NTNU - Trondheim
Norwegian University of

Science and Technology

Linux for SHMAC

Hakon Furre Amundsen
Joakim Erik Christopher
Andersson

Master of Science in Computer Science
Submission date: June 2014
Supervisor: Lasse Natvig, IDI
Co-supervisor: Asbjgrn Djupdal, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Abstract

For several years it has been possible to improve processor performance
by taking advantage of the ever increasing transistor density. Recently,
the power demand of processors has exceeded their power budget, so
it is no longer possible to utilize all parts of the processor at the same
time. The heterogeneous processor architecture is suggested in order to
circumvent this effect. By containing specialized processor cores that
are optimized for certain types of tasks, the single thread performance
can still be increased while staying within the power budget.

The SHMAC project provides a research framework for heterogeneous
architectures, in which different hardware components acts as inter-
changeable tiles. Currently, the only processor tile available in the
SHMAC project is the ARMv2a ISA compliant Amber processor tile.

The only operating systems currently available for SHMAC is the ex-
perimental research operating system Barrelfish. Hence, most software
written for SHMAC runs without an operating system, directly above
the hardware. As the SHMAC hardware is frequently modified, main-
taining compatibility between software and hardware is a tedious job,
imposing limitations on the efficiency for SHMAC software development.

This thesis presents the process of porting the Linux kernel to SHMAC.
The Linux kernel provides a powerful abstraction layer which allows the
researchers to be more efficient when writing software to SHMAC.

The Amber processor tile was upgraded to support the ARMv4T ISA
before porting. Once Linux was ported to this new processor tile, a
toolchain was generated and a large set of user applications was built.

The final result of this project is a familiar Linux environment with over
200 UNIX applications made available through a standard UNIX shell.

Sammendrag

I flere ar har det veert mulig & forbedre prossessorytelsen ved & ta i bruk
den stadig gkende transistortettheten. I de siste drene har strgmkravet
til prosessorene overgatt strgmbudsjettet deres, sa det er ikke lenger
mulig & benytte alle delene av prosessoren samtidig. Den heterogene
prossesorarkitekturen er foreslatt for & overkomme dette problemet.

SHMAC-prosjektet tilbyr et forskningsrammeverk for heterogene pros-
essorarkitekturer, hvor forskjellige maskinkomponenter fungerer som
utskiftbare moduler. For tiden er den ARMv2a kompatible Amber
kjernen den eneste prosessormodulen tilgjengelig.

Det eneste operativsystemet tilgjengelig for SHMAC er det eksperi-
mentelle forskningsoperativsystemet Barrelfish. Som et resultat av dette
kjorer mesteparten av koden skrevet for SHMAC uten noe operativsys-
tem, direkte pa maskinvaren. Siden maskinvaren til SHMAC ofte blir
byttet ut vil jobben med & holde programvaren kjgrbar vaere tidkrevende,
og gjore programvareutviklingen til SHMAC mindre effektiv.

Denne rapporten presenterer arbeidet gjort for & tilpasse Linux-kjernen
til & kjore pa SHMAC. Linux kjernen gir programvare et kraftig abstrak-
sjonslag som lar utviklerne vaere mer effektive nar de skriver programvare
til SHMAC.

Amber prosessormodulen ble oppgradert til & stotte ARMv4T instruk-
sjonssettarkitekturen fgr Linux-kjernen ble modifisert. Da Linux var
modifisert til & kunne kjgre pa denne nye prosessormodulen ble det laget
et verktgysett for & lage kjgrbare programmer, samt et stort sett med
brukerprogrammer.

Det endelige resultatet av dette prosjektet er et kjent Linux-miljg med
over 200 UNIX programmer, tilgjengeliggjort gjennom et standard
UNIX-skall.

Preface

This report is submitted to the Norwegian University of Science and Technology in
fulfillment of the requirements for master thesis.

This work has been performed at the Department of Computer and Information
Science, NTNU, with Prof. Lasse Natvig as the supervisor, and Asbjgrn Djupdal
as co-supervisor.

Acknowledgments

Thanks to Lasse Natvig and Asbjern Djupdal for all help with the technical work
and the report. Thanks to Anders Akre and Sebastian Bge for help with reusing the
testbench from the Amber project, for providing us with an improved multiply unit,
and for giving us an accelerated processor tile that could be used when performing
the benchmarking necessary for this project. Thanks to Stian Hvatum and Terje
Runde for help with proofreading the thesis. Also thanks to Benjamin Bjgrnseth
for technical assistance.

Hello Tobias!

Problem Description

SHMAC is an FPGA-based multicore prototype developed in a research project
within the Energy Efficient Computing Systems (EECS) strategic research area.
SHMAC is planned to be an evaluation platform for research on heterogeneous
multi-core systems. The goal of the SHMAC project is to propose software and
hardware solutions for future power-limited heterogeneous systems.

The main goal of this master thesis project is to port a recent version of Linux to run
on SHMAC. As discovered in the autumn project conducted by Hakon Amundsen
and Joakim Andersson, the SHMAC hardware needs some modifications to support
Linux v2.6 and later. This project will therefore involve both Verilog design and
Linux kernel programming.

Main tasks included in the project are:

— Implement support for the ARM v3 ISA in the Amber SHMAC CPU tile.
— Create a Linux port for the new CPU tile.

— Test and benchmark individual components and the finished system
If time permits, the students can also:

— Enable multiprocessor support.

— Investigate possibilities for mass storage support through the SHMAC host
driver.

vii

Contents

Contents ix
List of Tables xiii
List of Figures XV
Abbreviations xvii
1 Introduction 1
1.1 Computer Architecture Trends 1
1.2 SHMAC e 2
1.3 SHMAC Operating System Project 2
1.4 Assignment Interpretation oL 3
1.5 Contributions e 4
1.6 Report Outline 4

2 Background 5
2.1 SHMAC e 5
2.1.1 SHMAC Architecture 5

2.1.2 Amber Processor Tile 6

2.1.3 SHMAC Development Environment 7

2.2 ARM Instruction Set Architecture 7
2.2.1 Comparing the ARMv2a and ARMv3ISA 8

2.2.2 Comparing the ARMv3 and ARMv4 ISA 11

2.2.3 ARMv4T Extension 12

2.2.4 ARM Architecture Procedure Call Standard 12

2.3 Amber 13
2.3.1 Amber Core. 14

2.3.2 Test Framework 15

2.4 Operating Systems L 16
2.4.1 Operating System Definition 16

2.4.2 Terminology Used in this Thesis 16

2.5 Linux ... e 16
2.5.1 Linux Distribution Overview 17

2.5.2 Linux Kernel Overview 17

2.5.3 Porting Linuxo oo 18

ix

2.6
2.7
2.8
2.9

2.10

Rav
3.1
3.2
3.3

3.4

3.5

2.5.4 Writing Software for Linux

The uClinux Project
GNU Operating System
BusyBox
Toolchains

29.1

Multicore Operating Systems

Standard C Library

2.10.1 Symmetric Multiprocessing
2.10.2 Locking Primitives

2.10.3 SMP in Linux

Motivation L
Execution Stage Schematic
Implementing Rav with ARMv3 Support.
3.3.1 Program Status Registers
3.3.2 New Processor Modes
3.3.3 Program Status Register Transfer Instructions
3.3.4 Execution Context
Implementing Rav with ARMv4T support
341 SystemMode o
3.4.2 Long Multiplication
3.4.3 Halfword Load and Store
3.4.4 Branch and Exchange
Testing Rav o

3.5.1
3.5.2
3.5.3

Instruction Tests . .
System Testing . . .
Performance

Porting Linux to SHMAC

4.1

4.4
4.5

4.6

Porting Steps
4.2 Linux Device Tree
4.3 Basic Setup

4.3.1 SoC Imitialization
4.3.2 Early Kernel Messages
4.3.3 Starting the Kernel

Interrupt Controller Driver

Timer Driver
Clockevent Device .
Clocksource Device .
Serial Driver
Driver Registration .
Console
Serial Port

4.5.1
4.5.2

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

UART Callback Functions

UART Transmission

20
21
21
22
22
23
24
24
24
25

27
27
27
28
29
29
30
31
32
32
32
33
34
34
34
37
38

41
41
42
43
44
44
45
46
47
47
48
48
48
49
49
49
51

4.7

4.8

4.6.6 UART Reception
Adding Multicore Support to Linux
4.7.1 Adding Kernel Support
4.7.2 Adding Hardware Support
Testing Linux
4.8.1 Imterrupts L
482 Timer
4.8.3 Serial Communication

484 System Calls

5 Userland Toolchain

5.1
5.2

5.3
5.4

Userland Toolchain Requirements
Challenges Encountered

5.2.1 libgeec
52.2 wuClibc
5.2.3 Crosstool-NG
524 elfoflt

The Final Toolchain
Testing the Toolchain

6 Building a Linux Distribution

6.1
6.2
6.3

Creating a Userspace Environment
Integrating BusyBox with Linux
Using SHMAC Linux

7 Benchmarking

7.1

Benchmark Set

7.2 Comparing Benchmark Results on Linux and Bare Bones

7.3 Comparing Performance Increase Achieved on Linux and Bare Bones

8 Discussion

8.1
8.2
8.3
8.4

8.5

Performing a Bottom Up Project
Top Down Verification
Building a Toolchain in Parallel
Design Choices
8.4.1 Supporting ARMv4T

8.4.2 Including an FPGA Specific Multiplier

8.4.3 Building BusyBox for SHMAC . .
Results.

9 Conclusion

10 Further Work
10.1 Memory Management Unit

10.2 Upgrade Serial Port Driver for new Single-ISA Heterogeneous MAny-

core Computer (SHMAC) Implementation

52
93
54
55
95
56
o6
56
56

61
61
61
62
62
62
62
63
63

65
65
65
66

69
69
69

73
73
73
73
74
74
75
75
75

79

81
81

81

10.3 Enable Mass Storage Support
10.4 Symmetric Multiprocessing (SMP) Support in SHMAC Linux . . .
10.5 Upgrading Rav o

Bibliography

A Compile and Run Linux
A.1 Setup Enviroment Variables
A.2 Toolchain e
A3 BusyBox
A4 Linux Kernel
A5 Run
A.6 Building Userland Applications
A.7 Miscellaneous

B Toolchain Guide

B.1 Kernel Toolchain
B.2 Userland Toolchain
B.2.1 Setup
B.2.2 SetupuClibc
B.2.3 Configuration uClibc
B.2.4 Setup Crosstool-NG
B.2.5 Configuration Crosstool-NG
B.2.6 Building the Toolchain

C Instruction Test Cycle Comparison

81
82
82

83

85
85
85
85
86
86
87
88

89
89
89
89
90
90
91
92
93

95

2.1
2.2
2.3

3.1

4.1
4.2
4.3
44
4.5

7.1
7.2

7.3

7.4

List of Tables

ARMv2a status flags.
ARMv2a processor mode bits. L L.
AAPCS register convention.o

ARMv3 processor mode bits.

Linux atomic interface. Lo oL
Verifying process system calls.
Verifying security system calls.
Verifying memory system calls.
Verifying files and folders system calls.

Comparing benchmark results from Linux and bare metal.
Performance increase measured when executing benchmark on top of
Linux. e
Performance increase measured when executing benchmark on top of
bare metal. Lo
Percentage difference between executing benchmark on Linux and bare
metal. e

29

95
o8
59
60
60
70
71
71

72

xiii

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4

3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

List of Figures

SHMAC tile architecture overview.
Architecture of a generic SHMAC tile.
SHMAC memory map.« o v oo v v et e
The 26-bit PC scheme of ARMv2a.
Banked register overview. oo
Examples of PC usage in ARMv2a.
The CPSR scheme of ARMv3.
Sign extending values represented as two’s complement.
Amber system overview.
Conceptual placement of register bank in execute stage.
Linux distribution layers. (From [29])
Linux kernel components. (From [29])
Operating system hardware touch points.
Example of hardware specific code.
Operating system driver interface illustration.

Rav schematic execution stage.
Program status register format. (From [18].)
ARMv3 and ARMvAT register bank. (From [18].)
Going from three register read support (left) in ARMv3, to four register
read support (right) in ARMv4. L.
The program status register format in ARMv4T.
Excerpt from an instruction test for the add instruction.
Setting up the stack pointers of various execution modes for Rav. . . .

ARM SoC porting steps. (From [6].)
SHMAC Linux Device Tree (LDT) definition.
Linux SoC kernel configuration.
SHMAC early printk implementation.
Simplified version of the bootloader.
SHMAC timer driver exporting compatible flags to the LDT.
Function for reading the value of the SHMAC system clock register.

Console write function in SHMAC serial driver.
SHMAC serial driver UART transmit function.
SHMAC serial driver UART receive function.
Excerpt from Linux SMP code for ARM.

28
29
30

33
34
35
38

41
43
44
45
46
47
48
49
92
93
53

XV

4.12 Excerpt from Linux kernel configuration for ARM.
4.13 System call trace for 1s.o oo

5.1 Components included in the userland toolchain.

6.1 Example of initramfs configure list.
6.2 SHMAC Linux ndt script. o .o

8.1 Top down verification. L

54
o7

62

66
67

74

Abbreviations

AAPCS ARM Architecture Procedure Call Standard.
ABI Application Binary Interface.

AIC Amber Interrupt Controller.

ALU Arithmetic Logic Unit.

CPSR Current Program Status Register.

FIQ Fast Interrupt Request.
FPGA Field Programmable Gate Array.

ILP Instruction Level Parallellism.
IRQ Interrupt Request.

ISA Instruction Set Architecture.
LDT Linux Device Tree.

MMU Memory Management Unit.

MPU Memory Protection Unit.

PC Program Counter.

PSR Program Status Register.

SHMAC Single-ISA Heterogeneous MAny-core Computer.
SMP Symmetric Multiprocessing.

SoC System on Chip.

SPSR Saved Program Status Register.

TLP Thread Level Parallellism.

xvii

Introduction

During the lifespan of the computer processor, various techniques have been used to
increase its performance. These techniques have helped improved the performance
of the processor 25,000 fold [22]. As the processor evolves, some of these techniques
stop being efficient, and new limitations are discovered. This provides the computer
architects with ever new challenges. In recent years, the biggest problem facing the
computer architects has been related to power consumption.

1.1 Computer Architecture Trends

From the introduction of the RISC architecture in the early ’80s to the late "90s,
the most important fields of improvement for processors has been Instruction Level
Parallellism (ILP) and memory system techniques [22].

ILP refers to the potential overlap among machine level instructions. There are
several ways of exploiting this overlap. Processor pipelining, out of order execution,
branch prediction and superscalar execution are all techniques that increase processor
performance by exploiting the ILP in the intsruction stream [25, 22]. Memory system
techniques aim to decrease the latency and increase the bandwidth of instructions
and data from memory to the processor. These two fields of improvement have
worked hand in hand with Moores Law, which states that the number of transistors
available for a processor doubles every 18 to 24 months [22]. This allows the
researchers to simply add wider buses, more registers, longer pipelines, more
advanced branch predictors and generally making the processor more complex.

In the early 2000s, extracting any more ILP from the instruction stream reached a
point of diminishing returns. The processors had become too complex, and their
power consumption was too much for the available cooling systems to handle. In
2004, Intel canceled all of its high-performance uniprocessor projects as a result of
this. They decided to focus all attention on the new architecture trend, multiple
processor cores per chip [22].

The multiprocessor architectures exploit the Thread Level Parallellism (TLP) in
the instruction stream. By looking at typical workloads for a processor, it is

2 1. INTRODUCTION

evident that several of the execution threads are independent of each other. These
independent threads can be executed in parallel on two or more separate processing
units, allowing an increase in performance. TLP was exploited by including several
processor cores on a single chip.

One of the reasons why it was now possible to have multiple processor cores on a
single chip, was the increase in transistor density. This scheme relied not only on
Moores Law, but also on Dennard Scaling, which states that as number of transistors
per unit area increase, the power consumption remains constant [20]. Unfortunately,
the Dennard Scaling stopped applying, while Moores law continued [21]. The power
usage per unit area increased as the transistor density increased, making it difficult
to keep the processor temperature at an acceptable level. Consequently, it was no
longer possible to utilize all parts of the processor at the same time. This effect is
known as “dark silicon”.

One of the suggested strategies for mitigating this effect is the use of heterogeneous
multicore processor architectures, which contains several processing elements with
different performance and power characteristics.

1.2 SHMAC

The SHMAC project is an effort from NTNUs Energy Efficient Computing Systems
(EECS) strategic research area to investigate challenges posed by heterogeneous
computer architectures [12]. It proposes a tile based architecture of generic comput-
ing units connected in a network. There exists different types of computing units.
At the time of writing there exists processor tiles, memory tiles and communication
tiles. The current processor tile is a slightly modified version of the open source
Amber processor core, which supports the ARMv2a Instruction Set Architecture
(ISA). This ISA was used in the Acorn computers during the late 80s and early
90s [1, 2, 3, 4]. Using an ISA this old impose restrictions to what software can
be compiled and run on SHMAC. A Field Programmable Gate Array (FPGA)
prototype of this architecture has been developed [26].

1.3 SHMAC Operating System Project

This master thesis builds on the work described in the report “SHMAC Operating
System” [17]. The project was an effort to port an operating system to run on the
SHMAC hardware. It investigated several candidates for porting before deciding
that Linux should be the target operating system. The 2.4.28 version of the Linux
kernel was ported.

The ported kernel executed on one core, and was able to boot, mount the root
filesystem and execute a single userland application with a limited set of working
system calls.

1.4. ASSIGNMENT INTERPRETATION 3

The Amber core used in this project supported the ARMv2a ISA, this project
faced several problems as a consequence. During this project, it was found that
this ISA was not supported in any recent versions of the Linux kernel. Linux 2.4
was the last kernel version to include support for the ARMv2a ISA, which is why
this was the Linux version used. The main research field in the SHMAC project is
multicore architectures, however it was found that the Linux 2.4 kernel did not scale
to multicore environments. The ARMv2a support in the Linux kernel was in such a
state that performing ports to systems with this architecture was cumbersome. The
toolchain used in this project had several shortcomings and put severe restrictions
on software compatibility.

The proposition of the project was to modify the Amber processor tile to support a
more recent version of the ARM ISA, allowing more recent Linux versions to be
ported.

1.4 Assignment Interpretation

The following tasks were interpreted from the assignment text:

Mandatory:
T1 Modify the Amber processor tile so that it supports the ARMv3 ISA.
T2 Port a recent version of the Linux kernel to this new processor tile.

T3 Provide a toolchain which is compliant with the ported version of the Linux
kernel.

T4 Test and Benchmark the new processor tile and the ported version of the
Linux kernel.

Optional:
T5 Build a minimal Linux distribution capable of user interaction.
T6 Enable multicore support in the ported Linux kernel.

T7 Investigate the possibility of mass storage through the SHMAC host con-
troller.

