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Abstract

Registration of three–dimensional objects has vast applications in many areas of science.
This research is linked to the international PRESIOUS project, concerning measurement
of erosion effects on cultural heritage objects. The data in question is several magnitudes
larger than found in research so far, often reaching several hundred million points. This
thesis presents a novel approach to registration of such large data sets by co–dividing the
sets into corresponding parts and registering them locally. The same division algorithm can
be used to precisely measure the distance between the data sets. We test experimentally
how the local registration results can be used to obtain an optimal global transformation
for the entire data set.





Sammendrag

Registrering av tredimensjonale gjenstander har mange burksområder i ulike vitenskaps-
grener. Denne avhandlingen er knyttet til det internasjonale PRESIOUS-prosjektet, som
jobber med å måle effekten av erosjon på kulturminneobjekter. Vi arbeider med data som
er langt større enn det som finnes i tidligere forskning på registrering. Denne avhan-
dlingen presenterer en ny metode for registrering av slike store datasett ved å dele de i
samsvarende deler og registrere de lokalt. Den samme inndelingsalgoritmen kan brukes
til nøyaktig måling av avstanden mellom datasettene. Vi tester eksperimentelt hvordan de
lokale registreringsresultatene kan brukes for å finne en optimal global transformasjon for
hele datasettet.
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Chapter 1
Introduction

The research in this thesis is linked to the PRESIOUS project, which concerns measuring
and simulation of erosion in cultural heritage objects. Real world objects are scanned, us-
ing a 3–D scanner and saved in digital form. New scans of the same objects are performed
after a sufficient amount of time has passed, usually in the order of a year. The result is two
digital representations of a 3–D shape, where one of them has been changed by erosion
due to environmental effects. The goal is to find a way to measure these changes precisely,
such that both the extent and location of erosion can be found automatically, given only
the two scans of a cultural object.

The two scans of the object are performed manually and at different points in time.
We can therefore not expect the scanning process to start at the exact same position both
times. Furthermore, if the object is sufficiently large, or if it is part of a larger construct,
the scans do not necessarily contain the entire surface area. In this case, we cannot expect
the two scans of an object to represent exactly the same surface – they may not overlap
completely. It may also be that one of the scans covers a smaller part of the object’s
surface, while the other one covers the whole object. For these reasons, the two digital
versions must be aligned correctly, before we can measure the actual differences between
them. This problem of alignment is called registration.

1.1 Motivation

1.1.1 Registration
Surface registration is a central problem in computer vision, where two data sets that each
describe a 3–D shape in different coordinate systems are aligned via a transformation. The
goal is to optimize the transformation, such that the shapes match as closely as possible.
The equivalence of the shapes can then be determined by a distance metric.

Registration algorithms have a vast number of applications in many areas of science.
(Huang et al., 2007) describe an algorithm used for several tasks within medical image
analysis. One such task can be correction of deformation of 3-D MR brain images due to
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brain shift, which has a big impact on neuro–navigation systems. (Ferrant et al., 2001) An-
other application is matching of PET and MRI data, since the scans cannot be performed
with the exact same patient positioning. (Mangin et al., 1992) (Guest et al.) describe
a registration algorithm for matching images taken of a patient’s face before and after
surgery, which requires the registration to cope with significant differences in the data to
be matched. (Chen et al., 2009) propose use of automatic surface registration in inverse
engineering and manufacturing industry, to ensure satisfactory mechanical components
with regard to their design specifications. Other uses of registration are found in match-
ing of point clouds produced by modern sensors, recognition of objects in 3-D scenes,
computer-aided design and computer vision systems. (Yamany et al., 1999) Thus, opti-
mization techniques for registration have been widely studied during the last few decades,
producing novel algorithms and new application areas.

1.1.2 Data Size
Erosion is an effect that works slowly on many types of materials. A 3–D scan that is meant
to capture the results of erosion after a year on for example a marble statue, must have very
high precision, resulting in a large amount of data points. This introduces difficulties in
processing, aligning, measuring and even storing the digital data. In fact, we have not
found any previous registration literature that deals with objects of this size, as will be
elaborated upon in chapter 2. The exact size of our data is given in section 4.1.

There exists previous work that recognizes this problem and refers to the data sets in
their applications as ”large”, but the solutions given still do not scale to our purposes. This
will be elaborated upon in section 2.4. For clarity, we define a ”large data set” in this thesis
as a data set that can not be wholly contained in memory on a modern computer.

1.2 Structure of Thesis
The thesis is divided into four chapters.

1. The first chapter gives the motivation and background for the work. Here we explain
the terminology used later in the thesis.

