
Collaborative Filtering in the News
Domain with Explicit and Implicit
Feedback

Dag Einar Monsen
Patrick Heia Romstad

Master of Science in Computer Science

Supervisor: Jon Atle Gulla, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

In online recommender systems, we use computerized algorithms to present arti-
cles targeted at the preferences of each individual user. One such technique, called
collaborative filtering, works by selecting articles that is preferred by users with
preferences similar to those of the target user. There are different ways to deter-
mine a users preference. A common practice is to ask for it, for instance by offering
the user to provide a rating from one to five. Users are, however, often reluctant
to provide such information. From a usability perspective, it is better to look at
their behaviour, or implicit feedback, and use that to infer their preferences.

The main goal of this thesis is to determine whether we can use such implicit
feedback in order to improve the accuracy a collaborative filtering method. We
have implemented and tested a number of standard machine learning algorithms
for mapping implicit feedback to explicit ratings. These algorithms are applied
to a news data set consisting of user interactions collected while reading and
rating news articles. After the mapping techniques have inferred possible new
ratings, the next step is to generate recommendations, which is done with a matrix
factorization algorithm. To measure the effect of adding implicit feedback to the
recommendations we calculate the root mean square error (RMSE).

We have developed a fast and scalable collaborative filtering component and inte-
grated it with a news aggregation service called SmartMedia. The component uses
a combination of nearest neighbor search on articles with more than 30% correla-
tion and a time threshold of 20 seconds to infer ratings based on user interactions
collected. We show that these methods improve the RMSE by 5.14% compared
to using only ratings users have given.

Our work shows that utilizing implicit feedback can improve recommendation ac-
curacy in the news domain. The techniques we have developed require less explicit
rating to be given from users in order to create good recommendations. Thus we
believe that the next generation of recommender systems will be less dependent
on explicit rating while still being able to provide high quality recommendations.

i

Sammendrag

I nettbaserte anbefalingssystemer kan vi bruke algoritmer for å presentere en sam-
ling artikler tilpasset hver individuelle bruker. Én slik teknikk, kalt collaborative
filtering, fungerer ved å anbefale artikler foretrukket av brukere med samme prefer-
anser som målbrukeren. Det er ulike måter å avgjøre slike preferanser. En vanlig
praksis er å spørre om det, for eksempel ved å tilby brukeren å gi en karakter fra
en til fem. Brukere er imidlertidig ofte motvillige til å oppgi slik informasjon. Fra
et brukbarhetsperspektiv er det bedre å se p̊a deres interaksjoner, eller implisitte
brukerdata, og bruke det til å gi anbefalinger.

Hovedm̊alet med denne masteroppgaven er å avgjøre om vi kan bruke slik implisitt
brukerdata for å forbedre nøyaktigheten til et anbefalingssystem. Vi har imple-
mentert og testet ulike maskinlæringsalgoritmer som oversetter implisitt bruk-
erdata til eksplisitte karakterer. Alle algoritmene har blitt testet p̊a et nyhets-
datasett som best̊ar av brukerinteraksjoner som har blitt innsamlet mens bruk-
erne har lest og gitt karakterer til nyhetsartiklene. Etter at brukerdata har blitt
oversatt til karakterer, er det neste steget å lage anbefalinger ved hjelp av matrise-
faktorisering. For å måle effekten av å utnytte brukerdata til å lage anbefalinger,
beregner vi rotmiddelkvadratavviket (RMSE).

Vi har utviklet en kjapp og skalerbar anbefalingskomponent, og integrert den med
en nyhetsinnsamler kalt SmartMedia. Komponenten bruker en kombinasjon av
nærmeste nabosøk p̊a nyhetsartikler med mer enn 30% korrelasjon og en tidsterskel
p̊a 20 sekunder for å inferere nye karakterer basert p̊a innsamlet brukerdata. Vi
viser at disse metodene forbedrer RMSE med 5.14% sammenliknet med metoder
som kun utnytter eksplisitte karakterer.

Arbeidet v̊art viser at implisitt brukerdata kan forbedre anbefalingsnøyaktigheten
i nyhetsdomenet. Teknikkene vi har utviklet krever færre karakterer fra brukere
for å kunne gi gode anbefalinger. Vi tror derfor at neste generasjons anbefal-
ingssystemer vil være mindre avhengige av karakterer for å kunne gi anbefalinger
av høy kvalitet.

iii

Preface
This master’s thesis is the culmination of our work, carried out during the 10th

semester of our Master of Computer Science degree at the Norwegian University
of Science and Technology, NTNU.

We wish to thank our supervisor Professor Dr. Jon Atle Gulla and co-supervisor
Özlem Özgöbek at the Departement of Computer and Information Science, Nor-
wegian University of Science and Technology for helpful guidance throughout the
project.

Trondheim, June 5, 2014 - Dag Einar Monsen and Patrick Heia Romstad

v

Contents

Abstract i

Sammendrag iii

Preface v

List of Figures xi

I Introduction 1

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Problem Statement . 4
1.3 Approach . 5
1.4 Results . 5
1.5 Thesis Structure . 6

2 The SmartMedia Project 7
2.1 Project Background . 7
2.2 System Architecture . 8
2.3 User Profiling . 10
2.4 Our Contribution . 11

II Background 13

3 Recommender Systems 15
3.1 Introduction . 15
3.2 Collaborative Filtering . 16
3.3 News Recommendation . 18

4 Feedback 21
4.1 Explicit Feedback . 21

vii

viii Contents

4.2 Implicit Feedback . 22

5 Matrix Factorization 25
5.1 Introduction . 25
5.2 Singular Value Decomposition . 27
5.3 Stochastic Gradient Descent . 30
5.4 Alternating Least Squares . 31
5.5 ALS vs. SGD . 31

6 Tensor Factorization 33
6.1 Introduction . 33
6.2 Tensor Factorization in News Recommender Systems 34
6.3 Tensor Decompositions . 35

6.3.1 Tucker Decomposition . 35
6.3.2 CANDECOMP/PARAFAC 35

7 Mapping Techniques 37
7.1 Introduction . 37
7.2 Correlation Coefficient . 38
7.3 Bins . 39
7.4 Linear Regression . 39

7.4.1 Multiple Linear Regression 40
7.5 Classifiers . 41

7.5.1 Naive Bayes Classification 41
7.5.2 K-Nearest Neighbor . 42
7.5.3 Artificial Neural Network . 42
7.5.4 Support Vector Machine . 44

7.6 Classification via Clustering . 45
7.6.1 K-Means . 45
7.6.2 X-Means . 45
7.6.3 Expectation-Maximization 46
7.6.4 Conceptual Clustering . 46

8 Related Work 49
8.1 Matrix and Tensor Factorization . 49

8.1.1 Netflix Prize . 49
8.1.2 Tensor Factorization . 50

8.2 Implicit Feedback in Recommender Systems 50
8.2.1 Mapping Implicit Feedback to Explicit Ratings With Last.fm

Data Set . 50
8.2.2 Recommending With Implicit Feedback Only 51
8.2.3 Implicit Feedback Used in Text Retrieval 52
8.2.4 Google News . 53

Contents ix

III Realization 55

9 Implementation 57
9.1 Recommender . 57
9.2 Evaluation of Mapping Techniques 58
9.3 Integration to SmartMedia . 59

10 News Recommendation in the SmartMedia Application 63
10.1 Feedback Representation . 63
10.2 Preprocess the Feedback . 64
10.3 Create Recommendations . 65

IV Evaluation and Conclusion 69

11 Evaluation of Mapping Techniques 71
11.1 News Data Set . 71

11.1.1 Modified Data Set Used in Evaluations 72
11.2 Algorithms . 74
11.3 Environment . 75
11.4 Testing Methodology . 77
11.5 Results . 77

11.5.1 Baseline Estimate . 77
11.5.2 Time Threshold . 77
11.5.3 Correlation . 79
11.5.4 Combined Time Threshold and Correlation 81
11.5.5 Multiple Linear Regression 82
11.5.6 Clustering . 83
11.5.7 Naive Bayes . 84
11.5.8 K-Nearest Neighbor . 84
11.5.9 Artificial Neural Network . 85
11.5.10 Support Vector Machine . 86

11.6 Discussion . 87

12 Integrational Issues 91
12.1 Modifiability . 91
12.2 Scalability . 92

12.2.1 Recommendations . 92
12.2.2 Build Time . 93

13 Discussion and Conclusions 95
13.1 Phasing Out Explicit Feedback . 95
13.2 Conclusion . 96
13.3 Further Work . 98
13.4 End Notes . 99

x Contents

A All Evaluation Results 101
A.1 Multiple Linear Regression Raw Results 101
A.2 Time Threshold . 101
A.3 Correlation and Time Threshold . 102
A.4 Naive Bayes . 105
A.5 Correlation . 105
A.6 Cluster . 106
A.7 K-Nearest Neighbor . 107
A.8 Artificial Neural Network . 111
A.9 Support Vector Machine . 115

Bibliography 125

List of Figures

2.1 iPhone application . 8
2.2 Overall architecture of the SmartMedia news application 9
2.3 Different recommendation factors 9

3.1 Simple example of collaborative filtering 16
3.2 Example of grouping articles by content-based filtering 20

5.1 Users and movies in the latent space 29

6.1 Tucker decomposition of a three-dimensional tensor 36
6.2 CANDECOMP/PARAFAC decomposition of a three-dimensional

tensor . 36

7.1 Examples of different values for the correlation coefficient 38
7.2 Example of bins with equal size . 40
7.3 A multilayer perceptron with two hidden layers 43
7.4 Example of a SVM hyperplane . 44
7.5 A hierarchical clustering over animal descriptions 47

9.1 The SmartMedia recommender integration 60

10.1 The steps in preprocessor . 66

11.1 Time on page versus ratings before and after sampling the YOW
data set: (a) before and (b) after 75

11.2 RMSE of best performing techniques compared to baseline 78
11.3 Rating frequency in data set . 79
11.4 Time on page versus ratings . 79
11.5 Naive Bayes configuration plotted at different classify threshold

with baseline estimate border . 89

xi

Part I

Introduction

1

Chapter 1

Introduction

In this chapter we introduce our thesis. In Section 1.1 we explain our motivation
to work with recommender systems in the news domain. In Section 1.2 we discuss
what problems we have investigated in our thesis and in Section 1.3 we explain
how we approached these problems. Then we present a summary of our findings
in Section 1.4 and finally, in Section 1.5 we outline the structure of our thesis.

1.1 Background and Motivation

With the advent of the Internet, the media industry has found itself going through
a radical transformation. In the scope of the last two decades, traditional printed
newspapers have seen their readership decline as a result of competition by on-
line publishing. Using mobile devices with Internet access, people can read news
articles in the moment they are published – from anywhere in the world. This
transformation naturally implicates many challenges for newspaper companies. It
does, however, also involve many opportunities for those who are able to adapt.
A printed newspaper is usually composed of articles selected to satisfy as many
readers as possible. One can target a certain market segment, but targeting a
single user is not feasible in print. In the electronic medium, on the other hand,
a newspaper company can look at the reading patterns of every single user, and
make an estimate of which articles they will find to be interesting. That is the
domain of news recommender systems. There are many different ways to make
such an estimate. A common method, known as collaborative filtering, works by
the assumption that a user will prefer articles that are preferred by similar users,

3

4 Chapter 1 Introduction

where users are assumed to be similar if they have expressed similar preferences
to items in the past. Users often express these preferences as a numeric rating
from 1-5, or on a different scale. Users are, however, often reluctant to provide
such explicit feedback, and we cannot expect users to rate every article they read.
In addition, we can look at how users interact with a system. How much time do
they spend reading an article? Do they share it with their friends? This kind of
information does not require an explicit action from the user, it is merely collected
as he or she uses the system. In this master’s thesis, we explore how this implicit
feedback can be used to improve the accuracy of a recommender.

1.2 Problem Statement

News recommendation involves a set of unique challenges, especially the lack of
explicit feedback to many articles. In our work, we explore ways to make use
of implicit feedback available to improve the accuracy of a collaborative filtering
algorithm, and how to integrate these methods to a real system. Formally, we
attempt to answer the following research questions:

R1: How can we use implicit feedback to improve news recommendation
accuracy in collaborative filtering?

Specifically, we want to investigate how we can decrease the Root Mean Squared
Error (RMSE) of the recommender system using implicit feedback. The decrease
in RMSE can then be compared to other research papers that consider implicit
feedback as a method to increase recommendation accuracy.

R2: How do different techniques for including implicit feedback com-
pare?

Implicit feedback in this thesis consists of user-article interactions that can be
collected without any overhead to the user, while explicit feedback are ratings
given explicitly by the user after reading an article. The techniques we compare
utilize implicit feedback that only exists in the data set given, and we will therefore
not utilize information about the users from other sources. Consequently, the
techniques convert implicit feedback to explicit feedback through mapping in such
a way that we can run matrix factorization recommender algorithms with the
resulting explicit feedback.

Chapter 1 Introduction 5

R3: How can a collaborative filtering component be integrated with the
SmartMedia news aggregator?

As the SmartMedia news aggregator utilizes a variety of filtering methods, we need
to implement our component as a standalone application that supports a standard
interface. The SmartMedia news aggregator can then control the priority between
different filters to give an optimal set of articles.

1.3 Approach

To find solutions for these problems, we need a deep understanding of the problem
space and the domain in focus. Based on an extensive knowledge search, we
implement a number of standard machine learning algorithms for mapping from
implicit to explicit ratings. These are applied to a news data set consisting of user
interactions collected while reading and rating news articles.

The evaluations are done with the prospect of integrating a recommendation com-
ponent to the SmartMedia news aggregator. With this integration we can present
novel and interesting articles to users based on their reading habits.

1.4 Results

The evaluations demonstrated that given the right mapping technique, mapping
implicit feedback to explicit feedback can improve accuracy of recommendations
in the news domain. In addition, the mapping technique that improved accuracy
the most, is a combination of using nearest neighbor search with one neighbor and
a time threshold of 20 seconds, which had a 5.14% improvement. Our results also
show mapping techniques that looks for global patterns in the dataset, as opposed
to patterns for each item, is detrimental for recommendation accuracy.

Further, we developed a stand-alone collaborative filtering component that inte-
grates with the SmartMedia application. The component consists of a combina-
tion of a mapping technique and a parallel matrix factorization algorithm based on
stochastic gradient descent. It is scalable and fast, computing recommendations
in less than 150 milliseconds. The components implements a standard REST API,
and can easily be replaced by improved components in the future.

6 Chapter 1 Introduction

1.5 Thesis Structure

Chapter 2 - The SmartMedia Project: A quick overview of the NTNU Smart-
Media Project and how we contribute to it.

Chapter 3 - Recommender Systems: An introduction to news recommenda-
tions and collaborative filtering.

Chapter 4 - Feedback: A thorough discussion about feedback and the differ-
ences between explicit and implicit feedback.

Chapter 5 - Matrix Factorization: Describes matrix factorization and how it
can be used as a collaborative filtering component.

Chapter 6 - Tensor Factorization: Describes tensor factorization and how it
can be used as a collaborative filtering component.

Chapter 7 - Mapping Techniques: Explanation of different techniques that
maps implicit feedback to explicit ratings.

Chapter 8 - Related Work: A survey of related work in recommender systems.

Chapter 9 - Implementation: Implementation details of the recommender and
how the recommender is integrated to the SmartMedia application.

Chapter 10 - News Recommendation in the SmartMedia Application:
Explains how feedback is represented, preprocessed and used to generate recom-
mendations.

Chapter 11 - Evaluation of Mapping Techniques: Describes the evaluation
setup and the results from our evaluations.

Chapter 12 - Integrational Issues: A discussion of the integration to Smart-
Media in terms of modifiability and scalability.

Chapter 13 - Discussion and Conclusions: A final discussion including con-
clusions and suggestions for further work.

Chapter 2

The SmartMedia Project

In this chapter we give a brief overview of the NTNU SmartMedia project. In
Section 2.1, we outline the project background, in Section 2.2 we show the archi-
tecture of the news aggregator and in Section 2.3 we show how user profiling is
done. Finally, in Section 2.4 we outline our contribution to the project.

2.1 Project Background

The NTNU SmartMedia project was established in 2012 in close collaboration
with the Scandinavian media industry. The team is led by Prof. Jon Atle Gulla,
and is divided into different research areas. Nafiseh Shabib is working on group
recommendations. Özlem Özgöbek is working on data collection and semantics.
Dag Einar Monsen and Patrick Heia Romstad are working on the collaborative
filtering part of the recommender system. Dr. Jon Espen Ingvaldsen is working
on content filtering and the underlying news index. Martin Akre Midstund and
Marius Krakeli have been working on geospatial filtering. P̊al-Christian Salvesen
and Lars Smør̊as Høysæter are working on sentiment analysis of news articles.
Kent Robin Haugen has made a client application for the iOS platform, and Amir
Ghoreshi and Neberd Salimi are working on a web-based client application.

The main goal of the SmartMedia project is to create a mobile application that
efficiently recommends news articles to users and is easy to use. An early version of
the iPhone application is presented in Figure 2.1. Technologies involved in making

7

8 Chapter 2 The SmartMedia Project

Figure 2.1: iPhone application

this application are big data architectures, information retrieval, semantics, text
analytics and sentiment analysis as well as various frameworks.

2.2 System Architecture

The news recommender system is structured as a traditional client-server archi-
tecture, as shown in Figure 2.2. The server side will aggregate news articles daily
from all (89) major online newspapers in Norway by parsing their RSS feeds for all
metadata, including the ingress. The aggregator proceeds by scraping the website
of each newspaper for the full article content. All of these articles are written in
Norwegian, and are provided in a semi-structured format. In some articles, we are
able to obtain certain features like topic or category from the RSS feed. We also
apply entity recognition to each article. Using entity recognition, we are able to
extract locations, names of people and other interesting features which can then be
used to support a number of recommendation techniques, including information

Chapter 2 The SmartMedia Project 9

Figure 2.2: Overall architecture of the SmartMedia news application

filtering, geospatial filtering and content filtering. The recommendation process is
discussed further in [1] and a diagram of this process is presented in Figure 2.3.

Figure 2.3: Different recommendation factors

10 Chapter 2 The SmartMedia Project

The client application is designed using web technology, simplifying a cross-platform
deployment. The application is independent of each publisher, and we plan to al-
low voluntary sign-ups, thus our knowledge about each client is limited to the data
we collect. We allow each user to rate an article by a 1-5 star rating. We also take
note of certain user interactions, which we elaborate further on in Section 4.2.

2.3 User Profiling

User profiling is important for the SmartMedia application in order to do individual
recommendations for each user. A user profile is constructed for a chosen time
interval, and if there already exists a user profile for this mobile device, the profiles
are combined in such a way that the new profile is weighted more than the old
one[2]. This way of constructing user profiles enables the recommender system to
(i) do recommendations to new unregistered users since it constructs a user profile
for each session, and (ii) give improved recommendations to registered users by
combining the constructed user profiles. Therefore, the second (ii) step becomes
crucial to build long-term user profiles. Examples of user interactions collected by
the SmartMedia applications are shown in Table 2.1.

The user profile consists of two vectors P =< ~C, ~K >[2]. ~C is a category vector
where each news category is given a weight that indicates how important this
category is for the user. ~K is a content vector that weights key phrases and
entities that the user might find interesting. Examples of ~C and ~K vectors are
shown in Equation 2.1 and 2.2.

~C =< (”NEWS”, 98.0), (”TECH”, 50.0), (”SPORTS”, 15.4), (”STY LE”, 2.5) >
(2.1)

~K =< (”iPhone”, 20.0), (”Tyson”, 5.0), (”LG”, 3.4), (”Abra”, 0.41), . . . > (2.2)

While the ~C vector is limited to the number of categories, the ~K vector grows as
the user reads news articles. Since only the highest weighted terms are relevant for
the recommendation stage, the less important terms can be removed to ensure the

Chapter 2 The SmartMedia Project 11

Table 2.1: Examples of user interactions used to construct user profiles

User interaction Description

Open article User opened full text version of article
Time spent article Time the user spent viewing the article
Time spent preview Time the user spent viewing the RSS version of article
Shared twitter User shared article on Twitter
Starred article User added the article to favorites

vector do not become unnecessary large. More information about SmartMedia’s
approach to user profiling is further described in [2].

These user profiles are currently not used by the collaborative filtering component,
but resembles the user and item vectors created in the matrix factorization stage.
The differences between these vectors and the user profiles are that the user and
item vectors created by the collaborative filtering component comprises of the
latent factors found, and do not have labels that describe them. It is therefore
challenging to incorporate the user vectors created by our component with the
user profiles created by the SmartMedia application.

2.4 Our Contribution

Our part in the NTNU SmartMedia Project is to implement an efficient and accu-
rate collaborative filtering algorithm. To do so, we intend to incorporate implicit
feedback as well as explicit feedback in the recommender engine and analyze the
results of this implementation.

