
An Application of Agent-Based Simulation
to a Natural Resource Dilemma
Understanding Payoff, Decision Making, and

Learning of Stakeholders through a

Simulated Environment

Yngve Svalestuen

Master of Science in Computer Science

Supervisor: Pinar Öztürk, IDI
Co-supervisor: Axel Tidemann, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Thesis statement
Evolutionary game theory (EGT) is a multidisciplinary field which focuses on how agents’
decisions influence their behavior. EGT has been applied in many areas, ranging from bi-
ology to finance, but agent behavior is often represented by mathematical generalizations,
and details are therefore generalized away. Agent-based simulation (ABS) is a technique
where each agent is treated as a complex individual with many interactions with other
agents and the surrounding environment. Both ABS and EGT are used to study social
dilemmas, which are situations where the individuals have two choices where one is greedy
(beneficial to the chooser, detrimental to the other agents) and a selfless choice (beneficial
to all agents), but if too many agents make the greedy choice it has a negative impact on all
agents. A highly relevant form of such a social dilemma are questions regarding climate
problems, where countries and organizations that make “green” choices experience nega-
tive financial impacts in the short term. The rational strategy is to make environmentally
irresponsible but profitable choices that in the long term result in worse conditions for the
community. The goal in studying these dilemmas is to find mechanisms which promote
cooperation between agents that ensure a sustainable development.

Summary

Aquaculture organizations establish facilities at the coast in Frøya. The facilities block
the surrounding area from fishing and cause environmental damage to close natural re-
sources. Fishers who depend on those natural resources get the opportunity to influence the
aquaculture expansion through complaints about the municipality’s coastal plan. Statistics
show that fishers don’t complain in this situation, and the aim of this project was to in-
vestigate why, as well as studying how baseless complaints can be avoided. Simulation
based on rudimentary evolutionary game theoretic analysis were applied in order to model
the fishers as intelligent agents with complex interactions. Fishers learn to not complain
because they experience that complaining produces no results, and because there is a non-
monetary information leak cost associated with complaining. Changing government’s pay-
off for approving complaints to favor fishers while penalizing environmental damage may
promote more fisher complaints as well as avoiding baseless ones. Avoiding cluttering of
fishing spots is important to keeping complaints on a healthy level. With further devel-
opment the simulation system could be part of a decision support system that promotes
policies that are fair for the stakeholders.

i

Sammendrag

Oppdrettsorganisasjoner etablerer fasiliteteter på kysten på Frøya. Fasilitetene blokkerer
de omkringliggende områdene for fiskeri, og påfører skade til nærliggende naturressurser.
Fiskere som er avhengige av de naturressursene får muligheten til å påvirke ekspansjo-
nen av oppdrett gjennom å klage på kommunens kystplan. Statistikk viser at fiskere ikke
klager i denne situasjonen, og målet med dette prosjektet var å undersøke hvorfor, sam-
tidig som å studere hvordan grunnløse klager kan unngås. Simulasjon basert på enkel evo-
lusjonær spillteoretisk analyse ble brukt for å modellere fiskerne som intelligente agenter
med kompliserte interaksjoner. Fiskere lærer å ikke klage fordi de opplever at å klage ikke
produserer resultater, og fordi det er en ikke-finansiell informasjons-kost assosiert med
klaging. Å endre de lokale myndighetenes payoff for å etterkomme klager som kommer
fiskerne til gode, og samtidig straffe myndighetene for miljøskader, kan føre til at fiskerne
klager mer samtidig som at grunnløse klager ikke oppstår. Det er viktig å unngå subop-
timal distribusjon av fiskesteder mellom fiskerne for å holde et sunt og ærlig klagenivå.
Med videre utvikling kan simulasjonssystemet bli en del av et støttesystem for avgjørelser
som promoterer løsninger som er rettferdige for alle partene.

ii

Preface

This thesis concludes my Master degree in Artificial Intelligence, Computer Science at the
Norwegian University for Science and Technology (NTNU). With a five-year long period
ending, I want to say a few words.

The prelude to this project was conducted during the preceding autumn, when I was
writing a project on evolutionary game theory. EGT is an exciting field that is highly
multi-disciplinary; an exciting feature in itself. For the first time I was exposed to scientific
literature hailing from both biology and economics, as well as computer science. Seeing
all these disciplines merge together in a single field was very interesting, and sparked an
interest in multi-disciplinary work.

Agent-based systems often include aspects from many disciplines, and this project is
no different. Learning about fishing and aquaculture has been fun and eye-opening to
a world of complexities I was never aware of. Programming the system itself has been
another kind of challenge; keeping the code clear and extensible while simultaneously
growing the software to meet its requirements is no easy task.

I want to thank my advisers Pinar Öztürk and Axel Tidemann for our regular meetings
where we discussed and theorized about the model. Without their feedback and ideas
this thesis would have remained non-existent. I want to thank Jennifer Bailey and Yijae
Liu for our first meeting where the initial ideas for the project were lit. I want to thank
Rachel Tiller for being our connection with the Frøya fishermen and providing absolutely
essential information about the fishing and aquaculture industries. My thanks also go to
the Frøya fishers who showed up at our workshop and gave valuable feedback regarding
the simulation.

My thesis is dedicated to my wife Laura, who has continuously supported me through-
out the whole project, and continues to be my most valuable friend, supporter and love, in
my life.

Yngve Svalesuten
Trondheim, 2014

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents viii

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Objectives . 3
1.3 Report Outline . 4

2 Background 5
2.1 Agents . 5
2.2 Communication . 6
2.3 Game Theory . 6

2.3.1 Classic Game Theory . 6
2.3.2 Evolutionary Game Theory . 8

2.4 Decision Making Systems . 9
2.4.1 Simple rules . 9
2.4.2 Artificial neural networks . 9
2.4.3 Case-based reasoning . 10

2.5 Learning Systems . 10
2.5.1 Artificial evolution . 10

2.6 Self-Organization . 12
2.6.1 Attractors . 12

v

3 State of the Art 13
3.1 Agent-Based Simulation . 13
3.2 Fishing and Aquaculture . 14

4 Conceptual Design 17
4.1 Stakeholders . 17

4.1.1 Fishermen . 17
4.1.2 Aquaculture Organizations . 17
4.1.3 Municipality . 18
4.1.4 Government . 18
4.1.5 Other stakeholders . 18

4.2 Sequence of Events . 18
4.2.1 Definition of the Events . 19
4.2.2 Defining the Sequence . 20

4.3 Decisions . 20
4.3.1 Different agents’ approaches to decision making 21
4.3.2 Voting . 22
4.3.3 Influences . 23
4.3.4 Learning . 23

4.4 Knowledge . 24
4.4.1 Inferring Cell Quality from Complaints 25

4.5 Priorities . 25
4.5.1 Profits . 25
4.5.2 Wealth of the community . 25
4.5.3 Existence of fishing as a business 25
4.5.4 Maintaining natural fish stocks in good health 27
4.5.5 Existence of aquaculture industry 27
4.5.6 As few as possible aquaculture establishments 27
4.5.7 Pleasing voters . 27
4.5.8 Pleasing interests of investors in the local community 28

4.6 Information Flow . 28
4.7 Data Set . 28
4.8 Outputs and Results of the Experiment 28
4.9 Classifying the Simulation . 30

5 Experimental Setup 31
5.1 Simulation Overview . 31

5.1.1 Phases . 33
5.2 Decision Making . 35

5.2.1 Mechanisms for decision making 35
5.2.2 Learning . 36

5.3 Agent Communication . 36
5.3.1 Messages . 36

5.4 Other Rules Affecting the Agents . 37
5.4.1 Map creation . 37
5.4.2 Aquaculture building . 37

vi

5.5 Priorities of the Different Groups . 38
5.5.1 Representing priorities realistically 38
5.5.2 Calculating priority satisfaction 38

5.6 Actions of the Different Groups . 39
5.6.1 Fishermen actions . 39
5.6.2 Municipality . 39
5.6.3 Government . 39
5.6.4 Aquaculture organizations . 40
5.6.5 Other agents . 40

6 Implementation 41
6.1 Graphical User Interface . 42

6.1.1 Phase Information Panel . 42
6.1.2 Controls panel . 42
6.1.3 Messages . 43
6.1.4 Plots . 43
6.1.5 Map . 46

6.2 Configuration File Specification . 46
6.3 Modules and classes . 46
6.4 Program Dependencies . 46
6.5 Extending the Program . 47

7 Workshop in Frøya 49
7.1 Presenting the Simulation . 49
7.2 Feedback . 49
7.3 Revisions to the Simulation . 51

7.3.1 Environmental damage . 51
7.3.2 Government decision . 51

8 Experimental Results 53
8.1 Experiment 1 . 53
8.2 Experiment 2 . 55
8.3 Experiment 3 . 57
8.4 Experiment 4 . 62

9 Discussion 65
9.1 Why Fishermen Don’t Complain . 65

9.1.1 Importance of the learning process 66
9.1.2 Influence of complaint approval rate on complaining behavior . . 67
9.1.3 Factoring environmental damage into complaint rates 68

9.2 How to Remedy False Complaints . 68
9.2.1 Complaints during the stabilized state 68
9.2.2 When complaining takes place 69

vii

10 Future Work 71
10.1 Focusing on Other Decision-Making Agents 71
10.2 Decision Support System . 72

11 Conclusions 73

Bibliography 74

A Documentation of the program configuration 77
A.1 Preprocessing . 79
A.2 Python Classes . 79
A.3 Priorities . 79
A.4 Fields . 80

B Documentation of modules and classes included in the system 85
B.1 Modules in the FisherSimulation package 85

C Extending and Altering the Program: Interfaces and Plug-ins 97
C.1 Map Structure . 97
C.2 Learning Mechanism . 99

C.2.1 Phenotype . 100
C.2.2 Genotype . 100

C.3 Voting Mechanism . 101
C.4 Government Decision Mechanism . 102
C.5 Coastal Planning Mechanism . 102

D Software and Project Details 103

viii

List of Tables

4.1 Inputs for the voting decision for each agent 23
4.2 Overview of priorities . 26

5.1 Actions of the different agents . 40

8.1 Overview of experiments . 53
8.2 Common experiment parameters . 54
8.3 Relationship between approval rate and final world state 56
8.4 Average number of open cells and aquaculture for different outcomes . . 57
8.5 Relationship between outcome and average fitness 60
8.6 Effects of changing environmental damage on final states 62

ix

x

List of Figures

1.1 Payoff for fishermen . 2

2.1 Payoff matrix for the Prisoner’s Dilemma 7
2.2 Overview of evolutionary cycle . 11

4.1 Pseudocode showing the sequence of events 21
4.2 Information flow diagram . 29

5.1 Process chart of the simulation . 32

6.1 Screenshot of the graphical user interface of FisherSimulation. 42
6.2 Symbols in the map . 46

8.1 Plots showing a collapsed state . 58
8.2 Plots showing a stabilized state . 58
8.3 Maps showing typical collapsed and stabilized states 59
8.4 Fishermen movement on a stable map 59
8.5 Average number of complaints for each round of several simulations . . . 61
8.6 Average number of complaints for each of the hearings in every round . . 61

xi

Chapter 1
Introduction

This thesis is about fishermen and evolutionary game theory, simulated with an agent-
based model. A simulation-based study is performed to investigate how fishers approach
the establishment of aquaculture facilities in territories that are traditionally used exclu-
sively for fishing. The fishers can choose to officially complain about the establishment of
new aquaculture facilities during the municipality’s coastal planning. The foundation for
the research questions is a game-theoretic analysis that considers fishers as purely ratio-
nal agents, with straight-forward choices to complain or not. The game-theoretic model
predicts that fishers will always complain as much as they can in order to protect their
incomes. However, empirical evidence from the municipality of Frøya, Sør-Trønderlag,
Norway shows that fishers are welcoming to the establishment of these facilities, and don’t
officially complain about them, even if they are both directly and indirectly harming the
fishing industry. This contrast between the game-theoretic prediction and observed be-
havior in the real-life scenario is the basis of the simulation, which attempts to recreate
the fishers’ situation, and investigate how intelligent agents behave in an environment that
resembles the real-life scenario acts.

The simulation is used to conduct experiments that produce data that is analyzed to
answer the research questions.

1.1 Problem Description
This project is heavily based on research by Tiller et al. (2014) on fishermen and other
stakeholders in Frøya with regards to aquaculture expansion. In Frøya there are many
fishermen who live off fishing from the coast. They are dependent on access to good fish-
ing spots, as well as the overall health of fish. Meanwhile, aquaculture companies want
to establish facilities close to the coast line, where conditions are optimal. These condi-
tions often coincide with where harvest is more effective for the fishermen, so aquaculture
companies and fishermen are in effect competing for the same spots.

In order to obtain permission from the government to build facilities, aquaculture com-
panies have to apply for licenses from the municipality. The municipality creates a coastal

1

Fisherman

Government

Complain Stay Silent
Allow

[
−c 0

]
Deny r − c r

Figure 1.1: Payoff for fishermen depending on government actions, in the scenario where a fisher-
man’s fishery spot is being targeted by an aquaculture organization. The cost of complaining is c
and the reward for the aquaculture being denied is r.

plan at a somewhat regular time interval for dividing the sea resources for different pur-
poses. Areas where aquaculture is allowed is a part of this plan, and aquaculture compa-
nies can apply for licenses in these areas when the plan is finished. During the planning,
fishermen and other stakeholders can influence the process through complaints about cer-
tain locations. For instance, the combined local fisherman community in Frøya has twice
complained about areas that were where the municipality wanted to allow aquaculture ex-
pansion, because they felt the areas were too valuable as fishing spots. The complaints are
not always followed, however, and both the municipality and the regional government of
Frøya are very interested in having aquaculture.

The fishermen in Frøya are in a special situation, since they actually want aquaculture
in their community. They have experienced the value of having aquaculture in the com-
munity, which improves living conditions through the municipality having more money.
This means better infrastructure for everyone, better schools for their children, and better
social circumstances as youths stay in the community instead of moving to the cities when
they grow up.

Even so, the fishermen’s main priority, according to Tiller et al., is the continued exis-
tence of fishing as a commercial industry. When considering this, the aquaculture facilities
pose a threat as well as a benefit, since they compete for the same coastal resources. The
logical course of action for the fishermen is to complain at every opportunity, to the es-
tablishment of aquaculture facilities. A simple game theoretic analysis yields the payoff
matrix depicted in fig. 1.1. As long as the reward r for aquaculture being denied is greater
than the cost of complaining c, it seems that it would be beneficial to always complain.
However, the observed behavior of the fishermen at Frøya is that they don’t complain
much, and when they do, it’s too late. Together the reward r and the cost c of an outcome
makes up the payoff for that outcome. Payoff is equivalent to utility, which is the value a
rational agent tries to optimize.

A possible reason for not complaining might be that complaining reveals good spots.
Fishermen usually have their personal spots that belong to the family, and are respected
by others. They may also have secret spots that not everyone knows are good fishing
spots. A risk associated with complaining about aquaculture in a specific area is that other
fishermen might infer that the complaining fisherman has found a really good fishing spot
and that’s why he’s complaining.

The point of the simulation is to explore this and other possible explanations as to
why fishermen in Frøya don’t complain—what factors are in play that make their actions
rational? Another possible problem associated with the situation in general occurs if the
fishermen come to the conclusion that complaining is always good, even if the area in

2

question is not that important to them. In this case, a simulation may be able to explore
different policies to discourage this behavior.

1.2 Research Objectives
The project is divided into research objectives, which are smaller goals that in combina-
tion provide the direction for the project. The objectives are stated as research questions,
with working hypotheses, and they will be further visited in later chapters. The discus-
sion chapter will focus on the research questions and how they are answered through the
experiments.

Research Question 1: What can a simulation tell us about the fishers’ decisions to not
complain?

One reason why fishers don’t complain may be the cost associated with complaining.
There is no direct monetary cost to filing a complaint, but there is a significant effort cost.
Complaints are usually issued by the organized group of fishers, so in order to complain
they need to do the necessary organization to collaborate on such a complaint. There is also
the cost associated with each fishers’ individual time spent on writing and documenting
the complaint. Complaining may directly negatively impact their profits if the fishers have
to take time off work in order to write the complaint, or it may dig into their spare time,
which is also a kind of cost. If the cost is too large for the fishers, especially compared to
its expected return, it is natural that they will opt out of complaining.

Another reason why complaining may become unpopular is of course the expected
return itself. Even assuming that every time the fishers manage to protect an area from
aquaculture expansion through complaining will result in a constant benefit, there is no
guarantee that a complaint will be approved. If the government’s complaint approval rate
is observed by the fishermen to be too low, this may cause the fishers to not complain at
all, because they observe no benefit or a benefit that occurs far too rarely, compared to
the cost. Even if the benefit when it occurs is far greater than the cost associated with
complaining, this effect may still take place Social learning dictates if they don’t perceive
any benefit, even if there might be one, they might learn to not complain.

The experiments are designed to help understand if the cost of complaining may be
influential, and if the benefit of complaining is enough to encourage complaining behavior.
They are designed to identify when complaining behavior disappears from the population.

Research Question 2: Under what conditions do false complaints occur, and what policies
can be used to discourage this behavior?

Since the project was started, it has been speculated and reported that fishers may pro-
duce false complaints. False complaints can be considered a problem because aquaculture
facilities are considered an overall positive for the communities they are in, especially if
they don’t conflict with any fishers. If there are false complaints, this may hurt the com-
munity unnecessarily by preventing facilities that would be problem-free.

One measure that can be taken into consideration in order to stop false complaints is
to introduce a monetary cost of complaining. Such a cost would discourage complain-
ing about areas that have no associated benefit if the complaint goes through, i.e. no

3

good fishing area would be destroyed by having aquaculture there anyway. A problem
with this strategy could be that fishers would be discouraged from complaining altogether,
especially considering that low complaint rates are already a problem, and existing non-
monetary costs may be a part of this problem.

Another solution to false complaints could be that the entity that receives complaints,
or even better a neutral third party, could perform their own investigation to check if the
complaints were based on legitimate concerns. Then the municipality or government could
identify or even punish false complaints in order to weed out this behavior. However, the
action of checking if a complaint is about a good fishing area or not, may become very
expensive. It may also not be feasible since the areas that are good by the fishers standards
may vary or be based on subjective criteria.

The experiments are designed to investigate when false complaints occur in the system,
and identify conditions that prevent them.

1.3 Report Outline
The project report is structured as follows. This chapter (chapter 1) includes a general and
high-level description of the project, as well as problem statement and statement of re-
search questions and working hypotheses. Chapter 2 provides the theoretic background of
the project, including agent theory and game theoretic concepts. Chapter 3 presents state-
of-the-art research relevant to the project, which includes current agent-based simulation
techniques coupled with aquatic and ecologic scenarios. Chapter 4 provides a high-level
description and discussion of elements that are fundamental to the simulation, presented
separately from the simulation. Chapter 5 describes the experimental setup which includes
implementation-independent details of the simulation. Chapter 6 documents the imple-
mentation details of the software that performs the simulations. Chapter 7 documents and
discusses results from the fisher workshop that was held in Frøya municipality. Chapter 8
presents specific experiments and their results, tied to the research questions. Chapter 9
discusses the results with regards to the research questions. Chapter 10 discusses possible
further developments of the software and the project topic.

The appendix includes documentation of the software created during the project. Ap-
pendix A documents the configuration setup, while appendix B documents modules and
classes included in the system. Appendix C describes interfaces that can be implemented
in order to extend the functionality of the software. Appendix D gives an overview of
project details regarding the software.

4

Chapter 2
Background

This chapter gives an introduction to each concept in the theoretical background of the
thesis.

2.1 Agents
The definition of an agent varies from author to author, but Wooldridge (2002a) defines
them as computer programs placed in an environment and that can autonomously perform
actions in the environment in order to fulfill their objectives. The actions do not neces-
sarily control the environment, but do at best influence it. They receive inputs from the
environment as well, through sensory systems, which may invoke reactions that produce
more output to the environment.

Since the environment of an agent is such an intrinsic part of its definition, the environ-
ment needs to be elaborated as well. Environments can be fully observable or only partially
so, deterministic or stochastic, single agent or multi-agent, static or dynamic, episodic or
sequential, known or unknown and discrete or continuous. An observable environment is
one which agents can easily gather information about. Multi-agent systems have environ-
ments with more than one agent, and they can be cooperative, competitive or a mixture
of both. A deterministic environment has predictable behavior given enough informa-
tion about it, however this property is irrelevant if the environment becomes sufficiently
complex because agents usually do not have enough processing power or information-
gathering abilities to calculate the necessary predictions. Static environments are different
from dynamic ones in that an agent can assume that only its own actions impact a static
environment. Episodic environments have a list of events that happen in order, without
the occurrence of the next event being dependent on the previous one, while in sequential
environments actions affect subsequent events. Discrete environments are distinct from
continuous ones by the property that they have a finite number of possible states. In a
known environment, agents have knowledge about the laws that govern the environment,
and thus the ability to reason about consequences from perceived information (Russell and
Norvig, 2010a).

5

2.2 Communication

Agent communication is a heavily studied topic. It is important because, in contrast to
more traditionally object-oriented systems, agents are autonomous and do not necessarily
obey the commands of others. A communication scheme can therefore not consist of
only method invocations, but needs to consider the will of the agents. Messages may
consist of information provided by the sender to the recipient, or it may be a request
for information, which is simply information that the sender wants information from the
recipient. A communicated message is just information; it does not have to be obeyed by
its recipient (Wooldridge, 2002b).

Several languages have been developed for the purpose of agent-based communica-
tion. KIF and KQML are two such languages. KIF was constructed to convey the logical
meaning of a message, while KQML is a system for expressing all the other information
regarding the message such as sender, recipient, what message it was a reply to and so on.
FIPA is another messaging scheme that’s similar to KQML (Wooldridge, 2002b).

2.3 Game Theory

Evolutionary game theory is a subsidiary field of game theory, which was originally a field
from economics and has developed into a more general study of multi-agent interactions
where the decision of each agent has an impact for everyone. Classic game theory tradi-
tionally uses strategic reasoning to find the optimal choice for each agent. Evolutionary
game theory applies evolutionary dynamics to classic game theory, and substitutes pure
strategic reasoning by a single agent with a large population that are subject to selection
over a large time span in order to derive the optimal choices.

2.3.1 Classic Game Theory

Many of the concepts used in evolutionary game theory are directly adopted from the
classic variant. This section aims to cover the most important concepts that are used in
both classic and evolutionary game theory.

Payoff and strategies

Since game theory is a theory about decision making, one needs a concept to describe
which decisions lead to certain outcomes. Payoff is a measure of the utility each agent
receives for taking certain actions, given the actions of the other agents affecting the out-
come. Payoff is often given as a number and presented in a table, known as a payoff matrix.
Figure 2.1 shows the payoff matrix for the Prisoner’s Dilemma game in which two pris-
oners get the opportunity to confess or stay silent about their crimes. If they both choose
to confess, they both receive a moderate punishment. If they both stay silent, they receive
a very harsh punishment. If one confesses and one stays silent, the one that confessed
receives a light punishment, but the one who stayed silent is let go. The choice to confess
is often stated as to cooperate, while the choice to stay silent is to defect.

