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Problem Description

This project will expand on previous work done by Eirik Myklebost on GPU behavior to
include studying effect on systems with multiple GPUs.

We will primarily extend the work of Andreas Berg Skomedal, consisting of: A Yee-
bench’s FTDT method ported to CUDA and a heterogeneous scheduler, which divides
work among CPU and GPU cores, or similar applications. Developing an efficient ap-
plication for a variety of different GPUs, across different NVIDIA architectures, will be
included.

This project may also include further development on the scheduler; making it work
on systems with multiple GPUs.

Assignment given: 17. January 2014
Supervisor: Dr. Anne Cathrine Elster, IDI
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Abstract

Finite-Difference Time-Domain (FDTD) is a popular technique for modeling computa-
tional electrodynamics, and is used within many research areas, such as the development
of antennas, ultrasound imaging, and seismic wave propagation. Simulating large domains
can however be very compute and memory demanding, which has motivated the use of
cluster computing, and lately also the use of Graphical Processing Units (GPUs).

The previous work of Andreas Berg Skomedal’s master thesis [1] from May 2013 in-
cludes a heterogeneous FDTD implementation, in the sense that it schedules domains
between a CPU and a GPU on a single system. The implementation is a benchmarking
code based on the Yee bench [2] code by Ulf Andersson, and focuses on the performance
of simulating many small individual FDTD domains.

This thesis introduces a new FDTD implementation based on the work by Skomedal
and Andersson. The code is written in C++ and CUDA, and uses a decomposition
approach as opposed to scheduling, which allows for larger domains to be divided among
multiple execution units. It supports the use of both a CPU and several CUDA capable
GPUs on a single system, in addition to multi-node execution through the use of the
Message Passing Interface (MPI). A discussion of the differences between the CUDA
capable GPU architectures, and how they affect the performance of the FDTD algorithm,
is also included.

The results shows a performance increase of 66% when simulating large domains on
two GPUs compared to a single GPU. Using the CPU in addition to one or two fast
GPUs is shown to give a slight improvement, but the main advantage is the possibility to
simulate larger domains. Results from multi-node executions is also included, but they
refer to poor performance values, due to being severely limited by a 100 Mbit/s Ethernet.

The work of this thesis includes a working FDTD decomposition implementation, that
can be executed on a cluster of heterogeneous systems with a multi-core CPU, and one
or several CUDA capable GPUs. It is also written with the intention that it should be
easily extendable to also work with non-CUDA capable GPUs. As with the previous work
by Skomedal and Andersson, this implementation is only a benchmarking code, and is
not suited for real world problems. It is instead intended to be used as a basis for future
works, or as an example on how to do FDTD on a cluster of heterogeneous multi-GPU
systems.
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Chapter 1

Introduction

The simulation of electromagnetic fields is an important part of many research areas,
such as the development of antennas, ultrasound imaging, and seismic wave propagation.
The Finite-Difference Time-Domain (FDTD) method used in this thesis is a very popular
technique for modeling computational electrodynamics, and was first proposed in 1966
by Kane Yee [3]. The method can however be very compute and memory demanding
when used to simulate large domains, and the capabilities of a single system can become
inadequate. Implementations have therefore been developed to scatter the computational
load and memory requirements among multiple systems, such as those described in the
articles: A Parallel FDTD Algorithm Based on Domain Decomposition Method Using the
MPI Library [4], and Parallel FDTD Simulation Using NUMA Acceleration Technique
[5].

Due to the popularity of video games and demanding real-time graphics, development
of Graphical Processing Units (GPUs) has been rapid and lead to them greatly exceeding
the computational power of traditional Central Processing Units (CPUs). The introduc-
tion of programming models like the Compute Unified Device Architecture (CUDA), has
made it convenient to utilize the processing power of modern GPUs for scientific com-
puting. GPUs have already proven to be very efficient at accelerating electromagnetic
simulations using FDTD, as shown in the article: CUDA Based FDTD Implementation
[6].

The goal of this thesis is to develop a solution that can do FDTD simulations on a
multi-node setup, where each node can utilize both a multi-core CPU and one or multiple
GPUs. The work done by Andreas Berg Skomedal as part of his master thesis [1], will
be used as a basis. His work is in turn based on the Yee bench code developed by
Ulf Andersson [2]. Skomedal’s work comprises of a CUDA port of the Yee bench code,
and a scheduler that distributes individual FDTD domains among a multi-core CPU
and a single GPU. His CPU version of the Yee bench code has also been extended to
use OpenMP, to utilizes multiple cores. A common constraint among the codes from
Yee bench, Skomedal’s work and this thesis, is that they are only meant as benchmarking
codes, and therefore lack several features required for practical FDTD simulations.

The code covered in this thesis is mainly written in C++, with the addition of CUDA
for GPU executions, OpenMP for multi-threaded CPU execution, and the Message Pass-
ing Interface (MPI) for multi-node execution. The solution uses the concept of an abstract
Worker class to control each execution unit, which can be either a CPU or a CUDA ca-
pable GPU. The workers runs simultaneously as POSIX threads, and allows for multiple
GPUs to be used within a single system. The Worker class also allows for future exten-
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Chapter 1. Introduction

sions, by developing new subclasses. Another thing that sets this solution apart from
Skomedal’s work, is that is uses a decomposition approach instead of scheduling.

The article: GPU-Accelerated Parallel FDTD on Distributed Heterogeneous Platform
[7], was published during the writing of this thesis. It happens to cover a similar area
of interest, and also uses similar techniques. The code developed as part of this thesis
distinguish itself by utilizing multiple GPUs within each node. It is also written in C++
as opposed to Fortran, and emphasizes a modular design that is easily extendable.

Outline

The thesis is structured in the following way:

• Chapter 2 presents background material covering CUDA, MPI, the FDTD method,
the Yee bench code, and Skomedal’s work.

• Chapter 3 describes the overall design and flow of the implementation.

• Chapter 4 includes performance results from executing the code on a variety of
software and hardware setups, as well as different program configurations.

• Chapter 5 discusses the various results presented in Chapter 4. It will also discuss
some of the known limitations of the implementation.

• Chapter 6 concludes the findings of the thesis, and presents a selection of recom-
mendations for future work.

• Appendix A contains a detailed specification for each of the generations of CUDA
capable GPUs.

• Appendix B contains a user guide on how to compile and execute the code.

• Appendix C contains a complete Doxygen generated documentation of the entire
code.

2



Chapter 2

Background

This chapter will give a brief overview of the history of GPUs related to CPUs, and what
distinguishes them. It will provide an introduction to NVIDIA’s Compute Unified Device
Architecture (CUDA), some of its most used terms, and how it has evolved related to
the hardware architecture. The mentioned topics are both based on and excerpts from
the author’s specialization project: The Evolution and Current State of CUDA GPGPU
[8]. This chapter will also present the Message Passing Interface, the FDTD method, and
Andreas Berg Skomedal’s master thesis: Heterogeneous FDTD for Seismic Processing [1],
which has been used as a basis for the work in this thesis.

2.1 Parallel computing on GPUs and CPUs

GPUs are originally designed to accelerate the rendering of complex real-time graphics,
which involves doing the same computations on a lot of independent data before out-
putting to a frame buffer. Because of the nature of this work and in order to meet
performance demands for real-time rendering, modern GPUs contains many cores that
can operate on data in parallel. CPUs on the other hand have mainly been focused to-
wards running sequential programs, and performance has steadily improved with each
new generation by increasing the operating frequency. Over the last decade this has not
been a feasible strategy due to three primary factors: The memory wall, the Instruction
Level Parallelism (ILP) wall, and the power wall. These walls are combined known as the
brick wall [9], and has motivated CPU manufacturers to look for other ways to improve
performance, outside of just increasing operating frequency.

The main contributor to performance increments today is parallelism. Since the early
2000s, manufacturers like Intel, AMD, and others, have developed multi-core processors
that implements multiple CPU cores into the same physical package. These cores are able
to run in parallel and execute multiple instructions on different data at the same time.
Each core is also able to execute instructions independent of the other cores, effectively
making a multi-core CPU able to execute multiple programs simultaneously, which has
previously only been seemingly done through context switching. This ability is why
modern multi-core CPUs are referred to as Multiple Instruction, Multiple Data (MIMD)
systems. Today, a regular consumer grade CPU usually contains between two and eight
cores, while high-end CPUs targeted for servers can contain up to sixteen cores.

In contrast to multi-core CPUs, GPUs are in general known as Single Instruction,
Multiple Data (SIMD) systems. This is because the cores on a GPU can generally only
execute the same instructions, but on different data. However, newer GPU architectures

3



Chapter 2. Background

Figure 2.1: Floating-point operations per second development [10]

like NVIDIA’s Kepler and Maxwell, does to some extent possess the ability to execute
multiple different tasks simultaneously, which is further discussed in Section 2.2.3. Be-
sides not being able to independently execute different instructions, GPU cores are also a
lot simpler than CPU cores. CPU cores uses a lot of die space for optimizations that will
benefit serial execution, like: Advanced instruction pipelining, multiple large cache hierar-
chies, and sophisticated branch predictions. Modern GPU architectures does incorporate
some of these features, although in simpler forms.

The reduced complexity and size of a GPU core makes it possible to fit a lot more cores
on GPUs compared to CPUs. The fastest Tesla GPU at time of writing: The NVIDIA
Tesla K40, has as many as 2880 cores, with a combined peak of single-precision floating
point performance of 4.29 Tera FLOPS. In order to keep the power and heat of a GPU
within a reasonable limit, each GPU core operates at a significantly lower clock frequency
compared to a CPU core. The Intel Core i7-4770K CPU operates at a clock between
3.5 and 3.9 GHz, depending on the load and temperature. In comparison, the cores on
a NVIDIA Tesla K40 GPU, runs at a frequency between 745 and 875 MHz. Figure 2.1
shows how the theoretical performance of GPUs have developed compared to CPUs over
the last decade.

Memory bandwidth is another important difference between CPUs and GPUs. Modern
GPUs are equipped with Graphics Double Data-Rate (GDDR) 5 DRAM. GDDR DRAM
is specially designed to be used as video memory, where high bandwidth is a requirement.
It is very similar to the DDR2 and DDR3 DRAM used as system memory. The major
difference is that GDDR DRAM runs at a higher frequency and thereby achieves higher

4



2.2. Compute Unified Device Architecture (CUDA)

Figure 2.2: Memory bandwidth development [10]

bandwidth, it does however also have a slightly higher latency. Figure 2.2 shows how the
theoretical bandwidth of GDDR DRAM has developed compared to regular DDR DRAM
over the last decade.

2.2 Compute Unified Device Architecture (CUDA)

CUDA was released by NVIDIA in November 2006. It is a general purpose parallel
computing platform and programming model, that enables developers to use C/C++
as high level programming languages. Doing general purpose computing on GPUs prior
to CUDA was considered a much more tedious task, since one would have to rely on
Application Programming Interfaces (APIs) primarily designed for rendering 2D and 3D
graphics (like OpenGL), in order to interact with the GPU [11, p. 31]. The report:
Utilizing GPUs on Cluster Computers, written by Leif Christian Larsen [12], gives a
thorough evaluation on how GPUs can be used to offload computations in the pre-CUDA
era.

CUDA is today the dominant proprietary framework for General-Purpose computing
on Graphical Processing Units (GPGPU), and is only supported by NVIDIA GPUs of the
G80 architecture or newer. The CUDA programming model consists of a host and one
or more separate devices. The CPU is usually acting as a host by supplying the devices
with work, and the devices are CUDA-capable GPUs.

Programs written in CUDA are compiled using the NVIDIA CUDA Compiler (NVCC)
[13], into an Instruction Set Architecture (ISA) called Parallel Thread Execution (PTX)
[14]. PTX is a machine-independent ISA that provides a common virtual machine model
for all CUDA-capable GPUs. PTX instructions are further optimized and translated into
native target-architecture instructions.
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Figure 2.3: CUDA logical hierarchy [11, p. 47]

2.2.1 Technical terms

Following is a brief description of the terms used in CUDA programs and its relation to
the hardware on CUDA supported GPUs. The specifications for the terms covered in this
section are not constant across all the CUDA-capable GPUs. Newer GPUs might add
new features or alter the specifications of old features. The compute capability version, is
used to distinguish the architectures based on their features.

Grids and kernels

When data resides on the device memory, computations can be done by executing kernels
on the device. Kernels are CUDA extensions that effectively are C functions that will
execute on the device, instead of the host. A kernel function specifies the code to be
executed by a number of threads. Threads in CUDA are organized into thread blocks and
blocks are organized into grids. A kernel is executed as one grid of blocks of threads.

CUDA streams

A stream is a sequence of operations that is executed on a device in the order issued by
the host. For example, the transfer of data from host to device, the launching of one or
multiple kernels, and the transfer of data back to host. A default stream (Stream 0) is
implicitly used in a CUDA program, and all data transfers and kernel executions will be
done in serial. Using multiple streams allows for data transfers and kernel execution from
different streams to be pipelined.
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2.2. Compute Unified Device Architecture (CUDA)

The amount of concurrency possibilities has changed with new architectures and com-
pute capability versions. Compute capability 1.1 introduced concurrency by letting one
transfer and one kernel execute concurrently. Compute capability 2.x expanded on this
by letting one transfer per direction and multiple kernels execute concurrently [10, p. 32].

Blocks and streaming multiprocessors

CUDA-capable GPUs are organized into an array of Streaming Multiprocessors (SMs).
Each SM executes one or multiple blocks of threads at a time. Threads inside the same
block are able to cooperate by using the shared memory located as fast on-chip memory
on the SM. Blocks are identified by their three-dimensional indexes within a grid of blocks.

Threads and CUDA cores

Each SM consists of many Streaming Processors (SPs), that executes in a Single Instruc-
tion, Multiple Thread (SIMT) fashion. SPs has since the Fermi architecture been named
CUDA cores. CUDA cores executes threads, and threads are identified by their three-
dimensional indexes within a block of threads. The thread and block indexes are used to
differentiate the threads, and to calculate the addresses of the data each thread should
do computations on.

Warps

In order for GPUs to achieve high latency tolerance, they use a concept called warps.
Warps consists of 32-threads from the same block. Long-latency operations such as global
memory accesses are hidden by scheduling the warps. While one warp is waiting for data
from global memory, another warp can instead be selected for execution, and so on.
Latency can therefore effectively be hidden by having enough warps to switch between.
Because of warp scheduling, GPUs can get away with dedicating less chip area for cache
and more for floating-point execution resources.

Occupancy and constraints

An important part of optimizing code for GPUs is to adjust the block size (number of
threads per block) in order to achieve the best possible occupancy. As seen in Equation
2.1 [15, p. 44], occupancy is dependent on the number of active warps and the maximum
number of active warps.

Occupancy =
Active Warps

Maximum Active Warps
(2.1)

Occupancy is all about giving each SM enough warps to switch between in order to
hide latency. For best possible occupancy, each SM should be running a number of threads
equal to the warp size multiplied by the maximum number of active warps per SM [15,
p. 44].

Threads = Warp Size×Maximum Active Warps (2.2)

7



Chapter 2. Background

Ideally, the block size should be of such a size so that when a SM starts executing a
set of blocks, the ideal number of threads is running. This should be possible without
surpassing the limit on blocks per SM and threads per block, or the limit on register and
shared memory usage. If any of these limitations are surpassed, the CUDA runtime will
have to limit the number of active blocks, thus reducing the occupancy.

Maximum Active Warps, number of blocks per SM, threads per blocks, registers per
SM, and shared memory, are all limitations that differs between architectures. These
specifications can be examined in the table included in Appendix A. Because the specifi-
cations and limitations can vary between systems, the block size should be set dynamically
during execution for best occupancy and scalability.

2.2.2 Memory types

Even though GPUs have a potential for very high calculation throughput, it is limited by
how fast data can be loaded from memory. This is why CUDA-capable GPUs implements
different memory types, that differs in speed, size and scope. The memory types are the
following: Global memory, Constant memory, Texture memory, Shared memory, Local
memory and Registers. A complete comparison can be viewed in Table 2.1.

Table 2.1: CUDA memory types

Location Cached Access Speed Scope
Global memory Off-chip Yes (Fermi) Read/Write Slow All threads + host
Constant memory Off-chip Yes Read Fast All threads + host
Texture memory Off-chip Yes Read (Write on Fermi) Slow All threads + host
Shared memory On-chip No Read/Write Very fast All threads in block
Local memory Off-chip Yes (Fermi) Read/Write Slow One thread
Registers On-chip No Read/Write Very fast One thread

Out of all of these memories, only registers and shared memory is actual physical
memory located on each of the SMs. Global, constant, texture and local memory all
resides on the device memory, but with different caches located on the SMs. The memory
types and cache is illustrated in Figure 2.3.

Global memory

Global memory is the largest memory, accessible by all threads (hence the name global).
It is also the slowest, with a latency of 400-800 cycles. Global memory originally did not
have any caching, but this have been implemented in Fermi and newer architectures [16].

Constant memory

Constant memory is a small cached part of the device memory, limited to 64 KB for
all currently available CUDA-capable GPUs. Access to constant memory is very fast
on cache hits, but the real advantage is the potential reduction in throughput: When
multiple threads in the same half-warp access the same address in constant memory, it
only counts as one read instead of one read per thread as it otherwise would have been.
Constant memory can however be slower than global memory when all the threads in a
half-warp need data from different addresses, the various reads will then be serialized.
The constant memory is read only (hence the name constant), and should only contain
data that do not change during the execution.

8
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Texture memory

Texture memory is another way of accessing data in device memory. It uses a texture
cache that is optimized for either 1D, 2D or 3D spatial locality. Texture memory is
designed for streaming fetches with a constant latency, and will therefore not give a lower
latency on cache hits. Explicitly using texture memory on systems with L1 cache can
therefore result in worse performance. Throughput demand will however be reduced on
cache hits, and mapping data as textures can therefore be done to increase performance
on kernels that are memory bandwidth bound. Texture memory is read-only, but GPUs
with compute capability ¿ 2.0 allows for the use of Surface memory, which can also be
written to.

The Kepler GK110 architecture with compute capability 3.5 lets the texture cache be
accessed as a read-only data cache. This circumvents the somewhat unconventional way
of utilizing the texture cache by mapping the data as textures.

Shared memory

Shared memory is a very fast on-chip memory located on each of the SMs. The shared
memory of a SM is only accessible by the threads running on that SM. This is one of the
reasons to why CUDA organizes threads in blocks. All threads running within a block is
guaranteed to be running on the same SM, and therefore have access to that SM’s shared
memory. Shared memory is not automatically used, and data has to be explicitly moved
from device memory onto shared memory. Tiling is an optimization technique often used,
it simply works by dividing the data into smaller tiles that will fit in shared memory. The
technique is useful when the same data is accessed multiple times by different threads.
Moving data onto the shared memory requires one read, and consecutive reads will be
much faster since the data then resides on the on-chip memory, this also reduces DRAM
bandwidth usage.

Shared memory is physically divided among equally sized memory modules (banks) on
the chip. Each memory bank can only service one memory access at a time. If multiple
threads tries to access different memory locations in the same memory bank at the same
time, a bank conflict will occur. Since a memory bank is limited to only serving one
access at a time, the access will have to be serialized, which decreases performance. An
exception is when multiple threads in a warp access the same memory location at the
same time, since shared memory will broadcast the data, similar to constant memory.

Local memory and registers

Both local memory and registers has a scope that is local to the thread. Registers are
extremely fast on-chip memory located on each SM, and generally have an access time
of zero clock cycles per instruction. The latency can however differ on Read-After-Write
(RAW) dependencies or on register memory bank conflicts. Latency due to RAW de-
pendencies can be hidden by having enough warps for the SM to switch between, while
bank conflicts are usually avoided by optimally schedule instructions. This is done by the
compiler and hardware scheduler, and works best when the number of threads per block
is a multiple of 64 [15, p. 41].

SMs do have a limit on the number of available registers per thread, and if this limit
is exceeded the data will have to be put in local memory. This occurrence is called
register spilling and is done automatically by the runtime. The local memory is located
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on device memory like the global, texture and constant memory [15, p. 40]. This means
that local memory is very slow and should generally be avoided by limiting the number
of used registers to prevent register spilling. Local memory has however been cached on
the Fermi architecture and successors [16].

There is also a limit on the total number of registers per SM, and if this limit is
exceeded the runtime will reduce the number of active blocks. Both the maximum number
of registers per thread and the maximum number of registers per SM can vary between
compute capability versions. These values can be found in the table included in Appendix
A.

2.2.3 Architectures

Prior to CUDA, NVIDIA GPUs utilized a graphical pipeline with different shader proces-
sors specialized for each stage. Figure 2.4 is an example of a simplified graphical pipeline
with specialized vertex, geometry and pixel shaders. As graphics became more demand-
ing more stages needed to be added and complex optimizations had to be done in every
stage. However, the disadvantage of such a pipeline is that it becomes bottlenecked by its
slowest stage. Frames in a video game might for example be very vertex shader-intensive,
but less pixel shader-intensive. This will result in full utilization of the vertex shaders,
but sub-par utilization of the pixel shaders due to them having to wait for work from
the vertex shader stage. Switching to a unified shading architecture has eliminated this
shortcoming.