Part II

Background

13

Chapter 3

Recommender Systems

In this chapter we introduce the theory behind recommender systems and their
applications. In Section 3.1 we outline the motivation behind recommender sys-
tems. In Section 3.2 we describe collaborative filtering and in Section 3.3 we reason
about news recommendation and what distinguishes it from other domains.

3.1 Introduction

As the internet has become a primary source of information, finding what one is
looking for can be a challenge. When looking for a specific piece of information,
a user normally uses a search engine like Google or Bing to retrieve a list of re-
sults matching their query. A common use case, however, occurs when we are
not looking for something specific, but merely something interesting. A simple
way of providing such items is to retrieve the most popular items in a catalog.
A more personalized approach, on the other hand, can recommend items based
on the preferences of each individual user. Schafer et al.[3] argues that personal
recommendations will increase sales by converting browsers into buyers, increas-
ing cross-sell opportunities, and building customer loyalty. Linden et al.[4] also
saw increased sales and customer retention at the online retailer Amazon.com by
showing a list of similar items below each item. We normally divide recommender
systems into two categories. In a content-based approach, users are often encour-
aged to state their topics of interest. In a news domain, this can for example be
sports and politics. Items are then defined with a set of features, where a set of
topics would be a feature of a news article. A recommender system would then

15

16 Chapter 3 Recommender Systems

Figure 3.1: Simple example of collaborative filtering

be able to recommend articles by calculating the similarities between the users
expressed interests and each item, thus returning the most similar ones.

Another method of providing recommendations is to look for similar users. If a user
B has shown to have similar preferences to a user A, one might recommend a book
to user B that user A finds interesting, and user B has not read yet, as shown by
the dotted line in Figure 3.1. This method of providing recommendations is called
collaborative filtering. A more thorough introduction to collaborative filtering is
given in the next section.

In our work, we have implemented a collaborative filtering component and inte-
grated it with the SmartMedia application, allowing users to read news selected
to their personal preferences.

3.2 Collaborative Filtering

Collaborative filtering recommends items to a user by looking at similar users
and recommend items that they have expressed an interest in. The basic form of
collaborative filtering takes in a matrix of user-item ratings as input and produces
two types of output: (i) a numerical prediction of the degree a user will like or
dislike an item and (ii) a list of n recommended items.

Collaborative filtering can be divided in two categories: memory-based and model-
based. Given a matrix of user-item ratings, memory-based collaborative filter-
ing uses the matrix on each query to generate new item recommendations to
the user. The most common method of memory-based collaborative filtering is

Chapter 3 Recommender Systems 17

neighborhood-based collaborative filtering with item-based or user-based top-n
recommendations.

Collaborative filtering methods face certain challenges depending on the particular
domain. In Section 3.3 we discuss the challenges unique to the news domain. There
are, however, a range of challenges faced by collaborative filtering methods that
are common to most domains. Data sparsity: data sets often consist of many more
user-item combinations than there are interactions between these. The user-item
matrix of the 100M netflix data set contained 17770 movies and 480189 users,
resulting in a density of roughly 1.17%[5]. Such sparse data sets means that
the algorithms have to make predictions based on very little information. This
challenge is related to the cold start problem, which refers to what occurs when
new users or items enter the system. These additions do not have any feedback
as new users have not rated any items, and new items have not been rated. This
is a problem, because the collaborative filtering methods need feedback in order
to provide recommendations. Collaborative filtering methods also face a challenge
when the scale of the system increases. As new users and items are added to the
system, the user-item matrix thus increases. This means that the memory-based
methods have to iterate over an increasing number of rows and columns in the
user-item matrix. This will eventually lead to performance problems and new
recommendations cannot be computed fast enough.

This problem led researchers to look at different methods for computing recom-
mendations. Using machine learning techniques, an intermediate representation
of the user-item matrix could be computed, and then used to make recommenda-
tions with less computational effort. This intermediate representation is called a
model and we call these methods model-based. Model-based methods using ma-
trix factorization has been shown to scale to hundreds of millions of entries in the
user-item matrix[6, 7]. Matrix Factorization works by modeling ratings as a sparse
matrix indexed by user ID and item ID, and then factorizing this matrix into a
product of matrices of much lower dimensions. This smaller representation can
then be used to estimate ratings very efficiently. We explore matrix factorization
further in Chapter 5.

A challenge with matrix factorization surfaces when we want to include implicit
data in the model. By allowing the matrix to contain more than a single feedback
value in each cell, we effectively have what is called a tensor of three dimensions,
as a matrix is merely what we call a two-dimensional tensor. For clarity, a single

18 Chapter 3 Recommender Systems

dimensional tensor of numbers is simply a vector. Thus, tensor factorization,
as opposed to matrix factorization, deals with the factorization of a generalized
tensor of N dimensions. Tensor factorization does, unfortunately, also involve a
set of challenges. We discuss these challenges further, as well as methods to do
tensor factorization for providing recommendations in Chapter 6.

An alternative to tensor factorization works by combining the feedback values prior
to building a model. When we have both implicit and explicit feedback available,
we can try to find patterns between them. From these patterns, we might be able
to estimate the explicit feedback, which means that we no longer have to collect
an explicit feedback value from a user – we can rely solely on his or her actions.
If we are able to infer explicit feedback from implicit feedback, we might be able
to improve the accuracy of a model computed using matrix factorization. This
has been the main focus of our thesis, and we discuss these mapping techniques
further in Chapter 7.

3.3 News Recommendation

Following the same approach as other recommender systems, the purpose of a
news recommender system is to find and present news articles that a user might
find interesting. Using the definition presented in [2], this can be formulated as

s : U × A→ V (3.1)

where s is the utility function, U the set of users, A the set of news articles and
V is an ordered set of values representing the rating or preference of a user for an
article. Then the purpose of a recommender system is to recommend an article a′

that maximizes the utility function for the user.

a′ = arg max
a∈A

s(u, a) (3.2)

There are many important factors to consider when recommending news articles
due to the complexity of the news domain compared to other domains e.g. books,
movies and songs. The recommender system must be robust and tackle changes
in the news domain. Robustness is needed according to Gulla et al. [2] since news

Chapter 3 Recommender Systems 19

articles are unstructured and require a thorough analysis, and unlimited reach of
news lead to changes in terminologies and topics over time.

Factors closer to the part of generating recommendations are location and freshness
of the news articles. Location is used to give users recommended articles that are
either close to their physical location or news about their hometown. Freshness is
just as important — we need to present the latest news to users. The approach we
make in SmartMedia are geospatial and temporal filtering, as presented in Figure
2.3.

The key challenge in the domain of news recommendation is item churn[6]. Item
churn can be mitigated with memory-based methods, but as mentioned in the
previous section, memory-based methods become infeasible when we have millions
of users and items. For this reason, we use a model-based approach. However,
since news articles are added and deleted at a high frequency, it becomes difficult
to keep the model up to date.

Other challenges mentioned in [2] are cold start problems due to new and unread
news and the ability to recommend new articles to a user in topics the user have
never read (serendipity). Cold start problems in news recommendation is more
difficult to handle than in more stable item set, such as movies, since news articles
are continuously added. Serendipity is important in order to give the user more
varied set of news articles.

Additionally, a problem occurs when the system aggregates news from many dif-
ferent sources. In this case, we might have multiple articles on the same subject.
A collaborative filtering system does not necessarily see this similarity, and may
thus recommend several articles on the same subject to a user. In this case, we
can use a content-based filtering system to discover these similarities and group
the articles written on the same subject. This is illustrated in Figure 3.2, where
we recommend five articles.

20 Chapter 3 Recommender Systems

Figure 3.2: Example of grouping articles by content-based filtering

Chapter 4

Feedback

Feedback from users is essential for recommender systems, but collecting sufficient
user information is a challenge. User information can be collected in two ways:
explicit and implicit. In sections 4.1 and 4.2 we outline these two kinds of feedback,
respectively.

4.1 Explicit Feedback

Explicit feedback is so named because the user provides it explicitly. This means
that it depends on users willingness to provide such feedback. A five star ratings
scale is an example of explicit ratings given by users; other examples are listed in
Table 4.1. Explicit feedback is generally considered as more reliable than implicit
feedback, but it also suffers from noise or inconsistencies[8]. Amatriain et al.
provide an in-depth analysis of user rating noise in recommender systems in [9].
Some of their main findings were: (i) extreme ratings are more consistent than
mild opinions and (ii) users are more consistent when items with similar ratings
are grouped together. Knowing that extreme ratings are more consistent enables
us to give higher weight to articles with extreme values when we are mapping
implicit feedback to explicit feedback.

Another issue with explicit feedback in news recommendation is, according to
Thurman[10], that users are often reluctant to give explicit feedback on news
articles that can be used to construct and maintain user profiles. Therefore, a rec-
ommender system should not impose any requirements to the user to give explicit

21

22 Chapter 4 Feedback

feedback, and the final SmartMedia application will only use implicit feedback to
generate recommendations. However, explicit feedback will be collected to build
the data set used in this master’s thesis. How this feedback is collected and used
to create user profiles should then be described, encouraging the test users to leave
explicit feedback.

Furthermore, even though explicit feedback contains noise, it is generally accepted
that it is more reliable than implicit feedback in most situations[9]. It will therefore
be used as the true preference for articles in the data set used in our evaluation.
This enables us to transform implicit feedback to an explicit rating through various
techniques explained in Chapter 7.

Table 4.1: Common types of explicit and implicit feedback

Explicit feedback Implicit feedback

Like or dislike buttons Browsing history
Rating scales (e.g. stars) Search patterns
Questionnaires Mouse movements
Reviews Time user spends on a page

Keyboard actions
Click behavior
User shares an article

4.2 Implicit Feedback

Implicit feedback relies on collecting user information by analyzing user actions
or content that users interact with. Examples of user actions are time spent read-
ing an article, click behavior and time spent on moving the mouse/cursor. More
examples are listed in Table 4.1. The main advantages of collecting implicit feed-
back are: (i) users do not have to actively engage to provide useful information to
the recommender system and (ii) implicit feedback can be combined with explicit
ratings to obtain a more accurate representation of user interests[11].

Implicit feedback has several challenges. Hu et al. [12] list four prime character-
istics: (i) No negative feedback: When observing user actions we can infer which
items users probably like, but we can not assume users dislike items they have not
interacted with. (ii) Implicit feedback is noisy: We can only guess users preferences
for items. (iii) Implicit feedback uses confidence, that is, how much confidence do

Chapter 4 Feedback 23

we have about users preference and (iv) implicit feedback recommender systems
requires appropriate evaluation methods. With implicit feedback we have to no
way of clearly measuring what is a successful prediction, as opposed to explicit
ratings where we can measure the success of a prediction with a numeric score like
RMSE.

However, if we have enough implicit ratings we can assume that low feedback is
negative feedback [13], contradicting the first characteristic of Hu et al. But it
requires that the items can be grouped into instances that more feedback means
higher preference. One example is TV-shows, where more feedback usually means
that the user like the show and watches it every week. However, in the news
domain this is not the case as users normally read articles only once, leaving this
challenge still viable in the news domain.

Further, as we discussed in Section 4.1, explicit feedback is also noisy. Whereas
explicit feedback noise mostly refers to the users preferences changing over time,
implicit feedback noise refers to the error the recommender system has when trying
to interpret the actions of a user.

In addition, given enough explicit ratings and implicit feedback, an appropriate
mapping between explicit and implicit feedback is possible as shown in the news
domain by [14, 15] and in the music domain in [13]. The main advantage of
mapping instead of interpreting user actions is that we can have a higher confidence
in our mapping if the correlation is high. We also have a clear metric for evaluating
our results, since we can work on explicit ratings when evaluating the recommender
system, but use implicit feedback to improve or add explicit ratings.

Chapter 5

Matrix Factorization

This chapter introduces matrix factorization as a technique to generate recom-
mendations. Section 5.1 gives a motivation for use and a brief intro to matrix
factorization. Then, singular value decomposition is described in Section 5.2.
Stochastic gradient descent and alternating least squares are described in Section
5.3 and Section 5.4. At the end we discuss the tradeoffs between methods in
Section 5.5.

5.1 Introduction

As we mention in Section 3.2, memory-based collaborative filtering systems met
challenges with performance as data sets scaled into millions of users and items.
This lead researchers and the industry to look at different ways to handle the
scalability issue. As ratings could be expressed as a matrix indexed by users and
items, matrix factorization could be a solution. By factorizing the user-item matrix
into components of matrices in a much smaller dimension, one could approximate
the missing values of the original user-item matrix. The low-dimension matrices in
the model would then represent so called latent factors where each user and each
item would have their own set of latent factors. Hence, matrix factorization is
also sometimes referred to as Latent Semantic Indexing (LSI), or Latent Semantic
Analysis (LSA). The latent, or hidden factors represent patterns found in the
original user-item matrix. For example, in the domain of movie recommendations,
the first cell in the latent factor vector of a movie could represent to which degree
the movie contains elements of romance. The first cell in the latent factor vector

25

26 Chapter 5 Matrix Factorization

of a user would then represent to which degree that user prefers romantic movies.
When computing the estimated rating of that user to that movie, the latent factor
vectors are multiplied, and thus if the latent properties of romance of both vectors
are high, it directly translates to a high rating. The reason the factors are called
latent is that we do not know what each factor represent. In some cases it could be
something obscure like the amount of red colored houses appearing in the movie,
or something incomprehensible to humans.

Matrix factorization involves a potential challenge when the data set is contin-
uously changing. In situations where we have repeated additions and deletions,
the model needs to be rebuilt at certain intervals to correctly reflect the data set.
If the intervals are not often enough the quality of the recommendations can de-
cline, and if they are too narrow the build time might become a computational
bottleneck in the system, ultimately leading to lower user satisfaction.

Formally, matrix factorization decomposes two or more matrices such that when
multiplied they are returned to the original matrix as shown in Equations 5.1 and
5.2, where M is the original matrix and U and V the matrices that will result in
M when multiplied.

M U V
11 12 5
22 24 10
13 11 5

 =

1 2
2 4
3 1

 ×

3 2 1
4 5 2

 (5.1)

M2,1 = U2,1 × V1,1 + U2,2 × V1,2 = 2× 3 + 4× 4 = 22 (5.2)

In collaborative filtering, matrix factorization divides the user-item matrix in two
matrices: the user matrix and the item matrix. Each user is associated with a
vector pu ∈ Rf and each item with a vector qi ∈ Rf , where f denotes the dimen-
sionality of the latent factor space, meaning the number of latent factors. The
vectors qi and pu represents the corresponding interest the user has to the factors
of an item. By calculating the dot product of these vectors, we can approximate
the rating given by user u to item i, denoted by r̂ui[16].

r̂ui = qTi pu (5.3)

Chapter 5 Matrix Factorization 27

5.2 Singular Value Decomposition

Singular value decomposition (SVD) is based on a theorem from linear algebra
which states that a rectangular matrix M can be broken down into the product of
three matrices - an orthogonal matrix U , a diagonal matrix Σ, and the transpose
of the orthogonal matrix V . This is presented in Equation 5.4

M = UΣV T (5.4)

where UTU = I, V TV = I. The columns of U are orthonormal eigenvectors of
MMT , the columns of V are orthonormal eigenvectors of MTM , and Σ is a diag-
onal matrix containing the square roots of eigenvalues from U or V in descending
order[17].

Table 5.1: Rating matrix for a SVD recommender

Amy Bob Charlie Dina
The Matrix 1 3 3 5
E.T. 4 3 5 2
iRobot 1 4 3 5
Hercules 3 5 2 1

The matrix in Table 5.1 consists of four users and four movies, and if we use SVD,
it will be decomposed into quadratic 4 × 4 matrices, U , V T and Σ as shown in
Equation 5.5. Each row in matrices U and V T represents the latent factors for
each movie and user.

28 Chapter 5 Matrix Factorization

U V T
−0.4912 0.5042 0.1050 0.7025
−0.5324 −0.5123 0.6658 −0.1041
−0.5367 0.4641 −0.1787 −0.6816
−0.4327 −0.5177 −0.7168 0.1761

−0.3500 −0.6063 0.1659 0.6945
−0.5798 −0.1741 −0.7506 −0.2648
−0.5193 −0.1593 0.6327 −0.5519
−0.5213 0.7594 0.0931 0.3780

Σ

12.7314 0 0 0
0 4.3442 0 0
0 0 2.6462 0
0 0 0 0.1913

(5.5)

Then, if we want to use the two most important factors, which are those with the
largest singular values, we can choose the two first columns in the decomposed
matrices from Equation 5.5. The resulting matrices are presented in Equation 5.6.

U2 V T
2 Σ2

−0.4912 0.5042
−0.5324 −0.5123
−0.5367 0.4641
−0.4327 −0.5177

−0.3500 −0.6063
−0.5798 −0.1741
−0.5193 −0.1593
−0.5213 0.7594

12.7314 0

0 4.3442

 (5.6)

The matrix U2 present the movies’ and the matrix V T
2 present the users’ positions

in the latent factor space. Since we chose the two most important factors, the latent
factor space is two-dimensional. Figure 5.1 presents how the factor space looks
like, where the movies and users are plotted according to their positions given
by the decomposed matrices. The latent factor space represents the similarity
between the items and users, and when we want to give a recommendation to a
new user, lets say Mark, we use his rating vector (the items he has rated) and
multiply it with the item matrix and the inverse of the singular value matrix.

Mark2D = Mark × U2 × Σ−1 = [−0.5,−0.25] (5.7)

Chapter 5 Matrix Factorization 29

Figure 5.1: Users and movies in the latent space

His position in the latent factor space can be used in recommendations. By using
his position in Figure 5.1, we could recommend the movies E.T. and Hercules.
The position can also be used to find the closest neighbors that can be used in a
neighborhood algorithm, which in his case are Bob and Charlie.

In essence, SVD reduces a high dimensional set of points to lower dimensions that
exposes the substructure of the original data. Unfortunately for recommender sys-
tems, SVD is undefined when knowledge about the matrix is incomplete. Further,
using the only known entries carelessly is highly prone to overfitting. In order
to avoid overfitting, research suggests to model directly on the observed ratings
while avoiding overfitting through an adequate regularized model[18] as shown in
Equation 5.8

min
p∗,q∗

∑
(u,i)∈κ

(rui − qTi pu)2 + λ(‖pu‖2+‖qi‖2) (5.8)

where κ is the set of the (u, i) pairs for which rui is known and λ is a constant
that controls the extent of regularization and is data-dependent. There are many

30 Chapter 5 Matrix Factorization

ways to minimize Equation 5.8 and find pu and qu. In the next sections we look
at stochastic gradient descent and alternating least squares.

5.3 Stochastic Gradient Descent

With stochastic gradient descent (SGD)1, we minimize the error function in Equa-
tion 5.8 by an iterative approach. SGD differs from regular gradient descent
(GD) since it does not have to iterate through all training examples in order to
converge[19]. In some cases it might be less precise than GD, but with large data
sets it is superior in terms of performance. The pseudocode for the SGD algorithm
is given in Algorithm 1. We pass two parameters to the SGD algorithm; a vector
of latent factors ω, which are the parameters of the error function E representing
the difference between the actual rating and the estimated rating. The second pa-
rameter is the learning rate α, which tells how big steps we want to take towards
the minimum. The learning rate depends on the possible values of a rating. A
common value is 0.001. Given these two parameters, SGD calculates an approxi-
mate minimum by calculating the gradient, or slope of a single training example,
and shuffling the samples in each step. With this, the true gradient of E(ω) is
approximated.

Data:
ω vector of latent factors
α learning rate
Result: ω converged vector of latent factors
while above minimum threshold do

randomly shuffle examples in the training set
for i = 1, 2, ..., |ω| do

ωi := ωi − α∇Ei(ωi)
end

end
Algorithm 1: Pseudo code for SGD

1http://en.wikipedia.org/wiki/Stochastic gradient descent

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

Chapter 5 Matrix Factorization 31

5.4 Alternating Least Squares

Alternating least squares (ALS) works by fixing either pu or qi in order to make
Equation 5.8 quadratic and can therefore be solved optimally. Hence, ALS tech-
niques rotate between fixing the qu’s and pu’s. For example, when all qu’s fixed, the
system recomputes the pu’s by solving a least-squares problem, and vica versa[16].
A pseudo code of the algorithm is presented in Algorithm 2.

Data: Empty matrices p and q
Result: Matrices p and q
Initialize matrix q by assigning the average rating for the item as the first row,
and small random numbers for the remaining entries;
while rui − qTi pu > error criterion do

Fix q;
Solve p by minimizing the sum of squared errors;
Fix p;
Solve q by minimizing the sum of squared errors;

end
Algorithm 2: Pseudo code for ALS

5.5 ALS vs. SGD

In generally, ALS is more expensive than SGD because it has to solve a large
number of linear least squares problem. However, according to Makari et al. [20]
this computational overhead is acceptable when the rank of the factorization is
sufficiently small. Further, big advantages of ALS over SGD is that ALS requires
less parameters to be tuned, since SGD makes use of a step size sequence, and
easy parallelization since either pu or qu are fixed.