The tasks T1 and T2 have been directly extracted from the assignment text. The
task T3 has been interpreted from the assignment text and made mandatory since,
although user applications are not part of the Linux kernel, a Linux kernel without
the ability to run user applications would not be a usable system. Also, a Linux
version without the ability to run user applications would be very hard to test.
The task T5 has been added as an optional task to increase the productivity of
SHMAC developers by providing a familiar environment to run applications in.

4 1. INTRODUCTION

This makes it easier to run programs in an interactive environment and to run a
set of applications on different hardware configurations. The tasks T6 and T7 are
optional and something to be looked at when the Linux port was considered to be
working correctly.

1.5 Contributions

This project provides the SHMAC project with a new processor tile, Rav, compatible
with the ARMv4T ISA. The Linux 3.12.13 kernel has been ported to support
SHMAC running a single ARMv4T compatible processor tile. A toolchain which
is fully compliant with the ported Linux kernel is provided, alongside a large
set of applications which has been built using this toolchain. A complete Linux
distribution containing a large set of standard UNIX tools and an interactive shell
has been built to provide a familiar Linux experience. Tools and documentation
are provided to make it easy to install and run Linux on SHMAC.

1.6 Report Outline

Chapter 1: Introduction gives an introduction to the motivation behind het-
erogeneous computer architectures. It presents the SHMAC project, assignment
interpretation and a summary of contributions.

Chapter 2: Background introduces concepts related to this project.

Chapter 3: Rav gives a detailed description of the process of modifying the
Amber processor tile to support the ARMv4T instruction set architecture.

Chapter 4: Porting Linux to SHMAC describes the process of porting the
Linux 3.12.13 kernel to SHMAC.

Chapter 5: Userland Toolchain presents the process of building a toolchain
for the ported Linux kernel.

Chapter 6: Building a Linux Distribution describes the process of inte-
grating BusyBox with the ported Linux kernel in order to provide a complete
Linux distribution.

Chapter 7: Benchmarking contains a set of benchmark results.

Chapter 8: Discussion presents a detailed discussion about the project pro-
cess, the choices made and the results achieved.

Chapter 9: Conclusion provides concluding remarks.

Chapter 10: Further Work gives a set of suggestions for further work on
this project.

Background

This chapter introduces information required to understand the work done in this
project.

2.1 SHMAC

SHMAC is a hardware prototype of a Single-ISA Heterogeneous MAny-core Com-
puter [12]. It is an ongoing research project within the Energy Efficient Computing
Systems (EECS) research area at the Department of Computer and Information
Science, and Department of Electronics and Telecommunications at NTNU. The
goal of the SHMAC project is to propose hardware and software solutions for future
computer systems in order to tackle the Dark Silicon effect.

2.1.1 SHMAC Architecture

The SHMAC architecture specifies a grid of generic computing tiles, as seen in Fig-
ure 2.1. The tiles are connected in a 2D mesh network topology.

(0,0) — (0,1) —---— (0,m)

(1.0) — .1y 7 (.m)

(n0) — (nA)Y " (n,m)

Figure 2.1: SHMAC tile architecture overview.

6 2. BACKGROUND

It is required that all of the tiles are able to forward packets to other tiles. This
forwarding is performed by a router which is included in all SHMAC tiles, see Fig-
ure 2.2

y

ROUTER

|

Figure 2.2: Architecture of a generic SHMAC tile.

As previously stated, each of the tiles can be made out of different hardware.
Currently, the following tile types are available:

Communication tile.

Block RAM, 16 kB.

External RAM, 32 MB.

Amber25 processor tile.

The communication tile deals with the serial communication with the host. The
block RAM provides memory which is implemented on the FPGA, whereas the
external ram tile integrates a larger, slower, off chip memory. The block RAM is
small and fast while the external RAM is large and slow.

The SHMAC architecture uses a 32-bit address space to provide access to the its
various components, as seen in Figure 2.3. It should be noted that only a subset of
the available addresses is mapped to actual devices.

2.1.2 Amber Processor Tile

The Amber processor tile is based on the five stage pipeline version of the Amber
Core, described in section 2.3. The Amber core is slightly modified to be compatible
with the SHMAC architecture. Since the Amber project is optimized for synthesis,
it does not include a reset signal. This is added to the SHMAC version. The
interrupt controller has been updated into using a generic bus for its sources, not
one line for each source as was the case for the original Amber core.

2.2. ARM INSTRUCTION SET ARCHITECTURE 7

System Registers
Oxff£ff 0000

Tile Registers
Oxfffe 0000

BRAM Memory
0x£800 0000

Main Memory

0x0000 0000

Figure 2.3: SHMAC memory map.

2.1.3 SHMAC Development Environment

The SHMAC prototype is implemented on a Xilinx Virtex 5 XV5VSX330 FPGA
located on an ARM RealView Versatile platform. This platform contains an FPGA
and a host controller. This host controller runs a Linux distribution, and provides
the developers with an interface to the SHMAC hardware through a set of kernel
modules, described below.

shmac_ program write a file to SHMAC memory.
shmac__ dump dump SHMAC memory to a file.
shmac_ reset reset the SHMAC hardware.

shmac_ ko exposes a serial device for communication with the SHMAC hard-
ware.

2.2 ARM Instruction Set Architecture

An Instruction Set Architecture (ISA) defines the interface between the hardware
and the lowest-level of software [25]. Since its first use in the Acorn computers
introduced in the ’80s, the ARM Instruction Set Architecture has seen widespread
use throughout different markets segments [5]. Over the years the architecture has
been upgraded several times. This section will present the changes in two of the
upgrades of the ARM ISA, from ARMv2a to ARMv3 and from ARMv3 to ARMv4.

8 2. BACKGROUND

2.2.1 Comparing the ARMv2a and ARMv3 ISA

The ARMv2a ISA was used in the ARM2 and ARM3 family of processors which was
used by Acorn Computers in their Archimedes line of computers [23]. The ARMv2a
ISA is a load store architecture with 16 general purpose 32-bit registers. One of
these registers is the Program Counter (PC) register. The program counter value is
the memory address of the next instruction to be executed, and is incremented each
cycle or modified by instructions. In addition to containing the program counter,
the PC register also keeps track of the execution state of the processor, as seen
in Figure 2.4. This execution state consist of 8 bits, leaving 24 bits for the program
counter value. The program counter is word aligned, this implies that the program
counter has a 26-bit address space. The 8 bits used for execution state is 4 bits for
status flags, 2 bits for the current execution mode, and 2 bits for interrupt masking.

31 26 2 0

Figure 2.4: The 26-bit PC scheme of ARMv2a.

The status flags are described in Table 2.1. These are set by the Arithmetic Logic
Unit (ALU) output only when the executed instruction explicitly states that the
status bits should be updated.

Identifier | Meaning
N Not Equals
Z Zero
C Carry
v oVerflow

Table 2.1: ARMv2a status flags.

ARMv2a has 4 execution modes: supervisor, interrupt, fast interrupt and user. User
mode is the only non-privileged execution mode. The other modes are exception
modes and are privileged. The current mode is stored using the two least significant
bits of the PC register, M1 and MO, as seen in Figure 2.4, using the values
from Table 2.2. Each privileged mode have their own banked link register and stack
pointer. This means that the value read when loading the link register or stack
pointer differs for each of the modes, as shown in Figure 2.5.

The interrupt mask bits makes it possible to disable/enable interrupts at any given
time. Privileged modes are able to freely change mode and interrupt masks while
user mode is prevented from this. The interrupt mask bits are also updated by

2.2. ARM INSTRUCTION SET ARCHITECTURE 9

the processor itself when context switches takes place. As an example, when an
Interrupt Request (IRQ) is triggered, the IRQ mask is set to 1 automatically,
ensuring that no other interrupts take place while the current interrupt is being
handled.

M][1:0] | Mode
00 User
01 Fast Interrupt Request (FIQ)
10 IRQ
11 Supervisor

Table 2.2: ARMv2a processor mode bits.

USER FlQ IRQ SVC

SP SP_FIQ) SP_IRQ) SP_SvC J

Figure 2.5: Banked register overview.

In order to modify the status bits, the tstp and teqgp instructions are used. These
instructions perform an AND or XOR compare operation, respectively, and store the
status bits in the PC register. An example of this can be seen in Figure 2.6, where
the mode is changed, the mask bits are set, and the condition flags are controlled.

The 26-bit program counter scheme puts some restrictions upon further development.
Having 26 bits for addressing instructions limits the program counter to only address
64 MB of memory. Also, increasing the amount of bits used for storing the current
execution mode, status bits, or interrupt mask bits would decrease size of the
program counter.

When ARM designed ARMv3 they split the 26-bit PC scheme into a 32-bit PC
register and a separate Current Program Status Register (CPSR) used for storing
the status bits, as seen in Figure 2.7.

In addition they added a Saved Program Status Register (SPSR) which saves the
CPSR when the processor performs a context change. The SPSR register is banked
for each exception mode. These registers are not general purpose and can only be
accessed by the new instructions mrs and msr, provided for reading and writing

19

10 2. BACKGROUND

/* Switch to IRQ Mode */
mov r0, #0x00000002
teqp pc, 10

/* Switch to User Mode x/

/* and unset interrupt mask bits */
mov r0, #0x00000000

teqp pc, ro0

/* Check that the condition flags are still Oxf x*/

mov r4, pc
and r7, r4, #0xfc000000
7| cmp r7, #0x08000000

movne r10, #70
bne testfail

Figure 2.6: Examples of PC usage in ARMv2a.

31 28 CPSR 7 0
M(M|M|M|M
NlZ|[C|V NOT USED I|F|X alal2l1]0
31 PC 0
PC

Figure 2.7: The CPSR scheme of ARMv3.

the status bits registers. ARMv3 also adds two new exception modes: “abort” and
“undefined”.

The Address Exception

The address bus in ARMv2a is 26 bits wide [23]. When calculating memory
addresses, it is therefore important to take care not to produce illegal addresses in
which one of the top six bits is non-zero. This will trigger an Address Exception.

2.2. ARM INSTRUCTION SET ARCHITECTURE 11

In the case of ARMv3, any 32-bit value is a legal memory address, hence there
exists no Address Exception in ARMv3 or later ARM ISAs.

2.2.2 Comparing the ARMv3 and ARMv4 ISA

ARMv4 extended ARMv3 with half word data transfer, signed data transfer, long
multiply and a new execution mode.

Half Word Data Transfer

Since high level programming languages use data structures of different sizes, it is
desirable to be able to provide instructions which allows you to fetch the correct
amount of bits from memory. The default behavior in the ARM architecture is to
fetch an entire word (32 bits). ARMv2a and ARMv3 also supports byte transfer
(8 bits). ARMv4 adds support for half word (16 bits) data transfer. This is made
possible by the 1drh instruction for loading a halfword from memory, and strh for
writing a halfword to memory.

Signed Data Transfer

When loading a half word sized or byte sized value from memory, it will be placed
in a 32 bit register. This has implications for the transfer of signed values, since
they need to be sign extended in order to retain their value. ARM represents signed
values as two’s complement. In the two’s complement scheme, the most significant
bit is used to tell if the value is positive or negative. When extending a value
represented as two’s complement, the most significant bit needs to be repeated in
the extra bits, as seen in Figure 2.8

/ * Signed representation of the value
10000 using two’s complement using 16 bitsx*/
0010 0111 0001 0000

/* Sign extended representation of the value
10000 using 32 bits */
0000 0000 0000 0000 0010 0111 0001 0000

/* Two’s complement representation of the
value -10000 */
1101 1000 1111 0000

/* Sign extended representation of the value
-10000 using 32 bits */
1111 1111 1111 1111 1101 1000 1111 0000

Figure 2.8: Sign extending values represented as two’s complement.

ARMv4 adds two new instruction, 1drsb and 1drsh, to automate this process for
byte values and half word values respectively.

12 2. BACKGROUND

Long Multiply

Both ARMv2a and ARMv3 supports multiplying the 32-bit values of two registers.
The result of such a multiplication will often be bigger than what it is possible to
represent using 32 bits. In the case of ARMv2a and ARMv3 the result is stored in
a single 32-bit register. If the result is bigger than what it is possible to represent
with 32 bits the value is truncated.

ARMv4 provides long multiplication in which the result is stored in two separate
32-bit registers, making it possible to store the result of any 32-bit multiplication.

System Mode

ARMv4 adds the new privileged execution mode, “system”. While the other
privileged modes all have banked registers, the system mode share all of its registers
with the user mode. The only difference between the unprivileged user mode and
the privileged system mode is that system mode is able to change the current
execution mode.

2.2.3 ARMv4T Extension

The T-extension to ARMv4 adds the 16-bit Thumb execution state. This execution
state implements a subset of the ARM instruction set using 16-bit representation.
A new instruction, bx (Branch and Exchange), is added in T-variants of ARMv4,
and is used to switch between regular 32-bit execution state and the 16-bit Thumb
execution state.

2.2.4 ARM Architecture Procedure Call Standard

When a procedure calls another procedure, they need to agree on how the arguments
will be transferred, how the result of the called procedure will be stored, and what
state the called procedure should leave the system in when it is done.

Arguments can be transferred in several ways, using the stack or by using the
registers. In order to make it possible for separately compiled and assembled code
to work together, a standard for transferring arguments needs to be defined, this is
the ARM Architecture Procedure Call Standard (AAPCS) [19].

The AAPCS defines how registers are used during a procedure call, as seen in Ta-
ble 2.3. It also defines how to return from a procedure call.

The Role of Branch Exchange in AAPCS

The AAPCS states that the bx instruction should be used when returning from a
procedure [[19],p.21]. bx takes a register as argument, and jumps to the address
specified by that register. If the last bit of that address is 1, the processor should
change to Thumb execution state (16-bit instruction width). Even though this

2.3. AMBER 13

Register | Purpose

r0-r3 Holds the arguments passed to a sub procedure. r0 also holds the
result from the subroutine.

r4-rii Holds local variables. These registers needs to be retained during
the procedure call, which is done by storing them on the stack
while the procedure is ongoing.

ri2 The Intra-Procedure-Call scratch register.
ri3 The stack pointer.

ri4 The link register.

rib The program counter.

Table 2.3: AAPCS register convention.

instruction is heavily associated with the Thumb instruction set, it is also used on
processors without support for Thumb instructions. In the case of ARMv4, which
does not support the bx instruction, a GCC flag, fixv4bx, is provided in order to
change all of the bx calls into equivalent mov calls. ARMv4 is therefore incompatible
with the AAPCS. In ARMv5 or later, trying to change to Thumb execution state
when this is not supported will trigger an undefined exception.

2.3 Amber
Amber is an open source project which contains a complete embedded computing

system. This system consists of the Amber processor core, hereby called the “Amber
core”, and a set of peripherals as shown in Figure 2.9.

/" Xilinx Spartan 6 FPGA \

Interrupt
controller

Amber processor core

B10/100
Ethernet Csoathgll\gr
MAC /
AV

Figure 2.9: Amber system overview.

14 2. BACKGROUND

The Amber project focuses on FPGA synthesis rather than hardware implementa-
tions. An example of this is that the Amber cores does not have any reset logic,
since this is not necessary in an FPGA environment. The peripherals makes it
possible for the user to interact with the system, and to execute applications of a
relatively large size. A brief explanation of the peripherals most relevant for this
project is given below.

UART deals with communication with the users of the system.
Timer generates timed interrupts.

Interrupt Controller is a general purpose interrupt controller which is able
to send interrupts from various modules.

SDRAM Controller contains the memory of the system.

2.3.1 Amber Core

The Amber project contains two versions of the Amber core: one with a three stage
pipeline and one with a five stage pipeline, called A23 and A25 respectively. The
Amber processor tile contains a modified version of the five stage pipeline, A25.

Pipeline Design

The Amber core is a scalar, in-order processor core with a classical five stage RISC
pipeline [22]. The pipeline stages are fetch, decode, execute, memory and write-back.

Fetch reads the instruction to be executed from memory and forwards it to the
decode stage.

Decode looks at the instruction, and decides what needs to be done in the
remaining pipeline stages to perform the tasks requested by the instruction.
This is arguably the most complex of the five stages, as it needs to be able to
parse all legal instructions, and set all of the requested control signals.

Execute performs the actions which is required to change the register values
according to the instruction being executed. It is controlled by the decode stage,
and is also used for calculating addresses which is sent to the memory stage. In
the case of the Amber core, the execute stage contains the register bank. This
implies that the register values are updated at the end of the execute stage.
Since most instructions read some value from a register, the output from the
register bank is wired to the input of the execute stage, creating a circular data
flow, seen in Figure 2.10

Memory reads data from or writes data to the memory.

Write-Back saves the data read from memory to the register bank.

2.3. AMBER 15

Register Bank

Barrelshift

Register Bank

Figure 2.10: Conceptual placement of register bank in execute stage.

Instruction Set Architecture

The Amber core supports the ARMv2a instruction set architecture. This makes the
Amber core compatible with the GNU toolset, and old versions of Linux (ARMv2a
support was removed in version 2.6).

2.3.2 Test Framework

When designing hardware it is important to perform testing early in the development
process. Once the design has been placed on an FPGA it is cumbersome to execute
tests and verify the result, hence it is preferred to tests the design in a simulator.
In a simulator, the state of the entire system is accessible.

Instruction Tests

An instruction test is a test that verifies that the processor behaves correctly for a
single assembly instruction. The Amber project contains 59 instruction tests. The
tests are executed using the Xilinx ISE simulation tool. Xilinx tools are also used
for compiling the Amber system and initializing the memory to be used during the
tests.

The test framework is able to execute the same set of code as the FPGA implemen-
tation of the Amber system. This is achieved by using a top level design which is
developed specifically for simulation.

The test framework contains several scripts which makes it simple to execute a set
of tests. These scripts also makes it easy to extend the existing test framework with
new tests.

System Tests

In addition to the above-mentioned instruction tests, the Amber project contains a
set of system tests.

16 2. BACKGROUND

The biggest system test contained within the Amber project is a ported version of
the Linux 2.4.28 kernel, which is compatible with the Amber core. When verifying a
processor design, it is not enough to verify each of the supported instructions in an
isolated environment. Some bugs might not be triggered unless the processor is in
a specific state which might only be triggered by a specific sequence of instructions.
It is hard, if not impossible, to cover all possible code sequences using a set of small
test programs. However, by running an application as big as the Linux kernel the
confidence in the correctness of the design is increased.

2.4 Operating Systems

The operating system has been an important part of computers since its inception.
The variation of complexity and size between operating systems, 45 million lines of
code in Windows XP against 16,500 in FreeRTOS, suggests that the term “operating
system” is a vague definition.

2.4.1 Operating System Definition

An operating system is a layer of software whose job is to “provide user programs
with a better, simpler, cleaner, model of the computer and to handle managing
all the resources...” [29]. In other words, an operating system is not required to
interact with the user of the system, but with the user programs. However the term
operating system is often used to describe system that do interact with the user,
e.g Microsoft Windows and Apple OS X.

The motivation behind an operating system is twofold. It manages hardware
complexity by providing applications with a simpler and cleaner interface. It
also handles resource sharing in the system, allowing several programs to execute
simultaneously on the same system.