2. The second chapter is an overview of the field of registration and how the previous
works relate to our case of large data sets. We present the popular iterative clos-
est point (ICP) algorithm and many of its variants, as well as looking into other
optimization techniques.

3. The third chapter is divided into two parts. The first part describes our octree–based
technique for dividing a large data set and looking at the registration problem locally.
We propose a method for acquiring the global transformation from the information
obtained in the local registrations. The second part describes our method for accu-
rate measurement of distance between two large data sets, using the octree division
algorithm from part one. We show that the method is sound.

4. Chapter four describes the results from our experimental runs and includes a discus-
sion of said results, as well as ideas for future work.
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1.3 Background

1.3.1 Transformation Types

A Euclidean transformation transforms vectors in Rn, such that distances between every
pair of points is preserved. This is a special case of rigid transformations, which work in
any vector space, with the same constraint. Every rigid transformation is a combination
of rotations, translations and reflections. If we exclude reflections, the transformation
preserves the orientation of objects and is called a proper rigid transformation.

Non–rigid transformations, like shearing and scaling do not preserve distances be-
tween point pairs. Erosion transforms a real world object in a non–rigid way and there has
been done research on non–rigid registration. This is however not relevant for us, since
we wish to measure the erosion and must preserve the differences due to erosion while
registering the objects.

All our work is done in three–dimensional Euclidean space and we wish to preserve
point pair distances and orientation during registration. Thus, whenever we refer to ”Eu-
clidean transformation” or ”rigid transformation” in this thesis, it should be understood as
proper Euclidean transformation.

1.3.2 Registration Process

Let d be a function which gives the distance between two three-dimensional objects and
let S and T be two such objects. The registration problem is defined as finding the trans-
formation which applied to S produces the object S′ such that d(S′, T ) is as small as pos-
sible. As explained above, in our case we wish the transformation to be a proper Euclidean
transformation in three–dimensional space, which means that it consists of a rotation and
a translation.

Expressing the rotation as a 3x3 matrix R and the translation as a 3x1 vector t, regis-
tration searches for R and t, such that d({Rs + t}s∈S , T ) is as small as possible. We can
view each point s in S as a 4x1 vector s′ = (s, [1]). Then, we can combine the rotation
and translation into one 4x4 matrix A and try to minimize d({As′}s′∈S′ , T ). Regard-
less of the parameter presentation chosen, we see that there are six degrees of freedom –
three for the rotation and three for the translation. Thus, registration can be viewed as a
six–dimensional search problem for the rotation and translation parameters.

The object that is transformed is often called the source, while the object being matched
against is called the target. Still, one of the cornerstone articles in the field (Besl and
Mckay, 1992), uses the term data for the source and model for the target. The term tem-
plate has also been used instead of target. The terminology we use in this thesis is source
and target, often denoted S and T in mathematical notation.

1.3.3 Optimization

Registration can be cast as a non-linear optimization problem and many well known opti-
mization techniques are applicable for the problem. (Tam et al., 2013) These techniques
vary in performance and applicability based on the geometric properties of the 3-D surface
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to be matched. Matching a smooth sphere for example, may benefit from different opti-
mizations than a flat surface with many small bumps and ridges. Noise and outliers provide
further difficulties for the registration process, especially when the data is collected by a
3–D scanner or other types of sensors. In many cases, the amount of data may be too large
to handle in a straightforward approach, as is the case with high resolution 3–D scans of
large objects.

Constraints on the data, like features, saliency, regularization and search constraints
can all be used in the optimization process, so different registration approaches may be
applicable based on the available description of the data. Other algorithms, like iterative
closest point (ICP) work only with the geometry of the data, though it can be combined
with other approaches. In our case, we will have access to only the geometry of the objects.

1.3.4 Bounding Box
A minimum bounding box of a set of points in three–dimensional space is the box with
the least area such that all the points lie within it. Such a box can be represented by its
corner points. An axis–aligned minimum bounding box must have edges parallel to the
axes of the coordinate system. An arbitrarily aligned minimum bounding box can have
any orientation. An axis–aligned bounding box can be represented by just two points in
space, corresponding to any of its corners that lie diagonally across each other.

1.3.5 Octree
An octree is a data structure where every node in the tree has exactly eight children. If we
let each node represent a rectangular portion of space, then each node divides that space
into eight pieces called octants. Each of these octants is the space represented by one of
the node’s children. Thus every node has a bounding box that encloses its space. The point
of subdivision is the center point of the bounding box. See figure 1.1 for a visualization of
an octree.

1.3.6 Centroid Point
When rotating an object, it is of relevance what point the object is rotated around. This can
for example be the origin in the coordinate system, or the object’s centroid point. Given
an object S = {si} with NS data points, the object’s centroid point, also called its center
of mass is defined as

c = 1
NS

NS∑
i=1

si

Note that the centroid point is not necessarily the same as the center point of the object’s
bounding box.