6

Prisoner B

Prisoner A

C D
C

[
-1, -1 -5, 0

]
D 0, -5 -3, -3

Figure 2.1: Payoff matrix for the Prisoner’s Dilemma game. C: Cooperate (confess), D: Defect
(stay silent). The payoffs are the numbers of years in prison multiplied by −1; a payoff of -5 means 5
years in prison. The numbers in the matrix represent the payoffs for each agent; the first number for
prisoner A and the second for prisoner B. When player A cooperates and player B defects (C, D),
player A receives −5 payoff and player B receives 0.

A strategy is the choice an agent can make. For the prisoner’s dilemma, the obvious
choices are to either confess or to stay silent, but sometimes mixed strategies are also
allowed. A mixed strategies is a distribution of probabilities to the set of pure strategies,
so for the prisoner’s dilemma a mixed strategy could be “defect 70 % of the time, otherwise
cooperate”.

Nash Equilibrium

The Nash equilibrium is a set of choices agents can make that are best responses to each
other. This way when two or more agents are in a Nash equilibrium, there is no reason
for any of them to change their decisions. A best response to a certain move is simply
the strategy which yields the highest payoff. In terms of the prisoner’s dilemma, defecting
is the best response to both cooperating and defecting, or (D,D). Therefore, the Nash
equilibrium of the prisoner’s dilemma is mutual defection. The prisoner’s dilemma has
exactly one Nash equilibrium of two pure strategies, namely mutual defection, but every
game has at least one mixed strategy Nash equilibrium.

Pareto Optimality

In the prisoner’s dilemma, mutual defection is the Nash equilibrium, and gives both play-
ers a payoff of −3. However, even if it is the Nash equilibrium, the situation could be
improved for both players without either player suffering. For example, if both players
cooperate, they both receive a payoff of −1 instead. This is clearly a more desirable out-
come overall. The concept of Pareto optimality captures this notion of improving outcome
without hurting the others’ outcomes. An outcome is Pareto optimal, or Pareto efficient,
if no player’s payoff can be improved without lowering another player’s payoff. (C,D)
and (D,C) are also Pareto optimal in the prisoner’s dilemma because any change in the
strategy for a player in order to improve the payoff for one would lower the other player’s
payoff since both end up with −1, compared to 0 for the defector and −5 for the coopera-
tor previously. For example, if the player defecting in (C,D) changes his strategy to C, it
will lower his payoff while improving that of the other player. Any change in strategy from
(C,D) would do the same; lowering the payoff of the player who initially defected. Since
no change is possible that benefits one player while not hurting the other, the outcomes
(C,D) and (D,C) are Pareto-optimal.

7

2.3.2 Evolutionary Game Theory
The two most important concepts in classic game theory are payoff and Nash equilib-
rium. In evolutionary game theory, these concepts are refined to fit with the evolutionary
dynamics. This section presents these refinements.

Fitness

Evolutionary dynamics are based on the survival of the fittest, which is defined in terms
of fitness. Fitness is a measure of how well suited an agent is for its environment, and in
evolutionary game theory payoff is used as the measure of fitness. Fitness decides which
entities are reproduced, and thus which strategies are successful and propagate to the next
generation.

Evolutionary Stable Strategies

A refinement of Nash equilibrium, an evolutionary stable strategy is a strategy that if
there is a population consisting of that strategy, no mutant strategy that is evolutionary
stable can take over the population. In other words, the first criteria for a strategy to be
evolutionary stable is that it has to be better when played against itself than every other
strategy. Otherwise, if another is equally good against it, the stable strategy has to be
better against every other strategy than that strategy than that is against itself. Formally, a
strategy s is evolutionary stable if for every strategy t:

1. π(s, s) > π(t, s), or

2. π(s, s) = π(t, s) and π(s, u) > π(u, u)

where π(t, s) is the payoff of strategy s played against t.

Replicator Dynamics

Assuming an infinite population of agents playing different strategies, the evolution of
the strategies can be described by the replicator dynamics. The replicator dynamics is a
formula that describes how the fraction of agents playing a certain strategy will change in
relation to the other fractions of agents playing other strategies, depending on their payoff
against each other:

d

dt
pi(t) = pi(t)(πi(t)− π̄(t))

Where pi(t) is the fraction of players performing strategy si at time t, and πi(t) is the av-
erage payoff of performing strategy si in the population at time t, and p̄i(t) is the average
payoff over all strategies s at time t (Gintis, 2000).

Social Learning

The most straight-forward way to interpret evolutionary game theory and the replicator
dynamics is in the natural evolutionary sense; i.e. as a life-death reproduction cycle. How-
ever, evolutionary game theory is increasingly being applied to social science problems

8

where generations of evolutionary development is too slow of a process to model real peo-
ple changing behavior. On the contrary, the evolutionary dynamics can be interpreted as
imitation such that individuals imperfectly copies the strategies of their best-performing
peers. They copy imperfectly to model mutation, but this aspect can also be left out and
leave the process as a pure optimization without discovery of new strategies.

When the replicator dynamics are considered as imitation, a question arises on how
the imitation takes place. Laland and Rendell (2010) reviews various ways to copy other
agents, so-called imitation dynamics, concluding that the most common methods are copy-
the-better which copies the best-performing individual in the population, and the proba-
bilistic variant copy-the-proportional.

2.4 Decision Making Systems
Decision making can take many forms, for instance in the game theoretic view where de-
cision making means following a strategy. However, a decision-making agents often have
the requirement to be able to reason about their beliefs and desires in order to theorize
about different decisions. Sometimes these desires and beliefs are explicitly defined and
used by the agent, making it a decision-theoretic agent (Russell and Norvig, 2010b). Con-
versely, agents may be very simple and have straight-forward rules for always choosing
the same decisions, or based on simple conditions.

2.4.1 Simple rules
The most straight-forward way to model decision-making agents is to preprogram their
decisions before they are initiated. If the goal of the model is to observe how different
decisions perform against each other, assigning each decision to a subset of agents is a
reasonable strategy. Such non-intelligent agents are equivalent to agents performing a
single strategy in the game-theoretic sense. A natural extension of the simple rules-strategy
would be to assign mixed strategies to agents.

2.4.2 Artificial neural networks
An artificial neural network can be used for decision making without making the desires
and beliefs of an agent explicit. Neural networks consist of a set of neurons with connec-
tions between them. The neurons are ordered in three layers: input, hidden and output.
The input layer contains the nodes that together with the recurrent connections control the
network; these are manipulated directly with data from the outside world. The hidden layer
provides the data processing, and generally consists of a larger amount of neurons than the
other layers with more connections between them, as well as recurrent connections which
provide memory to the network. The output layer typically contains few nodes that which
states are interpreted as a decision. For instance a single neuron that can have positive
or negative values can be interpreted as answering a yes/no question. The connections
between the neurons therefore encode the beliefs and wants of the agent implicitly.

There are three aspects that make neural networks differ from one another: the number
of neurons, connectivity between the neurons, and the weights on each connection. The

9

number of neurons and connectivity between them are typically decided upon creation of
the network, while the weights are adjusted through a training process. However, there are
examples of systems that adjust connectivity and the number of nodes during the training
as well.

2.4.3 Case-based reasoning

Case-based reasoning is a learning method that can be used for decision making (Mitchell,
1997). Case-based reasoning systems are comprised of cases, which are descriptions of
problem situations with solutions for them. When presented with a new problem situation,
the system uses similarity metrics to find the most similar previous situations and adapts
their solutions to the current situation. It is a lazy paradigm, which means that it creates
generalizing models based on its data when asked for a new decision. These queries are
referred to as “cases”, and they are elaborate representations about the problem. Descrip-
tions of the current state of the environment, any parameters and relationships between
them can all be part of the query. When a query is answered it is also stored with its
generated solution, for use in the future.

The case-based reasoning paradigm is defined by a number of features that differ it
from similar learning systems. First of all, the detailed query descriptions is an important
feature. Comparing queries to find the most similar ones is therefore a complex task. Case-
based reasoning systems can also adapt previous solutions in a number of ways to fit the
current problem, for instance combining two or more previous cases and their solutions
in the new solution. Case-based reasoning is highly knowledge-based, and is used in
dynamic, learning environments. Applying case-based reasoning to a system which cannot
learn makes little sense because its advantage is the possibility to continuously expand and
adapt its knowledge of cases.

2.5 Learning Systems

Studying a decision making mechanism that cannot adapt can be useful in order to deter-
mine its current effectiveness, but an assumption in for instance evolutionary game theory
is that agents can change their behavior. A common way of changing behavior is through
learning, which can be implemented in various ways. One common way of considering
learning in evolutionary game theory is as simple imitation of the best-performing agent,
or the slightly more complex method of copying the best-performing agents with a proba-
bility proportional to the difference in performance to that agent.

2.5.1 Artificial evolution

Evolutionary algorithms are important tools to in both artificial intelligence research and
other areas of application. They are a form of unsupervised learning, where the central
requirements to their application are a) a way of separating genotypes from phenotypes;
and b) a way of measuring the fitness of said phenotypes. A genotype is a low-level (often
binary) representation of the entities being evolved which can be subject to mutation. The

10

Initialize
a random
population

of genotypes

genotypes Development

phenotypes Fitness
testing phenotypes

Selection

phenotypes

ReproductiongenotypesMutation and
crossover

genotypes

Figure 2.2: Overview of the evolutionary cycle, showing events (green) and entities sent between
them (blue).

corresponding phenotype is the actual entity, built from the genome description (Floreano
and Mattiussi, 2008).

Artificial evolution is usually implemented in a cycle inspired by natural evolution.
There is development from genome to phenotype, testing of the fitness of each phenotype,
selection of the best-fitting individuals, reproduction of the selected samples, and muta-
tion as well as crossover of their genomes, before a new development cycle takes place.
Figure 2.2 shows this cycle, distinguishing between the events that transform the entities,
and the entities themselves.

There are many algorithms for performing selection, among them are proportional se-
lection and rank selection. Proportional selection assigns probabilities to each genome
according to its relative fitness, giving the highest probability to the best-performing indi-
vidual. Then it selects n genomes repeatedly using this probability. Since the proportional
selection mechanism considers absolute fitness values, it is sub-optimal when there is ei-
ther low variation between the fitness values, and when one has much higher fitness than
the others. In the first case, the probability difference in choosing between the best per-
formers and worst performers won’t be much, and the evolution will be very random. In
the second case, genetic diversity will suffer since the best entity will be copied much
more commonly than the others. Rank selection mitigates these issues by instead of using
probabilities based on the absolute fitness values, it assigns probabilities depending on the
relative ranking of each individual (Floreano and Mattiussi, 2008).

When reproducing a generation, it is common to completely replace the old generation
with new genotypes and phenotypes derived from the reproduction mechanism. However,
to prevent the loss of good performers through random mutation, elitism is a technique of
saving the best individuals or genomes without mutation and separate from the selection,

11

that are guaranteed to go on to the next generation (Floreano and Mattiussi, 2008).
The two most common mutation operations are direct mutation on random bits, and

crossover. Regular mutation can be implemented by randomly choosing one or more bits in
the genome and transforming them into something random. Crossover takes two genomes,
cuts them in half at corresponding points, and joins the pieces together in the opposite
configuration, producing two new genomes. Crossover has the possibility to produce huge
changes, so it needs to be carefully implemented.

2.6 Self-Organization
Agent-based simulations and evolutionary processes often become self-organized systems.
A system can be described as self-organizing when global patterns are created by local
interactions (Heylighen, 2001). This creation of a global pattern is commonly referred
to as emergence. Self-organized systems are characterized by a number of features in
addition to the global order occurring from local interactions. In contrast to centralized
systems, self-organized systems don’t have a single entity controlling the overall behavior,
but control is distributed among the parts. Self-organizing systems are also robust to
noise, errors and in general outside influences. One of the reasons for this robustness is
the distributed control; they do not possess the vulnerability to its central control unit being
destroyed like traditional centralized systems do. Self-organization often occurs because
of feedback loops in the system. Feedback loops can either reinforce signals to explosively
grow development (positive feedback), or stabilize it, both in a circular fashion. Feedback
effects can make self-organized systems difficult to predict, because the interactions of
inter-dependent positive and negative feedback loops as a result of a stimulus can become
highly complex.

Agent-based models are self-organizing because they model individual agents in order
to create and observe emergent behavior. Studying emergent properties of a self-organized
community is one of the main reasons why agent-based simulations are being applied to
social science (Davidsson, 2002). Evolutionary game theory models strategic interactions
as a dynamic, self-organizing system. The dominance of a single optimal strategy emerges
from the population which consists of the individual strategies being played against each
other. The state of a best strategy dominating the population is an attractor.

2.6.1 Attractors
During the lifespan of a self-organizing system it evolves, which involves changing states.
Assuming that the system is deterministic makes some states are more likely to end up in
than others. In deterministic systems a state a can only lead to a single state b. When the
system changes between states without outside influence, it will eventually end up in an
attractor. An attractor is a set of states from which the system can never leave; one can
say that the system has “closed in on itself” (Heylighen, 2001). An attractor can consist
of one or more states that repeat in a cycle. A basin is a property of an attractor, and is
defined as the set of states outside of it that necessarily end up in the attractor.

12

Chapter 3
State of the Art

This chapter intends to explore the current scientific research related to the project. The
main topics are agent-based models and evolutionary game theory, since the simulation is
agent-based, and the project is rooted in an evolutionary game theoretic question.

3.1 Agent-Based Simulation

At the intersection of computer simulation in general, social sciences and agent-based
computing one finds agent-based social simulation, according to Davidsson (2002). In
this combination of the disciplines, the thinking from each affects the others. From the
view of social scientists, the introduction of computer simulation enforces constraints on
their theories, forcing them to be clearer about assumptions, boundaries and input-output.
Additionally, when models from social science are implemented in an agent-based way,
one can study which properties of the overall model emerge from simple agent-based in-
teractions. In this way, methodology from agent-based systems can aid social scientists in
understanding complex social systems from a bottom-up perspective. The fields of com-
puter simulation and agent-based models affect contribute from different angles as well,
since computer simulation traditionally rely on mathematical generalizations of a number
of agents or entities as a whole, while agent-based computation techniques concentrate on
the individuals and global behavior that emerges from their interactions.

There are several platforms created for multi-agent research, and Le Page et al. (2012)
studies the community and usage of CORMAS, an agent-based simulation platform. It
was created as a tool for multi-agent system, especially those with resource dynamics.
Thus it was quickly used for situations where sustainability is a goal. According to the
study, 3 % of models developed with the tool are fishery-related, with water being the
primary resource with 34 % of the models. The article concludes that many applications
created with CORMAS help teach stakeholders about consequences and viewpoints with
regards to the resources at hand. They also remark that the focus over time has shifted from
research on renewable energy situations, to using CORMAS simulations as a teaching tool.

13

REEFGAME represents one of the simulations developed with CORMAS that func-
tion as a teaching tool about resource sensitive situations (Cleland et al., 2012). The simu-
lation is a game where each player is a fisher, who has different attributes that differentiates
them from other fishers. The players can communicate during the game, but it comes at
a cost, which introduces asymmetry of information. The game world is divided into a
grid of cells, where each ocean cell may have resources like coral reef and algae. If a
resource is worked too much, it dies. In addition to choosing different locations of fishing,
the fishers may also try to pursue other kinds of work. Players were observed to choose
strategies that prioritized safe but satisfying choices rather than risky and potentially very
profitable ones. Two main goals with the program was to gain a better understanding of
the fishers’ situations, as well as finding an answer to how policies can be formed that pro-
mote conservation of natural resources. One of the most important motivations for using a
game to perform social experiments was that the game can provide a situation with fewer
unrealistic constraints than a controlled experiment, such as structured communication.
During the game, participants can talk among each other freely. The combination of a
game simulation with a social experiment was therefore a valuable tool.

Another agent-based simulation related to natural resources that was applied as a teach-
ing tool was studied by Rebaudo et al. (2011). They modeled how human interaction in-
fluenced pest infection. The potato moth is an invasive insect in Ecuadorian farms, and it
is spread by farmers visiting other towns to sell their infected product. Farmers can hinder
the spread of the infection by traveling less or changing their patterns. Thus they end up
in a common-pool resource problem where everyone has to avoid spread, contributing to
the common good. Knowledge of the interactions and pest dynamics is important, so the
simulation is used as a teaching tool to inform farmers on how to more optimally move.
The simulation is structured in several levels. First of all there are the agents, the farmers,
which interact in an agent-based fashion. Secondly there is a separate layer for modeling
the pest spread, utilizing a cellular automaton.

A more traditional application of CORMAS, where the simulation is used for a study
instead of teaching, was studied by Janssen and Ostrom (2006). The situation studied
involves a community of fishers that contrary to the game theoretic prediction have created
a society where agents exhibit policing behavior on their own initiative, without direct
profit as a selfish goal. The simulation includes agents who suddenly experience a resource
shortage, which gives the opportunity to create a maximum harvest-rule which can be
enforced by voluntarily policing agents. Agents who harvest more than the limit specified
by the rule are punished if discovered by the police. However, the Nash equilibrium of
the scenario is that no agents contribute to the police effort, and agents end up cheating
which causes a resource collapse. Through spatial structure restricting harvest freedom
and separate trust games, the agents in the simulation manage to build trust and confidence,
and still evolve a rule-enforcing society.

3.2 Fishing and Aquaculture
The various stakeholder’s reactions to aquaculture was studied by Tiller et al. (2014). Fish-
ermen, foreign workers, tourists, high school students, aquaculture representatives and
researchers were all present in the study, which focuses on charting the different moti-

14

vations and priorities of each group as a whole. The situation in Frøya, where the study
concentrated, is extraordinary since fishers and the municipality are very accepting of the
aquaculture industry. This contradicts the more common situation where local fishermen
are heavily opposed to aquaculture, both environmental damage and sturdy competition
from the facilities. The technique applied was stakeholder workshops, which is a meeting
where representatives of one of the group talk about the situation using a methodology for
identifying important aspects. It was revealed that while fishermen are positive to aqua-
culture, they are most concerned with the continued existence of fishing as a commercial
industry, meaning that it should not be out-competed by aquaculture.

Combining aquaculture and agent-based simulation, Pereira et al. (2004) study a way
to simulate ecological systems that include intelligent agents. A general problem among
ecological models is that they employ mathematical models that are very straight-forward.
The use of intelligent agents is therefore contrasted with more traditional models of natural
resource scenarios which are implemented using simple mathematical equations that don’t
consider the intelligent decisions of humans, and the influences of these decisions. They
employ a specific messaging system that can be changed for different application domains.

Later the same group present a specific system called EcoSimNet for simulating es-
pecially aquatic ecosystems (Pereira et al., 2009). The system can be used to combine
the actions and desires of intelligent agents such as humans, with ecosystem dynamics.
The optimization process works by running many simulations in parallel and in several
generations sequentially. Results from each generation are shared and used in the next
generation, creating a system that is similar to artificial evolution. The platform was used
to implement a system for finding the best aquaculture configuration for farming shell-
fish on a coastline. The use of parallel computations allow the time necessary to compute
solutions to be drastically decreased. EcoSimNet is shown to be a capable platform for
optimization and agent-based systems, specifically decision support systems.

Cruz et al. (2007) implement a simulation system that places an intelligent aquaculture
agent within an environment with the goal of finding the optimal configuration of farming
sites within an aquaculture area, with respect to farming output. The agent operates in
a multi-agent environment with many ecological and environmental factors such as tide
and water quality. The agents communicate with each other and the environment using a
high-level communication language. Four optimization algorithms are developed to search
for the optimal configurations: simulated annealing, tabu search, artificial evolution and
reinforcement learning. The tactic of using these optimization tactics to find the solution
is shown to be more effective than using mathematical models.

Since lice infesting salmon is a problem for aquaculture facilities, Groner et al. (2013)
build an agent-based model for simulating the spread of lice in a population. The simu-
lation includes wrasse, which is an organism that preys on the sea lice, and running the
simulation explores how best to apply wrasse to the salmon. The lice and wrasse dynamics
are both made up of probabilistic events, introducing stochastic effects to the model. The
model parameters are based on literature where data was available. The use of an agent-
based model to investigate sea lice infestations is reported to be original to the study, and
has the advantage that the model can incorporate any kind of static and dynamic events, in
contrast to more constrained models. The model concentrate on the sea lice themselves,
while both the salmon and wrasse behavior are simplified significantly. This shortcom-

15

ing was overcome by repeating the simulation many times, in order to filter out stochastic
effects that result from lack of information.

16

Chapter 4
Conceptual Design

This thesis focuses on the decision of fishermen facing aquaculture expansion, and the
scenario is investigated mainly through a simulation. The simulation is meant to cover
the most important part of the fishermen’s decisions, while abstracting away unimportant
details. This chapter describes on a high level what aspects are included in the simulation.

The fisher agents make decisions whether to vote or not based on information about
the environment and the coastal plan. The decision is predicted through game theoretic
analysis to always result in the maximum number of complaints. Information about the
environment is communicated between agents using a messaging system. The decision
to complain or not applies an artificial neural network, which is adapted through the ap-
plication of artificial evolution. The learning system is modeled after evolutionary game
theoretic social learning, where agents copy their best-performing peers.

4.1 Stakeholders
Identifying the different people involved in the situation is crucial to creating a complete
simulation. The stakeholders deemed relevant to the simulation are based on the stake-
holders used by Tiller et al. (2014). The stakeholders are implemented as agents in the
system.

4.1.1 Fishermen
Fishermen are of course vital to the system which tries to explore fishers’ decisions. Fish-
ers are the agents who vote on coastal plans by filing complaints. They also harvest fish
from the ocean, which may conflict with the aquaculture facilities.

4.1.2 Aquaculture Organizations
Aquaculture facilities are built by organizations. These organizations decide where to
establish a facility, apply for a license from the municipality, and do the building. After a

17

facility is built, the organization runs it to harvest its output.

4.1.3 Municipality
Coastal plans are created with semi-regular intervals, and they are created by the local
municipality. The municipality is also responsible for reworking coastal plans in case
they need to be, based on complaints. When aquaculture organizations pursue an area for
aquaculture expansion, they apply for a license at the local municipality.

4.1.4 Government
There are several functions performed by government instances that are grouped together
as a single “government”. These functions include receiving complaints, deciding if a
coastal plan needs reworking and providing the municipality with aquaculture licenses.
Grouping these governmental functions that may be performed by separate subsidiaries
gives an easier overview of the model.

4.1.5 Other stakeholders
In the paper by Tiller et al. (2014), several stakeholders were interviewed regarding their
attitude towards aquaculture expansion. These stakeholders include local high school
students, foreign workers, enthusiasts, tourists and academics. One could consider high
school students, foreign workers and enthusiasts and other interested locals a single group,
together forming a local community of civilians. This group has strong opinions on the
aquaculture and should not be excluded from a complete analysis of the consequences of
aquaculture expansion. Aquaculture is mostly a source of wealth for the locals. Separate
from civilians, tourists also play a role in voicing their opinions on aquaculture expansion.
Since tourists are concerned with natural beauty and cultural heritage, such as the fishing
industry, tourists can reasonably be assumed to overall be against aquaculture expansion.
In fact, tourists often have a preferred area where they don’t want aquaculture expansion.

The stakeholders of civilians and tourists will be considered in the design of the simu-
lation, but they will be excluded from the simulation itself in order to keep it as simple as
possible. The focus of this thesis is answering questions about the complaining behavior
of the fishers themselves. Even if support from the local community for aquaculture or op-
position from tourists which coincides with fisher complaints may have an impact on the
perceived effectiveness of fisher complaints, this effect is not the focus of the project and
is therefore assumed to be minimal. A potential future development of the project topic
could be to explore the effects of including other rich stakeholders, and this possibility is
discussed further in chapter 10.