According to experiments shown in [20], SGD is the preferred method when the
step size sequence is chosen intelligently. In addition, SGD is less memory-intensive
than ALS since ALS needs to store the data matrix twice. Nonetheless, choosing
between ALS and SGD on a data set should be decided by evaluation of both
algorithms on the relevant data set. In our framework, we have chosen to use an
implementation of SGD since the Mahout implementation of ALS was mainly tar-
geted towards distributed computing, while the Parallel SGD implementation was

32 Chapter 5 Matrix Factorization

targeted towards a single multi-core machine2. Since we did not have a distributed
evaluation setup, the SGD implementation performed much better.

2http://tdunning.blogspot.no/2009/01/real-time-decision-making-using-map.html

http://tdunning.blogspot.no/2009/01/real-time-decision-making-using-map.html

Chapter 6

Tensor Factorization

This chapter will introduce tensor factorization as a framework for generating rec-
ommendations. Section 6.1 explains the motivation behind tensor factorization,
and how they work. Then we will describe how we can use tensors to do recom-
mendations in Section 6.2 and at the end in Section 6.3 we will describe the most
popular decompositions of tensors.

6.1 Introduction

As we mention in Section 3.2, we cannot directly express implicit feedback in
a two-dimensional user-item matrix. When we add several kinds of feedback to
each cell, we effectively have a tensor of three dimensions. These kinds of higher
order tensors can also be factorized in order to estimate the missing values. By
estimating not only explicit feedback, but all kinds of feedback, we might be able
to achieve higher accuracy of recommendations.

Tensor factorization is a general form of matrix factorization. Whereas matrix
factorization decomposes a matrix in two or more matrices, tensor factorization
decomposes higher order matrices to several smaller matrices. A tensor factoriza-
tion of a cubic matrix will result in at least three matrices, one for each axis.

Tensor factorization enables recommender systems to add a contextual element in
a tensor, in [21] Thai-Nghe et al. describe a three-dimensional tensor Z of size
U × I × T , where the first and second dimension describe the user and item while
the last dimension describe the context, which in their case was time. In the

33

34 Chapter 6 Tensor Factorization

following section we describe how to utilize the new dimensions as well as how to
decompose the tensor.

6.2 Tensor Factorization in News Recommender
Systems

Having more than two dimensions in recommender systems allows us to make use of
contextual information. Examples of contextual information are time, seasonality
and location. Thai-Nghe et al.[21] had promising results when they incorporated
the time dimension in their predictor of student performance. In their predictor
they utilize the time dimension to describe the progression students have on al-
gebra in an online tutoring system. Hidashi and Tikk[22] efficiently segmented
periodical user behavior in different time bands when they used seasonality as
context. A simple example of seasonality is that horror movies are normally seen
at night while animation is watched in the afternoon.

Time, seasonality and location are interesting contextual information in the news
domain. Time and location are normally incorporated in a news recommender
separately besides collaborative filtering, as done in the SmartMedia application.
However, as studies shown in [21] and [22], adding time and seasonality as contexts
in collaborative filtering improved their recommendations, making it interesting
to use these contexts in the news domain as well.

Contextual information can also be feedback as a whole, where both explicit and
implicit feedback is stored in the same vector, combining them to feedback. Since
implicit feedback is dense, that is, as long as a user has read an article, implicit
feedback will always be collected. This means that the feedback tensor will consist
of much more information than what is common in matrix factorization scenarios.
The increase of information will likely contribute to improved accuracy in recom-
mendations. In matrix factorization, we estimate a rating by computing the dot
product of the vectors in the factorized matrices. In tensor factorization, on the
other hand, we compute the product of matrices, thus ending up with a vector, or
a feedback tube. From this feedback tube, we could either use the estimated rat-
ing directly, or combine the feedback tube to a single rating by using a weighting
scheme. A weighting scheme could be that explicit feedback should be weighted
as two and implicit feedback as one, in such a way that feedback that the user

Chapter 6 Tensor Factorization 35

give the recommender system more important than what the recommender system
collects.

Tensor factorization is a promising framework for computing recommendations,
however, its adoption in the recommender systems industry is still limited. We look
at some related work in Section 8.1.2. Due to a lack of available recommendation
libraries based on tensor factorization, we decided to not pursue it further in this
thesis.

6.3 Tensor Decompositions

There are a number of different tensor decompositions, but the two most pop-
ular tensor decompositions are Tucker and CANDECOMP/PARAFAC (CP). A
comprehensive review of other tensor decompositions can be found in [23].

6.3.1 Tucker Decomposition

The Tucker decomposition is a form of higher-order principal component anal-
ysis. It decomposes a tensor into a core tensor multiplied by a matrix along
each dimension[23]. Figure 6.1 presents the decomposition in the case of a three-
dimensional tensor. The equation for the three-dimensional tensor in Figure 6.1
where X ∈ RI×J×K is formulated in Equation 6.1

X ≈ G×1 A×2 B×3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr (6.1)

where X is the tensor to be decomposed, G is the core tensor and A, B, C are
respectively the matrices for each dimension.

6.3.2 CANDECOMP/PARAFAC

CANDECOMP/PARAFAC (CP) decomposition factorizes a tensor into a sum of
component rank-one tensors[23]. For a three-dimensional tensor X ∈ RI×J×K , the
decomposition results to a sum of vectors for each dimension as shown in Figure
6.2 and is written as

36 Chapter 6 Tensor Factorization

X

G

A

C

B

Figure 6.1: Tucker decomposition of a three-dimensional tensor

Figure 6.2: CANDECOMP/PARAFAC decomposition of a three-dimensional
tensor

X ≈
R∑
r=1

ar ◦ br ◦ cr (6.2)

where ◦ is the outer product and each vector ar ∈ RI , br ∈ RJ , and cr ∈ RK .

Chapter 7

Mapping Techniques

In this chapter we introduce mapping techniques used to generate explicit ratings
from implicit feedback from a user. Section 7.1 introduces these mapping tech-
niques and their rationale. In Section 7.2 we introduce the correlation coefficient,
which is used to measure the relationship between to variables, and in the following
sections we describe different mapping techniques.

7.1 Introduction

In Section 3.2 we introduced the notion of mapping implicit ratings to explicit
ratings in order to improve recommendation accuracy. Many of the current rec-
ommendation systems depend on explicit ratings from users in order to compute
recommendations. Users are, however, often reluctant to provide such informa-
tion [10]. Instead, we can look at how users interact with a system. This kind
of information is called implicit feedback, and we look further into the various
kinds of implicit feedback available in Section 4.2. The question is, how can we
use this kind of implicit feedback? In Chapter 6 we looked at tensor factorization
as a way of utilizing implicit feedback. Using tensor factorization, we need to
postprocess the implicit feedback in some way in order to properly order items.
A different way to use implicit feedback works by preprocessing the data set prior
to building a recommendation model. With this preprocessing step, we can fill in
missing explicit values based on the patterns found between instances where users
have provided such data, and the corresponding implicit feedback. When we know
that the implicit feedback directly corresponds to expressed explicit feedback, we

37

38 Chapter 7 Mapping Techniques

can be confident that the users have preferred items with the respective feedback.
Consequently, we can use these relations to estimate how much a user preferred
an item based on how he or she interacted with it. In this chapter we look at
different methods to achieve this mapping from implicit to explicit feedback.

7.2 Correlation Coefficient

The correlation coefficient measures the strength and the direction of a linear
relationship between two variables1. The coefficient, p, have values between -1
and 1, whereas -1 represents perfect negative fit and 1 perfect postive fit. When p
is positive, the relationship between variables x and y is that when x increases y
increases and when p is negative y decreases when x increases. The mathematical
formula for computing p is

p = n
∑
xy − (∑

x)(∑
y)√

n(∑
x2)− (∑

x)2
√
n(∑

y2)− (∑
y)2

(7.1)

where n is the number of pairs of data. Examples of different correlations coeffi-
cients are presented in Figure 7.1.

Figure 7.1: Examples of different values for the correlation coefficient

1http://www.stat.yale.edu/Courses/1997-98/101/correl.htm

http://www.stat.yale.edu/Courses/1997-98/101/correl.htm

Chapter 7 Mapping Techniques 39

The correlation coefficient itself does not map implicit feedback to explicit feed-
back, but it can be used to find implicit-explicit ratings pairs that correlate and
hence can be used to map implicit to explicit ratings through other techniques
such as nearest neighbor, rating bins or linear regression.

7.3 Bins

Bins is a simple way of mapping two variables. After an analysis that confirms
that a mapping exists (e.g. correlation coefficient above or below threshold), we
can create a number of bins. In a recommender system where explicit ratings are
given by a value between one and five, we create five bins with different ranges
according to the implicit ratings.

If we observe the following explicit-implicit rating pairs: (1 - 20 000), (3 - 45 000),
(4 - 50 000) and (5 - 65 000), we clearly see that higher implicit value maps to
higher explicit value. In this example, the explicit value is a rating between one
and 5, and implicit rating is the time in milliseconds the user has spent reading
an article. With equal size of each bin, the equation used to find the size of each
bin is:

max−min
n

(7.2)

where max and min is the highest and lowest implicit value accordingly and n

the number of different ratings. In our example, the size of each bin is (70000 −
20000)/5 = 10000, and the range of each bin will look like the bins presented in
Figure 7.2. A new rating without explicit, but with implicit rating of 55 000 will
then be given four as explicit rating.

7.4 Linear Regression

Linear regression attempts to model the relationship between two variables by fit-
ting a linear equation to observed data2. The two variables are called independent
and dependent variables, where the independent variable in recommender systems

2http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

40 Chapter 7 Mapping Techniques

Figure 7.2: Example of bins with equal size

refers to implicit feedback and the dependent variable refers to explicit feedback.
A linear regression line has an equation of the form

Y = a+ bX (7.3)

where X is the independent variable, Y the dependent variable, a is the intercept
and b the slope of the line.

In the news domain, the dependent variable Y is the rating while the independent
variable can be the time a user spends reading the article. When Equation 7.3 has
been fitted by observed data the equation can look like Equation 7.4. If we then
want to map another article which only has a TimeOnPage as 55 000, we get a
rating of 1.5 + 0.00005× 55000 = 4.25 ≈ 4.

Rating = 1.5 + 0.00005 · TimeOnPage (7.4)

When linear regression is used, an analysis that determines if there exists a rela-
tionship between the two variables should be done. As discussed in Section 7.2, the
correlation coefficient is a numerical measure of association between the variables,
and can be used to determine if a relationship exists and ensure that it make sense
to use linear regression.

7.4.1 Multiple Linear Regression

Multiple linear regression attempts to model the relationship between two or more
independent variables and a dependent variable by fitting a linear equation to

Chapter 7 Mapping Techniques 41

observed data3. When we use multiple linear regression, the formula is

Y = β0 + β1X1 + β1X1 + ...+ βnXn (7.5)

where n is the number of independent variables and β describes how much each
variable affects the regression line.

With multiple linear regression, we can expand Equation 7.4 with other implicit
feedback such as the time a user moves the mouse when reading an article. With
two such independent variables, the equation becomes:

Rating = 1.5 + 0.00005 · TimeOnPage+ 0.0008 · TimeOnMouse (7.6)

Subsequently, an article that a user has spent 55 000 ms reading and 800 ms moving
the mouse, will then get a rating of 1.5+0.00005×55000+0.0008×800 = 4.89 ≈ 5.

7.5 Classifiers

The mapping from implicit to explicit feedback can also be seen as a classification
problem, where we want to find or classify an explicit rating based on a known
set of mappings or instances. When we want to classify a rating from 1-5, we are
able to use not only numeric predictors like regression models, but also classifiers
normally working on nominal class values. A lot of research has been done on
the task of classification, and a number of standard classification methods exist,
where each has its own strengths and weaknesses. In this section we look at a set
of classifiers with the feedback mapping in mind.

7.5.1 Naive Bayes Classification

Naive Bayes is a probabilistic classifier named after Bayes rule4, which assigns a
class to an instance based on the highest estimated probability [24]. Given a fixed
set of classes, for example rating 1-5, the classifier is trained by calculating the

3http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm
4http://en.wikipedia.org/wiki/Bayes’ theorem

http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm
http://en.wikipedia.org/wiki/Bayes'_theorem

42 Chapter 7 Mapping Techniques

global probability for each class. The Naive Bayes classifier is so called because
it assumes that the features in the data are independent of each other. It has,
however, shown to perform well in many different environments[25]. When calcu-
lating the likelihood of each class, apply the naive feature assumption to Bayes
theorem given in equation 7.7. When assuming independence, we get Equation
7.8, often called the maximum a posteriori probability (MAP) where B denotes an
implicit feedback variable such as time spent reading an article, and A denotes a
rating. To classify, we then apply the argmax function, yielding the most probable
classification.

P (A|B) = P (B|A)P (A)
P (B) (7.7)

P (A|B) ∝ P (B)
∏

1≤k≤nd

P (tk|B) (7.8)

7.5.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN)[26] is a very simple classification method, where we do
not train a model, but simply assign the majority class of the K nearest neighboring
instances. It is important to select an appropriate number of neighbors and which
distance measure to use. When data sets become large, performance issues can
occur. These can be mitigated to a degree by computing the similarity matrix prior
to classification. There are many different distance measures that can be used,
depending on the data set. Euclidean distance or cosine similarity are examples
of common distance functions that can be applied to items with numeric data.
Given vectors xa and xb, the euclidean distance between these two vectors is given
in Equation 7.9.

distance(xa, xb) =
√√√√ n∑
t=1

(xa,t − xb,t)2 (7.9)

7.5.3 Artificial Neural Network

An artificial neural network (ANN)[27] is a computational model devised from the
human brain, and is often used to solve machine learning problems, including that

Chapter 7 Mapping Techniques 43

of classification. The artificial neural network is a network of neurons that are able
to learn appropriate mapping models based on a training set. A neuron is simply
a mathematical function, usually modeled after biological neurons. An example of
a simple neuron is a perceptron. It is a binary classifier which yields 1 or 0 based
on a linear prediction function, as given in Equation 7.10.

f(x) =

1 if w · x+ b > 0

0 otherwise
(7.10)

When we are dealing with multi-label classification however, we need a different
kind of neural network. A network multilayer perceptron (MLP) has been shown
to be a very versatile network, and has been applied to many different problems
[28, 29, 30]. It is a modification of the standard linear perceptron as it uses
three or more layers of neurons with nonlinear activation functions, and is able to
distinguish data that is not linearly separable, or separable by a hyper-plane. An
example of a MLP with two hidden layers is shown in Figure 7.3.

Figure 7.3: A multilayer perceptron with two hidden layers

When using MLP it is beneficial to experiment with different values of learning
rate. The learning rate is how much weight it gives for new examples. There is
a trade off between performance and accuracy. If we use a low learning rate with

44 Chapter 7 Mapping Techniques

a high iteration number the learning process will be more conservative, but if we
use a low iteration number and high learning rate, the accuracy might suffer.

7.5.4 Support Vector Machine

A support vector machine (SVM), proposed by Cortes and Vapnik in 1995[31], de-
termines the classification of an instance by finding a high-dimensional hyperplane
selected to separate the classes with the largest margin. With margin, we mean the
distance between the hyperplane and the closest training data point of any class.
The data we want to classify is then projected onto the high-dimensional space,
where they can be separated by the selected hyperplane. Thus, a bigger margin
means that we have a higher probability of correctly classifying new instances. An
example of a binary hyperplane is shown in Figure 7.4. In this example, we see
that the margin a is larger than margin b, and thus the hyperplane of a is better
for this problem.

Figure 7.4: Example of a SVM hyperplane

Chapter 7 Mapping Techniques 45

7.6 Classification via Clustering

Clustering algorithms group a set of items into subsets or clusters, and the goal
of clustering is to create clusters that are coherent internally, but different from
each other. After a set of clusters is made, new instances are then evaluated to
find which clusters they belong to. Using this scheme, we can classify items via
clustering by first training the model and create a fixed number of clusters. Then,
when new items are added, we find out which cluster they belong to and add them
to that cluster, i.e. if we have one cluster for each rating, we can guess how the
user will rate an item based on which cluster it belongs to.

The choice of clustering algorithm decides the properties of the clusters, and will
be further elaborated below.

7.6.1 K-Means

K-Means, coined by MacQueen in 1967[32], clusters a set of items based on K

clusters. It iterates through two steps: assign all items to nearest cluster and then
update the mean centres, until a finish criterion has been met. Different finish
criteria are: the movements of means are less than a threshold, a fixed number of
iterations or a combination of these.

Data: Set of items I and number of clusters K
Result: K cluster means
Initialize means (pick K items random);
while Finish criterion do

Assign each item to nearest mean;
Move mean to center of its cluster;

end
Algorithm 3: Pseudo code for K-Means algorithm

7.6.2 X-Means

X-Means is an improvement over K-Means, and overcomes the following shortcom-
ings of K-Means: scalability and runtime; the number of clusters must be supplied
by the user; and finds local optima based on the number of clusters supplied. In
X-Means, the number of clusters is found given a minimal and maximal number

46 Chapter 7 Mapping Techniques

of clusters given by the users, explaining why it is called ”X” means. This will in
turn give empirical better optimums than using only K clusters. The scalability
and runtime performance is also improved. Pseudo code of X-Means is shown in
Algorithm 4

Data: Set of items I, min number of clusters Kmin and max number of clusters
Kmax

Result: K cluster means
while K > Kmax do

Improve-Params;
Improve-Structure;

end
Algorithm 4: Pseudo code for X-Means algorithm

where Improve − Params consists of running conventional K-means to conver-
gence and Improve−Structure finds out if and where new centroids should appear.
More details on the algorithm can be found in [33].

7.6.3 Expectation-Maximization

Expectation-Maximization clustering is a generalization of K-Means which assigns
a probability distribution to each instance which indicates the probability of it
belonging to each of the clusters[34].

Data: Set of items I and number of clusters K
Result: K cluster means
while Finish criterion do

Calculate cluster probabilities;
Calculate distribution parameters;

end
Algorithm 5: Pseudo code for Expectation-Maximization algorithm

7.6.4 Conceptual Clustering

Conceptual clustering takes as input a set of objects descriptions and produces a
classification scheme over the observations [35]. As opposed to K-means, X-means
and EM, conceptual clustering does not have a preset number of clusters, but finds
the appropriate number of clusters by learning from the observations.

Chapter 7 Mapping Techniques 47

In [35], Douglas Fischer presents COBWEB, which is an incremental system for
hierarchical conceptual clustering. COBWEB carries out a hill-climbing search
through a space of hierarchical classification schemes. Its incremental feature is
motivated by real world usage, where knowledge may be rapidly updated with new
observations. This observations fits well with the news domain, which is constantly
changing and as news change in both content and presentation, COBWEB could
incrementally adjust the mapping from user interaction to ratings. However, it
is only useful if COBWEB discovers five clusters from the feedback, one for each
rating. Following the example in [35] a hierarchical decision tree from Table 7.1
can be represented as Figure 7.5.

Table 7.1: Animal descriptions

Name Body cover Heart champer Body temp. Fertillization

mammal hair four regulated internal
bird feathers four regulated internal
reptile cornified-skin imperfected-four unregulated internal
amphibian moist-skin three unregulated external
fish scales two unregulated external

Figure 7.5: A hierarchical clustering over animal descriptions

Chapter 8

Related Work

In this chapter we present earlier work on recommender systems. In Section 8.1
we introduce how matrix factorization became popular during the Netflix Prize
competition and describe how implicit feedback can be used in tensor factorization.
In Section 8.2 we present how implicit feedback can be used in recommender
systems.

8.1 Matrix and Tensor Factorization

8.1.1 Netflix Prize

Netflix is one of the biggest video streaming media companies in the world, and
through their services they provide recommendations to their users about which
movies or TV-shows they might like. In order to improve their own recommen-
dations, they released a data set consisting of 100 millions ratings from their
website and created the Netflix Prize. Netflix Prize was a competition where they
challenged the research community to come up with a recommendation algorithm
that performed 10% better than their own implementation, Cinewatch, which had
a RMSE of 0.9525. It started in October 2, 2006 and ended when the Grand Prize
was received by the winning team ”BellKor’s Pragmatic Chaos” on September 21,
2009. The winning team had then improved the RMSE with 10.06% compared to
Cinewatch, decreasing it to 0.8556.

49

50 Chapter 8 Related Work

The competition led to much research on collaborative filtering techniques, and
it demonstrated that matrix factorization models are superior to classic nearest-
neighbor techniques for producing recommendations. The main advantages of
matrix factorization compared to nearest-neighbor techniques are that matrix fac-
torization allows the incorporation of additional information such as temporal
effects and confidence levels[16]. In addition, the winning team highlights baseline
predictors as one of their biggest contributions. Their winning solutions used sev-
eral baseline predictors combined with a factorized neighborhood model, see [7]
for details about their algorithm.