The usual way of rotating an object around its centroid point, is to first translate it to
the origin, rotate it around the origin and then translate it back to the original position:

S′ = {R(s− c) + c}s∈S
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This technique allows us to work with rotations around any point in space. It is impor-
tant to keep track of which point a rotation was performed around, when working with
transformation parameters.

5



Figure 1.1: Sub–divisions of space corresponding to octree level.
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Chapter 2
Overview of Field

This chapter provides an overview of the current field of 3–D registration. We begin by
describing similar overviews done by other authors, before delving into the ICP algorithm,
which is a cornerstone of the registration field. We proceed by describing the different ICP
variants and finally other optimization alternatives for the registration problem.

2.1 Previous Overviews
Several comparisons and overviews of different registration techniques have been done
throughout the years. Most of these focus either only on rigid or non–rigid registration,
where the former is of relevance in our case.

Many studies focus on variants of the ICP algorithm, which is described in section 2.2.
(Rusinkiewicz and Levoy, 2001) classify the variants based on their differences in six
stages of the ICP algorithm:

• Selection of points to match in the data.

• Matching of points between the data sets.

• Weighting of the matched pairs.

• Rejection of some matched pairs.

• Error metric used.

• Technique for minimization of the error.

Furthermore, the algorithm variants are run on data sets with different geometric prop-
erties – a smooth wave–like landscape with added Gaussian noise, a fractal landscape with
all levels of detail and a flat Gaussian noise landscape, with deep grooves in the middle.
The study focuses on speed of convergence and provides many test results, but not all
algorithm variants are run on all the test cases and the testing procedure is not always
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made clear. The paper uses speed of convergence as the judging criteria of the different
algorithms.

(Pomerleau et al., 2013) point out the problem of choosing a fitting ICP variant be-
tween the dozens available for implementation purposes. They propose a protocol for
comparison between ICP variants and use the protocol to compare the well known point–
to–point and point–to–plane distance metrics used in ICP (see section 2.2.1).

(Salvi et al., 2007) take a look at different techniques for both initial coarse registration
and fine registration, once an approximation is available. The paper focuses on the case of
data with noise and outliers and is accompanied by a Matlab toolbox with several of the
described techniques.

A review of geometric shape correspondence techniques by van Kaick et. al. fo-
cuses on space-time registration, where non-rigid surfaces to be matched may vary in
time. (van Kaick et al., 2011) The paper also looks at semantic shape analysis, which re-
quires knowledge-driven shape correspondence. The objective is to recognize parts of the
shape and their functionality, so they can be matched even when the shape has changed
over time. An example of this is matching a doll figure with movable parts in different
positions. Several methods are reviewed and classified according to data representation,
objective function and solution approach.

2.1.1 Relation to Data Fitting
Tam et. al., who give an overview of both rigid and non–rigid techniques, focus on the
relation of registration to the field of data fitting in hopes of acquiring novel perspectives of
the problem. (Tam et al., 2013) Data fitting is simply the process of finding a mathematical
function that fits to a set of data points. For this purpose, they first define registration as an
optimization problem. Let P = {p1, ...,pN1} and Q = {q1, ...,qN2} be two overlapping
point sets. Then the objective function in the optimization problem is:

E = Edata + Ereg

Edata =
∑

i

‖qi − χ(a,pi)‖2,

such that {pi,qi} are corresponding points, and χ is a transformation of pi using param-
eter vector a such that Edata is minimal. The goal is to find the optimal parameters a. In
slightly less abstract terms, the parameter vector a will often describe a rotation matrix and
a translation vector, while the transformation χ simply applies this matrix and vector to the
point pi. Ereg represents any additional constraint we wish to impose on the registration
and is called a regularization term.

(Tam et al., 2013) then give the following definition of a data fitting problem. Given
a set of data points p1, ...,pN , pi = (xi, yi, zi), we wish to find the parameter vector a
such that the function z = f(a, x, y) describes the data in the best possible way. The
fitting error is measured by:

E =
N∑
i

‖zi − f(a, xi, yi)‖2 + Ereg
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We immediately see the similarities between the above definitions of registration and
data fitting. The paper points out three similarities, which they call model selection, cor-
respondences and constraints, and optimization.

Model selection refers to the choice of functions χ in the case of registration and f in
the case of data fitting. For rigid transformation, the only example given by (Tam et al.,
2013) is the Euclidean transformation, consisting of a rotation and a translation, which we
described in section 1.3.1.

