma(uint8_t *dst, int i_dst_stride,
2 0.0 %: uint8_t *src, int i_src_stride,
3 0.0 %: int mvx, int mvy,
4 0.0 %: int i_width, int i_height)
5 1.7 %: {
6 0.0 %: uint8_t *srcp;
7 0.0 %: int x, y;
8 0.0 %:
9 0.0 %: const int d8x = mvx&0x07;

10 0.0 %: const int d8y = mvy&0x07;
11 0.0 %:
12 0.1 %: const int cA = (8-d8x)*(8-d8y);
13 0.7 %: const int cB = d8x *(8-d8y);
14 0.1 %: const int cC = (8-d8x)*d8y;
15 0.6 %: const int cD = d8x *d8y;
16 0.0 %:
17 0.2 %: src += (mvy >> 3) * i_src_stride + (mvx >> 3);
18 0.0 %: srcp = &src[i_src_stride];
19 0.0 %:
20 1.1 %: for(y = 0; y < i_height; y++)
21 0.0 %: {
22 2.8 %: for(x = 0; x < i_width; x++)
23 0.0 %: {
24 27.8 %: dst[x] = (cA*src[x] + cB*src[x+1] +
25 63.2 %: cC*srcp[x] + cD*srcp[x+1] + 32) >> 6;
26 0.0 %: }
27 0.8 %: dst += i_dst_stride;
28 0.0 %:
29 0.0 %: src = srcp;
30 0.8 %: srcp += i_src_stride;
31 0.0 %: }
32 0.2 %: }

Listing G.3: The mc chroma function is one where the performance of multiplications really
plays a big part.

APPENDIX G. X264 LINE-LEVEL PROFILE 103

1 #define QUANT_ONE(coef, mf, f) \
2 { \
3 if((coef) > 0) \
4 (coef) = (f + (coef)) * (mf) >> 16; \
5 else \
6 (coef) = - ((f - (coef)) * (mf) >> 16); \
7 }
8

9 0.0 %: static void quant_4x4(
10 0.0 %: int16_t dct[4][4],uint16_t mf[16],uint16_t bias[16])
11 0.7 %: {
12 0.0 %: int i;
13 1.3 %: for(i = 0; i < 16; i++)
14 97.1 %: QUANT_ONE(dct[0][i], mf[i], bias[i]);
15 1.0 %: }

Listing G.4: Practically all time on quant 4x4 is spent in a multiplication macro.

1 0.0 %: static uint8_t *get_ref(uint8_t *dst, int *i_dst_stride,
2 0.0 %: uint8_t *src[4], int i_src_stride,
3 0.0 %: int mvx, int mvy,
4 0.0 %: int i_width, int i_height)
5 10.5 %: {
6 0.0 %: int qpel_idx = ((mvy&3)<<2) + (mvx&3);
7 4.8 %: int offset = (mvy>>2)*i_src_stride + (mvx>>2);
8 66.5 %: uint8_t *src1 = src[hpel_ref0[qpel_idx]] + offset + \
9 ((mvy&3) == 3) * i_src_stride;

10 0.0 %:
11 1.5 %: if(qpel_idx & 5) /* qpel interpolation needed */
12 0.0 %: {
13 6.2 %: uint8_t *src2 = src[hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3);
14 1.3 %: pixel_avg(dst, *i_dst_stride, src1, i_src_stride,
15 0.0 %: src2, i_src_stride, i_width, i_height);
16 0.0 %: return dst;
17 0.0 %: }
18 0.0 %: else
19 0.0 %: {
20 0.7 %: *i_dst_stride = i_src_stride;
21 1.4 %: return src1;
22 0.0 %: }
23 7.1 %: }

Listing G.5: The single multiplication performed in get ref dominates the function’s exe-
cution time.