The unified shading architecture replaces the specialized shaders with unified shaders.
An unified shader core is a fully generalized scalar processor, capable of doing any of
the shading operations in the graphical pipeline. The term unified shader core is used
interchangeably with streaming processor and CUDA core. As demonstrated in Figure
2.5, the new architecture reduces the complexity of many physical stages by no longer
executing the pipeline in a sequential flow. The pipeline is instead physically executed in
a recirculating path, that revisits the unified shader cores multiple times, depending on
the shading complexity. Unified shader cores coupled with a dynamic scheduler removes
the previous problems with load balancing between specialized shaders. They are also by
no means limited to graphical processing, making them very suitable for GPGPU.

Even though every NVIDIA GPU with unified shader cores supports CUDA, there
has been some noteworthy changes to the hardware architecture since the introduction of
CUDA. The significance of these changes are reflected in the compute capability version
of the various GPUs. Some of these differences can have major impact on the performance
and behavior of CUDA applications, and some features are only available on newer GPUs
with higher compute capabilities. A good understanding of the architectures and their
differences is therefore advantageous in order to write efficient CUDA programs. Following
is a brief description of the major architectures. A summary of the specifications can also
be viewed in the table included in Appendix A.

Vertex Shader 
Stage

Geometry 
Shader Stage

Rasterizer 
Stage

Pixel Shader 
Stage

Vertex Data Frame

Figure 2.4: Graphical pipeline

10



2.2. Compute Unified Device Architecture (CUDA)

Shader A

Shader B

Shader C

Shader D

Discrete Design Unified Design

Unified 
Shader 

Core

Output Buffer

Input Buffer

Figure 2.5: Unified design [17]

G80/GT200

The G80 and GT200 architectures uses a concept called Texture/Processor Cluster (TPC)
that couples Texture Mapping Units (TMU) and Streaming Multiprocessors (SMs), as
shown in Figure 2.6. The TMUs consists of texture address units and texture filtering
units. Textures are cached in a fast 12 KB texture L1 cache in each TPC, and there is also
a slower 256 KB L2 cache placed at the memory controller of each DRAM, both of these
caches are read-only and only utilized for texture fetching [16, p. 15]. Every TPC also has
one load/store unit that can fetch data while Streaming Processors (SP) do computations
on already received data, this is what enables the GPU to have a high latency tolerance.

SMs in the G80 and GT200 architectures consists of eight SPs and two Special Func-
tion Units (SPU). The Special Function Units are processors made for transcendental
operations, such as sines and cosines. Each SM also contains a small instruction cache, 8
KB constant memory cache, 16 KB of shared memory, and a MT issue unit that dispatches
instructions to all the SPs and SFUs in the SM.

CUDA was developed to simplify the utilization of the computing power in GPUs
designed with the new unified shading architecture, and the G80 architecture is hence
the first GPU generation to support CUDA [17]. The GT200 architecture was released in
June 2008 and is NVIDIA’s second-generation unified shading and compute architecture.
It is mainly an improvement on the G80, with no major architectural changes. GT200
has improved the performance over the G80 by increased the total number of SPs by
almost the double. This is done by increasing the number of SMs per TPC from two
to three, and the number of TPCs from eight to ten. The GT200 has also doubled the
register memory size and improved memory access, instruction scheduling and clock rate
compared to the G80 architecture. Arguably the most exciting new feature of GT200
regarding GPGPU is the addition of double-precision floating point support, which is a
necessity for computations that requires high precision. [18]

11



Chapter 2. Background

Figure 2.6: NVIDIA TPC
Source: www.anandtech.com/show/2549/2

Fermi

The Fermi architecture was launched with the GeForce 400 series in March 2010. It
removed the concept of TPCs and instead introduced the 3rd generation of SMs, where
each SM contains all the features of a TPC, as shown in Figure 2.7. Alongside the
introduction of the new Fermi architecture some of the terms changed name: SPs are now
known as CUDA cores and MT issue units are called Dispatch Units. The TMUs are now
integrated in each SM and are called texture units or Tex, as seen in Figure 2.7. The new
SMs have also been upgraded to implemented 16 load/store units instead of having one
big per TPC, 32 CUDA cores compared to eight, and four SFUs compared to two.

While the G80 and GT200 SMs had 16 KB of shared memory, the new SMs have one
pool of 64 KB configurable on-chip memory. This memory can be configured as either
48 KB of shared memory with 16 KB of L1 cache, or as 16 KB of shared memory with
48 KB of L1 cache. Every global memory access is cached in the new L1 cache, and it
should therefore not be confused with the texture only L1 cache in the G80 and GT200
architectures. Applications that do not take advantage of shared memory can instead
automatically benefit from having L1 cache. The texture memory still have a dedicated
L1 cache of 12 KB, but this is now instead called texture cache. The L2 cache has been
increased from 256 KB to 768 KB and now affects all accesses to the DRAM, which will
benefit global and local memory accesses instead of being reserved for texture memory.
The constant cache still remains unchanged at 8 KB.

As seen in Figure 2.7, the Fermi architecture has two sets of warp schedulers and
dispatch units. This enables the SM to concurrently dispatch instructions from two warps
into any two of the columns shown as green in Figure 2.7. One SM can for example
execute up to 32 floating-point operations per clock by dispatching 16 instructions into
each core-column.

CUDA cores consists of a fully pipelined integer Arithmetic Logic Unit (ALU) and
Floating Point Unit (FPU). In the Fermi architecture the FPU has been upgraded to
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Figure 2.7: NVIDIA Fermi SM [16]

support the IEEE 754-2008 floating-point standard, from the 1998 standard used in G80
and GT200. The ALU has also been upgraded to fully support 32-bit precision for all
instructions, an upgrade from the previous architectures that only supported 24-bit and
had to simulate 32-bit precision using multiple instructions. 16 CUDA cores per SM is also
optimized for 64-bit and extended precision operations. By being able to perform up to
16 double-precision operations per SM, the Fermi architecture has shown an improvement
of up to 4.2x compared to the GT200 architecture in double-precision applications.

The Fermi architecture supports the PTX 2.0 ISA, which implements a unified address
space that unifies the three address spaces of local, shared and global memory. This
enables true C++ support, since pointer’s target address can be found at compile time.
Another new feature introduced with Fermi and compute capability 2.0 is concurrent
kernel execution: Previous architectures only allowed for a single transfer and kernel
execution from separate streams to be carried out simultaneously. Concurrent kernel
execution enables up to 16 kernels from different streams to be executed in parallel. The
Fermi architecture also adds a second copy engine, which makes it possible to transfer
data between host and device in both directions concurrently.

Fermi GPUs also provides Error Correcting Code (ECC) support for memory on Tesla
models, and an updated GigaThread engine. GigaThread is the name of the the global
thread scheduler that distributes thread blocks among the SMs. The new GigaThread
engine has faster context switching, block scheduling and the ability execute kernels con-
currently. Kernels in previous architectures could only be executed sequentially, thereby
limiting GPU utilization when executing multiple small kernels. [16]
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Figure 2.8: NVIDIA Kepler GK110 SMX [19]

Kepler (GK104/GK110)

NVIDIA GTX 680 was released in March 2012 and was the first GPU based on the new
Kepler architecture, codenamed GK104. While previous architectures mainly focused on
increasing pure performance, the Kepler architecture also focuses excessively on energy
efficiency.

The major change in the Kepler architecture is the Next Generation SM (SMX). The
new SMX contains a lot more processing units than the previous Fermi SMs: Six times
as many CUDA cores, and eight times as many SFUs and Load/Store Units. In order
to supply the large number of processing units the number of warp schedulers and the
register file size has been doubled compared to the Fermi SMs. The reason for the large
increase in processing units is the removal of the shader clock. In older architectures the
processing units operated at a shader clock at double the frequency of the core clock, an
optimization that allowed the processing units to do two operations per core clock cycle.
In the Kepler architecture everything runs at the same core clock frequency. Running
the processing units at the lower clock rate combined with a simpler pipeline reduces
power consumption drastically. The performance of the new Kepler architecture relays
on having more processing units instead of running at a high clock rate, and consequently
achieves better power efficiency than the Fermi architecture.

16 of the CUDA cores in the Fermi SMs were capable of doing Double-Precision (DP)
operations. The new SMXs has instead included up to 64 special processing units for DP
operations per SMX, in addition to the regular CUDA cores. These new DP units are
only used for DP operations.

The configurable shared memory/L1 cache still remains at 64 KB, but can now also be
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configured evenly as 32 KB for each. The L1 cache is now reserved only for local memory
accesses, and global loads are only cached in the L2 cache, which has increased to 1536
KB, from 768 KB on the Fermi architecture.

The GK110 is the second generation of the Kepler architecture and introduces some
new features. One new feature is called Dynamic Parallelism, which is intended to make
the device more independent of the host. This is done by allowing kernels to launch new
kernels and allocate the necessary resources, without interacting with the host. Another
new feature introduced in GK110 is Hyper-Q, which increases the total number of con-
nections (work queues) between host and device from one to 32. Every CUDA stream
will now be managed within its own hardware work queue, thereby enabling streams to
execute concurrently and multiple CPU-cores to launch work on the GPU simultaneously.
The texture cache size of GK110 has also been increased from 12 KB to 48 KB, and made
possible to be used as a read-only data cache. Previously, the texture cache could only
be utilized by mapping the data as textures. [19, 20]

2.3 The Message Passing Interface (MPI)

MPI is a standard for message-passing in distributed-memory applications. It is not a
library or an implementation, but rather a specification that defines the syntax and se-
mantics needed for creating a message-passing implementation. There exists multiple
implementations based on the MPI standard, the most known being MPICH and Open
MPI. Even though the code developed in this thesis should work with both implementa-
tions, Open MPI will be used.

A detailed description on the use of MPI will not be provided here, the official Open
MPI documentation at www.open-mpi.org/doc, can instead be sought out for more infor-
mation. However, following is a short description of one of the MPI mechanisms relevant
to the implementation: A derived data type is a mechanism provided by MPI that lets
users define new data types. These new data types have the capability to explicitly pack
both contiguous and noncontiguous data into a contiguous buffer during a send opera-
tion. Correspondingly, a contiguous buffer can be explicitly unpacked into noncontiguous
locations during a receive operation. This makes it possible to combine multiple send or
receive operations into one, thereby reducing the fixed overhead of sending and receiving
a message. There are multiple ways to create a derived data type, but creating a struct is
the most flexible way, as it can be created from a general set of data types, displacements
and block sizes.

2.4 Finite-Difference Time-Domain (FDTD)

The FDTD method is a discretization of the time dependent Maxwell’s equations. It was
originally introduced by Kane Yee in 1966, and is today widely used for modeling compu-
tational electrodynamics, with use cases ranging from biomedical imaging/treatment to
seismic wave propagation and earthquake motion [21].

In the FDTD method, both space and time are divided into individual segments.
Space is segmented into box-shaped cells called Yee cells. Each Yee cell contains three
(x, y, z) electric and three (x, y, z) magnetic field components: The electric fields are lo-
cated on the edges and the magnetic fields are located on the faces, as demonstrated in
Figure 2.9. A FDTD grid is a three-dimensional volume consisting of many cells. Time
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Figure 2.9: Yee Cell with electric and magnetic field components
Source: www.fdtd.wikispaces.com/The+Yee+Cell

is divided into small steps, where each time-step represents the time required for a field
to travel from one cell to a neighboring cell. The fields are updated in a leapfrog manner,
where the electrical field components of a space domain is updated at an instant in time,
followed by an update of the magnetic fields in the next instant in time. Fields in the next
time-step is only depended on the fields in the last time step. This process will repeat for
the desired number of time steps, which ideally should be enough for the electromagnetic
fields to reach a steady-state behavior.

Maxwell’s equations in a source free region of space are the following:

Gauss’ law: ∇ · ~D = 0

Gauss’ magnetism law: ∇ · ~B = 0

Faraday’s law: ∇× ~E = −∂
~B

∂t

Ampere’s law: ∇× ~H =
∂ ~D

∂t
+ ~Jc

Where D is the Electric Flux Density, B is the Magnetic Flux Density, E is the Electric Field,
t is the Time, H is the Magnetic Field, and J is the Electric Current Density

In materials with electric and magnetic properties that are field, direction and fre-
quency independent. The electric and magnetic flux density, and the electric current
density can be written as products of the electric and magnetic fields, and the constitu-
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tive parameters (the material’s physical constants):

~D = ε ~E, ~B = µ ~H, ~Jc = σ ~E

Where ε is the Permittivity, µ is the Permeability and σ is the Conductivity of a material

The Maxwell’s equations for the Electric and Magnetic fields can thus be written:

∂ ~E

∂t
=

1

ε
∇× ~H − σ

ε
~E,

∂ ~H

∂t
= − 1

µ
∇× ~E

Translated into Cartesian coordinates this results in six coupled partial differential equa-
tions in the six field components:

∂ ~Ex
∂t

=
1

ε
(
∂ ~Hz

∂y
− ∂ ~Hy

∂z
− σ ~Ex) (2.4a)

∂ ~Ey
∂t

=
1

ε
(
∂ ~Hx

∂z
− ∂ ~Hz

∂x
− σ ~Ey) (2.4b)

∂ ~Ez
∂t

=
1

ε
(
∂ ~Hy

∂x
− ∂ ~Hx

∂y
− σ ~Ez) (2.4c)

∂ ~Hx

∂t
=

1

µ
(
∂ ~Ey
∂z
− ∂ ~Ez

∂y
) (2.4d)

∂ ~Hy

∂t
=

1

µ
(
∂ ~Ez
∂x
− ∂ ~Ex

∂z
) (2.4e)

∂ ~Hz

∂t
=

1

µ
(
∂ ~Ex
∂y
− ∂ ~Ey

∂x
) (2.4f)

2.4.1 The Yee algorithm

A FDTD grid is a three-dimensional volume (a box) of size lx, ly, lz. This grid is divided
into Nx, Ny, Nz equal sized cells. Each cell is of size ∆x,∆y,∆z = lx/Nx, ly/Ny, lz/Nz.
For convenience, let u(x, y, z, t) denote any of the six field components. A point in the
FDTD grid is represented by (i∆x, j∆y, k∆z) = (i, j, k), and a time step is represented
by t = n∆t. Then:

u(i∆x, j∆y, k∆x, n∆t) = un(i, j, k) (2.5)

In the Yee algorithm, the derivations are approximated using central difference ex-
pressions. For example, the left hand side of Equation 2.4d can be written:

∂ ~Hx

∂t
=
H
n+ 1

2
x (i, j, k)−Hn− 1

2 (i, j, k)

∆t

Thus, using Notation 2.5 and central difference, Equation 2.4d can be written:
Where Equation 2.6b defines Hx(i, j, k) at time step n+ 1

2
, in terms of previously calculated

values of Hx (at time step n − 1
2
), Ey and Ez (at time step n). Likewise, Hy and Hz at

time step n+ 1
2
, can be expressed similarly.
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H
n+ 1

2
x (i, j, k)−Hn− 1

2
x (i, j, k)

∆t
=

1

µ(i, j, k)

[
En
y (i, j, k + 1

2
)− En

y (i, j, k − 1
2
)

∆z
− En

z (i, j + 1
2
, k)− En

z (i, j − 1
2
, k)

∆y

]
(2.6a)

H
n+ 1

2
x (i, j, k) = H

n− 1
2

x (i, j, k) +
∆t

µ(i, j, k)

[
En
y (i, j, k + 1

2
)− En

y (i, j, k − 1
2
)

∆z
− En

z (i, j + 1
2
, k)− En

z (i, j − 1
2
, k)

∆y

]
(2.6b)

Where µ(i, j, k) denotes the Permeability at a grid point

The electrical field functions can also be expressed using Notation 2.5 and central
difference. For instance, Equation 2.4a can be written:

En+1
x (i, j, k)− En

x (i, j, k)

∆t
=

1

ε(i, j, k)

H
n+ 1

2
z (i, j + 1

2
, k)−Hn+ 1

2
z (i, j − 1

2
, k)

∆y
− 1

ε(i, j, k)

H
n+ 1

2
y (i, j, k + 1

2
)−Hn+ 1

2
y (i, j, k − 1

2
)

∆z
− ε(i, j, k)

σ(i, j, k)
E
n+ 1

2
x (i, j, k)

(2.7)

However, Equation 2.7 requires electric field values at both full and half time steps. This
can be avoided by approximating the half time step:

E
n+ 1

2
x ' En+1

x + En
x

2

For convenience, the following notations are also given:

Ci,j,k =
1− σ(i,j,k)∆t

2ε(i,j,k)

1 + ∆tσ(i,j,k)
2ε(i,j,k)

, Di,j,k =

∆t
ε(i,j,k)

1 + σ(i,j,k)∆t
2ε(i,j,k)

Where σ(i, j, k) denotes the Conductivity and ε(i, j, k) denotes the Permittivity at a grid point

Then, expressing En+1
x (i, j, k) in terms of previously calculated E field values at full time

steps is possible by the equation:

En+1
x (i, j, k) = Ci,j,kE

n
x (i, j, k)−Di,j,k

Hn+ 1
2

z (i, j + 1
2
, k)−Hn+ 1

2
z (i, j − 1

2
, k)

∆y
+
H
n+ 1

2
y (i, j, k + 1

2
)−Hn+ 1

2
y (i, j, k − 1

2
)

∆z


(2.8)

As with the magnetic field expressions, Ey and Ez can also be expressed in a similar way
to Ex.

The Yee algorithm computes the field components in a leap-frog arrangement, meaning
that H and E field components are computed at alternating time steps. As seen from
Equation 2.6b and 2.8, the magnetic field components are calculated at half time steps,
while the electrical are calculated at full time steps. They are also displaced by half steps
in space. There is no need to calculate every H and E field component in every Yee cell.
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Given that the coordinates of the center of a cell in a FDTD grid is (i, j, k), the complete
list of equations for the Yee algorithm is shown:

H
n+ 1

2
x (i, j + 1

2
, k + 1

2
) = H

n− 1
2

x (i, j + 1
2
, k + 1

2
) +

∆t

µ(i, j, k)

[
En
y (i, j + 1

2
, k + 1)− En

y (i, j + 1
2
, k)

∆z
− En

z (i, j + 1, k + 1
2
)− En

z (i, j, k + 1
2
)

∆y

]
(2.9a)
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2.5 Yee bench - A PDC benchmark code

Yee bench is a serial benchmarking code for the FDTD method, developed at the Center
for Parallel Computers (PDC), and the Parallel and Scientific Computing Institute at the
Royal Institute of Technology in Sweden. It is presented in the paper: Yee bench - A
PDC benchmark code, by Ulf Andersson, published in November 2002 [2].

Being a benchmarking code, the code is only meant to simulate the work needed for
solving FDTD problems, and is therefore a simplification of the real world. Related to
Equations 2.9a - 2.9f, the FDTD grid in the Yee bench code is assumed to consist of a
homogeneous media. This means that the ε (Permittivity) and the µ (Permeability) are
constant, and that the σ (Conductivity) is zero across the entire grid. All the initial
electromagnetic field values are for convenience set to zero. The electromagnetic field is
excited with a point source (a dipole) in the center of the FDTD grid.

With a grid consisting of Nx, Ny, Nz cells, 64-bit precision, and no memory padding,
the paper uses the equation: 24N3 +24(N+1)3, to calculate the number of bytes required
to store the electromagnetic values of a task. This is important in order to know if a task
will fit in memory. The paper presents Table 2.2, to show how the memory requirements
grows with the problem size.

Table 2.2: Maximum problem size vs available memory for Yee bench

128 Kbytes 2 Mbytes 4 Mbytes 1 Gbytes 2 Gbytes 4 Gbytes
N = 13 N = 34 N = 43 N = 281 N = 354 N = 446

The paper also presents a validation case in order to verify that the code produces the
correct result: Given Nx = Ny = Nz = 100, ∆x = ∆y = ∆z = 1, and the number of time

19



Chapter 2. Background

steps Nt = 200, the sum of the Ez components should equal −0.0692134. This test is
sufficient to verify the correctness and accuracy of the code. Because the Ez component
values at the last time step is depended on all the electromagnetic field values calculated
at the previous time steps.

In order to measure performance, the number of loads, stores, and arithmetic opera-
tions per cell, per time step is counted. It is presented in Table 2.3, from the Yee bench
paper.

Table 2.3: Floating-point and memory operations per cell and time step for Yee bench

adds/subs mults stores loads
24 12 6 20

The paper points out that because of the uneven ratio of multiplication to addition/-
subtraction, the performance cannot be expected to reach more than 75% of peak, even
with unlimited memory bandwidth. However, performance is both expected and proven
to be bound by memory bandwidth.