Correspondence refers to the matching of points between the two data sets in case
of registration, while it is already given in the data point (xi, yi, zi) in case of data fit-
ting. Thus, this is more of a dissimilarity between the two fields, than a ”core interwoven
component of their relation”, as stated by (Tam et al., 2013). The paper still provides
a thorough overview of the different constraints and techniques used to find these point
matchings in the data sets P and Q.

The clearest similarity between registration and data fitting is that they are both cast
as optimization problems in the above definitions. (Tam et al., 2013) discuss different
optimization techniques to arrive at the best parameter vector a and set of point matchings
Σ. The paper points out that when the optimization problem is continuous, the parameter
vector and set of point matchings are determined simultaneously and iteratively. The soon
to be familiar ICP algorithm falls under this classification.

(Tam et al., 2013) point out that all the above observations imply the possibility of
solving registration problems with techniques primarily designed for data fitting. However,
they note that not every registration technique fits into their framework, though most do.

2.2 Iterative Closest Point
Since its introduction in 1992 by Paul J. Besl and N. D. Mckay (Besl and Mckay, 1992),
the Iterative Closest Point (ICP) algorithm has been widely employed when matching 3-D
surfaces based on geometry alone. (Rusinkiewicz and Levoy, 2001) Different techniques
have been developed that make use of constraints such as features, saliency, regularization
and search constraints, and the use of these can often be combined with ICP. (Tam et al.,
2013) We will therefore start with a description of the ICP algorithm, before continuing
with other approaches used in the literature.

The ICP algorithm works iteratively and alternates between applying a rigid transfor-
mation to the data and assessing the mean-square error. Specifically, the ICP algorithm
registers a source data shape with a target data shape by iterating the steps in table 2.1.
Step 1 and 2 are the core of the algorithm and are often called the match–align steps.
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1. Match. Associate points in the source data shape with their closest point in the
target data shape.

2. Align. Estimate a rigid transformation that would align the above point pairs as
closely as possible.

3. Apply. Apply the rigid transformation to the source data shape.

4. Terminate. Terminate the algorithm if the mean-square error change is below a
specified threshold. Otherwise, iterate steps 1–4.

Table 2.1: Steps in the ICP algorithm

Data representation

The ICP algorithm is highly general when it comes to what data representations it can work
with. (Besl and Mckay, 1992) provide the mathematics of computing minimum distance
from a point to the following data representations, generalizing to n dimensions:

• Point sets

• Line segment sets

• Implicit curves

• Parametric curves

• Triangle sets

• Implicit surfaces

• Parametric surfaces

The source data set must be converted into a point set, but the target data set may be
expressed as any of the above structures.

Matching data points

Given a point si in the source data set, (Besl and Mckay, 1992) provide the techniques
necessary to calculate the distance between that point and the target data set. The closest
point in the target ti becomes the match of si. Doing this for all the points in the source,
we obtain the correspondences {si, ti}, i = 1, ..., NS , where NS is the amount of points
in the source.

Note that the ICP algorithm is meant to match data sets, where every data point in the
source has a match in the target. This means that it cannot be applied as is to data sets that
overlap only partially.
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Aligning the matched point pairs

The transformation estimation uses a mean square cost function to determine the effective-
ness of the matching:

e = 1
NS

NS∑
i=1
‖ti −Rsi −∆si‖,

where {si, ti}, i = 1, ..., NS are the point correspondences from the matching step, R is
the rotation matrix and ∆ is the translation vector.

The original ICP algorithm uses a quaternion–based technique to find the optimal rota-
tion and translation for minimizing the mean square objective function e. (Horn, 1987) Let
{si, ti}, i = 1..., NS be the matched correspondences of points in the target and source
data sets, after step 1 in the algorithm. Let µT and µS be the centroid points of the target
and source, respectively. (Horn, 1987) then define the matrix

M =
NS∑
i=1

(si − µS)(ti − µT )′ =

Mx,x Mx,y Mx,z

My,x My,y My,z

Mz,x Mz,y Mz,z


The matrix M contains the sums of products between point coordinates in the source

and target data sets, indicated by the indices in the notation above. As (Horn, 1987) point
out, this matrix contains all necessary information to find the rotation that minimizes the
least squares distance error between the data sets. For this purpose, they define the fol-
lowing 4x4 symmetric matrix, where the nine degrees of freedom stem from the sums and
differences of the elements in M (there is no 10th degree of freedom, since the diagonal
elements of the matrix sum to 0):

N =

 d1 My,z −Mz,y Mz,x −Mx,z Mx,y −My,x

My,z −Mz,y d2 Mx,y +My,x Mz,x +Mx,z

Mz,x −Mx,z Mx,y +My,x d3 My,z +Mz,y

Mx,y −My,x Mz,x +Mx,z My,z +Mz,y d4


where

d1 = Mx,x +My,y +Mz,z,

d2 = Mx,x −My,y −Mz,z,

d3 = −Mx,x +My,y −Mz,z,

d4 = −Mx,x −My,y +Mz,z

The optimal rotation expressed in quaternion form qR is the eigenvector corresponding
to the maximal eigenvalue of N. The optimal translation vector is given by
T = µT −R(qR)µS , where R(qR) is the rotation matrix corresponding to qR. We refer
to (Horn, 1987) for a more detailed derivation.
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(a) Initial transformation.