4.2 Sequence of Events
There are several events that are important to the fishermen’s choices. To define an order,
or at least prerequisites for their occurrence, is crucial to the simulation since it means
defining the framework for the whole scenario.

18

4.2.1 Definition of the Events
The most important events are captured below, with their contents described. A priority
was to define events with as concisely as possible, at the same time as making the set of
them capture everything that’s necessary to make the simulation realistic.

Coastal Planning

The municipality’s plan for use of coastal areas and resources is definitely very important
for the fishermen, since it’s the document that dictates where aquaculture can be estab-
lished, and where there are protected fishing areas. It occurs at a somewhat periodic in-
terval. With each new coastal plan, fishermen get the opportunity to influence it through
complaints.

Hearing

Before the coastal plan is finalized, it goes through a hearing which is when the fishermen
and other stakeholders can influence it through complaints, or perhaps suggestions. The
hearing is done in three stages. If there are complaints to the municipality for a coastal
plan, it is first treated by the first stage. If no consensus is reached, the plan is reworked
and the hearing goes to a second stage. After the third stage a plan is forced through,
even if complaints still remain. The hearing event may be considered a part of the coastal
planning event.

Fishing

One of the most important part of fishermen’s lives is the fishing itself. For the most
part, fishermen stick to the same spots where they return to fish trip after trip. Important
aspects to consider with regards to the simulation are: a) the amount of fish a fishing spot
yields; b) the fishermen’s knowledge of good fishing spots; and c) negative influence from
aquaculture facilities on the amount and quality of fish.

Building

Aquaculture being built is an important event that influences the fishermen directly, by
potentially pushing them out of their territories. Fishermen can of course not fish inside
an aquaculture facility, but there is also a blocked radius around the facility where fishing
cannot be done. This radius is typically around 100 m. During the workshop, which is
elaborated in chapter 7, it was clarified that the establishment of an aquaculture facility has
important environmental consequences for the surrounding area, namely it gets polluted
with chemicals and excrements. This reduces the natural fish population in a large radius
around the facility, and what is left is of poor quality.

In order for an aquaculture company to receive a license to build in a certain location,
they first have to wait for the national government to distribute licenses to the municipality,
and then they can apply for those licenses based on the coastal plan. Since the focus of this
project is the fishermen’s decisions, and not the aquaculture companies’ process towards
building facilities, this process can be joined with the building process. In this way, when

19

the municipality receives licenses from the government (which may happen periodically),
they are immediately given to aquaculture companies who immediately establish in any
area where aquaculture is allowed according to the coastal plan.

An aspect to consider of the previous two events is that fishing and building are typi-
cally intertwined; that is fishing takes place both before and after aquaculture is built, and
all aquaculture is not built at the same time. A way to simulate the first of these two aspects
is to have a fishing event both before and after building, so that consequences of fishing can
be seen both with and without the new aquaculture facilities, in a single planning round.

4.2.2 Defining the Sequence

The most straight-forward way to structure the events in the simulation, is as a defined se-
quence with conditional loops, that cycles until the simulation is over. For this simulation,
it means that when the government decides that a plan should be reviewed, the sequence
goes back to a planning stage, before a new hearing round, and so on, until the govern-
ment decides to approve the plan. After that happens, the events not part of this cycle takes
place, before the full cycle is over and a completely new coastal plan is made.

Another way to structure the events could be a more open-ended world where fish-
ermen do their normal activity (i.e. fishing) while the municipality “suddenly” creates a
coastal plan and the normal activities are interrupted by, or continue in parallel with, hear-
ing, government complaint approval, and aquaculture establishment. This structure may be
more realistic and reflect closer how things actually work both in Frøya and other fisher-
aquaculture communities. However, it is more complicated both to build and analyze,
since the time can vary between each coastal plan and subsequent aquaculture establish-
ment. This means the consequences felt by the fishermen would change with not only the
severity of the establishment, but also by the amount of time before the new planning. If
two plans were made in rapid succession, the fishermen may not have time to experience
too severe consequences from an aquaculture facility that actually did destroy a significant
amount of natural resources.

For the sake of simplicity, the simulation is designed with a linear sequence that can
jump back to the planning stage if the plan is decided to be reworked. Figure 4.1 shows
the sequence as pseudocode, including the processing of events (as “Compute” statements
of the form “Compute EVENT NAME(information)”) and information processed and pro-
duced by the events (as variable assignments of the form “Name← V alue”). The jump-
back effect is controlled by a while-loop that iterates until an approved coastal plan has
been finalized, computing coastal planning and hearing.

4.3 Decisions

The ability to make autonomous decisions are what define the agents as intelligent. There
are several kinds of decisions made in the system, including fishers complaining, the gov-
ernment approving and rejecting complaints, and the municipality creating the coastal
plan.

20

while simulation is running do
Approved← False
Coastplan← NULL
while Approved is False do

OldCoastplan← Coastplan
Compute COASTALPLANNING(OldCoastplan)
Result← result of CoastalPlanning stage
Coastplan← coastal plan fromResult
Compute HEARING(Coastplan)
Result← result of Hearing stage
if coastal plan is approved in Result then

Approved← True
end if

end while
Compute FISHING
Compute BUILDING(Coastplan)
Compute FISHING

end while

Figure 4.1: Pseudocode showing the sequence of events

4.3.1 Different agents’ approaches to decision making

The different kinds of agents have different roles, and therefore perform different decision
making. Differences in decisions may also result from different priorities.

Fishermen

Fishermen decide whether to complain about single plans to establish aquaculture at a
certain location. This decision is based on multiple factors. Fishermen have a “home”
area where they currently do their fishing. At the beginning of the simulation, this area is
assumed to have plenty of fish, and the fisher using that field has been using it for a long
time. The home area can change during the simulation, either because the spot degrades
in fish quantity or quality, or because the area is blocked by aquaculture expansion.

One factor is the distance between the threatened area and the “home” area of the
fisherman. This distance is important because aquaculture facilities produce waste and the
waste damages areas closer more than those that are far away. There is also a psychological
factor, where a lot of aquaculture close to the fisher’s area would feel more threatening than
if they were far away.

Another factor is the conditions of the home area. A fisher that has good conditions in
his or her home area may not care if a spot on the other side of the map is threatened by
aquaculture. However, if the facility threatens to destroy or block the home area and that
area is really good, a fisher would want to protect it because it would be very difficult to
find another spot that is just as good. However, if the home location is relatively bad, it
may not be worth it to try to protect it even if the facility threatens to block it, because it

21

may be easy to find a new spot that is just as good.
The last factor to consider is the conditions of the area that is threatened by aquaculture

expansion. A better fishing spot may be considered more valuable and therefore more
deserving of protection in order to preserve the community’s ability to fish also in the
future, even if no fishers are currently using it. If the spot does not provide good yield, it
may not be worth the investment for fishers to complain about it.

Complaining has zero monetary cost, but there is an associated information cost when
agents reveal their good fishing spots by complaining about them. This cost is not an
explicit part of the decision making process, but rather a consequence of complaining, and
thus this information sharing cost is learned through experience.

The output is merely the decision to complain or stay silent about the aquaculture
establishment.

Another decision fishers make is changing to another fishing location. Fishers change
their locations for two reasons: either they are pushed away from their current fishing spot
because of aquaculture expansion that blocks it; or they observe that their current spot has
so low quality that they try their luck somewhere else. Fishers have a constant measure of
what constitutes a location that is so bad that they have to move, and this measure is equal
to the performance of the average location. When changing, fishers sort their knowledge
of other locations and try the one they think is the best of those. If they don’t know any
locations that are better than what they think is the average location, the fisher will try
another random non-blocked fishing spot.

Government

The government makes decisions on what to do with complaints. There is a negotiation
process going on where the government is in the middle of those for and against aquacul-
ture. Technically all stakeholders may be either for or against establishment of aquacul-
ture. Especially tourists may be against aquaculture because they are concerned with the
cultural and natural experience of the place. Still, this simulation focuses on fishermen,
and other stakeholders will be assumed to always approve of aquaculture being built. The
inputs to the government’s decision mechanism are the votes by each agent.

4.3.2 Voting
Both fishermen, aquaculture owners, civilians and tourists can vote or voice their opinion
on the establishment of an aquaculture facility. These votes will be considered by the gov-
ernment when making the decision to allow or deny the facility. Different kinds of agents
care about different aspects of the building, and they have different information. Therefore
the information used to make decisions is different for each type of agent. Table 4.1 shows
an overview of the influences for each agent.

Voting Procedure

There are several possible ways to do the voting itself. Since complaints from fishermen
carry knowledge as discussed in section 4.4, it would be unfair to do the voting in a cycle,
asking each agent in turn, because the latter agents would have the advantage of more

22

Table 4.1: Inputs for the voting decision for each agent

Agent type Inputs

Fishermen Distance from the targeted location to the home location
Quantity of fish in the targeted area, if known (otherwise it is
assumed that the location is bad)
Quantity of fish in the home location

Aquaculture
owners

Quantity of aquaculture facilities already on the map

information. Another option is to do the voting simultaneously which would leave all the
fishermen with the same opportunity of information at the time of the vote. However, this
is not very realistic since in a meeting where fishermen voice their opinion, some would
speak before others, which would mean that the later voters gain more information. In
this case, however, the order of votes is not decided by an external regulator, as would
be the case if it was implemented as a set order, but by other factors such as motivation
and personality. This behavior could be reflected in the simulation if agents have varying
degrees of conviction for their opinions. This way the regulator (government) could ask
the agents to state their opinions in order of most convicted of one option, to least decided.
This way latter agents could potentially use the new information and adjust their decision.

4.3.3 Influences

Decisions are influenced by agents’ priorities. As such, the agents make decisions to max-
imize fulfillment of their priorities. The correlation between a decision and its subsequent
fulfillment of priorities, or consequences, is made individually by each agent as a learning
process.

4.3.4 Learning

A background for the project was a study of evolutionary game theory, which can be
interpreted as social learning. With an evolutionary game theoretic view, agents should be
able to learn and adjust their decision making when they perceive that some agents which
make some decisions are more successful than others who make other decisions.

The simplest evolutionary game theoretic application of learning is having agents im-
itate the strategies of their best-performing peers with a probability proportional to the
difference in fitness (payoff). Such a solution is possible if the mechanism is equivalent
to a game theoretic strategy, pure or mixed. However, since the simulation calls for a
more sophisticated technique, more sophisticated learning is necessary. A common way
of applying learning to neural networks and other classification algorithms is artificial
evolution, which involves separating the mechanism into genotype and phenotype. The
genotype is a simple (often binary) representation of the mechanism, which can be subject
to mutation operations such as crossover and bit mutation. The phenotype is the actual
mechanism built from the genome description. Agents can learn by copying the genotypes

23

of their most successful peers.

Learning and the decision mechanism

Learning is an important aspect to decision making. Some decision making mechanisms
are more suitable for learning than others. For example, neural networks can be easily
implemented on top of an evolutionary algorithm where genotypes represent weights in
the network. In this case the evolutionary mechanism of selective reproduction can be
replaced with selective imitation, consistently with the social learning interpretation of
evolutionary game theory. On the other hand, a ruled-based mechanism can be more
difficult to adapt over time.

The positive benefits of not applying a learning method are not to be underestimated.
An argument can be made that the motivations, variety of agents and decisions make the
simulation sufficiently complex that learning is not necessary to produce valuable results.
For instance, fishermen could be initialized with simple rules where some always vote no
to new aquaculture establishment, and some always say yes to the establishment. An-
alyzing the performance of these two types of agents in relation to each other could be
sufficient to give an idea of why some fishermen in the real world don’t complain when a
quick analysis shows that the optimal choice would be to do so.

There is still good reason to include some form of learning for the agents. Real people
learn and adapt to their environment constantly, and it is realistic to think that the fishermen
of Frøya do the same; if complaining about voting seems to give higher profit to those
fishermen who do, others will follow suit. Similarly the simple agents discussed previously
can observe and copy other better-performing fishermen. Therefore these simple agents
can do learning, but the mechanisms that they learn are only simple strategies.

Real agents do actions and make choices based not only on blind copying, but depend-
ing on many factors. A neural network where the weights are based on a genotype subject
to social evolution can emulate this complexity better than a strategy that chooses either A
or B. The point here is that an agent that copies the over-arching strategy will not consider
its own conditions compared to the conditions of the agent it is copying, while if it copies
the weights of a neural network it can copy more under-lying behavior and rather copy the
other agent’s better-performing “intelligence”.

4.4 Knowledge

When sophisticated decision making techniques are used, knowledge is very important.
Knowledge can be either public or private, and shared through communication.

The knowledge and assumptions of fishermen are mostly tied to the quality of fishing
spots. Fishermen agents are initialized with a single “home” cell, in which they know
the quality of fishing. Knowledge of other spots must be obtained through inferring form
messages or trying out other fishing spots. This knowledge is used when fishers locate
new fishing spots. The knowledge that a fishing spot exists comes from inferring from
other agents’ complaints, but knowledge of specific quality of that resource can only be
obtained from fishing there.

24

4.4.1 Inferring Cell Quality from Complaints
Agents perform an estimate of cell quality based on complaints about that cell. The base-
line for the guess is slightly above average, with some random variation. Without random
variation for this guess, all fishermen will guess the same value for each cell and they will
always choose the same cell to migrate to if their home is occupied. Introducing variance
in the guess makes the behavior more realistic where fishermen will migrate to different
spots.

4.5 Priorities
Different types of agents have different priorities. The main priority for profit-making
agents such as fishermen and aquaculture facility owners is of course profit. Some agents
have apparently contradicting priorities, such as fishermen who want profits which can
be negatively influenced by aquaculture, at the same time as they want some amount of
aquaculture in order for the local community to function well. Table 4.2 shows an overview
of the priorities for the different types of agents.

4.5.1 Profits
Working agents need a living, so the main priority for most agents is their own profits.
For fishermen, this means how much fish they can harvest and sell at a good rate. For
aquaculture agents, this means the harvest rate from their facilities combined with the
market rates. For other agents, civilians and tourists, they have their own incomes that are
irrelevant of the simulation, so they don’t care about their profits. Measuring profits is as
simple as looking at the agent’s income. Regularly resetting their capital can turn it into a
measure of income.

4.5.2 Wealth of the community
Increasing wealth in the local community has positive effects on all members. It can mean
better infrastructure, better schools for children and in general a more healthy community
with more people, that is more attractive to people from the outside. Frøya is a magnet
for foreign workers, which is a symptom of the growing opportunities there. Community
wealth benefits everyone, and it is the main reason why fishermen do want and accept
aquaculture in their waters, since aquaculture facilities are very profitable. Measuring
community wealth can be done by an average or sum of community member’s wealth.

4.5.3 Existence of fishing as a business
If fishers can’t keep a stable income by fishing, it is natural that they have to seek other
livelihoods. The main priority found by Tiller et al. (2014) was that fishermen want the
continued existence of a commercial fishery at Frøya. The fisheries have cultural signif-
icance, and are also healthy for the community, because it provides more diversity in the
local industry. Other agents that want fishing to continue are civilians and tourists. Civil-
ians need fishing to exist because they have traditional ties with the industry, as well as a

25

Table 4.2: Overview of priorities

Agent Group Priorities Influences

Fishermen Profits Market rates
Quantity of fish in fishing spots

Wealth of the community Money from aquaculture going
back to the community
Fishermen as part of the
community having profitable jobs

Existence of fishing as a
business

Fishermen having profit

Maintaining natural fish
stocks in good health

Fishing which depletes natural fish
stocks
Disease spreading in the
population, naturally or from
aquaculture populations

Aquaculture
companies

Profits Quantity of fish in aquaculture,
influenced by disease
Market price of fish
Receiving permission to build
aquaculture facilities

The local
community
(civilians)

Wealth of community, often
through locally owned
aquaculture

Profits of each individual
community member

Existence of both aquaculture
and fishing industries

Profitability of the industries

Tourists Existence of fishing industry Profitability of the fishing industry
As few as possible
aquaculture establishments

World map cells prioritized by the
individual tourist

Wealth of community Profitability of locally owned
aquaculture

Government Pleasing voters Fulfilment of voters’ priorities
Pleasing interests of investors
in the local community
(aquaculture owners)

Aquaculture establishments
running well

26

high school education dedicated to fishing. For tourists it is a matter of cultural heritage
to keep the fishing industry intact. Measuring the existence of fishing as a business can be
done by counting how many fishermen still do fishing, if they are given the opportunity to
quit. If they aren’t the health of the business as a whole can be measured by the average
capital of each fisher.

4.5.4 Maintaining natural fish stocks in good health

A key part of maintaining a stable fisher’s income is that the natural fish resource is in good
health and quantity. Their health can be diminished by aquaculture facilities, as discussed
in chapter 7. Bad fish health also evokes disgust and bad feelings in the fishers. Measuring
natural fish health can be done by counting the amount of fish in each area in the simulated
world.

4.5.5 Existence of aquaculture industry

Aquaculture’s continued existence is important to the community not only because of its
overall profitability, but also at a more personal levels since many community members
have work in aquaculture facilities. Even agents who work other places may be tied to
the aquaculture in other ways, for instance at the slaughterhouse. Another option is that a
spouse or close family member works at an aquaculture facility. Therefore the continued
existence of the aquaculture industry is important to almost all community members. Since
aquaculture facilities never disappear in the simulation, their existence can be measured
by looking at the cause of why they would disappear: if they aren’t profitable enough for
the owners. This is a function of the average profit of each aquaculture facility.

4.5.6 As few as possible aquaculture establishments

Some agents want less aquaculture, and some want as little as possible. Tourists typically
have some areas that they care about, probably close to their travel destination. Aquacul-
ture in these areas will be perceived very negatively for the tourists, as the motivation to
travel to these areas is more often than not seeking less industry and more nature. Since the
aquaculture industry also can prey on the fishing industry as a whole, the negative impact
of aquaculture is even greater for the tourists since they care about the cultural heritage of
Frøya and therefore want the fishing industry to be healthy, as it always has been. Mea-
suring this priority can be done by tourists having a set of areas that they care about, and
checking if these areas have aquaculture facilities or not.

4.5.7 Pleasing voters

Like all democratic government, the municipality wants to please voters by making a
coastal plan that everyone is happy with. Community happiness can be measured by the
average priority fulfillment of all community members.

27

4.5.8 Pleasing interests of investors in the local community

Investors are important to the community’s wealth, so pleasing them specifically may be
an extra requirement. Investors are typically the aquaculture owners. Measuring their level
of satisfaction may be done by averaging the priority fulfillment of aquaculture agents.

4.6 Information Flow

Information is crucial to the decisions of fishermen and government, and for aquaculture
organizations when choosing a location, as well as the municipality for planning. The flow
of information is a description of how the agents in the system communicate; who says
what to who.

Figure 4.2 shows an overview of information flow in the system. Information is com-
municated between agents through a basic messaging system. Starting with the munici-
pality, the first message to be sent is a declaration that a new coastal plan has been created,
and this message is sent to all interested parties, which includes fishermen, aquaculture
organizations and other stakeholders. These agents are given the opportunity to vote us-
ing complaints, which produces more communication from these agents to the entity to
which they complain; in this case the government. In addition to the complaints them-
selves that are sent to the government, they are also observed by fishermen, who gather
information from the complaints of other fishermen. After the government has processed
the complaints and come to a conclusion on whether to approve or reject the coastal plan,
one out of two messages can occur. Either the approved complaints are sent back to the
municipality with the intent that the coastal plan is reworked. The other option is that the
approved coastal plan is sent to all the stakeholders, signifying that it is final. After a final
plan has been created, aquaculture organizations will apply for aquaculture licenses based
on the plan, and these licenses go to the municipality.

4.7 Data Set

The data going into the simulation is the configuration of parameters used in the simula-
tion. A different configuration can be made to reflect different situations. For example,
the government can be tuned to be very approving of fishers’ complaints, or to often deny
them, in order to reflect real governments that are skeptical or open to aquaculture, respec-
tively.

4.8 Outputs and Results of the Experiment

The simulation produces behavior in the agents. This behavior is observed directly, and
functions as output of the simulation. For instance one can observe the amount of com-
plaints done by fishers, and how often the government approves complaints. Another out-
put is how the world changes when aquaculture facilities are built. A map can be drawn
representing the state of the world.

28

Municipality Government

Fishermen

Aquaculture
Organizations

Other
Stakeholders

Coastal plan
Complaints

about
the plan

Information
about the

complaints

Approved
complaints

Approved
coastal plan

Aquaculture
licence

application

Figure 4.2: Information flow diagram for the relevant stakeholders. Agents are represented by green
boxes, while pieces of information are blue. “Other stakeholders” include civilians and tourists.

29

This thesis uses simulation experiments to answer questions about the behavior and
motivation of the fishermen. The simulations are defined with the goal to give insights
to answer the research questions. More specifically, the simulation should confirm or the
hypothesis regarding fishers’ payoff matrix, represented in fig. 1.1 and discussed in the
introduction.

4.9 Classifying the Simulation
Corresponding the environment properties an agent-based system can have, as elaborated
in section 2.1, the simulated environment is:

Partially observable Fishermen have to experience the fishing quantity in order to judge
a fishing spot, and the information they gather from this may be incomplete if there
are more than one fisherman working the same spot, which reduces the output, but
does not diminish the “real” value of the resource.

Stochastic There are some a few random elements of the design, such as fishers’ guesses
about resource quality from complaints, and the aquaculture owners’ choice of
place.

Multi-agent The system includes multiple fishermen, aquaculture owners, government
and municipality, and is therefore highly multi-agent.

Dynamic Since aquaculture establishment is a consequence of not only one agent, but all
the complaints and approvals that were made, the process is dynamic.

Mostly episodic The system consists of a set sequence of events, which would make it
episodic. However, the government’s decision decides if the next step is a renewal of
the plan or a continuation of the sequence, so that makes the simulation sequential.

Discrete There is a finite number of possible states for the system which consist of a
discretely divided map and discrete time events such as the event sequence.

Mostly unknown Agents may have knowledge of the consequences of not complaining,
but this knowledge is mostly gathered from experience while complaining or non-
complaining behavior is learned.

30

Chapter 5
Experimental Setup

The experiment is done as a simulation and the results are analyzed in light of evolu-
tionary game theory. This chapter describes the setup, which includes details regarding
the simulation setup that are not implementation-specific. This includes a clearly defined
process, a description of how decision making is handled, a description of the learning
system, a documentation of agent communication, documentation of other aspects, han-
dling of priorities, clearly defined actions by the various agents and details on how to run
the experiment.

5.1 Simulation Overview
This project uses experiments to gather insights into corresponding real-life situations. The
experiments are conducted with a simulation which is constructed as a thick agent-based
simulation with many agents that exhibit complex behavior. This behavior is arranged in
a sequence of events. Figure 5.1 shows an overview of the process, which continues a
number of rounds.