2.6 Heterogeneous FTDT for seismic processing

Heterogeneous FTDT for Seismic Processing [1], is the name of the master thesis written
by Andreas Berg Skomedal in 2013. This thesis uses Skomedal’s thesis as a basis, and
seeks to expand and improve upon his work. Skomedal’s thesis focuses on implementing
a heterogeneous scheduler that schedules FDTD tasks between a single CPU and a single
GPU. It does so by having two different FDTD implementations (CPU and GPU) running
as POSIX threads. Tasks are then scheduled among the CPU and a GPU, and executed
concurrently.

Skomedal’s work is in turn based on Yee bench. The CPU version is a modified version
of the Yee bench code, while the GPU version is a CUDA port of the said code. The CPU
version is improved by taking advantage of multi-core CPUs through the use of OpenMP
directives.

2.6.1 Implementation

Yee bench in CUDA

The GPU version of the FDTD method is a CUDA port of the CPU version supplied
by Ulf Andersson. It was made by Skomedal as part of his specialization project during
the fall of 2012 [22]. The GPU implementation allocates six arrays in device memory
and initialize all the values to zero. The electromagnetic field values are calculated and
updated by calling a set of kernels during every time step. Related to a FDTD grid
with (Nx, Ny, Nz) cells, the kernels are launched with one thread per cell in the YZ-plane,
which in turn iterates over the cells in the X-dimension. The block size is for best warp
efficiency set to 16x16 (512 threads), and the grid size is set so to get at least one thread
per element in the YZ-plane, excessive threads are terminated after launch. The following
equation is used to calculate the grid dimensions, with respect to the FDTD domain size
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2.6. Heterogeneous FTDT for seismic processing

and the block dimensions:

Blockx ×Blocky = 16× 16

Gridx = Gridy = 2

√
N2

Blockx×Blocky

Where N is the length of the sides in a cubed FDTD domain

This CUDA implementation does not explicitly use the shared memory, it instead
relays on implicit caching through the L1 cache, and is therefore configured to prefer L1
cache over shared memory. Skomedal explains this choice with the fact that since data
fetches are not very systematic, the use of shared memory would not justify the increased
complexity.

In order to allow for problems of non uniform sizes, the CUDA implementation has
three ”cleanup” kernels, each handling their own 2D-plane (yz, xz, xy). There is also a
kernel that will set the point source, which is only executed by a single thread, and is
therefore not optimal. However, Skomedal argues that this is more efficient than adding
a conditional to one of the other kernels, or to transfer the required data back and forth
to the host for execution.

In summary, the CUDA implementation works by iterating over the number of time
steps. For each time step six kernels are launched in succession: Two update kernels
(for magnetic and electric fields), three cleanup kernels (for each of the 2D-planes), and
one kernel to set the point source. The electromagnetic field values will reside in device
memory until all iterations are completed, before being transferred to host memory.

Heterogeneous Yee bench scheduler

The Heterogeneous Scheduler is the main work in Skomedal’s thesis. It is heterogeneous
in the sense that it distributes work between both the CPU and the GPU. Work is defined
as tasks, and each task is an independent FDTD problem, meaning that no data sharing
or border management is done between tasks.

The Assignment Scheduler is a scheduler that divides sets of tasks among workers, in
order to keep them busy for X seconds. A worker is a separate POSIX thread that uses
either the CPU or the GPU to execute a task. An initial performance evaluation is done
for all workers by letting them execute a dummy task. The performance (in FLOPS) of
the workers is measured for every consecutive task, and the workers will only keep track
of it’s highest obtained performance. Each time a worker requests new tasks, the host
will calculate the targeted FLOP count needed to keep it busy for X seconds:

Fk = Sk × Tktarget
Where F is the targeted FLOP count, S is the performance in FLOPS,
T is the targeted busy time in seconds, and k is the current worker

The host uses the information about the targeted FLOP count to create a list of tasks.
Tasks are added to this list until no more tasks can be added, without bypassing the
targeted FLOP count for the task list:

Fkactual =

Fkactual
>Fk∑

i=nextavailable

Ftaski
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Figure 2.10: Assignment scheduler flow chart

Figure 2.10 is an excerpt from Skomedal’s report, it demonstrates the flow of his Assign-
ment Scheduler implementation.

Skomedal’s work also includes another scheduler called the Greedy Scheduler, and
three plotters called: Homogeneous Device Plotter, Heterogeneous Device Plotter, and
Resource Plotter. The Greedy Scheduler is a simpler alternative to the Assignment
Scheduler, and simply works by letting each worker fetch a new task when they have
completed their current task. The plotters are benchmarks that also creates .csv files of
performance plots, these files can later be used to create graphs. The Homogeneous Device
Plotter is used to benchmark performance across different problem sizes on a single worker
(CPU or GPU). The Heterogeneous Device Plotter emulates the Assignment Scheduler
with multiple heterogeneous workers, and performance is benchmarked using a variety of
problem sizes. The Resource Plotter is based on the Heterogeneous Device Plotter, and
performance is benchmarked across different numbers of CPU and GPU threads.
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2.6. Heterogeneous FTDT for seismic processing

2.6.2 Results

Skomedal’s report presents a variety of results that will be summarized in this section.
The results are reported to have been obtained using the execution platform listed in
Table 2.4.

Table 2.4: Hardware and compiler configuration

Hardware and system
CPU Intel i5-3470 @ 3.2GHz Ivy Bridge
GPU NVIDIA GeForce 480 GTX
GPU NVIDIA Tesla K20
Memory 16GB 1333MHz
Motherboard MSI Z77A G45
Operating system Linux Mint 14, 3.5.0-23 64bit

Program
Version Yee bench CUDA
GPU compiler NVIDIA nvcc 5.0 V0.2.1221
CPU compiler gcc 4.6.3
GPU driver NVIDIA driver 304.88
Compiler flags -O2

Table 2.5 presents the results from executing a task with the CPU code, using OpenMP
directives and a varying number of cores. The results shows that using two cores almost
doubles the performance, while going from two to three gives only a 22% increase, and
three to four cores has almost a negligible increase in performance. Skomedal suggests
that this is due to the memory being a limitation, he proves this by halving the frequency
of the CPU cores and re-doing the tests. The new results indicates an almost linear
speedup, with four cores giving a speedup of 3.59 compared to a single core.

Table 2.5: Performance for N = 150 on CPU

1 CPU 2 CPU 3 CPU 4 CPU
MFlops 3417 6669 8139 8223
Speedup from 1 CPU 1.0 1.95 2.38 2.41

The performance of the GPU implementation running on a Fermi GTX 480 compared
to the CPU implementation with different core configurations, is presented in Figure 2.11.
The results show an improvement of almost 20x compared to execution on a single CPU
core. A significant improvement, but still short of the full potential of the GPU. Skomedal
provides and discusses a number of reasons to why the execution is not optimal, the most
important reason being only reaching 46.6% global memory load efficiency due to un-
coalesced memory accesses. On the other hand, both global write and warp execution
efficiency is reported to perform close to optimal.

Tests were also done by executing multiple tasks on the same GPU, each on their own
CUDA stream. Doing so allows for concurrency between kernel executions and memory
transfers, and shows a slight improvement in performance. The tests shows that running
two CUDA streams provides the best results.
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Figure 2.11: GPU speed, floating point precision for main loop

Table 2.6: Relative device performance

Problem size CPUxGPU CPU perf. GPU perf.
2x2 6200 2 x 25000

150 2x0 6450 0
0x2 0 2 x 26500
4x0 8130 0
4x2 3170 2 x 26080
2x2 5150 2 x 26700

200 2x0 5270 0
0x2 0 2 x 27400
4x0 7250 0
4x2 3700 2 x 26630
2x2 4400 2 x 24500

250 2x0 4427 0
0x2 0 2 x 25200
4x0 6527 0
4x2 3720 2 x 24170
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Performance has also been measured on the NVIDIA Tesla K20 GPU, which is built
on the Kepler GK110 architecture. Even though the K20 is a lot better on paper, the test
results actually shows a 5-10% decrease in performance. Skomedal assumes this is due to
the architectural differences between Fermi and Kepler, and that the CUDA code needs
to be adjusted in order to take advantage of the new architecture.

Table 2.6 gives a summary of the performance of the Heterogeneous Scheduler with a
variety of CPU cores and GPU streams, across different problem sizes. The results shows
that a combination of two CPU cores and two CUDA streams gives the best combined
performance for all problem sizes.

2.6.3 Personal conclusions

Skomedal’s implementation is designed to execute a set of small FDTD problems on a
single system with one multi-core CPU and one CUDA capable GPU. The execution units
does not collaborate with each other, and the implementation is therefore not optimal for
larger problems, because the compute and/or the memory requirements can be too large
for a single execution unit to handle.

The implementation requires individual FDTD problems in their entirety to be trans-
ferred to and from every execution unit as they are completed. This puts a lot of stress
on the bus, a demand that will increase if more execution units are added. Execution
and transfers could be done concurrently, but the benefit would most likely be small to
non-existing, since the executions are already limited by memory bandwidth. In addition,
the implementation would presumably not scale well to many-node systems with multiple
execution units per node, since the host node would have to transfer FDTD domains to
and from every slave node in order to keep all their execution units occupied.

As mentioned in Section 2.6.1, the CUDA implementation works by launching one
thread per cell in the YZ-plane of a domain, and making each thread iterate over the
cells in the X-dimension. Another approach could have been to launch one thread per cell
in the domain, thus achieving the highest possible level of parallelism. An explanation
as to why this approach was chosen is not included in Skomedal’s thesis. However, the
article: CUDA Based FDTD Implementation [6], by Veysel Demir and Atef Z. Elsherbeni,
provides a comparison of these two approaches. The comparison shows that due to global
memory reuse, the approach taken in Skomedal’s implementation is in fact the most
efficient approach. It will thus be retained in the new implementation.

Skomedal’s test results shows the K20 GPU performing 5-10% worse than the GTX 480
GPU, even though it has more than 2.5 times the theoretical single-precision performance.
Skomedal suggests that this might be due to differences between the Kepler and the Fermi
architecture. As described in Section 2.2.3 and 2.2.3, the Kepler and Fermi architecture
differs in a number of ways. How these architectural differences can affect performance
in a negative way is discussed in Section 5.6.
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Implementation

This chapter will describe the overall design and flow of the implementation, the paral-
lelization strategy, and a more comprehensive description of some of the complex parts.
It will however not be explaining the implementation of the Yee algorithm itself in detail,
since it is based on codes from previous works [1, 2], which already contains descriptions of
said codes. The code implementing the Yee algorithm should however be self-explanatory
when viewed in conjunction with Equations 2.9a-2.9f, and Section 3.5 will explain the
exceptions related to those equations.

3.1 Overall design

The program is implemented using the C++ programming language. Some of the code and
concepts are based on previous work [1]. However, the entire code has been reimplemented
in order to better fit the new ideas and goals of this thesis.

This implementation uses a different approach from the previous implementation [1]
due to the limitations mentioned in Section 2.6.3. Instead of having multiple execution
units executing several individual FDTD domains, all the execution units will collaborate
on a single FDTD domain before moving onto the next one. The new implementation
also makes it possible to use multiple nodes, with each node using a CPU and/or multiple
GPUs. The original implementation [1] was limited to using a single CPU and/or a single
GPU on a single system. Dividing FDTD domains into sub-domains also allows for much
larger domain sizes, since the electromagnetic field values will be split across multiple
nodes and/or GPUs, each having their own memory. Table 2.2 on page 19 shows how the
memory requirements grows with the domain size.

Another approach more similar to the original scheduling implementation [1] was ini-
tially considered, and to some degree also implemented 1. This approach worked by
scheduling individual domains to multiple nodes, where each node could have a CPU and
one or multiple GPUs, each with multiple streams. However, this approach was scrapped
since it did not scale well with many execution units and nodes. The host would have
to distribute individual FDTD tasks to every execution unit on every node, while con-
tinuously also receiving completed sub-domains. It did also not perform well on large
domains, and thus the decomposition approach was instead chosen.

A class diagram of the new implementation using the decomposition approach is shown
in Figure 3.1. A complete documentation of all the classes, functions and variables is

1This implementation can still be retrieved from the GitHub repository associated with this thesis.
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included in Appendix C.

Following is a short description of each of the classes shown in Figure 3.1:

Node: A class that handles all the MPI communications in the program. It’s classified
as a utility stereotype in the UML diagram, this means (in this context) that Node
is an all static class that there should only exist one instance of per node.2 The
Node class also contains functions for executing a Task as either the host or as a
slave node, this is done through one instance of the WorkerPool class.

Task: A container for all the data associated with a FDTD problem, including six arrays
for the electromagnetic field values: One for both the electric and the magnetic
fields in each of the directions (x,y,z). The electromagnetic field values are stored
as six individual one-dimensional arrays: hx, hy, hz, ex, ey, ez, but could just as
well be represented as six three-dimensional arrays. The reason for referencing the
data as 1D-arrays opposed to 3D-arrays is because it is retained from the original
Yee bench implementation. The data layout in memory is the same whether 1D or
3D arrays are used.

Timer: A small helper class used to simplify timing.

WorkerPool: Serves as an abstraction when doing FDTD simulations across a set of
Workers. Contains a pool of Workers and a set of functions corresponding to the
public functions provided by the Worker class. Calling one of the WorkerPool’s
functions will subsequently call the corresponding function of all the Workers con-
tained in the WorkerPool, then wait for the Workers to complete (synchronize)
before returning to the caller.

Worker: An abstract class with virtual definitions for all the functions related to FDTD
simulations. Provides the ability to create multiple sub-classes, which in turn can
implement different versions of the compute intensive functions required to update
the magnetic and electric field values of a FDTD domain. The Worker class also
provides a set of public functions that will signal an internal POSIX thread, which in
turn will execute a corresponding internal function. This is what makes it possible
for multiple Workers to work in parallel.

CpuWorker: A class derived from the Worker class. Over-rides the functions related to
FDTD simulations with methods that uses the CPU as an execution unit. Is also
multi-threaded using OpenMP directives.

GpuWorker: Another class derived from the Worker class. Uses a NVIDIA GPU as
an execution unit by implementing and calling CUDA kernels from the over-ridden
functions. One GpuWorker relates to one GPU, and execution using multiple GPUs
therefore requires multiple instances of the class.

2Node with a capital N is used when referring to the Node class, while node is used when referring to
a physical node, such as in a cluster of nodes.
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CpuWorker
-m_number_of_threads: const int

-SourceExcitationInternal()
-UpdateE_Internal()
-UpdateH_Internal()
+CpuWorker(number_of_threads:const int=1)

GpuWorker
-device_ex
-device_ey
-device_ez
-device_hx
-device_hy
-device_hz
-m_block_size
-m_device_number
-s_next_device_number: ,
-s_number_of_devices: static int

-FinalizeTaskInternal()
-PrepareForNewTaskInternal()
-SourceExcitationInternal()
-UpdateE_Internal()
-UpdateH_Internal()
+GetNumberOfDevices(): static int
+GpuWorker()

<<utility>>

Node
-m_workers: static WorkerPool
+mpi_rank: static int
+mpi_size: static int

-CreateDatatypeFromTask(slave_rank:const int,
                        &task:const Task,
                        *datatype:MPI_Datatype): static
-CreateE_BordersDatatypes(local_x_size:const int,
                          &task:const Task,
                          *up_e_datatype:MPI_Datatype,
                          *down_e_datatype:MPI_Datatype): static
-CreateH_BordersDatatypes(local_x_size:const int,
                          &task:const Task,
                          *up_h_datatype:MPI_Datatype,
                          *down_h_datatype:MPI_Datatype): static
-ExchangeE_Borders(up_e_datatype:const MPI_Datatype,
                   down_e_datatype:const MPI_Datatype,
                   *task:Task): static
-ExchangeH_Borders(up_h_datatype:const MPI_Datatype,
                   down_h_datatype:const MPI_Datatype,
                   *task:Task): static
+BroadcastEndSignal(end:bool=true): static bool
+ExecuteTask(task:Task*): static
+Node(num_cpus:const int,num_omps:const int,
      max_gpus:int)
+RunAsSlave(): static

Task
-s_c0: static const my_float
-s_const: static const my_float
-s_eps0: static const my_float
-s_mu0: static const my_float
-s_next_id: static int
+m_bytes: unsigned int
+m_Cbdx: my_float
+m_Cbdy: my_float
+m_Cbdz: my_float
+m_computeTimer: Timer
+m_Dbdx: my_float
+m_Dbdy: my_float
+m_Dbdz: my_float
+m_done: bool
+m_dt: my_float
+m_ex: my_float\*
+m_ey: my_float\*
+m_ez: my_float\*
+m_flops_work: double
+m_hx: my_float\*
+m_hy: my_float\*
+m_hz: my_float\*
+m_id: const int
+m_is: int
+m_js: int
+m_ks: int
+m_mflops_performance: double
+m_num_time_steps: const int
+m_num_x: const int
+m_num_y: const int
+m_num_z: const int
+m_p_source_factor: my_float
+m_setupTimer: Timer
+m_totalTimer: Timer
+s_next_id: static int

+CleanUp()
+InitializeFieldComponents()
+PrintResults()
+Task(nts:int,nx:int,ny:int,nz:int,dx:int,
      dy:int,dz:int)
+UpdateFieldPointers(local_x_size:const int,
                     *buffer:const char)

<<type>>

Timer
-m_seconds: double

-TimeNow(): static double
+GetTime(): double
+Start()
+Stop()

<<thread>>

Worker {abstract}
-m_condition: pthread_cond_t
-m_mutex: pthread_mutex_t
-m_state: State
-m_thread: pthread_t
-s_next_id: static int
#m_current_time_step: int
#m_from: int
#m_has_bottom_subdomain: bool
#m_i_source: int
#m_local_x_size: int
#m_name: char
#m_task: Task\*
#m_to: int
+m_id: const int
+m_performance: int
+s_next_id: static int

-InternalThreadEntry()
-InternalThreadEntryFunc(*this_worker:void): static\*
-MeasurePerformanceInternal()
#v:FinalizeTaskInternal()
#v:PrepareForNewTaskInternal()
#v:SourceExcitationInternal()
#v:UpdateE_Internal()
#v:UpdateH_Internal()
+FinalizeTask()
+MeasurePerformance()
+PrepareForNewTask(has_bottom_subdomain:const bool,
                   from:const int,to:const int,
                   *new_task:Task)
+PrintInformation()
+SourceExcitation(time_step:const int,i_source:const int)
+Stop()
+UpdateE()
+UpdateH()
+Wait()
+Worker()
+~Worker()

WorkerPool
-m_collective_performance: int
-m_load_sizes: std::vector<int>
-m_subdomain_from: int
-m_subdomain_to: int
-m_workers: std::vector<Worker*>

-PrintWorkerLoad(worker_id:const unsigned int,
                 subproblem_size:const int,
                 problem_size:const int)
+AddWorker(*new_worker:Worker)
+FinalizeTask()
+KillAllWorkers()
+MeasurePerformance()
+PrepareForNewTask(from:const int,to:const int,
                   *new_task:Task)
+SourceExcitation(time_step:const int,i_source:const int)
+UpdateE()
+UpdateH()

has
1

3

has

1
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1

1
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Figure 3.1: UML class diagram
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3.2 Overall flow

A visual representation of the implementation’s flow is shown in Figure 3.2. The flowchart
does not map directly to the code and its functions, but rather the general flow of the
implementation.

Following is a description of the various steps shown in Figure 3.2:

1. All the nodes starts by loading a config file that contains the user specified Worker
configurations: This consists of the number of CpuWorkers and GpuWorkers, and
the number of OpenMP threads used per CpuWorker.

2. Each Node will create a set of Workers according to the loaded configurations. A
small predefined FDTD problem is executed individually on each of the created
Workers in order to measure their performance.

3. The host Node generates one or multiple Tasks based on the FDTD problem con-
figuration, which is also located in the config file.

4. The host Node picks the first Task from the generated Tasks, and distributes the
FDTD domain evenly among the slave Nodes using MPI sends (the host Node will
also get a sub-domain).

5. Each Node divides its sub-domain into even smaller sub-domains among its Workers.
The size of a Worker’s sub-domain is determined by its measured performance.
Workers with dedicated memory will load its sub-domain into memory (e.g. GPUs).

6. Every Worker in every Node will execute its sub-domain in parallel:

(a) Workers with dedicated memory loads its H borders from system memory.

(b) All Workers updates the electrical field components based on the magnetic field
components.

(c) Workers with dedicated memory unloads its E borders into system memory.

(d) Nodes will exchange their electrical field component borders with neighboring
Nodes using MPI send/receive.

(e) The Worker who owns the sub-domain containing the source point updates the
source point.

(f) Workers with dedicated memory loads its E borders from system memory.

(g) All Workers updates the magnetic field components based on the electrical field
components.

(h) Workers with dedicated memory unloads its H borders into system memory.

(i) Nodes will exchange their magnetic field component borders with neighboring
Nodes using MPI send/receive.

(j) Unless its the last time-step, the time-step is incremented and execution jumps
to step a.

7. Each Node combines the sub-domains from all its Workers. This step is only relevant
for Workers with dedicated memory, since they will have to copy their completed
sub-domain into the system memory.
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8. The host Node will gather the sub-domains from all the slave Nodes into a final
solution using MPI receives.