(b) Hypothetical position during ICP, if it were to
solve the problem.

Figure 2.1: (a) Initial position of a source (in red) to be matched with a target (in blue). (b) In order
for the source to be iteratively transformed into the correct position, it has to first move through this
position, which has a much higher distance value than in (a).

Termination

The algorithm terminates when the mean square error of the registration reaches a prede-
termined threshold. A mathematical proof of the convergence of ICP to a local minimum
from any initial rotation and translation is given in (Besl and Mckay, 1992). However,
there is no guarantee of converging to the global minimum. The selection of initial states
of the source data is therefore a point of interest. In each iteration of the ICP algorithm,
the average distance between the source and the target is reduced both by the matching of
closest points step (step 1 in table 2.1) and the transformation estimation step (step 2 in
table 2.1). This is the basis of the proof of ICP algorithm convergence given in the paper.

Performance

The aligning technique above is linear in the size of the source data set, as is the application
of a transformation to the source data set. Finding the closest point in the target to a point
in the source is linear in the size of the target data set. Doing this for each point in the
source is therefore O(NTNS), where NT and NS are the numbers of geometric entities
in the target and data points in the source, respectively. Thus, the running time of the ICP
algorithm is dominated by step 1 in table 2.1. (Besl and Mckay, 1992) Many ICP variants
focus on reducing the running time of this step, or on executing the step fewer times.

Initial parameters and local minima

The ICP algorithm is highly dependable on initial parameter values in order to not get stuck
in local minima. In fact, this is characteristic to most registration algorithms and an initial
approximate transformation is often assumed to be available. (Pulli, 1999) Figure 2.1
shows an example of how the initial position of a source data set leads the algorithm to a
local minimum.

A usual way to obtain the initial approximate transformation is interactively. In case
of large data sets, one can first create a uniform sub–sampling of the data and then find an
approximate transformation using the software of choice.
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2.2.1 Iterative Closest Point Variants
There have been developed many variants of ICP that employ different strategies in several
parts of the algorithm. (Rusinkiewicz and Levoy, 2001) point out that different implemen-
tations of ICP may vary in the procedures of all the following tasks:

• Selecting points in the target and source data sets

• Matching the selected points into pairs

• Weighting the resulting pairs

• Rejecting unwanted pairs

• Choice of error metrics

• Minimizing the error

Sub–sampling

The original ICP paper by Besl and McKay propose using all points in the surface for
matching. (Besl and Mckay, 1992) Real world data sets may be too large for this to be
computationally feasible, since the algorithm iterates over the match–align steps many
times. Note that the memory requirements of the algorithm are linear in the size of the
target and source data sets. In this case sub–sampling of the data may be necessary.

By uniformly sub–sampling the data, a mesh hierarchy can be created, such that the
meshes increase in detail as you go up in the hierarchy. ICP is then run on the lowest
level mesh and the resulting transformation is used on the next level mesh. This process
continues until the highest level mesh has been registered. (Turk and Levoy, 1994) Note
that this approach still requires running ICP on the data at full resolution, though it has a
good chance of decreasing the amount of iterations needed at that point.

Another approach is simply sub–sampling the data randomly, with a new set of sam-
pled points at each iteration of the algorithm. (Masuda et al., 1996) The drawback of this
approach is that you cannot guarantee that all the information in the data is used before
convergence.

Point–to–point and point–to–plane metrics

One of the main divisions of ICP variants is whether they use a point–to–point or point–
to–plane error metric. The former computes the sum of squared distances between points,
while the latter computes the sum of squared distances from each point to the plane con-
taining the destination point, perpendicular to the destination point’s normal. The different
approaches are shown in Figure 2.2. Recent results indicate that point–to–plane has better
overall performance across different registration cases. (Pomerleau et al., 2013) However,
point–to–point can still perform better in certain cases, for example when matching shapes
that are largely flat or have uniform curvature (e.g. a sphere). Point-to-point also han-
dles constraints, such as matching different features of points, better than point–to–plane.
(Pulli, 1999)
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(a) Point–to–point

(b) Point–to–plane

Figure 2.2: (a) As point A is moved closer to its match, point B and C will receive new correspond-
ing points in the next iteration. (b) As point A is moved closer to its match, point B and C ”slide”
along their matching tangent plane, without changing correspondences.