2.4.2 Terminology Used in this Thesis

In the thesis, the terms “Linux”, “Linux kernel” and “Linux operating system”
are used to refer to the Linux kernel. The term “userland” refers to all code
that runs outside of the kernel. The term “Linux distribution” refers to a system
with the Linux kernel and a set of userland applications which enables direct user
interaction.

2.5 Linux

Linux is an open source operating system kernel which has been ported to a large
set of computer architectures. It is used in various computing domains, with its
highest popularity in the web server and supercomputer domains [13, 15].

2.5. LINUX 17

2.5.1 Linux Distribution Overview

The Linux kernel provides abstractions and services to user applications. The term
Linux, however, is often used to describe a Linux distribution. A Linux distribution
is the Linux kernel together with a set of applications and tools that provides
abstractions and services to the user.

A Linux distribution is a layered system where each layer provides services to the
layers above it while relaying on the services provided by the layer below it, as seen
in Figure 2.11. The Linux kernel runs on top of the hardware, and is the only piece
of software which runs in privileged mode. The library layer runs on top of the
kernel and provides access to the kernel system call by wrapping system calls in
library procedures. This enables applications to call system calls as if they were
regular library routines. Which applications are included in a Linux distribution
varies between distributions, from only a shell and some basic utilities to full fledged
GUI systems for use with personal computers.

User
interface

Library
interface l Users

System l Standards utility programs T

call (shell, editors, compilers etc)
interface

mode
l Standard library l

(open, close, read, write, fork etc)

User

Linux operating system Ke?ne\
(process management, memory management, mode
the file system, I/0, etc) %

Hardware
(CPU, memory, disks, terminals, etc)

Figure 2.11: Linux distribution layers. (From [29])

2.5.2 Linux Kernel Overview

The kernels job is to manage the hardware resources in the system and expose
access to these resources through a simplified interface. The simplified interface
that the kernel exposes is the system call interface. Internally, the kernel is divided
into three major components, as seen in Figure 2.12. The memory management
component is responsible for managing the memory available in the system by
providing virtual memory and paging functionality. The process management
component is responsible for providing the process abstraction, scheduling which
process should run and handling interprocess communication with signals. The I/0
component manages access to all the input output devices in the system through
a unified virtual file system known as the root file system. Resources are made
available as files in the root file system.

18 2. BACKGROUND

—l System calls I—

Memory mgt Process mgt
I/0 Components component component
\ ™\
| Virtual file system | _ .
Virtual Signal
- Memory Handling
Terminals Sockets File Systems
o Generick .
£ Network block layer Paging Procese_‘.fT read
H— page creation &
- protocols N -
58 File Systems replacement termination
Character Network Block
device device device CPU
drivers drivers drivers Page Cache Scheduling
AN AN _J
| Interrupts Dispatcher |

Figure 2.12: Linux kernel components. (From [29])

2.5.3 Porting Linux

The initial versions of Linux were not portable [30]. However, during its lifetime,
Linux has come to be one of the most portable and ported operating systems.

For an operating system to be portable, the job of modifying it so that it is able to
execute on a previously unsupported computer architecture should be as simple as
possible. There are two perspectives one can use when talking about portability.

The first of these two perspectives is that of hardware specific code. The number of
places where hardware specific code is found should be limited to a bare minimum,
as Figure 2.13 shows.

The code in Figure 2.14 is an example of hardware specific code. This code excerpt
shows the function used for turning off a single interrupt within an interrupt
controller. The offset from the memory base of the interrupt controller to the
control signal used for clearing interrupts, IRQ_ENABLE_CLEAR, would vary between
different interrupt controller chips. The base address used for the interrupt controller
device could vary between two architectures that used the same interrupt controller
device.

2.5. LINUX 19

Software Software
Operating System Operating System
YYYYYYY \A A A A
Hardware Hardware

Figure 2.13: Operating system hardware touch points.

#define IRQ_ENABLE_CLEAR 0xOc

/* Mask (turn off) an interrupt */
static void irq_mask(struct irq_data *d)

{
/* Find the HW-IRQ-nr by looking at the domain */
unsigned int irq = irqd_to_hwirq(d);
unsigned int pos = ffs(irq)-1;
/* Write to IRQ control register to mask interrupt x/
writel ((1 << pos),base + IRQ_ENABLE_CLEAR);
}

Figure 2.14: Example of hardware specific code.

In addition to the hardware specific code perspective, the upward interface from the
hardware specific code is important. This interface decides how the other operating
system components interact with the hardware specific code. By making sure that
this interface is well defined, it is possible to use a single implementation of a higher
level module with any implementation of this interface, Figure 2.15 illustrates this.

Porting an operating system quickly becomes cumbersome if care is not taken when
designing it. Linux is highly portable, it has a layered design which ensures that
hardware specific code is limited to the device drivers, and as long as they are
compliant with the standard driver interface, no change is required in any higher
level modules.

Linux Device Drivers

When performing a port, a task that needs to be performed no matter how portable
the operating system, is to write drivers for all unsupported hardware. Linux

20 2. BACKGROUND

Kernel Module A Kernel Module A

_I_L/\' Driver interface /7N

Driver#1 Driver#2

/\/\/\/\//\/\%

Hardware#1 Hardware#2

Figure 2.15: Operating system driver interface illustration.

provides a standard interface for most domains of hardware devices.

It is not required for a driver to implement all of the functions in the interface.
What functions needs to be implemented is determined by the configuration of the
kernel. What drivers should be compiled and included in the kernel is also set in the
kernel configuration. To choose which drivers that should be used during execution,
and how these should be configured, Linux provides a functionality called Linuz
Device Tree.

Linux Device Tree

The Linux Device Tree (LDT) is a hardware description format used in the Linux
kernel. The introduction of the LDT simplified the porting process. It also made
it easier to build kernel binaries which were compatible with a set of hardware
platforms instead of only one.

The LDT describes which hardware components are included in a specific architec-
ture. The LDT information is separated from the kernel, so it is possible to modify
this information without having to recompile the kernel. The only time one would
have to recompile the kernel is to add support for new hardware.

The LDT is given to the kernel by the bootloader. As the Linux kernel initializes,
it parses the entry in the LDT that corresponds to the architecture type it has
discovered. Once the LDT has been parsed, a set of compatibility flags and required
device drivers has been found. These are mapped against the drivers contained
within the kernel, and the drivers which matches are loaded and initialized.

2.5.4 Writing Software for Linux

The services provided by an operating system are made available by the system
call interface. In the case of the Linux kernel, there exists 380 system calls. To

2.6. THE UCLINUX PROJECT 21

utilize these system calls, a toolchain that is compliant with the target Linux version
is required. Briefly explained, a toolchain is a set of tools which is used when
transforming source code to executable files. In cases where the target architecture,
the architecture that will execute the program, differs from the host, the one on
which the code is being written and compiled, a cross compiler is required as a part
of the toolchain.

Once equipped with a toolchain that is compatible with the target Linux version,
it is possible to compile code that utilizes the Linux system calls. In addition to
containing the header definitions of the Linux system calls, the toolchain needs
to generate code which is compatible with the Application Binary Interface (ABI)
supported by the target Linux version.

ABI is the interface between the operating system and the applications at the
machine code level. It specifies the binary format of applications, the procedure
call standard, and how system calls are performed.

2.6 The uClinux Project

Several embedded computing systems lack a Memory Management Unit (MMU), and
can only use physical addresses directly in their code. This has major implications
for the programming model. The uClinux project provided support for MMU-less
system in the Linux kernel.

The uClinux project provided a set of patch files which made the Linux kernel
portable to MMU-less systems. The two projects existed in parallel for a few years
before the uClinux project was merged into mainline Linux.

In addition to the patch files for the Linux kernel, the uClinux project also contained
tools for adapting userland applications to work on MMU-less architectures. The
uClinux project also contained a standard C library implementation, uClibc, which
was built specifically for MMU-less Linux systems with limited memory resources.

2.7 GNU Operating System

GNU was launched in 1983 and set out to offer a completely free UNIX-compatible
operating system. Many computer users today run a modified version of the GNU
system without even realizing it. This is because what many users consider to be
“Linux” is in fact the Linux kernel together with the free GNU system. By the
time that Linux was released the GNU project had put together almost a complete
operating system. What they still lacked was a UNIX-like kernel. When the Linux
kernel was released, the GNU project was combined with the Linux kernel to build a
complete operating system known as GNU/Linux. The GNU project is still working
on an operating system kernel while the combined system GNU/Linux has achieved
major success.

22 2. BACKGROUND

2.8 BusyBox

While GNU/Linux is a popular operating system for desktop computers Busy-
Box/Linux is a good alternative for embedded systems. BusyBox combines tiny
versions of the most common UNIX utilities into a single executable. The implemen-
tations of these utilities usually has less features than their GNU counterparts while
still providing a very similar behavior. Since BusyBox targets embedded systems, it
has been written with size-optimization and small memory footprint in mind. It is
also customizable, and it is possible to configure which features should be included
at compile time. BusyBox also support running on Linux without MMU support.

BusyBox provides both a shell and an entire execution environment, which enhances
the Linux kernel with powerful user interaction that makes a system behave like a
regular PC with the GNU/Linux terminal.

2.9 Toolchains

A toolchain is a set of software components used for building applications. A typical
toolchain contains a compiler, a linker, binary utilities and an assembler. Libraries
are often included to simplify the job of the software developers using the toolchain.
The binary utilities contained within the toolchains provide helpful tools when
working with binary files. With these tools, it is possible to transform high level
language source code to executable files.

In the embedded world, the target architecture is often different from the host
architecture. That is: the processor for which the application is written has a
different architecture than the computer generating the executable application files.
It is often necessary to build a toolchain specifically for a single system environment.

Building an entire toolchain can be a cumbersome process. There are often de-
pendencies between the various components, restrictions as to what configurations
they might have, and which versions that are compatible with each other. When
building the toolchain, it is important that the components are configured such
that they are compatible with each other, and with the ABI of the target system.
There exists several build systems for simplifying the toolchain building process.

These build systems simplify the building and configuration process by providing
a single configuration interface, and automating the build process. Most build
systems also ensures that no dependencies are violated during the configuration of
the toolchain. What these build systems provide varies, a brief description of some
popular build systems is given below.

Buildroot

In addition to being able to generate toolchains, Buildroot has the capability
of building operating system images, bootloader images, root file systems and
applications for the target architecture [8]. This is done using a set of build

2.9. TOOLCHAINS 23

scripts and configurations for the GNU make utility. Buildroot does not have
support for ARM architectures without an MMU [7].

PTXdist

The most feature rich build system evaluated for this project is PTXdist. PTXdist
largely supports the same features as Buildroot, and uses the same tools to
achieve this. Compared to Buildroot, PTXdist provides a simpler interface,
and has support for MMU-less ARM architectures. PTXdist also lets the user
provide patch files to apply to the Linux kernel before compiling, which is often
necessary in the embedded world.

Crosstool NG

This is the simplest build system of the three evaluated. Crosstool NG only
targets toolchain generation, and does not provide functionality for building
Linux or bootloaders like Buildroot and PTXdist. It is simpler to use than
both Buildroot and PTXdist. As with PTXdist, it supports MMU-less ARM
architectures.

2.9.1 Standard C Library

In software development, a library is a collection of function implementations
made available to the developer through a well defined interface. One of the most
important C libraries is the standard C library. This library defines a set of functions
expanding the basic C functionality. It contains functions that “.. provide input
and output, string handling, storage management, mathematical routines, and a
variety of other services for C programs” [24].

Developing useful applications in C without using the standard C library could
be difficult. For a C program to be able to utilize the functionality offered by the
standard C library, the toolchain used when building the application must include
an implementation of it. There exists several implementations of the standard C
library.

The ANSI definition only specifies the standard C library interface and function-
ality, not its implementation. Depending on the hardware support on the target
architecture, it might not be possible for a standard C library implementation to
provide all functions specified in the standard C library interface. The features
supported by a standard C library implementation can also depend on operating
system support.

Standard C Library on Bare Bones Platforms

The term “bare metal” refers to a platform which does not have an operating system.
Standard C Library implementations for use with bare metal target architectures are
implemented using only standard C. One example of a bare metal implementation
of the standard C library is newlib [10].

24 2. BACKGROUND

Standard C Library on Platforms with Operating Systems

Once a system is equipped with an operating system, the platforms interface towards
any software executing on top of it will be enriched by the operating systems system
calls. In the case of Linux, this means support for threads, processes, files, time,
concurrency, kernel modules, devices and much more.

Standard C library implementations which utilizes system calls are tightly coupled
with the operating system on which they execute, placing strict requirements to
any toolchain that wishes to generate executable code.

An example of a standard C library implementation that can be connected to the
Linux system calls is uClibc [14]. uClibc specializes in embedded platforms, and
supports MMU-less Linux.

2.10 Multicore Operating Systems

Since the introduction of the multicore processors, operating systems have been
adapted to fully utilize the processing power offered by a multicore architecture.
Designing an operating system for a multicore architecture requires several design
features not required for a single core operating system.

2.10.1 Symmetric Multiprocessing

The cores in the SHMAC architecture all support the same ISA and have shared
memory. This makes it possible to use the SMP model. The SMP model places
the operating system in shared memory, and allows for any core to run it [29].
Allowing all of the cores to access the operating system introduces synchronization
problems. What is the result when two cores attempts to update the same variable
simultaneously? This problem can be solved with inter core synchronization.

2.10.2 Locking Primitives

There are several ways to implement inter core synchronization, locking is a necessity
for most of them. A lock protects an entity, and ensures that only one actor (core,
computer or thread) can access this protected entity at a time. This entity could
be anything from a piece of critical code, code which only one core can execute
simultaneously, to an entire device, such as the hard drive. For this to be possible,
it is important that the locking mechanism is atomic. This means that when an
actor locks an entity, the system behaves as if it was an instantaneous operation.
A lock such as the one described above, which can be either in locked or unlocked
state, is known as a mutez [29].

Consider the situation in which several actors requires access to a locked entity. If
they cannot get exclusive access, they will go to sleep, and try to get access again
after some time. In a situation like this, it would be desirable to maintain a list
of actors that want access to the locked entity, and wake them up explicitly once

2.10. MULTICORE OPERATING SYSTEMS 25

it’s their turn. A single mutex is only capable of ensuring exclusive access, not
maintaining a queue such as this. The solution is to introduce a counter which can
be atomically read, incremented and decremented. A counter like this is known as
a semaphore [29].

2.10.3 SMP in Linux

Linux provides multicore support through SMP. A problem with using locks as a
synchronization mechanism is that the entities under protection of a single lock
can not be simultaneously accessed once that lock is taken. Hence it is desirable
that the entity which a lock protects is as small as possible, while still ensuring
correct execution with multiple cores. As described in [17], it was not until Linux
version 2.6 that the size of the entities protected by the SMP locks was reduced to
a scalable level.

Rav

This chapter describes in detail the changes made to the ARMv2a compliant Amber
core in order to make it ARMv4T compliant. The new core was named Rav - the
Norwegian word for Amber.

3.1 Motivation

Upgrading the Amber core to support a more recent ISA would result in better
support in software tools, simplifying the development process for SHMAC software.
ARMv2a used a 26-bit program counter scheme, requiring special handling in any
software package that was to support it. This was needed since the architecture
had a 32-bit ALU and a 32-bit PC register of which only 24 bits is the program
counter. Given that only a handful of computers actually used ARMv2a ISA, it
becomes clear that it is unattractive to add support for this ISA in modern software
projects.

ARMv3 was the first ARM ISA to move away from the 26-bit PC scheme, resulting
in increased support by software tools. However, the AAPCS is not supported by
ARMv3.

To make Rav compatible with the AAPCS, the target ISA was chosen to be ARMv4T
without Thumb support.

3.2 Execution Stage Schematic

A simplified schematic of the final execution stage of Rav is shown in Figure 3.1. The
gray boxes represents either modifications or additions to the execution stage that
was added in Rav. The trapezoid shapes represents multiplexers, their control signals
has been omitted when the control signal is named the same as the multiplexer.
Some details have been omitted from the schematic to make it more readable.
Information that has not been modified, e.g. co-processor, or would complicate the
schematic, e.g. stalling logic is not included.

27

28 3. RAV

Write pc Register Bank [115-10] CPSR SPSR
_|: Back
\ Select / \ Select / \ Select /
read_data
PSR
long_multiply imm_shift_amount Imm32 Select
Y —
mult_a_in
sign mult_signed mult_b_in 12
- Load Function Earrel snm Barre Shift
yte
Amount Data
> Select Select
halfword v v 64 Bit Rm[0]
muttiply | H r|
4 4
wb_read_data E] [] :": [~ muIL i_status
" Barrel Shift
i_thumb i_mode
| mult_flags | mask
; Y l YY
Status Bits M-sk Thumb Mode
Select Select Select Select
alu_flags_in cpor_upae
A\ A 4
‘Address alu_flags_out
Select
Testore_cpsr
I l Y Y
Decode Decode a(ra[7:01} 2(ra[15:0]
byte halword
enable enable wb_read_data
1 i Interrupt
Vector
v Vv A 4 Select Thumb
Byte Enable Write Data .
Select Select >
reg_high_wen YYVYY YVYY Detect
pe_wen PC Register Write
— select Select
wb_reg_wen feg_wen psr_wen save_cpsr
psr_flags_only
l reg_high j
Y Y Y Y Y Y Y Y v Y Y 4
Register Bank [115 -10] | cPSR SPSR

Byte Enable | | Write data

| Write Address |

Figure 3.1: Rav schematic execution stage.

3.3 Implementing Rav with ARMv3 Support

The specification used for implementing ARMv3 support in Rav is the documentation
for ARM7DI, an ARMY family processor implementing the ARMv3 ISA [18]. This
documentation was compared with that of the Amber core [27] to come up with a set
of changes that needed to be implemented. These changes involved separating the
status bits from the program counter and putting them in a special purpose register,
introducing two new exception modes, and adding support for two new instructions
to read and write the status bits registers.
for when the status bits registers are updated during execution of programs, and
exception handling to save and restore processor state. The Address Exception was
removed since it cannot occur in ARMv3 or later versions. Rav was implemented
by modifying the decode and execute stage of the five stage Amber processor tile.

It was also necessary to add logic

3.3. IMPLEMENTING RAV WITH ARMV3 SUPPORT 29

3.3.1 Program Status Registers

A set of new register were added to contain the program status bits. The register
bank was expanded by adding 6 Program Status Registers. One to hold CPSR and
5 to hold SPSR, one for each exception mode.

Flags Control
I UL 1
31 30 29 28 27 8 7 6 5 4 3 2 1 0
N z C vV |. . I F . M4 | M3 | M2 | M1 | MO
|]

Overflow Mode bits
Carry / Borrow / Extend FIQ disable
Zero IRQ disable
MNegative / Less Than

Figure 3.2: Program status register format. (From [18].)

The program status registers consists of status flag bits and control bits, as seen
in Figure 3.2. The flag bits store information about previously executed instructions,
and are used for conditional execution. A description of the different status flag
bits is given in Figure 3.2. Any register operation is able to update the flags by
having the S-bit set. The control bits consists of five bits to specify the current
processor execution mode, as shown in Table 3.1, and two interrupt disable bits for
normal and fast interrupts. The unused bits are reserved and cannot be written.