9. If there are more Tasks, the host Node will fetch the next one and repeat from step
4. Otherwise, the host Node will use MPI broadcast to signal all the slave Nodes to
terminate.

3.3 Reimplementation in C++ and the use of libraries

The new implementation has been done in C++ rather than C, which was used in the
original implementation [1]. The main reason for switching programming language was
to get a modular and maintainable code through the use of classes. The ability to use
inheritance also makes it possible to omit repeating code, which further improves the
maintainability of the code. An example of the use of inheritance is the Worker class,
which has been implemented as an abstract class with the CpuWorker and the Gpu-
Worker as sub-classes. The use of an abstract class also makes it possible to extend the
implementation with new Workers in the future (such as Workers based on OpenCL or
OpenACC), without changing the overall structure of the code.

Even though the implementation is done in C++, it does not use the MPI C++
bindings. The reason for this is that the C++ bindings in Open MPI has been deprecated
as of MPI-2.2. Choosing to use the C bindings will therefore be more future proof in case
the code is ever used in future projects.

The use of libraries has in the interest of making the code understandable and future
proof been limited to open and well proven standards, like the C++ standard library and
POSIX threads. The use of C++11 features and/or the Boost library has been considered,
but omitted, since it was determined that it would not make any notable improvements
to the code, and instead only add unnecessary dependencies.

3.4 Parallelization strategy

Multiple Nodes and Workers are able to collaborate on one FDTD problem by splitting
the domain into smaller sub-domains and exchange their borders during execution. This
is also how it is done in previous FDTD implementations on distributed memory systems
[4, 5, 7].

This implementation uses strip domain decomposition to divided the domain into sub-
domains. Box decomposition has also considered, but the strip method was chosen for
the following reasons:

• Simplicity

• Data contiguity

• Number of required border exchanges

Strip domain decomposition works by splitting a domain into multiple sub-domains along
one of the axis, as shown in Figure 3.3. This makes it easy to split a domain of any size
into any number of sub-domains.

Multidimensional arrays in C++ are stored contiguously in a row-major order in
memory. Maintaining the contiguity in sub-domains is crucial for good cache utilization,
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Figure 3.3: FDTD strip domain decomposition and border exchanges
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Figure 3.4: Data contiguity
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since the cache utilization depends on memory reads to have spatial locality. Figure 3.4
shows how the cells are located in memory and how strip decomposition will maintain
the contiguity. The cell indexes also shows that the domains will have to be split along
the axis representing the highest dimension of the domains, in order to keep contiguity.
In Equations 2.9a-2.9f the highest dimension will be represented by index i, which refers
to the X dimension in the code.

As seen in Figure 3.3, sub-domains generated using strip decomposition have only (at
most) two neighbors they need to exchange borders with. In comparison, sub-domains
generated using box decomposition would have (at most) four neighbors (six if done in 3D).
Even though the use of box decomposition would require more borders to be exchanged,
the total amount of border-data needed to be transmitted is less. It therefore presents a
potential improvement in performance for problems where border exchanges is a limiting
factor. However, box decomposition is considered more complex, and has therefore been
omitted in this implementation. It has instead been left as a potential task for future
work, and is further discussed in Section 5.2.1.

3.5 Boundary handling

The FDTD equations requires the electromagnetic field values of neighboring cells when
calculating the values of a Yee-cell. Cells along the domain boundaries will therefore have
to be handled differently than the rest, because they do not have neighboring cells in all
directions.

In Equations 2.9a-2.9f on page 19, the coordinates (x, y, z) are represented by the
indexes (i, j, k). The equations for calculating the magnetic field values of a cell requires
the electrical field values of the neighboring cells. This would result in a segmentation
fault when calculating the magnetic values in a cell along one of the boundaries in the
domain. Referencing un-allocated memory is avoided by using a fixed boundary condition,
meaning that the electrical field arrays are allocated with a padding of constant cells in
each of the dimensions: X = N + 1, Y = N + 1, Z = N + 1. This is sufficient, since the
equations only requires the next cells in each of the dimensions.

The equations for calculating the electrical field values are opposite, in the sense that
they require the magnetic field values of the preceding cells in each of the dimensions. Due
to the way arrays are stored in memory (see Figure 3.4), calculating the electrical fields of
a cell along one of the boundaries would not result in a segmentation fault, unless that cell
is in the first plan (i = 0). It would however introduce an error source, since referencing a
cell at (i,−1, k) would be equivalent to referencing (i− 1, N − 1, k), or a cell at (i, j,−1),
which would be equivalent to (i, j − 1, N − 1).3 Both segmentation faults and the error
source is avoided by not calculating the electrical field values that requires accessing cells
with a negative index. From Equation 2.9d, 2.9e and 2.9f, all the calculations with an
index where either i, j or k equals 0 will have to be omitted, except for the following:
Ex(0, j̃, k̃), Ey (̃i, 0, k̃) and Ez (̃i, j̃, 0), where ĩ, j̃ and k̃ can be in the range: 1 to N − 1.

3Assuming the domain is of size (N,N,N), where the indexes i, j and k ranges from 0 to N-1.
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3.6 Nodes

In Figure 3.2, step 4, 6(d), 6(i) and 8 requires the nodes to communicate with each other.
All communication between nodes is done using Open MPI by functions within the Node
class. Step 4 of the flowchart scatters the domain across all the nodes, which is done in
two stages:

During the first stage, the host node shallow copies4 the Task instance to all the
slave nodes by broadcasting it, so that all nodes contains a copy of the Task object
in its memory. However, because it is only a shallow copy, the arrays containing the
electromagnetic field values (hx, hy, hz, ex, ey, ez ) will not be copied. Additionally, the
pointers to these arrays will simply point to garbage on the slave nodes.

The next stage of step 4 is to divide the domain into sub-domains and distribute the
electromagnetic field values among the slave nodes. Instead of having to do one send
operation for each of the six arrays for all the slave nodes, a derived data type is created
for each of the slave nodes. Listing 3.1 contains the function used to create such a derived
data type from a Task, appropriately called CreateDatatypeFromTask(). The function is
only called by the host node in a loop iterating over the number of slave nodes.

The CreateDatatypeFromTask() function will, if possible, divide the domain into
equally sized sub-domains along the X-axis, as explained in Section 3.4. If the size of
the domain in the X-dimension is not dividable by the number of nodes, the remainder
will be added to the first nodes, starting with the node with rank 0 (the host node).
The derived data types created from the aforementioned function are used to send one
unique sub-domain to each of the slave nodes. Upon receiving the sub-domains, the slave
nodes stores the received electromagnetic field values contiguously in a buffer. The array
pointers in the slave nodes’ copy of the Task object is then updated to point to the arrays
stored in that buffer. The derived data types are kept by the host node until the FDTD
simulation has completed (step 8 in Figure 3.2), they are then used when receiving the
completed sub-domains from the slave nodes.

3.6.1 Inter-communication

During every time-step of a FDTD simulation, both the electrical and the magnetic field
values will be updated. As mentioned in Section 3.5, updating a field value of a cell
requires the field values of the surrounding cells. In order to update the cells along
the borders5 of a sub-domain, the borders of two adjacent sub-domains will have to be
exchanged by the nodes owning them. This is done for both the electrical and the magnetic
field values during step 6(d) and 6(i) of the flow in Figure 3.2.

Updating the electrical field values of a cell requires the magnetic field values of the
preceding cells in each of the dimensions. Since the domain is divided using strip domain
decomposition along the X-axis (as shown in Figure 3.3), only the preceding cell in the
X-dimension is needed. Specifically, Equations 2.9d-2.9f on page 19 shows that only Hy

and Hz from the preceding cell in the X-dimension is required. The same applies when
updating the magnetic fields, except that it requires the Ey and Ez of the next cell in the

4A bitwise copy of an object. The process of shallow copying will copy all of the field values, even if
the field value is a memory address (a pointer).

5Boundaries and borders are not equal in this context. A boundary describes the outer cells of the
entire domain. A border describes the outer cells of a sub-domain where it is adjacent to another sub-
domain.
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Listing 3.1: Node::CreateDatatypeFromTask(...)

1 void Node : : CreateDatatypeFromTask (
2 const i n t slave_rank , const Task &task , MPI_Datatype ∗datatype )
3 {
4 const i n t yz_offset_e = ( task . m_num_y+1) ∗ ( task . m_num_z+1);
5 const i n t yz_offset_h = task . m_num_y ∗ task . m_num_z ;
6

7 i n t rank_x_size = task . m_num_x / mpi_size ;
8 i n t e_displacement = rank_x_size ∗ yz_offset_e ∗ slave_rank ;
9 i n t h_displacement = ( rank_x_size−1) ∗ yz_offset_h ∗ slave_rank ;

10

11 /∗ Handles ca s e s where work can NOT be evenly d iv ided among Nodes ∗/
12 const i n t x_remainder = task . m_num_x % mpi_size ;
13 i f ( slave_rank < x_remainder )
14 {
15 rank_x_size++;
16 }
17 f o r ( i n t rank = 0 ; rank < x_remainder && rank < slave_rank ; rank++)
18 {
19 e_displacement += yz_offset_e ;
20 h_displacement += yz_offset_h ;
21 }
22

23 const i n t e_size = ( rank_x_size+1) ∗ yz_offset_e ∗ s i z e o f ( my f loat ) ;
24 const i n t h_size = ( rank_x_size+1) ∗ yz_offset_h ∗ s i z e o f ( my f loat ) ;
25

26 const i n t number_of_blocks = 6 ;
27

28 i n t block_lengths [ number_of_blocks ] ;
29 block_lengths [ 0 ] = e_size ;
30 block_lengths [ 1 ] = e_size ;
31 block_lengths [ 2 ] = e_size ;
32 block_lengths [ 3 ] = h_size ;
33 block_lengths [ 4 ] = h_size ;
34 block_lengths [ 5 ] = h_size ;
35

36 MPI_Aint displacements [ number_of_blocks ] ;
37 displacements [ 0 ] = ( MPI_Aint)&task . m_ex [ e_displacement ] − ( MPI_Aint)&task ;
38 displacements [ 1 ] = ( MPI_Aint)&task . m_ey [ e_displacement ] − ( MPI_Aint)&task ;
39 displacements [ 2 ] = ( MPI_Aint)&task . m_ez [ e_displacement ] − ( MPI_Aint)&task ;
40 displacements [ 3 ] = ( MPI_Aint)&task . m_hx [ h_displacement ] − ( MPI_Aint)&task ;
41 displacements [ 4 ] = ( MPI_Aint)&task . m_hy [ h_displacement ] − ( MPI_Aint)&task ;
42 displacements [ 5 ] = ( MPI_Aint)&task . m_hz [ h_displacement ] − ( MPI_Aint)&task ;
43

44 MPI_Datatype types [ number_of_blocks ] ;
45 std : : f i l l n ( types , number_of_blocks , MPI_BYTE ) ;
46

47 MPI_Type_create_struct ( number_of_blocks , block_lengths ,
48 displacements , types , datatype ) ;
49 MPI_Type_commit ( datatype ) ;
50 }
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X-dimension. The directions of both magnetic and electrical border exchanges are shown
in Figure 3.3.

Derived data types are also used for border exchanges, to simplify the process of
sending and receiving. Listing 3.2 shows the creation of data types for both the up and
down magnetic borders of a sub-domain. Note that the displacement for the low border
uses negative indexes for both the hy and hz arrays, this is because buffers for containing
the borders has been allocated ahead of both hy and hz in memory. Thus making it
possible to for example reference hy(−1, j, k), which is needed when updating ez(0, i, k).6

Listing 3.3 shows the function called by every node for every time-step when the
magnetic borders needs to be exchanged. Every node will receive the upper-most magnetic
border in the X-dimension from the preceding node, and send its upper-most border to
the next node. Exceptions are the first and last node, since they will contain the first and
last sub-domains, and therefore only need to either send or receive one border.

Corresponding functions to those included in Listing 3.2 and 3.3 also exists for handling
the electrical borders. They are very similar to the included functions for the magnetic
field borders and will therefore not be described here.

3.7 Workers

Each Node contains a set of Worker objects. Specifically, instances of either the Cpu-
Worker or the GpuWorker sub-classes. The CpuWorker and GpuWorker implements
their own versions of the internal functions: UpdateH Internal(), UpdateE Internal(),
and SourceExcitationInternal(). The internal suffix emphasizes that these functions will
be executed by the internal thread of the Worker object.

With the creation of every Worker object, a new thread will be created and associated
with that object.7 Calls to the Worker class’ public functions will change a member state
variable and signal the internal thread to wake up. The InternalThreadEntry() function
included in Listing 3.4 shows the main function of a Worker’s internal thread. The public
functions of the Worker class will return immediately after signaling the internal thread,
which is required, so that the main thread can signal the next Worker and thereby let
multiple Workers run in parallel. The public Wait() function included in Listing 3.5 will
instead wait for the internal thread to complete its current work and reach an idle state, a
necessity for when Workers needs to synchronize between updates of the electromagnetic
field values.

3.7.1 Intra-communcation

Workers within each Node that do not share memory will have to exchange borders for
the same reasons they are exchanged between nodes. This applies to the GpuWorker
sub-class, since it uses CUDA capable GPUs with their own memory.

During step 5 of the flow in Figure 3.2, the nodes’ sub-domains is further divided
into smaller sub-domains intended for the Workers. Each instance of the GpuWorker
class will allocate enough memory for their sub-domain and border buffers, before loading
the sub-domain into memory. The border buffers are needed for keeping copies of the

6The index of every sub-domain on every node will range from (0, 0, 0), regardless of the starting index
the sub-domain has in the complete domain.

7Having a thread linked to the objects lifetime omits the overhead of creating and destroying threads
on the fly.
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Listing 3.2: Node::CreateH BordersDatatypes(...)

1 void Node : : CreateH_BordersDatatypes (
2 const i n t local_x_size , const Task &task ,
3 MPI_Datatype ∗up_h_datatype , MPI_Datatype ∗down_h_datatype )
4 {
5 const i n t number_of_blocks = 2 ;
6 i n t block_lengths [ number_of_blocks ] ;
7 MPI_Aint displacements [ number_of_blocks ] ;
8 MPI_Datatype types [ number_of_blocks ] ;
9 std : : f i l l n ( types , number_of_blocks , MPI_BYTE ) ;

10

11 const i n t yz_offset_h = task . m_num_y ∗ task . m_num_z ;
12 const i n t h_size = yz_offset_h ∗ s i z e o f ( my f loat ) ;
13 std : : f i l l n ( block_lengths , number_of_blocks , h_size ) ;
14

15 displacements [ 0 ] =
16 ( MPI_Aint)&task . m_hy [ ( local_x_size−1)∗yz_offset_h ] − ( MPI_Aint)&task ;
17 displacements [ 1 ] =
18 ( MPI_Aint)&task . m_hz [ ( local_x_size−1)∗yz_offset_h ] − ( MPI_Aint)&task ;
19

20 MPI_Type_create_struct ( number_of_blocks , block_lengths , displacements ,
21 types , up_h_datatype ) ;
22 MPI_Type_commit ( up_h_datatype ) ;
23

24 displacements [ 0 ] = ( MPI_Aint)&task . m_hy [−yz_offset_h ] − ( MPI_Aint)&task ;
25 displacements [ 1 ] = ( MPI_Aint)&task . m_hz [−yz_offset_h ] − ( MPI_Aint)&task ;
26

27 MPI_Type_create_struct ( number_of_blocks , block_lengths , displacements ,
28 types , down_h_datatype ) ;
29 MPI_Type_commit ( down_h_datatype ) ;
30 }

Listing 3.3: Node::ExchangeH Borders(...)

1 void Node : : ExchangeH_Borders ( const MPI_Datatype up_h_datatype ,
2 const MPI_Datatype down_h_datatype , Task ∗task )
3 {
4 i f ( mpi_rank == 0) {
5 MPI_Send (task , 1 , up_h_datatype , mpi_rank+1,
6 FIELD_BORDER_TAG , MPI_COMM_WORLD ) ;
7 }
8 e l s e i f ( mpi_rank == mpi_size−1) {
9 MPI_Recv (task , 1 , down_h_datatype , mpi_rank−1,

10 FIELD_BORDER_TAG , MPI_COMM_WORLD , MPI_STATUS_IGNORE ) ;
11 }
12 e l s e {
13 MPI_Sendrecv (task , 1 , up_h_datatype , mpi_rank+1, FIELD_BORDER_TAG ,
14 task , 1 , down_h_datatype , mpi_rank−1, FIELD_BORDER_TAG ,
15 MPI_COMM_WORLD , MPI_STATUS_IGNORE ) ;
16 }
17 }
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Listing 3.4: Worker::InternalThreadEntry()

1 void Worker : : InternalThreadEntry ( )
2 {
3 pthread_mutex_lock(&m_mutex ) ;
4 whi le ( t rue )
5 {
6 switch ( m_state )
7 {
8 case UPDATE_H :
9 UpdateH_Internal ( ) ;

10 break ;
11 case UPDATE_E :
12 UpdateE_Internal ( ) ;
13 break ;
14 case SOURCE_EXCITATION :
15 SourceExcitationInternal ( ) ;
16 break ;
17 case BENCHMARK :
18 MeasurePerformanceInternal ( ) ;
19 break ;
20 case STOP :
21 m_state = IDLE ;
22 pthread_cond_signal(&m_condition ) ;
23 goto stop ;
24 case IDLE :
25 break ;
26 }
27

28 m_state = IDLE ;
29 pthread_cond_signal(&m_condition ) ;
30 pthread_cond_wait(&m_condition , &m_mutex ) ;
31 }
32 stop :
33 pthread_mutex_unlock(&m_mutex ) ;
34 }

Listing 3.5: Worker::Wait()

1 void Worker : : Wait ( )
2 {
3 pthread_mutex_lock(&m_mutex ) ;
4 whi le ( m_state != IDLE )
5 pthread_cond_wait(&m_condition , &m_mutex ) ;
6 pthread_mutex_unlock(&m_mutex ) ;
7 }
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borders of the neighboring sub-domains. These borders are loaded before each update of
either electrical or magnetic field values in every time-step. In relation, the borders of
the sub-domains contained by GpuWorker objects will also have to be copied onto the
system memory after each update. This is required for the borders to be available to other
Workers, and also for them to be included in the MPI sends during exchanges between
nodes.

Listing 3.6 shows the GpuWorker class implementation of the UpdateH Internal() func-
tion, which corresponds to step 6(a), 6(b) and 6(c) of the flow in Figure 3.2. This function
has a call to the UpdateH cuda() kernel, which will use the GPU to do the actual updating
of the magnetic field values. Before calling this kernel, the borders of the electrical field
values are copied into the device’s memory from the host (system) memory.8 After the
magnetic field values have been updated, the upper magnetic field borders are copied to
their related addresses in system memory. Note that the global variable: g single worker,
prevents border exchanges from being done in cases where only one worker is used.

The GpuWorker class also implements a function called UpdateE Internal(), which
corresponds to step 6(f), 6(g) and 6(h) in Figure 3.2. It works similar to the Up-
dateH Internal() function, and will therefore not be included. The difference is that
the upper magnetic borders of the preceding sub-domain are copied into device memory
before the electrical fields are updated, and the lower borders of the updated electrical
field values are afterwards copied back to the system memory. Figure 3.3 demonstrates
the directions the borders are copied between Workers.

8The member variables m from and m to are used to find the addresses of the borders in system
memory. They hold the from and to coordinates in the X-dimension of the Worker’s sub-domain related
to the Node’s sub-domain.
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Listing 3.6: GpuWorker::UpdateH Internal()

1 void GpuWorker : : UpdateH_Internal ( )
2 {
3 cudaSetDevice ( m_device_number ) ;
4

5 const i n t ny = m_task−>m_num_y ;
6 const i n t nz = m_task−>m_num_z ;
7

8 i f ( g_single_worker == f a l s e )
9 {

10 /∗ Load upper E− f i e l d s borders in to dev i ce memory ∗/
11 const my f loat ∗host_ey = m_task−>m_ey ;
12 const my f loat ∗host_ez = m_task−>m_ez ;
13 const i n t yz_offset_e = (ny+1) ∗ (nz+1);
14 const i n t e_border_size = yz_offset_e ∗ s i z e o f ( my f loat ) ;
15 cudaMemcpy(&device_ey [ m_local_x_size∗yz_offset_e ] ,
16 &host_ey [ m_to∗yz_offset_e ] , e_border_size , cudaMemcpyHostToDevice ) ;
17 cudaMemcpy(&device_ez [ m_local_x_size∗yz_offset_e ] ,
18 &host_ez [ m_to∗yz_offset_e ] , e_border_size , cudaMemcpyHostToDevice ) ;
19 }
20

21 const i n t yz_offset_h = ny ∗ nz ;
22

23 const i n t grid_yz = ceil ( sqrt ( yz_offset_h / ( f l o a t ) m_block_size ) ) ;
24 const dim3 dim_grid_yz ( grid_yz , grid_yz ) ;
25

26 GpuWorkerKernels : : UpdateH_cuda<<<dim_grid_yz , m_block_size>>>(
27 m_local_x_size , ny , nz , m_task−>m_Cbdx , m_task−>m_Cbdy , m_task−>m_Cbdz ,
28 device_ex , device_ey , device_ez , device_hx , device_hy , device_hz ) ;
29

30 i f ( g_single_worker == f a l s e )
31 {
32 /∗ Un−load upper H− f i e l d s borders onto host memory ∗/
33 my f loat ∗host_hy = m_task−>m_hy ;
34 my f loat ∗host_hz = m_task−>m_hz ;
35 const i n t h_border_size = yz_offset_h ∗ s i z e o f ( my f loat ) ;
36 cudaMemcpy(&host_hy [ ( m_to−1)∗yz_offset_h ] ,
37 &device_hy [ ( m_local_x_size−1)∗yz_offset_h ] , h_border_size ,
38 cudaMemcpyDeviceToHost ) ;
39 cudaMemcpy(&host_hz [ ( m_to−1)∗yz_offset_h ] ,
40 &device_hz [ ( m_local_x_size−1)∗yz_offset_h ] , h_border_size ,
41 cudaMemcpyDeviceToHost ) ;
42 }
43 }
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Results

This chapter presents various results from executing the implementation using different
program and hardware configurations. It will include results covering the overhead from
doing border exchanges, optimal load distribution between multiple execution units, and a
comparison to Skomedal’s original implementation [1]. It will also include results compar-
ing executions on the NVIDIA Fermi and Kepler architectures, and results from running
on an improvised multi-node setup.