Matching points

The original ICP algorithm matches each source data point with the closest data point
in the target. (Besl and Mckay, 1992) Yang and Medioni propose matching each source
data point p with the intersection of the line normal to the source at p and the target data
shape. However, this means that any points on the surface of the target may be used as
correspondences for the source data points during the execution of the algorithm. Since
many of these may not be the true corresponding points, it is possible that incompatible
constraints arise and slow down the convergence of the algorithm. The solution is to
approximate the target data shape, by using the point–to–plane metric described above.
(Yang and Medioni, 1991) This approach is depicted in figure 2.3 for clarification.

Note that using this approach, we are able to match a source data set to a target, without
access to the true corresponding points in the target.

Overlapping data sets

The original ICP algorithm assumes that every point in the source has a match in the target,
but this is not true for objects that overlap only partially. Still, we would like to be able to
use ICP in the registration of such objects. A usual approach is to enforce a threshold such
that any point pairs with distance above this threshold are ignored. (Pulli, 1999) The result
is that the ICP algorithm only considers the points in the actually overlapping areas of the
objects. One can also use a percentage–based threshold – keeping a certain percentage of
the best matches. (Masuda et al., 1996)
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(a) Matching points with intersection.

(b) Combined with point–to–plane metric.

Figure 2.3: (a) Each point is matched with the point of intersection between their line normal and
the target. Line normals are shown in red. (b) The distance is measured between the point and the
tangent plane of their match in (a). Distances are shown in red.

k–d tree optimization

As mentioned previously, the point-matching part of the ICP algorithm is the most com-
putationally expensive one, where every closest point match runs in O(NSNT ) time, for
NS points in the source and NT geometric entities in the target. Besl and McKay suggest
using k-dimensional binary trees to optimize this step. (Besl and Mckay, 1992) The search
for a closest point is then done in a binary tree, checking for which side of a hyperplane
the point lies in at each node of the tree. This approach prunes away parts of the search
space and results in an average time complexity of O(NS logNT ) for computation of a
closest point. A good demonstration can be found in (Zhang, 1994).

Caching

Another speedup of point-matching can be achieved by caching. Intuitively, if a pair of
points are close to each other in an iteration of the algorithm, there is high probability that
they will be close to each other in the following iteration also. By caching a small number
of closest points in the target together with each source data point, one can limit the search
for closest points in the next iteration to these small sets of points, instead of the whole
data. (Simon, 1996) provides tests that can be done to ensure that the true closest point
lies in this small subset of points. This technique can be used together with the k–d tree
technique described above for maximal effect. Note that this is a big time–space trade–off,
since several target data points must be saved for each source data point.
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(Simon, 1996) also proposes using spatial proximity of points in the same manner –
if two points in the source data set are close to each other, their matching points in the
target should be close too. The paper does not however provide any further details of such
a technique.

Point match rejection

When point-pairs have been matched, one has the choice of rejecting some amount of the
pairs. Pairs may be rejected if they are further apart than some threshold distance or they
are the worst n% matching pairs according to some metric. Godin et. al. propose the
closest compatible point idea, where point pairs are only considered if they are compatible
based on some invariant property of the points, like intensity and color. (Godin et al.,
1994) Another choice is to reject point pairs with normal vectors that differ by more than
45 degrees. (Pulli, 1999) Rejection of pairs where either point is on a mesh boundary
reduces the chance of wrong pairings if the overlap between the surfaces is incomplete.
(Turk and Levoy, 1994)

Point match weighting

There are little examples in the literature of assigning different weights to point pairs in the
error calculation, rather than constant weighting as in the original ICP algorithm. (Godin
et al., 1994) uses a weight based on the Euclidean distance between the points and the
compatibility of the points with regard to invariant intensity properties. If non-constant
weighting of point-pairs is used, the ICP algorithm is no longer guaranteed to converge
monotonically towards a minimum. (Godin et al., 1994) Rusinkiewicz and Levoy conclude
that applying weights in this manner has a highly data-dependent effect and no consensus
whether it is beneficial in the general case was reached. (Rusinkiewicz and Levoy, 2001)

Accelerated ICP

An accelerated ICP algorithm, which uses linear and quadratic extrapolation for the regis-
tration vectors is also proposed by Besl and McKay (Besl and Mckay, 1992). As the al-
gorithm proceeds, it produces a sequence of registration vectors. The differences between
each two consecutive vectors is a sequence of directions in the registration state space. If
the angles between the last three of these directions are sufficiently small, the algorithm
calculates a possible linear and parabola update to the registration vector sequence. The
result of this acceleration is quick convergence, compared to other non-linear optimization
methods. We refer to (Besl and Mckay, 1992) for the details of implementation.