Each round is initiated by a coastal plan being laid out by the municipality. The main
priority of the municipality of Frøya is to have aquaculture where it is possible, so in the
beginning as many spaces as possible will be reserved for aquaculture. The plan is sent to
all “voting” agents, which includes fishermen, aquaculture owners, tourists and civilians.
After the plan has been distributed, the hearing phase starts. Each voting agent can issue
a predetermined number of complaints about aquaculture establishment on cells in the
plan. The complaints from the hearing are considered by the government. If one or more
of the complaints are approved, the plan goes back to the municipality for review, which
triggers a renewed planning, another hearing and another government decision. This cycle
can end up going indefinitely so there has to be a mechanism to prevent an infinitely long
planning stage. When the plan is approved, normal activities are pursued by all agents, as
indicated by the “fishing” activity. At some point the government will decide to distribute
licenses and aquaculture building can begin. A number of aquaculture agents will build
on spots allocated in the coastal plan for aquaculture, where this number is restricted by

31

Coastal Plannig

Start

Coastal Plan
Suggestion

Hearing

Government
Decision

Learning

Fishing

Build
Aquaculture

Licenses
Distributed

Fishing

Tourists
Civilians
Fishermen
Aquaculture

Approve

Review

Figure 5.1: Process chart of the simulation. The government decision has two options: To approve
a coastal plan, or decide that it has to be reviewed.

32

the number of licenses issued by the government. After aquaculture has been built, normal
activities continue until it is time to lay out a new coastal plan. Before a new planning
phase is started, there is a learning phase where agents adapt to decisions and observed
consequences.

The simulation is run for a predetermined number of rounds. Profit is calculated dif-
ferently for each type of agent.

5.1.1 Phases

The simulation consists of four main processes, a decision and a repeated activity. The four
processes are, in order: coastal planning where the municipality puts forth a suggestion,
a hearing where stakeholders review the plan, licensing and building of facilities, and
learning. The decision consists of the government taking all the votes into account and
through its own decision making process that depends on the priorities of the government
deciding whether or not individual complaints are approved. The recurring activity named
“fishing” is profit-making activities that the different agents normally do.

Process 1: Coastal Plan Suggestion

A suggestion for a coastal plan is presented by the municipality. Initially it typically
includes every spot possible to establish aquaculture in. If a plan is denied by the gov-
ernment, this process handles each approved complaint and removes them from the list of
sites reserved for aquaculture.

Process 2: Hearing

All non-government agents participate in the voting. The vote consists of each agent voic-
ing their opinions either way on the establishment of the new aquaculture agent’s facility.
Knowing the vote of others might be crucial to the decision to vote, so the voting process
may either be done in a number of rounds, simultaneously, or another protocol. For ex-
ample, there could be a time period where votes are accepted and agents with a higher
incentive would vote first. Then as time moves on the other voters gain more information
from the first voters so they will gain more incentive to vote sooner. At the end of the
period, agents who haven’t voted will be prompted to give a final vote. Other protocols
may also be feasible.

All complaints are redistributed to all voting agents by the government when they are
received. Thus all votes are public and agents can infer information from them. When a
complaint about a cell is issued, agents who observe that complaint will make certain as-
sumptions about its location. Since fishermen are more likely to complain about locations
with lots of fish, in order to protect the good fishing spots from aquaculture expansion,
agents assume that locations that are complained about have a value that is slightly above
average. This guess may be subject to some random variance.

33

Decision: Government Decision

The government decides whether to allow or deny the establishment of the given aquacul-
ture facility. The decision mechanism might be that allowing it requires unanimous vote, a
simple majority vote, or any other mechanism that is designed to satisfy the government’s
priorities. For example, a likely scenario is that new aquaculture agents offer a mone-
tary compensation to the government or the local community when establishing. Such a
compensation will influence the government decision.

The government decision takes place on three levels, reflecting the different institutions
the hearing goes through in the real-life situation.

Process 3: Licenses and building

At the beginning of this phase, a predetermined number of licenses is distributed to the
municipality. For each license, an aquaculture agent is created and chooses a cell reserved
for aquaculture in the plan. An aquaculture facility is built on this location.

When the facility is built, the cell is blocked for fishing. The blockage also affects
all cells in a radius around the facility. This radius is variable, but a typical value will be
100 m. Fishermen cannot fish in blocked cells, and new aquaculture facilities cannot be
established either.

Any spawning fish population in the cell where the facility is built will be destroyed as
a result of the building process.

Process 4: Learning

Between rounds, agents adjust their decision making protocol based on observations of
their own and others’ performance. For instance an evolutionary algorithm interpreted as
social learning can adjust the weights in neural networks so that fishermen are more likely
to complain, if they observe that fishermen who do complain end up with a larger profit.

Activity: Fishing

The agents do their normal profit-generating actions twice in each round. For fishermen
this involves fishing and selling the harvest, while aquaculture agents produce and sell
farmed fish. Civilians receive a small fraction of the profit of locally owned aquaculture
facilities, to reflect enrichment of the local community. Taxes on revenue are also paid
during this activity.

For fishermen, the fishing activity is divided into two parts: locating a fishing cell, and
the fishing itself. Fishermen know about a set of locations, with one being their “home”
location. In the first phase they will relocate to a new home if they know of a location that
has better yield. If all known location, including the home cell, give a worse yield than
an average cell, they will relocate to a random unblocked cell on the map. New locations
are known through the votes of other fishermen. In the second part of the fishing phase,
fishermen will harvest fish from their home location. If several fishermen are located on
a single cell, they split the yield evenly. The fisherman’s knowledge array is updated with
the location’s observed output.

34

5.2 Decision Making

An important feature of the agents in the system is intelligence, which can be defined as
the ability to make decisions. The most important decision in the simulation; the cen-
tral decision that is being investigated, is fishers’ decisions whether to complain or not.
Decision making can be implemented through different mechanisms.

5.2.1 Mechanisms for decision making

Decisions can be made through different mechanisms. The inputs and outputs are the same
for every mechanism; only the way of determining the outcome is different. This section
covers two different decision making mechanisms for fisherman voting: using artificial
neural networks, and rule-based decisions.

Rule-based decisions

A way of studying the consequences of the simple decisions is to use a very simple
decision-making process in order to produce predictable quantities of complaints and non-
complaints. Fishermen can be configured to use a simple rule-based approach to com-
plaining where they choose a straight-forward complaining strategy based on a probability.
There are three different rules that can be applied by the system: they can either always
complain, never complain, or complain with a probability that’s proportional to the dis-
tance from the home cell to the threatened cell. This mechanism is not applied in any of
the experiments, but included in the implemented simulation system.

Case-based reasoning

A case-based reasoning system could be applied to fisher complaint decisions. Fishers
experience each situation where they are prompted for complaints as a case, and the de-
cision whether to complain or not would be recorded as the case solution. No case-base
reasoning system is implemented because using neural networks was considered to be a
more straight-forward approach and comparing different decision making techniques was
not a goal for the project.

Neural network

Applying a neural network for fishermen decisions has the advantage of making fewer
assumptions about the nature of the fishers’ decisions. The neural network is implemented
with input nodes corresponding to the inputs discussed in section 4.3: the distance between
the threatened cell and the home cell; and fishing conditions at both the home location and
the threatened locations. For each agent, the network is activated once per aquaculture
area in the plan, and the output is the complaint strength of each area; i.e. a measure
of how much the agent wants to complain. The cells with the highest complaint index
are complained about, if they are above a certain threshold. The artificial neural network
applied to fishers in the simulation uses six hidden layer neurons.

35

The network applied in the system has a static structure which consists of three in-
put neurons, six hidden-layer neurons and one output neurons. All the input neurons are
connected to all the hidden-layer neurons. The hidden-layer neurons have recurrent con-
nections to themselves as well as the output neuron. The hidden-layer neurons also receive
connection from a bias neuron which applies a constant bias value. The weights on edges
are evolved using artificial evolution.

5.2.2 Learning
Learning is applied both to the neural network and rule-based system through artificial
evolution. When the learning mechanism is applied, it uses fitness values calculated by
the priority satisfaction of each agent to sort the phenotypes of their decision mechanisms.
A number n of elites are selected and their genotypes are preserved for the nest gener-
ation. Rank selection is applied to the remaining phenotypes m in order to find m new
phenotypes that continue to the next generation. Their genotypes are then extracted and
subjected to mutation and crossover, with a low probability for each genotype in the case
of mutation and a low probability for each pair of genotypes in the case of crossover. The
mutated genotypes and the preserved genotypes of the elites are then developed into n+m
new learning mechanisms that are reattached to the agents.

The artificial neural network phenotype is a description of all weights between neurons
in the network. The neurons of each type are already decided and are therefore static
attributes of the system. The genotype is a randomly generated string of bits that maps to a
phenotype. When the bit string is divided into segments each segment represents a weight
in the network. The phenotype for the rule-based mechanism is a selected rule from the
three possible ones. The genotype is a randomly generated bit string that encodes one of
these rules.

5.3 Agent Communication
Communication is a way of sharing information. In this model, agents communicate using
messages. The messages go through a central repository, a directory, which keeps track of
all the agents in the system, and their roles. Agents can ask the directory for a list of agents
of any given role, for instance the fishermen can ask the directory for the government in
order to complain about a cell.

5.3.1 Messages
FIPA (Wooldridge, 2002b) was studied for inspiration to the messaging protocol. How-
ever, the complexity was not necessary and a very simple protocol was devised instead.
The different types of messages will be reviewed next.

Hearing and plan distribution

The first message issued each round is a notice to each agent that a coastal plan has been
created, and the contents of the plan. The plan contains a list of areas that has been reserved

36

for aquaculture, and agents can complain about these areas.

Vote for a targeted cell

The actual voting messages are the messages that carry the most private information, at
least in the case of fishermen. Other fishermen will infer that if a fisherman complains
about the establishment in a certain location, it is because he or she knows that the location
has good fishing conditions.

5.4 Other Rules Affecting the Agents
Some details that are not implementation-specific, but not easily classified are documented
in this section. The dynamics of map creation and aquaculture establishment are important
and have consequences on the evolution of the map.

5.4.1 Map creation
In order to keep the simulation small and uncomplicated, the map is a small grid structure
with randomly placed resources. This way it models an ocean area with varying levels of
good fishing. A grid is defined by width and height, and width and height in meters for
each cell. Another aspect of the map is the frequency of good fishing spots, which are the
randomly distributed resources.

Fishing spots

Good fishing spots are spots where the fish spawns. Fishermen want to fish in these spots.
Aquaculture agents want to establish aquaculture in these spots since they provide good
conditions, but the fishermen are vehemently against it since disturbing a spawning ground
affects the entire coast line population.

During periods of “normal activity”, the fishermen will go fishing at the best location
they have knowledge of. The fish they harvest goes through a marketplace where it is
converted to profits.

Fishermen

Fishermen are initially distributed on good fishing spots as long as there are fishing spots
left, the rest are distributed in random locations. This setup attempts to model the fishers’
real situation, where they have held their own fishing locations for generations that the
other fishers respect.

5.4.2 Aquaculture building
Building an aquaculture facility blocks fishing from the surrounding cells. This is accord-
ing with standard regulations, that nobody can go too close to a facility. Another influence
of aquaculture facilities being built is a radius of environmental damage caused by the fa-
cility. Within this radius, fish resources are destroyed at a rate proportional to the distance

37

from the facility, so resources at the center will be completely destroyed if the damage
proportion is 1.

5.5 Priorities of the Different Groups
The driving force behind both learning (through fitness calculation) and decision making
is priorities of the agents implementing those mechanisms. Agents with different priorities
may act differently to fulfill their wishes. Two problems of designing priorities are how to
represent them realistically, and calculating how well an agent fulfills its priorities.

5.5.1 Representing priorities realistically
Some priorities influence each other, and some are completely dependent on each other.
For example, profits from fishing is dependent on both the market rates for wild fish and
quantity of fish farmed. Therefore fishermen only really care about their own profits, not
about the market rate itself even if it is realistic to think that fishermen care about the
market value of their fish. Thus, even if it is not represented explicitly, it is present in the
model since they care about profits which is directly influenced by market rates. On the
other hand, it can be reasonable to assume that fishermen genuinely care about the health
of the fish, not only because it affects the quantity of fish they catch, but also because the
health of fish populations is important to other industries and cultures. Therefore fishermen
caring about the health of natural fish stocks is treated separately to their own profits.
Similarly, the continued existence of fishing as a business is important as a separate entity
from own profits because it represents both the value of a community, and the fact that
fishermen care about their successors, namely their children attending school receiving an
education in the fishing business.

5.5.2 Calculating priority satisfaction
The complete satisfaction of an agent is simply calculated by the weighed average of the
satisfaction of each individual priority of that agent. The total priority satisfaction for an
agent a, ea thus becomes:

ea =
∑
p∈P

Sp(a)Wp(a)

where Sπ(α) is the satisfaction of priority π for agent α and Wπ(α) is the relative
weight of priority π for agent α. The weights W are configured for each priority for each
agent type and

∑
W W (α) = 1.

Some of the satisfactions for priorities are straight-forward to calculate. An agent’s
own profits can be calculated by simply returning the capital of that agent. Community
wealth is similarly measured by taking the average of all citizens’ capital. The market
controls the prices of wild fish and farmed fish. Satisfaction for the priority of having an
existing fishing industry can be measured by the fraction of number of fishermen that still
fish for a living, divided by the number of fishermen in total. Natural fish health is simply

38

measured by the average quantity of fish in each cell, which is negatively impacted by
aquaculture facilities.

5.6 Actions of the Different Groups
Different types of agents perform different action that collectively define their behavior.
Actions can interact with the world or other agents, or consist purely of internal processing.
This section identifies all the actions the different agents can do, that are relevant to the
simulation.

5.6.1 Fishermen actions
Fishermen are the central agents of the simulation. The most important action they do
which influences their well-being is fishing, during the fishing phase. The fishing consists
of identifying and moving to a fishing place, and then fishing there. If one or more fishers
decide to fish in the same place, they naturally have to share the resource.

Another important action the fishermen do is complain about a potential threat to their
livelihood. Elements in the coastal plan which dictate that areas that the fishermen are
concerned about should be reserved for aquaculture are threats to the livelihoods of fisher-
men. Complaints about the coastal plan can influence the plan, and are therefore important
actions. Another related action is the choice to not complain. Fishers may want to stay
silent in order to not reveal the location of their secret fishing spots.

Related to the fishers’ complaints is the ability to observe what other fishermen vote.
This action gathers information about the location of potentially good fishing spots. This
is the way fishermen learn about new fishing spot, and the mechanism is an important
motivation for fishers to not complain. Agents cannot make definite conclusions about the
quality of a fishing spot based on complaints about it, so they have to rely on guesses.
Different agents may guess differently. Picking a random number from a distribution
with a defined mean and standard deviation is a sufficient strategy for modeling these
guesses because it captures these differences, while keeping the guessing process simple
and straightforward so that the simulation can have focus elsewhere.

5.6.2 Municipality
The municipality is central to the simulation because it is the entity that creates the coastal
plan. This means one of its actions is planning, and another is reviewing of the plan in case
of approved complaints. Another function of the municipality is to gather and distribute
tax benefits from working agents to the community. In the model, this benefit is modeled
as a monetary payout to each agent which is a community member. In other words, two
more actions of the municipality are tax collection, and tax benefit distribution.

5.6.3 Government
The government has two responsibilities in the simulation: one is to act as a separate entity
from the municipality to receive and treat the complaints, and the second is to distribute

39

Table 5.1: Actions of the different agents

Agent type Actions

Fishermen Fish for profit
Complain about planned aquaculture
Stay silent to hide information
Observe other fishers’ complaints

Municipality Coastal planning
Review the coastal plan
Collect taxes from working agents
Distribute tax benefits to community members

Government Decide hearing outcome
Distribute aquaculture licenses to municipality

Aquaculture owners Establish facility in a planned location
Work the facility for profit

licenses to the municipality for aquaculture organizations. From the first function there the
government has to do the action of deciding what to do with complaints. From the second
function, the government has to do the action of distributing licenses.

5.6.4 Aquaculture organizations
Aquaculture owners are obviously important since they control the facilities the simulation
focuses on. In order to build a facility, the owner has to apply for a license from the
municipality, for a certain location in the coastal plan. Therefore an action they perform
is to pursue a location for aquaculture expansion. They can also work their facilities after
they have been established, to gain profit, and they pay a tax on this profit. Aquaculture
owners could also be considered to be a part of the hearing process, but the focus of this
simulation is on fishers’ decisions, so aquaculture agents are assumed to always approve
new aquaculture areas.

5.6.5 Other agents
Civilians and tourists can work and complain about the establishment of aquaculture, but
they are not used in the simulation, as discussed in section 4.1.

40

Chapter 6
Implementation

The software written for this project is entitled FisherSimulation. The source code for
the simulation is written in Python, following standard object-oriented programming tech-
niques. Before writing the software, other alternatives were explored.

CORMAS is a platform for creating agent-based simulations, especially with an eco-
logical focus (Le Page et al., 2012). Therefore, it seemed to be a perfect fit for this project
which involves intelligent agents (fishermen, government, municipality, aquaculture or-
ganizations) and ecological resources (fish). However, setting up and working with the
CORMAS platform is cumbersome, especially without Smalltalk experience. During the
prestudy for the project, significant time was spent trying to use and learn CORMAS. The
model used by Janssen and Ostrom (2006) to simulate fishers self-organizing in Lofoten
was obtained and attempted to be ran. Unfortunately, it did not run on any of the available
versions of CORMAS. The authors of the CORMAS platform were contacted and were
able to help modify the source code of the model in order to run it for 10 time steps, but
they decided that the model was erroneous or unfinished. The creators of the platform
regularly host workshops, which is the most common way of learning it. I was not able to
attend any CORMAS workshop, and combined with the troubles experienced when trying
to run the old model, writing custom software was concluded to be the most effective way
of making a good simulation.

As any software, FisherSimulation can logically be divided into two more or less sep-
arate parts: The developer is mainly concerned with the implementation which includes
project organization, programming paradigms and of course the code itself. The user, on
the other hand, is faced with a user interface, graphical or otherwise, which they have to
learn and use in order to interact with the program. This documentation attempts to cover
both topics thoroughly in order to guide both users who want to benefit from the simu-
lations offered by the program as-is, and future developers who wish to extend, loan or
simply study the implementation.

FisherSimulation was created as part of this master thesis applying a multi-agent sys-
tem to a real-world problem. Fishermen in Frøya, Sør-Trønderlag, Norway are faced with
two choices when aquaculture companies are threatening their fishing spots. When the

41

Figure 6.1: Screenshot of the graphical user interface of FisherSimulation.

municipality creates a coastal plan and releases it for hearing, fishermen can choose to
complain about areas in the plan. This might influence a decision-making institution to
rework the plan, accommodating the complaints. After the coastal plan has been finalized,
the aquaculture companies may establish in areas allowed by the plan when licenses are
distributed. If the fishermen don’t complain, or the plan is not reworked, they risk losing
precious fishing spots to aquaculture facilities.

6.1 Graphical User Interface
Figure 6.1 shows a screenshot of the user interface of FisherSimulation.

6.1.1 Phase Information Panel
The time between each new coastal plan is divided into phases, which are displayed in the
top-left corner of fig. 6.1. The current phase that is being computed is highlighted with
red. After the third phase, Government Decision, the simulation may either jump back to
Coastal Planning or continue to the first fishing phase, depending on what the government
decides. If any complaints from the Hearing phase are approved, the simulation will jump
back to the planning stage.

6.1.2 Controls panel
To the right of the phase overview, there is a set of controls for manipulating the initial
conditions such as map size and agent priorities, and controlling execution of the program.
A custom configuration file can be loaded by the explorer. The program expects a JSON

42

file with a number of required objects and parameters, detailed in section 6.2. Below the
configuration file box, the [I]nitialize button creates the simulation process which can be
processed using the [R]un button. The default amount of steps to be processed is only one
at a time, but this can be controlled using the Rounds and Steps inputs to the left of the
[R]un button. If a number of whole rounds is specified, this counts as a whole round from
a first coastal planning, through any number of government decision-replanning loops,
through learning and back again to a new coastal planning. After all complete rounds are
counted, the steps are counted as well. The S[t]op button discards the current simulation
and enables a new one to be initialized. It will also abort any currently running multi-step
process.

6.1.3 Messages
Below of both the phase overview and the controls panel, there is a text box entitled “mes-
sages”. Agents in the simulation communicate using messages, which are sent through a
central repository. All messages recorded by this repository are displayed in the messages
box. A message can be either single-target or a broadcast, and in the case of the only latter
a compromised list of recipients is shown. All messages are displayed with sender, recipi-
ent(s), a timestamp which is equal to the total number of messages sent when the message
was created, and a summary of the contents. When a message is received by an agent, the
agent invokes a reaction method in the agent that is specified by the message type. The
most common messages are:

Distribution of a plan After the coastal plan is finalized, the municipality sends it to all
other agents.

Votes for a hearing round After an agent decides their complaints about a coastal plan, it
sends the complaints to the government. The complaints are sent as a list of objects
that refer to the cell it regards.

Broadcast of an agent’s votes Because votes are public, the government broadcast the
information every time it receives votes from an agent. The broadcast is distributed
to all fishers, aquaculture organizations and other stakeholders.

6.1.4 Plots
Below the message box, there is a graphical box containing plots that describe the state
of the system in each round. The statistics are shown as line plots, some of which are
normalized statically for easier viewing. The default plots are:

Planned number of aquaculture sites (Red) which is equal to the number of areas re-
served for aquaculture in the coastal plan. This number might change during a
round, because the Coastal Planning phase might be revisited up to three times.
The number of planned aquaculture sites can become very large since the only ini-
tial restriction is the number of areas in the map, so this number is normalized by
division by 100. The number of planned aquaculture sites P (and the normalized
Pn) is equal to:

43

P =
∑
s∈S

ω(s), where ω(s) =
{

1 if s is reserved for aquaculture
0 otherwise

Pn = P

100 .

where S is the set of all slots in the coastal plan.

Average number of complaints (Green) which is equal to the amount of complaints is-
sued by every single fisherman, averaged over the population of fishermen. The
number of complaints by a fisherman may increase three times in a single round,
because the Hearing phase may be revisited, in the case when the government de-
cides to review the plan. This number is normalized by division by 3 in order to
keep it relatively similar to the other graphs in magnitude. The average number of
complaints C (and the normalized Cn) is equal to:

C =

∑
f∈F

cf

|F |

Cn = C

3

where F is all fishermen, cα is the number of complaints by fisherman α, and |F | is
the number of fishermen.

Number of aquacultures (Purple) which is equal to the number of aquacultures on the
map. This number increases by a constant number equal to the amount of licenses
distributed each round, as long as enough areas are reserved for aquaculture in the
coastal plan. In other words, if enough complaints are approved, this number won’t
increase. It is normalized by division by 10 because there are many slots for aqua-
culture, compared to the other graphs’ values. The number of aquaculture facilities
is equal to A, and the normalized number of aquacultures An is equal to:

An = A

10

Average fisherman capital (Blue) which is equal to the amount of money, capital, each
fisherman owns, averaged over all of them. Fishermen mainly receive revenue from
fishing activities, but since they are community members, they also receive tax ben-
efits from aquaculture companies. Typically fishermen’s capital slightly increase
in the beginning of the simulation, when the number of aquaculture facilities is in-
creasing. Later it declines when the fishermen are pushed away from their preferred
fishing spots, either by aquaculture facilities establishing, or by blocked areas as a
consequence of those facilities. Capital is reset (spent) each round. The average
fishermen capital K (and the normalized Kn) is equal to:

44

K =

∑
f∈F

kf

|F |
Kn = K

where F is all fishermen, kα is the capital of fisherman α, and |F | is the number of
fishermen.