M[4:0] | Mode

10000 User
10001 | FIQ
10010 | IRQ

10011 | Supervisor
10111 | Abort
11011 | Undefined

Table 3.1: ARMv3 processor mode bits.

3.3.2 New Processor Modes

ARMv3 adds two new exception modes to ARMv2a, undefined and abort. Undefined
mode is entered when the processor finds an instruction it is unable to decode.
Abort mode is entered whenever the processor receives a exception from either
the instruction cache or the data cache. Both of these processor modes have their

30 3. RAV

own link and stack pointer register as well as a saved program status register. The
resulting register bank now contains a total of 37 registers as seen in Figure 3.3,
the gray registers are banked registers, and are exclusive to the mode.

User/System FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS
R6 R6 R6 RG R RE
R7 R7 R7 R7 R7 R7
RS RB_fig RB RB R8 R8
R9 R_fiq R9 R9 R9 R9
R10 R10_fig R10 R10 R10 R10
R11 R11_fig R11 R11 R11 R11
R12 R12_fiq R12 R12 R12 R12
R13 R13_fiq R13_sve R13_abt R13_irg R13_und
R14 R14_fiq R14_svc R14_abt R14_irg R14_und
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fig SPSR_sve SPSR_abt SPSR_irg SPSR_und

Figure 3.3: ARMv3 and ARMvAT register bank. (From [18].)

3.3.3 Program Status Register Transfer Instructions

The Program Status Registers (PSRs) can only be accessed through the mrs
and msr instructions. The mrs instruction writes the content of either CPSR or
SPSR__<mode> to a general register. The msr instruction writes either the value
of a general register or an immediate operand into either CPSR or SPSR__ <mode>.
It is possible to specify that only the flag part of the target program status register
should be updated when using msr. This behavior is forced in user mode.

The decode stage is responsible for decoding the current instruction and determin-
ing the proper control signals to give the execute stage. For an mrs (read PSR
register) instruction, the decode stage will set the psr__select signal so that either
CPSR or SPSR is chosen from the PSR Select multiplexer, see Figure 3.1. The
register__write__select signal will be set to select the output from the PSR Select
multiplexer as input to the register bank.

For an msr (write PSR register) instruction, the decode stage will set the regis-
ter__write__select to select the alu__out value, since the value that should be

3.3. IMPLEMENTING RAV WITH ARMV3 SUPPORT 31

written to the selected PSR register is found here. The psr__wen signal will be set
to 10 for writing to SPSR and 01 for writing to CPSR. If the msr instruction wishes
to only update the status flag bits, or the instruction is running in user mode, the
psr__flags_ only signal will be set, causing only the status flag bits of the selected
PSR register to be updated.

3.3.4 Execution Context

CPSR is constantly updated during execution to reflect the state of the processor.
The signal cpsr__update holds a candidate for the updated value of CPSR. During
normal execution, this value is written to CPSR every cycle. The individual parts
of cpsr__update are controlled by four multiplexers. Each of these multiplexers
has the default behavior of keeping the original value from CPSR. Alternatively,
the new value can be set from the decode stage, using the i_ flags, i_ mask and
i_ mode signals.

Status Flags

The status flag bits are controlled by the Status Bits Select multiplexer. If the
executing instruction is a register operation with the S-bit set, the new value of
the status flags bits is selected from the alu__flags_ out signal. If the executing
instruction is a multiplication with the S-bit set, then the negative-bit (N) and the
zero-bit (Z) are selected from the mult_ flags signal, while the rest of the flag bits
keep their original value.

Saving CPSR

When an exception is triggered, CPSR is updated. The new value of the mode part
of CPSR will be set by the i__mode signal. In every exception mode triggered,
interrupts (IRQ) will be masked to allow the exception handler to run without
being interrupted. This is done by setting the value of i__mode to mask interrupts.
If the exception is a fast interrupt (FIQ), then fast interrupts will also be masked.
When an exception is triggered, the CPSR register needs to be preserved in the
SPSR register. This is done by setting the save__cpsr signal to the register bank.
This will save the value of the CPSR register into the banked SPSR register of the
new exception mode.

Restoring CPSR

When returning from an exception handler, CPSR needs to be restored to the
original value preserved in SPSR. When an exception return instruction is executed,
the restore__cpsr signal will select the SPSR register value as the new CPSR
value in the CPSR Select multiplexer. An exception return instruction can only be
triggered in an exception mode. It is either a register instruction or a load multiple
instruction that writes to the program counter with the S-bit set.

32 3. RAV

3.4 Implementing Rav with ARMv4T support

The changes from ARMv3 to ARMv4 includes: a new execution mode, supporting
a new instruction, long multiplication, halfword memory access operations and
signed memory access operations. The changes from ARMv4 to ARMvAT consists
of a new branch instruction, a new bit in the PSRs, and triggering an undefined
exception when trying to enter Thumb state.

3.4.1 System Mode

ARMv4 introduces the system execution mode. System mode shares its registers
with user mode, and does not have any banked registers. It is a privileged mode,
and is therefore able to modify the program status registers. Since it shares its
registers with the user mode, adding support for system mode does not require as
many changes as that of abort mode or undefined mode. The only change required
is to allow system mode to modify the entire PSR.

3.4.2 Long Multiplication

ARMv4 adds long multiplication and long multiply accumulate instructions. These
instructions use 32-bit registers as operands, and stores the 64-bit result in a pair
of 32-bit registers, whereas ARMv3 stores the result in a single 32-bit register.

The Amber processor tile used an implementation of Booths multiplication algorithm
to perform 32-bit multiplication [27]. This implementation consist of 33 cycles
of shifts and additions. If it is a multiply accumulate instruction there is one
extra addition cycle. This multiplication unit was replaced with an FPGA specific
multiplication unit which is able to perform 64-bit multiplication in one cycle.
Although the multiplication unit is able to do multiplication in one cycle, the
new design was unable to meet timing constraints, and the clock frequency of
the processor was lowered. The multiplication unit was therefore changed to
do multiplication in two cycles instead, in order to maintain the processor clock
frequency.

The Amber processor tile was only able to read 3 register values each cycle, while a
long multiplication accumulate instruction requires to read 4 registers in a single
cycle. In order to support this instruction, Rav adds support for 4 register read.
This has been done by splitting a single multiplexer which was used for both Rd
and Rs into two multiplexers, as seen in Figure 3.4.

The new implementation of the multiplication unit performs a signed 33-bit mul-
tiplication with two registers, and optionally a 64-bit addition with the 64-bit
multiplication result, producing a 64-bit result.

Two register are used to store the 64-bit result. The register bank was there-
fore modified to allow two register writes simultaneously. The reg_ high and
reg_ high_wen signals handles the writing of this second register.

3.4. IMPLEMENTING RAV WITH ARMVAT SUPPORT 33

Register Bank

T 1 [T 11
[

Register Bank

! U
F\ Jl /ﬁ /ﬁ ll R

Figure 3.4: Going from three register read support (left) in ARMv3, to four register
read support (right) in ARMv4.

The reason for using 33-bit multiplication is due to the fact that the FPGA
multiplication unit always performs a signed multiplication. The use of an extra bit
in the argument is to force unsigned multiplication behavior. For an unsigned long
multiplication, umull, or unsigned long multiply accumulate, umlal, the register
arguments are padded with an extra 0 as the most significant bit. For signed
multiplication, smull and smlal, both register arguments are sign extended by
replicating the most significant bit, to produce two 33-bit arguments.

The new multiplication unit is also able to handle the old word sized mul and mla
instructions. This is done by discarding the top bits of the result and only write
the 32 low bits. If long_ multiply signal is high Rn and Rd are concatenated to
form the 64-bit argument, else Rd is sign extended into a 64-bit argument. This
argument is only added to the result when the mult__accumulate signal is high.

3.4.3 Halfword Load and Store

ARMv4 adds new load and store instructions. These are load and store half-
word, load signed halfword and load signed byte, 1drh, strh, 1drsh and 1ldrsb
respectively.

The Amber processor tile memory interfaces writes a word, 4 bytes, at a time. It
uses a 4-bit signal, byte__enable, to select which of these 4 bytes that should
be written. The byte_ enable signal is, in the case of halfword memory access
instructions, decoded from the memory address. This is done by looking at the
second least significant bit. If it is 1, the two upper bytes in the word should be
written, if it is O the two lower bytes in the word should be written.

In order to load a value into a register, the Amber processor tile memory interface
loads a word from memory. The value then passes through the load function, which
processes the value based on three input values. The byte signal tells the load
function if a single byte is to be loaded. The desired byte is selected based on the
two least significant bits in the memory address. The halfword signal tells the load
function if a halfword is to be loaded. The desired bytes are selected by looking
at the second least significant bit in the memory address. The sign signal tells

34 3. RAV

the load function if it should sign extend the value. This value cannot be 1 unless
either halfword or byte signal is 1. If neither the byte nor the halfword signal
is high, the memory transaction is a regular load and the entire word is written to
a register.

3.4.4 Branch and Exchange

In order to be ARMv4T compliant, the bx instruction needs to be supported. It is
a branch instruction which also allows the user to change the execution state from
regular ARM state to Thumb state.

31 28 CPSR 7 0
MIMIM|M|M
NfZ|C|V NOT USED I|F|T alsl2]1lo0

Figure 3.5: The program status register format in ARMv4T.

Since the value in the PC register is word aligned, the least significant bit of any
value being written is ignored. The T-bit is added to the PSRs as shown in Figure 3.5
This bit is used by bx for setting Thumb state, of CPSR. If this bit is 1 the processor
enters the 16-bit thumb execution state. Otherwise the processor stays in 32-bit
ARM execution state. As the Thumb execution state is not supported by Rav,
writing 1 to the T-bit of CPSR triggers a special thumb exception. The decode
stage will then upon the next instruction trigger an undefined exception and put
the processor back in 32-bit ARM execution state. This exception can then be
checked for by looking at the T-bit in SPSR in the undefined exception handler.

3.5 Testing Rav

When making changes to a system as complex as the Amber processor tile, it is
important to verify that it still behaves as expected once the changes are in place.
Since the goal of Rav was to extend the functionality of Amber, it was possible to
reuse most instruction tests contained in the Amber project. The test framework
contained in the Amber project was simple to understand and to extend. It also
provided a basic framework for how the design should be tested. This simplified the
process of verifying the design. New tests were implemented for all new features
added by Rav.

3.5.1 Instruction Tests

The Amber project contains 59 instruction tests, each of which verifies that the
Amber processor tile behaves correctly for a certain ARMv2a instruction. These

16

20

3.5. TESTING RAV 35
instruction tests are small assembly programs which ensure that the results produced
by the processor are correct, an example can be seen in Figure 3.6

Since a large portion of the Rav core is identical to the Amber processor tile, most
of these tests could be reused without modifications.

main:
mov ri, #3
mov r2, #1
add r3, rl, r2
cmd r3, #4
movne r10, __LINE__
bne testfail
b testpass
testfail:
ldr r11, AdrTestStatus
str ri0o, [ri11]
b testfail

testpass:

ldr r11, AdrTestStatus
mov ri0, #17

str r10, [ri11]

b testpass

Figure 3.6: Excerpt from an instruction test for the add instruction.

Reusing the Amber Instruction Tests

All of the tests which interacted with the status flag bits, the execution mode or
performed context switches needed to be modified. Since one of the changes made
to the Amber processor tile was how the status bits were stored and modified, tests
that performed this explicit change of state needed to be modified to use the newly
added msr and mrs instructions.

Adding New Instruction Tests

In order to verify that the new functionality of Rav was correctly implemented, a
set of instruction tests was added to the Amber test framework. What these tests
verified is described below.

bx : It is possible to perform a function call return using the bx instruction.

Idrh : The 1drh instruction correctly loads a 16 bit value to the correct memory
location. It is possible to perform a single call to str (store word) and then
fetch the entire word produced by two 1drh calls.

36 3. RAV

Idrsh : When loading a signed half word from memory using 1drsh, the value
is correctly sign extended and stored in the target register.

Idrsb : When loading a signed byte from memory using 1drsb, the value is
correctly sign extended and stored in the target register.

mla_ long : The umlal instruction correctly multiplies the two source registers,
adds the sum of the two target registers and saves the result correctly. When
the result of the multiplication is zero, but the value accumulated from the
target registers is not zero, the zero flag is not set. When the result of the
multiplication is zero, and the value accumulated from the target registers is
zero, the zero flag is set.

mul__long : The umull instruction correctly multiplies the two source registers
and saves the result correctly in the two source registers. When the result is
zero, the Z-bit is set in CPSR.

mla_ long_hazard : For each of the registers used as argument to the umlal
instruction, if it is loaded from memory in the instruction preceding the umlal
instruction, the processor will be stalled, and the correct value will be used.

mul__long_hazard : The same as for mla_long hazard only with the umull
instruction.

mrs : The mrs instruction correctly copies the value of the CPSR to the target
register.

msr__flags_only_ i : msr with the flag_only bit set only updates the flag
bits of the CPSR register, and that it is possible to use an immediate value as
operand.

msr_flags only_r : The same as msr_flags only i, but uses a register as
operand instead of an immediate value.

msr__immediate : msr with an immediate value as argument correctly updates
the entire CPSR register.

shift_ cpsr__carry : The barrel shift unit is able to use the carry bit from the
CPSR register.

smla_ long : Doing signed multiplication with smlal works correctly. If the
result is negative, the N-bit of the CPSR is set, otherwise it is not set. The
value from the target registers is correctly added to the multiplication result, for
both positive and negative values.

smul__long : Doing signed multiplication with smull works correctly. If the
result is negative, the N-bit of the CPSR is set, otherwise it is not set.

spsr : It is possible to write to and read from the SPSR register using the msr
instruction.

3.5. TESTING RAV 37

spsr__change_ mode : The CPSR register is correctly backed up in the SPSR
register of the correct execution mode during context switches. When returning
to user mode, the CPSR value is correctly restored.

spsr__immediate : msr with an immediate value as argument and an SPSR
register as target correctly updates the entire SPSR register.

strh : Storing a half word using strh works correctly. It is possible to load a
value written by two strh calls by using ldr.

system__mode : It is possible to change the execution mode from system
mode. The same registers are available from system mode and user mode.

thumb__exception : Trying to enter Thumb state by setting the T-bit in
CPSR will trigger an undefined exception.

In addition to these new tests, several of the tests updated to work with Rav also
tested the new functionality. One of the tests which verified a large set of the new
functionality was the ldmb5 test. This test verifies that when an 1dm instruction is
called with R15 as one of its target registers and the S-bit set, the correct SPSR
value is copied to CPSR.

3.5.2 System Testing

Running large applications is often done to test that the behavior of an entire
processor is correct.

Bare Bones C Application

Since Rav will replace Amber as the processor tile in the SHMAC architecture, it is
important that any test applications used in the SHMAC project can be executed
on Rav. The SHMAC project contains a small C application which shows developers
how to correctly initialize the processor tile, and how to work with interrupts. It
starts off by setting up the stack for all of the various execution modes. This code
needed to be modified for Rav in a similar manner to that of the instruction tests
which changed execution mode. The new version can be seen in Figure 3.7.

38 3. RAV

mov r0, =top_stack

// Change to IRQ mode
msr cpsr, #0xD2
nop

// Set stack - 1MB
mov sp, r0
sub r0, r0O, #0x100000

// Change to UND mode
msr cpsr, #O0xDB
nop

// Set stack - 1MB
mov sp, r0

7| sub r0O, r0, #0x100000

Figure 3.7: Setting up the stack pointers of various execution modes for Rav.

In this application, the interrupt controller is configured to trigger a TIME interrupt
each second, and a HOST interrupt when the system receives a packet over UART.
Once the stacks of the execution modes are initialized, the interrupt handlers
are defined and the interrupt controller is configured, the main function of the
application can be called. The application print its processor tile ID once, for each

TIME interrupt it prints a “” and for each HOST interrupt it echoes the character
received back to the host.

This application verifies that context switches works properly, that interrupts are
properly managed in the SHMAC environment and that the status of the execution
modes are treated correctly. It helps verify parts of the processor that had been
modified during the implementation of Rav.

3.5.3 Performance

The motivation behind upgrading the SHMAC processor tile was increased software
compatibility, not performance. However, it was desirable to verify that the perfor-
mance had not been reduced by the upgrade. This was done using the instruction
tests and the SHA1 benchmark.

The Rav design met the same timing constraints as Amber and can therefore use
the same clock frequency. Since both processor tiles used the same frequency,
the number of cycles spent during an instruction test could be used to find the
execution time. 50 of the original 59 instruction tests were used. Tests that used
multiplication instructions or that used the cache differently were not included.

3.5. TESTING RAV 39

Results from these instructions test show that the Rav processor tile is on average
1.7% faster, Appendix C contains the results used for this calculation. This small
speedup can be attributed to less stalling when the status bits are in their own
register, and more efficient instructions for manipulating the status bits registers.

The multiplication tests had an average of 721% speedup. This speedup is attributed
the new two cycle multiplication unit.

The SHA1 benchmark [31] was performed on both the Amber and Rav processor
tile. This benchmark was run with cache. The original Amber processor tile had a
throughput of 1249 kB/s while the Rav processor tile had a throughput of 1368
kB/s.

Porting Linux to SHMAC

This chapter describes the steps taken when porting the Linux 3.12.13 kernel to
SHMAC with the ARMv4T compatible processor tile. It provides helpful information
for porting Linux to a new ARM platform, especially for an MMU-less platform.

4.1 Porting Steps

In subsection 2.5.3 it was stated that Linux is a portable operating system kernel,
and the criteria it meets in order to be called portable. The portability of the
ARM specific code has undergone major changes during the last years in order to
deal with the increasing variety of ARM System on Chip (SoC). These changes
involve modifications in the code infrastructure to create a common framework
for adding support for new ARM SoCs. During the Embedded Linux Conference
Europe 2012, Thomas Petazzoni held a presentation where he described the changes
and the current best practices for adding ARM SoCs support [6]. This presentation
“The ARM SoC Checklist” is the basis for the steps taken when porting Linux to
SHMAC.

Basic
Device Tree “Initialization” earlyprintk
(SoC and Board) C file and support

basic header files

IRQ controller Timer Serial port
driver driver driver

Figure 4.1: ARM SoC porting steps. (From [6].)

Figure 4.1 shows an illustration of the porting steps. These steps were all performed

41

42 4. PORTING LINUX TO SHMAC

when porting the Linux kernel to SHMAC. It should be noted that no kernel code
was modified during this project.

4.2 Linux Device Tree

When creating a Linux kernel image, it is desirable that the image can be executed
on several platforms, which is why the LDT is utilized. As described in 2.5.3, the
LDT functionality moves hardware specification and driver selection from the kernel
to a separate LDT which is independent from the Linux kernel.

The LDT is written in Device Tree Syntax, specifically developed for this purpose.
The Device Tree Compiler is used to compile the LDT definitions to a binary format.
All LDT bindings are documented in the Linux kernel documentation.