8.1.2 Tensor Factorization

As shown in Chapter 6 tensor factorization can be used in collaborative filtering to
add contextual information to the model. Karatzogluo et al. defines this approach
as multiverse recommendation, and in [36] they show that their tensor factorization
algorithm performs better than normal matrix factorization on data sets with 2
or 5 contextual dimensions, including season and day of the week for a movie data
set.

Others include time as a third dimension. In [21] Thai-Nghe et al. predicts stu-
dent performance on online courses where time is a crucial factor. By including
time the model can handle the progress of the students in a better way, which
is shown by improvement of recommender compared to matrix factorization in
experimental results. Hidasi et al. includes seasonality and sequentiality as con-
textual information, which improved the performance of the recommender system
significantly [22].

8.2 Implicit Feedback in Recommender Systems

8.2.1 Mapping Implicit Feedback to Explicit Ratings With
Last.fm Data Set

In their paper [13], Parra and Amatriain analyze the relation between implicit and
explicit feedback on a data set collected from Last.fm. The data set was collected
by conducting an online user study of users of the last.fm music service. The

Chapter 8 Related Work 51

implicit feedback such as user listening history was obtained by crawling the users
last.fm page, while the explicit feedback was obtained by asking the users to rate
albums on a one to five star scale.

The main variables analyzed to find the influence between implicit and explicit
feedback was: (i) playcount for a user on a given item (Implicit Feedback - IF);
(ii) global playcount for all users on a given item (Global Popularity - GP); and
(iii) time elapsed since user played a given item (Recentness - R). Of these three
variables, they observed that the amount of implicit feedback and recentness were
the most influential variables.

Using a regression analysis on the results of their implicit feedback analysis, they
incorporated the implicit feedback in four different models, dependent on how
many variables they include in the prediction of ratings, from using only implicit
feedback to using IF, GP, R and a combination of IF and R. The results were
calculated by using RMSE and their improvement over the user average using
only explicit feedback was 6.5%.

8.2.2 Recommending With Implicit Feedback Only

Hu et al. presents in [12] a method for doing collaborative filtering when only
implicit feedback is available. They have compensated the loss of having explicit
ratings with a model that incorporates two new variables: (i) pui, which indicate
the binary preference of user u to item i, that is, if the user u has consumed item i;
and (ii) cui which measure the confidence in observing pui. With these two variables
they are able to better reflect the nature of the data. Matrix factorization is then
used to calculate the preference values for items they have not yet consumed, with
the cost function:

min
x∗,y∗

∑
u,i

cui(pui − xTuyi)2 + λ(
∑
u

‖xu‖2+
∑
i

‖yi‖2) (8.1)

The data set used in their analysis was based on data from a digital television ser-
vice. During a four week period, the collected data was the number of times each
user watch a tv program (which is the number of minutes that a given show was

52 Chapter 8 Related Work

watched). Based on their analysis, this model performed better than a neighbor-
hood based version of their model as well as just recommending the most popular
programs.

8.2.3 Implicit Feedback Used in Text Retrieval

Morita and Shinoda discovered already in 1994 that there exists a correlation
between time spent reading a news article and the explicit rating given by the
user. In [14] they conducted a study about information filtering systems, where
they looked at three important issues: (i) how to collect user preferences; (ii) how
to represent the user profile; and (iii) how to do the filtering.

In their study, they collected user preferences by recording the time spent per
article, the length of the article and the readability of the article. The feedback
was collected by finding eight volunteers who would rate articles on a scale from
A to F, where A is very interesting and F is not interesting. The news articles
were read on an internet information service called NetNews.

The main findings in their paper were that there is a strong tendency to spend
a long time to read interesting articles, a tendency not to spend a long time on
uninteresting articles, very low correlation between length of an article and time
spent reading it and that other factors such as readability and number of unread
articles have low effect on reading time. More specifically, their result indicated
that treating articles as interesting when the user has spent 20 seconds of reading
them yields 30% recall and 70% precision.

Using these results, they represent users by storing all articles they have read in a
database, and filter new articles by using a sub-string-indexing method. It works
by deciding if a new article is interesting or not is done by counting occurrences of
all sub-strings of the article in a sub-string database containing sub-strings made
by splitting articles determined to be interesting in the past.

If they only stored articles that the users had spent more than 20 seconds reading,
the filtering method was further improved, encouraging the use of time spent
reading feedback to improve an information filtering system.

Chapter 8 Related Work 53

8.2.4 Google News

Google news is an online news recommender system initiated by Google Inc., that
aggregates news from more than 4 500 news sources worldwide. As an online news
recommender, it has many of the same challenges as the SmartMedia application,
such as scalability and item churn. Google News solved these challenges by divid-
ing the recommender system into three parts[6]: (i) an offline component which
utilizes implicit feedback by clustering users based on their click history, (ii) a set
of online servers which updates user and story statistics as well as generating news
recommendation on requests and (iii) two types of data tables: a user table storing
user click history and clustering information, and a story table storing real time
click counts for every story-story and story-cluster pair.

The offline component scales with millions of users and news stories. This is
done by modeling it as a distributed computation when clustering the users. The
clustering is based on clicks made by users over a short time window and the
clustering algorithms used are either MinHash or PLSI.

The data tables are used to store all relevant user and story statistics that are
used by the real time servers. To emphasize recent news stories and avoid giving
old news stories too high click count, Google News uses time decayed counts[6],
giving more weight to recent user clicks.

Live evaluation of their recommender system shows that it performs better than
recommending the most popular news articles. This indicates that implicit feed-
back, and in Googles case user click history, is enough to create good recommenda-
tions. They also ran the clustering algorithms on the Movielens and a NewsSmall
data set, where they observed that the clustering algorithms performed better
than a memory-based item-covisitation algorithm.

Part III

Realization

55

Chapter 9

Implementation

This chapter is divided into three sections. In Section 9.1 we present the ar-
chitecture made to support recommendation with implicit data. In Section 9.2
we present the framework used to evaluate hundreds of different recommendation
models, and in Section 9.3 we show how our recommendation component was
integrated with the SmartMedia news application.

9.1 Recommender

In our work, we have made use of the Apache Mahout Library1. Mahout is a
machine-learning library implemented in Java. It contains a number of imple-
mentations of collaborative filtering methods as well as fast data structures for
storing explicit feedback. It also contains methods to calculate a number of ac-
curacy metrics for a recommendation model. Mahout does not, however, support
the utilization of implicit feedback, and thus we have extended Mahout with a
custom data model. As we discuss in Chapter 6, when additional kinds of feed-
back are available, the sparse user-item matrix can be generalized into a sparse
three-dimensional tensor, often called a cube. In Mahout’s data model, each cell
in the user-item matrix is addressed in terms of the respective userID and itemID.
In a cube of feedback, we also need to address cells by their feedbackID. In order
to support fast look-up of both user rows, item columns and tubes of implicit
feedback, we utilize an in-memory SQL Database called H22. By adding each cell

1https://mahout.apache.org
2http://www.h2database.com

57

https://mahout.apache.org
http://www.h2database.com

58 Chapter 9 Implementation

to the in-memory database, and setting indices on each coordinate property, we
effectively have a fast, sparse, 3-dimensional data structure. The structure of the
events table is given in Listing 9.1.

CREATE TABLE IF NOT EXISTS events (

userID BIGINT NOT NULL,

itemID BIGINT NOT NULL,

feedbackID BIGINT NOT NULL,

value REAL NOT NULL,

PRIMARY KEY (userID , itemID , feedbackID)

) ;

CREATE INDEX uIndex ON events (userID) ;

CREATE INDEX iIndex ON events (itemID) ;

CREATE INDEX fIndex ON events (feedbackID) ;

Listing 9.1: SQL code for events table

The implicit data is then used in a preprocessing step, where we look for items
where explicit feedback is not given, and try to infer it from patterns found in the
data set. We elaborate on how these patterns are inferred in Chapter 7. After
preprocessing, we extract the resulting user-item matrix of explicit feedback. The
processed user-item matrix can then be used to build a recommendation model.
This is done by factorizing it using Parallel Stochastic Gradient Descent, which
is a part of Apache Mahout. After this stage, we can use the model to provide
recommendations to a user.

Data: implicit and explicit feedback F
Result: recommendation model
if F has been updated then

load F from DB into memory;
preprocess(F);

end
model = recommender.buildModel(F);
return model

Algorithm 6: Pseudo code for recommender

9.2 Evaluation of Mapping Techniques

To solve our research questions, we needed to evaluate and compare many different
mapping algorithms with changing parameters on different data sets. Thus we
decided to develop a standardized way of computing these evaluations. We needed

Chapter 9 Implementation 59

to conduct each evaluation on a certain data set using a certain mapping technique
and a certain collaborative filtering method. We also needed to test each mapping
technique with up to hundreds of different parameter combinations. Thus, we
created a Configuration class to contain all these variations. When bootstrapping
the evaluation, we create a Configuration object to contain all the parameters,
and add it to a list. The list is passed to an evaluator, which then conducts the
evaluations using the parameters contained in the Configuration object. Upon
completion, the evaluator returns a list of result metrics – one for each evaluation.
This list of results can then be serialized to a file and further analyzed. An example
code showing the evaluation pipeline is given in Algorithm 7.

Data: dataModel, configurations
Result: results
foreach config in configurations do

Preprocessor = config.get(”preprocessor”);
newModel = Preprocessor.preprocess(dataModel, config);
result = Evaluator.evaluate(newModel, config); // evaluate config
results.add(result); // add to list of results

end
return results

Algorithm 7: Pseudo code for evaluation pipeline

9.3 Integration to SmartMedia

An important part of our work was to integrate the collaborative filtering com-
ponent to the SmartMedia news application in order to recommend news articles
to users. The CF component runs independently of the news application, and
acts as a service that provides recommendations. Both systems have access to the
same database, and will communicate via simple HTTP REST APIs. As shown
in Figure 9.1, there are two distinct forms of communication that will happen; (i)
A notification about updates to the database, and (ii), a request for recommenda-
tions to a client. As an example of (i), Amy reads a news article, which is reported
to the news API. The news API then stores an event in the database containing
implicit feedback collected as Amy was reading, as well as an explicit rating if she
gave one. Then, the CF API is notified about the new information, and it can
fetch it from the database and rebuild the recommendation model. In example (ii),
Mark requests articles personally recommended to him from the news API. The
news API forwards the request to the CF API which returns a set of recommended

60 Chapter 9 Implementation

items. Since all requests to the CF component will be from the news server, we
can run it behind a firewall for enhanced security. This also alleviates the need for
dealing with user authentication in the CF component. A detailed specification of
the CF API is elaborated next.

Figure 9.1: The SmartMedia recommender integration

1. Notifications

When users read articles, the data set changes. We need to know about these
updates so we can rebuild the recommendation model when necessary. The cur-
rent implementation stores data in a MongoDB3 database. As of this writing,
MongoDB does not support collection subscriptions which means that the CF
component either needs to poll the database for updates, or that the SmartMedia
Application has to notify the CF component when have been made. Polling can
significantly lower the performance of the database, which can affect the perfor-
mance of the system as a whole. Therefore we opt for the latter option in our
implementation.

When the news application makes a change to the database, an HTTP request is
made to the CF component at /notify. The result is a JSON object containing
the following properties:

3http://www.mongodb.com

http://www.mongodb.com

Chapter 9 Implementation 61

• rebuild: true/false – true if the recommendation model was rebuild after
this notification

• lastrebuild: the UNIX timestamp of the last rebuild

• changes: the number of changes since the last rebuild

Example:

• request: POST https://cf.smartmedia.idi.ntnu.no/notify

• response: {rebuild: true, lastrebuild: 1399985213, updates: 151}

2. Recommendations

When a user wants to read recommended articles on his device, a request is sent
to the news server. The news server forwards the request to the CF component at
/recommend/{userid}?limit={limit}, where the parameters are described as

• userid: the ID of the user to provide recommendations for

• limit [optional]: the maximum amount of recommendations to provide (can
be lower)

The response is represented as JavaScript Object Notation (JSON), containing
an object with a single property ”data”, which is an array of objects with the
following properties:

• itemid: the item identifier

• value: the estimated rating of the respective item

Example:

• request: GET https://cf.smartmedia.idi.ntnu.no/recommend/412?limit=10

• response: {data: [{itemid: 306860, rating: 4.25}, {itemid: 304486, rating:
4.22}, . . .]}

62 Chapter 9 Implementation

Exceptions

If an error occurs during recommendation or while computing the model, the API
yields a proper status code according to the HTTP/1.1 specification4 and a JSON
object is returned with the type of error and an error message.

Example:

• request: POST https://cf.smartmedia.idi.ntnu.no/recommend/asdf

• response: {error: ”NoSuchUserException”, message: ”The user asdf does
not exist”}

4http://en.wikipedia.org/wiki/List of HTTP status codes

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 10

News Recommendation in the
SmartMedia Application

In this chapter we describe the process of creating recommendations in the Smart-
Media application. In Section 10.1 we outline how the feedback is represented, in
Section 10.2 we show how it is preprocessed and in Section 10.3 we show how to
generate recommendations.

10.1 Feedback Representation

The SmartMedia application currently collects both explicit and implicit feedback,
although in the future we plan to collect only implicit feedback. The explicit
feedback is represented as a five star rating given by the users after they have
finished reading an article, while implicit feedback is collected by the application
itself and consists of the time a user has spent reading the article in milliseconds.

However, other user interactions can easily be recorded and utilized, such as time
a user has spent moving the mouse or number of mouse clicks inside the article,
but these are yet to be implemented in the SmartMedia application.

The recommender system uses explicit ratings as the users true interest in the
article, and implicit feedback as indication of interest.

63

64 Chapter 10 News Recommendation in the SmartMedia Application

Table 10.1: Feedback used in SmartMedia application

Explicit feedback Implicit feedback

Five star rating TimeOnPage in milliseconds

10.2 Preprocess the Feedback

Preprocessing the feedback in the SmartMedia application is the main focus of this
thesis. The preprocessing ensures that we utilize implicit feedback by mapping it
to explicit feedback which the SVD recommender can understand.

Since the feedback consists of ratings and time spent per article, we have chosen
to limit the techniques to utilize the implicit feedback to the mapping techniques
described in Chapter 7, influenced by the work of Parra and Amatriain [13], and
Morita and Shinoda [14]. The mapping techniques are evaluated in the next
chapter on a realistic news data set, enabling us to find a good mapping technique
to be used in the news domain.

As Figure 11.2 shows, the mapping technique that had the lowest RMSE was a pre-
processor that combines closest neighbor search and time spent per article analysis
to generate recommendations. Table 11.7 presents the different configurations of
this technique, and Table 11.17 presents the respective results. The top configura-
tion got an RMSE of 0.978, which is a 5.14% improvement over using only explicit
feedback. Properties of this configuration are presented in Table 10.2, which are
the ones that will be used in the SmartMedia collaborative filtering component.

Table 10.2: PreprocessorStat class properties

Prediction method Time threshold Correlation limit

Closest Neighbor 25 seconds 0.3

Figure 10.1 presents the flowchart of the preprocessor algorithm. The start and
end symbols define the scope of the preprocessor and as long as there exists unrated
articles in the data set which is not preprocessed, it loops over the data set. The
first condition ensures that it is possible to find a correlation between ratings for
each article. If it is possible, and the correlation is above 30% as defined by the
correlation limit, the algorithm will generate a pseudo rating for the unrated article
by doing a nearest neighbor search with one neighbor. If the article has less than 3
ratings or the ratings has correlation less than 30%, the algorithm will generate a

Chapter 10 News Recommendation in the SmartMedia Application 65

pseudo rating of four if the time the user has spent reading the article is above 25
seconds. As seen in Table 11.17, the flowchart is robust, and minor variations in
the correlation threshold or time threshold does not incur any significant changes
to the RMSE, as long as we use a closest neighbor prediction method.

The preprocessing step is done offline at regular intervals to keep the model up-
dated and ensure that users are recommended relevant articles. In the SmartMedia
application, the model is updated every 10 minutes if the data set has changed.
This frequency is based on results from Chapter 12, which demonstrated that our
recommender is able to build the model within five minutes on a synthesized data
set with one million feedback entries. We use an extra buffer of five minutes in
case of unexpected performance strains. The results are presented in Table 12.3,
demonstrating that ten minutes is sufficient to update the model and replace it
with the old model.

After preprocessing the feedback, the user-article rating matrix consists of both
original ratings and pseudo ratings. Properties of the user-article matrix when
the preprocessing is used on the YOW data set is presented in Table 10.3. The
preprocessed feedback is then used to create recommendations, which is described
in the next section.

Table 10.3: User-article matrix properties

Feedback Ratings Density

Original 6653 5.0%
Preprocessed 7686 5.8%

10.3 Create Recommendations

After the preprocessing step is completed, we have a denser user-article matrix,
from which we can construct a recommendation model. This is done by factorizing
the matrix using a parallel SVD factorizer using Stochastic Gradient Descent. This
factorization yields a model of two matrices of size u× l and i× l, where u denotes
the number of users, i denotes the number of articles and l denotes the number of
latent factors selected for this factorization.

As we discuss in Section 5.1, the latent factors represents hidden patterns found in
the data. This can for example be the degree of sports in the news article, or the

66 Chapter 10 News Recommendation in the SmartMedia Application

Figure 10.1: The steps in preprocessor

degree of preference towards sports for a user. When we calculate the product of a
user vector and an article vector, we get the estimated preference of a user towards
that article. Thus, we can get an ordered list of recommendations by calculating

Chapter 10 News Recommendation in the SmartMedia Application 67

the estimated preference of all articles a user have not already read. The number
of latent factors one should choose depends on the size of the data set. We use 10
latent factors for our implementation, but that value is subject to increase as the
data set grows bigger.

Part IV

Evaluation and Conclusion

69

Chapter 11

Evaluation of Mapping
Techniques

This chapter outlines our evaluations on a news data set. It starts with introducing
the data set in Section 11.1, then the different configurations of the algorithms and
the environment are presented in Section 11.2 and Section 11.3. How we conducted
the evaluations are explained in Section 11.4. We further present our results in
Section 11.5 and at the end of this chapter discuss our findings in Section 11.6.

11.1 News Data Set

The news data set used in the evaluations is called the ”YOW User Study Data:
Implicit and Explicit Feedback for News Recommendation” and was originally
collected by the Principal Investigator in Carnegie Mellon University. After their
evaluations, they made it publicly available online1.

The goal of the study was to collect a data set from a variety of users with explicit
feedback, implicit feedback and a wider range of information about news articles
and topics. It was conducted during a four week time period, and the currently
available data set contains 24 users, 5921 news articles and a total of 10010 rows
with explicit and implicit feedback. More details about how the user study was
conducted and statistics about it can be found in [37].

1http://users.soe.ucsc.edu/∼yiz/papers/data/YOWStudy

71

http://users.soe.ucsc.edu/~yiz/papers/data/YOWStudy

72 Chapter 11 Evaluation of Mapping Techniques

Tables 11.1 and 11.2 present some of the information collected during the user
study. The data set consisted of many missing values, both explicit and implicit
feedback. Missing values in explicit feedback was mostly due to the fact that it
was optional to give this feedback, but missing values in implicit feedback means
that users did not use the keyboard buttons that was monitored, or moved the
mouse enough to give feedback.

Since the SmartMedia application only collects ratings as explicit feedback, and
currently only time spent reading an article as implicit feedback, we modified the
YOW data set to better resemble it. We also included time on mouse, because it
could be included in the SmartMedia application in the future.

Table 11.1: Explicit feedback collected in the user study

Explicit Feedback

Classes String Topics the article belonged to
User like 1-5 The rating
Relevant 1-5 How relevant was the news related to the classes
Novel 1-5 How novel the article was
Authoritative Boolean Whether the news was authoritative

Table 11.2: Implicit feedback collected in the user study

Implicit Feedback

TimeOnMouse int ms spent moving the mouse
TimeOnPage int ms spent on a page / reading article
EventOnScroll int number of clicks on scroll bar
ClickOnWindow int number of clicks inside browser window
Keyboard activities int Other keyboard activities

11.1.1 Modified Data Set Used in Evaluations

The YOW data set used in our evaluations had four major modifications: (i) first
we trimmed away feedback that was not necessary for our algorithms; (ii) next
we removed all duplicate entries; (iii) then we removed all -1 ratings that already
exists in the data set; (iv) at last we changed the user like value to -1 on a range of
feedback in order to have data to map from implicit feedback to explicit feedback
(in our case user like). Reasons behind the modifications and more details are
elaborated next.

Chapter 11 Evaluation of Mapping Techniques 73

As mentioned earlier, the only explicit feedback used in our recommender are
ratings, which maps to user like in the YOW user study. Of the implicit feedback
in the YOW user study, only TimeOnPage and TimeOnMouse had enough entries
to be useful in our preprocessor. Consequently, the data we used from the YOW
user study are presented in Table 11.3. All other feedback was trimmed away.

Table 11.3: Data from YOW user study used in our evaluations

Data set

User id Item id User like TimeOnPage TimeOnMouse
int int 1-5 int int

When we inspected the trimmed data set we observed several duplicates, with
duplicate we mean that a user has read same article more than once with or
without ratings. Since we do not know which feedback that was added as a mistake
or which feedback that fits the users true feedback the most, we removed all
duplicates. This ensured that the data set we are working with consists only of
valid explicit-implicit feedback mappings.