Average fisherman fitness (Dark green) which is equal to the evolutionary fitness of
each fisherman, averaged over all fishermen. Fitness is a term from evolutionary
algorithms, the learning mechanism used in the system. For fishermen, their fitness
is calculated as their combined satisfaction of various priorities. The most important
priority for fishermen is their own profits, which is their capital. Another priority
that is important for the fitness is community wealth, which is influenced by aqua-
culture which gives back to the community. This balance often causes fitness to stay
relatively stable, even if fishing spots are disappearing, since it means that the com-
munity will be richer as a consequence of more aquaculture industry. The average
fisherman fitness is normalized by the formula 20f

20 where f is the average fitness.
This is done because the fitness is subject to very small changes, but the power ex-
pression enhances these changes so that they are more visible. In order to fit with
the other plots, it is divided by 20 again. The average fisherman fitness E (and the
normalized En) is equal to:

E =

∑
f∈F

ef

|F |

En = 20E

20
where F is all fishermen, eα is the fitness of fisherman α, and |F | is the number of
fishermen. The fitness measure eα is equal to the priority satisfaction of that agent,
which is calculated as explained in section 5.5.2.

Total fish quantity (Cyan) which is equal to the sum of quantity of fish in each cell in the
world. The quantity of fish in a cell is measured as a number between 0 and 1, and
cells with the “spawning” attribute naturally have more fish than others. Usually this
number will decrease rapidly as more aquaculture facilities are built, which diminish
fish resources in a configurable radius, by a configurable amount, around them. It
is normalized by division by 10 since in order to be similar to the other plots. The
total fish quantity Q (and the normalized Qn) is equal to:

Q =
∑
c∈M

qc

Qn = Q

10

45

(a) (b) (c) (d) (e)

Figure 6.2: Symbols in the map. Cells in the grid have symbols indicating that they are: a) a very
good fishing spot (a smaller fish means that the spot is worse), b) blocked from fishing activities and
possibly further aquaculture expansion, c) occupied by an aquaculture facility, d) the current “home”
location of a single fisherman, or e) the home location of several (in this case 2) fishermen.

where M is the set of all cells in the map and qα is the quantity of fish in cell α.

6.1.5 Map
On the right side of the user interface, the map displays fishermen, aquaculture sites, good
fishing spots and blocked cells. It is laid out as a grid, with a configurable number of rows
and columns. Figure 6.2 explains the symbols on the map. Each cell may contain zero,
one, or several symbols. For example, a good fishing spot that gets aquaculture built on top
of it will still be a good fishing spot, and displayed as such. Fishermen may move around
on the board during the Fishing and Working phases, in order to relocate to better fishing
spots. During the Hearing, fishermen who complain will become darker, and gradually
more red in order to indicate the complaint intensity and distribution in the population.

6.2 Configuration File Specification
Configuration of parameters, initial conditions and other settings is done through a single
JSON file. There are 9 top-level objects, one for each of the six agent types, and three
more for general configuration. The configuration objects for the agent types all specify
the priorities for that agent, but only the fishermen’s priorities are used in the simulation.
A complete description of all the expected items is given in appendix A.

6.3 Modules and classes
The project code is created in an object-oriented fashion, and is divided into three pack-
ages: graphical user interface, configuration and the logic. Appendix B gives a complete
documentation of all the classes and modules used in the logic package, which performs
the simulation.

6.4 Program Dependencies
The simulation program and the graphical user interface were developed in Python 2.7.
Libraries used are listed below:

46

NumPy (NumPy, 2014) Numeric calculation library

wxPython (wxPython, 2014) Graphical user interface library

6.5 Extending the Program
In order to make the program easy to extend, a goal during development has been to
make configuration generic and parts replaceable. In order to easily understand what are
needed of the different replaceable parts, well-documented interfaces have been created.
Interfaces and extending is documented in appendix C.

47

48

Chapter 7
Workshop in Frøya

After initial development of the simulation, a workshop was held in Frøya municipality
with seven representatives of the fisherman community there. The software simulation
was shown and compared to the fishermen’s real situation, where they face the threat of
aquaculture pressing them out of their traditional fishing spots, as well as other conse-
quences such as environmental damage.

The simulation is built largely on research by Tiller et al. (2014), and the simulation
was presented as the second part of an updating session with the same community. The
goal for the primary stakeholder workshop was to investigate how the fishermen’s attitude
towards aquaculture had changed over the previous two years. The Frøya fishermen are
considered to be in a very special situation since they have previously been very open to
aquaculture, while other fisherman communities are vehemently against it.

7.1 Presenting the Simulation
The simulation was described and presented to the fishermen as a tool to understand their
decisions with regards to complaints about aquaculture expansion. It was important to
emphasize that the simulation was built on several assumptions and simplifications about
the fishermen’s situation and possibilities of influence, the complaining process, as well as
the aquaculture companies.

The strategy was to try to make the fishermen explain what they saw in the simula-
tion, rather than explain the simulation to them. This required a basic introduction of the
symbols and graphs in the interface, but little more than that.

7.2 Feedback
The fishers had many opinions on how well the simulation reflected their situation. Much
of the feedback implied that revisions had to be made to the program, but some was posi-
tive. Below is a recollection of the main points brought up by the fishers.

49

Complaint system is not realistic The aquaculture companies take areas no matter if
the fishermen complain or not. This was a big point. Their experience showed that com-
plaining was useless, even if they paid a large effort into the complaint; showed thorough
proof.

Maybe quantity over quality would give results? Also, in our model, complaining has
no cost. Since the fishermen had put a lot of effort into their complaints, that means they
also paid some cost to make them. Should our model include a cost?

Respect The fishermen respect each others’ areas and will not go and fish in each others’
spots, unless they are being forced away from their own.

This aligns well with the model where fisherman agents only move when they are
forced to, since they assume all other spots than the one they start with are worse.

Spots are secret Several of the fishermen had secret spots that they did not want re-
vealed. When asked if this had an impact on complaining, the answer was unclear.

In the model, agents capitalize on other agents revealing their good fishing spots. How-
ever, the influence of this behavior on decisions is only indirect, through payoff-based
learning.

Aquaculture is good for the community All the fishermen were clear on the point that
if it were not for the existence aquaculture in Frøya, it would be a much smaller place with
a lower standard of living.

Fisherman agents in the simulation receive direct benefits from the existence of aqua-
culture, since they pay taxes that are distributed to community members (including fisher-
men). Fishermen also have community wealth as an important priority, which is positively
influenced by this taxation as well.

Complaining doesn’t work Past experience showed the fishermen that complaining
doesn’t work.

If agents in the model experience no increased fitness from complaining behavior, they
will stop complaining.

Aquaculture is more profitable Some fishermen expressed frustration with experience
with the regional government ridiculing the fishing industry and the notion of leaving room
for it in the coastal plan, because aquaculture is so much more profitable for all parties.

In the simulation, aquaculture is more profitable than fishing, but there is no notion of
the governing parties prioritizing aquaculture more because of it. Any such prioritizing
present is built into the protocol, where all slots are initially planned for aquaculture in
each planning round.

The regional government is not “on their team” Even if the municipality rules that
some areas are reserved from aquaculture, the regional government has in the past over-
ruled those decisions and allowed aquaculture companies to establish there, to the protests
of the fishermen.

50

In the simulation, the decision-making government is rightly separate from the munici-
pality, but the plan is final and cannot be overruled to allow for rich aquaculture companies
to establish in reserved zones.

Pushed away from the good spots The fishermen recognized the scenario showed in the
simulation, where the aquaculture companies eventually establish in all the good spots, and
the fishermen are pushed out to the corners of the map and to spots that aren’t as efficient.

Fishermen must move Another behavior by the simulated agents that reflected reality in
the eyes of the fishermen, was the fact that aquaculture facilities can stay still and continue
in their spots once established, but the fishermen have to move around and constantly
search for new spots.

7.3 Revisions to the Simulation
The workshop resulted in some revisions to more realistically reflect the fishers’ situations.
Firstly, an important factor for the fishers that originally was not a part of the simulation is
environmental damage caused by aquaculture. Introducing a configurable damage prop-
erty solves this problem. Secondly, the simulation needs to reflect that the government
does not always favor fishers’ complaints. To reflect this behavior, a new decision mech-
anism is added for governments which uses a probability to decide whether complaints
should be approved or not.

7.3.1 Environmental damage
Aquaculture cause environmental damage proportional to a constant ε in a configurable ra-
dius around ρ the area. It inflicts linearly less damage based on the distance, the maximum
amount ε at the center and 0 at the edge of the radius.

7.3.2 Government decision
The government decision can favor aquaculture or fishermen, by a configuration. To sup-
port this kind of tweaking, a new government decision mechanism was implemented,
ApproveProbability in the decision making module (DM). It receives a configurable
probability which it uses for each complaint to probabilistically decide whether that com-
plaint is approved or not. This way, the government decision can easily be tweaked to
be in favor of the fishermen (high probability), or in favor of aquaculture companies (low
probability).

51

52

Chapter 8
Experimental Results

The plots and map symbols used to present the results in this chapter are explained in
sections 6.1.4 and 6.1.5.

Experiments are defined with an overall topic and one or more research questions.
Table 8.1 shows an overview of the experiments done. Experiments are ran with different
parameters in order to analyze the influence of those parameters. Some configuration is
common to all the experiments, and these parameters are shown in table 8.2.

8.1 Experiment 1: Changing complaint approval rate
After the workshop, the default decision mechanism for the government’s vote approval
was changed to a configurable probabilistic one. This way different levels of aquaculture-
friendliness of government can be explored, and the consequences for the fishers of these
settings can be observed.

Observing how changing complaint approval rates impact complaining behavior can
help clarify why complaining rates are so low in the real-life scenario in Frøya because
feedback from the fishers dictates that the complaint approval rate at Frøya is very low.
If there is a relationship between complaint approval rate and non-complaining behavior,

Table 8.1: Overview of experiments, showing a short description and related research questions for
each experiment.

Experiment Description Research
Question(s)

1 Changing complaint approval rate 1
2 Identifying outcomes 1 and 2
3 Evolution of complaining behavior 1 and 2
4 Changing amounts environmental damage 1

53

Table 8.2: Common parameters for the experiments, showing the parameter name and the value of
the parameter.

Parameter Value

General settings
Number of maximum complaints 10 per hearing
Maximum number of hearing rounds 3
Aquaculture blocking radius 25 m
Map size 15× 15 cells
Cell size 25× 25 meters
Frequency of good fishing spots 0.1
Number of fishermen 20
Complaint decision mechanism Artificial neural network
Fisher learning mechanism Evolution
Aquaculture licenses each round 5 licenses

Fishermen priority weight distribution
Own profits 0.5
Community wealth 0.1
Fishing industry health 0.15
Natural fish health 0.2
Aquaculture industry health 0.05

Complaint decision evolution parameters
Elitism 3 phenotypes
Selection mechanism Rank selection
Crossover rate 0.005
Mutation rate 0.005
Genome mutation rate 0.0005

54

this can be of aid when answering research question 1.
Table 8.3 shows 10 runs for each of the three approval rates r ∈ {0.2, 0.5, 0.8}.
In general, there are two kinds of outcomes: either the average number of complaints

stabilizes at a non-zero level and there is a stable area that is continuously protected from
aquaculture, or agents learn to not complain and the map is filled with aquaculture. We
call this outcome a “collapse”. Summarized, the two outcomes are:

Stabilize The number of non-blocked cells is non-zero, and the level of complaints has
stabilized at a non-zero average rate.

Collapse The whole map has become occupied by aquaculture facilities and blocked cells
in a radius around them. Complaining behavior has disappeared from the system.

The two outcomes are equally likely at all three approval rates, with 5
10 of the cases for

0.5 and 0.2, and 4
10 for 0.8 approval rate. Furthermore, the approval rate influences how

many open cells are left in a stable situation, and how many aquaculture facilities are built.
Table 8.4 shows the relationship between approval rate and average number of open cells
and aquaculture facilities, for each of the two outcomes. With the lowest approval rate of
0.2, there are on average 24.2 open cells left and 35.4 aquaculture facilities in the stabilized
outcome. With the medium approval rate of 0.5 there are on average 53.2 open cells and
28.6 aquaculture facilities when the simulation has stabilized. When the approval rate is
higher at 0.8, there are on average 70.667 open cells and 25.333 aquaculture facilities in
the stable outcome.

8.2 Experiment 2: Types of outcomes
The two identified outcomes can both occur at any approval rate, but the stable outcome is
different for different approval rates. The number of aquaculture facilities in a collapsed
scenario does not have any relation with the approval rate, and is merely a function of the
size of the world.

Analyzing when the two different kinds of outcomes happen is fundamental to under-
standing why and how they can occur in corresponding real-life situations. A collapsed
outcome can be tied with the fishers’ tendency in Frøya to not complain, as questioned by
research question 1. A stabilized outcome, on the other hand, may be indicative of either
an honest level of complaints, or potentially over-complaining, as questioned by research
question 2. Studying the different outcomes more closely can therefore aid in answering
both these questions.

Both fig. 8.1 and fig. 8.2 are captured from runs with a complaint approval rate of 0.5.
Taking a look at the process, fig. 8.1 shows a typical simulation run where the situation

collapses into complete aquaculture dominance, described by a number of plots. We see
that the average number of fisherman complaints (Green) rapidly decreases until it reaches
0 and never raises again. The number of aquaculture facilities (Purple) steadily increases
until there are no available cells left. At the same time, average fisherman capital (Blue)
decreases steadily until it reaches 0. Average fisherman fitness (Dark green) decreases
at first quite rapidly, before it slowly rises and stabilizes when the maximum number of
aquaculture facilities is reached. The total fish quantity (Cyan) rapidly decreases at the

55

Table 8.3: Results of varying approval rate on the final state of the world, showing for each run the
configured complaint approval rate along with the simulation outcome through number of open cells
and number of aquaculture facilities. Open cells are cells that are not within the blocking radius of
an aquaculture facilities, and fishers can fish in these cells. The total number of cells in the world is
15 × 15 = 225.

Approval Rate Open cells Aquacultures

1 0.5 0 43
2 55 27
3 0 45
4 55 30
5 53 27
6 43 30
7 60 29
8 0 44
9 0 48
10 0 49
11 0.2 0 49
12 19 40
13 24 33
14 24 37
15 0 44
16 29 32
17 0 44
18 25 35
19 0 42
20 0 45
21 0.8 69 25
22 60 26
23 0 43
24 78 26
25 66 22
26 0 46
27 0 44
28 0 47
29 85 23
30 66 30

56

Table 8.4: Average number of open cells and aquaculture for stable and collapsing outcomes, given
the three different approval rates. The configured approval rate is shown in relation with the outcome
data showing the average final states of the worlds, separated by outcome. Stable outcomes are
compared by the number of open cells left and the number of established aquaculture facilities. The
number of open cells in a collapsed outcome is always equal to 0, so they are not shown.

Stable Collapse

Approval Rate Open cells Aquacultures Aquacultures

0.2 24.2 35.4 44.8
0.5 53.2 28.6 45.8
0.8 70.667 25.333 45

start, and then stabilizes at a low level when the maximum number of aquaculture facilities
is reached.

On the other hand, fig. 8.2 shows a similar plot of a simulation run, but the scenario
stabilizes with a relatively stable amount of complaints. The number of aquaculture fa-
cilities increases until it reaches a stable point that’s below the maximum amount. The
average fisherman capital decreases steadily in the beginning, and stabilizes at a non-zero
level once the number of aquaculture facilities does. The average fisher fitness stabilizes at
a slightly higher point than in the previous scenario, but instead of being completely con-
stant it has continuous fluctuations. The total fish quantity rapidly decreases, but stabilizes
when the number of aquaculture facilities does.

In a collapsed world, like depicted in all the cells are eventually either occupied by
aquaculture facilities or blocked, and fishermen cannot fish. The amount of fish on the
map have also diminished to almost nothing. On the other hand, in a stabilized world there
are some cells that fishermen protect. These cells also have some fish left in them. Some
fishermen have to share spots. The fishermen have not found the best spots in the map,
and they are not distributed optimally to fish from the spots they know. Figure 8.3 shows
final map states of the two different scenarios.

When a world has stabilized, no more aquaculture is built. However, the fishers do not
settle completely for some cells. Figure 8.4 shows that fishers still move in a stabilized
environment, even if the aquaculture sites do not change, and the fish quantity in the cells
does not change.

In order to investigate the direct relationship between kind of outcome and average fit-
ness, 10 runs where performed and recorded with regards to average fitness at the end state
and the outcome type exhibited. Table 8.5 shows the results of these runs. The average
fitness of fishers is higher in the stabilized runs with an average of 1.8574, compared to
the collapsed runs which average at a fitness of 1.4440.

8.3 Experiment 3: Evolution of complaining behavior

The overall complaining behavior of fishermen evolves over time, sometimes resulting in
collapse when nobody complains and complaining behavior disappears from the behavior

57

Figure 8.1: Plots showing a typical simulation progress resulting in a collapsed state. The horizontal
axis represents the round and the vertical axis represents values for the different plots. The plots are
normalized by scaling factors displayed in the label section. A collapsed state is characterized by
complaint behavior quickly disappearing from the population, as shown by the light green plot. At
the same time the number of aquaculture facilities, shown in pink, rises to its maximum value. The
fisher fitness stabilizes once the number of aquacultures does.

Figure 8.2: Plots showing a typical simulation progress resulting in a stabilized state. The horizontal
axis represents the round and the vertical axis represents values for the different plots. The plots
are normalized by scaling factors displayed in the label section. A stabilized state is characterized
by complaining stabilizing at a non-zero rate, as shown by the light green plot which stabilizes at
around 9 complaints per agent. The number of aquaculture facilities subsequently stabilizes below
its theoretical maximum value, and the average fisher fitness fluctuates while staying somewhat
constant.

58

(a) (b)

Figure 8.3: The world map showing a) the world map after a collapse; and b) the world map in
a stabilized state. The map symbols are explained in section 6.1.5. In the collapsed state all cells
are blocked because of aquaculture expansion, and fishers cannot harvest. In the stabilized outcome
there are open cells left which contains some fish. Fishers are distributed relatively evenly among
these resources.

Figure 8.4: Snapshots of four consecutive rounds (27, 28, 29 and 30) of a stabilized world, show-
ing that fishermen still move around even when no more aquaculture facilities are built. The map
symbols are explained in section 6.1.5. All the cells are visited by fishers during these four rounds.

59

Table 8.5: Relationship between outcome and fitness, averaged over 10 runs with 6 of them re-
sulting in collapse and 4 of them resulting in stabilization. Each run is displayed with the outcome
characterized by number of open cells and number of aquaculture establishment, as well as the final
average fitness of fisher agents. Runs where the number of open cells ends up being equal to 0 are
tagged as collapsed, while the others are tagged as stabilized. All 10 runs are done with the same
configuration settings.

Run Outcome Fitness

Open cells Aquacultures

1 0 46 1.4523
2 0 48 1.4666
3 52 34 1.9880
4 0 46 1.4366
5 0 45 1.4287
6 60 31 1.8758
7 36 31 1.7306
8 60 23 1.8353
9 0 47 1.4441
10 0 46 1.4361

Average Stabilized 1.8574
Collapsed 1.4440

pool, other times it stabilizes at some level where it keeps the aquaculture expansion in
check.

Studying how the level of complaints change over time, and how these changes impact
the final result can provide further understanding of the outcome states. Since a collapsed
outcome is relevant to research question 1 and the stabilized outcome is relevant to research
question 2, analyzing the evolution and change of complaints may be helpful in answering
both questions.

Figure 8.5 shows plots the average amount of complaints for 30 rounds of 20 different
runs with the same configuration. Exactly half of the plots are non-zero at round 30,
which means that the outcome is stable, and half are zero which means that the outcome
has collapsed. The plot highlighted in green represents the stabilized outcome with the
lowest amount of complaints. The plot highlighted in blue represents the second lowest
amount of complaints, which is also significantly different from the other stabilized plots.
Both the plots highlighted in green and red show different behaviors from the rest, since
they both quickly fall at the beginning, but manage to recover into a stabilized state after
almost reaching zero complaints on average. The red plot shows a development where the
amount of complaints rapidly increases again and stabilizes at a level that’s similar to the
other stabilized plots, where the green one stabilizes at a very low point.

Figure 8.6 shows how complaints distribute over the different hearings in each round,
over three runs. For all the runs the votes are distributed relatively evenly in the beginning,
before complaints in the third hearing disappear after a few rounds.

60

0 5 10 15 20 25
0

5

10

15

20

Round

C
om

pl
ai

nt
s

Figure 8.5: Average number of complaints for each round of 20 simulations using the same configu-
ration. The three highlighted plots are of special interest because they have attributes that distinguish
them from the rest. Non-highlighted plots show regular collapsed and stabilized outcomes. Out of
the non-highlighted plots, there are 8 stabilized runs and 9 collapsed ones. The three highlighted runs
are all classified as stabilized. The red plot shows the only run where the average number of com-
plaints rapidly falls in the beginning, but recovers and stabilizes around the same level as the normal
stabilized runs. The green plot also shows a run that falls rapidly and recovers, but the recovery is at
a much lower level. The blue plot shows the lowest stability level with a normal profile.

0 10 20
0
5

10
15
20

0 10 20
0
5

10
15
20

0 10 20
0
5

10
15

Figure 8.6: Plots of number of complaints for each round for three different stable simulation runs,
showing number of complaints for each of the three hearings in the same round. The blue area shows
the first hearing, the red area shows the second hearing, and the brown area shows the third hearing.
The horizontal axis shows the round, and the vertical axis shows average number of complaints for
the fishermen.

61

Table 8.6: Effects of changing the environmental damage variables on the simulation’s final states,
as an average of 20 runs for each configuration. Each 20-run average is defined by its configuration
settings which consist of the radius of environmental damage caused by aquaculture facilities, and
the amount of damage done signified by a proportion. The outcomes are described by a collapse
rate, which is how often the configuration results in a collapsed outcome. Outcomes are divided
into stable and collapsed outcomes, where the stable ones are compared by number of open cells
and number of aquaculture facilities. The collapsed outcomes are only compared by number of
aquacultures since there are no open cells left when an outcome is collapsed.

Configuration Stable Collapse

Damage
radius (m)

Proportion Collapse
rate

Open cells Aqua-
cultures

Aquacultures

50 1 0.5 44 32.4 46.2
100 1 0.35 47.308 29.231 46.857
50 0.5 0.45 51.364 29.818 45.889

8.4 Experiment 4: Changing environmental damage

After the workshop, an environmental damage factor was introduced to the simulation.
Environmental damage was during the workshop mentioned as one of the main reasons

why fishers are skeptical, and even opposed to, aquaculture expansion. Even so, the level
of complaints is low. Seeing and analyzing how environmental damage impacts complaint
levels in the simulation may be helpful in understanding the real-life implications. Since
research question 1 asks why fishers don’t complain, even when environmental damage is
a real factor, the impact of environmental damage levels on simulated agent behavior may
reflect the fishers’ decisions.