APPENDIX G. X264 LINE-LEVEL PROFILE 104

1 0.0 %: static void sub4x4_dct(int16_t dct[4][4],uint8_t *pix1,uint8_t *pix2)
2 3.3 %: {
3 0.0 %: int16_t d[4][4];
4 0.0 %: int16_t tmp[4][4];
5 0.0 %: int i;
6 0.0 %:
7 0.0 %: pixel_sub_wxh((int16_t*)d,4,pix1,FENC_STRIDE,pix2,FDEC_STRIDE);
8 0.0 %:
9 2.6 %: for(i = 0; i < 4; i++)

10 0.0 %: {
11 10.3 %: const int s03 = d[i][0] + d[i][3];
12 11.7 %: const int s12 = d[i][1] + d[i][2];
13 1.3 %: const int d03 = d[i][0] - d[i][3];
14 1.4 %: const int d12 = d[i][1] - d[i][2];
15 0.0 %:
16 9.7 %: tmp[0][i] = s03 + s12;
17 4.0 %: tmp[1][i] = 2*d03 + d12;
18 2.5 %: tmp[2][i] = s03 - s12;
19 4.8 %: tmp[3][i] = d03 - 2*d12;
20 0.0 %: }
21 0.0 %:
22 2.1 %: for(i = 0; i < 4; i++)
23 0.0 %: {
24 10.5 %: const int s03 = tmp[i][0] + tmp[i][3];
25 11.8 %: const int s12 = tmp[i][1] + tmp[i][2];
26 1.1 %: const int d03 = tmp[i][0] - tmp[i][3];
27 0.6 %: const int d12 = tmp[i][1] - tmp[i][2];
28 0.0 %:
29 9.5 %: dct[i][0] = s03 + s12;
30 4.4 %: dct[i][1] = 2*d03 + d12;
31 3.1 %: dct[i][2] = s03 - s12;
32 4.2 %: dct[i][3] = d03 - 2*d12;
33 0.0 %: }
34 1.1 %: }

Listing G.6: Nothing is particularly time consuming in sub4x4 dct, but the function is
called a larger number of times.

Bibliography

[1] Akre, A. T. and Bøe, S. (2014). Turbo amber, a high performance processor core for
shmac. Master’s thesis, Norwegian University of Science and Technology.

[2] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe, T.,
Schüpbach, A., and Singhania, A. (2009). The multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, pages 29–44, New York, NY, USA. ACM.

[3] Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The parsec benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages 72–81,
New York, NY, USA. ACM.

[4] Borkar, S. (1999). Design challenges of technology scaling. Micro, IEEE, 19(4):23–29.

[5] Borkar, S. (2007). Thousand core chips: A technology perspective. In Proceedings of
the 44th Annual Design Automation Conference, DAC ’07, pages 746–749, New York, NY,
USA. ACM.

[6] Bovet, D. P. and Cesati, M. (2005). Understanding the Linux Kernel, 3d Edition. O’Reilly
Media.

[7] Durantom, M., Black-Schaffer, D., Bosschere, K. D., and Maebe, J. (2013). The hipeac
vision for advanced computing in horizon 2020.

[8] Graham, S. L., Kessler, P. B., and Mckusick, M. K. (1982). Gprof: A call graph execution
profiler. SIGPLAN Not., 17(6):120–126.

[9] Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms.

[10] Kinsy, M. A., Pellauer, M., and Devadas, S. (2013). Heracles: A tool for fast rtl-
based design space exploration of multicore processors. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’13, pages 125–134,
New York, NY, USA. ACM.

105

BIBLIOGRAPHY 106

[11] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and Tullsen, D. M. (2003).
Single-isa heterogeneous multi-core architectures: The potential for processor power re-
duction. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 36, pages 81–, Washington, DC, USA. IEEE Computer Society.

[12] Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P., and Farkas, K. I. (2004).
Single-isa heterogeneous multi-core architectures for multithreaded workload performance.
SIGARCH Comput. Archit. News, 32(2):64–.

[13] Moore, G. (2005). Excerpts from a conversation with gordon moore.