Error minimization using SVD

The singular value decomposition (SVD) of a matrix M is a factorization M = UΣV ∗,
such that U is a unitary matrix, Σ is a diagonal matrix with non–negative numbers and V ∗

is a unitary matrix. (Arun et al., 1987) propose an SVD–based algorithm for finding the ro-
tationR and translation T that minimizes the least squares error once corresponding points
between the source and target data sets have been matched. Let {si, ti}, i = 1, ..., NS be
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the matched point correspondences. Both the target and source data points are first trans-
posed, such that their centroid points lie at origin. We then have the point correspondences
{s′i, t′i}. Viewing the points as column vectors, we calculate the cross–covariance matrix

H =
NS∑
i=1

s′it′Ti ,

where the sum of the matrices is done element–by–element. As (Besl and Mckay, 1992)
point out, this matrix is the same as the matrix M computed in the error minimization
approach in (Horn, 1987) (see section 2.2). The next step is to find the singular value
decomposition of H:

H = UΣV T

We can then find the rotation matrix R = V UT and translation vector ∆ = sC−RtC ,
where sC and tC are centroid points of the source and target points, respectively. We
refer to (Arun et al., 1987) for derivation, proofs and some rare degenerate cases. The
same paper also shows that the quaternion–based technique described in section 2.2 and
the SVD–based technique have comparable running times.

2.3 Optimization Methods
As mentioned previously, registration can be looked at as a non–linear optimization prob-
lem, where one attempts to optimize the transformation of the data points, such that the
error function is minimized. We have already introduced the quaternion based optimiza-
tion technique in section 2.2 and the singular value decomposition based technique in
section 2.2.1. In this section, we introduce other optimization methods found in the litera-
ture.

Geometric distance vs. largest common pointset

Objective functions are commonly either based on geometric distance between points or
on the number of matching points between the data sets. (van Kaick et al., 2011) We
recognize the former from the ICP algorithm. The latter, called Largest Common Pointset
(LCP) attempts to find a correspondence for the largest possible subset of data points, via
a transformation. A threshold value is used for deciding whether two points are close
enough to be considered matching. A main distinction between the two approaches is that
LCP handles partial matching naturally, while an objective function based on geometric
distance will automatically consider all data points.

Optimization method types

There is a vast number of proposed optimization methods. (Tam et al., 2013) gives a
thorough classification of the types of these methods which is briefly summarized here for
reference, before expanding on techniques of interest.
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• Local Deterministic Optimization. These methods try to locally minimize or max-
imize an objective function and are often efficient, but depend on good initialization.
They also have a tendency to converge to a local minimum.

• Global Deterministic Optimization. The methods try to avoid local minima and
find a global minimum. Thus they either perform a complete search, or relax the
problem so a good approximation of a global solution can be found.

• Stochastic Optimization. These methods use statistics and probabilistic approaches.
They can handle data sets with noise and outliers, as well as missing data.

• Constrained Search. These methods impose different constraints in order to limit
the search space.

The above techniques can be combined, since they have different complementary
strengths. Stochastic methods may work faster, but do not guarantee a globally optimal
solution, given their nondeterministic nature. Therefore, they can be used to obtain an
initial approximate alignment (coarse registration) for a local optimizer. This approach
reduces the chance that the fine registration ends up in a local minimum and works well in
practice. (Tam et al., 2013)

Local quadratic approximation

(Mitra et al., 2004) shows how to solve the registration problem using methods such as
Newton iteration and gradient descent, which require computation of accurate derivatives
of the objective function. The error landscape for the objective function is defined by
a function that gives the squared distance from a data point to the model surface. Lo-
cal quadratic approximants of this function are generated such that common optimization
methods can be used to solve the problem. The proposed technique works as follows:

1. The objective function is the sum of quadratic approximants of the squared distance
function for each point in the data set.