Table 8.6 shows collapse rate, average numbers of open cells and aquaculture facilities
in stable outcomes, and average number of aquaculture facilities in collapsed outcomes, for
each of three configuration of different environmental damage. In all the configurations,
the cell size is 25 x 25 meters. The first configuration uses a damage radius of 50 m,
and a damage proportion of 1. That means that at the center of the aquaculture facility,
the resource will be completely destroyed, and each cell at a distance from it will receive
damage proportional to the distance. Cell at exactly 50 meters away will not receive any
damage. The second configuration uses a damage radius of 100 m which means that cells
twice as far away from the area will be damaged, and cells at 50 meters will be more
damaged. The third configuration uses a damage radius of 50 m, but a damage proportion
of 0.5, which means that cells at the center of the facility will be halfway destroyed, and
cells at a distance will be damaged less than with a proportion of 1.

The scenario with the highest amount of environmental damage, with a 100-meter
radius and a proportion of 1, yields the lowest collapse rate with 0.5, but the scenario
with the lowest environmental damage, with a 50-meter radius and a proportion of 0.5
yields the highest amount of open cells in a stable world with an average of 51.364 cells.
The medium-damage scenario, with a 50-meter radius and a proportion of 1, gives the
lowest amount of open cells in a stable world (44 on average), and the highest amount of

62

aquaculture facilities (32.4 on average compared to 29.231 and 29.818).

63

64

Chapter 9
Discussion

This thesis was based on two research questions that both regard the complaining behavior
of fishers when facing aquaculture expansion. Fishers are observed to not complain, which
contradicts intuitive predictions. It is also predictable that if fishers decide to complain in
the first place, they will complain as much as they can, and even complain about locations
that are not important to them. This behavior is referred to as “falsely” complaining. This
discussion attempts to explain and answer these issues, one by one.

9.1 Why Fishermen Don’t Complain
One of the main goals of doing the simulation was to study how complaining takes place,
and not least when it does not take place. The simulation can produce two opposite out-
comes: either the complaint rate stabilizes and fishers manage to preserve an area from
aquaculture expansion; or the complaint rate plummets, reaches zero, and the world is
flooded by aquaculture until it is full.

In experiment 2, the different outcomes were analyzed. The collapsed outcome cor-
responds with the situation in Frøya, where fishers do not complain, while the stabilized
outcome only occurs in the simulation. Collapsed outcomes are a result of fishers no
longer complaining, which can be seen by looking at the plots for a collapsed run. Fig-
ure 8.1 shows that the level of complaints falls rapidly, which causes continued growth of
the number of aquaculture facilities. On the other hand, fig. 8.2 shows by example that if
the level of complaints stays above a certain threshold, the number of aquaculture facilities
may stabilize accordingly.

We can also see from table 8.5 that the fishermen fitness is slightly higher in the stabi-
lized outcome than the collapsed one, which means that the stabilized outcome is prefer-
able to the collapsed one. Considering a population of infinite size, evolutionary game
theoretic replicator dynamics predict that the agents learn the strategy with the highest
payoff. This means that effects other than game theoretic learning caused the population
of fishers to shift to non-complaining behavior. If the fitness of the complaining popula-
tion is higher than the non-complaining one, the expected result of an evolutionary game

65

theoretic process would be stabilization; i.e. a non-zero level of complaints.
One reason why fishers learn to not complain and end up with collapsed outcome may

be stochastic effects in the simulation. There are several random or pseudo-random events
that may disturb the outcome. Firstly the map is created by random, with good fishing spot
and subsequently initial fisher location generated randomly. However, the layout is always
similar with a relatively even distribution. The decision mechanisms in the population
are also distributed by random in the beginning, and the neural network genotypes are
created randomly, so one could think that the initial population may be created without
any complainers. However, looking at fig. 8.1 one can see that there is a good amount
of complaining in the first round, so there are certainly complaining agents in the initial
configuration of some collapsed runs.

Another random element in the simulation is the distribution of aquaculture facilities
within the aquaculture-reserved areas. An aquaculture organization chooses a random
cell from the plan. However, when comparing the maps in fig. 8.3, there are no obvious
dissimilarities in the aquaculture layout that separate the two outcomes.

A more subtle difference between collapsed and stable runs may be the learning pro-
cess of the agents. The learning mechanism is based on social evolution, where agents
observe others’ payoff and copy the best-performing strategies. If no relationship between
complaining and profit is observed, it is understandable that the population may end up
not complaining.

9.1.1 Importance of the learning process
The fishers are learning agents, and they implement a form of social learning where they
copy the decision making mechanism of their best-performing peers. A clear assumption
of the model is therefore that fishers’ complaint rates will have an impact on their fitness.
This assumption is justified by the logic that since complaints have an impact on aquacul-
ture expansion, and aquaculture expansion have an impact on fishers’ income since they
may be pushed away from their preferred, and better-yielding fishing spots. Since fishers’
fitness is dependent on their capital, fishermen who don’t complain will suffer. However,
individual fishermen may be freeloaders of this effect if their peers complain about expan-
sion in areas they care about, the non-complaining fishermen may also receive the benefits
of reserved zones. Therefore, other agents can perceive that agents with non-complaining
behavior do as well as the complainers do, and overall complaining may falter.

When complaining behavior completely disappears from the population, it never reap-
pears again in any of the experiments. Figure 8.5 shows that for 20 rounds this holds true;
not once does a plot that ends up with a non-zero value touch the bottom of the graph.
In theory, mutation should be able to make agents recover their complaining ratios even
if there is no complaining agents to copy, however to ensure this requires infinite time.
Since aquaculture facilities cannot disappear and the map is of finite size, the fishers are
on a timer to learn that complaining is beneficial. If by change agents don’t observe that
complaining gives a benefit, even if on average at an infinite time scale it would, the sit-
uation may collapse. This phenomenon reflects the situation in Frøya, since fishers there
have tried to complain, but received no benefits. This effect may be tied more to the gov-
ernment’s decision to approve or reject complaints, rather than the fishers’ decisions to
complain or not.

66

9.1.2 Influence of complaint approval rate on complaining behavior

Since complaints have never worked for the fishers at Frøya, it is important to explore how
complaint approval rate influences the complaint rate. Experiment 1 was conducted with
the goal of exploring the consequences of varying approval rates. The two outcomes of
collapse and stabilization are shown to be equally likely with every tested approval rate,
but the size of the protected area in the stabilized outcome becomes larger with increasing
approval rate, as shown by table 8.4.

The fact that the rate of collapsed outcomes stays the same with varying approval
rates suggests that the approval rate is not decisive of complaining behavior disappearing
from the fisher population. A low approval rate may therefore not be the only reason why
fishers are not complaining at Frøya. Increasing the approval rate of the government may
therefore also not be sufficient to push fishermen to complain more.

The complaint approval rate does clearly influence how much area the fishers manage
to protect in a stabilized outcome. There is a linear relationship between the two figures.
The total size of protected areas is shown by the “open cells” statistic in table 8.4. Low
complaint rate may be explained by this effect if fishers give up on complaining when
they see that they cannot protect a large enough area for the complaining to be worth the
effort, in the case of a low approval rate. There is also a special case of 0 approval rate in
which agents will never be able to protect any area and the simulation will always collapse.
Since the approval rate at Frøya so far has been 0 with two out of two complaints being
rejected, there has so far been no positive indication that complaining works. Therefore it
is equivalent with a government which has a complaint approval rate of 0, which always
causes collapse. In order to make the situation more fair for fishers, the government may
be encouraged to approve more complaints.

Changing the payoff matrix

According to the game theoretic interpretation, the government, if assumed to be rational,
acts in such a way to maximize its payoff. One way to change its behavior to approve more
of the fishers’ complaints, is to alter the government’s payoff matrix. More explicitly, a
policy needs to be constructed under which the government receives benefits if it approves
fair complaints, or receives a penalty if it does the opposite. Another way of stating this
is that the government needs to align its payoff matrix with that of the fishers, so that
the government receives a benefit when doing something that’s beneficial for the fishers,
like approving their complaints. Applying a policy that changes the payoff matrix of the
government in order to approve more complaints will according to the simulation results
allow larger areas to be protected by the fishers’ complaints. Allowing for a non-zero
complaint approval rate may also cause fishers to perceive their complaints as useful, and
cause complaining behavior to be learned as in stabilized runs of the simulation.

A way to alter the payoffs to the regional government is to punish them for environ-
mental damage. Environmental damage is caused by aquaculture facilities being built,
and according to the fishers in the workshop (chapter 7), the damage significantly hurts
the ecosystem. The environmental damage can therefore be seen as a tragedy of the
commons-type of situation, where aquaculture companies use the common resource of
healthy waters, leaving unhealthy ocean behind. This tragedy is negative for the regional

67

government in the long run, but there may be a lack of short-term consequences that truly
motivate anti-damage behavior. Introducing a penalty for environmental caused to the
ocean may help rise approval rates of fishers’ complaints about aquaculture establishment,
because the fishers’ and government’s payoff matrices align. By approving complaints
they prevent aquaculture expansion which reduces environmental damage, and results in
less penalty.

9.1.3 Factoring environmental damage into complaint rates
So far we have discussed prevention of environmental damage as a tool for aligning the
government’s and the fishers’ priorities. However, environmental damage is important
for the fishers themselves, and varying amounts of it may affect their complaint rates.
Aquaculture facilities that pollute less may be more welcome to the fishers than those who
pollute more, which may result in different outcomes. Experiment 4 was conducted in
an attempt to chart the relationship between environmental damage caused by aquaculture
facilities and fishers’ complaining behavior.

The experiment yielded some surprising results. Looking at table 8.6, there are three
different configurations that represent varying levels of environmental damage: medium
damage (50 m radius, 1 proportion), high damage (100 m radius, 1 proportion) and low
damage (50 m radius, 0.5 proportion). However, the collapse rate is lower in the high
damage scenario. This may be a result of fisher agents more quickly realizing that the
aquaculture facilities cause damage that is important to their payoffs, and managing to
protect areas more often. However, the amount of open cells in the stabilized world is the
lowest in the lowest-damage scenario, which indicates that protection is more successful
when the damage is low. This may be explained by the fishers spreading over a larger area
when more cells are viable to harvest from, and the collective votes of the fishermen are
therefore able to protect a larger area, rather than different fishermen voting for the same
cells, beyond the necessary threshold to protect it.

9.2 How to Remedy False Complaints
The simulation has no explicit notion of false complaints because the fishers’ complaining
decisions are made by a neural network that is tuned through payoffs which are not influ-
enced by honesty. Measuring honesty would anyway be difficult, since the opinion that a
location is worthy of protection is more or less subjective. Deciding if a fisherman com-
plaints with good reason or not is difficult because the fishers in the simulation will always
complain if it gives an advantage, or even if there is even a tiny chance that it gives an ad-
vantage. This effect may reflect real situations where fishers can complain endlessly about
the establishment of aquaculture facilities without being punished for “false” complaints.

9.2.1 Complaints during the stabilized state
Looking at fig. 8.4, there are no unworked cells that are still being protected by the fish-
ermen through complaints. Fishers use all the open cells in a cycle. Especially If there
were cells which were never used, the complaints about them may be regarded as “false”,

68

since aquaculture there would not prevent fishers from fishing. On the other hand, envi-
ronmental damage may affect the surrounding area and this may be predicted by fishers
and become a factor in their decision making. Since different agents may estimate the risk
of damage form a facility differently, the classification of complaints as false is not very
straight-forward since complaints are based on subjective decisions.

Sub-optimal distribution of fishers may also be a cause of false complaints. During the
movement when the fishers have reached a stabilized outcome, there are some situations
where more than one fisher occupies a single slot while other slots are free of fishers.
Fishers move to a new spot when they experience that the current location is bad, even if
it is only bad because two fishers are sharing it without them being aware of it. This is an
inefficient use of the resources, since a larger spread of fishers would lead to more optimal
harvesting. If a more optimal harvesting plan was conducted, some cells may never be
fished and aquaculture facilities could establish there. This would in turn lead to fewer
complaints overall, reducing the number of false complaints.

One problem with this deduction is that fishers in real life might be aware if they share
a fishing resource, either through observing each other directly, or the experience of less
fish might be enough to understand that another fisher is using the same location. The
simulation model assumes that fishers do not know about the other fishers’ location and
they can only determine the fishing quality of a location through experience, by using it.
The new experience will be recorded as the current performance of that cell, even if it
was better before. The overall distribution of fishers is therefore self-organized as a global
distribution emerging from the local interactions of fishers experiencing slots and moving
around. The system may end up in sub-optimal attractor states consisting of imperfect
fisher distributions. During the workshop, the fishers said that they respect other fishers’
areas by staying away from ones they know about that belong to others. However, if
aquaculture expansion pushes the fishers away from their normal areas, they might end
up sharing a space. If they are aware that two fishers share the same location, they might
coordinate and one fisher moves somewhere else. However, fishers may not be able to
deduct that two are sharing the same location. In this situation, the organization of fishing
may benefit from a fishing plan that distributes fishers to locations in an optimal fashion.

9.2.2 When complaining takes place
Experiment 3 studied how complaints were distributed among hearing rounds. In the be-
ginning of the simulation of a stabilized run, complaining occurs at all three hearing stages.
However, complaining in round 3 disappears when the level of complaints stabilizes. Fig-
ure 8.6 shows how all complaining is done in the first two rounds when the level has
stabilized. This is because the first two hearing-planning cycles are sufficient to stop any
problematic aquaculture expansion, as all cells are classified as reserved zones after only
two rounds.

69

70

Chapter 10
Future Work

The project was conducted and software created with the goal in mind that both the topic
and the simulation may be expanded and further explored in the future. Several areas
of improvement and further research have been identified, and they are described in this
chapter.

10.1 Focusing on Other Decision-Making Agents

Since the project focused on fishers’ decisions, it largely ignored other stakeholders iden-
tified by Tiller et al. (2014). Especially tourist and civilians are in section 4.1 identified
as important stakeholders with influential opinions on aquaculture expansion. The inclu-
sion of tourists and civilians is important both to see how their actions can influence the
decisions and situations of fishers, as well as shifting the focus to studying their actions.
Making tourists and civilians more intelligent, including their work and creating more rel-
evant priorities are important to fleshing out the simulation and making it more realistic.

In addition to tourists and the generic “civilian”, other stakeholders that are interested
in the development in Frøya may be simulated. Both high schoolers, enthusiasts, foreign
workers and academics were identified by Tiller et al. (2014) as important stakeholders.
In Frøya the high school offers programs for education within both the aquaculture and
fishing industries. High schoolers could therefore for instance be simulated as growing
up and finding a work place, and their priorities would involve finding work that fits their
education.

Another option for the simulation is to expand it to fit with more situations than the
one in Frøya. Currently the simulation is built for modeling only the situation in Frøya,
and even if generalizing it was a goal, more work could certainly be done in this direction.
Other places could be explored, especially those with different attitudes toward aquacul-
ture expansion, in order to modify the simulation so it could cover more general situations.

In real life, the government appeal process is also much more complex than the simu-
lated complaint approval process. The hearing is divided into three stages that are treated

71

by separate organs. During subsequent hearing rounds agents cannot propose new com-
plaints like they can in the simplified simulation; they can only present new and old argu-
ments in different fashions. Attempting to simulate this process was beyond the scope of
this project, but it is certainly a possible topic for future extensions. The algorithm used
by the government to approve or deny complaints is also very simple, and not subject to
any learning process. By introducing more complex decision making that actively used
the priorities of the government one could get a better idea of how to understand, work
with, and potentially create policies for the government organs.

The simulation was created with two different complaint decision mechanisms, neural
networks and a rule-based approach, but only the neural network was used for experi-
ments. Using an evolved artificial neural network has the advantage that relatively few
assumptions need to be made about the decision making process of the agents, but under-
standing its process becomes more difficult for the same reason; the implicit assumptions
made by the network are abstracted away. Other complaint decision algorithms could be
implemented in future extensions, and compared against each other and with the neural
network-implementation. Case-based reasoning is a promising algorithm that could be
applied for this purpose, since it also requires few assumptions. Case-based reasoning is
explained in section 2.4.3 and an advantage is that it would make the reasons for fish-
ers’ decisions more explicit, giving a full representation of the closeness of the decision
situation to other decision situations.

10.2 Decision Support System
During development of the software, it was theorized if it could be used as part of a deci-
sion support system for policy makers regarding fishers and aquaculture expansion. The
CORMAS-based fisher simulation developed by Cleland et al. (2012) and the pest-control
simulation developed by Rebaudo et al. (2011) were both used as teaching tools to educate
stakeholders about the situation. If this project is continued toward more realistic rep-
resentations of the environment, the intelligent agents and their interaction structure, the
software may become useful as a teaching tool both for policy makers and stakeholders. A
simulation can give an immersion into the problem that’s richer than what a description can
do. Providing insights into the roles of the local government, the aquaculture owners and
the fishers in the local community, as well as clarifying the value of the fishing industry,
as a relatively environmentally-neutral industry compared to aquaculture, to stakeholders
who underestimate it, could be valuable functions of the software. As such the software
could be helpful to both fishers, the local government and the local community in general.

Another use for a realistic simulation could be testing policies before putting them into
practice. For example, a policy distributing fishers’ fishing areas optimally as discussed in
section 9.2.1, could be proved valuable in the simulation before being applied to the real
fishers, ultimately saving resources.

Insights gathered from using the simulation can help when designing policies.

72

Chapter 11
Conclusions

This project was based on scenario where real fishers don’t complain about the estab-
lishment of aquaculture which competes with them, even if they have to opportunity to.
Aquaculture is both beneficial as well as pose a threat to the fishers, so the decision to com-
plain is not straight-forward. At the same time, false complaints become an issue when the
fishers gain too much power in the coastal planning, where they can completely lock-out
new aquaculture facilities. This thesis used simulation and analysis to see the issue from
two sides: fishermen experience that their complaints don’t work, while the aquaculture-
friendly local government and aquaculture companies themselves face the risk that fishers
overstate the danger of aquaculture.

The simulated fishers often behave similarly to those at Frøya; fishers learn to not com-
plain. This similarity gives the opportunity to draw insights into the real-world situation
from the simulations.

It was confirmed through simulation that the cost of complaining is high for fishermen.
Even if the monetary cost of complaining is zero, fishers experience a more subtle cost of
ending up sharing fishing spots with others when they complain. The expected return of
complaining is at the same time low, and fishers learn that complaining have no benefit,
similarly to the Frøya fishers’ experience.

Since fishers can end up harvesting from the same locations, the resources may be used
sub-optimally. Ensuring good organization and distribution of fishing efforts can prevent
false complaints and lead to more efficiency, simultaneously allowing more aquaculture
and more profits for fishers.

Charging fishers a fee for complaints do not seem to be a good solution to false com-
plaints because the complaint level is already often very low. However, investigation by
a third-party into the state of coastline resources may be a promising tactic since it can
chart environmental damage caused by aquaculture facilities in order to discourage false
complaints. This information can be used to penalize a government which causes the
environmental damage by releasing too many aquaculture licenses. In this way the gov-
ernment’s payoff matrix can be changed to promote the fishers’ priorities as well as the
aquaculture organizations’ priorities.

73

A general decision support system based on the software and insights from this project
can lead to a more fair division of coastal resources. If adapted to other areas and ex-
tended to reflect the stakeholders’ situations more realistically, the system may be applied
in places and situations beyond Frøya’s fishers.

74

Bibliography

Cleland, D., Dray, A., Perez, P., Cruz-Trinidad, A., Geronimo, R., 2012. Simulating the
dynamics of subsistence fishing communities: REEFGAME as a learning and data-
gathering computer-assisted role-play game. Simulation & Gaming 43 (1), 102–117.

Cruz, F., Pereira, A., Valente, P., Duarte, P., Reis, L. P., 2007. Intelligent farmer agent for
multi-agent ecological simulations optimization. In: Progress in Artificial Intelligence.
Springer, pp. 593–604.

Davidsson, P., January 2002. Agent based social simulation: A computer science view.
Journal of artificial societies and social simulation 5 (1).

Floreano, D., Mattiussi, C., 2008. Bio-Inspired Artificial Intelligence: Theories, Methods,
and Technologies. The MIT Press, Ch. 1: Evolutionary Systems, pp. 1–100.

Gintis, H., 2000. Game theory evolving: A problem-centered introduction to modeling
strategic interaction. Princeton University Press, mathematical introduction to evolu-
tionary game theory, including dynamic fields etc.

Groner, M., Cox, R., Gettinby, G., Revie, C., 2013. Use of agent-based modelling to pre-
dict benefits of cleaner fish in controlling sea lice, lepeophtheirus salmonis, infestations
on farmed Atlantic salmon, Salmo salar L. Journal of fish diseases 36 (3), 195–208.

Heylighen, F., 2001. The science of self-organization and adaptivity. The encyclopedia of
life support systems 5 (3), 253–280.

Janssen, M. A., Ostrom, E., 2006. Inequality, Cooperation, and Environmental Sustainabil-
ity. Princeton University Press, Ch. 4: Adoption of a new regulation for the governance
of common-pool resources by a heterogeneous population, pp. 60–96.

Laland, K., Rendell, L., 2010. Social learning: Theory. In: Breed, M. D., Moore, J. (Eds.),
Encyclopedia of Animal Behavior. Academic Press, Oxford, pp. 260–266.

Le Page, C., Becu, N., Bommel, P., Bousquet, F., 2012. Participatory agent-based simula-
tion for renewable resource management: The role of the cormas simulation platform to

75

nurture a community of practice. Journal of Artificial Societies and Social Simulation
15 (1), 10.

Mitchell, T., 1997. Machine Learning. McGraw-Hill International, Ch. Chapter 8:
Instance-Based Learning, pp. 230–248.

NumPy, 2014. Numpy. Accessed 09.05.2014.
URL http://www.numpy.org/

Pereira, A., Duarte, P., Reis, L. P., 2004. Agent-based simulation of ecological models. In:
Agent-Based Simulation.

Pereira, A., Reis, L. P., Duarte, P., 2009. Ecosimnet: A multi-agent system for ecological
simulation and optimization. In: Progress in Artificial Intelligence. Springer, pp. 473–
484.

Rebaudo, F., Crespo-Pérez, V., Silvain, J.-F., Dangles, O., 2011. Agent-based modeling of
human-induced spread of invasive species in agricultural landscapes: Insights from the
potato moth in Ecuador. Journal of Artificial Societies and Social Simulation 14 (3), 7.

Russell, S., Norvig, P., 2010a. Artificial Intelligence: A Modern Approach, third edition
Edition. Pearson, Ch. 2: Intelligent Agents, pp. 34–63.

Russell, S., Norvig, P., 2010b. Artificial Intelligence: A Modern Approach, third edition
Edition. Pearson, Ch. 16: Making Simple Decisions, pp. 610–644.

Tiller, R., Richards, R., Salgado, H., Strand, H., Moe, E., Ellis, J., 2014. Assessing stake-
holder adaptive capacity to salmon aquaculture in Norway. Consilience: The Journal of
Sustainable Development 11 (1), 62–96.

Wooldridge, M., 2002a. An introduction to MultiAgent Systems. John Wiley & Sons,
LTD, Ch. 2: Intelligent Agents, pp. 16–46.

Wooldridge, M., 2002b. An introduction to MultiAgent Systems. John Wiley & Sons,
LTD, Ch. 8: Communication, pp. 163–188.

wxPython, 2014. wxpython. Accessed 09.05.2014.
URL http://www.wxpython.org/

76

http://www.numpy.org/
http://www.wxpython.org/

Appendix A
Documentation of the program
configuration

Configuration of parameters, initial conditions and other settings is done through a single
JSON1 file. There are 9 top-level objects, one for each of the six agent types: fisherman,
aquaculture, tourist, civilian, government, municipality, and three more for general con-
figuration: global, world and interface. The configuration objects for the agent types all
specify the priorities for that agent, but only the fishermen’s priorities are used in the simu-
lation. Listing A.1 shows an example configuration file used to setup the program. Below
is a complete description of all fields.