Since the Linux kernel did not include any hardware description of the SHMAC
architecture, this needed to be added. The entire SHMAC LDT description can be
seen in Figure 4.2.

This description starts by defining a top level compatible string. This is used by
the kernel to identify the correct configuration. The bootargs contained in the
chosen section is sent to the Linux kernel as bootloader arguments. This way,
configurations that should be provided by the bootloader can be reconfigured as
seen fit by the developers without having to actually modify the bootloader.

The hardware specific code starts in the soc section. Here, each of the components
which requires their own driver is described. Which details are provided in the
devices description depends on what type of device is being described.

Common for all SHMAC device descriptions are the compatible flags and register
definition. The compatible flag tells the kernel which driver should be loaded for
this device. The register definition specifies where in memory the control for the
device can be found.

The interrupt-controller description contains four extra fields:

interrupt-controller A flag stating that this device description is an interrupt
controller.

#interrupt-cells=1 The width of the interrupt line is 1 word (32 bits)
valid-mask Bitmask telling which of the 32 interrupt lines that are valid.
clear-mask Bitmask telling which of the 32 interrupt lines should be cleared

upon initialization.

Both the timer and uart descriptions contain interrupts values that indicate
which interrupt lines belongs to the device. This value is used by the interrupt

NO U W N

00

22

WWWNNNNNNDN
N=O WO Utk W

4.3. BASIC SETUP 43

controller when handing over control to the correct interrupt handler upon receiving
an interrupt. The uart description also contains a status flag, telling the kernel
that the device being described is not disabled. The timer description also contains
a frequency flag telling the Linux kernel the frequency of the clock source.

/include/ "skeleton.dtsi"

/1
compatible = "shmac,shmac';
model = "SHMAC RAV";
interrupt -parent = <&intc>;
aliases {
serial0 = &uartO;
};
chosen {
bootargs = "earlyprintk console=ttyshmc";
};
soc {
compatible = "simple-bus'";
#address-cells = <1>;
#size-cells = <1>;
ranges;
intc: interrupt-controller@fffe2000 {
compatible = "shmac,shmac-intc";
reg = <0xfffe2000 0x20>;
interrupt-controller;
#interrupt-cells = <1>;
clear-mask = <Oxffffffff>;
valid-mask = <0x0000000f >;
}s
uartO: uart@ffff0000 {
compatible = "shmac,shmac-uart";
reg = <0xffff0000 0x24>;
interrupts = <1>;
status = "ok'";
¥
timer0O: timer@fffe1000 {
compatible = "shmac,shmac-timer";
reg = <0xfffel000 0x20>;
clock-frequency = <60000000>;
interrupts = <2>;
};
timerl: timer@fffel1100 {
compatible = "shmac,shmac-timer";
reg = <0xfffel1100 0x20>;
clock-frequency = <60000000>;
interrupts = <3>;
};
}s
¥

Figure 4.2: SHMAC LDT definition.

4.3 Basic Setup

The first steps in porting Linux for SHMAC is creating the machine specific folder for
SHMAC. This contains basic SoC initialization and SoC constants. The next step

44 4. PORTING LINUX TO SHMAC

is to provide Linux with simple macros for putting a character through the UART.
This enables the kernel to print messages in the early phases of the initialization
without a serial driver initialized.

4.3.1 SoC Initialization

A minimal SoC initialization is a file that contains a LDT machine definition for
either a SoC or a family of SoCs. This definition describes the initialization function
to be called and the LDT compatibility list. The initialization function calls the
of _platform_populate function which walks the LDT and populate the platform
devices from the nodes, as seen in Figure 4.3

static void init shmac_init (void){

of platform_populate (NULL, of_default_bus_match_table, NULL, NULL);
}

static char const *shmac_dt_compat[] = {
"shmac , shmac",

NULL

};

DT_MACHINE_START (SHMAC_DT, "SHMAC")
.init_machine = shmac_init,
.dt_compat = shmac_dt_compat,

MACHINE_END

Figure 4.3: Linux SoC kernel configuration.

4.3.2 Early Kernel Messages

The kernel uses printk to print messages to the user. The printk function logs the
messages in a buffer and writes the buffer to every console which has been registered
with the function. In the early stages of the kernel initialization, printk has no
consoles registered so the messages are logged in a buffer. In order to print these
messages before the consoles have been registered, Linux provides the earlyprintk
mechanism where a SoC provides four simple low level functions for pushing a
single character through the UART. These low level functions are implemented as
assembly macros. Their implementation can be seen in Figure 4.4.

4.3. BASIC SETUP

#define SYS_BASE O0xfff£f0000
#define SYS_OUT_DATA 0x00
#define SYS_INT_STATUS 0x20
#define INT_HOST_IRQ 0x2

TR W N

6| /* Loads the base memory address of the system registers. x*/
7| .macro addruart,rp,tmp

8 ldr \rp, =SYS_BASE

9| .endm

10
11| /* Send a character to the host.x*x/
12| .macro senduart,rd,rx

13 strb \rd, [\rx, #SYS_OUT_DATA]
14| .endm

16| /* Wait until the host is ready to recieve a new character. */
17| .macro waituart,rd,rx

18 1001: 1dr \rd, [\rx, #SYS_INT_STATUS]

19 tst \rd, #INT_HOST_IRQ

20 bne 1001b

21| .endm

23| /* No implementation needed for SHMAC. x/
24| .macro busyuart,rd,rx
25| .endm

Figure 4.4: SHMAC early printk implementation.

4.3.3 Starting the Kernel

45

With early kernel messages supported, it is possible to debug the initialization

process. To start the kernel initialization process, a bootloader is needed.

The job of a bootloader is to initialize the hardware to a state known by the kernel,
pass system information, and tranfer control to the kernel. The LDT is capable of
providing the kernel with the same information as the bootloader. For this project,

all system information is provided to the kernel by the LDT.

The bootloader created for this project provides address of the LDT to the kernel
before handing over control. It is implemented in assembly, and the memory location
of the kernel is hard coded, so the Linux kernel needs to be placed in this memory

location for it to be booted.

A simplified version of the bootloader is shown in Figure 4.5.

46 4. PORTING LINUX TO SHMAC

/* Set all registers not used to ’0’ */
mov r0O, #0
mov r3, #0
mov r4, #0
mov r5, #0
mov r6, #0
/* Load the Linux Device Tree memory address */
ldr r2, =(dtb_entry)
/* Now hand control over to the Linux kernel */
ldr r7, =(linux_entry)
mov pc, r7

Figure 4.5: Simplified version of the bootloader.

4.4 Interrupt Controller Driver

The interrupt controller used on the SHMAC processor tiles are from the Amber
project. In order for Linux to be able to use the interrupts generated by this
interrupt controller, a driver needs to be defined. The Amber Interrupt Controller
(AIC) is relatively simple, and it does not support prioritizing or pending interrupts.

A Linux interrupt controller driver needs to implement the following functions:

ack Clear an interrupt line.

mask Disable an interrupt line.

unmask Enable an interrupt line.

init Initialize the interrupt controller, and the driver.
handle Deal with an interrupt.

map Translates a virtual interrupt request number used by the kernel to the
physical interrupt request number used by the interrupt controller.

The initialization code for the AIC driver loads the base address of the interrupt
controller from the device tree, configures the IRQ-domain (described below), and
sets the handler function. The ack/mask/unmask functions writes 0 or 1 to their
respective control bits in the AIC. The handle function identifies which interrupt
line generated the interrupt and hands the virtual interrupt request number over to
the Linux kernel so that the correct device specific handler can be called.

An TRQ controller needs to associate each interrupt device with an interrupt number.
The Linux kernel assigns a virtual interrupt identifier to each device which registers
an interrupt. This is done to avoid that several devices require the same interrupt

N

4.5. TIMER DRIVER 47

identifier, since it is important that the identifiers are unique. These virtual interrupt
identifiers are translated to hardware interrupt numbers in the interrupt controller
driver.

4.5 Timer Driver

The Linux kernel uses two devices for keeping track of time: A clocksource device
and a clockevent device.

The SHMAC timer driver exports its compatibility flag, as seen in Figure 4.6.
This is done so that the LDT can identify this driver as the correct one for the
SHMAC architecture. The SHMAC timer driver initializes both a clocksource and
a clockevent device.

CLOCKSOURCE_OF_DECLARE (shmac, "shmac,shmac-timer",
shmac_timer_init);

Figure 4.6: SHMAC timer driver exporting compatible flags to the LDT.

4.5.1 Clockevent Device

The standard Linux clockevent device interface contains the functions required for
the kernel to be able to generate periodic ticks. The SHMAC clockevent device
is implemented using a periodic timer found in the SHMAC processor tile. Its
functions can be seen below.

start start the timer.

stop stop the timer.

clear clear the timer interval value.

set__value set the timer interval value.

set__mode set the timer mode.

set__next__event set up the timer to generate the next tick event.

time__interrupt manage the timer interrupts, call the registered handler.

timer _init initialize the timer.

N

48 4. PORTING LINUX TO SHMAC

4.5.2 Clocksource Device

In addition to the events generated by the clockevent device, Linux requires a free
running timer to keep track of wall time. In the case of SHMAC, this is implemented
using a SHMAC system register that keeps track of the amount of clock ticks elapsed
since the system was started.

The only information required by the kernel is the frequency of these clock ticks,
and how this value can be read. Figure 4.7 shows how the system register is read,
compared to the eight functions implemented for the clockevent device, it is evident
that the clocksource device interface is simpler.

static u32 notrace shmac_sched_clock_read(void)

{
return readl (SHMAC_SYSTEM_TICK_COUNTER) ;
}

Figure 4.7: Function for reading the value of the SHMAC system clock register.

4.6 Serial Driver

SHMAC is able to perform serial communication with the host system. This
communication is done by reading and writing to a set of three registers that are
visible to both the host and the SHMAC system. By implementing a serial interface
on top of this protocol, it is possible to make Linux think it has a standard serial
interface available for use.

For a serial port to be integrated in a Linux system, it needs to be visible for
userland applications as a TTY device.

To provide a serial interface, it was necessary to implement a complete driver for
serial communication in the TTY layer. This driver is a platform driver with an
LDT binding, and it is integrated with both the UART and the console subsystems
in the Linux kernel.

4.6.1 Driver Registration

The driver initialization function is responsible for registering the driver information
with the kernel. To do this, the initialization code calls the uart_register_driver
and platform_register_driver functions.

The uart_register_driver function registers the uart_driver and the console
structures with the serial core layer. The uart_driver structure has information
about driver name, minor and major numbers and the number of serial ports
supported by this driver. The platform_register_driver function registers a

4.6. SERIAL DRIVER 49

platform_driver with two functions, probe and remove. The probe function is
called once for each node in the LDT that is compatible with the driver.

4.6.2 Console

If the console structure is registered with the flag CON_PRINTBUFFER set, the console

is added to printks list of consoles. The callback function shmac_uart_console_write
will then be called for each message from the kernel. This uses the uart_write_console

helper function, which ensures that each newline character is handled correctly.
This function, in turn, takes a function for printing a single character as input. The
shmac_console_putchar implements the SHMAC protocol for printing characters
via the SHMAC system registers, see Figure 4.8.

/* print a single character through the SHMAC system register x*/
static void shmac_console_putchar(struct uart_port *port, int ch)
{
while(readl_relaxed (port->membase + UARTn_STATUS) &
UARTn_STATUS_TXBUSY);
writel_relaxed(ch, port->membase + UARTn_TXDATA);
}

/* print a console message */
static void shmac_uart_console_write(struct console *co, const char *s
, unsigned int count)

{
struct shmac_uart_port *shmac_port = shmac_uart_ports[co->index];
uart_console_write (&shmac_port->port, s, count,
shmac_console_putchar) ;
}

Figure 4.8: Console write function in SHMAC serial driver.

4.6.3 Serial Port

The probe function in the platform_driver structure is called each time a platform
device is added to the system. This function will parse the device node in the LDT
and extract information about the memory map and interrupt lines. Memory is
then allocated for a uart_port structure which is registered with the serial core by
calling the function uart_add_one_port. The uart_port structure has information
about the memory map of the port, the interrupt line it should use and an uart_ops
structure containing callback functions to the serial driver.

4.6.4 UART Callback Functions

The uart_ops structure has callback functions which implements the device specific
functions and is the interface between the serial core and hardware specific driver.
Whenever a SHMAC UART callback function has an empty definition, the return

50 4. PORTING LINUX TO SHMAC

value is set according to what the Linux documentation states should be the default
value.

tx__empty Test whether the transmitter queue for the port is empty. Since the
SHMAC serial protocol has no transmitter queue this function always returns
((empty”.

set__mctrl Set the modem control lines for the port. In the SHMAC serial
implementation, this function is empty.

get__mctrl Return the status of the modem control inputs. In the SHMAC
serial implementation, this function always returns “active”.

start__tx Start the transmission of characters. In the SHMAC serial imple-
mentation, this function calls the shmac_tx_chars function which handles the
transmission.

stop__tx Stop the transmission of characters. In the SHMAC serial implemen-
tation, this function is empty since the transmission is handled without interrupts

stop__rx Stop receiving character. In the SHMAC serial implementation, this
function is empty.

enable__ms Enable the modem status interrupts. In the SHMAC serial imple-
mentation, this function is empty.

break__ctl Control the transmission of a break signal. In the SHMAC serial
implementation, this function is empty.

startup Initialize interrupts and setup all low level driver state. In the SHMAC
serial implementation, this function sets up the receiver interrupt handler.

shutdown Disable the port and free resources. In the SHMAC serial implemen-
tation, this function removes the interrupt handler used for receiving character.

set__termios Alter the UART parameters of the port. In the SHMAC serial
implementation, this function is empty since there are no parameters to change.

type Return the UART port type.

4.6. SERIAL DRIVER 51

request__port Request the resources required by the port. In the SHMAC
serial implementation, this function requests the memory map of the SHMAC
system registers used to communicate with the host.

release__port Release the resources acquired by the port. In the SHMAC serial
implementation, this function release the memory map of the SHMAC system
registers.

config_ port Perform autoconfiguration of the port. In the SHMAC serial
implementation, this function sets the port type to “SHMAC port”.

verify__port Verify the port configuration. In the SHMAC serial implementa-
tion, this function returns “false” if the port is not a SHMAC port.

4.6.5 UART Transmission

When the write system call is invoked on a file descriptor that is connected to
a serial character device, the write call is invoked on the TTY subsystem. The
TTY subsystem will perform its own buffering and line editing before calling
the device driver. When the TTY subsystem calls the start_tx function, the
characters to be written are stored in a circular buffer named xmit and the callback
function uart_tx_start is called. It is then up to the serial driver to transmit
these characters over the serial interface. The function shmac_tx_char shown
in Figure 4.9 handles the transmission of these characters. First the function checks
if it should send the high priority character, this is used to implement flow control.
Next it loops over the circular buffer and pushes all the character over the serial
interface. The driver is expected to call the uart_write_wakeup function when the
number of characters in the transmit buffer drops below a certain threshold. This
will wake up any processes which is waiting for the TTY subsystem to flush its
buffer.

Y OU R W N =

o 3 D

WONNNNNNN NN

52 4. PORTING LINUX TO SHMAC

static void shmac_tx_chars(struct uart_port *port)

{
struct circ_buf *xmit = &port->state->xmit;
if (port->x_char) {
/* send port->x_char out the port here */
shmac_console_putchar (port, port->x_char);
port->icount.tx++;
port->x_char = 0;
return;
}
while (1)
if (luart_circ_empty(xmit) && !uart_tx_stopped(port)) {
port->icount.tx++;
shmac_console_putchar (port, xmit->buf [xmit->
taill);
xmit->tail = (xmit->tail + 1) & (
UART_XMIT_SIZE - 1);
} else
break;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup (port);
if (uart_circ_empty (xmit))
shmac_uart_stop_tx (port);
}

static void shmac_uart_start_tx(struct uart_port *port)
{
/* Start transmitting characters x*/
shmac_tx_chars (port) ;

Figure 4.9: SHMAC serial driver UART transmit function.

4.6.6 UART Reception

Receiving characters from the wuser is handled using interrupts. When the
uart_startup function is called, it registers an interrupt handler for the specified
TRQ number. The IRQ handler will then read the character from the UART and in-
sert it into the TTY layer by calling tty_insert_flip_char, as seen in Figure 4.10.
The SHMAC serial driver will then notify the TTY layer that characters (in this
case, never more than one) have been inserted by calling tty_flip_buffer_push.

N

w

4.7. ADDING MULTICORE SUPPORT TO LINUX 53

static irqreturn_t shmac_uart_rxirq(int irq, void #*data){
struct shmac_uart_port *shmac_port = data;
struct uart_port *port = &shmac_port->port;
struct tty_port *tport &port->state->port;
char rxchar;
spin_lock (&port->lock);

rxchar = readl_relaxed(port->membase + UARTn_RXDATA);
port->icount.rx++;
tty_insert_flip_char (tport, rxchar, 0);

spin_unlock (&port->lock);
tty_flip_buffer_push(tport);
return IRQ_HANDLED;

Figure 4.10: SHMAC serial driver UART receive function.

4.7 Adding Multicore Support to Linux

The problem description for this thesis states that multicore support should be
added to Linux if times permits. This section presents the results from a detailed
investigation into what modifications would be required for the ported version of
Linux to support SMP.

ARMV6 is the first ARM architecture with SMP support in the Linux kernel. This
can be seen when inspecting the Linux configuration dependencies and by looking
at the kernel code, as shown in Figure 4.11. The only reason for this requirement
is that the atomic instructions required for SMP execution are implemented using
instructions not found in earlier ARM ISA versions than ARMv6.

#if LINUX_ARM_ARCH__ < 6

/* min ARCH < ARMv6 */

#ifdef CONFIG_SMP

#error "SMP is not supported on this platform"
#endif

Figure 4.11: Excerpt from Linux SMP code for ARM.

A second requirement for SMP support in Linux is a Memory Protection Unit (MPU)
or MMU, see Figure 4.12. One reason for this requirement is that either an MMU or
an MPU is need for the kernel to be able to enforce memory protection. In a system
without an MPU or MMU, such as SHMAC, there is no way to protect memory
addresses from being modified by unauthorized applications. Any application can

[

Y Ot s W

54 4. PORTING LINUX TO SHMAC

modify any memory address, including those containing the kernel code. It is
possible to have SMP without MPU or MMU, but this would imply security issues.
Also, an MMU or MPU has the ability to mark memory regions as “shared”. This
is required by the load exclusive (1drex) and store exclusive (strex) mechanism
added in ARMv6.

config SMP
bool "Symmetric Multi-Processing"
depends on CPU_V6K || CPU_V7

depends on GENERIC_CLOCKEVENTS
depends on HAVE_SMP
depends on MMU || ARM_MPU

Figure 4.12: Excerpt from Linux kernel configuration for ARM.

These requirements imply that either the kernel code or the hardware would need
to be modified in order to add SMP support for Linux on SHMAC. A possibly
incomplete set of changes required for adding SMP support is now presented.