However, the trimmed and non-duplicate data set had only 106 missing user likes.
Missing user likes are represented as -1, and for these ratings, our preprocessor tries
to use the implicit feedback to guess a pseudo rating that can be used instead.
To make matters worse, most of these -1 user likes were missing preferences on
items without any other ratings. This means that the baseline estimate, that
calculates a RMSE on the data set where ratings are between 1-5 do not know of
this item, and will calculate a RMSE on a user-item matrix with less items than
the estimate after the preprocessing part. Therefore, the next step was to remove
these -1 ratings, and as a consequence a few items from this data set.

The final step was to select ratings where we can change the user like without
removing items from the user-item matrix. Our heuristic for this step is explained
in the list below and a small example of the user-item matrix is presented in Tables
11.4 and 11.5.

1. Choose items with several ratings

2. If item has six or more ratings, change user like to -1 on half of the ratings

3. If item has between two and six ratings, change user like to -1 on one rating.

74 Chapter 11 Evaluation of Mapping Techniques

Properties of the data set during the different phases of the modifications can be
seen in Table 11.6 and Figure 11.1 shows that these modifications do not change
the characteristics of the data set.

Table 11.4: Original rating matrix

User 1 User 2 User 3 User 4 User 5 User 6
Item 1 3
Item 2 4 2 2 1
Item 3 4 5
Item 4 3 5 2 1 3 3
Item 5 3 4 5

Table 11.5: Modified rating matrix

User 1 User 2 User 3 User 4 User 5 User 6
Item 1 3
Item 2 4 2 -1 1
Item 3 4 -1
Item 4 -1 5 -1 -1 3 3
Item 5 3 4 -1

Table 11.6: Data set properties during different stages

Data set Rows Users Items User likes Implicit feedback Density

Original 10010 24 5921 9829 9996 7.04%
Step 1 9979 24 5907 9824 9979 7.04%
Step 2 8430 24 5615 8312 8418 6.26%
Step 3 8312 24 5518 8312 8312 6.28%
Step 4 8312 24 5518 6653 8312 6.28%

11.2 Algorithms

The recommendations that are evaluated are processed in two steps: (i) the pre-
processing step and (ii) the recommendation step. The focus in this thesis is the
preprocessing step, where we infer pseudo ratings for news articles without a rat-
ing based on the implicit feedback they have. Every preprocessor has the same
data set as input, and based on this data set they try to return a more dense data
set where the new pseudo ratings contributes to better accuracy. The different
properties in each preprocessor are presented in Tables 11.7 to 11.14, and during

Chapter 11 Evaluation of Mapping Techniques 75

(a) Before (b) After

Figure 11.1: Time on page versus ratings before and after sampling the YOW
data set: (a) before and (b) after

the evaluation we test all possible configurations with these properties. For ex-
ample, the preprocessor for Time Threshold has two properties with respectively
four and two values which means that the total number of configurations for this
preprocessor is 4× 2 = 8.

The recommendation step is done by using Mahouts SVD recommender with SGD
factorization using 10 latent factors. It uses the preprocessed data set, which only
has explicit feedback represented as ratings. Thus, for each configuration, we
reload the unprocessed data set, preprocess it with a set of configurations, then
pass it to the SVD Recommender, where we do 5000 evaluations of the root mean
squared error of the recommendations given by the recommender. From this, we
can see which preprocessor and which parameters that yields the best end result.

Table 11.7: Configurations of Correlation and Time Threshold

TimeOnPage threshold Correlation limit Prediction method

15 000 {0.0, 0.1, 0.2 ...0.9} Linear regression
20 000 Closest neighbor
25 000 Equal bins
30 000

11.3 Environment

The evaluations were conducted on three Linux nodes, each running a 2.67 GHz
Intel Xeon CPU with 6 cores and 6GB of RAM.

76 Chapter 11 Evaluation of Mapping Techniques

Table 11.8: Configurations of Correlation

Correlation limit Prediction method

{0.0, 0.1, 0.2 ... 0.9} Linear regression
Closest neighbor
Equal bins

Table 11.9: Configurations of Time Threshold

TimeOnPage threshold Rating

15 000 4
20 000 5
25 000
30 000

Table 11.10: Configurations of Clustering

Clusterer Cluster data set Distance function

K-Means Time on page Euclidean
X-Means Time on page and mouse Manhattan
Density K-Means Page times mouse Chebyshev
EM
Cobweb
Farthest First

Table 11.11: Configurations of K-Nearest Neighbor

Error minimization Confidence threshold K

MSE {0.3, 0.4, 0.5 ... 0.8} {1, 3, 5 ... 19}
MAE

Table 11.12: Configurations of Multiple Linear Regression

Number of independent variables 1 2 3

Table 11.13: Configurations of Support Vector Machine

Kernel C Gamma

RBFKernel 2n, −15 ≤ n ≤ 15 2t, −6 ≤ t ≤ 6

Table 11.14: Configurations of Artificial Neural Network

Learning rate {0.001, 0.003, 0.005 ... 0.3000}
Epochs {100, 200, 300 ... 1000}

Chapter 11 Evaluation of Mapping Techniques 77

11.4 Testing Methodology

10-fold cross validation with hold-out set, that is, the pseudo ratings we infer
during the preprocessing are only in the training set. The RMSE is calculated by
doing 5000 iterations of each configuration and then returning the mean value.

11.5 Results

11.5.1 Baseline Estimate

The baseline estimate is calculated using only explicit feedback, and it dictates if
the configurations using implicit feedback are valuable or not. The RMSE on the
baseline estimate was 1.031, and consequently, configurations with lower RMSE
imply that using implicit feedback improves the recommendations and vice versa.

Figure 11.2 presents the best result from each configuration, revealing that map-
ping implicit feedback with a simple mapping method combined with a time
threshold of how long users spend reading articles has the lowest RMSE and is the
preferred technique. The figure also show that the data set may not be suitable
for either multiple linear regression or clustering mapping techniques, where we
believe the main reason is the lack of doing a quality assurance of the generated
pseudo ratings. Without the quality assurance, both good and bad pseudo ratings
are used in the training phase, which affects the quality of the model, resulting in
high RMSE.

11.5.2 Time Threshold

Using the time a user spends reading each article yielded good results. Table 11.15
presents the results, where TimeOnPage threshold as 25 seconds and rating as 4
received the lowest RMSE of 1.008, which represents a 2.23% improvement over
the baseline estimate. These results fit well with the results Morita and Shinoda
found in their analysis. In [14] they observed that if they treated articles users
spent more than 20 seconds reading as interesting, they could use this feedback to
get precision and recall values of 70% and 30% of the retrieved articles.

78 Chapter 11 Evaluation of Mapping Techniques

Figure 11.2: RMSE of best performing techniques compared to baseline

We further observe that rating an article based on the time user has spent reading it
with four, gives continuously better results than giving it five. Looking at Figures
11.3 and 11.4, this is to be expected since rating four has the highest frequency
in the data set. Combined with a time threshold the probability of an unrated
article having rating four is higher than other ratings. Similar behavior can be
seen in the news article data set collected by Claypool et al. [15], indicating that
these characteristics describe the news domain in general.

The time spent reading articles is very news domain specific, but we believe that
the reason it works so well is because time spent reading and ratings are linearly
correlated and that rating four has the highest frequency. Other studies with
linearly correlated data sets show the same results [13, 14], which means that
utilizing the behavior in the data set, in this case the linear correlation between
ratings given by the users and the time spent reading the news articles, has proven
to be beneficial to recommend items using implicit feedback.

Chapter 11 Evaluation of Mapping Techniques 79

Figure 11.3: Rating frequency in
data set

Figure 11.4: Time on page versus
ratings

Table 11.15: Results when using time spent reading

RMSE Min time on page Rating Pseudo ratings

1 1.008 25 000 4 788
2 1.011 15 000 4 937
3 1.012 30 000 4 707
4 1.012 20 000 4 869
5 1.015 30 000 5 707
6 1.016 25 000 5 788
7 1.022 20 000 5 869
8 1.025 15 000 5 937

11.5.3 Correlation

The results using a correlation limit and simple prediction methods are presented
in Table 11.16 and reveals that closest neighbor is the preferred prediction method,
as the top seven configurations use this method. We included the best RMSE
for linear regression and equal bins as well in order to compare them. The best
configuration had a correlation limit of 0 and prediction method as closest neighbor
and received a RMSE of 0.993. This represents a 3.69% improvement over the
baseline estimate.

We observe that closest neighbor and linear regression is not dependent on hav-
ing a correlation between the ratings and the implicit feedback to generate good
pseudo ratings. However, it is important to be aware that the prediction method
is only used on unrated articles, which at least three other users have rated (this
is necessary in order to find a correlation). The data set overall is linearly cor-
related, which means that most of the articles with at least three ratings have a

80 Chapter 11 Evaluation of Mapping Techniques

linear correlation between the rating and the time spent per page. This is shown
in Table 11.16 where there are only 72 more pseudo rating when the correlation
limit is 0.4 instead of 0.0. Therefore, we believe that for other data sets that are
not as correlated as ours, the correlation limit becomes more important.

In contrast, equal bins does not have this behavior. This is to be expected, as equal
bins need good correlation examples in order to create reasonable bins. This can
be seen by observing that the best configuration with equal bins has a correlation
limit of 0.9 and the worst has a correlation limit of 0.0. However, we expected this
method to perform better than it does with high correlation. One possible reason
for the bad performance is that the bins should have varying size, so with equal
size it consistently misses the right bin, resulting in bad performance.

We expected linear regression to perform better, as Parra and Amatriain used
multiple linear regression (with both single and multiple implicit feedback) with
great results in their analysis of their Last.fm data set[13]. However, in their
implementation they used regression on all unrated songs, not only those with a
correlation above a threshold. Therefore, to get a better comparison between our
results and theirs based on multiple linear regression, we did the same and the
results are presented in Section 11.5.5.

Table 11.16: Correlation results

RMSE Corr. limit Pred. method Pseudo ratings

1 0.993 0.0 Closest Neighbor 585
2 0.994 0.2 Closest Neighbor 579
3 0.994 0.3 Closest Neighbor 577
4 0.995 0.1 Closest Neighbor 580
5 0.999 0.4 Closest Neighbor 513
.
8 1.008 0.1 Linear Regression 580
.

21 1.047 0.9 Equal Bins 244
.
.
.

30 1.078 0.0 Equal Bins 585

Chapter 11 Evaluation of Mapping Techniques 81

11.5.4 Combined Time Threshold and Correlation

Combining both correlated prediction methods and time threshold had the lowest
RMSE values of all the mapping techniques as shown in Figure 11.2. The rating
that is generated when the time threshold used is four, which is motivated by our
results in Table 11.15. Table 11.17 presents the results from the top five performing
configurations. We also included the best RMSE when the prediction method was
linear regression and equal bins as well, in order to compare them with the top
five configurations. We observe that the lowest RMSE is 0.978, which represents
a 5.14% improvement over the baseline estimate.

Again, we observe that closest neighbor is superior to the other prediction methods
and 25 seconds is the preferred time threshold. It is interesting that the correlation
limit is 0.3, which indicates that articles with less correlation is better off with an
analysis of how long the user spent reading the article.

We believe the main reason that this technique performs better than the involved
techniques individually is that it is able to generate more high quality pseudo
ratings. With this technique, we are able to generate 1033 pseudo ratings, while
the best time threshold configuration generates 788 ratings and the best correlation
configuration generates 585 pseudo ratings. Consequently, we conclude that as
long as the pseudo ratings are of high quality they should be used to generate
recommendations.

Table 11.17: Combined time threshold and correlation results

RMSE Time thres. Corr. limit Pred. method Pseudo ratings

1 0.978 25 000 0.3 Closest Neighbor 1033
2 0.979 20 000 0.0 Closest Neighbor 1088
3 0.979 25 000 0.1 Closest Neighbor 1036
4 0.979 25 000 0.2 Closest Neighbor 1035
5 0.980 15 000 0.0 Closest Neighbor 1128
.

26 0.991 25 000 0.0 Linear Regression 1041
.

41 1.027 15 000 0.8 Equal Bins 862
.
.
.

108 1.054 30 000 0.0 Equal Bins 993

82 Chapter 11 Evaluation of Mapping Techniques

11.5.5 Multiple Linear Regression

Table 11.18 presents the results of using multiple linear regression on the data
set with one, two or three independent variables: (i) TimeOnPage - TOP, (ii)
TimeOnMouse - TOM, and (iii) TimeOnPageTimesTimeOnMouse - TOPTTOM.
The beta constants are calculated using all news articles with both explicit and
implicit feedback, and pseudo ratings are generated for all unrated news articles.
The results indicate that this technique does not generate enough high quality
pseudo ratings to be beneficial, as the best models perform worse than the baseline
estimate.

This technique was motivated by the results of Parra and Amatriain in [13]. How-
ever, we do not get any improvement over the baseline estimate as opposed to
Parra and Amatriain and we believe the cause is two-fold. First, since we do not
remove outliers or extreme values in the training data, that is, ratings with both
explicit and implicit feedback, these values negatively affects the model and as a
consequence affects the quality of all the pseudo ratings. Examples of outliers in
the news domain are users that starts reading an article, then becomes preoccupied
before they finish the article and then rate it. Similar outliers in the Last.fm data
set do not exist and consequently their model becomes better than ours. Second,
as discovered in the previous section, only high quality pseudo ratings improve
the recommendations, but in this technique all unrated articles are given a pseudo
rating independent of the quality of the pseudo rating.

Regardless of the resulting RMSE, we think it is interesting to note that including
other implicit feedback variables than time spent on page in the same model
increases the performance. This indicates that including other implicit feedback
variables in the SmartMedia application is beneficial as long as some correlation
between the explicit feedback and the other implicit feedback exist. By doing
a quality check of the pseudo ratings before using them, we believe that such a
technique could offer good recommendations.

Table 11.18: Multiple linear regression results

RMSE Model

1 1.046 rui = β0 + β1 · TOPui + β2 · TOMui

2 1.046 rui = β0 + β1 · TOPui + β2 · TOMui + β3 · TOPTTOMui

3 1.048 rui = β0 + β1 · TOPui

Chapter 11 Evaluation of Mapping Techniques 83

11.5.6 Clustering

Table 11.19 presents the results where clustering is used to map different ratings
to clusters, and then classify new unrated news articles to the closest cluster. The
expectation-maximization configuration with the data set with time on page, time
on mouse and time on page multiplied with time on mouse received the lowest
RMSE of 1.033. However, this is worse than the baseline estimate and questions
the benefits of using clustering as a mapping method. These results indicate that
implicit feedback from the news domain, represented by our data set, is not fit for
clustering.

The results from the COBWEB configurations support this hypothesis, as COB-
WEB did not create different clusters for each rating. COBWEB found only 1
cluster, which mapped to rating 4. With one cluster in this preprocessor, all
COBWEB configurations rates all unrated articles as 4. As a consequence, COB-
WEB configurations results are the same if we just gave all unrated articles rating
4 without doing any other kind of preprocessing.

Nonetheless, given the performance of EM we still believe that clustering tech-
niques have potential. Clustering classifies all missing ratings, that is, 1659 pseudo
ratings and with only 0.3% worse performance, we believe that with further en-
hancements to the clustering configurations e.g. only classify instances that have
a certain probability value (as done with Naive Bayes and KNN) combined with
a better training model could improve the clustering results.

Table 11.19: Clustering results

RMSE Clusterer Cluster data set Dist. Func.

1 1.034 EM Page times mouse -
2 1.040 X-Means Page times mouse Manhattan
3 1.040 COBWEB Time on page and mouse -
4 1.040 COBWEB Page times mouse -
5 1.040 EM Time on page -
6 1.041 COBWEB Time on page -
.
.
.

30 1.061 Density K-Means Time on page Euclidean

84 Chapter 11 Evaluation of Mapping Techniques

11.5.7 Naive Bayes

Table 11.20: Naive Bayes results

RMSE Threshold PseudoRatings

1 1.023 40% 726
2 1.033 70% 76
3 1.034 60% 99
4 1.035 50% 174
5 1.040 10% 1659
6 1.040 20% 1659
7 1.041 30% 1659

Table 11.20 presents the results given by mapping implicit feedback to explicit
feedback using a Naive Bayes classifier. As seen in the table, when using a con-
fidence threshold of 40%, the classifier is able to improve the RMSE with about
0.88%, which is not very significant. At this threshold level, the classifier is able
to infer 726 ratings. However, the RMSE is not improved to any significance be-
cause the quality of the ratings is not good enough. This is also evident at lower
thresholds, as the inferred ratings increase the RMSE. At higher thresholds, the
quality of the ratings is better, but since the classifier is not able to infer more
than 200 ratings, the effect they have on the RMSE is too small, and thus the
RMSE lies between 1.033-1.035, very close to the baseline RMSE.

Parra and Amatriain had an improvement of over 6% over baseline estimate in [13]
using a regression method, and wanted to explore Bayesian Models in their future
work. With this evaluation we see that Naive Bayes is not a mapper feasible to use
with this data set. However, since we only classify based on a single parameter,
the naive assumption of Naive Bayes is effectively insignificant in this evaluation.
Thus, it is likely that we would see different results if we had more kinds of implicit
feedback available.

11.5.8 K-Nearest Neighbor

In Table 11.21 we show the results yielded by preprocessing using KNN classifica-
tion. As we can see, the improvement upon the baseline evaluation is marginal,
with an RMSE of the top three configurations of 1.029. Using KNN, we are able
to set a threshold on the confidence value for each classification. Thus, we can

Chapter 11 Evaluation of Mapping Techniques 85

Table 11.21: Instance-based k-nearest neighbor classifier results

RMSE Pseudoratings Threshold K Minimization

1 1.029 980 40% 15 MinimizeMeanSquaredError
2 1.029 24 80% 7 MinimizeMeanAbsoluteError
3 1.029 980 40% 15 MinimizeMeanAbsoluteError
4 1.030 34 80% 5 MinimizeMeanSquaredError
5 1.030 1130 40% 17 MinimizeMeanSquaredError
.
.
.

120 1.048 1659 30% 1 MinimizeMeanAbsoluteError

exclude the samples where the classifier has a low confidence in the classification.
We see that the top result has a threshold of 40%, yielding 980 inferred ratings
for an RMSE of 1.029. However, we get an equal RMSE using a threshold of 80%
yielding only 24 ratings. It is safe to assume then, that a significant amount of the
ratings inferred with a 40% threshold are of a low quality, therefore trifling the
potential RMSE increase caused by the higher-quality ratings. At the same time,
we see that the threshold can be lower with a higher value of K. This is because
we are dealing with a noisy data set. Thus, with higher values of K, the outliers
are ”smoothed out”, and become less influential. Another observation is that the
minimization measure does not affect the result in any way.

11.5.9 Artificial Neural Network

Table 11.22: Artificial neural network results

RMSE Learning rate Epochs

1 1.031 0.041 310
2 1.031 0.041 510
3 1.032 0.021 310
4 1.032 0.081 910
5 1.032 0.021 410
6 1.032 0.021 210
. . . .
. . . .
. . . .

150 1.052 0.001 10

86 Chapter 11 Evaluation of Mapping Techniques

Table 11.22 outlines the RMSE given by ANN classification. We can see that the
classifier is not able to improve the RMSE, yielding a top RMSE of 1.031. Since
the classifier is non-probabilistic, we have no way of telling the confidence of a
classification. Thus, we infer all pseudo ratings, whether or not we are confident
that they are in fact correct. This will likely lead to many low-quality ratings, and
consequently the overall RMSE is the same as the baseline estimate.

If we look at the parameters, learning rate and epochs, it is unsurprising that a
learning rate of 0.001 with 10 epochs yields a poor result. This comes from the
fact that with only 10 epochs, the algorithm will not have reached convergence
before stopping. There is often a balance between learning rate and epochs in
terms of accuracy and performance. With few epochs, the algorithm is faster, but
it also requires us to increase the learning rate in order to converge within the set
number of epochs. Respectively, if we have a low learning rate, we need to many
epochs in order to reach convergence, thus increasing the computational cost. In
our evaluations, we did a grid search of 10 to 1000 epochs with increments of 100,
and learning rate from 0.001 to 0.3 with increments of 0.02.

Due to a lack of time and resources, we were not able to do a full grid search
of ANN, and we believe that the classifier should be investigated further as a
preprocessing algorithm.

11.5.10 Support Vector Machine

Table 11.23: Artificial neural network results

RMSE C Kernel gamma

1 1.029 128 32
2 1.031 0.00781 16
3 1.031 0.25 8
4 1.031 0.5 1
5 1.031 2.0 64
. . . .
. . . .
. . . .