[14] Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,
38(8).

[15] Pellauer, M., Adler, M., Kinsy, M., Parashar, A., and Emer, J. (2011). Hasim: Fpga-
based high-detail multicore simulation using time-division multiplexing. In In HPCA,
pages 406–417. IEEE Computer Society.

[16] Rotem, E., Ginosar, R., Mendelson, A., and Weiser, U. (2013). Power and thermal
constraints of modern system-on-a-chip computer. In Thermal Investigations of ICs and
Systems (THERMINIC), 2013 19th International Workshop on, pages 141–146.

[17] Rusten, L. T. and Sortland, G. I. (2012). Implementing a heterogeneous multi-core
prototype in an fpga. Master’s thesis, NTNU, Trondheim, Norway.

[18] Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H., Patterson, D., and Asanović,
K. (2010). Ramp gold: An fpga-based architecture simulator for multiprocessors. In
Proceedings of the 47th Design Automation Conference, DAC ’10, pages 463–468, New
York, NY, USA. ACM.

[19] Van Craeynest, K. and Eeckhout, L. (2013). Understanding fundamental design choices
in single-isa heterogeneous multicore architectures. ACM Trans. Archit. Code Optim.,
9(4):32:1–32:23.

[20] Wee, S., Casper, J., Njoroge, N., Tesylar, Y., Ge, D., Kozyrakis, C., and Olukotun, K.
(2007). A practical fpga-based framework for novel cmp research. In Proceedings of the
2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays,
FPGA ’07, pages 116–125, New York, NY, USA. ACM.

[21] Wikene, H. O. (2014a). Automating the SHMAC build environment setup. Technical
report, Norwegian University of Science and Technology.

[22] Wikene, H. O. (2014b). Implementing a testing framework for SHMAC. Technical
report, Norwegian University of Science and Technology.

	Problem Description
	Abstract
	Sammendrag (Norwegian Abstract)
	Preface
	Acknowledgments

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	The SHMAC Project
	Assignment Interpretation
	Contributions
	Thesis Organization

	Background
	Processor Design: A Historical Perspective
	Recent Steps Toward Heterogeneity
	Research Initiatives Into Heterogeneous Hardware

	The SHMAC Project
	Hardware Platform
	Memory Space
	Cores and ISA

	A Brief History of Linux Schedulers
	The O(n) Scheduler
	The O(1) Scheduler
	CFS (The Completely Fair Scheduler)

	Existing Threading Libraries
	TinyThread
	POSIX Threads for embedded systems (PTE)

	The SHMAC Scheduler
	Overall Design
	Components In Detail
	Per-Core State
	The task_struct Struct
	The sched_entity Struct
	Priority Queues
	Global PID Hash
	Task Blocking
	Task Joining
	Work Requesting
	Core Bootstrapping
	Event Logging
	Task Prioritization

	Pthreads API
	Project Structure
	Test Coverage
	Known Issues

	The SHMAC Profiler
	Profiler Implementation
	Parsing The Output
	Performance Results

	Evaluating The SHMAC Scheduler
	Sample Applications
	Master/Worker
	Join Chain

	Performance Results
	Master/Worker, 4 threads
	Master/Worker, 40 threads
	Master/Worker, 400 threads
	Join Chain, 40 threads
	Join Chain, 400 threads

	Ported Benchmarks
	The PARSEC Suite
	Blackscholes
	Dedup
	x264

	Conclusion and Future Work
	Conclusion
	Future Work
	Pthreads Library
	The Profiler
	Other Improvements to SHMAC

	Appendices
	Automating the SHMAC Build Environment Setup
	Problem Description
	Implementation
	Usage

	Implementing a Testing Framework for SHMAC
	Problem Description
	Introduction
	SHMAC Development
	The Testing Framework

	The schedule() Function
	Task Prioritization Functions
	Master/worker benchmark
	Join chain benchmark
	x264 Line-level profile
	Bibliography