4.7.1 Adding Kernel Support

For Linux to be able to provide mutual exclusion, it depends on a set of locking
primitives. Since the existing locking function for ARM are implemented using in-
structions not supported by ARMv4T the functions would have to be re-implemented
using the swp atomic instruction.

Atomic

In order for the ported Linux kernel to support SMP, the atomic interface would
need to be updated.

The functions which need to be defined in the atomic interface are shown in Table 4.1:

Compare and Exchange

A second synchronization mechanism required by the Linux kernel is the cmpxchg
(compare and exchange) function. This function performs a conditional atomic
exchange between a register and a memory address. The condition is that the value
residing in that memory address must match that of a given register. This function
could be used as the base function for implementing a mutex, which again could be
used to simplify the implementation of the functions in the atomic interface.

4.8. TESTING LINUX 55

Linux atomic interface

Function Functionality

atomic_add_return Add a value to the atomic value and return the new
value.

atomic_sub_return Subtract a value from the atomic value and return

the new value.

atomic_cmpxchg_return Compare two values, and change the value of the
atomic only if they are equal.

atomic_clear_mask Clear bits in the atomic.

Table 4.1: Linux atomic interface.

Spinlock

The spinlock interface provides functions for interacting with a spinlock. Compared
to the cmpxchg and atomic interfaces, these functions includes mechanisms not only
for handling the lock, but also for the power management to be done while waiting
for the lock. Since the Rav processor does not support any power management,
these functions could be implemented using cmpxchg.

Configuration

The configuration process of the Linux kernel contains a large set of dependencies
between the various properties. For instance, if the value of the CONFIG_ARCH_
variable indicates an ARM architecture that precedes ARMv6, it would not be
possible select CONFIG_SMP. In order for the ported Linux kernel to support SMP,
several of these dependencies would need to be removed, including dependencies
between SMP, the ISA version and whether the processor contains an MPU or
MMU.

4.7.2 Adding Hardware Support

Another possible solution is to update Rav to support the ARMv6 ISA. This
would require supporting the load exclusive and store exclusive instructions. These
instructions might require either MMU or MPU support in order to implement the
exclusive protocol.

4.8 Testing Linux

Testing of the ported Linux kernel has been done in two areas: the SHMAC device
drivers and the Linux system call interface.

56 4. PORTING LINUX TO SHMAC

4.8.1 Interrupts

The interrupt controller driver is arguably one of the most central pieces of the
ported Linux kernel, as it works as a wrapper for all interrupt handling. The
functionality that needed to be tested was that the virtual IRQ-number mapping
was handled correctly, that the appropriate interrupt handler was called, that it
was possible to mask and unmask interrupts, and that the configuration from the
LDT was correctly invoked.

This testing was performed by using the already implemented timer driver and
serial driver. A test application was executed that echoed the users input, and that
generated a timer interrupt each second. By adding print statements in various
places of the interrupt controller driver, and executing this test application, it was
possible to verify that both timer and serial devices were being handled correctly.

4.8.2 Timer

The timer driver provides timed interrupts and kernel time progression. It had
to be verified that the timer was able to generate the interrupts, and that kernel
time progressed correctly. To verify that the timer driver correctly provided timed
interrupts, the system call sleep and setitimer were used. To verify that the
kernel time progression was correct, long running benchmarks were used with the
time utility provided by BusyBox. The time reported was compared with the wall
clock.

4.8.3 Serial Communication

The serial driver was tested by doing user interactions with the BusyBox shell.
The driver was tested by typing commands to the shell, performing line editing by
deleting characters with the backspace and delete key and navigating in the line
with the arrow keys. Also, the ability to deliver control codes such as Ctrl+c or
Ctrl+z was tested.

4.8.4 System Calls

The Linux kernel provide its services through the system call interface. It is therefore
important to verify that the system calls behave as expected. There exists 380
Linux system calls, which are too many to verify individually given the time frame
of this project. A set of 38 system calls, considered to be of significant importance
by [29], was verified.

By modifying the kernel code to print the name of each system call being invoked,
it was possible to do a crude system call tracing. BusyBox contains a large set of
applications that interact heavily with the kernel. These applications were built for
the ported Linux kernel, and used to trigger the system calls. By calling BusyBox
applications with system call tracing, it was possible to trace which system calls
were being invoked by the applications. By verifying the behavior of the application

4.8. TESTING LINUX 57

performing the system calls, it was possible to indirectly test whether or not the
various system calls invoked were behaving correctly. Figure 4.13 shows the system
call trace from calling the BusyBox application 1s. In cases where it was difficult
to verify a system call using a BusyBox application, a test application was written.

write, open, 1lseek,

write, close,ioctl,

ioctl, sigaction, setpgid,
execve, ioctl, ioctl,
gettimeofday, ioctl, ioctl,
ioctl, stat64, open,
fstat64, fcntl, mmap_pgoff,
getdents, lstat64, lstat64,
getdents, close

Figure 4.13: System call trace for 1s.

Process System Calls

The Linux process management subsystem handles how processes are created and
destroyed. Linux uses signals as a mechanism for handling interprocess communica-
tion. When a signal is delivered to the process, the process’ signal handler is run.
All process related system calls were verified using test applications.

Simple Shell Sits in a loop and reads commands from the user. For every
command, it uses the vfork call to create a new process. The new process then
tests if the command is a file, if the file exists it replaces the process image using
the execve system call with this file. If the file does not exist the process exits
using the _exit system call. The old process then wait for the new process to
exit before it reads a new command.

Test Alarm Installs an alarm signal function handler and then performs the
alarm system call in order to generate an alarm signal after one second. When
the alarm signal handler is run, it decrements a counter. If the counter is not
zero, it performs a new alarm system call in the same way as before.

Test Sigpending Blocks signal by using sigprocmask, the process is then
uninterruptable for 10 seconds. After 10 seconds, the program checks if the user
has tried to interrupt the program using sigpending.

Test Sigsuspend Creates two processes, the first process spawns the second
process and then suspends until it receives a signal using sigsuspend. The
second process will then deliver a signal using kill to the first process and wake
it up.

58 4. PORTING LINUX TO SHMAC

Test Clone The clone test creates two threads using clone and hands them
two different arguments. The test then waits for both of the threads to terminate
before it exits.

A summary of the process and signal related system calls that were tested, and
which test is used to verify them, is shown in Table 4.2.

Process System Calls

System Call Functionality Verification
vfork create a child process and block parent simple_shell
wait await process completion simple_ shell
execve execute program simple__shell
_exit terminate the process simple__shell
sigaction examine and change a signal action test_ timer
sigprocmask examine and change blocked signals test__sigpending
sigpending examine pending signals test_ sigpending
sigsuspend wait for a signal test__sigsuspend
kill send a signal to a process test_ sigsuspend
alarm set an alarm clock for delivery of signal test_ signals
clone start a new thread test_ clone

Table 4.2: Verifying process system calls.

Security System Calls

Linux handles security with the notion that a process runs with the same permissions
as the user who started the process. This is implemented through the use of a user
ID and a group ID. It is possible for a privileged process to drop to a lower security
level by assuming the identity of another user. This is implemented through the
use of effective user ID and effective group ID.

Changing the owner and access permission bits of files in the system has been tested
using the BusyBox utilities chmod, chown.

Test IDs Uses the get/set user/group ID system calls and tries to open a test
file owned by the root user. It starts out as the root user and creates the test
file. First it changes the effective user and tries to open the file, this access fails.
It then switches the effective user back to the root user and tries again to open
the file, this access succeeds. It then switches the real user ID and tries to open
the file, this access fails. Then it tries to switch back to the root user and open
the file, this switch and the access to the file fails.

Test permissions Uses access to check file permission on a file. It then
switches to another user and performs the same test.

4.8. TESTING LINUX

99

A summary of the security related system calls that were tested and the test that
verifies them is shown in Table 4.3

Security

System Call Functionality Verification

chmod change file mode bits chmod
chown change file owner and group chown
access determine accessibility of a file relative to directory test_ permissions

file descriptor

getuid get a real user ID test_ids
geteuid get the effective user ID test_ids
getgid get the real group ID test_ ids
getegid get the effective group ID test_ids
setuid set user ID test_ids
setgid set group ID test_ ids
seteuid set effective user ID test_ids
setegid set effective group ID test_ ids

Table 4.3: Verifying security system calls.

Memory Management System Calls

Memory in a Linux system is typically managed by the library procedure malloc.
This procedure relies on the system call brk and sbrk, which both change the size
of the data segment for the process. The mmap and munmap system calls are used to
map and unmap a file in memory. As the Linux kernel on SHMAC runs entirely in
memory, these system calls are used every time a file is created or destroyed. They
were verified by the BusyBox utilities touch and rm which were used to create and
destroy a file.

Sbrk test A simple version of malloc was written to test sbrk. It implements
malloc by expanding the data segment with the amount of bytes that is requested
and returning the address of the original end of the data segment. If the sbrk
call fails it returns zero.

A summary of the memory management system calls that were tested and the test
that verifies them is shown in Table 4.4

File and Folder System Calls

Files and folders play an important role in Linux, and there are many system calls
for manipulating them. BusyBox contains many utilities used for manipulating files
and folders from the shell.

60 4. PORTING LINUX TO SHMAC

Memory System Calls

System Call Functionality Verification
sbrk change data segment size test_ sbrk
mmap map pages of memory touch
munmap unmap pages of memory rm

Table 4.4: Verifying memory system calls.

A summary of the file and folder system calls that were tested and the test that
verifies them is shown in Table 4.5.

File and Folder System Calls

System Call Functionality Verification
open open file relative to directory file descriptor 1s
close close a file descriptor 1s
read read from file cat
write write to file echo
lseek move the read/write file offset tail
stat display file or file system status find
pipe create an interprocess channel [, as in "ls | sort"
fentl file control find
mkdir make directories mkdir
rmdir remove empty directories rmdir
link create a link to a file 1n
unlink remove the file mv
chdir change working directory cd

Table 4.5: Verifying files and folders system calls.

Userland Toolchain

Two different toolchains were needed for this project: one to build the Linux kernel
and one to build userland applications. The userland toolchain needed to contain a
standard C library implementation compatible with the Linux system call interface.
The kernel toolchain needed to be capable of producing ARMv4T code.

The toolchain used to compile the Linux kernel was a prebuilt bare metal ARM
toolchain [9]. The userland toolchain had to be built from source, a process that
proved to be more difficult than expected. This chapter describes the steps taken
in order to produce a working userland toolchain.

5.1 Userland Toolchain Requirements

The job of the userland toolchain is to produce applications that can be executed
by the kernel. They should also be able to communicate with the kernel through
the Linux system call interface.

As the target for this toolchain was a Linux kernel on an MMU-less architecture,
the uClibc implementation of the standard C library had to be used. At the time
of writing, this is the only standard C library implementation compatible with an
MMU-less version of Linux. Also, in order for the target Linux kernel to be able
to execute the executable files, they would need to be converted from the ELF
format to the BFLT format. For this operation a tool called elf2fit was required. In
addition to these specialized MMU-less tools, the GNU C compiler, GNU linker and
GNU assembler needed to be contained in the toolchain. All of these components
needed to be configured and compiled in such a way that they were able to work
with each other and produce a correct executable file for the target system.

Crosstool-NG was used to build the userland toolchain.

5.2 Challenges Encountered

Several challenges had to be overcome during the toolchain building process. A
majority of these challenges emerged from the lack of an MMU. Below is a short

61

62 5. USERLAND TOOLCHAIN

ARM-RAV-UCLINUX-UCLIBCGNUEABI

Frontend (gcc) Header files
Linux 3.12

C compiler standard C library
(uClibc)

Backend (binutils) libraries

Linker, assembler libgce, libm ..

standard C library

elffit (uClibc)

Figure 5.1: Components included in the userland toolchain.

description of the challenges encountered.

5.2.1 libgcc

The libgce library and ARMvAT instruction set had some compatibility issues with
the version of GCC used. With GCC 4.8.1, the linker was unable to link with libgcc.
With GCC 4.7.2, the compilation of libgce terminated with a segmentation fault.
Therefore, version 4.6.4 of GCC was used in the final toolchain.

5.2.2 uClibc

It should be possible to utilize shared libraries in uClibc. However, it was not
possible to compile the toolchain with this setting, as the linking with libgce failed.
Therefore, uClibc was built using only static libraries.

5.2.3 Crosstool-NG

Crosstool-NG assumed that all ARM-architectures had an MMU and terminated
with a message saying that ARM was an invalid target for an MMU-less toolchain.
Therefore, the Crosstool-NG source code needed to be modified to allow ARM-
architectures without an MMU as a target.

5.2.4 elf2flt

The development of elf2flt appeared to be in a state of abandonment, with their
official repository being offline since February 2014. The last version obtained from
the official repository had no support for the ARM.extab sections. The ARM.extab

5.3. THE FINAL TOOLCHAIN 63

sections are a part of the exception handling functionality of the ARM ABI, and
are used to provide stack trace information. The elf2flt version included in the
PTXdist project came from an unofficial repository and contained fixes not found
in the original version. This version included patches which added support for the
ARM.extab sections.

When compiling for ARMv4T architectures, the compiler inserts ARM_ V4BX
relocations whenever it uses a bx instruction. Relocations are needed to make the
program able to run independent of its memory location. This information is only
needed on ARMv4T to allow an ARMv4 application to link with an ARMv4T
object. Then every “bx rm” instruction is transformed into a matching “mov pc,
rm” instruction. The elf2flt version included in PTXdist had to be modified to add
support for this relocation.

When linking with the POSIX threading library (pthreads) implementation in
uClibc, the relocation R__ARM_TARGET1 is used. This relocation was not
supported by elf2flt and no fix was found.

5.3 The Final Toolchain

The toolchain is not able to link with the POSIX threading library. The configuration
steps and modifications to produce this toolchain are described in Appendix B.
The toolchain is named arm-rav-uclinuz-uclibcgnueabi. Its name is of the format:
[architecture]-[vendor]-[os]-[systemtype].

5.4 Testing the Toolchain

As the generated toolchain is a product of bundling a set of already verified tools,
only the interaction between these tools is verified for this project. This toolchain
needed to be compatible with the ABI of the ported Linux kernel. This could be
verified by compiling a set of userland applications and verifying their behavior.

As a part of extending the ported Linux kernel with a large set of UNIX userland
tools, the BusyBox project was planned to be built. Since BusyBox contains a large
set of Linux applications with heavy use of both Linux system calls and standard C
library functions, it was decided that building and running BusyBox would give a
satisfactory level of confidence in the correctness of the toolchain. As described in
the next chapter, the toolchain proved to be capable of building BusyBox.

Building a Linux Distribution

In order to provide a Linux distribution, it would be necessary to build a large set of
userland applications. To build these userland applications, the userland toolchain
generated would need to be utilized. Building and executing a large set of userland
applications would increase the confidence in the correctness of both the ported
Linux kernel and the toolchain.

The resulting Linux distribution is based on the Linux kernel and BusyBox and is
called SHMAC' Linuz.

6.1 Creating a Userspace Environment

In order for any non-kernel code to be executed by the Linux kernel, it needs to
be placed in the root file system. The root file system can be realized in several
ways. The simplest way is to use the kernels initramfs functionality as the root file
system. This filesystem is contained within the kernel binary file, and is unpacked
during the Linux kernel initialization phase.

In the case of SHMAC Linux, all userland applications needs to be located within
this filesystem. When the kernel is compiled, the files which should be included in
the filesystem are located, and packed together with the kernel image. Which files
should be included is defined in a special list file as seen in Figure 6.1. This list
specifies not only which files should be included, but also their type, permissions
and user and group identification numbers.

6.2 Integrating BusyBox with Linux

As seen in Figure 6.1 BusyBox consists of only one file in the SHMAC Linux
userspace. Also, a symbolic link is created that makes the BusyBox the standard
shell interpreter.

Once the kernel is initialized, it executes the first userland application. In SHMAC
Linux, this file is the init shell script seen in Figure 6.2. This shell script is
interpreted by the BusyBox shell.

65

66 6. BUILDING A LINUX DISTRIBUTION

/* type name path permission userid groupid */
dir /dev 0755 0 O

dir /usr 0755 0 0O

dir /usr/bin 0755 0 O

dir /usr/sbin 0755 0 0

dir /sbin 0755 0 0

dir /bin 0755 0 O

dir /proc 0755 0 0

dir /sys 0755 0 O

nod /dev/console 0755 0 0 c 5 1

nod /dev/loop0O 0644 0 0 b 7 0

file /bin/busybox ../userland/busybox-1.22.1/busybox 0755 0 0
file /init ../initramfs/init 0755 0 O

slink /bin/sh /bin/busybox 0755 0 0

Figure 6.1: Example of initramfs configure list.

The first command installs the BusyBox applications. Once this command returns,
all BusyBox applications are available for use. The next command mounts pseudo
file systems, exposing information about processes and devices. For the BusyBox
applications to be callable directly from the shell without giving their absolute path,
the PATH variable is set to contain the locations of the BusyBox applications. The
last command of the shell script executes BusyBox’ initialization program, which
again starts the shell. Once the shell has been started, the system is ready for user
interaction.

6.3 Using SHMAC Linux

A set of tools has been developed to simplify the process of running SHMAC
Linux. The SHMAC system is contained on a development system accessible via
serial communication from the host system. These scripts automate the process of
compiling the bootloader, LDT, Linux kernel and userland applications; uploading
them to the SHMAC host; placing them in the correct place in memory and start
execution. In addition to these scripts, a guide has been written to aid further
development of this project. This guide is found in Appendix A.

User tests have been performed. In these, SHMAC developers without knowledge
about SHMAC Linux have followed this guide and executed the scripts. Results
indicate that SHMAC Linux is easy to install and use.

R

~

10
11
12
13

6.3. USING SHMAC LINUX

#!/bin/busybox sh
/bin/busybox --install -s

clear
echo "SHMAC Linux"

#Mount pseudo file systems
mount -t proc proc /proc

mount -t sysfs sysfs /sys

export PATH="/bin:/sbin:/usr/bin:/usr/sbin"
exec /sbin/init

Figure 6.2: SHMAC Linux init script.

67

Benchmarking

A set of benchmarks provided by [31] was built to run on both SHMAC Linux and
on bare metal SHMAC. These benchmarks were executed on Rav and an improved
version of Rav named Turbo-Amber [16].

7.1 Benchmark Set
bitcount performs a set of bit counting algorithms. Seven different algorithms

are each performed over 75 000 iterations.

gsort sorts strings by using the gsort function provided by the standard C
library. An input of 10000 lines was used.

basicmath solves a set of equations and converts between radians and degrees.
This benchmark contains floating point operations, which is not supported in

hardware by SHMAC.

dhrystone is a synthetic integer benchmark. It calculates a value called “Dhry-
stones per second” which is the number of main loop iterations per second.

dijkstra finds the shortest path in a statically defined two dimensional map.
shal performs the SHA1 hashing algorithm on a static set of data.
7.2 Comparing Benchmark Results on Linux and Bare
Bones
To investigate the overhead introduced by Linux, the set of benchmarks was executed
on both SHMAC Linux and bare metal SHMAC. The results from this can be

seen in Table 7.1 The results show the performance decrease of Linux execution
compared to bare metal execution.