4.1 Test setup

All results in this chapter have (unless otherwise stated) been obtained using the following
configurations: Three different domain sizes have been used: N=100, N=200 and N=400.
Where the total number of Yee-cells are N3, and the required memory is 23 MB for N=100,
184 MB for N=200, and 1470 MB for N=400. The number of time-steps is 200 for all
sizes.

In order to get accurate results, averages of several runs have been used: 40 runs for
N=100, 20 runs for N=200 and 3 runs for N=400. Different number of runs have been
used for each of the domain sizes since the execution time variance less on larger sizes.

The performance is measured in FLOPS, which is calculated from the number of
floating-point operations required for a FDTD simulation and the total execution time
(including data transfers) of that simulation. The number of required floating-point op-
erations is calculated using Equation 4.1.

FLOPS = ((Ny − 1)× (Nz − 1)× 6

+ (Nx − 1)× (Nz − 1)× 6

+ (Nx − 1)× (Ny − 1)× 6

+ (Nx − 1)× (Ny − 1)× (Nz − 1) ∗ 18

+Nx ×Ny ×Nz × 18)

× TS (4.1)

Where Nx, Ny , Nz is the domain size and TS is the number of time-steps
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4.1.1 Execution platforms

Table 4.1 presents the hardware and software configurations of the execution platforms
used to gather the results. The three test systems uses three different generations of Intel
i7 micro-architectures: Nehalem (System 3), Ivy Bridge (System 1) and Haswell (System
2). All of these processors have four physical cores and a similar clock frequency, their
performance do however differ due to different cache sizes and implemented features and
optimizations.

The systems also contains different GPU configurations: System 1 is equipped with
two NVIDIA Tesla K20c of the Kepler GK110 architecture. System 2 has a NVIDIA
Tesla K40c, also of the Kepler GK110 architecture, and a GTX 760 of the slightly older
Kepler GK104 architecture. System 3 is primarily included in order to test and discuss
the performance differences between the Fermi and Kepler architectures. It is equipped
with a GTX 470 GPU of the Fermi GF100 architecture and a GTX 280 of the obsolete
GT200 architecture.

Appendix A contains an overview of the GPU architectures and a comprehension of the
differences in theoretical performance. However, these performance numbers represents
the GPUs’ theoretical peaks when factors like memory bandwidth is not an issue, and
the results presented in this chapter is therefore not expected to be comparable to these
values.

The use of Error-Correcting Code (ECC) memory has been disabled during all tests,
since it can come with a slight cost to memory performance.

Table 4.1: Test systems

System 1 (K20c) System 2 (K40c) System 3 (GTX470)

Hardware:
Motherboard MSI Z77A-G45 MSI Z87-G45 GAMING EVGA X58 SLI
CPU Intel Core i7-3770K, 3.5GHz Intel Core i7-4771, 3.5GHz Intel Core i7-950, 3.07GHz
Memory 4x DDR3 8GB, 1333MHz 4x DDR3 8GB, 1333MHz 6x DDR3 2GB, 1600MHz
Storage Intel SSD 330, 120GB Seagate SSD 600, 240GB WD HDD Green, 500GB
GPU0 Tesla K20c, 5GB Tesla K40c, 12GB GTX 470, 1280MB

PCIe 2.0 x8 PCIe 2.0 x8 PCIe 2.0 x16
GPU1 Tesla K20c, 5GB GTX 760, 4GB GTX 280, 1GB

PCIe 2.0 x8 PCIe 2.0 x8 PCIe 2.0 x8

Software:
Operating System Ubuntu 12.04 LTS, 64-bit Ubuntu 12.04 LTS, 64-bit Ubuntu 12.04 LTS, 64-bit
NVIDIA Driver Version 331.62 331.20 331.62
GCC Version 4.6.4 4.6.4 4.6.4
NVCC Version 6.0 5.5 6.0

4.2 CPU performance

The implementation allows for several possible ways to configure the use of the CPU:
A single multi-core system can take advantage of its multi-threaded capabilities by run-
ning either multiple OpenMP threads, CpuWorkers, Nodes, or any combination of the
mentioned. Running multiple Nodes basically means running several MPI processes, and
running multiple CpuWorkers equals to running several POSIX threads.

Figure 4.1 and 4.2 shows the performance scaling across multiple cores on System 1
and 2, respectively. The results are similar to those provided in Table 2.5, and shows
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Figure 4.1: Performance of different CPU
configurations on System 1 (Ivy Bridge),
using a domain of size N=150
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Figure 4.2: Performance of different CPU
configurations on System 2 (Haswell), using
a domain of size N=150

that using more than two cores gives a negligible increase in performance due to memory
bandwidth being a limitation. Because of these observations, only two threads will be
used when the CPU is used together with GPU(s).

The figures also shows a comparison between using multiple OpenMP threads, Cpu-
Workers and Nodes. Even though the differences are minor, the results indicates that
using multiple OpenMP threads is the most efficient way to utilize a multi-core CPU.
This is as expected, since the implementation is designed to parallelize the FDTD algo-
rithm on CPUs by launching multiple OpenMP threads. Using several CpuWorkers or
Nodes on a single system is merely a possibility, and will introduce an unneeded overhead.

4.3 Border exchange overhead

In order for FDTD simulations to be done collectively on multiple execution units, borders
have to be exchanged during execution. This introduces a noteworthy overhead and
decrease in performance. Figure 4.3 shows a comparison of executions with and without
border exchanges on a single K20c GPU on System 1. Executing on a single GPU does not
require borders to be exchanged during execution, and the implementation will withhold
from doing so if it registers that there is only a single execution unit in use. Border
exchanges have therefore been enforced during these measurements, in order to show the
overhead.

The results in Figure 4.3 shows a reduction in performance of 18.7%, 7.7% and 3.6%,
for domain sizes of N=100, N=200 and N=400, respectively. This is an expected and
acceptable difference, because a total of four border exchanges is being done during every
time step. The results also indicates that the significance of the overhead becomes smaller
as the domain becomes larger.

Due to the exchanges: the interconnect, chipset, CPU and memory can have an impact
on the performance. Profiling shows that each of the border exchanges are of 160 KB for
domains of size N=200, and their average transfer throughput is 3.17 GB/s on System 1
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Figure 4.3: Overhead of border exchanges on a NVIDIA K20c GPU

with PCI-Express 2.0 x8. In comparison, a throughput of 5.95 GB/s was registered on
System 3 which uses a PCI-Express 2.0 x16 interconnect.

4.4 Load distribution

The strength of the new implementation is its ability to have multiple execution units
collaborate on a single FDTD simulation. All the execution units are however required
to synchronize between every update of the electromagnetic values, and execution time
is therefore limited to the unit that completes its updates last. The implementation is
designed to work on heterogeneous systems where workers can have different performance.
Work should therefore be distributed among workers according to their performance, in
order to achieve the best overall execution time.

The implementation uses a micro-benchmark to individually measure the performance
of the workers. The results from running this micro-benchmark is used to determined the
load distribution between the workers, which is represented in Figure 4.4-4.7 as an orange
vertical line. However, the results shows that this load distribution is not always the most
efficient.

Figure 4.4-4.7 shows how the performance varies with different load distributions when
divided between multiple heterogeneous execution units. The measurements done with a
domain of size N=100 stands out from the others, this is likely due to the problem being
too small to take advantage of multiple execution units. For large domain sizes (N=400),
the results in Figure 4.4 and 4.5 shows a peak in combined performance when the CPU
is scheduled 10% of the work load.

Figure 4.6 shows that the benefit of using the CPU in addition to two GPUs is negli-
gible, and more likely to reduce the overall performance.

Figure 4.7 shows an example of executions on two different GPUs. The results suggests
that a load distribution of 70% and 30% between a K40c and a GTX 760 gives the optimal
performance for domains of size N=400. This is reasonable in regards to their specified
performances.
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4.5 Performance

A wide comparison of performance measurements when running different configurations
of execution units is shown in Figure 4.8. The 4xCPU results refers to using four OpenMP
threads on the Haswell processor on System 2. The results from executing on two het-
erogeneous execution units where obtained by using the load balances that proved to be
most efficient according to the results in Figure 4.4-4.7.

The results in Figure 4.8 shows a slight improvement when using the CPU in addition
to the GPU on large domains (N=400). However, performance is either unchanged or
reduced when using domains of size N=100 or N=200.

Using multiple GPUs shows a performance improvement for all domain sizes. Employ-
ing two K20c compared to one K20c GPU improves the performance by 23.6%, 50.5%
and 66.0% for domains of size N=100, N=200 and N=400, respectably.
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Figure 4.8: Performance of different configurations using optimal load balance

4.6 Comparison to original implementation

Figure 4.9 shows a comparison between the original [1] and the new implementation
running on the same system. In order to make the implementations comparable, the
code of the original implementation has been altered to also transfer the FDTD domain
to device memory, prior to execution. Initially, this implementation only allocated and
initialized the field values on device memory to zero, thereby avoiding the overhead of
transferring. The code has also been modified to launch CUDA kernels with 1024 threads,
equal to what is used in the new implementation. The original implementation was tested
using two CUDA streams and two OpenMP threads, which has been proven to be the
optimal configuration [1].

The results in Figure 4.9 compares the overall performance of simulating 20 FDTD
domains on System 1. The performance is calculated by using the Unix time command
to measure the whole execution time of the program, and then divide the combined
FLOPS of all the domains by the measured time. The results indicates that the original
implementation performs better when dealing with many small domains compared to the
new implementation when only using one of the GPUs. However, simulations of N=400
sized domains appears to perform similar. Larger sizes has not been included because the
original implementation failed to execute them. Using the multi-GPU capability of the
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Figure 4.9: Comparison of overall performance of 20 FDTD simulations on System 1

new implementation shows a notable increase in performance compared to the original,
although the original implementation still performs slightly better on very small domains
(N=50).

4.7 Fermi versus Kepler

Skomedal provides a performance comparison between the Kepler and the Fermi archi-
tecture as a part of his thesis [1]. His results shows a 5-10% decrease in performance on
the NVIDIA Tesla K20c Kepler GPU compared to the NVIDIA GTX 480 Fermi GPU,
even though the memory speed on K20c is 17.5% faster and the compute power is almost
triple. He suggests that this is due to differences in the architectures, without mentioning
anything specific.

The Fermi and Kepler architectures are explained in Section 2.2.3 and 2.2.3, re-
spectably. One of the differences is how the L1 cache is utilized. The use of L1 cache can
be disabled during compiling by using the compile flag: -Xptxas -dlcm=cg, and Figure
4.10 shows how this affects the results. Note that because of the limited amount of usable
memory on the GTX 470, a domain size of N=330 is used instead of N=400.

Table 4.2 contains the average of the memory and cache usage of the two main kernels:
UpdateH cuda and UpdateE cuda. The data is gathered using the NVIDIA Visual Profiler,
and shows that the Fermi architecture is making good use of the L1 cache. It also suggests
that the K20c’s larger and faster L2 cache is an essential part of the reason to why it
performs better than the GTX 470 without L1 cache.
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Figure 4.10: Performance impact of L1 cache

Table 4.2: Combined memory and cache usage for N=200

K20c GTX470 GTX470 w. L1

L1 Cache
Hit Rate 0% 0% 74.8%
Reads 195.215 GB/s 133.282 GB/s 302.935 GB/s
Writes 36.035 GB/s 24.595 GB/s 35.915 GB/s
Total 231.251 GB/s 157.875 GB/s 338.852 GB/s

L2 Cache
Hit Rate 65.1% 55.9% 10.15%
Reads 195.215 GB/s 133.282 GB/s 77.082 GB/s
Writes 36.035 GB/s 24.595 GB/s 35.915 GB/s
Total 231.251 GB/s 157.875 GB/s 112.995 GB/s

Device Memory
Reads 68.115 GB/s 59.591 GB/s 69.89 GB/s
Writes 33.542 GB/s 22.785 GB/s 33.088 GB/s
Total 101.655 GB/s 82.375 GB/s 102.980 GB/s
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4.8 Multi-node execution

Figure 4.11 shows the measured performance of different configurations when executed on
both System 1 and 2. The systems were connected using a regular 100 Mbit/s Ethernet,
and the work was scheduled evenly between the two systems. Although the FDTD simu-
lations produced the correct outputs, the performance is shown to be severely limited by
the interconnect between the systems.
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Figure 4.11: Performance of collaborate execution on both System 1 and 2
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Chapter 5

Discussion

This chapter contains discussions regarding the results presented in Chapter 4. This
includes possible explanations to the measured results, in addition to potential ways to
improve the implementation related to these results. The chapter also presents some of
the implementation’s known limitations.

5.1 CPU performance

Figure 4.1 and 4.2 indicates that there is little to gain from using more than two cores,
and similar results have been reported when executing the original implementation [1]. It
has also been proven that memory bandwidth is limiting the benefit of using more than
two cores. This is done by reducing the clock frequency of the cores to half, followed by
running additional tests, which have shown a notable speed-up from using both three and
four cores.

The memory bandwidth bottleneck is the main reason to why only two threads are used
in CPU+GPU(s) configurations. Other reasons includes: Setting aside more resources to
border exchanges and background processes, and being comparable to results from the
original implementation [1]. It has also been suggested that only using two threads is
more energy efficient [1].

5.2 Border exchange overhead

The advantage of the new implementation its ability to have multiple compute units coop-
erate on a single FDTD simulation. Compute units with dedicated memory (GPUs) will
have to send and receive borders during every time-step, which will obviously introduce
an overhead. The results presented in Section 4.3 shows the overhead when enforcing
border exchanges during a single-GPU execution.

The results in Figure 4.3 shows that the impact of the overhead becomes smaller when
using larger domains. This is most likely due to the number of computations becoming
much larger as the size of the domain grows, compared to the size of the borders. The
size of the borders grows with N2 while the number of computations grows with N3, when
using grid decomposition and domains of size N3.
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5.2.1 Ways to reduce the overhead

Several potential techniques that can reduce the overhead from border exchanges are
discussed in this section. The techniques are described in relation to intra-communication
and CUDA GPUs, but most of them also applies to inter-communication and multi-node
execution.

Faster interconnect

The average transfer throughput of a 160 KB border was measured to be 3.17 GB/s
with PCI-Express (PCIe) 2.0 x8, and 5.95 GB/s using PCIe 2.0 x16. Even though these
measurements were done on different systems using different GPUs, they indicate that
the throughput is limited by the speed of the interconnect. The speed of the PCIe 2.0
bus is specified to be 500 MB/s (5 GT/s) per lane, in each direction. The maximum peak
throughput of PCIe x8 is therefore 3.91 GB/s, and 7.81 GB/s for PCIe x16. It should be
noted that these values are the theoretical peak bandwidth, and even though the measured
speeds are notable slower, they are still within what can be expected. The overhead of
border exchanges can potentially be reduced by using a faster interconnect, such as PCIe
3.0 x16 with a theoretical peak of 15.39 GB/s per direction. A faster interconnect would
also improve the initial transfer of the sub-domain onto device memory and the transfer
of the completed sub-domain back to system memory.

Concurrent copy and execution

The border exchange overhead could be significantly reduced by concurrently updating
the electromagnetic field values and copying the borders. All CUDA GPUs with compute
capability 1.1 or higher supports this through the use of multiple streams. Every update
of either the electrical or the magnetic field values requires one border to be received
before updating and another to be sent after updating. The updating of field values
which depends on borders to be received can be postponed until the end of the kernel.
Correspondingly, the updating of field values that needs to be sent after updating can be
done first. This way, sending, receiving and computations can be done concurrently.

The order of the memory reads caused by the discussed approach might have a negative
impact on cache utilization. This hit can be avoided by explicit cacheing using shared
memory.

Page-locked memory

A known technique to improve transfer speeds between system and device memory is to
use page-locked (pinned) memory, which enables the GPU to request transfers to and
from the system memory without involving the CPU. However, the results in Table 5.1
from the project: The Evolution and Current State of CUDA GPGPU [8], suggests that
there is nothing to gain from using pinned memory with small transfers.

Box decomposition

As discussed in Section 3.4, the implementation uses strip decomposition to create sub-
domains. Another and arguably more complex approach is to use box decomposition,
where a domain is divided along all the axis as opposed to only one. This will result in
more borders and exchanges, but the size of the borders will become smaller as the number
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Table 5.1: Pinned memory performance

Host Memory Unpinned Pinned Unpinned Pinned
Type Host to Device Host to Device Host to Device Host to Device
Duration 176.402 us 176.753 us 3.528 ms 2.79 ms
Size 1 MB 1 MB 16 MB 16 MB
Throughput 5.54 GB/s 5.53 GB/s 4.43 GB/s 5.6 GB/s

Host Memory Unpinned Pinned Unpinned Pinned
Type Device to Host Device to Host Device to Host Device to Host
Duration 167.057 us 167.088 us 11.838 ms 2.639 ms
Size 1 MB 1 MB 16 MB 16 MB
Throughput 5.85 GB/s 5.84 GB/s 1.32 GB/s 5.92 GB/s

of sub-domains increases. In comparison, strip decomposition has the limitation that the
border sizes remains constant regardless of the number sub-domains. This might not be
significant in regards to the domain sizes used in this thesis, but it might be a necessity
when using very large domains executing on many nodes with multiple execution units.

5.3 Load distribution

The results in Section 4.4 shows that the load distribution derived from the micro-
benchmark is sub-optimal for domain sizes other than N=100. This makes sense, since
the micro-benchmark itself works by executing a temporal domain of size N=100 on each
of the workers. Adapting a larger size for domains used in the micro-benchmark might
give better results. Alternatively, the best load balance for different sizes can be cali-
brated prior to the actual execution, by letting each of the workers execute a multitude
of domains of different sizes. The results can then be stored in a file for later use, thereby
making it a one time operation.

According to the results for domains of size N=400 in Figure 4.4 and 4.5, the optimal
balance between CPU and GPU is 10% and 90%, respectively. This balance is similar
to the balance suggested in the article: GPU-Accelerated Parallel FDTD on Distributed
Heterogeneous Platform [7], where a problem of size 512 × 256 × 256 is executed on a
NVIDIA Tesla K20m GPU and two threads on a Intel XEON E5-2670 CPU.

The results in Figure 4.6 shows that there is little or nothing to gain from using the
CPU together with two K20c GPUs. In addition to the GPUs being very fast compared
to the CPU, the CPU and system memory are already under load due to the required
border exchanges. In conclusion, it might be better to omit the use of the CPU when
multiple fast GPUs are already in use on the same system.

Except for the obvious benefit of spreading the computational load among multiple
execution units, there are other benefits to load distribution. In the first place, using
multiple execution units will allow for larger domain sizes if the units have dedicated
memory. Secondly, using multiple GPUs can decrease the overhead of transferring the
data to and from device memory, since the domain is divided and transferred to or from
both GPUs in parallel. This also somewhat applies to CPU+GPU configurations, since
the amount of data that is transferred to and from the GPU is reduced. On the other
hand, using multiple execution units also adds the overhead of border exchanges.
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5.4 Performance

The results presented in Figure 4.5 shows how the performance varies on different con-
figurations of CPUs, GPUs and domain sizes. The results indicates that the overall
performance of executions involving GPU(s) increases as the domain gets larger. This
can be explained by the fact that in order for CUDA GPUs to perform optimally, they
require a lot of threads, which in turn allows for warp scheduling (see Section 2.2.1).
Having enough warps to schedule between effectively hides the latency of memory reads,
thereby improving the overall performance.