272 1.239 512 0.06250

Table 11.23 outlines the results seen when using a support vector machine (SVM)
based on regression. As we can see, the SVM method does not improve the result

Chapter 11 Evaluation of Mapping Techniques 87

by any significant amount, with lowest RMSE of 1.029, just a 0.002 improvement
over baseline. The table also shows that there are no apparent patterns in the
parameters. A complexity constant C of 0.00781 performs almost equal to a C
of 128, while the worst performance was seen with a C of 512. We believe that
noisy data is the main reason for the poor performance of the SVM. As we outline
in Section 7.5.4, the SVM constructs a hyperplane with the goal to separate the
different instances. If these instances are very noisy, the SVM will not be able to
construct a good hyperplane, resulting in poor results.

11.6 Discussion

Our main findings from the evaluation of the recommender are:

1. Combining neighborhood search and time threshold gave best results

2. Simple mapping techniques performed better than more complex ones

3. High quality pseudo ratings and the number of pseudo ratings are the main
reasons for high performance

The evaluation demonstrated that combining a neighborhood search with one
neighbor (if it was possible to find some correlation between the ratings) and a
time threshold for articles without correlation or enough ratings produced the
best results. The latter method is very news domain specific and the correlation
between time spent reading news articles and ratings is well studied in [14, 15].
However, similar methods for other domains should perform well as long as an
analysis of the domain similar to those in the news domain is conducted. What is
more interesting is the good results from using a neighborhood search with only
one neighbor. As Section 11.5.3 shows, this technique does not even need high
correlation to perform well. We suspect the reason is that users tend to rate the
same articles similar, explaining that one neighbor is enough and on average leads
to high quality pseudo ratings.

After all the configurations of the recommender algorithm had been tested, we
observe that simple mapping techniques represented by the Time and Correla-
tion configurations performed better than the more complex techniques such as

88 Chapter 11 Evaluation of Mapping Techniques

clustering, artificial neural network and other classifier algorithms. We can think
of several reasons for these results. First, the complex techniques need more
fine-tuning than we did in order to perform at the same level as the best configu-
rations. Some of this tuning is mentioned above, such as a probability check for
each classified news article when clustering or SVM are used, inspired by Naive
Bayes and K-nearest neighbor results. The probability check then ensures that
only high quality pseudo ratings are generated. Other fine-tuning is shown by the
importance of selecting the parameter combinations that performs the best. Fur-
thermore, complex techniques may have higher restrictions concerning the data
set characteristics and consequently performs better at data sets suited for each
mapping technique. Therefore, simple mapping techniques do not have these con-
straints and can perform on a much wider data set format, such as the news
domain. Another reason is that the complex configurations creates a model based
on the data set as a whole, while the simple techniques creates a model locally
for each produced pseudo rating. When the model is created based on the whole
data set, it is more prune to noise and when the model ”smooths” the data set,
the pseudo ratings tends to get the same rating.

We also discovered that to get a substantial decrease in RMSE, the preprocessor
had to generate many high quality pseudo ratings. We believe that high quality
pseudo ratings are necessary since the SVD matrix factorization algorithm that is
used to generate recommendations is good to begin with. As a consequence, the
pseudo ratings we infer must be better than the guesses from the recommender
algorithm. Figure 11.5 shows how the RMSE changes when the classify threshold
changes and Table 11.20 shows the number of pseudo ratings for each threshold.
As the figure and table indicates the optimal threshold is 0.4, which is when the
quality of pseudo ratings and the number pseudo ratings generated are balanced
optimally.

Of all the techniques discussed, we believe that the using time a user spends
reading an article is the only mapping technique limited to the news domain. The
other techniques adept well to other domains since they do analysis of the data set
when they create a model, e.g., clustering clusters the data set before it classifies
new unrated news articles, multiple linear regression finds the beta constants by
using the data set and other classifier techniques do similar steps.

Chapter 11 Evaluation of Mapping Techniques 89

Figure 11.5: Naive Bayes configuration plotted at different classify threshold
with baseline estimate border

Chapter 12

Integrational Issues

In Section 9.3 we described how we integrated our collaborative filtering recom-
mendation component to the SmartMedia news application. In this chapter we
discuss and evaluate the integration. In Section 12.1 we the modifiability of the
integration and in Section 12.2 we evaluate its scalabilty.

12.1 Modifiability

SmartMedia is an ongoing research project where the collaborative filtering com-
ponent is one of several filtering methods used. These various filters can then be
weighted by a scheme chosen by the user. Because we need to integrate a num-
ber of standalone filters, each filter is required to implement a specific interface
as defined by the SmartMedia application. This interface is further elaborated in
Section 9.3. When designing the evaluation pipeline, and constructing the API, we
faced similar challenges. We wanted to be able to be able to modify the mapping
technique as well as the related parameters with ease. To solve this problem, we
designed a preprocessor interface, which is implemented by each preprocessor or
mapping technique. When constructing a preprocessor, we pass a configuration
object to it, in which we store all relevant parameters for that specific preprocessor.
A pseudocode for this process is given in Algorithm 7.

91

92 Chapter 12 Integrational Issues

12.2 Scalability

An important measure of a recommender system is the computational perfor-
mance. In the collaborative filtering component there are mainly two relevant
measures. (i) ”How fast can we provide recommendations?” and (ii) ”How fast
can we train the recommendation model?” With the integration to the Smart-
Media news application, we had the opportunity to measure this performance in
a real system. To answer question (i) we measured the round trip time delay seen
when requesting recommendations from a client. For (ii) we measure the time
taken to build the recommendation model, and how much overhead is incurred
with preprocessing the feedback. From these results we can make a suggestion
of how often the model should be rebuilt. We want to keep it as up to date as
possible, without causing unnecessary performance strain on the database and the
overall system performance. These two evaluations are presented next.

12.2.1 Recommendations

To measure how fast we can compute recommendations, we view it from a client’s
perspective. How fast is a request for recommendations answered by the real
system? To answer these questions we simulated requests for a random selection
of 18 anonymous users in the system. Specifically, for each of these users, we
sent 10 request for recommendations to /recommend/{userid} using cURL1. The
results of these measurements are given in Table 12.1, where we show the mean
of each measurement. The manual for cURL2 describes how we should interpret
the timings, which we have converted from seconds to milliseconds. Given an
initialization time init, the DNS lookup time is the time since init to read the IP
address from cache. The connect time, is the time since init to an established TCP
connection and app connect is the time since init to a successful TLS handshake.
Pre-transfer is the time since init to the start of transferring the request data to
the server and start-transfer is the time since init to the first byte was about to be
transferred. If we look at the total, we see that the mean delay of these requests is
111.9 ms, where the app connect delay counts for close to 90%. While TLS is not
needed for the CF API when it is behind the news API proxy, we chose to enable
it for the CF API in order to get a more realistic result.

1http://curl.haxx.se
2http://curl.haxx.se/docs/manpage.html#-w

http://curl.haxx.se
http://curl.haxx.se/docs/manpage.html#-w

Chapter 12 Integrational Issues 93

Table 12.1: Mean recommendation times

DNS lookup Connect App connect Pre-transfer Start-transfer Total

1.2 ms 4.7 ms 102.1 ms 102.2 ms 111.7 ms 111.9 ms

An illustration of the recommendation process is given in Figure 9.1, where the
user Mark is requesting recommendations. However, since parts of the news API
was not implemented in time, we sent the requests directly to the CF API. This
should be considered when inspecting the results. We believe that the extra delay
caused by proxying requests through the news API would be negligible, but that
should be confirmed in later experiments.

12.2.2 Build Time

We measure the build time as the duration taken between the initial build in-
struction to we have a model ready to provide recommendations. This procedure
consists of three steps. First, we need to load the data set from the database or
file storage. Then we need to preprocess the data set and infer potential ratings,
and finally we build the recommendation model using matrix factorization. A
problem we faced with this evaluation was that the SmartMedia project was still
in a development phase when we did our evaluations, meaning that there were
very few users using it. This, in turn meant that it contained very little feedback,
and the build time of such a small data set would not have been realistic. For this
reason, we decided to synthesize a larger data set with similar properties as the
YOW data set we used for our evaluations in. The YOW data set was introduced
in 11.1. The synthesization was done using an online service3, and the properties
of this data set are shown in Table 12.2. It contains close to 1 million rows, with
the density of explicit feedback being 2.7%.

Table 12.2: Properties of synthesized data set

Rows Users Items User likes Implicit feedback Density

979343 6000 4000 649414 979343 2.7%

After synthesizing this data set, we evaluated the build time on it. The duration
of each step is shown in Table 12.3. From the table we can see that the total build

3http://www.mockaroo.com

http://www.mockaroo.com

94 Chapter 12 Integrational Issues

time is less than 5 minutes. The scalability of the matrix factorization algorithm
has been proven in earlier work[38, 39], and takes only 2 seconds to complete.
The interesting parts here are the data set loading and the preprocessing. The
preprocessing time takes 1 minute and 17 seconds, while the loading of the data set
takes 3 minutes and 25 seconds, counting for 2

3 of the total duration. This means
that the preprocessing algorithm is scalable, and the bottleneck lies in parsing the
data set. In the current implementation, the full data set is loaded on each build.
In future work, however, we can implement streaming updates, and only update
the parts changed in the data set. This will likely limit the long load time to the
initial bootstrap phase, which only occurs once. It is also relevant to mention that
the matrix factorization algorithm is based on Apache Mahout, and uses the highly
optimized data structures bundled with the library, while the data structure used
for the preprocessor is made to support implicit data. It is likely that this data
structure can be optimized in order to lower the preprocessing time even further.
Given a build time of less than five minutes, we can propose a maintenance scheme
where we rebuild the model every 10 minutes if there have been changes to the data
set. The 5-minute buffer is proposed as an extra precaution in cause of unforeseen
performance strain on the database. Since the data set is continuously changing
in the news, the duration of the build process should be monitored.

Table 12.3: Build time of synthesized data set

Load data set Preprocess Factorize explicit matrix Total

3 min, 25 sec 1 min, 17 sec 0 min, 2 sec 4 min, 44 sec

Chapter 13

Discussion and Conclusions

This chapter contains the final remarks in our thesis. In Section 13.1 we discuss
the dependency on explicit feedback and how it can be phased out. Section 13.2
contains the conclusions drawn from our work. In Section 13.3 we outline a few
proposals for further work. Finally, Section 13.4 contains a few final remarks on
our work.

13.1 Phasing Out Explicit Feedback

SmartMedia’s goal is to eventually rely on implicit feedback to do recommen-
dations. The main advantage of this approach is improved usability, since the
application collects implicit feedback automatically and less information needs to
be shown in the graphical user interface. However, as we have discussed in this
thesis, there are challenges with this approach. The biggest challenge is how we
classify which news articles that are interesting, and which are not, based only on
information that is available for the application.

Hu et al. [12] introduce confidence and preference variables in their model to
describe implicit feedback for items. Their model is adapted to the domain of TV
shows where the preference was 1 if the user had seen the TV show or 0 if not.
Then they used confidence as a parameter to describe how much a user liked the
TV show. A similar model could be adapted to the news domain. The preference
would be the same, 1 if a user has read the article or 0 if not. However, the
confidence must be modified to reflect the news domain, and a parameter in the

95

96 Chapter 13 Discussion and Conclusions

confidence equation could be the time spent reading an article, which has shown
to be a good mapping technique. In addition, an evaluation methodology have to
be created that can evaluate and find interesting news article to be recommended.
The evaluation methodology can be tuned as the application is used in order to
further improve the recommendations.

Das et al.[6] utilize even less information to create recommendations on the Google
News web site. Their recommender system only records user click history on news
articles, and if we adapt Hu et al.’s approach to describe the numeric score of
a story, the preference and confidence variables are as follows: preference is 1 if
the user has read the article and 0 otherwise and confidence is calculated by the
fractional membership of the different clusters times the number of times other
users has read the article.

To our knowledge, there have not been a study that compares recommender sys-
tems that uses both explicit and implicit feedback and recommender systems that
only utilizes implicit feedback. However, Hu et al. [12] and Das et al. [6] com-
pared their recommender against recommending the most popular TV shows/news
articles, as people tends to like the same TV shows/news articles. According to
their study, using implicit feedback gave better results than the naive approach
described, which indicates that even though explicit feedback is not available, it
is useful to include implicit feedback.

13.2 Conclusion

In this thesis, we have looked at how we can incorporate implicit feedback in a
news recommender system. The evaluations have been on a data set with both
explicit feedback and implicit feedback, enabling us to compare different ways of
using implicit feedback to improve the recommendations. The resulting recom-
mender system has then been integrated to the SmartMedia news application as
the collaborative filtering component.

The first research question was how implicit feedback could improve news recom-
mendation. The majority of the current recommender systems focus on explicit
feedback, because it is simple to interpret the users preference. However, we can
also collect user behavior and determine whether it can improve the recommen-
dation accuracy. In our evaluations, we observed that mapping implicit feedback

Chapter 13 Discussion and Conclusions 97

to explicit feedback (represented as ratings on a scale between one and five) could
improve news recommendation given the right mapping method. The 5.14% im-
provement in accuracy on our data set is comparable to the 6.5% improvement
Parra and Amatriain[13] got when including implicit feedback for music recom-
mendation.

The second research question was how different techniques for utilizing implicit
feedback compared. Implicit feedback contains significant noise, making it difficult
to find consistent patterns. We compared a set of different mapping techniques,
and discovered that those utilizing the linear correlation between ratings and time
spent reading each article received the lowest (best) RMSE scores. The prepro-
cessor that used a nearest neighbor search with one neighbor to infer news ratings
combined with a time threshold of 20 seconds for time spent reading each article
yielded a 5.14% improvement over recommendations generated without implicit
feedback.

The third research question was how we could integrate our collaborative filtering
component to SmartMedia’s recommender system. The news domain is very ac-
tive, meaning that the data set is continuously changing as new articles are added
and old ones removed. This imposes strict scalability requirements recommender
algorithms, as they have to rebuild frequently and provide recommendations with
minimum delay. We have developed a collaborative filtering component that is
stand-alone with an intuitive API that is easily integrated to the SmartMedia
application. Further, our component is scalable both in model build time and rec-
ommendation time; experimental results demonstrated that building the model
with approximately 1 000 000 rows of feedback is done within five minutes and
the time from a user requests recommendations and the recommendations is pre-
sented is less than 150 milliseconds, as presented in Section 12.2.1.

Further, we believe that our collaborative filtering component will perform well on
the news domain in general. Our evaluations have been conducted on a data set
collected on regular computers in 2005. We have since seen a plethora of different
devices for consuming such content. We believe however, that the users will inter-
act similarly with news articles independently of which device they use, and that
the techniques we have proposed will need minimal change in configuration on a
more recent data set.

98 Chapter 13 Discussion and Conclusions

The techniques we have implemented are news domain specific, such as the lin-
early correlation between user ratings and time spent reading each article. On
other domains such as music or movies, our component might need to undergo
modifications since these domains may have other characteristics to exploit. Yet,
in general, we believe that the use of implicit feedback can improve the accuracy
of recommender systems, given the right model.

13.3 Further Work

To continue this research we list a few suggestions for further work:

• To evaluate the SmartMedia application, the recommender system should
be tested on a data set collected from SmartMedia. This data set contains
Norwegian users and Norwegian news articles, and will collect the actual
implicit feedback that will be used in the SmartMedia application. Such
a data set is being collected as this thesis is written, and we think that
evaluating this recommender on that data set will give valuable feedback to
further improve the SmartMedia recommendations.

• In the current collaborative filtering component, we utilize time spent reading
an article and time spent moving the mouse while reading an article. In the
future, we believe that utilizing other types of implicit feedback such as
share with a friend and adding article to favorites could further improve the
recommendations, as indicated by the results of multiple linear regression
and clustering where more feedback resulted in lower RMSE.

• As we outline in Section 4.2, there are many different kinds of implicit feed-
back that can be used to improve recommendation accuracy. Tensor factor-
ization is a promising method for latent semantic analysis, which allows us
to easily include all kinds of implicit feedback in the model. We are curious
whether tensor factorization can perform better than the preprocessing step
we have introduced in this thesis, and hope to see more work on this in the
future.

• The current version of the collaborative filtering component can undergo fur-
ther performance optimizations, such as streaming updates from the database,

Chapter 13 Discussion and Conclusions 99

faster data structures for feedback representation and streaming mapping
techniques. This will allow it to scale much better without the need for ad-
ditional hardware. It can also lead to better recommendations, as the model
will always represent the current state as the system is used.

13.4 End Notes

An interesting project has come to an end. The insights obtained in the domain of
recommender systems leaves us with a better understanding of their importance.
An effective recommender system will improve user satisfaction and hopefully
increase revenue. We believe that the collaborative filtering component we have
integrated with SmartMedia will allow it to present interesting news articles to
users.

Furthermore, the project has not been without challenges. Delays with the Smart-
Media data collection triggered a late start of our evaluations and the scope of the
master’s thesis have been a challenge in terms of personal expectations and limits.
With discipline and thorough planning, however, we have been able to answer our
research questions and we now feel well prepared to enter the professional life.

Appendix A

All Evaluation Results

This appendix presents all the results we obtained in our evaluations. The follow-
ing is a list of abbreviations found in the headers:

• RMSE root mean square error

• IVs independent variables

• PR pseudoRatings

• mTOP minTimeOnPage

• corrLim correlationLimit

A.1 Multiple Linear Regression Raw Results

RMSE PR IVs
1.046 1656 2
1.046 1656 3
1.048 1656 1

A.2 Time Threshold

RMSE PR mTOP rating
1.008 788 25000 4

101

102 Appendix A All Evaluation Results

RMSE PR mTOP rating
1.011 937 15000 4
1.012 707 30000 4
1.012 869 20000 4
1.015 707 30000 5
1.016 788 25000 5
1.022 869 20000 5
1.025 937 15000 5

A.3 Correlation and Time Threshold

RMSE PR mTOP corrlim predictionMethod
0.978 1033 25000 0.3 ClosestNeighbor
0.979 1035 25000 0.2 ClosestNeighbor
0.979 1036 25000 0.1 ClosestNeighbor
0.979 1088 20000 0.0 ClosestNeighbor
0.980 1041 25000 0.0 ClosestNeighbor
0.980 1080 20000 0.3 ClosestNeighbor
0.980 1082 20000 0.2 ClosestNeighbor
0.980 1083 20000 0.1 ClosestNeighbor
0.980 1128 15000 0.0 ClosestNeighbor
0.981 1122 15000 0.2 ClosestNeighbor
0.981 1123 15000 0.1 ClosestNeighbor
0.981 987 30000 0.2 ClosestNeighbor
0.982 1120 15000 0.3 ClosestNeighbor
0.982 985 30000 0.3 ClosestNeighbor
0.982 988 30000 0.1 ClosestNeighbor
0.982 993 30000 0.0 ClosestNeighbor
0.983 969 25000 0.4 ClosestNeighbor
0.985 1016 20000 0.4 ClosestNeighbor
0.985 1056 15000 0.4 ClosestNeighbor
0.987 918 25000 0.5 ClosestNeighbor
0.987 965 20000 0.5 ClosestNeighbor
0.988 921 30000 0.4 ClosestNeighbor
0.990 1005 15000 0.5 ClosestNeighbor
0.990 870 30000 0.5 ClosestNeighbor

Appendix A All Evaluation Results 103

RMSE PR mTOP corrlim predictionMethod
0.990 874 25000 0.6 ClosestNeighbor
0.991 1035 25000 0.2 LinearRegression
0.991 1036 25000 0.1 LinearRegression
0.991 1041 25000 0.0 LinearRegression
0.991 921 20000 0.6 ClosestNeighbor
0.992 1033 25000 0.3 LinearRegression
0.992 1082 20000 0.2 LinearRegression
0.992 1088 20000 0.0 LinearRegression
0.992 826 30000 0.6 ClosestNeighbor
0.992 961 15000 0.6 ClosestNeighbor
0.993 1083 20000 0.1 LinearRegression
0.993 1128 15000 0.0 LinearRegression
0.994 1080 20000 0.3 LinearRegression
0.994 1123 15000 0.1 LinearRegression
0.994 838 25000 0.7 ClosestNeighbor
0.994 993 30000 0.0 LinearRegression
0.995 1122 15000 0.2 LinearRegression
0.995 885 20000 0.7 ClosestNeighbor
0.995 985 30000 0.3 LinearRegression
0.995 987 30000 0.2 LinearRegression
0.996 1120 15000 0.3 LinearRegression
0.996 925 15000 0.7 ClosestNeighbor
0.996 988 30000 0.1 LinearRegression
0.997 1016 20000 0.4 LinearRegression
0.997 1056 15000 0.4 LinearRegression
0.997 775 25000 0.8 ClosestNeighbor
0.997 790 30000 0.7 ClosestNeighbor
0.997 822 20000 0.8 ClosestNeighbor
0.997 969 25000 0.4 LinearRegression
0.998 918 25000 0.5 LinearRegression
0.999 727 30000 0.8 ClosestNeighbor
0.999 862 15000 0.8 ClosestNeighbor
0.999 874 25000 0.6 LinearRegression
0.999 965 20000 0.5 LinearRegression
1.000 1005 15000 0.5 LinearRegression