The performance decrease is calculated by:

69

70 7. BENCHMARKING

Linux execution time

Performance decrease = - -
bare metal execution time

Benchmark Linux Bare Bones Performance Decrease
bitcount 24.05 s 21.92 s 1.10
gsort 85.30 s 14.49 s 5.89
basicmath 121.90 s 181.18 s 0.67
dhrystone 1.04 DMIPS 1.81 DMIPS 1.74
dijkstra 212.04 s 146.12 s 1.45
shal 189 iterations/sec 203 iterations/sec 1.07

Table 7.1: Comparing benchmark results from Linux and bare metal.

The difference between the results from Linux and bare metal varies from a perfor-
mance loss of 0.67 in basic math to a speedup of 5.89 in gsort. A large difference
between executing the benchmark on Linux and bare metal is that they are built
with two different toolchains.

As described in chapter 5, different standard C library implementations can be used
in different toolchains. The bare metal benchmarks have been compiled with a
toolchain that uses the newlib standard C library implementation, while the Linux
benchmarks have been compiled with a toolchain that uses the uClibc standard C
library implementation. Since the implementation of the various standard C library
calls vary, it is not meaningful to compare the results from benchmarks compiled
with different standard C library implementations.

7.3 Comparing Performance Increase Achieved on Linux
and Bare Bones

It is clear that comparing the results from benchmarks compiled with different
standard C library implementations does not produce comparable results. However,
for SHMAC it is interesting to see the performance increase achieved when executing
the same benchmark on different hardware. It would therefore be interesting to see
if executing benchmarks on two different hardware setups would produce the same
performance increase when running the benchmarks on bare metal SHMAC and
SHMAC Linux. That is, if the introduction of a hardware accelerator yields a 2x
performance increase when performing the benchmark on bare metal, is the same
performance increase found when executing the benchmark on SHMAC Linux.

Turbo-Amber is an improved version of Rav [16]. It extends Rav with an instruction
buffer between the fetch and decode stage, and branch predictors.

Table 7.2 and Table 7.3 shows the comparison of the benchmark results from the
Rav and the Turbo-Amber processor when executed on top of Linux and bare metal

7.3. COMPARING PERFORMANCE INCREASE ACHIEVED ON LINUX AND BARE
BONES 71

respectively. The tables show the results achieved in the different benchmarks, and
the performance increase achieved by Turbo-Amber. It is worth noting that the
benchmarks have all been run with no cache due to a bug in the cache. This means
that the performance increase achieved here does not give an accurate speedup for
Turbo-Amber compared to Rav.

The performance increase is calculated by:

Rav execution time
Performance Increase =

Turbo-Amber execution time

Linux
Benchmark Rav Turbo-Amber Performance Increase
bitcount 24.05 s 4.70 s 5.11
basicmath 121.90 s 25.98 s 4.69
gsort 86.81 s 21.39 s 4.05
dhrystone 1.04 DMIPS 3.42 DMIPS 3.29
dijkstra 152.00 s 38.40 s 3.95
shal 189 iterations/sec 766 iterations/sec 4.05

Table 7.2: Performance increase measured when executing benchmark on top of Linux.

Bare Bones

Benchmark Rav Turbo-Amber Performance Increase
bitcount 21.92 s 4.50 s 4.87
basicmath 181.00 s 40.81 s 4.43
gsort 14.49 s 4.16 s 3.48
dhrystone 1.81 DMIPS 6.51 DMIPS 3.59
dijkstra 146.12 s 36.7 s 3.98
shal 203 iterations/sec 841.00 iterations/sec 4.14

Table 7.3: Performance increase measured when executing benchmark on top of bare
metal.

The benchmark results in Table 7.2 and Table 7.3 shows that the performance
increase is not equal when the benchmarks were executed on bare metal SHMAC
and SHMAC Linux. In order to investigate the difference between the performance
increase values, the percent difference was calculated. The percent difference has
been calculated by dividing the difference of the performance increase (PI) with the
average of the performance increase.

72 7. BENCHMARKING

. difference | PI Bare Bones — PI Linux |
Percent Difference = “average <100 % = PT Bare Bones - PT Linux 100 %
2

Benchmark Percent Difference

bitcount 413 %
basicmath 3.72 %
gsort 3.12 %
dhrystone 2.25 %
dijkstra 2.96 %
shal 3.04 %
Average 3.20 %
Variance 0.43 %

Table 7.4: Percentage difference between executing benchmark on Linux and bare metal.

From Table 7.4 it is clear that the percent difference between the two performance
increase values is small, with an average of 3.20% and a variance of 0.43%. This
shows that when the benchmarks have been built using the same toolchain and
executed on two different hardware platforms, the performance increase of the
hardware can be correctly captured.

Discussion

This project has been executed in four stages: hardware modification, porting,
toolchain creation and operating system building. The results from these stages
are Rav, SHMAC support in Linux, a userland toolchain and SHMAC Linux,
respectively. These four results have each placed a set of requirements to the later
stages of the project. Also, the order in which the tasks were executed has had a
big effect on the final result of the project. This chapter discusses the process of
this project, the design choices made, their consequences and the results achieved.

8.1 Performing a Bottom Up Project

The nature of this project makes a bottom up approach the only logical choice;
only by starting at the bottom would it be possible to verify the correctness of
the next task. Once the new processor tile, Rav, was in place, the porting process
of the Linux kernel could be verified by executing the kernel code on a SHMAC
system containing the Rav processor tile. If the final execution platform for the
Linux kernel had not been finished, it would not have been possible to verify that
the port was correct. Again, once the Linux kernel had been ported, it was possible
to verify that the toolchain built was correctly configured.

8.2 Top Down Verification

In addition to this bottom up verification, a top down verification takes place once
the later tasks are finished. Figure 8.1 shows how tasks identified in the assignment
interpretation is based on, and hence verifies, the results from the previous tasks.

8.3 Building a Toolchain in Parallel

By experience, the authors were aware that building a toolchain for an MMU-less
architecture was difficult, but also required. The process of building a toolchain
was started as soon as the work on porting Linux started. There existed several
tools for building a toolchain, most of which also support building an entire Linux
distribution. Testing these tools to see if they are able to produce a toolchain

73

74 8. DISCUSSION

T‘”T 5 Benchmarks Prn;rgerztms Sﬂmﬁc
T3 arm-rav-uclinux-uclibcgnueabi
T2 Linux Kernel

\d
™ Rav

Figure 8.1: Top down verification.

compatible with the results from this project proved to be a tedious and time
consuming process. It took several months from the first tools were tested to a
working toolchain had been created. Since this was done in parallel with porting
the Linux kernel, once the first version of a compatible toolchain had been built, it
was possible to verify its correctness.

8.4 Design Choices

This section will present the biggest design choices taken during this project, and
emphasize on their motivation and their consequences.

8.4.1 Supporting ARMv4T

As the assignment text for this project states, ARMv3 was the target ISA. During
the initial research, it was found that this ISA had not been used in any of the
processors supported in the latest version of the Linux kernel. The last version
to claim ARMv3 support was 3.9, which was considered to be new enough to
fulfill the requirement from the assignment text that a “recent” version of the
Linux kernel should be ported. As explained in section 8.3, the work on building
a toolchain started almost as soon as ARMv3 support had been added to the
SHMAC processor tile. During the search for a framework for building a toolchain,
it was found that none of the available tools had support for ARMv3. This was a
result of the bx instruction used in the standardized AAPCS which was missing
in ARMv3. An operating system kernel without a compatible toolchain is not of
any use, since its would not be possible to utilize its system calls, so after looking
at the documentation for ARMv4T it was decided that this should be the target
architecture.

8.5. RESULTS 75

8.4.2 Including an FPGA Specific Multiplier

During the effort to increase the performance of the Amber core by Akre and
Bge [16], an FPGA specific multiplication unit was added to the SHMAC processor
tile. When the choice was made to support ARMv4T in Rav, it was found that
one of the biggest changes from ARMv3 was support for long multiplication and
long multiply accumulate. Instead of extending the Amber multiplication unit to
64-bit, which would require 65 cycles to complete a long multiplication instruction,
it was decided that an FPGA multiplier should be used instead. This did not
only increase the performance but also simplified the development of the ARMv4T
support. The multiplication unit was realized through a cooperative effort with
Akre and Bge [16]. Akre and Bge supplied the multiplication unit according to
an agreed upon interface. The multiplication unit was then integrated in the Rav
processor.

8.4.3 Building BusyBox for SHMAC

The main goal of this project was to port the Linux kernel to SHMAC to simplify
the development process for SHMAC researchers. Since the mandatory tasks were
completed within the time frame it was decided that an attempt should be made
to build the entire BusyBox suite for the ported Linux kernel. Since a toolchain
capable of building user applications for the ported Linux kernel had been generated,
it was possible to build BusyBox for SHMAC. BusyBox improved the usability of
the final result of this project.

8.5 Results

This section discusses the result of each of the tasks interpreted from the assignment
text.

T1 Modify the Amber processor tile so that it supports the ARMv3
ISA. The Amber processor tile was upgraded to Rav, a new processor tile that
first supported ARMv3. It was found that ARMv3 did not support the ARM
architecture procedure call standard, hence it proved to be problematic to generate
the required toolchain for this architecture. Therefore, Rav was updated to support
ARMVAT. The Rav processor tile was tested using both instruction tests and system
tests. As a complete Linux distribution has been executed on Rav without issues,
the confidence in its correctness is great.

The work of updating the Amber processor tile proved to be simpler than expected.
There are several reasons for this. ARM provides well written documentation
for almost all of its ISAs, which makes it simple to produce an accurate set of
modifications required for upgrading the ISA support. The Amber project provided
a powerful framework for verifying its processor core that was easy to extend. Had
this framework not been provided, a similar framework would have to be built from
scratch for the upgrade of the Amber processor tile to be possible. Lastly, the

76 8. DISCUSSION

authors had previous experience with constructing and verifying an implementation
of the classic five stage RISC pipeline. This provided the authors with knowledge
essential for this task.

T2 Port a recent version of the Linux kernel to this new processor tile
Once Rav had been successfully implemented and tested, it was possible to use it as
a test platform for this task. The version of Linux ported was the 3.12.13 version,
which at the time was the newest long term version of the Linux kernel available.
The porting was done by following the guidelines, practices and examples for the
newest ARM SoC platform support in the Linux kernel.

First, basic platform initialization and debug support was added for the SHMAC
platform. Then device drivers was added for the SHMAC hardware. The ported
version of Linux was tested by running application that uses the core subset of the
system calls. A set of user applications were executed with system call tracing to
verify a set of 38 high importance system calls.

Compared to the work done by the authors in [17], where the Linux 2.4.28 kernel
was ported to the SHMAC platform, this task was simpler to execute and required
less work. Onmne of the reasons for this is that the Linux kernel has undergone
major changes since then to make it portable. Another reason is that the target
architecture for the port was fully supported by the Linux kernel version ported,
with the exception of the SHMAC specific drivers. The decision to provide ARMv4T
support in Rav was vital for this task, since support for ARMv3 architectures was
poor.

T3 Provide a toolchain which is compliant with the ported version of
Linux. For the work done in T2 to be of any use, a toolchain compatible with the
ported Linux kernel needed to be provided. Without such a toolchain, it would not
be possible for SHMAC developers to utilize the system call interface provided by
the kernel. By using the cross-compiler generation tool Crosstool-NG alongside a
set of tools from the uClinux project, uClibc and elf2flt, it was possible to build a
toolchain that was fully compatible with the ported Linux kernel. The toolchain
was verified by using it for building a complete Linux distribution, SHMAC Linux,
hence the confidence in its correctness is great.

As with the previous task, this task was simplified by the ARMv4T support provided
by Rav. Still, this proved to be the most time consuming task of this project. A
reason for this could be the time consuming nature of the process of building and
verifying toolchains. Finding a combination of configurations which did not produce
a compilation error during the build process was difficult. Once such an error
free configuration had been found, it would take 30 minutes to complete the build
process. Now that it had been built it could be tested by building an application
which utilized system calls.

T4 Test and Benchmark the new processor tile and the ported version

8.5. RESULTS 77

of the Linux kernel A set of benchmarks provided by Wikene [31] was ported to
both bare metal execution on Rav and to run on the ported Linux kernel. These
benchmarks were executed on both the standard Rav processor tile and a faster
version called Turbo-Amber, provided by Akre and Bge [16]. The motivation
behind executing the benchmarks on these different platforms was to investigate
the overhead introduced by Linux, and to argue that the tools provided by this
project did not perturb the results produced by the benchmarks.

The percent difference was found when measuring the performance increase of two
different processor tiles on bare metal and Linux. This percent difference was low,
which shows that Linux works well as a benchmarking platform for hardware.

T5 Build a minimal Linux distribution capable of user interaction. Once
the kernel had been ported and the toolchain had been verified, it was desirable
to build a large set of user applications. This was desirable not only to verify the
correctness of the toolchain, it would also allow for a low control high coverage
verification of the Linux system calls. BusyBox was perfect for building such a
distribution as it targets embedded architectures with limited memory resources
and has support for MMU-less targets.

Using the toolchain produced in T3, building BusyBox for the ported Linux kernel
was a straight forward job. Only minor modifications to the default configuration
were required to build an executable which provided a set of userland applications
large enough to make out a complete Linux distribution. Once this was done,
only minor modifications to the kernel configuration were required to generate a
userspace in which BusyBox could reside.

The result from this task, SHMAC Linux, is a complete Linux distribution.

T6 Enable multicore support in Linux. As SHMAC is a multicore architecture,
it was desirable to provide multicore support for SHMAC Linux. Due to time
limitations for this project, no implementation was done for this task, only research
into the effort required for adding multicore support. Several interesting results
were found.

Since SHMAC is a single ISA heterogeneous multicore architecture with shared
memory, the SMP model of Linux would work with only few modifications. Two
possible approaches to provide multicore support were found: modifying the kernel
or modifying the SHMAC processor tile.

Since ARMv6 was the first ARM ISA to have SMP support in the kernel, the kernel
configuration system does not allow for pre ARMv6 architectures to be configured
with SMP functionality. This is easily circumvented by modifying the configuration
dependency files. Also, since the locking functionality, upon which SMP support
depends, has been implemented using instructions not supported by ARMv4T, all
required locking functionality would have to be re-implemented using instructions
supported by ARMv4T.

78 8. DISCUSSION

Alternatively, SMP support could be added by using the approach used for this
project: modify the hardware to increase software support. By upgrading the
SHMAC processor tile once again, and adding support for the ARMv6 ISA, it would
possible to add SMP support without modifying the kernel.

T7 Investigate the possibility of mass storage through the SHMAC host
controller. Due to time limitations no progress was made on this task.

Conclusion

For a hardware research project such as SHMAC, it is important that developing
tools for testing and verifying suggested designs can be done efficiently. The results
from this project provide tools which allows for increased efficiency when developing
software for the SHMAC prototype.

The aim of this project was to upgrade the SHMAC processor tile, port the Linux
kernel to SHMAC and provide a toolchain for the ported Linux kernel. The new
processor tile, Rav, is based on the Amber Core and supports the ARMv4T ISA.
SHMAC Linux and the userland toolchain enables SHMAC developers to write
applications which utilize the standard C library and Linux system calls.

The lack of tools for the SHMAC prototype prior to this project made it difficult
to be efficient when developing software for SHMAC. Also, the ISA supported by
the old processor tile imposed restrictions to the set of software tools compatible
with SHMAC. By upgrading the SHMAC processor tile to support a newer ISA
and porting Linux this project has raised the abstraction level of SHMAC software
from bare metal software to Linux software. All components produced have been
tested to argue for their usability and correctness. To ensure that SHMAC Linux
is an attractive solution for SHMAC developers, effort has been made to simplify
the process of installing and using it. This has been done by providing a set of
automated tools and user documentation. User tests have been executed to verify
that these tools and documents are of satisfactory quality.

During the project, work has been done in all layers of the computer model, from
the hardware layer to the application layer. This made it possible to approach
challenges from both the top and bottom of the computer model, something which
proved to be a necessity for building SHMAC Linux.

79

Further Work

This chapter presents possible tasks for increasing the usefulness of the products
from this thesis.

10.1 Memory Management Unit

Most operating systems and C libraries depend on the virtual memory abstraction
provided by an MMU. This project has shown that it is possible to port Linux to an
MMU-less architecture, and also to provide a large set of UNIX-tools. For further
development, however, the authors strongly recommends that an MMU should be
implemented for use with the SHMAC processor tiles.

The OpenRisc project [11] contains an open source implementation of a Harvard
architecture based MMU which would be a good fit for the SHMAC processor tile
architecture.

10.2 Upgrade Serial Port Driver for new SHMAC
Implementation

During this project, the SHMAC architecture has been extended with more TTY
channels. The SHMAC serial driver would have to be updated in order to work with
this modified hardware interface. By supporting this new SHMAC architecture, it
would be possible to integrate the debugger proposed by Seime [28] with SHMAC
Linux.

10.3 Enable Mass Storage Support
As the SHMAC architecture only contains 32 MB of memory, the amount of data

available for benchmarks is limited. Providing mass storage support for SHMAC
Linux would make it possible to execute benchmarks with large data sets.

81

82 10. FURTHER WORK

10.4 SMP Support in SHMAC Linux

Since the SHMAC project targets multicore architectures, it is desirable that
SHMAC Linux supports SMP. Section 4.7 presents a detailed description of the
tasks required for adding SMP support to SHMAC Linux. This section presents
two approaches for adding SMP support: modifying the kernel or modifying the
hardware. As this project has shown, modifying hardware could be an efficient
alternative to modifying software tools. Also, as explained in the next section,
supporting a more recent ISA would still contribute in simplifying development of
SHMAC software.

10.5 Upgrading Rav

Further upgrading the SHMAC processor tile to support more recent ISAs would
still yield an increase in supported software tools. The authors recommend ARMv6
as the next target ISA, as this would simplify the process of adding SMP support
for SHMAC Linux. This project provides valuable information into how such a
process should be completed.

[10]
[11]
[12]

[13]

[14]

Bibliography

Acorn A300 Series Service Manual. http://acorn.chriswhy.co.uk/docs/Acorn/
Manuals/Acorn__A300__SMCLSup.pdf. Accessed 2014-04-16.

Acorn A3000 Service Manual. http://acorn.chriswhy.co.uk/docs/Acorn/
Manuals/Acorn_ A3000SM.pdf. Accessed 2014-04-16.

Acorn A3010, A3020 and A4000 Module Level Service Manual. http://acorn.
chriswhy.co.uk/docs/Acorn/Manuals/Acorn__A3010A3020A4000SM. Accessed
2014-04-16.

Acorn A5000 Hardware Guide. http://acorn.chriswhy.co.uk/docs/Acorn/
Manuals/Acorn_ A500HwGuide.pdf. Accessed 2014-04-16.

ARM Company Milestones. http://arm.com/about/company-profile/milestones.
php. Accessed 2014-05-27.