Listing A.1: Example of a configuration file that uses a 15x15 grid, a 1 cell blocking radius and a
neural networks for the voting decision.

1 {
2 "global": {
3 "num max complaints": 10,
4 "max hearing rounds": 3,
5 "aquaculture blocking radius": 25,
6 "aquaculture damage radius": 100,
7 "aquaculture damage proportion": 1,
8 "aquaculture in blocked": false
9 },

10 "world": {
11 "structure": {
12 "class": {
13 "type": "class",
14 "class": "FisherSimulation.world.GridStructure"
15 },
16 "width": 15,
17 "height": 15,
18 "cell width": 25,
19 "cell height": 25,

1For a complete specification of the (very) simple JSON file format, see http://json.org

77

http://json.org

20 "neighbourhood type": "von_neumann"
21 },
22 "good spot frequency": 0.1
23 },
24 "interface": {
25 "print messages": true
26 },
27 "fisherman": {
28 "num": 20,
29 "priorities": {
30 "OwnProfits": 10.0,
31 "CommunityWealth": 2.0,
32 "WildFishPrice": 2.0,
33 "FishingIndustryExisting": 3.0,
34 "NaturalFishHealth": 4.0,
35 "AquacultureIndustryExisting": 1.0
36 },
37 "learning mechanism": {
38 "class": {
39 "type": "class",
40 "class": "FisherSimulation.ga.Evolution"
41 },
42 "phenotype class": {
43 "type": "class",
44 "class": "FisherSimulation.ga.FishermanVotingNN"
45 },
46 "genotype class": {
47 "type": "class",
48 "class": "FisherSimulation.ga.FishermanNNGenotype"
49 },
50 "elitism": 3,
51 "selection mechanism": "rank selection",
52 "crossover rate": 0.005,
53 "mutation rate": 0.005,
54 "genome mutation rate": 0.00005
55
56 },
57 "voting mechanism class": {
58 "type": "class",
59 "class": "FisherSimulation.ga.FishermanVotingNN"
60 }
61 },
62 "aquaculture": {
63 "priorities": {},
64 "work efficiency": 10,
65 "voting mechanism class": {
66 "type": "class",
67 "class": "FisherSimulation.vote.AlwaysApprove"
68 }
69 },
70 "civilian": {
71 "num": 0,
72 "priorities": {},
73 "voting mechanism class": {
74 "type": "class",
75 "class": "FisherSimulation.vote.AlwaysApprove"
76 }

78

77 },
78 "tourist": {
79 "num": 0,
80 "priorities": {},
81 "voting mechanism class": {
82 "type": "class",
83 "class": "FisherSimulation.vote.AlwaysApprove"
84 }
85 },
86 "government": {
87 "priorities": {},
88 "decision mechanism class": {
89 "type": "class",
90 "class": "FisherSimulation.dm.ApproveProbability"
91 },
92 "complaint approval probability": 0.5
93 },
94 "municipality": {
95 "priorities": {},
96 "planning mechanism class": {
97 "type": "class",
98 "class": "FisherSimulation.dm.EverythingAquaculture"
99 }

100 }
101 }

A.1 Preprocessing

The configuration is sent through a basic processor that performs some conversion opera-
tions.

A.2 Python Classes

Python classes are detected by looking for the type field in objects. When the field is
detected with the value “class”, the whole object is assumed to describe a class to be
plugged-into the system. The field class is expected to be in the same object, with a
string value that dictates the complete Python import path specification for the class to
be used. The module with the class is then imported, and the object in the configuration
dictionary is replaced with a reference to the loaded class. For example, in listing A.1
in the fisherman object the learning mechanism object has a class field which is
defined in this way. When converted, the class field of learning mechanism will refer
to the Python class Evolution in the GA module in the FisherSimulation package.

A.3 Priorities

Priorities are also converted to their respective objects, which are defined in the PRIOR-
ITY module of the FisherSimulation package. The available priorities documented in

79

Table A.1: Priorities names and description

Priority Name Description

OwnProfits The capital of the agent.
WildFishPrice Price of fish caught by fishermen.
SalmonPrice Price of fish farmed by aquaculture companies.
CommunityWealth Average capital of the community.
FishingIndustryExisting The relative strength of the fishing industry, calcu-

lated by how many fishermen are active.
AquacultureIndustryExisting Strength of aquaculture industry, calculated by

number of aquaculture facilities.
NonintrusiveAquaculture For agents that have a set of cells they care about

for environmental reasons, this priority is a repre-
sentation of whether those cells are “polluted” by
aquaculture, and in that case to what degree.

table A.1. Whenever the processor sees a field named priorities, it converts each dic-
tionary key in that object to a priority object. The weights for each priority are specified
by a number.

A.4 Fields
This section gives a complete description of all the fields and their expected values. This
simulation uses all of JSON’s value types: object, array, string, number (integer or float),
true, false and null. Keys are strings, so they contain spaces.

global Defines settings that apply to the whole system, or cannot be fit in any other
configuration objects. There are three global settings.

num max complaints The maximum number of complaints a single agent
can issue in a single hearing is specified as an integer.

max hearing rounds The maximum number of cycles of (re)planning, hear-
ing and government decision that can be held for a plan is specified as an inte-
ger.

aquaculture blocking radius The blocking radius, which is an area in
which fishing and potentially building new aquaculture is not allowed, is spec-
ified as a number of meters.

aquaculture damage radius The radius of the environmental damage that
is caused by aquaculture facilities is specified in meters, as a number.

aquaculture damage proportion The amount of damage inflicted on the
cell aquaculture is placed on is specified as a number between 0 and 1. The
damage declines linearly from the center until 0 damage is inflicted at the
radius’ perimeter.

80

aquaculture in blocked The setting of whether aquaculture should be al-
lowed to be built in blocked cells or not, expects a boolean value of true or
false.

world The world object contain settings that apply to the world, which is the top-
level entity that organizes physical position.

structure The first member of world is an object describing its structure,
which is the entity that deals with the implementation of space in the simu-
lation. It expects several settings that are custom to the implementation. The
only structure defined is a grid structure.

class The class that defines the structure is defined in the standard way
of defining classes, with an object with type and class attributes, as
described in appendix A.2.
width The number of horizontal cells in a GridStructure is defined
by an integer.
height The number of vertical cells in a GridStructure is defined by
an integer.
cell width The cell width and height in a structure is important for
blocking radius around aquacultures, which is specified in meters. The
cell width is given as a number.
cell height The cell height in a structure is given as a number of me-
ters.
neighbourhood type The neighbourhood type of GridStructure is
specified as a string of either “von_neumann” or “moore”, which corre-
sponds to Von Neumann and Moore neighbourhood types. The differ-
ence is that Moore neighbourhood considers diagonally touching cells as
neighbours, whereas Von Neumann does not.

good spot frequency The other member of the world object is a setting
that applies regardless of the structural limitation; the frequency of good spots.
Since there is a base assumption that the world is divided into slots or cells,
this frequency expects a floating-point number regardless of the structural im-
plementation.

interface The interface object contains settings that apply to the graphical (or
otherwise) user interface.

print messages Since there are quite a lot of messages produced by the sys-
tem, showing them all may slow down the interface. Therefore there is an
option to turn them on or off, which accepts a boolean value.

fisherman The fisherman agent, like all other agents, has a list of priorities, but
also has voting and learning mechanisms. The fisherman is the central agent of this
implementation of the system.

81

num Since a number of fishermen is initialized at the beginning of the simu-
lation, the fisherman object receives an integer to represent how many are
created.

priorities Fishermen are prioritizing agents, and they are initialized with a
list of priority values, specified as described in appendix A.3.

learning mechanism An important part of the simulation is how fishermen
adapt and change their behavior by experience. The object contains settings
to customize the process. A user-defined class can be specified to handle the
learning, and this object will be received by the instances, so any custom con-
figuration must be specified in this object.

class A Python class must be specified to process the learning itself,
as described in appendix A.2. The default learning mechanism is the
Evolution class in the GA module, which uses phenotypes and geno-
types and a custom configuration class.
phenotype class The ga.Evolution class requires the specification
of the phenotype it is being applied to, which is the same as voting mech-
anism class for the agent. The class specification works as described in
appendix A.2.
genotype class The ga.Evolution class also requires the specifica-
tion of the genotype, which is built in unison with the phenotype. The
class specification works as described in appendix A.2.
elitism The ga.Evolution class can utilize elitism, which is a num-
ber of the best-performing individuals whose genotypes are preserved for
the next round. The degree of elitism is specified as an integer.
selection mechanism The ga.Evolution class can utilize different
selection mechanisms, specified as a string. The different selection mech-
anisms are:
“rank selection” Linear rank selection sorts the genotypes by the fitness

values of their corresponding phenotypes. One lottery ticket is as-
signed to the lowest ranking member, two to the second-lowest and so
on. The selected individual is randomly chosen based on the weighed
probabilities described by the amount of lottery ticket each phenotype
receives.

crossover rate The crossover rate is how often the crossover opera-
tion is performed on any pair of genotypes. It is specified by a number
between 0 and 1.
mutation rate The mutation rate is how often any one genotype is se-
lected for mutation. It is specified as a number between 0 and 1.
genome mutation rate The genome mutation rate is how often any
bit in the genome is flipped of a genotype that has been selected for mu-
tation. It is specified as a number between 0 and 1.

voting mechanism class As fishermen are voting agents, a voting mech-
anism class must be specified, in the way described in appendix A.2. The
default implemented voting mechanism classes are:

82

FishermanVotingNN (from FISHERSIMULATION.GA A neural network that
iterates the cells in the plan and for each one decides to vote or not de-
pending on the inputs: a) the quality of the current “home” resource;
b) the quality of the targeted resource, if known; and c) the distance

between the two resources . The output is one neuron that decides to
complain when its value is above average. The corresponding genotype is
FishermanNNGenotype(from FISHERSIMUATION.GA).

FishermanVotingRules (from FISHERSIMULATION.GA A rule-based de-
cision mechanism that has three forms, where one is selected randomly:
a) complain or not as a probabilistic decision based on the distance be-

tween the home cell and the targeted location; b) always complain about
10 random cell in the plan; or c) never complain . Its corresponding geno-
type is FishermanRulesGenotype (from FISHERSIMUATION.GA).

AlwaysApprove (from FISHERSIMULATION.VOTE The simplest mechanism
is by default applied to agents other than fishermen: never complain. It has
no corresponding genotype and can thus not be used with the Evolution
learning mechanism from the GA module.

aquaculture The settings for aquaculture agents include priorities and voting mech-
anism. A learning mechanism may be either applied or omitted. Unlike other non-
single agent types, aquacultures are not initialized as a group at the beginning of the
simulation, so no num parameter is expected.

priorities Aquacultures are prioritizing agents who are initialized with a
list of priorities, as described in appendix A.3.

work efficiency The efficiency of working an aquaculture facility is given
as a number. This number is equal to the amount of capital harvested by aqua-
culture agents.

voting mechanism class Aquacultures are voting agents, so they are ini-
tialized with a voting mechanism. This field takes a voting mechanism class, as
described in appendix A.2. The default class is AlwaysApprove from VOTE
in the FisherSimulation package.

civilian The civilian agents are prioritizing and voting agents, so they require the
specification of priorities and a voting mechanism class. A learning mechanism
class can also be defined, as described in appendix A.2.

num A number of civilians are created at the start of the simulation, and the
number of them is defined by an integer.

priorities Priorities for civilians are specified as described in appendix A.3.

voting mechanism class A voting mechanism is defined for civilians as a
class, as described in appendix A.2.

tourist Tourists are prioritizing and voting agents, so they require the specification
of priorities and a voting mechanism class. A learning mechanism class can also be
defined, as described in appendix A.2.

83

num A number of tourists are created at the start of the simulation, and the
number of them is defined by an integer.

priorities Priorities for toursits are specified as described in appendix A.3.

voting mechanism class A voting mechanism class is defined for civil-
ians as a class, as described in appendix A.2.

government The government is a single object, so it has no number parameter. It
does have priorities, but by default they are not used. A configurable decision mech-
anism is applied when deciding to approve complaints or not.

priorities Government are initialized with a set of priorities, as described
in appendix A.3.

decision mechanism class A decision mechanism needs to be specified
in order for the government to approve and disapprove complaints. The class
needs to fulfil the GovernmentDecision interface in the ENTITIES module,
and is specified as described in appendix A.2. The default classes are:

ComplaintApproveMoreThanOne (from DM) Approve complaints for cells
that have two or more votes behind them. Respects the max hearing

rounds configuration.
ApproveProbability (from FISHERSIMULATION.DM) This implementa-

tion makes the government approve each complaint from an agent on a
cell with a configurable probability.

complaint approval probability The probability of a single complaint
being approved is a part of the ApproveProbability government decision
mechanism and is given as a number between 0 and 1.

municipality The municipality is responsible for the planning, which is config-
urable through selecting a class. Municipalities also have priorities which are un-
used by default.

priorities Municipality is initialized with a set of priorities, as described in
appendix A.3.

planning mechanism class A planning mechanism must be specified for
the municipality to create and review coastal plans. The class is specified as
described in appendix A.2, and the planning mechanism needs to implement
the PlanningMechanism interface in the ENTITIES module. The default class
is EverythingAquaculture from FISHERSIMULATION.ENTITIES.

84

Appendix B
Documentation of modules and
classes included in the system

Most of the source code is contained in the FisherSimulation package, which is respon-
sible for all the simulation code. Other packages are config for configuration, gui for
graphical user interface, and cli for command-line interface. Table B.1 shows an overview
of the modules and classes contained in the FisherSimulation package. Table B.2 shows
an overview of the modules and classes contained in the gui package.

B.1 Modules in the FisherSimulation package
AGENT The agent module defines various abstract classes for agents to be based on.

The functionality is kept separate, and can be combined with multiple inheritance.

IdentifyingAgent Agents identify with a unique ID that is provided by this
class. All agents in the system inherit from this class.

CommunicatingAgent Provides methods to communicate with other agents,
through the directory. When an agent that inherits from this class is created,
it should call the register method to be registered in the central directory. All
agents in the system are communicating agents.

VotingAgent Provides methods for voting during hearing rounds. Voting
agents include fishermen, aquaculture agents, civilians and tourists.

WorkingAgent Working agents are agents that do something in the Fishing
and Working phase. The work method is called for each working agent during
that phase. Working agents include aquaculture agents, fishermen, civilians
and tourists.

PrioritizingAgent Prioritizing agents are agent that care about things in
the world, which is expressed through priorities. Priorities are configured using

85

Table B.1: Overview of modules and classes in the simulation process.

Module Classes Module Classes

SIMULATION Simulation PHASES Round

StepResult

DECISIONS PlanningMechanism Step

GovernmentDecision DecisionStep

ENTITIES AgentFactory CoastalPlanning

ProducedAgent Hearing

AquacultureSpawner GovernmentDecision

EverythingAquaculture Fishing

Municipality Building

ComplaintApproveMoreThanOne Learning

License NN LabeledNeuralNetwork

Government Neuron

Fisherman DIRECTORY Directory

Aquaculture VOTE Vote

Tourist AlwaysApprove

Civilian MARKET Market

WORLD Map UTIL
Slot PLAN CoastalPlan

AbstractStructure PlanEntity

FishingStructure Complaint

GridStructure Decision

TorusStructure PRIORITY Influences

GA Phenotype Priority

Genotype MESSAGES MetaInfo

FishermanVotingNN BroadcastMetaInfo

FishermanNNGenotype Message

FishermanVotingRules Reply

FishermanRulesGenotype Inform

AGENT IdentifyingAgent AquacultureSpawned

CommunicatingAgent PlanHearing

VotingAgent VoteResponse

PrioritizingAgent VoteResponseInform

Table B.2: Modules and classes for the graphical user interface.

Module Class

GUI PhaseResultEvent
StopEvent
WorkerThread
Info
Messages
Window

GRAPHS Graphs
CONTROLS Controls
WORLDMAP WorldMap

86

the configuration file, as explained in appendix A.3. All agents in the system
are prioritizing agents.

DECISIONS The decisions module contains abstract interfaces for decision making
mechanisms. Decision making mechanisms are applied to voting, the government
decision and planning.

VotingDecisionMechanism During each hearing round, the decide_votes
method in its voting decision mechanism is called for each voting agent. An
implementation needs to override this method, which takes arguments for:
a) the agent; b) the coastal plan being voted on; c) the current state of the
world (a world.Map); and d) the maximum number of complaints an agent
can make. It should return a list of Vote instances (from the VOTE module). It
also needs to implement the new method, which is a class method that should
create an instance of the implementing class and attach it to the given agent
with the add_voting_mechanism method that is defined for VotingAgent in-
stances. The new method takes arguments for: a) the agent; b) the configu-
ration object for the agent class; and c) the world instance (world.Map).

GovernmentDecision When the government decides whether to approve or
deny complaints, and thus indirectly deciding if the whole plan is to be re-
viewed or not (by one or more complaints being approved), it utilizes its gov-
ernment decision mechanism that is an implementation of this interface. The
constructor of a class implementing this interface needs to receive a single ar-
gument, which is the configuration object for the agent class (Government).
The interface defines two non-constructor methods. The first is round_reset
which is called every time a new round is started. It takes no arguments. The
second is decision which is called when the government makes a decision, and
it receives a single argument which is a dictionary that maps world.Slot in-
stances (map cells) to plan.Complaint objects. The expected return value is
the dictionary with complaints approved or not.

PlanningMechanism The municipality uses a planning mechanism during
both initial creation and subsequent revision of the plan. Both are done through
a single method in a class that implements this interface. The constructor
should accept a single argument which is the configuration object for the agent
class (Municipality). The create_plan method receives three arguments
when called: a) the world map, as a world.Map instance; b) coastplan,
which is the previous coastal plan if there was one (a plan.CoastalPlan

instance); and c) a list of plan.Complaint objects to review the plan based
on, or None if there was no previous plan.

DIRECTORY In the simulation, agents communicate using messages which are sent
through a central repository. The directory module contains the implementation of
this functionality.

Directory The directory class is the implementation of the messaging hub.
It records and propagates messages between agents, and this recording can be

87

displayed for every step in the user interface. Whenever communicating agents
are created, they register to the directory using the register_communicating_-
agent function. Later on messages can be sent as both broadcasts to a group
of agents, typically either to all voting agents, or to all fishermen, or as single-
target messages with a specified recipient.

DM This module contains some implementations of decision making mechanisms.

ApproveProbability This implementation of a GovernmentDecision (in
DECISIONS) works by simply approving complaints with a configurable prob-
ability.

ComplaintApproveMoreThanOne This implementation of the government
decision interface (from DECISIONS) works by approving a complaint for each
cell that receives more than one complaint about it.

EverythingAquaculture This implementation of the planning mechanism
interface (PlanningMechanism in DECISIONS) works by assigning every-
thing as aquaculture, and removing cells with approved complaints when re-
working the plan.

DO In order to make the GUI replaceable and possibly work in a different thread, or
even process, from the simulation, the user interface communicates with the simu-
lation using simple direct-object representations of data. In Python, this means that
the objects are straightforward and “pickable”. They contain merely a number of
attributes and a static factory method.

Complaint Contains fields for coordinates (a 2-tuple of integers) for the cell
that is being complained about, and the agent that complains.

InterfaceConfig The configuration file is processed by the simulation and
not the user interface, so the parts that are relevant to the interface needs to
be sent back. It contains one field to toggle printing (all) messages sent in the
system.

Simulation General information about the initial state of the simulation, with
fields for map, a list of fishermen, aquaculture agents, civilians, tourists, inter-
face configuration and the maximum number of complaints a single agent, for
a whole round of simulation (maximum number of rounds multiplied by max-
imum number of complaints per agent).

WorkingAgent Non-government, non- municipality agents are considered to
be working agents, and their information is transmitted using specific classes
derived from this, with no extra functionality. Their fields include an identifier
string and their capital as a number.

Map The map mentioned for the simulation object is described using this class,
which contains a single attribute which is a 2-dimensional array of Slot objects.

Slot The cells contained in the map are described by an instance of this class,
which contains attributes for whether the cell has spawning fish or not, if there

88

is aquaculture, if there is a fisherman fishing there, if it is land, if it is blocked,
a list of fishermen fishing in the spot, the number of fishermen fishing there,
and a quality field which measures the amount of natural fish at the location.

Message Messages are the communicating entity between agents, and they
are represented by a sender ID, recipient ID, list of recipients in case of a
multiple-recipient broadcast, the contents summarized as a string, and a string
indicating whether the message is a broadcast (by “broadcast”), or a single-
target message (by “single”). This class also implements a to-string function
that typesets the message in a human-readable format.

PhaseReport For each step or phase, information about what happened needs
to be sent back from the simulation to the user interface. The information is
sent as a phase report, which includes fields for the name of the phase, a list
of messages sent, the map with Slot (from DO) instances for changed cells, a
boolean indicating if it is a new round, a generic dictionary data field, a string
indicating the name of the next phase, a number indicating the current round,
and a list of complaint issued in the phase.

ENTITIES This module contains the definitions of all the agents used in the system,
as well as some factories for producing them.

AgentFactory The agent factory is initialized with the full configuration file,
and provides methods for creating agents with the proper configuration object.

ProducedAgent This abstract class implements common functionality for the
fisherman, aquaculture, civilian and tourist agents. All these agents have some
knowledge of cells, a capital and a voting decision mechanism. The add_-
voting_mechanism method needs to be called by the voting mechanism class.
During hearing, the hearing method calls the decide_votes method in the vot-
ing mechanism instance.

AquacultureSpawner This class is used as a singleton that is responsible for
finding a cell for aquaculture to occupy. The cell is chosen randomly from all
aquaculture sites in the coastal plan.

Municipality The municipality has methods for collecting and distributing
taxes from workers to community members, and for creating and distributing
the coastal plan. It uses a planning mechanism to create the coastal plan.

License The license object is an empty placeholder object used by the gov-
ernment to indicate that an aquaculture company has been given a building
license.

Government The government distributes licenses to the municipality, and col-
lects complaints and decides whether to approve or rework the coastal plan
based on them. It uses a government decision mechanism class to decide based
on the votes.

Fisherman Fishermen do fishing in two steps; first they find a spot using the
find_fishing_spot method, and second they work that spot in the work method.

89

Aquaculture Aquaculture agents work at a set, configurable rate.

Tourist Tourists are initialized with a set of prioritized slots on which they
can base their votes. They do work, but do nothing.

Civilian Civilians work, but do nothing.

GA The genetic algorithm module implements the artificial evolution that by default
is used for learning by the fishermen, as well as phenotypes and genotypes for deci-
sion making mechanisms the fishermen can employ, and learn.

LearningMechanism The learning mechanism interface provides an abstract
interface for learning mechanisms. It contains a single method learn, which
takes no arguments. The constructor takes a list of agents that the learning
mechanism applies to.

EvolutionarySelectionPhenotype This simple data structure provides a
straightforward coupling of phenotype and fitness for applying the tuple of
these in various evolutionary selection mechanisms.