Another observation is how the benefit of using multiple execution units increases as
the domain becomes larger, this applies to both GPU+CPU and multi-GPU configura-
tions. There are multiple possible explanations to this: Firstly, this can also be related to
larger domains offering better warp scheduling. Secondly, the overhead of transferring to
and from GPU(s) is reduced, because some of the domain remains in system memory in
a GPU+CPU configuration, or the domain is divided and transferred simultaneously in a
multi-GPU configuration. Thirdly, as discussed in Section 5.2, the overhead of the border
exchanges grows slower than the amount of computations, in relation to the domain size.
This can also explain why GPU+CPU configurations performs worse on small domains,
compared to only executing on the GPU.

5.5 Comparison to original implementation

The new implementation differs from the original implementation [1], in that it focuses on
decomposing large domains and executing them on multiple execution units and nodes.
On the other hand, the original implementation focuses on scheduling many small indi-
vidual domains on one multi-threaded CPU and one GPU. Even though the new imple-
mentation allows for larger domain sizes and faster execution of large domains, it also
introduces an overhead due to the border exchanges.

The results in Figure 4.9 indicates that the original scheduling implementation is
slightly better at dealing with many small domains compared to the new decomposition
implementation. One reason to this is the added overhead from border exchanges, another
is the use of multiple streams in the original implementation. Multiple streams are used
to execute several domains simultaneously, thereby overlapping transfers and executions
on the GPU, and improve performance. Although this feature is possible in the new
decomposition implementation, it is not implemented. The main reason to this is that
the new implementation is focused on executing large domains, and taking advantage of
multiple streams in the same way as the scheduling implementation would require two
(or more) domains to reside in device memory simultaneously. Another way to have
concurrent transfers and execution in the new implementation is already discussed in
Section 5.2.1.

The new implementation does surpass the original when dealing with large domains,
primary due to its ability to use several execution units. Domains of size N=400 performs
almost identical when only using the CPU and one GPU. Using both the installed GPUs
improves the performance by 22.57% on N=200 sized domains, and 55.56% on N=400.
Using more than two GPUs is also possible, as well as larger domains.

Why the decomposition approach was chosen instead of extending the scheduling
implementation to also work on multiple GPUs and nodes is already explained in Section
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2.6.3 and 3.1.

5.6 Fermi versus Kepler

Compared to the GTX 470’s performance in Figure 4.10, the Tesla K20c shows a 6.34%
decrease in performance when executing domains of size N=330 using the new implemen-
tation. The K20c performs 4.54% better on domains of size N=200m, and slightly worse
on N=100. These results are similar to the 5-10% performance decrease reported using
the original implementation [1], considering those results compared the K20c to the GTX
480, which is slightly more powerful than the GTX 470.

As discussed in Section 2.2.3, the Fermi architecture implicitly uses the L1 cache for
all global memory accesses, similar to how the L2 cache works. This is different in the
Kepler architecture, where the L1 cache is dedicated to local memory accesses only. Since
there is no register spilling in the new implementation, the L1 cache remains unused on
the Kepler architecture. Disabling the L1 cache on the GTX 470 leads to a significant
reduction in performance, indicating that the performance is memory bound. Looking
at Table 4.2 suggests that more L2 cache hits and higher L2 bandwidth are the reasons
to why the Kepler architecture performs better than Fermi without L1 cache. This is
reasonable, since the Kepler architecture has twice the amount of L2 cache compared to
the Fermi architecture.

The results shows that due to how the L1 cache is utilized, the GTX 470 can perform
similar to the much more powerful Tesla K20c. This suggests that the performance of
the K20c is severely limited by memory bandwidth, and can be expected to improve
significantly with the use of shared memory and explicit caching. Shared memory is
neither used in the new or the original implementation, but should be considered as a
future improvement. The article: CUDA Based FDTD Implementation [6], presents a
technique to eliminate uncoalesced memory accesses by using shared memory.

5.7 Multi-node execution

One of the goals of this thesis has been to develop an implementation that can utilize
multiple nodes. This has been done, and also tested to work on two desktop computers
with conventional hardware and a regular 100 Mbit/s Ethernet connection. However,
Figure 4.11 shows that the performance results from these tests are inferior compared to
executing on a single system. It’s reasonable to assume that the interconnect between the
systems is limiting the performance, because the results show a very minor improvement
in performance when using more compute power.

High Performance Computers usually connects the nodes using networks faster than
conventional 100 Mbit/s Ethernet, such as 10 Gigabit Ethernet (10GigE) or InfiniBand.
10GigE can provide a bandwidth of 10 Gbit/s, while InfiniBand can provide bandwidths
up to 300 Gbit/s, depending on the data rate and number of lanes used. In comparison,
the PCI-Express 2.0 x8 used to connect the GPUs in the test systems has a bandwidth of
40 Gbit/s. Some of the techniques discussed in Section 5.2.1 can also be used to reduce
the overhead of border exchanges between nodes in a multi-node system, specifically the
overlapping of transfers and computations, and the use of box decomposition for large
domains. These techniques, combined with a faster network connection, can make the
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performance improvements from using multiple nodes much more compelling than the
results shown in Figure 4.11.

5.8 Limitations

There are various limitations to the current implementation: Most apparent is the fact
that it is only a benchmarking code, and not yet usable for real world simulations. One
feature that would have to be added for it to be more relevant for real world problems is
the ability to use heterogeneous materials. Currently, the implementation uses a homoge-
neous material, specifically the material constants of empty space. Using a heterogeneous
materials is possible by assigning material constants to each of the Yee cells. A memory
efficient way to do this is through the use of a lookup table, and only storing an index
with each of the Yee cells. This table of material constants can be stored in the GPUs’
constant memory, which is also suggested in the articles: CUDA Based FDTD Implemen-
tation [6], and GPU-Accelerated Parallel FDTD on Distributed Heterogeneous Platform
[7]. Another thing lacking in the implementation, related to real world usefulness, is some
sort of visual feedback of the simulation.

There is currently a known limitation to the size of the executable domains, outside
of the available memory. Most of the code that deals with dividing up the domains or
transmitting sub-domains stores the offsets and number of bytes in 32-bit signed integers.
Bytes are used because it enables the implementation to seamlessly work with electro-
magnetic field values of both single and double precision. However, very large problems
might face issues due to integer overflow(s): A 32-bit signed integer can store a number
of bytes equaling 2 GB. Even though the implementation will work with domain sizes far
larger than 2 GB, the possibility of integer overflow should be considered. Hence, the
implementation might need some adjustments if it shall be used for very large domains.
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Chapter 6

Conclusion

The goal of this thesis has been to extend Skomedal’s original FDTD implementation [1]
into also utilizing multiple nodes and GPUs. The original implementation was able to
utilize both the CPU and a CUDA GPU on a single system, by scheduling small individual
FDTD domains to each of them. This scheduling implementation was first extended into
also using multiple GPUs and nodes. However, that approach was abounded in favor of
a decomposition approach, since it would allow for better scaling across multiple nodes
and execution units.

The new implementation can be configured to utilize several CUDA GPUs within a
single system, and is only limited by the number of GPUs supported by the system. It
divides the FDTD domains into several sub-domains according to the number of nodes
and execution units. This allows for much larger domains than the original scheduling
approach, because it required the entire domain to fit in the memory of a single GPU. The
new implementation also improves performance by using multiple GPUs: Executing a set
of 20 domains of size 4003 has been proven to improve performance by 55.56% compared
to the original implementation running on the same system.

Another major feature of the work done in this thesis is the ability to use multiple
nodes, and thereby allow for a combined computing power beyond what is possible on a
single system. However, due to network limitations, the results provided in this thesis has
not been able to prove this improvement.

Because of the many differences, the new implementation uses very little of the original
code, which was written in the C programming language. The new implementation has
instead been written in the C++ language, which has allowed for an understandable,
modular and easily extendable code. Most noteworthy is the possibility to add new types
of workers (based on APIs such as OpenCL or OpenACC), without significant alterations
to the excising code.

The contribution from this project is a working implementation of the FDTD algo-
rithm, that can be executed on a cluster of heterogeneous systems with a multi-core CPU,
and one or several CUDA-capable GPUs. Due to reasons already explained in Section
5.8, this implementation is not sufficient for real world FDTD simulations. It is instead
meant to be used as a basis for future work, or as an example on how to do FDTD on a
cluster of heterogeneous multi-GPU systems.
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Chapter 6. Conclusion

6.1 Recommendations for future work

Numerous ideas for potential improvements and features have surfaced during the work
on this thesis. Not all of these have been included as part of the work, either in the
respect of the limited time or because they have been outside the scope of the focus area.
Following is a selection of some of these ideas recommended for future work.

6.1.1 Extension to a full FDTD implementation

As discussed in Section 5.8, the implementation is currently limited to only being a bench-
marking code for simulating electromagnetic fields using the FDTD method. Multiple
features will have to be added to make it useful for real world simulations, such as the
abilities to use heterogeneous materials and to get visual feedback. Users who frequently
uses the FDTD method for simulating electromagnetic fields should be consulted, in order
to get a better understanding of the needs and requirements of real world use cases.

6.1.2 Overlapping exchanges and computations

The overhead from doing border exchanges between multiple execution units and nodes
can be critical when using slow interconnects. Techniques to reduce this overhead is
discussed in Section 5.2.1. A particular interesting technique is to overlap transfers and
computation, since it can be applied to both the intra-communication between workers
and the inter-communication between nodes. This will require the use of multiple CUDA
streams and non-blocking message passing routines.

6.1.3 Optimize for Kepler

The original implementation [1] which this work is based upon is developed and optimized
with the NVIDIA Fermi architecture in mind. The newer Kepler architecture is capable
of much better performance, but also differs from Fermi in many ways. The code will
therefore have to be adjusted according to these differences. Optimizing for the Kepler
architecture can be done by adjusting the current GPU worker, although it might be more
convenient to add a new Kepler tailored worker. Following is a couple of suggestions to
optimizations that might improve performance on the Kepler architecture.

Shared memory

The Kepler architecture does not implicitly use the L1 cache in the same manner as
Fermi, it is instead required to be explicitly used through shared memory. The results in
Section 4.7 demonstrates the significance of memory bandwidth and cache usage, which
also suggests that the use of shared memory will lead to a commendable improvement in
performance.

Dynamic parallelism

Dynamic parallelism is a new feature introduced in the Kepler architecture which lets a
kernel launch new kernels. This is a technique that might be beneficial in this implemen-
tation, specially in the updating of electrical field values, since it requires multiple kernels
to be launched consecutively.
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6.1. Recommendations for future work

6.1.4 Develop new workers

The code is designed to be easily extendable by adding new workers. A possible future
work can be the development and incorporation of new workers outside the currently
implemented CPU and CUDA GPU workers. This can for example be workers based
on OpenCL, OpenACC or DirectCompute, which can allow for the code to execute on a
wider range of hardware and software configurations.

6.1.5 Combining of scheduling and decomposition

The results in Section 4.6 suggests that it might be better to schedule individual FDTD
domains when dealing with many small domains. If this is an important and reoccurring
use case, a potential extension would be to combine the scheduling and decomposition
approach into a single program.
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Appendix A

Comparison of CUDA Supported
Architectures

Included in this Appendix is a table containing an extensive comparison between the
CUDA supported architectures and the generations within each major architecture. All
the specifications, except from Double-Precision (DP) units and DP GFLOPS, are from
the fastest GTX GPUs within each generation. While the number of DP units and DP
GFLOPS are from the fastest Tesla GPUs within each generation.

The following GPUs have been used as references:

• G80: 8800 GTX

• G92b: 9800 GTX+

• GT200: 280 GTX and Tesla C1060

• GF100: 480 GTX and Tesla M2070

• GF110: 580 GTX and Tesla M2090

• GK104: 680 GTX and Tesla K10

• GK110: 780 Ti GTX and Tesla K40
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Appendix A. Comparison of CUDA Supported Architectures

Table A.1: Comparison of CUDA supported architectures [16–20, 23]

Fermi Kepler
GPU G80 G92b GT200 GF100 GF110 GK104 GK110
Release date 11.2006 07.2008 06.2008 03.2010 11.2010 03.2012 02.2013
Transistors 681 million 754 million 1.4 billion 3.2 billion 3.54 billion 7.1 billion
Performance
SP GFLOPS 518 705 1062.72 1345 1581.1 3090.4 5046
DP GFLOPS n/a 77.76 515.2 666.1 95 1500
Compute units
Core clock 575 Mhz 738 MHz 648 MHz 700 MHz 772 MHz 1006 MHz 928 MHz
Shader clock 1350 MHz 1836 MHz 1476 MHz 1401 MHz 1544 MHz n/a
SMs 16 30 15 16 8 15
CUDA cores (per SM) 128 (8) 240 (8) 480 (32) 512 (32) 1536 (192) 2880 (192)
SFUs (per SM) 8 (2) 15 (2) 60 (4) 64 (4) 256 (32) 480 (32)
DP units (per SM) n/a 30 (1) 480 (32) 512 (32) 64 (8) 960 (64)
Load/store units (per SM) 8 10 240 (16) 256 (16) 256 (32) 480 (32)
Warp schedulers per SM 1 2 4
Main memory
DRAM type GDDR3 GDDR5
Memory clock 1800 MHz 2200 MHz 2484 MHz 3696 MHz 4008 MHz 6008 MHz 7000 MHz
Memory bus width 384-bit 256-bit 512-bit 384-bit 256-bit 384-bit
Memory bandwidth 86.4 GB/s 70.4 GB/s 159 GB/s 177.4 GB/s 192.4 GB/s 192.3 GB/s 336 GB/s
Memory size 768 MB 512 MB 1024 MB 1536 MB 3072 MB 4096 MB 6144 MB
Load/store address width 32-bit 64-bit
ECC memory support No Yes
On-chip memory and cache
L1 cache per SM n/a 16 KB or 48 KB 16 KB, 32 KB or 48 KB
L2 cache (texture only) 256 KB 768 KB 1536 KB
Constant memory 64 KB
Constant memory per SM 8 KB
Shared memory per SM 16 KB 16 KB or 48 KB 16 KB, 32 KB or 48 KB
Registers per SM 8192 16384 32768 65536
Registers per thread 128 63 255
Texture memory per SM 8 KB 12 KB 48 KB unified
CUDA
Compute capability 1 1.1 1.3 2 3 3.5
Max threads per block 512 1024
Max threads per SM 768 1024 1536 2048
Max blocks per SM 8 16
Max Warps per SM 24 32 48 64
Warp size 32
Concurrent kernels n/a 16 32
Supported technologies
Hyper-Q No Yes
Dynamic parallelism No Yes
Unified memory access No Yes
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Appendix B

User Manual

This appendix will explain how to execute the code associated with this thesis, and the
required hardware and software configurations.

Compilation

A makefile has been created and included to simplify the compilation and execution of
the code. The makefile provides four make targets:

• all: Builds the program without executing it.

• clean: Removes the following files (if they exist): The executable, the profile output
file, and all object files.

• run: Executes the program. Will also build or re-build the executable before exe-
cution, if necessary.

• mpirun: Multi-node execution of the program using MPI. Launches the program
as a MPI process on each of the hosts listed in the host file file. Will also build or
re-build the executable before execution, if necessary.

• profile: Uses the GNU GCC profiling tool (gprof) to produce profiling data while
executing the program. The data is outputted to profile.txt. Will also build or
re-build the executable before execution, if necessary.

Compiling the program requires an installation of the GNU Compiler Collection (GCC),
Open MPI, and the NVIDIA CUDA Compiler (NVCC). Testing and development has been
done on a platform with Ubuntu version 12.04 64-bit, using GCC version 4.6.3, OpenMPI
version 1.4.3, and the CUDA toolkit version 6.0. Older or newer versions might also work,
as well as other implementations of MPI, such as MPICH. Table B.1 contains a complete
list of all the libraries linked in a working executable.

The implementation can be toggled to use either single or double-precision. The
default behavior is to use single-precision, and is controlled by the compile flag: use float,
which is defined in the globals.h source file. Double-precision can be toggled by removing
the definition of use float, the entire program also has to be re-compiled.
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Appendix B. User Manual

Table B.1: Linked libraries

Libraries Definitions

linux-vdso.so.1 Virtual dynamic shared object
libpthread.so.0 POSIX threads library
libgomp.so.1 GNU Open MP library
libcudart.so.6.0 CUDA runtime library
libmpi cxx.so.0 Part of Open MPI
libmpi.so.0 Part of Open MPI
libstdc++.so.6 The GNU standard C++ library
libm.so.6 C math library
libgcc s.so.1 GCC low-level runtime library
libc.so.6 Standard C library
ld-linux-x86-64.so.2 Common X extensions library
librt.so.1 POSIX.1b realtime extensions library
libdl.so.2 Dynamic linking library
libopen-rte.so.0 Part of Open MPI
libopen-pal.so.0 Part of Open MPI
libutil.so.1 Utility functions from BSD systems

Execution

The program uses a command-line only interface, and is executed through the use of the
makefile. It does not accept any command line arguments, all user inputs are instead
entered in the config file. The config file is loaded by the program, and specifies both
the system and FDTD task configurations. System configurations consists of the amount
of information output and the number of execution units (CPU and GPUs). Editing
the FDTD task configurations can change the number of FDTD tasks, and the size and
time-steps of the FDTD domains.

The host file file is loaded during multi-node runs, and must contain the IP-addresses
or names of all the nodes that will run the program. Each node also needs a copy of
the executable, which must be located in a directory with the same path on every node.
Further explanation on how to run MPI jobs can be found at:
http://www.open-mpi.org/faq/?category=running.

The program can be executed on a system without a CUDA capable GPU by setting
maxgpus in the config file to zero. The CUDA toolkit is however still required.

Comments on load distribution

The program uses a micro-benchmark to measure the performance of each execution
unit (worker), and uses this value to divide and distribute the FDTD domains. The
thesis includes results from executions with load distributions other than those sug-
gested by the micro-benchmark. Doing so requires changes in the Node.cpp and Work-
erPool.cpp source files: First, the micro-benchmark will have to be disabled by com-
menting out (or removing) <m_workers.MeasurePerformance();>, at line 28 in Node.cpp. Sec-
ondly, the load distributions will have to be manually set. This is done by inserting:
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<m_collective_performance = 100;>, at line 36. This line must then be followed by multi-
ple insertions of the line: <m_workers[INDEX]−>m_performance = PERCENTAGE;>, depending on
the number of workers to be used, and where INDEX and PERCENTAGE are specified
by the user: INDEX is the workers index and PERCENTAGE is the worker’s load per-
centage. The sum of the load percentages must be 100. Listing B.1 contains an example
of a custom load distribution among a CPU and two GPUs.

Listing B.1: Custom load distrubtion example

33 . . .
34 const i n t subdomain_x_size = to − from ;
35 i n t remaining_x ;
36

37 m_collective_performance = 100 ;
38 m_workers [0]−>m_performance = 10 ; // CPU
39 m_workers [1]−>m_performance = 45 ; // GPU0
40 m_workers [2]−>m_performance = 45 ; // GPU1
41

42 i f ( m_collective_performance == 0)
43 {
44 . . .
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Appendix C

Program Documentation

This appendix contains a documentation of all the classes, functions, constants and vari-
ables in the program. The documentation is generated using Doxygen version 1.8.6.
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2 Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CpuWorker
A Worker sub-class specialized for doing FDTD on a multi-core CPU 76

GpuWorker
A Worker sub-class specialized for doing FDTD on a CUDA-capable GPU 77

Node
An all static class that provides all the MPI functionality of the program 80

Task
Container class for all the data associated with a FDTD domain 85

Timer
A helper class to simplify timing and preserve code readability 88

Worker
An abstract class for workers 89

WorkerPool
A helper class used to interact with a set of Worker objects 96

3 File Index

3.1 File List

Here is a list of all documented files with brief descriptions:
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Header file containing all the global variables 99

src/main.h
Helper functions for main 101
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4.1 CpuWorker Class Reference

A Worker sub-class specialized for doing FDTD on a multi-core CPU.

#include <CpuWorker.h>

Inherits Worker.

Public Member Functions

• CpuWorker (const int number_of_threads=1)

Constructor.

Private Member Functions

• void UpdateH_Internal ()

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• void UpdateE_Internal ()

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• void SourceExcitationInternal ()

Updates the source point (m_i_source) in the FDTD domain of m_task.

Private Attributes

• const int m_number_of_threads

The number of OpenMP threads used during executions.

Additional Inherited Members

4.1.1 Detailed Description

A Worker sub-class specialized for doing FDTD on a multi-core CPU.

A sub-class of the abstract Worker class. Contains functions for updating the electromagnetic
field values using a multi-core CPU.

4.1.2 Constructor & Destructor Documentation

4.1.2.1 CpuWorker::CpuWorker ( const int number_of_threads = 1 )

Constructor.

Will create a CpuWorker instance using the specified number of OpenMP threads.
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Parameters

in number_of_-
threads

An optional parameter which specifies the number of OpenMP
threads to use.

4.1.3 Member Function Documentation

4.1.3.1 void CpuWorker::SourceExcitationInternal ( ) [private], [virtual]

Updates the source point (m_i_source) in the FDTD domain of m_task.