ARM SoC Checklist Presentation. http://elinux.org/images/a/ad/
Arm-soc-checklist.pdf. Accessed 2014-05-21.

Buildroot Mailing List, "Buildroot and NOMMU". http://lists.busybox.net/
pipermail /buildroot/2013- August/076236.html. Accessed: 2014-02-25.

Buildroot Project Home Page. http://buildroot.uclibc.org. Accessed: 2014-03-09.

Mentor Graphics Sourcery CodeBench for ARM EABI. http://www.mentor.com/
embedded-software /sourcery-tools/sourcery-codebench/editions/lite-edition/ .
Accessed 2014-04-16.

Newlib Home Page. https://sourceware.org/newlib/. Accessed: 2014-03-25.
OpenCores Project Home Page. http://opencores.org. Accessed: 2014-05-19.

SHMAC Project Home Page. http://www.ntnu.edu/ime/eecs/shmac. Accessed:
2014-03-03.

Top 500 Project Statistics. http://www.top500.org/statistics/overtime/. Ac-
cessed 2014-04-28.

uClibc Homepage. http://www.uclibc.org/. Accessed: 2014-03-25.

83

http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A300_SMCLSup.pdf
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A300_SMCLSup.pdf
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A3000SM.pdf
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A3000SM.pdf
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A3010A3020A4000SM
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A3010A3020A4000SM
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A500HwGuide.pdf
http://acorn.chriswhy.co.uk/docs/Acorn/Manuals/Acorn_A500HwGuide.pdf
http://arm.com/about/company-profile/milestones.php
http://arm.com/about/company-profile/milestones.php
http://elinux.org/images/a/ad/Arm-soc-checklist.pdf
http://elinux.org/images/a/ad/Arm-soc-checklist.pdf
http://lists.busybox.net/pipermail/buildroot/2013-August/076236.html
http://lists.busybox.net/pipermail/buildroot/2013-August/076236.html
http://buildroot.uclibc.org
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://sourceware.org/newlib/
http://opencores.org
http://www.ntnu.edu/ime/eecs/shmac
http://www.top500.org/statistics/overtime/
http://www.uclibc.org/

84

[15]

[16]

o)

BIBLIOGRAPHY

W3Techs Web Technology Surveys. http://w3techs.com/technologies/overview/
operating_ system/all. Accessed 2014-04-28.

Anders T. Akre and Sebastian Bge. Turbo Amber, A high performance pro-
cessor core for SHMAC. Master’s thesis, Norwegian University of Science and
Technology, 2014.

Hakon). Amundsen and Joakim E.C. Andersson. SHMAC Operating System.
Technical report, Department of Computer and Information Science, Norwegian
University of Science and Technology, 2013.

ARM. ARMTDI Data Sheet, 1994.
ARM. Procedure Call Standard for the ARM Architecture, November 2012.

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. Solid-State
Circuits, IEEE Journal of, 9(5):256-268, Oct 1974.

H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA),
2011 38th Annual International Symposium on, pages 365-376, June 2011.

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 5th edition, 2011.

VLSI Technology Inc. ACORN RISC MACHINE (ARM) FAMILY DATA
MANUAL, 1990.

Kernighan, Brian W and Ritchie, Dennis M. The C' Programming Language.
Prentice Hall Professional Technical Reference, 2nd edition, 1988.

D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 2005.

Leif Tore Rusten and Gunnar Inge Sortland. Implementing a Heterogeneous
Multi-Core Prototype in an FPGA, 2012.

Conor Santiford. Amber 2 Core Specification, May 2013.

Bjorn C. Seime. Debugger for SHMAC. Master’s thesis, Norwegian University
of Science and Technology, 2014.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007.

Linus Thorvalds. Linux: a portable operating system, 1997.

Hakon O. Wikene. Benchmarking SHMAC. Technical report, Norwegian Uni-
versity of Science and Technology, Department of Computer and Information
Science, 2013.

http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/overview/operating_system/all

(S L N R I

Compile and Run Linux

A.1 Setup Enviroment Variables

In order for the scripts to run, the following environment variables needs to be set:

export SB=<your shmacbox ip>

export SBUNAME=<your shmacbox login name>

export RL=<path/to/repo/software/linux> (no slash at end)
export RAV_CROSSTOOL=arm-rav-uclinux-uclibcgnueabi -
export ARCH=arm

(Put these in your bashrc)

A.2 Toolchain

Follow the guide at Appendix B for toolchain setup. (you will need both kernel and
userland toolchain).

A.3 BusyBox

Download and compile BusyBox.

cd $RL/userland/

wget http://www.busybox.net/downloads/busybox-1.22.1.tar.bz2
tar xfj busybox-1.22.1.tar.bz2

cd busybox-1.22.1

make CROSS_COMPILE=$RAV_CROSSTOOL defconfig

make CROSS_COMPILE=$RAV_CROSSTOOL menuconfig

— BusyBox Settings —>

o Build Options —>

85

86 A. COMPILE AND RUN LINUX

* CHECK Build BusyBox as a static binary
* CHECK Force NOMMU build

*+ UNCHECK Build with Large File Support
x Additional CFLAGS (-elf2flt)

o BusyBox Library Tuning —>
x+ UNCHECK Tab Completion

— Networking Utilities —>

o UNCHECK *everything*

Exit and save.

l‘make CROSS_COMPILE=$RAV_CROSSTOOL SKIP_STRIP=y

A.4 Linux Kernel

Download and compile Linux. The patch file 0100-ravlinux.patch contains all the
changes made by this project.

1 cd $RL

2 wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.12.13.tar.xz

3 tar xJf 1linux-3.12.13.tar.xz

i cd $RL/1linux-3.12.13

5 patch -pl < ../patches/0002-ARM-deprecate-mach-timex.h-for-
ARCH_MULTIPLATFORM.patch

6 patch -pl < ../patches/0003-ARM-make-mach-xyz-Makefile.boot-optional-
for-ARCH_MU.patch

7 patch -pl < ../patches/0020-ARM-efm32gg-dk3750-add-simple-framebuffer.
patch

8 patch -pl < ../patches/0100-ravlinux.patch

9 make shmac_defconfig

10 make menuconfig # (if you wish to customize anything)

11 make Image -j4é

A.5 Run

A script named ravrun has been created to make it easy to run Linux on SHMAC.
Add it to the path:

1 export PATH=$RL/bin:$PATH

For a first time run, use

1
2
3
3
!
5

G W N

N

A.6. BUILDING USERLAND APPLICATIONS

87

ravrun ldrsbu

Usage: ravrun {[rldbush] || m [SIZE_IN_BYTES]}
r - Run
1 - Compile and upload LINUX
d - Compile and upload DEVICE TREE BLOB
b - Compile and upload BOOTLOADER
u - Compile and upload all userland applications
s - Copy run script to host
m [bytes] - Dump bytes from memory
h - display this help message

A.6 Building Userland Applications

Add a folder in $RL/userland for your application

mkdir $RL/userland/hello-world

Create the source file hello-world.c

#include <stdio.h>

int main(int argc, char* argv[]){
printf ("hello world\n");
return O;

}

Create Makefile

SRC=hello-world.c # source files
TGT=hello-world # the target file

include ../include/common.mk # include common make rules
make

Add entry in $RL/initramfs/initramfs.list

<type> <file name> <path to executable> <permission bits> <userid> <

groupid>
file /hello-world ../userland/helloworld/hello-world 0755 0 O

88 A. COMPILE AND RUN LINUX

Compile and Run Linux.

ravrun lur

Execute program in shell

./hello-world
hello world
#

A.7 Miscellaneous

Compiling with -Ipthreads does not work due to R_ ARM_TARGET1 relocation is
not supported by elf2flt.

Toolchain Guide

This guide explains how to setup the kernel and userland toolchain.

B.1 Kernel Toolchain

Download and install the arm-eabi-none toolchain at sourcery.mentor.com. Make

sure to add it to your $PATH so that its callable from anywhere. Alternatively, a pre

built toolchain can be downloaded using “scp <username>@login.idi.ntnu.no: /home/felles/card/toolc
rav-uclinux-uclibcgnueabi.tar.gz”.

B.2 Userland Toolchain

A prebuilt version of the userland toolchain an be downloaded.

‘‘scp <username>Qlogin.idi.ntnu.no:/home/felles/card/toolchain/arm-rav

-uclinux-uclibcgnueabi.tar.gz’’
If this does not work, or you wish to customize the toolchain, follow the next steps.

B.2.1 Setup

Create, and enter a workspace folder.

mkdir $HOME/toolchain-rav
export TC=$HOME/toolchain-rav
cd $TC

Create a source folder.

mkdir src

89

https://sourcery.mentor.com/GNUToolchain/package12190/public/arm-none-eabi/arm-2013.11-24-arm-none-eabi-i686-pc-linux-gnu.tar.bz2

90 B. TOOLCHAIN GUIDE

Download and< extract all required sources (uClibc 0.9.33.2, Linux 3.12.13, crosstool-
ng 1.19.0)

cd $TC/src

wget http://www.uclibc.org/downloads/uClibc-0.9.33.2.tar.xz

tar xf uClibc-0.9.33.2.tar.xz -C ../

wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.12.13.tar.gz

tar xzf linux-3.12.13.tar.gz -C ../

wget http://crosstool-ng.org/download/crosstool-ng/crosstool-ng
-1.19.0.tar.bz2

tar xjf crosstool-ng-1.19.0.tar.bz2 -C ../

B.2.2 Setup uClibc

In order to generate a valid uClibe configuration, uClibc needs to be matched with
the Linux header files, we will set these up now.

cd $TC/linux-3.12.13

make mrproper

make ARCH=arm headers_check

make ARCH=arm INSTALL_HDR_PATH=dest headers_install

B.2.3 Configuration uClibc

cd $TC/uClibc-0.9.33.2
make menuconfig

— Target Architecture -> arm
— Target Architecture Feature And Options

o CHECK ’Build For glseabi’

o CHECK ’Use BX in function return’

o Target Processor Endianess -> Little Endian

o UNCHECK Target CPU has Memory Management Unit (MMU)

o UNCHECK Target CPU has a floating point unit

o CHECK Enable full C99 math support

o Linux Kernel Header Location -> ‘pwd‘/../linux-3.12.13/dest/include

— General Library Setting

o UNCHECK PIC

[

N

o NN, B N U]

B.2. USERLAND TOOLCHAIN 91

o Thread Support -> older (stable) version of linuxthreads

o CHECK Enable SuSv3 LEGACY functions

o CHECK Enable SuSv4d LEGACY ...

o CHECK Provide libutil

o UNCHECK Enable etc/TZ file support
— Library Installation Options

o UNCHECK Hardwire absolute paths into linker scripts
— Development /debugging Options

o Cross-compiling toolchain prefix -> ’arm-none-eabi-’

o Extra cflags -> ' -mabi=aapcs-linux ’

B.2.4 Setup Crosstool-NG

Create a folder in which to install crosstool-ng

mkdir $TC/ct-ng

Go to the crosstool source folder and install it.

cd $TC/crosstool-ng-1.19.0
./configure --prefix=‘pwd‘/../ct-ng
make

make install

export PATH=$PATH: ‘pwd ‘/../ct-ng/bin

Create a folder in which to save all tarballs used by crosstool. Preload this directory
with elf2flt, and load custom patches to ct-ng.

mkdir $TC/ct-ng-src && cd $TC/ct-ng-src

wget http://redmine.idi.ntnu.no/attachments/download/6/elf2flt_shmac.
tar.gz

tar xzf elf2flt_shmac.tar.gz

mv elf2flt/elf2flt-cvs.tar.gz $TC/ct-ng-src

mkdir $TC/ct-ng/lib/ct-ng.1.19.0/patches/elf2flt

mkdir $TC/ct-ng/lib/ct-ng.1.19.0/patches/elf2flt/cvs

mv elf2flt/*.patch $TC/ct-ng/lib/ct-ng.1.19.0/patches/elf2flt/cvs

rm -rf elf2flt

rm elf2flt_shmac.tar.gz

92 B. TOOLCHAIN GUIDE

B.2.5 Configuration Crosstool-NG

cd $TC/ct-ng
ct-ng arm-unknown-linux-gnueabi

3 ct-ng menuconfig

— Path and misc options

o Local Tarballs Directory -> " $TC/ct-ng-src "
— Target Options

o UNCHECK Use the MMU

o Architecture Level -> ’armv4t’
o Floating Point: -> softfp (FPU)
o CHECK Use Thumb Interworking

— Toolchain Options
o Tuple’s Vendor String -> 'rav’
— Operating System Options

o Linux Kernel Version -> ’custom tarball or directory’
o Path to custom source, tarball or directory -> "pwd‘/../linux-3.12.13’
o UNCHECK Build shared libraries

— Binary

o binutils version -> 2.22
o UNCHECK binutils libraries for the target

— C Compiler

o GCC version -> 4.6.4

o UNCHECK C++, FORTRAN and Java
o UNCHECK link libstdc++ ...

o UNCHECK Enable 128 bit long doubles

— C Library
o Configuration file ->’ ‘pwd‘/../uClibc-0.9.33.2/.config’

o Threading implementation to use -> linuxthreads

— Debug facilities

B.2. USERLAND TOOLCHAIN 93

o UNCHECK everything!
— Companion Libraries

o MPFR version -> 3.1.2

Since Crosstool-NG assumes that no ARM architectures are MMU-less, we need to
tell it otherwise. Run the command:

1 sed -i ’s/m68k)/arm)/’ $TC/ct-ng/lib/ct-ng.1.19.0/scripts/build/kernel
/linux.sh

Which changes line 14 to say ’arm’ instead of 'm68k’, voila!

B.2.6 Building the Toolchain

1 cd $TC/ct-ng
2 ct-ng build

Now add the new toolchain to $PATH:

I export PATH=$PATH: $HOME/x-tools/arm-shmac-linux-uclibcgnueabi/bin

Instruction Test Cycle Comparison

Test Name

Rav no. Cycles

Amber no. Cycles

Rav Speedup

cacheable area
ldm3

uart_reg
cache3

sbc

cache_ swap
flow3

add

ldm2

sub
stm_stream
barrel shift rs
cache_swp_ bug
bic_ bug

bl

adc

ddr33

irq

movs__bug
conflict rd
strb
swp__lock_ bug
stm?2

cache2
flow__bug

ldm1

941
191
186
23373
342
15198
482
172
251
117
9941
93
5458
126
133
85
4712
23413
127
301
265
7
314
69
101
371

1074
200
187
23374
343
15197
458
173
249
118
11928
94
5459
127
134
86
4713
23402
128
301
266
78
309
68
102
372

1.141
1.047
1.005
1.000
1.003
1.000
0.950
1.006
0.992
1.009
1.200
1.011
1.000
1.008
1.008
1.012
1.000
1.000
1.008
1.000
1.004
1.013
0.984
0.986
1.010
1.003

95

96 C.INSTRUCTION TEST CYCLE COMPARISON

Test Name

Rav no. Cycles

Amber no. Cycles

Rav Speedup

uart tx
cache flush
cachel

SWp

firq
hiboot_mem
ddr32
undefined_ins
irq_stm
flow2

swi
ethmac tx
stml

ddr31
ethmac mem
ldm4
Idm_stm_onetwo
barrel shift
inflate_bug
flowl

Idr

uart_ rx

bee

32746
3673
2999
240
6609
88
47123
336
1779
e
143
4648
1455
22821
17618
221
747
761
83
404
706
32779
45

32776
3962
3000
241
6772
89
47124
390
2155
T
146
4653
1456
22822
17619
198
746
760
84
404
707
32760
46

1.001
1.079
1.000
1.004
1.025
1.011
1.000
1.161
1.211
1.004
1.021
1.001
1.001
1.000
1.000
0.896
0.999
0.999
1.012
1.000
1.001
0.999
1.022

	Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Computer Architecture Trends
	SHMAC
	SHMAC Operating System Project
	Assignment Interpretation
	Contributions
	Report Outline

	Background
	SHMAC
	SHMAC Architecture
	Amber Processor Tile
	SHMAC Development Environment

	ARM Instruction Set Architecture
	Comparing the ARMv2a and ARMv3 ISA
	Comparing the ARMv3 and ARMv4 ISA
	ARMv4T Extension
	ARM Architecture Procedure Call Standard

	Amber
	Amber Core
	Test Framework

	Operating Systems
	Operating System Definition
	Terminology Used in this Thesis

	Linux
	Linux Distribution Overview
	Linux Kernel Overview
	Porting Linux
	Writing Software for Linux

	The uClinux Project
	GNU Operating System
	BusyBox
	Toolchains
	Standard C Library

	Multicore Operating Systems
	Symmetric Multiprocessing
	Locking Primitives
	SMP in Linux

	Rav
	Motivation
	Execution Stage Schematic
	Implementing Rav with ARMv3 Support
	Program Status Registers
	New Processor Modes
	Program Status Register Transfer Instructions
	Execution Context

	Implementing Rav with ARMv4T support
	System Mode
	Long Multiplication
	Halfword Load and Store
	Branch and Exchange

	Testing Rav
	Instruction Tests
	System Testing
	Performance

	Porting Linux to SHMAC
	Porting Steps
	Linux Device Tree
	Basic Setup
	SoC Initialization
	Early Kernel Messages
	Starting the Kernel

	Interrupt Controller Driver
	Timer Driver
	Clockevent Device
	Clocksource Device

	Serial Driver
	Driver Registration
	Console
	Serial Port
	UART Callback Functions
	UART Transmission
	UART Reception

	Adding Multicore Support to Linux
	Adding Kernel Support
	Adding Hardware Support

	Testing Linux
	Interrupts
	Timer
	Serial Communication
	System Calls

	Userland Toolchain
	Userland Toolchain Requirements
	Challenges Encountered
	libgcc
	uClibc
	Crosstool-NG
	elf2flt

	The Final Toolchain
	Testing the Toolchain

	Building a Linux Distribution
	Creating a Userspace Environment
	Integrating BusyBox with Linux
	Using SHMAC Linux

	Benchmarking
	Benchmark Set
	Comparing Benchmark Results on Linux and Bare Bones
	Comparing Performance Increase Achieved on Linux and Bare Bones

	Discussion
	Performing a Bottom Up Project
	Top Down Verification
	Building a Toolchain in Parallel
	Design Choices
	Supporting ARMv4T
	Including an FPGA Specific Multiplier
	Building BusyBox for SHMAC

	Results

	Conclusion
	Further Work
	Memory Management Unit
	Upgrade Serial Port Driver for new shmac Implementation
	Enable Mass Storage Support
	smp Support in shmac Linux
	Upgrading Rav

	Bibliography
	Compile and Run Linux
	Setup Enviroment Variables
	Toolchain
	BusyBox
	Linux Kernel
	Run
	Building Userland Applications
	Miscellaneous

	Toolchain Guide
	Kernel Toolchain
	Userland Toolchain
	Setup
	Setup uClibc
	Configuration uClibc
	Setup Crosstool-NG
	Configuration Crosstool-NG
	Building the Toolchain

	Instruction Test Cycle Comparison