104 Appendix A All Evaluation Results

RMSE PR mTOP corrlim predictionMethod
1.000 921 30000 0.4 LinearRegression
1.001 921 20000 0.6 LinearRegression
1.002 838 25000 0.7 LinearRegression
1.002 961 15000 0.6 LinearRegression
1.003 775 25000 0.8 LinearRegression
1.003 822 20000 0.8 LinearRegression
1.003 870 30000 0.5 LinearRegression
1.003 885 20000 0.7 LinearRegression
1.004 826 30000 0.6 LinearRegression
1.004 925 15000 0.7 LinearRegression
1.005 727 30000 0.8 LinearRegression
1.005 862 15000 0.8 LinearRegression
1.006 790 30000 0.7 LinearRegression
1.027 775 25000 0.8 EqualBins
1.027 822 20000 0.8 EqualBins
1.027 862 15000 0.8 EqualBins
1.029 885 20000 0.7 EqualBins
1.030 874 25000 0.6 EqualBins
1.030 921 20000 0.6 EqualBins
1.031 838 25000 0.7 EqualBins
1.031 961 15000 0.6 EqualBins
1.032 727 30000 0.8 EqualBins
1.032 925 15000 0.7 EqualBins
1.033 790 30000 0.7 EqualBins
1.034 826 30000 0.6 EqualBins
1.037 965 20000 0.5 EqualBins
1.038 1005 15000 0.5 EqualBins
1.039 918 25000 0.5 EqualBins
1.042 1016 20000 0.4 EqualBins
1.043 1056 15000 0.4 EqualBins
1.043 870 30000 0.5 EqualBins
1.044 969 25000 0.4 EqualBins
1.047 1120 15000 0.3 EqualBins
1.047 1123 15000 0.1 EqualBins
1.048 1041 25000 0.0 EqualBins

Appendix A All Evaluation Results 105

RMSE PR mTOP corrlim predictionMethod
1.048 1080 20000 0.3 EqualBins
1.048 1082 20000 0.2 EqualBins
1.048 1083 20000 0.1 EqualBins
1.048 1088 20000 0.0 EqualBins
1.048 1122 15000 0.2 EqualBins
1.048 921 30000 0.4 EqualBins
1.049 1033 25000 0.3 EqualBins
1.049 1036 25000 0.1 EqualBins
1.049 1128 15000 0.0 EqualBins
1.050 1035 25000 0.2 EqualBins
1.051 987 30000 0.2 EqualBins
1.052 985 30000 0.3 EqualBins
1.053 988 30000 0.1 EqualBins
1.054 993 30000 0.0 EqualBins

A.4 Naive Bayes

RMSE PR threshold
1.023 726 0.4
1.033 76 0.7
1.034 99 0.6
1.035 174 0.5
1.040 1659 0.1
1.040 1659 0.2
1.041 1659 0.3

A.5 Correlation

RMSE PR corrlim predictionMethod
0.993 585 0.0 ClosestNeighbor
0.994 577 0.3 ClosestNeighbor
0.994 579 0.2 ClosestNeighbor
0.995 580 0.1 ClosestNeighbor
0.999 513 0.4 ClosestNeighbor

106 Appendix A All Evaluation Results

RMSE PR corrlim predictionMethod
1.004 462 0.5 ClosestNeighbor
1.007 418 0.6 ClosestNeighbor
1.008 580 0.1 LinearRegression
1.009 585 0.0 LinearRegression
1.010 577 0.3 LinearRegression
1.010 579 0.2 LinearRegression
1.012 382 0.7 ClosestNeighbor
1.013 319 0.8 ClosestNeighbor
1.015 513 0.4 LinearRegression
1.017 244 0.9 ClosestNeighbor
1.017 462 0.5 LinearRegression
1.020 319 0.8 LinearRegression
1.020 418 0.6 LinearRegression
1.022 382 0.7 LinearRegression
1.025 244 0.9 LinearRegression
1.047 244 0.9 EqualBins
1.051 319 0.8 EqualBins
1.056 418 0.6 EqualBins
1.057 382 0.7 EqualBins
1.065 462 0.5 EqualBins
1.069 513 0.4 EqualBins
1.075 580 0.1 EqualBins
1.076 577 0.3 EqualBins
1.076 579 0.2 EqualBins
1.078 585 0.0 EqualBins

A.6 Cluster

RMSE PR clusterer clusterDataset distFunc
1.034 1659 EM PageTimesMouse None
1.040 1659 XMeans PageTimesMouse Manhattan
1.040 1659 Cobweb TimeOnPageAndMouse None
1.040 1659 EM TimeOnPage None
1.040 1659 Cobweb PageTimesMouse None
1.041 1659 Cobweb TimeOnPage None

Appendix A All Evaluation Results 107

RMSE PR clusterer clusterDataset distFunc
1.042 1659 FarthestFirst TimeOnPageAndMouse None
1.042 1659 SimpleKMeans PageTimesMouse Euclidean
1.042 1659 FarthestFirst PageTimesMouse None
1.042 1659 DensityBased PageTimesMouse Euclidean
1.043 1659 EM TimeOnPageAndMouse None
1.045 1659 XMeans PageTimesMouse Euclidean
1.045 1659 XMeans PageTimesMouse Chebyshev
1.045 1659 XMeans TimeOnPageAndMouse Manhattan
1.046 1659 XMeans TimeOnPageAndMouse Euclidean
1.046 1659 XMeans TimeOnPageAndMouse Chebyshev
1.049 1659 SimpleKMeans PageTimesMouse Manhattan
1.049 1659 SimpleKMeans TimeOnPageAndMouse Euclidean
1.049 1659 DensityBased TimeOnPageAndMouse Euclidean
1.051 1659 FarthestFirst TimeOnPage None
1.054 1659 DensityBased TimeOnPage Manhattan
1.054 1659 SimpleKMeans TimeOnPageAndMouse Manhattan
1.055 1659 DensityBased PageTimesMouse Manhattan
1.055 1659 SimpleKMeans TimeOnPage Manhattan
1.055 1659 DensityBased TimeOnPageAndMouse Manhattan
1.059 1659 XMeans TimeOnPage Euclidean
1.059 1659 XMeans TimeOnPage Manhattan
1.060 1659 SimpleKMeans TimeOnPage Euclidean
1.060 1659 XMeans TimeOnPage Chebyshev
1.061 1659 DensityBased TimeOnPage Euclidean

A.7 K-Nearest Neighbor

RMSE PR threshold K minimization
1.029 24 0.8 7 MinimizeMeanAbsoluteError
1.029 980 0.4 15 MinimizeMeanAbsoluteError
1.029 980 0.4 15 MinimizeMeanSquaredError
1.030 1 0.8 15 MinimizeMeanAbsoluteError
1.030 1030 0.4 19 MinimizeMeanSquaredError
1.030 1130 0.4 17 MinimizeMeanSquaredError
1.030 34 0.8 5 MinimizeMeanAbsoluteError

108 Appendix A All Evaluation Results

RMSE PR threshold K minimization
1.030 34 0.8 5 MinimizeMeanSquaredError
1.030 62 0.6 19 MinimizeMeanSquaredError
1.031 0 0.8 17 MinimizeMeanSquaredError
1.031 1 0.8 13 MinimizeMeanAbsoluteError
1.031 1 0.8 13 MinimizeMeanSquaredError
1.031 1011 0.4 11 MinimizeMeanAbsoluteError
1.031 1030 0.4 19 MinimizeMeanAbsoluteError
1.031 1174 0.4 5 MinimizeMeanSquaredError
1.031 156 0.8 3 MinimizeMeanAbsoluteError
1.031 156 0.8 3 MinimizeMeanSquaredError
1.031 21 0.7 17 MinimizeMeanSquaredError
1.031 24 0.8 7 MinimizeMeanSquaredError
1.031 4 0.7 19 MinimizeMeanSquaredError
1.031 62 0.6 19 MinimizeMeanAbsoluteError
1.032 0 0.8 19 MinimizeMeanAbsoluteError
1.032 0 0.8 19 MinimizeMeanSquaredError
1.032 1 0.8 15 MinimizeMeanSquaredError
1.032 1130 0.4 17 MinimizeMeanAbsoluteError
1.032 1174 0.4 5 MinimizeMeanAbsoluteError
1.032 159 0.7 3 MinimizeMeanAbsoluteError
1.032 21 0.7 17 MinimizeMeanAbsoluteError
1.032 4 0.7 19 MinimizeMeanAbsoluteError
1.032 587 0.5 9 MinimizeMeanSquaredError
1.032 62 0.7 11 MinimizeMeanAbsoluteError
1.032 889 0.4 13 MinimizeMeanAbsoluteError
1.032 889 0.4 13 MinimizeMeanSquaredError
1.033 0 0.8 17 MinimizeMeanAbsoluteError
1.033 1011 0.4 11 MinimizeMeanSquaredError
1.033 1492 0.3 17 MinimizeMeanSquaredError
1.033 15 0.7 13 MinimizeMeanAbsoluteError
1.033 15 0.7 13 MinimizeMeanSquaredError
1.033 159 0.7 3 MinimizeMeanSquaredError
1.033 1616 0.3 19 MinimizeMeanAbsoluteError
1.033 19 0.7 15 MinimizeMeanAbsoluteError
1.033 19 0.7 15 MinimizeMeanSquaredError

Appendix A All Evaluation Results 109

RMSE PR threshold K minimization
1.033 37 0.7 9 MinimizeMeanAbsoluteError
1.033 5 0.8 11 MinimizeMeanAbsoluteError
1.033 66 0.6 17 MinimizeMeanAbsoluteError
1.034 1492 0.3 17 MinimizeMeanAbsoluteError
1.034 1579 0.3 15 MinimizeMeanAbsoluteError
1.034 1579 0.3 15 MinimizeMeanSquaredError
1.034 1616 0.3 19 MinimizeMeanSquaredError
1.034 1645 0.3 13 MinimizeMeanSquaredError
1.034 195 0.7 7 MinimizeMeanAbsoluteError
1.034 195 0.7 7 MinimizeMeanSquaredError
1.034 198 0.6 7 MinimizeMeanSquaredError
1.034 37 0.7 9 MinimizeMeanSquaredError
1.034 587 0.5 9 MinimizeMeanAbsoluteError
1.034 62 0.7 11 MinimizeMeanSquaredError
1.034 66 0.6 17 MinimizeMeanSquaredError
1.034 678 0.5 7 MinimizeMeanAbsoluteError
1.034 678 0.5 7 MinimizeMeanSquaredError
1.034 7 0.8 9 MinimizeMeanAbsoluteError
1.034 7 0.8 9 MinimizeMeanSquaredError
1.035 1541 0.3 11 MinimizeMeanAbsoluteError
1.035 1541 0.3 11 MinimizeMeanSquaredError
1.035 1645 0.3 13 MinimizeMeanAbsoluteError
1.035 198 0.6 7 MinimizeMeanAbsoluteError
1.035 440 0.5 15 MinimizeMeanSquaredError
1.035 5 0.8 11 MinimizeMeanSquaredError
1.035 799 0.5 5 MinimizeMeanAbsoluteError
1.035 799 0.5 5 MinimizeMeanSquaredError
1.036 1216 0.4 9 MinimizeMeanAbsoluteError
1.036 1216 0.4 9 MinimizeMeanSquaredError
1.036 167 0.7 5 MinimizeMeanSquaredError
1.036 200 0.6 13 MinimizeMeanAbsoluteError
1.036 312 0.6 5 MinimizeMeanAbsoluteError
1.036 312 0.6 5 MinimizeMeanSquaredError
1.036 440 0.5 15 MinimizeMeanAbsoluteError
1.036 512 0.5 11 MinimizeMeanAbsoluteError

110 Appendix A All Evaluation Results

RMSE PR threshold K minimization
1.036 512 0.5 11 MinimizeMeanSquaredError
1.037 1445 0.3 7 MinimizeMeanAbsoluteError
1.037 1635 0.3 9 MinimizeMeanAbsoluteError
1.037 1635 0.3 9 MinimizeMeanSquaredError
1.037 167 0.7 5 MinimizeMeanAbsoluteError
1.037 200 0.6 13 MinimizeMeanSquaredError
1.037 213 0.6 9 MinimizeMeanAbsoluteError
1.037 364 0.5 19 MinimizeMeanAbsoluteError
1.038 1641 0.3 5 MinimizeMeanAbsoluteError
1.038 182 0.6 11 MinimizeMeanAbsoluteError
1.038 182 0.6 11 MinimizeMeanSquaredError
1.038 213 0.6 9 MinimizeMeanSquaredError
1.039 1444 0.4 7 MinimizeMeanAbsoluteError
1.039 1445 0.3 7 MinimizeMeanSquaredError
1.039 364 0.5 19 MinimizeMeanSquaredError
1.039 472 0.5 13 MinimizeMeanSquaredError
1.040 1034 0.6 3 MinimizeMeanAbsoluteError
1.040 1034 0.6 3 MinimizeMeanSquaredError
1.040 116 0.6 15 MinimizeMeanSquaredError
1.040 1444 0.4 7 MinimizeMeanSquaredError
1.040 1641 0.3 5 MinimizeMeanSquaredError
1.040 392 0.5 17 MinimizeMeanAbsoluteError
1.040 392 0.5 17 MinimizeMeanSquaredError
1.041 116 0.6 15 MinimizeMeanAbsoluteError
1.041 472 0.5 13 MinimizeMeanAbsoluteError
1.042 1034 0.5 3 MinimizeMeanAbsoluteError
1.042 1034 0.5 3 MinimizeMeanSquaredError
1.042 1039 0.4 3 MinimizeMeanAbsoluteError
1.043 1039 0.4 3 MinimizeMeanSquaredError
1.043 1659 0.3 3 MinimizeMeanAbsoluteError
1.043 1659 0.3 3 MinimizeMeanSquaredError
1.046 1659 0.3 1 MinimizeMeanSquaredError
1.047 1651 0.8 1 MinimizeMeanAbsoluteError
1.047 1651 0.7 1 MinimizeMeanSquaredError
1.047 1653 0.6 1 MinimizeMeanAbsoluteError

Appendix A All Evaluation Results 111

RMSE PR threshold K minimization
1.047 1653 0.6 1 MinimizeMeanSquaredError
1.047 1653 0.5 1 MinimizeMeanSquaredError
1.048 1651 0.7 1 MinimizeMeanAbsoluteError
1.048 1651 0.8 1 MinimizeMeanSquaredError
1.048 1653 0.5 1 MinimizeMeanAbsoluteError
1.048 1659 0.4 1 MinimizeMeanAbsoluteError
1.048 1659 0.3 1 MinimizeMeanAbsoluteError
1.048 1659 0.4 1 MinimizeMeanSquaredError

A.8 Artificial Neural Network

RMSE PR learningRate epochs
1.031 1659 0.04100 310
1.031 1659 0.04100 510
1.032 1659 0.02100 310
1.032 1659 0.08100 910
1.032 1659 0.02100 410
1.032 1659 0.02100 210
1.032 1659 0.08100 810
1.032 1659 0.02100 110
1.032 1659 0.02100 710
1.032 1659 0.02100 610
1.032 1659 0.04100 610
1.032 1659 0.06100 510
1.032 1659 0.04100 710
1.032 1659 0.06100 810
1.032 1659 0.06100 710
1.033 1659 0.08100 710
1.033 1659 0.04100 410
1.033 1659 0.12100 210
1.033 1659 0.08100 310
1.033 1659 0.06100 310
1.033 1659 0.08100 410
1.033 1659 0.06100 210
1.033 1659 0.12100 410

112 Appendix A All Evaluation Results

RMSE PR learningRate epochs
1.033 1659 0.06100 410
1.033 1659 0.10100 210
1.033 1659 0.04100 210
1.033 1659 0.06100 910
1.033 1659 0.02100 510
1.033 1659 0.10100 110
1.033 1659 0.04100 110
1.033 1659 0.08100 610
1.033 1659 0.04100 910
1.033 1659 0.06100 610
1.033 1659 0.08100 510
1.033 1659 0.10100 710
1.033 1659 0.02100 810
1.033 1659 0.02100 910
1.033 1659 0.04100 810
1.034 1659 0.14100 410
1.034 1659 0.10100 810
1.034 1659 0.08100 210
1.034 1659 0.10100 310
1.034 1659 0.14100 210
1.034 1659 0.12100 910
1.034 1659 0.10100 910
1.034 1659 0.14100 810
1.034 1659 0.20100 310
1.034 1659 0.16100 810
1.034 1659 0.12100 510
1.034 1659 0.18100 110
1.034 1659 0.00100 910
1.034 1659 0.14100 610
1.034 1659 0.14100 110
1.034 1659 0.08100 110
1.034 1659 0.06100 110
1.034 1659 0.10100 510
1.034 1659 0.16100 610
1.034 1659 0.18100 610

Appendix A All Evaluation Results 113

RMSE PR learningRate epochs
1.034 1659 0.12100 810
1.034 1659 0.12100 710
1.034 1659 0.20100 610
1.034 1659 0.10100 610
1.035 1659 0.14100 910
1.035 1659 0.16100 310
1.035 1659 0.16100 210
1.035 1659 0.14100 310
1.035 1659 0.18100 210
1.035 1659 0.14100 710
1.035 1659 0.12100 310
1.035 1659 0.16100 910
1.035 1659 0.10100 410
1.035 1659 0.18100 310
1.035 1659 0.22100 110
1.035 1659 0.16100 410
1.035 1659 0.00100 810
1.035 1659 0.20100 810
1.035 1659 0.00100 610
1.035 1659 0.16100 110
1.035 1659 0.12100 110
1.035 1659 0.04100 10
1.035 1659 0.20100 110
1.035 1659 0.20100 410
1.035 1659 0.16100 510
1.035 1659 0.22100 810
1.035 1659 0.20100 510
1.035 1659 0.22100 610
1.035 1659 0.18100 710
1.035 1659 0.18100 510
1.035 1659 0.00100 710
1.035 1659 0.18100 410
1.035 1659 0.12100 610
1.035 1659 0.16100 710
1.036 1659 0.22100 710

114 Appendix A All Evaluation Results

RMSE PR learningRate epochs
1.036 1659 0.24100 410
1.036 1659 0.20100 210
1.036 1659 0.18100 810
1.036 1659 0.24100 610
1.036 1659 0.24100 310
1.036 1659 0.18100 910
1.036 1659 0.20100 910
1.036 1659 0.22100 310
1.036 1659 0.22100 910
1.036 1659 0.22100 210
1.036 1659 0.00100 410
1.036 1659 0.24100 710
1.036 1659 0.22100 510
1.036 1659 0.20100 710
1.036 1659 0.22100 410
1.036 1659 0.24100 510
1.036 1659 0.14100 510
1.036 1659 0.00100 510
1.036 1659 0.24100 810
1.037 1659 0.26100 210
1.037 1659 0.24100 910
1.037 1659 0.00100 310
1.037 1659 0.24100 210
1.037 1659 0.02100 10
1.037 1659 0.08100 10
1.037 1659 0.06100 10
1.037 1659 0.26100 710
1.037 1659 0.12100 10
1.037 1659 0.24100 110
1.037 1659 0.26100 410
1.037 1659 0.26100 510
1.038 1659 0.26100 610
1.038 1659 0.26100 110
1.038 1659 0.00100 210
1.038 1659 0.26100 310

Appendix A All Evaluation Results 115

RMSE PR learningRate epochs
1.038 1659 0.26100 910
1.038 1659 0.14100 10
1.038 1659 0.00100 110
1.038 1659 0.10100 10
1.038 1659 0.26100 810
1.039 1659 0.28100 110
1.039 1659 0.28100 710
1.040 1659 0.28100 310
1.040 1659 0.28100 910
1.040 1659 0.28100 210
1.040 1659 0.20100 10
1.040 1659 0.16100 10
1.040 1659 0.28100 410
1.040 1659 0.28100 610
1.040 1659 0.28100 810
1.040 1659 0.28100 510
1.041 1659 0.18100 10
1.042 1659 0.24100 10
1.042 1659 0.22100 10
1.044 1659 0.26100 10
1.047 1659 0.28100 10
1.052 1659 0.00100 10

A.9 Support Vector Machine

RMSE PR C kernelGamma
1.029 1659 128.00000 32.00000
1.031 1659 32.00000 1.00000
1.031 1659 256.00000 0.25000
1.031 1659 32.00000 32.00000
1.031 1659 1024.00000 0.25000
1.031 1659 0.25000 8.00000
1.031 1659 0.50000 1.00000
1.031 1659 2.00000 64.00000
1.031 1659 8.00000 4.00000