This function will update the source point of the domain. If this function is called it is already
assumed that the worker is responsible for the sub-domain containing the source point.

Implements Worker.

4.1.3.2 void CpuWorker::UpdateE_Internal ( ) [private], [virtual]

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain of
m_task.

This function will update the electric field values of the sub-domain associated with the Cpu-
Worker. The updating is accelerated on multi-core systems by using OpenMP.

Implements Worker.

4.1.3.3 void CpuWorker::UpdateH_Internal ( ) [private], [virtual]

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

This function will update the magnetic field values of the sub-domain associated with the Cpu-
Worker. The updating is accelerated on multi-core systems by using OpenMP.

Implements Worker.

The documentation for this class was generated from the following files:

• src/Workers/CpuWorker.h

• src/Workers/CpuWorker.cpp

4.2 GpuWorker Class Reference

A Worker sub-class specialized for doing FDTD on a CUDA-capable GPU.

#include <GpuWorker.h>

Inherits Worker.

Public Member Functions

• GpuWorker ()

Constructor.
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Static Public Member Functions

• static int GetNumberOfDevices ()

Returns the number of avaliable CUDA-capable GPUs.

Private Member Functions

• void PrepareForNewTaskInternal ()

Preparations for a new Task, executed by the internal thread.

• void UpdateH_Internal ()

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• void UpdateE_Internal ()

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• void SourceExcitationInternal ()

Updates the source point (m_i_source) in the FDTD domain of m_task.

• void FinalizeTaskInternal ()

Finalization of the Task done by the internal thread.

Private Attributes

• const int m_device_number

The device number of the GPU associated with this GpuWorker.

• int m_block_size

The CUDA block size used during kernel calls.

• my_float ∗ device_hx

• my_float ∗ device_hy

• my_float ∗ device_hz

• my_float ∗ device_ex

• my_float ∗ device_ey

• my_float ∗ device_ez

Static Private Attributes

• static int s_number_of_devices

The number of avaliable CUDA-capable GPUs.

• static int s_next_device_number

The number of the next unused device.
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Additional Inherited Members

4.2.1 Detailed Description

A Worker sub-class specialized for doing FDTD on a CUDA-capable GPU.

A sub-class of the abstract Worker class which contains functions for updating the electromag-
netic field values using a CUDA-capable GPU.

4.2.2 Constructor & Destructor Documentation

4.2.2.1 GpuWorker::GpuWorker ( )

Constructor.

Will set m_device_number and m_block_size when called, and increment s_next_device_-
number.

4.2.3 Member Function Documentation

4.2.3.1 void GpuWorker::FinalizeTaskInternal ( ) [private], [virtual]

Finalization of the Task done by the internal thread.

This function will copy all the electromagnetic field values of the sub-domain to system memory,
and then remove (free) them from device memory.

Reimplemented from Worker.

4.2.3.2 static int GpuWorker::GetNumberOfDevices ( ) [static]

Returns the number of avaliable CUDA-capable GPUs.

Will update s_number_of_devices the first time it’s called.

4.2.3.3 void GpuWorker::PrepareForNewTaskInternal ( ) [private], [virtual]

Preparations for a new Task, executed by the internal thread.

This function will allocate the necessary memory on the GPU, before copying the electromag-
netic field values into the GPU’s device memory.

Reimplemented from Worker.

4.2.3.4 void GpuWorker::SourceExcitationInternal ( ) [private], [virtual]

Updates the source point (m_i_source) in the FDTD domain of m_task.

This function will call one CUDA kernel using a single CUDA core to update the source point of
the domain. If this function is called it is already assumed that the worker is responsible for the
sub-domain containing the source point.

Implements Worker.
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4.2.3.5 void GpuWorker::UpdateE_Internal ( ) [private], [virtual]

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain of
m_task.

This function will copy the lower magnetic field borders into device memory, before updating the
electric field values by calling four CUDA kernels. The lower electric field borders will afterwards
be copied to the system memory. Border exchanges will not be done if only a single worker is
used, or if the worker is responsible for the bottom sub-domain (in relation to how the domain is
divided among nodes and workers).

Implements Worker.

4.2.3.6 void GpuWorker::UpdateH_Internal ( ) [private], [virtual]

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

This function will copy the upper electrical field borders into device memory, before updating the
magnetic field values by calling a CUDA kernel. The upper magnetic field borders will afterwards
be copied to the system memory. Border exchanges will not be done if only a single worker is
used.

Implements Worker.

The documentation for this class was generated from the following file:

• src/Workers/GpuWorker.h

4.3 Node Class Reference

An all static class that provides all the MPI functionality of the program.

#include <Node.h>

Public Member Functions

• Node (const int num_cpus, const int num_omps, int max_gpus)

Constructor which also creates workers according to the parameters.

Static Public Member Functions

• static void ExecuteTask (Task ∗task)

Executes a Task using all avaliable Nodes and Workers.

• static void RunAsSlave ()

Puts the Node in a slave state where it will wait for work from the host node.

• static bool BroadcastEndSignal (bool end=true)

Signals all the slave nodes to exit their slave state.
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Static Public Attributes

• static int mpi_rank

The MPI rank of the node. Is used to differentiate the nodes from each other. Rank 0 represents
the host node.

• static int mpi_size

The total number of MPI processes in the communicator. Also referred to as the total number
of nodes.

Private Types

• enum MyMpiTag { FIELD_DATA_TAG, FIELD_BORDER_TAG }

Tags used to differentiate the MPI messages. Is not really needed, but included for readability.

Static Private Member Functions

• static void CreateDatatypeFromTask (const int slave_rank, const Task &task, MPI_-
Datatype ∗datatype)

Creates and commits a MPI_Datatype for the electromagnetic field values of a Task object.

• static void CreateH_BordersDatatypes (const int local_x_size, const Task &task, MPI_-
Datatype ∗up_h_datatype, MPI_Datatype ∗down_h_datatype)

Creates datatypes for the top and bottom boundary data of the magnetic field sub-domains.

• static void CreateE_BordersDatatypes (const int local_x_size, const Task &task, MPI_-
Datatype ∗up_e_datatype, MPI_Datatype ∗down_e_datatype)

Creates datatypes for the top and bottom boundary data of the electric field sub-domains.

• static void ExchangeH_Borders (const MPI_Datatype up_h_datatype, const MPI_-
Datatype down_h_datatype, Task ∗task)

Exchanges the borders of the magnetic field component values with adjacent nodes in the X
direction.

• static void ExchangeE_Borders (const MPI_Datatype up_e_datatype, const MPI_-
Datatype down_e_datatype, Task ∗task)

Exchanges the borders of the electric field component values with adjacent nodes in the X
direction.

Static Private Attributes

• static WorkerPool m_workers

Container for all the node’s workers.

4.3.1 Detailed Description

An all static class that provides all the MPI functionality of the program.

This purpose of this class is to serve as an utility class, which in this case means that it will handle
the top level control of the program through the use of the rest of the implemented classes. This
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class will also contain all the program’s functions that relies on MPI. The class is implemented
as an all static class in order to stress that there should only be one of it (per node). Using an all
static class is a subjective choice, as it could also have been implemented as a namespace or
as a singleton class.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 Node::Node ( const int num_cpus, const int num_omps, int max_gpus )

Constructor which also creates workers according to the parameters.

This function will create Workers according to the input parameters, store the workers in m_-
workers, and measure their performances by calling WorkerPool::MeasurePerformance(). The
function will also initialize MPI by calling MPI_Initialize, and should therefore only be called once!

Parameters

in num_cpus The number of CPU workers to create.
in num_omps The number of OpenMP threads each CPU worker will have.
in max_gpus The maximum number of GPU workers to create. Will be changed

to the number of installed GPUs if a number higher than the num-
ber of installed GPUs is used.

4.3.3 Member Function Documentation

4.3.3.1 bool Node::BroadcastEndSignal ( bool end = true ) [static]

Signals all the slave nodes to exit their slave state.

This function uses MPI to broadcast a boolean to all the slave nodes, telling them if they should
exit their slave state or continue to wait for new tasks. Calling this function is the only way (except
for errors) to stop nodes executing the RunAsSlave() function. If a true value is broadcasted; all
the nodes (including the host node) will call MPI_Finalize() and terminate all their workers by
calling WorkerPool::KillAllWorkers().

Parameters

in end The bool value that should be broadcasted (only matters if called
by the host node)

4.3.3.2 void Node::CreateDatatypeFromTask ( const int slave_rank, const Task & task, MPI_Datatype ∗
datatype ) [static], [private]

Creates and commits a MPI_Datatype for the electromagnetic field values of a Task object.

This function should only be called by the host node. It will create a MPI derived datatype
representing the electromagnetic field values that should be handled by the slave node specified
by slave_rank. It will use mpi_size and the provided slave_rank argument to calculate a
suitable sub-domain size for the slave node. The purpose of creating the derived datatype is to
be able to combine six electromagnetic field arrays into one MPI_Send(), and to be able to later
receive the completed sub-domain from the associated slave node. The function also commits
the datatype, but it is left to the caller to later free it, when it is no longer needed (MPI_Type_-
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free()).

Parameters

in slave_rank The rank of the slave node that the datatype will be made for.
in task The task object containing the electromagnetic field arrays that

the datatype will be a associated with.
out datatype A pointer to the datatype that will contain the created and com-

mited datatype.

4.3.3.3 void Node::CreateE_BordersDatatypes ( const int local_x_size, const Task & task, MPI_Datatype
∗ up_e_datatype, MPI_Datatype ∗ down_e_datatype ) [static], [private]

Creates datatypes for the top and bottom boundary data of the electric field sub-domains.

This function creates two MPI derived datatypes: one for the top and one for the bottom bor-
der of the sub-domain’s electric field values. These datatypes are used to simplify the border
exchanges between adjacent nodes, by bundling together borders of both the Y and Z direc-
tions. The datatypes are also committed, and should later be freed by the user (when no longer
needed) by calling MPI_Type_free().

Parameters

in local_x_size The size in the x direction of the node’s local subdomain.
in task The local copy of the task object.
out up_e_-

datatype
Pointer to the datatype that will contain the created and commit-
ted datatype, for the uppermost (in the X direction) borders of the
electric field values in the Y and Z directions.

out down_e_-
datatype

Pointer to the datatype that will contain the created and commit-
ted datatype, for the lowest (in the X direction) borders of the
electric field values in the Y and Z directions.

4.3.3.4 void Node::CreateH_BordersDatatypes ( const int local_x_size, const Task & task, MPI_Datatype
∗ up_h_datatype, MPI_Datatype ∗ down_h_datatype ) [static], [private]

Creates datatypes for the top and bottom boundary data of the magnetic field sub-domains.

This function creates two MPI derived datatypes: one for the top and one for the bottom bor-
der of the sub-domain’s magnetic field values. These datatypes are used to simplify the border
exchanges between adjacent nodes, by bundling together borders of both the Y and Z direc-
tions. The datatypes are also committed, and should later be freed by the user (when no longer
needed) by calling MPI_Type_free().

Parameters

in local_x_size The size in the X direction of the node’s local sub-domain.
in task The local copy of the task object.
out up_h_-

datatype
A pointer to the datatype that will contain the created and com-
mitted datatype for the uppermost (in the X direction) borders of
the magnetic field values in the Y and Z directions.
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out down_h_-
datatype

Pointer to the datatype that will contain the created and commit-
ted datatype for the lowest (in the X direction) borders of the mag-
netic field values in the Y and Z directions.

4.3.3.5 void Node::ExchangeE_Borders ( const MPI_Datatype up_e_datatype, const MPI_Datatype
down_e_datatype, Task ∗ task ) [static], [private]

Exchanges the borders of the electric field component values with adjacent nodes in the X di-
rection.

CreateE_BordersDatatypes() should be called prior to this function, since it depends on the
datatypes it creates.

Parameters

in up_e_-
datatype

Datatype for the uppermost (in the X direction) borders of the
electric field values in the Y and Z directions.

in down_e_-
datatype

Datatype for the lowest (in the X direction) borders of the electric
field values in the Y and Z directions.

in,out task The local task object, used as a base address by the datatypes.

4.3.3.6 void Node::ExchangeH_Borders ( const MPI_Datatype up_h_datatype, const MPI_Datatype
down_h_datatype, Task ∗ task ) [static], [private]

Exchanges the borders of the magnetic field component values with adjacent nodes in the X
direction.

CreateH_BordersDatatypes() should be called prior to this function, since it depends on the
datatypes it creates.

Parameters

in up_h_-
datatype

Datatype for the uppermost (in the X direction) borders of the
magnetic field values in the Y and Z directions.

in down_h_-
datatype

Datatype for the lowest (in the X direction) borders of the mag-
netic field values in the Y and Z directions.

in,out task The local task object, used as a base address by the datatypes.

4.3.3.7 void Node::ExecuteTask ( Task ∗ task ) [static]

Executes a Task using all avaliable Nodes and Workers.

This function will execute a Task using all the available nodes and workers, and should only be
called by the host Node after it has been initialized with at least one Worker. Only the electro-
magnetic field values of the task object will be modified.

Parameters

in,out task A pointer to the task that will be executed.

4.3.3.8 void Node::RunAsSlave ( ) [static]

Puts the Node in a slave state where it will wait for work from the host node.
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This function should be called by every node except from the host node. Calling this function
puts the slave node in a wait state, which implies running a loop with an execution path similar
to that of the ExecuteTask() function called by the host node. The slave node will remain in this
loop, where it will either execute tasks or wait for new tasks, until the host node calls Broadcast-
EndSignal().

The documentation for this class was generated from the following files:

• src/Node.h
• src/Node.cpp

4.4 Task Class Reference

Container class for all the data associated with a FDTD domain.

#include <Task.h>

Public Member Functions

• Task (int nts, int nx, int ny, int nz, int dx, int dy, int dz)

Constructor.

• void InitializeFieldComponents ()

Dynamically allocates memory for the field components.

• void UpdateFieldPointers (const int local_x_size, const char ∗buffer)

Updates the Task’s pointers to point to the data stored in the local buffer.

• void CleanUp ()

Frees the memory allocated by InitializeFieldComponents(). Must be called before ∼Task().

• void PrintResults ()

Prints the Task’s performance results.

Public Attributes

• bool m_done

A flag that indicates if the Task has been completed.

• const int m_id

An unique ID automatically generated during object construction.

• const int m_num_time_steps

The number of time steps.

• const int m_num_x

The number of Yee-Cells in the X dimension.

• const int m_num_y

The number of Yee-Cells in the Y dimension.

• const int m_num_z

The number of Yee-Cells in the Z dimension.
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• long long m_bytes

The total number of bytes allocated for the field components. Will only be set after a call to
InitializeFieldComponents().

• int m_is

The X-coordinate of the source excitation, also known as the point source.

• int m_js

The Y-coordinate of the source excitation, also known as the point source.

• int m_ks

The Z-coordinate of the source excitation, also known as the point source.

• my_float m_p_source_factor

The point source factor.

• my_float m_dt

The time of one time-step: ∆t.

• my_float m_Cbdx

Constant: ∆t
µ0∆x .

• my_float m_Cbdy

Constant: ∆t
µ0∆y .

• my_float m_Cbdz

Constant: ∆t
µ0∆z .

• my_float m_Dbdx

Constant: ∆t
ε0∆x .

• my_float m_Dbdy

Constant: ∆t
ε0∆y .

• my_float m_Dbdz

Constant: ∆t
ε0∆z .

• Timer m_setupTimer

Contains the time (in seconds) used by the program to get the Task ready for execution.

• Timer m_computeTimer

Contains the time (in seconds) used for the required computations of the Task.

• Timer m_totalTimer

Contains the total time (in seconds) used to complete the Task.

• double m_flops_work

The number of floating-point operations required to complete the Task.

• double m_mflops_performance

The number of million floating-point operations per second the Task was executed with.

• my_float ∗ m_ex

Electrical field components in X direction.

• my_float ∗ m_ey

Electrical field components in Y direction.

• my_float ∗ m_ez

Electrical field components in Z direction.
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• my_float ∗ m_hx

Magnetic field components in X direction.

• my_float ∗ m_hy

Magnetic field components in Y direction.

• my_float ∗ m_hz

Magnetic field components in Z direction.

Static Private Attributes

• static int s_next_id = 0

A static counter used to generate the unique m_id.

• static const my_float s_const = 1.0e-10

A constant used to set the m_p_source_factor.

• static const my_float s_mu0 = 1.256637061E-6

Relative permeability of vacuum: µ0. The degree of magnetization that a material obtains in
response to an applied magnetic field.

• static const my_float s_eps0 = 8.8541878E-12

Relative Permittivity of vacuum: ε0. The ability of a substance to store electrical energy in an
electric field.

• static const my_float s_c0 = 2.99792458E+8

The speed of light in vacuum.

4.4.1 Detailed Description

Container class for all the data associated with a FDTD domain.

Each instance of the Task class represents an individual FDTD domain, and contains all the
data associated with that domain. Executing a Task simulates the work required for a real F-
DTD simulation. Details about the FDTD domain, such as its size and Yee cell details, are
specified by the user during object construction. The domains are currently limited to only using
a homogeneous media, meaning that there is only a single material across the entire domain,
this material is set to empty space (vacuum). All the electromagnetic fields are initialized to zero.
A point source is located at the center of the domain.

4.4.2 Constructor & Destructor Documentation

4.4.2.1 Task::Task ( int nts, int nx, int ny, int nz, int dx, int dy, int dz )

Constructor.

Creates an instance of the Task class using the specifications provided as arguments. Will
generate an unique ID: m_id, and calculate the total required FLOPs of the Task: m_flops_work.
Will also set the point source location: m_is, m_js, m_ks, to the center of the domain. Calling
this function will not allocate memory for the electromagnetic field values, it should therefore be
followed by a call to: InitializeFieldComponents(), before doing calculations on the Task.
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Parameters

in nts The number of time-steps.
in nx,ny,nz Specifies the number of Yee-Cells in each dimension. Also known

as the domain size or grid size.
in dx,dy,dz The size of each Yee-Cell in each dimension (∆x,∆y,∆z).

4.4.3 Member Function Documentation

4.4.3.1 void Task::InitializeFieldComponents ( )

Dynamically allocates memory for the field components.

Will dynamically allocate the required memory for the electromagnetic field components, de-
pending on the specified dimensions: #dx, #dy, #dz, and the precision of the values (32/64 bit).
All the values will also be initialized to zero. Must be freed by calling CleanUp() before ∼Task().

4.4.3.2 void Task::PrintResults ( )

Prints the Task’s performance results.

Should only be called after a Task has been executed by a Worker. If the Task uses the test
configuration of: 200 time steps, 100∗100∗100 Yee-Cells, and 1.0∗1.0∗1.0 Yee-Cell size. It will
also print the sum of the m_ez array and compare it to the known correct result of said test
configuration.

4.4.3.3 void Task::UpdateFieldPointers ( const int local_x_size, const char ∗ buffer )

Updates the Task’s pointers to point to the data stored in the local buffer.

This function is used when the Task has been received from another process. Because the
pointers are transferred “as is”, they will still use the addresses in the sender’s memory space,
which will result in undefined behavior if used by the receiver. Calling this function will update
the pointers to point to data in the local memory space.

Parameters

in local_x_size The number of Yee-Cells in the X dimension of the local subdo-
main of the Task, will be used instead of the m_nx, and together
with m_ny and m_nz, to calculate the offsets between the field
component arrays in the buffer.

in buffer A pointer to the start of the buffer, where all the local field
components are stored contiguously in memory.

The documentation for this class was generated from the following files:

• src/Task.h

• src/Task.cpp

4.5 Timer Class Reference

A helper class to simplify timing and preserve code readability.



4.6 Worker Class Reference 89

#include <Timer.h>

Public Member Functions

• void Start ()

Starts the timer.

• void Stop ()

Stops the timer, must be called after Start().

• double GetTime () const

Retrieves the measured time in seconds between a call to Start() and Stop().

Static Private Member Functions

• static double TimeNow ()

Returns the current time in seconds. Used by Start() and Stop().

Private Attributes

• double m_seconds

4.5.1 Detailed Description

A helper class to simplify timing and preserve code readability.

Measures and stores the time (in seconds) between a call to Start() and Stop(). The time is
stored in seconds using double precision, it should therefore be sufficiently accurate.

The documentation for this class was generated from the following files:

• src/Timer.h
• src/Timer.cpp

4.6 Worker Class Reference

An abstract class for workers.

#include <Worker.h>

Inherited by CpuWorker, and GpuWorker.

Public Member Functions

• Worker ()

Constructor.

• virtual ∼Worker ()

Destructor.
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• void PrintInformation ()

Prints information about the worker.

• void PrepareForNewTask (const bool has_bottom_subdomain, const int from, const int to,
Task ∗new_task)

Prepares the worker for a new Task by updating the necessary member variables.

• void UpdateH ()

Signals the internal thread of the Worker that it should call UpdateH_Internal().

• void UpdateE ()

Signals the internal thread of the Worker that it should call UpdateE_Internal().

• void SourceExcitation (const int time_step, const int i_source)

Signals the internal thread of the Worker that it should call SourceExcitationInternal().