Evolution This learning mechanism calculates the fitness of each individual
agent and applies a selection mechanism to select which phenotypes should
be bred for the next generation. Then it applies mutation to these genotypes,
and creates new phenotypes based on the genotypes. Lastly it distributes these
phenotypes to the agents as decision making mechanisms. The only selection
mechanism that is defined is rank selection.

EvolutionConfig The Evolution mechanism can be configured, and this
class processes the configuration.

Phenotype This abstract phenotype class provides a factory method to pro-
duce from genotype.

Genotype This abstract genotype class provides a factory method to create
a random genotype with the class-specified length, as well as mutation and
crossover operations.

FishermanVotingRules The first defined phenotype is a voting mechanism
that decides based on one of three modes. Either it decides to complain or not
with a probability based on the distance from the agent’s home cell or not, or
it always complains its maximum number of allowed complaints, or it never
complains.

FishermanRulesGenotype This genotype class is of length 3, and only pro-
vides a method to convert the bits into meaning.

FishermanVotingNN The second defined phenotype is a voting mechanism
that decides based on a neural network. The network has four input nodes:
distance, home conditions and conditions in the threatened cells, and it applies
these inputs for each threatened cell. There is one hidden layer with six nodes,
and one output node which it interprets as a complaint when the activation is
more than 0.5.

90

FishermanNNGenotype This genotype class is of a length based on the nodes
in FishermanVotingNN. It contains a method for converting the genotype to
a list of numbers, representing the weights in the network.

LOG All the logging in the simulation is done through this module, by writing text
files.

LogMessage A message in the log is recorded using this class, with fields for
date, timestamp and text, as well as a to-string method.

LogEvent This abstract base class for events is empty.

RoundStatistics This log event captures a list of statistics every round:
number of the round, average fisherman fitness, average number of fisherman
complaints, number of unblocked cells and number of aquacultures.

VoteFitnessRelation This log event captures the relation between number
of complaints and the fitness of a single agent.

StatisticsLogger The plots shown in the interface are produced by data
gathered in the PHASES module. The same data is sent to the statistics log-
ger, which writes the data in CSV format. The data format is specified in the
PHASES description. The logger attempts to write continuously, but if it en-
counters a new kind of data point for the first time, it has to rewrite the file
with a new heading. Therefore it is better if new data points are added as soon
as possible, and new rounds for them are added later.

Logger The logging itself is done through methods defined in this class. A
number of methods is defined for each log event; enough to capture the neces-
sary data to add to each event. The recordings are saved by calling a method
for each event that writes to a separate text file for each.

MARKET The market is static in this simulation. It has predefined prices for wild fish
and farmed salmon.

Market The market class provides methods for getting the preconfigured fish
prices.

MESSAGES Messages are the form of inter-agent communication found in the sys-
tem. The messages contain a meta info object, which describes the sender, recipients
and time of sending. When a message is received by an agent, it calls a method (a re-
action method) in that agent that is custom for each message type. This way agents
that expect to receive a certain kind of message need to implement that method.

MetaInfo The single-target message meta info class contains fields for sender
(source), recipient (target) and time of sending (timestamp).

BroadcastMetaInfo Broadcasts are sent with this class as meta info, which
instead of a single target contains a list of recipients.

Message The basic message only contains meta info.

91

Reply A reply to a message contains a reference to the original message as
well as its own meta info.

Inform The general information message only contains a string, and evokes
no reaction of the recipient.

AquacultureSpawned This message is sent whenever an aquaculture is cre-
ated, and contains the location. It evokes no reaction.

PlanHearing This message contains the coastal plan, and is sent whenever
the municipality initiates hearing. It evokes the plan_hearing_notification re-
action in its recipient.

VoteResponse A vote response is a reply to the plan hearing message, and
it contains a list of votes that indicates the agent’s response to the hearing. It
evokes the vote reaction in its recipient.

VoteResponseInform This message is a reply to a vote response, and its
intent is to broadcast to other agents the contents of an agent’s votes. It evokes
the vote_response_inform_notification in its recipient.

NN The neural networks module contains the implementation in the neural networks,
employed by fishermen when deciding how to vote.

LabeledNeuralNetwork This class implements the neural network itself. It
takes parameters for a list of neurons in each layer (one input, one hidden
and one output), and contains methods for updating the input, processing and
retrieving the output.

Neuron Neurons are implemented through a class that stores the value and type
of the neuron.

PHASES The simulation is split into phases or steps, and the sequence and actions
of each step are implemented in the phases module. Each step is implemented as
a class with a do method where the processing for that step takes place. They all
inherit from a common interface. In each step, statistics may be gathered and sent
to the step result through a data dictionary. This object is sent to both the interface
(through the “generic dictionary data field” in PhaseReport) and the Logger in-
stance. Statistical data, which is the data displayed by the GUI and recorded by the
StatisticsLogger and written as CSV is specified in the “statistics” key in the
data dictionary. Here a new dictionary is expected, with a mapping from data point
name to the value. The data point name is a string that has to be the same every
time a new data point is added to that plot. The value is specified as another dictio-
nary, with three expected keys: “mode”, “value” and “plot”. The mode can be either
“set” or “add”. Normally, data points are added once each round and recorded per
round, but if they are added more than once, the mode parameter describes how it is
recorded. If it is “set”, the old data is overwritten for that round, and if it is “add’ the
new number is added to the old data. For instance, the total amount of complaints in
a round has the “add” mode because complaints add up in a round, but the number
of planned aquaculture sites has the “set” mode because otherwise one could end

92

up double- and triple-counting cells. The “value” field in the value dictionary holds
a floating-point number. The “plot” field is a boolean field (flag) that is sent to the
GUI to indicate whether the data should be plotted or not.

Round The sequence of events is implemented as a simple state machine, with
a next-parameter for each state. The class for the whole round takes care of
the stepping through the sequence with the next method.

StepResult The results of a step is stored in an object of this class, which
contains fields for phase name, messages sent, cells changed, world map, other
data, round number and votes cast.

Step The common base abstract class implements the state-switching func-
tionality for simple steps, which only have a static next-parameter. Subclasses
overload the do method with the desired actions. Access to objects in the
simulation world is done through the info field, which contains a named “Sim-
ulationInfo” tuple object.

DecisionStep Decision steps are a subclass of Step which have a next ta-
ble according to a predicate decided after the step has processed. It performs
the same kind of do computation as Step, but expects a 2-tuple with both a
StepResult and a value for looking up in the next table as result.

CoastalPlanning The coastal planning phase is a simple step where no cells
can change, and the statistics collected is number of planned aquaculture sites.

Hearing The hearing phase is a simple step where no cells can change, and
the statistics collected is the average number of complaints.

GovernmentDecision The government decision is a decision step that can
have values according to the government decision: approve or review the plan.
If it is approved, the next step is fishing 1, otherwise it is coastal planning
again. Cells cannot change and no statistics are collected in this step.

Fishing The fishing phase are two simple steps, fishing 1 and 2, which happen
before and after building, respectively. Cells can change and average fisherman
capital is the statistic collected here.

Building The building phase is a simple step where cells can change when
aquaculture is built on them, or is built nearby so the cell is blocked. The
statistics total fish quantity and number of aquacultures are collected.

Learning The learning phase is a simple step where no cells can change, and
the average fitness of fishermen is stored.

PLAN The plan module contains classes that simplify dealing with the coastal plan.

CoastalPlan This class subclasses the standard Python dictionary, and is
used to map cells to plan entities.

PlanEntity Items in the coastal plan are plan entities, and these have a de-
scription. There are two entities implemented.

93

AQUACULTURE_SITE The aquaculture site represents a location that has
been approved for industrial aquaculture development. Once a site has
been approved and the plan has been finalized, an aquaculture company
with a license may establish there without inference from other parties
(like fishermen).

RESERVED_ZONE A "Reserved Zone" is an area that has been reserved
from industrial development, and is open for fishing.

Complaint A complaint is an entity that gathers negative votes about a certain
cell. It has an approved-flag for the government to set.

Decision The decision class is used as a name space for the overall plan de-
cisions the government can make: approve, or review.

PRIORITY Agent’s motivations are driven by their priorities, which are implemented
as calculable entities. Priorities are calculated by picking attributes in a common
object for influences.

Influences All influences that can have an impact on an agent’s priorities are
included in this class. It has field for the agent, all agents, community member
agents, the market, fishermen, the world map and aquaculture agents.

Priority A single priority is implemented by giving a calculating function to
this class.

SIMULATION The simulation module creates, configures and runs the simulation. It
represents the top-level of the simulation process itself, and user interfaces commu-
nicate with this module directly.

Simulation The simulation class provides methods for setting up configura-
tion, initializing all the objects in the simulation, and stepping through it, one
phase at the time. The information used by the steps is stored in a named
“SimulationInfo” tuple, which has the following fields:

map A reference to the Map instance from the WORLD module, representing
the world.

cfg A reference to the complete configuration object.
directory A reference to the Directory object (from DIRECTORY) that han-

dles inter-agent communication.
market A reference to the Market instance of the MARKET module that han-

dles pricing.
agent_facotory A reference to the AgentFactory object (from ENTITIES)

that is used to initialize agents.
aquaculture_spawner A reference to the AquacultureSpawner (from EN-

TITIES) object that chooses the cell aquacultures are spawned at, and cre-
ates them.

learning_mechanisms A dictionary mapping agent types to learning mecha-
nisms.

94

logger A reference to the Logger instance from the LOG module that handles
logging.

UTIL Utility library for miscellaneous functions. It provides smart_line_sep, which
joins words by a separator, but limited by a line limit, and update_map which applies
a set of updates to a do.Map grid.

VOTE The vote module contains classes that are concerned with the voting part of the
hearing phase.

Vote The vote class is connected to a cell and has one of two values: approve,
or disapprove (complaint).

AlwaysApprove This class is a simple implementation of the abstract inter-
face VotingDecisionMechanism in the decisions package. It returns no
complaints, so it always approves all plans with no interruptions.

WORLD The world module contains implementations for elements regarding the ge-
ography and contents of the world. This includes structure, and contents of map
cells.

Map The map is the top-level entity, and it contains a structure which controls
positioning. It defines many methods for accessing information stored in the
structure, and for manipulating it.

Slot The contents of a map cell is stored in the slot class. It has fields for
occupants, a spawning flag, a blocked flag, a land flag, an aquaculture flag, and
a field for fish quantity. It also defines methods for manipulating and retrieving
this information. There is also a get_fishing_efficiency method which is used
by fishermen when working the slot.

MapStructure This interface provides method stubs for each function that
needs to be implemented by a structure.

AbstractStructure The abstract structure class serves two purposes. Firstly
it is an interface that defines method stubs for functions that need to be imple-
mented by concrete structures. Secondly it is an abstract implementation of
methods that are common to all structure implementations.

FishingStructure The two implemented structures are based on this com-
mon abstract implementation. It contains methods for initializing the slots and
populating fishing spots.

GridStructure The first implemented structure is a grid structure. The grid
structure has a given width and height, and its edges are final.

TorusStructure The second implemented structure is a torus. It functions
as a grid, except for its edges which wrap around.

95

96

Appendix C
Extending and Altering the
Program: Interfaces and Plug-ins

During configuration, the user can change classes that are used in the system. These classes
are specified in appendix A and specified by a fully qualified class path name. The built-in
classes that can be used all implement certain interfaces that describe which methods they
require. These interfaces can be implemented by user-defined classes that wish to change
the behavior of the program without changing the original code, and then referred to from
the configuration file. The interfaces are documented here.

In addition to interfaces, more priorities can created by adding instances to the PRIOR-
ITY modules in the FisherSimulation package. Those priorities can then be referred to by
their name in the configuration file.

C.1 Map Structure
The map structure is described by an interface and its implementation controls how the
geography of the world acts. An implementation should create the world and populate it
with Slot instances and distribute good fishing spots according to the given frequency.

The map structure interface is the MapStructure class in the WORLD module in the
FisherSimulation package. Two implementations of the interface, GridStructure and
TorusStructure, can also be found in the WORLD module.

The methods that requires implementation, with summary of expected functionality,
arguments and expected return values, are detailed below. All the methods are ordinary
functions that receive self as the first argument; a reference to the instance, unless other-
wise is stated (like create which is a class method).

create This class method creates the map structure. It may either be overridden, or the
implementing subclass can have a constructor that takes the same arguments as this
function.

97

Parameters:

cfg The configuration object for the structure. This is an instance of the Config

class from CONFIG in the config package.

good_spot_frequency A floating-point number between 0 and 1 representing the
frequency of “good” fishing spots. A good fishing spot is twice as good as a
regular one. The implementing class has to use this parameter when building
the world.

Expected return value is an instance of the implementing class.

get_cell_distance Finds the distance in meters between two given cells.

Parameters:

a A Slot (from WORLD) instance representing the first cell.

b A Slot (from WORLD) instance representing the second cell.

Expected return value is a floating-point number representing the distance in meters.

get_distance Finds the distance in meters between two given positions.

Parameters:

pos_a A duple of two integers representing the coordinates of the first position.

pos_b Another duple of integers representing the second coordinates.

Expected return value is a floating-point number representing the distance in meters.

get_size Gets the size of the structure.

Expected return value is a duple of integers representing width and height (like
(w, h)).

get_all_slots Gets all the slots that makes up the map.

Expected return value is a standard Python list of Slot instances (from WORLD).

get_aquaculture_blocking Gets all the cells that will or would be blocked by aquacul-
ture expansion in the given cell. The aquaculture blocking radius is given by the
aquaculture blocking radius field in the global configuration settings.

Parameters:

cell The Slot instance (from WORLD) where the aquaculture is being built.

Expected return value is a list of Slot instances (from WORLD).

get_aquaculture_damage Gets the cells damaged by aquaculture expansion in the given
cell, and the amount of environmental damage sustained to them. The aquaculture
damage proportion is given by the aquaculture damage proportion field in
the global configuration settings. The aquaculture damage radius is given by the
aquaculture damage radius field in the global configuration settings.

Parameters:

98

cell The Slot instance (from WORLD) where the aquaculture is being built.

Expected return value is a dictionary mapping cells to a floating-point number be-
tween 0 and 1, representing the amount of damage, where 1 is completely destroyed
and 0 is untouched.

get_cell_position Gets the position of the given cell.

Parameters:

cell A Slot instance (from WORLD).

Expected return value is a duple of integers representing the coordinate position of
the cell.

get_radius Gets all cells within the given radius of the given position.

Parameters:

r A number representing the radius in meters.
pos A duple of integers representing the coordinates of the position.

Expected return value is a list of all Slot (from WORLD) instances within the radius.

C.2 Learning Mechanism
Learning mechanisms represent learning functionality that can be defined for the different
agent types. A learning mechanism needs to implement the LearningMechanism (from
GA) interface. The interface defines a constructor that receives two argument which is the
list of agents it applies to and the configuration, as well as a single method that is invoked
whenever the agent learns. Both methods are also standard Python functions that receive
a self reference.

__init__ This method creates the learning mechanism. It has implemented functionality
that stores the passed agent list in a field called “agents”.

Parameters:

agents A list of agents that the mechanism applies to.
cfg The configuration object for the mechanism.

Expected return value is the instance.

learn This method is called once for each learning mechanism during the learning phase.
It needs to be implemented by subclasses. It takes one argument, but no return value
is expected.

Parameters:

fitnesses A dictionary mapping all agents to their fitnesses, which is a measure of
priority satisfaction.

The only default implementation of a learning mechanism is Evolution, which itself
uses instances of two new interfaces, Phenotype and Genotype.

99

C.2.1 Phenotype

Phenotypes represent the objects which are subject to evolution. They are defined by
the interface Phenotype, and there are two implementations: FishermanVotingNN and
FishermanVotingRules. The interface defines a constructor signature with a single line
of code, and a classmethod for creating.

__init__ This constructor does not need to be overridden, but may be called by subclasses.
It takes a single argument, which is the genotype and returns the instance.

Parameters:

genotype The genotype fulfills the Genotype interface.

Expected return value is the created instance.

from_genotype This method creates launches the constructor with its single argument.
Returns the created instance.

C.2.2 Genotype

Genotypes are the description of their corresponding phenotype. They are defined by
the interface Genotype which also provides some basic functionality. Subclasses must
override the length class property with the length of the genome, so this implementation
expects static genome lengths. Genomes are assumed to consist of a list of 0 and 1 bit
characters. Implementing classes define functions and methods that are used by the phe-
notype.

__init__ The constructor takes a single argument which is the genome and saves it to a
field “genome”.

Parameters:

genome A list of strings “0” and “1”.

Returns the instance.

random This class method creates a random instance of the genotype of a length equal to
the length given by the class attribute “length”. Returns the instance.

mutate Mutates the genome based on the given probabilities.

Parameters:

mutation_rate The probability of the genome being touched.

genome_mutation_rate If the genome is touched, the probability of any one of the
bits being transformed.

__len__ Returns the class parameter length.

100

crossover This class method accepts two instances and a probability, and performs the
crossover operation if it happens.

Parameters:

first The first instance to be crossed-over.

second The second instance.

crossover_rate The probability of the crossover operation taking place on this pair.

Returns a tuple of new instances created with the constructor based on the trans-
formed genomes.

C.3 Voting Mechanism
Voting mechanisms are configurable and used by agents to decide whether they want
to complain or not about aquaculture expansion. Voting mechanisms need to fulfill the
VotingDecisionMechanism interface (from DECISIONS). There are three default im-
plementations of the interface: AlwaysApprove from VOTE, FishermanVotingNN from
GA as well as FishermanVotingRules, also from GA. The interface defines a factory
method that is called for creating new instances, as well as a method that’s called when
agents vote. Voting mechanisms are individual for each agent. An implementation needs
to implement both methods.

decide_votes This method decides whether to complain or not for each vote. As well as
the described parameters, the standard self-reference “self” is included.

Parameters:

agent The agent deciding the vote.

coastal_plan A plan.CoastalPlan instance showing the plan and all its cells.

world_map A world.Map instance showing the current state of the world.

max_complaints An integer giving the maximum number of complaints allowed
by a single agent in a single round.

Expected return value is a list of vote.Vote instances with APPROVE or DISAP-
PROVE values for cells with planned aquaculture in the plan. There is a maximum
number of complaints allowed, so they have to be prioritized.

new Adds an instance of this mechanism to the given agent. Agents have a method add_-
voting_mechanism for this use, which accepts a single argument that is a reference
to the object implementing this interface.

Parameters:

agent An agent to add the mechanism to.

config The configuration object for the given agent,

world The Map instance giving the world.

101

C.4 Government Decision Mechanism
The government decision involves considering all the complaints and either approving or
rejecting them, ultimately deciding if the coastal plan needs to be reviewed or not. Govern-
ment decision mechanisms need to implement the GovernmentDecision interface from
DECISIONS. There are two default implementations: ApproveProbability which ap-
proves each complaint with a configurable probability (a float between 0 and 1), as well as
ComplaintApproveMoreThanOne which approves a complaint about a cell if more than
one agent complained about it. Both are located in the DM module. The interface defines
two methods as well as outlining a constructor. The constructor takes the configuration
object which is the whole object for the agent type (Government).

round_reset Round reset is called when before a new round is started.

decision The decision function is called on the set of all complaints from a single hearing
round.

Parameters:

complaints A dictionary of world.Slot instances mapped to plan.Complaint

objects.

The expected return value is the dictionary of complaints, with approved flags set or
not. For approval, the approve method can be used directly on complaints.

C.5 Coastal Planning Mechanism
Coastal planning is done by a planning mechanism. A planning mechanism needs to im-
plement the PlanningMechanism interface in the DECISIONS module. There is a single
default implementation of this interface, which by default plans everything to be aqua-
culture and removes items that have approved complaints, EverythingAquaculture
from DM. The interface defines a single method for creating and reviewing a plan. The
constructor accepts the configuration object for the agent type (Municipality).

create_plan The create plan method is called in each coastal planning phase.

Parameters:

world_map A world.Map instance representing the current state of the world.

coastplan (Default is None) The previous plan, a plan.CoastalPlan instance.

complaints (Default is None) A list of plan.Complaint objects to review the
plan based on, it is None if there was no previous plan.

Expected return value is a plan.CoastalPlan instance. The coast plan class is a
subclass of the standard Python dictionary, and it is initialized with a dictionary sent
to the constructor. The dictionary should map world Slot instances to PlanEntity
instances. There are two default plan entities: aquaculture site and reserved zone.

102

Appendix D
Software and Project Details

Table D.1 shows an overview of various project details related to the software.

Table D.1: Project details

Project code license MIT
Project code hosted at https://github.com/ingfy/FisherSimulation
External libraries NumPy (2014)

wxPython (2014)
Data and figures at https://github.com/ingfy/FisherSimulation

103

https://github.com/ingfy/FisherSimulation
https://github.com/ingfy/FisherSimulation

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Description
	Research Objectives
	Report Outline

	Background
	Agents
	Communication
	Game Theory
	Classic Game Theory
	Evolutionary Game Theory

	Decision Making Systems
	Simple rules
	Artificial neural networks
	Case-based reasoning

	Learning Systems
	Artificial evolution

	Self-Organization
	Attractors

	State of the Art
	Agent-Based Simulation
	Fishing and Aquaculture

	Conceptual Design
	Stakeholders
	Fishermen
	Aquaculture Organizations
	Municipality
	Government
	Other stakeholders

	Sequence of Events
	Definition of the Events
	Defining the Sequence

	Decisions
	Different agents' approaches to decision making
	Voting
	Influences
	Learning

	Knowledge
	Inferring Cell Quality from Complaints

	Priorities
	Profits
	Wealth of the community
	Existence of fishing as a business
	Maintaining natural fish stocks in good health
	Existence of aquaculture industry
	As few as possible aquaculture establishments
	Pleasing voters
	Pleasing interests of investors in the local community

	Information Flow
	Data Set
	Outputs and Results of the Experiment
	Classifying the Simulation

	Experimental Setup
	Simulation Overview
	Phases

	Decision Making
	Mechanisms for decision making
	Learning

	Agent Communication
	Messages

	Other Rules Affecting the Agents
	Map creation
	Aquaculture building

	Priorities of the Different Groups
	Representing priorities realistically
	Calculating priority satisfaction

	Actions of the Different Groups
	Fishermen actions
	Municipality
	Government
	Aquaculture organizations
	Other agents

	Implementation
	Graphical User Interface
	Phase Information Panel
	Controls panel
	Messages
	Plots
	Map

	Configuration File Specification
	Modules and classes
	Program Dependencies
	Extending the Program

	Workshop in Frøya
	Presenting the Simulation
	Feedback
	Revisions to the Simulation
	Environmental damage
	Government decision

	Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Discussion
	Why Fishermen Don't Complain
	Importance of the learning process
	Influence of complaint approval rate on complaining behavior
	Factoring environmental damage into complaint rates

	How to Remedy False Complaints
	Complaints during the stabilized state
	When complaining takes place

	Future Work
	Focusing on Other Decision-Making Agents
	Decision Support System

	Conclusions
	Bibliography
	Documentation of the program configuration
	Preprocessing
	Python Classes
	Priorities
	Fields

	Documentation of modules and classes included in the system
	Modules in the FisherSimulation package

	Extending and Altering the Program: Interfaces and Plug-ins
	Map Structure
	Learning Mechanism
	Phenotype
	Genotype

	Voting Mechanism
	Government Decision Mechanism
	Coastal Planning Mechanism

	Software and Project Details