116 Appendix A All Evaluation Results

RMSE PR C kernelGamma
1.031 1659 32.00000 2.00000
1.031 1659 0.00781 16.00000
1.031 1659 64.00000 2.00000
1.031 1659 512.00000 0.25000
1.031 1659 64.00000 4.00000
1.031 1659 32.00000 64.00000
1.031 1659 64.00000 0.50000
1.031 1659 8.00000 64.00000
1.032 1659 128.00000 2.00000
1.032 1659 16.00000 4.00000
1.032 1659 128.00000 0.25000
1.032 1659 0.25000 4.00000
1.032 1659 64.00000 64.00000
1.032 1659 0.06250 4.00000
1.032 1659 0.01563 32.00000
1.032 1659 1.00000 2.00000
1.032 1659 0.25000 32.00000
1.032 1659 64.00000 32.00000
1.032 1659 0.06250 8.00000
1.032 1659 0.06250 32.00000
1.032 1659 16.00000 0.50000
1.032 1659 32.00000 4.00000
1.032 1659 0.00391 32.00000
1.032 1659 0.25000 16.00000
1.032 1659 1024.00000 1.00000
1.032 1659 8.00000 1.00000
1.032 1659 0.50000 16.00000
1.032 1659 32.00000 0.50000
1.032 1659 16.00000 32.00000
1.032 1659 128.00000 64.00000
1.032 1659 0.01563 16.00000
1.032 1659 0.03125 16.00000
1.032 1659 0.03125 8.00000
1.032 1659 256.00000 32.00000
1.032 1659 1.00000 16.00000

Appendix A All Evaluation Results 117

RMSE PR C kernelGamma
1.032 1659 0.00391 64.00000
1.032 1659 512.00000 32.00000
1.032 1659 16.00000 64.00000
1.032 1659 0.12500 8.00000
1.032 1659 256.00000 2.00000
1.032 1659 0.50000 8.00000
1.032 1659 8.00000 0.50000
1.032 1659 2.00000 2.00000
1.032 1659 2.00000 4.00000
1.032 1659 256.00000 0.50000
1.033 1659 1.00000 64.00000
1.033 1659 0.12500 4.00000
1.033 1659 0.50000 64.00000
1.033 1659 8.00000 2.00000
1.033 1659 64.00000 16.00000
1.033 1659 0.06250 64.00000
1.033 1659 128.00000 16.00000
1.033 1659 0.01563 8.00000
1.033 1659 0.03125 4.00000
1.033 1659 4.00000 16.00000
1.033 1659 0.25000 64.00000
1.033 1659 0.03125 64.00000
1.033 1659 0.06250 16.00000
1.033 1659 8.00000 32.00000
1.033 1659 512.00000 0.50000
1.033 1659 0.12500 64.00000
1.033 1659 0.03125 32.00000
1.033 1659 0.00781 64.00000
1.033 1659 128.00000 0.50000
1.033 1659 16.00000 1.00000
1.033 1659 2.00000 32.00000
1.033 1659 16.00000 16.00000
1.033 1659 4.00000 8.00000
1.033 1659 2.00000 8.00000
1.033 1659 0.00781 32.00000

118 Appendix A All Evaluation Results

RMSE PR C kernelGamma
1.033 1659 0.12500 16.00000
1.033 1659 8.00000 16.00000
1.033 1659 8.00000 8.00000
1.033 1659 1.00000 4.00000
1.033 1659 2.00000 16.00000
1.033 1659 0.50000 32.00000
1.033 1659 4.00000 1.00000
1.033 1659 4.00000 4.00000
1.033 1659 0.50000 4.00000
1.033 1659 4.00000 64.00000
1.033 1659 2.00000 0.50000
1.033 1659 1.00000 8.00000
1.034 1659 0.12500 32.00000
1.034 1659 16.00000 2.00000
1.034 1659 32.00000 8.00000
1.034 1659 256.00000 4.00000
1.034 1659 0.12500 2.00000
1.034 1659 16.00000 8.00000
1.034 1659 32.00000 16.00000
1.034 1659 512.00000 64.00000
1.034 1659 0.01563 64.00000
1.034 1659 512.00000 2.00000
1.034 1659 4.00000 32.00000
1.034 1659 4.00000 2.00000
1.034 1659 256.00000 64.00000
1.034 1659 0.50000 2.00000
1.034 1659 128.00000 4.00000
1.034 1659 0.06250 2.00000
1.034 1659 1024.00000 32.00000
1.034 1659 1.00000 32.00000
1.034 1659 1.00000 1.00000
1.034 1659 4.00000 0.50000
1.035 1659 0.00781 8.00000
1.035 1659 0.25000 1.00000
1.035 1659 0.25000 2.00000

Appendix A All Evaluation Results 119

RMSE PR C kernelGamma
1.035 1659 512.00000 16.00000
1.035 1659 2.00000 1.00000
1.036 1659 0.00195 64.00000
1.036 1659 0.00391 16.00000
1.036 1659 64.00000 8.00000
1.036 1659 256.00000 16.00000
1.036 1659 0.01563 4.00000
1.036 1659 64.00000 0.25000
1.037 1659 16.00000 0.25000
1.038 1659 512.00000 1.00000
1.038 1659 32.00000 0.25000
1.039 1659 0.01563 0.01563
1.039 1659 0.12500 0.25000
1.039 1659 0.00781 0.25000
1.039 1659 0.00391 0.25000
1.039 1659 0.06250 0.06250
1.039 1659 1.00000 0.06250
1.039 1659 0.00391 8.00000
1.039 1659 32.00000 0.03125
1.039 1659 0.00195 0.50000
1.039 1659 0.00781 0.01563
1.039 1659 0.01563 0.06250
1.039 1659 64.00000 1.00000
1.039 1659 8.00000 0.03125
1.039 1659 8.00000 0.12500
1.039 1659 1.00000 0.50000
1.039 1659 0.00098 1.00000
1.039 1659 0.00098 2.00000
1.039 1659 4.00000 0.01563
1.039 1659 1024.00000 16.00000
1.040 1659 0.00098 0.01563
1.040 1659 0.00781 0.03125
1.040 1659 0.00391 0.12500
1.040 1659 0.01563 0.12500
1.040 1659 0.00391 4.00000

120 Appendix A All Evaluation Results

RMSE PR C kernelGamma
1.040 1659 0.50000 0.03125
1.040 1659 0.03125 0.03125
1.040 1659 0.00781 4.00000
1.040 1659 0.12500 1.00000
1.040 1659 0.12500 0.12500
1.040 1659 2.00000 0.03125
1.040 1659 0.12500 0.50000
1.040 1659 16.00000 0.06250
1.040 1659 0.06250 0.12500
1.040 1659 0.50000 0.12500
1.040 1659 0.00195 8.00000
1.040 1659 0.12500 0.01563
1.040 1659 0.03125 0.06250
1.040 1659 0.50000 0.25000
1.040 1659 0.00391 0.06250
1.040 1659 0.06250 0.25000
1.040 1659 0.00195 0.25000
1.040 1659 0.03125 0.25000
1.040 1659 128.00000 8.00000
1.040 1659 0.00098 4.00000
1.040 1659 0.00195 2.00000
1.040 1659 0.25000 0.25000
1.040 1659 0.00098 16.00000
1.040 1659 0.03125 0.50000
1.040 1659 0.00781 0.06250
1.040 1659 0.00098 0.03125
1.040 1659 0.00391 2.00000
1.040 1659 256.00000 0.01563
1.040 1659 0.12500 0.03125
1.040 1659 16.00000 0.03125
1.040 1659 4.00000 0.12500
1.040 1659 1.00000 0.01563
1.040 1659 0.00098 32.00000
1.040 1659 32.00000 0.01563
1.040 1659 2.00000 0.25000

Appendix A All Evaluation Results 121

RMSE PR C kernelGamma
1.040 1659 0.00781 0.50000
1.040 1659 0.00195 16.00000
1.040 1659 4.00000 0.03125
1.040 1659 0.25000 0.12500
1.040 1659 0.25000 0.50000
1.040 1659 8.00000 0.25000
1.040 1659 1.00000 0.12500
1.040 1659 0.00195 0.12500
1.040 1659 0.00098 0.50000
1.040 1659 0.00781 1.00000
1.040 1659 0.00391 0.50000
1.040 1659 2.00000 0.12500
1.040 1659 0.00195 0.01563
1.040 1659 0.50000 0.50000
1.040 1659 0.00098 0.25000
1.040 1659 0.00195 0.03125
1.040 1659 0.00098 0.06250
1.040 1659 16.00000 0.01563
1.040 1659 0.00195 1.00000
1.040 1659 0.01563 2.00000
1.041 1659 0.25000 0.01563
1.041 1659 0.01563 1.00000
1.041 1659 64.00000 0.03125
1.041 1659 0.00391 0.03125
1.041 1659 0.03125 0.12500
1.041 1659 0.06250 0.03125
1.041 1659 0.06250 0.01563
1.041 1659 0.03125 0.01563
1.041 1659 0.12500 0.06250
1.041 1659 0.06250 0.50000
1.041 1659 0.50000 0.06250
1.041 1659 16.00000 0.12500
1.041 1659 0.06250 1.00000
1.041 1659 128.00000 0.01563
1.041 1659 0.50000 0.01563

122 Appendix A All Evaluation Results

RMSE PR C kernelGamma
1.041 1659 4.00000 0.25000
1.041 1659 0.00098 64.00000
1.041 1659 64.00000 0.01563
1.041 1659 0.01563 0.25000
1.041 1659 0.00391 0.01563
1.041 1659 0.00391 1.00000
1.041 1659 0.00781 0.12500
1.041 1659 0.00781 2.00000
1.041 1659 2.00000 0.01563
1.041 1659 0.01563 0.50000
1.041 1659 1.00000 0.03125
1.041 1659 0.25000 0.06250
1.041 1659 0.00195 32.00000
1.041 1659 512.00000 0.01563
1.041 1659 2.00000 0.06250
1.041 1659 0.25000 0.03125
1.041 1659 8.00000 0.01563
1.041 1659 0.00195 4.00000
1.041 1659 0.00098 8.00000
1.041 1659 0.03125 1.00000
1.041 1659 4.00000 0.06250
1.041 1659 32.00000 0.06250
1.041 1659 0.00195 0.06250
1.041 1659 1.00000 0.25000
1.041 1659 8.00000 0.06250
1.042 1659 1024.00000 0.12500
1.042 1659 128.00000 0.03125
1.042 1659 0.01563 0.03125
1.042 1659 1024.00000 0.50000
1.042 1659 0.00098 0.12500
1.042 1659 0.03125 2.00000
1.043 1659 64.00000 0.06250
1.043 1659 512.00000 4.00000
1.044 1659 256.00000 8.00000
1.044 1659 1024.00000 64.00000

Appendix A All Evaluation Results 123

RMSE PR C kernelGamma
1.045 1659 1024.00000 2.00000
1.045 1659 32.00000 0.12500
1.047 1659 256.00000 0.03125
1.049 1659 128.00000 1.00000
1.049 1659 512.00000 8.00000
1.050 1659 1024.00000 0.01563
1.052 1659 256.00000 1.00000
1.055 1659 128.00000 0.06250
1.055 1659 64.00000 0.12500
1.065 1659 1024.00000 8.00000
1.071 1659 512.00000 0.12500
1.073 1659 128.00000 0.12500
1.074 1659 1024.00000 4.00000
1.079 1659 256.00000 0.06250
1.086 1659 256.00000 0.12500
1.098 1659 512.00000 0.03125
1.209 1659 1024.00000 0.03125
1.239 1659 512.00000 0.06250
NaN 1659 1024.00000 0.06250

Bibliography

[1] K. C. Almeroth J. E. Ingvaldsen G. Nygreen M. Tavakolifard, J. A. Gulla
and E. Berg. Tailored news in the palm of your hand: A multi-perspective
transparent approach to news recommendation. 2013.

[2] A. D. Fidjestøl J. E. Nilsen K. R. Haugen X. Su J. A. Gulla, J. E. Ingvaldsen.
Learning user profiles in mobile news recommendation. Journal of Print and
Media Technology Research, II(3):183–194, 2013.

[3] J Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems in e-
commerce. In Proceedings of the 1st ACM conference on Electronic commerce,
pages 158–166. ACM, 1999.

[4] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:
Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80,
2003.

[5] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35, 2007.

[6] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram.
Google news personalization: scalable online collaborative filtering. In Pro-
ceedings of the 16th international conference on World Wide Web, pages 271–
280. ACM, 2007.

[7] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize
documentation, 2009.

[8] Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A Konstan, and John
Riedl. Is seeing believing?: how recommender system interfaces affect users’
opinions. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 585–592. ACM, 2003.

125

126 Bibliography

[9] Xavier Amatriain, Josep M Pujol, and Nuria Oliver. I like it... i like it not:
Evaluating user ratings noise in recommender systems. In User Modeling,
Adaptation, and Personalization, pages 247–258. Springer, 2009.

[10] N. Thurman. Making ’the daily me’: Technology, economics and habit in the
mainstream assimilation of personalised news. Journalism: Theory, Practice
& Criticism, pages 395–415, 2011.

[11] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference:
a bibliography. In ACM SIGIR Forum, volume 37, pages 18–28. ACM, 2003.

[12] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 263–272. IEEE, 2008.

[13] Denis Parra and Xavier Amatriain. Walk the talk: Analyzing the relation be-
tween implicit and explicit feedback for preference elicitation. In Proceedings
of the 19th International Conference on User Modeling, Adaption, and Per-
sonalization, UMAP’11, pages 255–268, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-22361-7. URL http://dl.acm.org/citation.cfm?id=

2021855.2021878.

[14] Masahiro Morita and Yoichi Shinoda. Information filtering based on user
behavior analysis and best match text retrieval. In Proceedings of the 17th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 272–281. Springer-Verlag New York, Inc., 1994.

[15] Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit interest
indicators. In Proceedings of the 6th international conference on Intelligent
user interfaces, pages 33–40. ACM, 2001.

[16] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, 42(8):30–37, 2009.

[17] Kirk Baker. Singular value decomposition tutorial. 2005.

[18] Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative
filtering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4
(1):1, 2010.

[19] Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

http://dl.acm.org/citation.cfm?id=2021855.2021878
http://dl.acm.org/citation.cfm?id=2021855.2021878

Bibliography 127

[20] Faraz Makari, Christina Teflioudi, Rainer Gemulla, Peter Haas, and Yannis
Sismanis. Shared-memory and shared-nothing stochastic gradient descent
algorithms for matrix completion. Knowledge and Information Systems, pages
1–31, 2014. ISSN 0219-1377. doi: 10.1007/s10115-013-0718-7. URL http:

//dx.doi.org/10.1007/s10115-013-0718-7.

[21] Nguyen Thai-Nghe, Lucas Drumond, Tomás Horváth, Alexandros Nanopou-
los, and Lars Schmidt-Thieme. Matrix and tensor factorization for predicting
student performance. In CSEDU (1), pages 69–78. Citeseer, 2011.

[22] Balázs Hidasi and Domonkos Tikk. Fast als-based tensor factorization for
context-aware recommendation from implicit feedback. In Machine Learning
and Knowledge Discovery in Databases, pages 67–82. Springer, 2012.

[23] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM review, 51(3):455–500, 2009.

[24] Harry Zhang. The optimality of naive bayes. A A, 1(2):3, 2004.

[25] George H John and Pat Langley. Estimating continuous distributions in
bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence, pages 338–345. Morgan Kaufmann Publishers Inc.,
1995.

[26] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. In-
formation Theory, IEEE Transactions on, 13(1):21–27, 1967.

[27] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas im-
manent in nervous activity. The bulletin of mathematical biophysics, 5(4):
115–133, 1943.

[28] Victor Hugo C de Albuquerque, Auzuir Ripardo de Alexandria, Paulo César
Cortez, and João Manuel RS Tavares. Evaluation of multilayer perceptron
and self-organizing map neural network topologies applied on microstructure
segmentation from metallographic images. NDT & E International, 42(7):
644–651, 2009.

[29] Martin Riedmiller. Advanced supervised learning in multi-layer percep-
trons—from backpropagation to adaptive learning algorithms. Computer
Standards & Interfaces, 16(3):265–278, 1994.

http://dx.doi.org/10.1007/s10115-013-0718-7
http://dx.doi.org/10.1007/s10115-013-0718-7

128 Bibliography

[30] Tobias Ebert, Oliver Bänfer, and Oliver Nelles. Multilayer perceptron net-
work with modified sigmoid activation functions. In Artificial Intelligence and
Computational Intelligence, pages 414–421. Springer, 2010.

[31] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[32] J. MacQueen. Some methods for classification and analysis of multivariate
observations, 1967. URL http://projecteuclid.org/euclid.bsmsp/1200512992.

[33] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with ef-
ficient estimation of the number of clusters. In Seventeenth International
Conference on Machine Learning, pages 727–734. Morgan Kaufmann, 2000.

[34] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press Cambridge.

[35] Douglas H Fisher. Knowledge acquisition via incremental conceptual cluster-
ing. Machine learning, 2(2):139–172, 1987.

[36] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria
Oliver. Multiverse recommendation: n-dimensional tensor factorization for
context-aware collaborative filtering. In Proceedings of the fourth ACM con-
ference on Recommender systems, pages 79–86. ACM, 2010.

[37] Yi Zhang. Bayesian graphical models for adaptive filtering. In SIGIR Forum,
volume 39, page 57, 2005.

[38] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable
collaborative filtering approaches for large recommender systems. The Journal
of Machine Learning Research, 10:623–656, 2009.

[39] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. Hogwild!:
A lock-free approach to parallelizing stochastic gradient descent. Advances in
Neural Information Processing Systems, 24:693–701, 2011.

http://projecteuclid.org/euclid.bsmsp/1200512992

	Abstract
	Sammendrag
	Preface
	List of Figures
	I Introduction
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Approach
	1.4 Results
	1.5 Thesis Structure

	2 The SmartMedia Project
	2.1 Project Background
	2.2 System Architecture
	2.3 User Profiling
	2.4 Our Contribution

	II Background
	3 Recommender Systems
	3.1 Introduction
	3.2 Collaborative Filtering
	3.3 News Recommendation

	4 Feedback
	4.1 Explicit Feedback
	4.2 Implicit Feedback

	5 Matrix Factorization
	5.1 Introduction
	5.2 Singular Value Decomposition
	5.3 Stochastic Gradient Descent
	5.4 Alternating Least Squares
	5.5 ALS vs. SGD

	6 Tensor Factorization
	6.1 Introduction
	6.2 Tensor Factorization in News Recommender Systems
	6.3 Tensor Decompositions
	6.3.1 Tucker Decomposition
	6.3.2 CANDECOMP/PARAFAC

	7 Mapping Techniques
	7.1 Introduction
	7.2 Correlation Coefficient
	7.3 Bins
	7.4 Linear Regression
	7.4.1 Multiple Linear Regression

	7.5 Classifiers
	7.5.1 Naive Bayes Classification
	7.5.2 K-Nearest Neighbor
	7.5.3 Artificial Neural Network
	7.5.4 Support Vector Machine

	7.6 Classification via Clustering
	7.6.1 K-Means
	7.6.2 X-Means
	7.6.3 Expectation-Maximization
	7.6.4 Conceptual Clustering

	8 Related Work
	8.1 Matrix and Tensor Factorization
	8.1.1 Netflix Prize
	8.1.2 Tensor Factorization

	8.2 Implicit Feedback in Recommender Systems
	8.2.1 Mapping Implicit Feedback to Explicit Ratings With Last.fm Data Set
	8.2.2 Recommending With Implicit Feedback Only
	8.2.3 Implicit Feedback Used in Text Retrieval
	8.2.4 Google News

	III Realization
	9 Implementation
	9.1 Recommender
	9.2 Evaluation of Mapping Techniques
	9.3 Integration to SmartMedia

	10 News Recommendation in the SmartMedia Application
	10.1 Feedback Representation
	10.2 Preprocess the Feedback
	10.3 Create Recommendations

	IV Evaluation and Conclusion
	11 Evaluation of Mapping Techniques
	11.1 News Data Set
	11.1.1 Modified Data Set Used in Evaluations

	11.2 Algorithms
	11.3 Environment
	11.4 Testing Methodology
	11.5 Results
	11.5.1 Baseline Estimate
	11.5.2 Time Threshold
	11.5.3 Correlation
	11.5.4 Combined Time Threshold and Correlation
	11.5.5 Multiple Linear Regression
	11.5.6 Clustering
	11.5.7 Naive Bayes
	11.5.8 K-Nearest Neighbor
	11.5.9 Artificial Neural Network
	11.5.10 Support Vector Machine

	11.6 Discussion

	12 Integrational Issues
	12.1 Modifiability
	12.2 Scalability
	12.2.1 Recommendations
	12.2.2 Build Time

	13 Discussion and Conclusions
	13.1 Phasing Out Explicit Feedback
	13.2 Conclusion
	13.3 Further Work
	13.4 End Notes

	A All Evaluation Results
	A.1 Multiple Linear Regression Raw Results
	A.2 Time Threshold
	A.3 Correlation and Time Threshold
	A.4 Naive Bayes
	A.5 Correlation
	A.6 Cluster
	A.7 K-Nearest Neighbor
	A.8 Artificial Neural Network
	A.9 Support Vector Machine

	Bibliography