• void FinalizeTask ()

Signals the internal thread of the Worker that it should call FinalizeTaskInternal().

• void MeasurePerformance ()

Signals the internal thread of the Worker that it should call MeasurePerformanceInternal().

• void Wait ()

Waits until the internal thread of the Worker reaches an IDLE state.

• void Stop ()

Signals the internal thread of the Worker that it should stop.

Public Attributes

• const int m_id

An unique ID automatically generated during object construction.

• int m_performance

The measured performance of the Worker in million floating-point operations per second.

Protected Member Functions

• virtual void PrepareForNewTaskInternal ()

Preparations for a new Task, executed by the internal thread.

• virtual void UpdateH_Internal ()=0

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• virtual void UpdateE_Internal ()=0

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

• virtual void SourceExcitationInternal ()=0

Updates the source point (m_i_source) in the FDTD domain of m_task.

• virtual void FinalizeTaskInternal ()

Finalization of the Task done by the internal thread.
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Protected Attributes

• char m_name [256]

Container for the name of the Worker.

• bool m_has_bottom_subdomain

A flag that indicates if the Worker has been assigned the bottom sub-domain of the FDTD
domain.

• int m_current_time_step

The current time-step of the simulation. Is updated by SourceExcitation() and used by Source-
ExcitationInternal().

• int m_i_source

The X-coordinate of the source point. Is updated by SourceExcitation() and used by Source-
ExcitationInternal().

• int m_local_x_size

The size of the range between m_from and m_to.

• int m_from

The X-coordinate in the node’s sub-domain in which the worker’s currently assigned sub-domain
starts.

• int m_to

The X-coordinate in the node’s sub-domain in which the worker’s currently assigned sub-domain
ends.

• Task ∗ m_task

Pointer to the worker’s currently assigned Task.

Private Types

• enum State {
IDLE, UPDATE_H, UPDATE_E, SOURCE_EXCITATION,
BENCHMARK, STOP }

The states in which the internal thread can be in.

Private Member Functions

• void InternalThreadEntry ()

The main loop of the internal thread.

• void MeasurePerformanceInternal ()

Measures the performance of the Worker and updates m_performance accordingly.

Static Private Member Functions

• static void ∗ InternalThreadEntryFunc (void ∗this_worker)

The entry point of the internal thread.
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Private Attributes

• State m_state

The state of the worker’s internal thread.

• pthread_t m_thread

The internal thread. Is initialized and started during a call to Worker().

• pthread_mutex_t m_mutex

The mutex governing access to the member variables between the host and the internal thread.

• pthread_cond_t m_condition

A conditional variable used for signaling the internal thread.

Static Private Attributes

• static int s_next_id = 0

A static counter used to generate the unique m_id.

Friends

• class WorkerPool

Needed because WorkerPool::SourceExcitation() needs access to m_from and m_to.

4.6.1 Detailed Description

An abstract class for workers.

This class serves as an abstract class that can be used to create workers, which are specialized
or optimized for a particular execution unit. It will also incorporate all the threading functionality
needed to execute multiple workers simultaneously as several threads.

4.6.2 Member Enumeration Documentation

4.6.2.1 enum Worker::State [private]

The states in which the internal thread can be in.

Enumerator

IDLE Set by the internal thread when it has completed its current work and awaits new
work.

UPDATE_H Set by UpdateH().

UPDATE_E Set by UpdateE().

SOURCE_EXCITATION Set by SourceExcitation().

BENCHMARK Set by MeasurePerformance().

STOP Set by Stop().
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4.6.3 Constructor & Destructor Documentation

4.6.3.1 Worker::Worker ( )

Constructor.

This function will implicitly be called by the constructor of the workers which inherits this class. It
will create a new POSIX thread and have it enter a wait state, where it will wait for signals from
the master thread through calls to the Worker class’ public functions.

4.6.3.2 Worker::∼Worker ( ) [virtual]

Destructor.

This destructor will free all the POSIX thread resources allocated by Worker(). The internal
thread must be exited by calling: Stop(), prior to destroying the object.

4.6.4 Member Function Documentation

4.6.4.1 void Worker::FinalizeTask ( )

Signals the internal thread of the Worker that it should call FinalizeTaskInternal().

Since a call to this function only signals the internal thread before returning, a call to Wait()
should follow to make sure that the internal thread has completed its execution.

4.6.4.2 void Worker::FinalizeTaskInternal ( ) [protected], [virtual]

Finalization of the Task done by the internal thread.

This is a virtual function that does nothing and can optionally be implemented by classes inher-
iting this class. If implemented, it should clean up any resources allocated by the PrepareFor-
NewTaskInternal() function. The function has to be implemented by workers that uses execution
units with dedicated memory (such as GPUs), since they need to copy the final data to system
memory at the end of the execution.

Reimplemented in GpuWorker.

4.6.4.3 void Worker::InternalThreadEntry ( ) [private]

The main loop of the internal thread.

This function contains the main loop which the internal thread will execute. The inter-
nal thread will not use polling, but rather wait (using a conditional variable) for m_state to
change. Depending on m_state, the internal thread can execute the internal functions: Prepare-
ForNewTaskInternal(), MeasurePerformanceInternal(), UpdateH_Internal(), UpdateE_Internal(),
SourceExcitationInternal() and FinalizeTaskInternal().

4.6.4.4 void ∗ Worker::InternalThreadEntryFunc ( void ∗ this_worker ) [static], [private]

The entry point of the internal thread.

This function is needed because pthread_create() cannot take a member function as a param-
eter. This function circumvents this limitation by being a static function that takes a pointer to a
worker object as a parameter, then calls the worker object’s member function: InternalThread-
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Entry(), which contains the internal thread’s main loop.

Parameters

in,out this_worker A pointer to the worker object that owns the thread executing this
function.

4.6.4.5 void Worker::MeasurePerformance ( )

Signals the internal thread of the Worker that it should call MeasurePerformanceInternal().

Since a call to this function only signals the internal thread before returning, a call to Wait()
should follow to make sure that the internal thread has completed its execution.

4.6.4.6 void Worker::MeasurePerformanceInternal ( ) [private]

Measures the performance of the Worker and updates m_performance accordingly.

This function will measure the performance of the worker by letting it execute a dummy task. A
dummy task is both created and destroyed during a call to this function.

4.6.4.7 void Worker::PrepareForNewTask ( const bool has_bottom_subdomain, const int from, const int
to, Task ∗ new_task )

Prepares the worker for a new Task by updating the necessary member variables.

This function will prepare the worker for a new task, and must therefore be called before simula-
tions can be done on a FDTD sub-domain. Since a call to this function only signals the internal
thread before returning, a call to Wait() should follow to make sure that the internal thread has
completed its execution.

Parameters

in has_bottom_-
subdomain

A flag that indicates if the sub-domain assigned to the worker is
the bottom sub-domain, in relation to how the FDTD domain is
divided among nodes and workers along the X-axis.

in from,to Specifies the range of the node’s sub-domain in which the
worker’s sub-domain exists.

in new_task A pointer to the task which the worker should prepare for. Mean-
ing that future calls to UpdateH(), UpdateE(), SourceExcitation()
and FinalizeTask() will make changes to this task.

4.6.4.8 void Worker::PrepareForNewTaskInternal ( ) [protected], [virtual]

Preparations for a new Task, executed by the internal thread.

This is a virtual function that does nothing and can optionally be implemented by classes inher-
iting this class. It has to be implemented by workers that uses execution units with dedicated
memory (such as GPUs), since they need to load data prior to execution.

Reimplemented in GpuWorker.

4.6.4.9 void Worker::PrintInformation ( )

Prints information about the worker.
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This function will print the ID, the name and the measured performance of the worker. However,
it will not output anything if the global variable: g_output, is set to ERROR.

4.6.4.10 void Worker::SourceExcitation ( const int time_step, const int i_source )

Signals the internal thread of the Worker that it should call SourceExcitationInternal().

This function will signal the worker to update the source point in a domain. A check should be
done prior to calling this function to make sure that sub-domain assigned to this worker actually
contains the source point. Member variables will be updated with the arguments to this function,
so that the thread calling: SourceExcitationInternal(), will have access to them. Since a call to
this function only signals the internal thread before returning, a call to Wait() should follow to
make sure that the internal thread has completed its execution.

Parameters

in time_step The current time-step of the FDTD simulation. Will update m_-
current_time_step.

in i_source The X-coordinate of the source point. Will update m_i_source.

4.6.4.11 virtual void Worker::SourceExcitationInternal ( ) [protected], [pure virtual]

Updates the source point (m_i_source) in the FDTD domain of m_task.

This is a pure virtual function, meaning that it must be implemented by any class inheriting this
class.

Implemented in GpuWorker, and CpuWorker.

4.6.4.12 void Worker::Stop ( )

Signals the internal thread of the Worker that it should stop.

This function will wait until the internal thread completes whatever it is currently doing. It must
be called before destroying the worker, so that the internal thread can exit its loop and be joined.
A call to this function will only return when the internal thread has been joined, a call to Wait() is
therefore not needed and will in fact create a deadlock.

4.6.4.13 void Worker::UpdateE ( )

Signals the internal thread of the Worker that it should call UpdateE_Internal().

This function will signal the worker to update the electric field values of a sub-domain. Since a
call to this function only signals the internal thread before returning, a call to Wait() should follow
to make sure that the internal thread has completed its execution.

4.6.4.14 virtual void Worker::UpdateE_Internal ( ) [protected], [pure virtual]

Updates the electric field values in the specified range: m_from to m_to, in the FDTD domain of
m_task.

This is a pure virtual function, meaning that it must be implemented by any class inheriting this
class.

Implemented in GpuWorker, and CpuWorker.
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4.6.4.15 void Worker::UpdateH ( )

Signals the internal thread of the Worker that it should call UpdateH_Internal().

This function will signal the worker to update the magnetic field values of a sub-domain. Since a
call to this function only signals the internal thread before returning, a call to Wait() should follow
to make sure that the internal thread has completed its execution.

4.6.4.16 virtual void Worker::UpdateH_Internal ( ) [protected], [pure virtual]

Updates the magnetic field values in the specified range: m_from to m_to, in the FDTD domain
of m_task.

This is a pure virtual function, meaning that it must be implemented by any class inheriting this
class.

Implemented in GpuWorker, and CpuWorker.

The documentation for this class was generated from the following files:

• src/Workers/Worker.h
• src/Workers/Worker.cpp

4.7 WorkerPool Class Reference

A helper class used to interact with a set of Worker objects.

#include <WorkerPool.h>

Public Member Functions

• void AddWorker (Worker ∗new_worker)

Adds a new Worker to the m_workers vector, nothing else.

• void MeasurePerformance ()

Calls the Worker::MeasurePerformance() function for all the workers in m_workers.

• void PrepareForNewTask (const int from, const int to, Task ∗new_task)

Calls the Worker::PrepareForNewTask() function for all the workers in m_workers.

• void UpdateH ()

Calls the Worker::UpdateH() function for all the workers in m_workers.

• void UpdateE ()

Calls the Worker::UpdateE() function for all the workers in m_workers.

• void SourceExcitation (const int time_step, const int i_source)

Calls the Worker::SourceExcitation() function for the Worker who has the point source in its
sub-domain.

• void FinalizeTask ()

Calls the Worker::FinalizeTask() function for all the workers.

• void KillAllWorkers ()

Calls the Worker::Stop() function for all the workers. A cleanup function that calls Worker::Stop()
on all the workers before deleting them.
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Private Member Functions

• void PrintWorkerLoad (const unsigned int worker_id, const int subproblem_size, const int
problem_size)

Prints the precentage of the worker’s sub-domain size related to the total domain size.

Private Attributes

• std::vector< Worker ∗ > m_workers

A vector of pointers to Worker objects.

• std::vector< int > m_load_sizes

A vector of all the load sizes, corresponding to m_workers.

• int m_collective_performance

The collective performance of all the workers in m_workers.

• int m_subdomain_from

X-coordinate of where the WorkerPool’s sub-domain starts in the FDTD domain.

• int m_subdomain_to

X-coordinate of where the WorkerPool’s sub-domain ends in the FDTD domain.

4.7.1 Detailed Description

A helper class used to interact with a set of Worker objects.

This class is only meant to simplify interactions with multiple workers at the same time by provid-
ing a set of functions corresponding to the Worker class’ public functions. There should generally
only exist one instance of this class per Node. It has however not been made all static like the
Node class, since future development might require several instances per node. This class
will internally handle all the needed synchronizations between workers by calling Worker::Wait()
when necessary.

4.7.2 Member Function Documentation

4.7.2.1 void WorkerPool::FinalizeTask ( )

Calls the Worker::FinalizeTask() function for all the workers.

This function is the counterpart to the PrepareForNewTask() function, and should be called after
the task is considered done. All the workers will be synchronized by calling Worker::Wait(),
before returning from this function.

4.7.2.2 void WorkerPool::KillAllWorkers ( )

Calls the Worker::Stop() function for all the workers. A cleanup function that calls Worker::Stop()
on all the workers before deleting them.

Calling this function will stop all the workers, delete them, and do the necessary cleanup. It
should be called at the end of the program execution in order to terminate all the threads and
free resources.
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4.7.2.3 void WorkerPool::MeasurePerformance ( )

Calls the Worker::MeasurePerformance() function for all the workers in m_workers.

This function will measure the performance of all the workers in the pool by calling the Worker::-
MeasurePerformance() function for all the workers in m_workers. It will also set the m_collective-
_performance, so that it contains the collective performance of all the workers in the WorkerPool.
All the workers will be synchronized by calls to Worker::Wait(), before returning from this function.

4.7.2.4 void WorkerPool::PrepareForNewTask ( const int from, const int to, Task ∗ new_task )

Calls the Worker::PrepareForNewTask() function for all the workers in m_workers.

This function will prepare all the workers in m_workers for the new Task by calling Worker::-
PrepareForNewTask() on each of them. This function must be called before UpdateH(), Update-
E(), SourceExcitation() or FinalizeTask(). FinalizeTask() is the counterpart to this function, and
should be called after the task is considered done. Calling this function will divide the task’s
domain into a number of sub-domains equal to the number of workers in the m_workers vector.
The size of the sub-domains is determined by the measured performance of each of the workers
after a call to MeasurePerformance(). If MeasurePerformance() has not been called prior to
calling this function, the domain will be divided evenly among the workers. All the workers will
be synchronized by calling Worker::Wait(), before returning from this function.

Parameters

in from,to Specifies the range of the original domain which the Worker-
Pool should work on. If the original domain has been divided
among multiple nodes, this range should specify the range of the
sub-domain assigned to the node who owns this instance of the
WorkerPool class.

in new_task A pointer to the new Task which the workers will prepare for. Ev-
ery worker will store a copy of this pointer. Calling this function
alone will not make any changes to the task instance.

4.7.2.5 void WorkerPool::PrintWorkerLoad ( const unsigned int worker_id, const int subproblem_size,
const int problem_size ) [private]

Prints the precentage of the worker’s sub-domain size related to the total domain size.

This function will not print anything if g_output is set to ERROR.

Parameters

in worker_id The ID of the worker.
in subproblem_-

size
The size of the sub-domain, specifically the size in the X dimen-
sion.

in problem_size The size of the complete domain, specifically the size in the X
dimension.
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4.7.2.6 void WorkerPool::SourceExcitation ( const int time_step, const int i_source )

Calls the Worker::SourceExcitation() function for the Worker who has the point source in its sub-
domain.

This function will do a check to see if the i_source exists in the range previously set by calling
the PrepareForNewTask() function. If the i_source exists in the range, the worker who is
responsible for the sub-domain containing the point source will be found and signaled. The
worker will then update the source point by calling Worker::SourceExcitation(). This function
should be called once for every Task::m_num_time_steps. All the workers will be synchronized
by calling Worker::Wait(), before returning from this function.

Parameters

in time_step The current time-step. Included because the algorithm calculat-
ing the new point source needs it.

in i_source The coordinate of the source point in the X-dimension. Needed in
order to find the worker responsible for the sub-domain containing
the source point. Because the domain is only divided along the X-
dimension, the Y and Z coordinates do not need to be passed to
this function. The Y and Z coordinates are however still needed,
but can later be fetched from the Task object by the worker doing
the actual source update.

4.7.2.7 void WorkerPool::UpdateE ( )

Calls the Worker::UpdateE() function for all the workers in m_workers.

This function will do one update of the electric fields using the Task and range previously set by
a call to the PrepareForNewTask() function. Should be called once for every Task::m_num_time-
_steps. All the workers will be synchronized by calling Worker::Wait(), before returning from this
function.

4.7.2.8 void WorkerPool::UpdateH ( )

Calls the Worker::UpdateH() function for all the workers in m_workers.

This function will do one update of the magnetic fields using the Task and range previously set
by a call to the PrepareForNewTask() function. Should be called once for every Task::m_num_-
time_steps. All the workers will be synchronized by calling Worker::Wait(), before returning from
this function.

The documentation for this class was generated from the following files:

• src/WorkerPool.h
• src/WorkerPool.cpp

5 File Documentation

5.1 src/globals.h File Reference

Header file containing all the global variables.
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Macros

• #define use_float

Decides between float and double precision. A compiler flag that decides if the my_float type
should use float (32-bit) or double (64-bit) precision. Double precision will be selected if this line
is commented away or removed. This exists only to provide a convenient way to switch between
float and double precision.

Typedefs

• typedef float my_float

Enumerations

• enum Output { ERROR, INFO, VERBOSE }

Enum type describing the amount of information output.

Variables

• bool g_single_worker

Global variable that indicates if there is only one worker available for execution. Used to omit
border exchanges if there is only one worker in use. Is initialized in Node.cpp and set during
Worker creation.

• Output g_output

Global variable that defines the amount of information output to the screen during execution. Is
initialized in main.cpp and set when loading the system configuration.

5.1.1 Detailed Description

Header file containing all the global variables.

5.1.2 Enumeration Type Documentation

5.1.2.1 enum Output

Enum type describing the amount of information output.

Enumerator

ERROR Only output error messages and the end of execution results.

INFO Output minimal, but useful information.

VERBOSE Output everything.
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5.2 src/main.h File Reference

Helper functions for main.

#include "globals.h"
#include <vector>

Functions

• void LoadSystemConfig (int ∗ncpus, int ∗nomps, int ∗max_ngpus)

Loads the Worker configurations from the config file in the root folder.

• void LoadTaskConfig (int ∗ntasks, int ∗nts, int ∗nx, int ∗ny, int ∗nz, my_float ∗dx, my_float
∗dy, my_float ∗dz)

Loads the Task configurations from the config file in the root folder.

• void PrintTaskConfiguration (const int ntasks, const int nts, const int nx, const int ny, const
int nz, const my_float dx, const my_float dy, const my_float dz)

Prints the Task configuration.

• void PrintEndResults (const std::vector< Task ∗ > &tasks)

Prints the end results of the program execution.

5.2.1 Detailed Description

Helper functions for main.

5.2.2 Function Documentation

5.2.2.1 void LoadSystemConfig ( int ∗ ncpus, int ∗ nomps, int ∗ max_ngpus )

Loads the Worker configurations from the config file in the root folder.

This function will load the user specified configurations from the config file, which includes: The
number of CPU workers, OpenMP threads per CPU worker, and the maximum allowed number of
GPU workers. These values will be loaded from the file and stored in the corresponding pointers
passed as arguments. This function should be used in combination with the Node class, since
Node::Node() requires these values as arguments.

Parameters

out ncpus The number of CPU workers.
out nomps The number of OpenMP threads per CPU worker.
out max_ngpus The maximum allowed number of GPU workers.

5.2.2.2 void LoadTaskConfig ( int ∗ ntasks, int ∗ nts, int ∗ nx, int ∗ ny, int ∗ nz, my_float ∗ dx, my_float
∗ dy, my_float ∗ dz )

Loads the Task configurations from the config file in the root folder.
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This function will load the Task configurations from the config file and store them at the addresses
pointed to by the parameters, which are intentionally equivalent to the input parameters of Task-
::Task(). This function should only be called by the host node, since it is responsible for creating
the Tasks and distribute the workload among the slave nodes. The loaded task configurations
are printed by a call to: PrintTaskConfiguration().

Parameters

out ntasks The number of tasks.
out nts The number of time-steps.
out nx,ny,nz The size of each domain.
out dx,dy,dz The size of each Yee-cell in a Task.

5.2.2.3 void PrintEndResults ( const std::vector< Task ∗> & tasks )

Prints the end results of the program execution.

Will print a summary of the program execution.

Parameters

in tasks Pointer to a vector containing all the completed Tasks.

5.2.2.4 void PrintTaskConfiguration ( const int ntasks, const int nts, const int nx, const int ny, const int
nz, const my_float dx, const my_float dy, const my_float dz )

Prints the Task configuration.

Will print the Task configurations supplied as parameters. Will also calculate and print the num-
ber of floating-point operations of the Task.

Parameters

in ntasks The number of tasks.
in nts The number of time-steps.
in nx,ny,nz The size of each domain.
in dx,dy,dz The size of each Yee-cell in a Task.
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