2. The rotation applied to the data points is first linearized (for small angles θ, sinθ ≈ θ
and cosθ ≈ 1).

3. Find derivatives of the objective function.

4. Set derivatives to zero.

5. Solve resulting system of equations.

6. Apply transformation and iterate the technique until convergence.
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For any point x =
[
x y z

]
∈ R, a local quadratic approximant has the form

F+(x) = Ax2 +Bxy + Cy2 +Dxz + Eyz + Fz2 +Gx+Hy + Iz

=
[
x y z 1

]
Qx
[
x y z 1

]T
,

and approximates the squared distance from x to the target data shape. (Mitra et al., 2004)
give two techniques for computing such functions. Under the small motion assumption
mentioned in step 2 above, the general rotation matrix can be linearized as:

R =


cos γ − sin γ 0 0
sin γ cos γ 0 0

0 0 1 0
0 0 0 1




cosβ 0 sin β 0
0 1 0 0

− sin β 0 cosβ 0
0 0 0 1




1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1



≈


1 −α β 0
α 1 −γ 0
−β γ 1 0
0 0 0 1

 ,
where α, β and γ are rotations around the x, y and z-axes, respectively. Let
t =

[
tx ty tz 1

]
be the registration translation vector and NS the amount of points

in the source data set {si}. We now need to minimize the function

e =
NS∑
i=1

(Rsi + t)Qsi(Rsi + t)T ,

where Qsi is part of the local quadratic approximant as defined above and depends on si.
e depends on the six variables α, β, γ, tx, ty , tz and by setting the corresponding partial
derivatives to zero, we obtain a system of six linear equations, which can be solved using
conventional methods.

Note that the point–to–point and point–to–plane ICP variants are special cases of the
above framework. (Mitra et al., 2004)

Branch–and–bound

The above method is efficient, but can get stuck in local minima. There have been attempts
to apply global optimization techniques to the registration problem, such that a global
minimum can be found. If we can represent the solution of registration in a tree structure,
branch–and–bound algorithms can be applied. One way to do this is to let each node be a
match between a data point and a model point. Each path from the root to a leaf of the tree
then represents a complete matching of the data sets. The technique then requires a lower
bound on the cost function. In (Gelfand and Mitra, 2005), this method is used to compute
the initialization for ICP. The paper suggests a tight and efficient lower bound for the
cost function. Furthermore, the technique can be used to match only partially overlapping
surfaces.
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Relaxation methods

Several techniques relax the registration problem such that a solution close to the global
minimum can be found. (Gold and Rangarajan, 1996) introduces a regularization term in
the objective function such that it becomes convex. (Liu, 2007) introduces regularization
terms in the objective function in order to apply an approximation of simulated annealing,
called mean field annealing. The resulting function attempts to minimize the registration
error, equalize mean field variables and maximize the overlapping area of the two data
sets. (Boughorbel et al., 2010) acquires a smooth convex approximation of the objective
function by summing a large number of Gaussian functions, resulting in another Gaus-
sian function, which is convex in a sufficiently large neighborhood of the rotation and
translation parameters, as per the paper. The paper proposes that this technique solves
the problem of local convergence of ICP, without sacrificing registration accuracy. The
technique is also good at handling noise in the data.

Non–deterministic methods

If the data to be matched is not too large, such that one affords to run the matching part
many times, some interesting non–deterministic methods may be applied to registration. In
brief, (Chow et al., 2004) describes how to construct a chromosome representation, fitness
function and cross-over and mutation operators, such that registration may be solved as a
genetic algorithm problem. As expected, the efficiency of this method is highly dependent
on computation of the fitness function. (Sandhu et al., 2010) applies a particle filtering
approach, where a particle represents an initial transformation of the data. The method
runs local optimization (any method is applicable, for example ICP) on particles from a
possible distribution and predicts new particles (transformations) in an iterative process.
Strengths of the method is its ability to deal with noise and poor initialization.

2.4 Large Data Sets

The main problem with the original ICP algorithm when dealing with large data sets is
that it requires all data points in the source and target to be read into memory. In our case,
we have defined a ”large” data set as one where this is not possible.

The matching step in ICP can not be done in a straight forward manner, because for
every point s in the source, we have to check every point in the target to find the closest one.
Optimizations of this, such as k-d trees (subsection 2.2.1) still require the whole target data
set to reside in memory at the same time. Most approaches in the literature that claim to
deal with large data sets, try to minimize the amount of times the matching step is run, but
in the end still require to run it at full resolution. As can be seen in sections 2.2.1 and 2.3,
this includes ICP, the mesh hierarchy approach (Turk and Levoy, 1994) and matching with
intersection points (Yang and Medioni, 1991). Some methods, like caching (Simon, 1996)
and branch–and–bound (Gelfand and Mitra, 2005) have even larger space requirements
than loading just the data points.

The alignment step in ICP has the same problem – if we cannot hold the point pairs
in memory, we also cannot hold their corresponding distances in memory. This makes
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straightforward computation of the mean squared error impossible. The cross–covariant
matrix needed in the common quaternion based (section 2.2) and singular value decom-
position based (section 2.2.1) alignment methods is not computable, since it requires mul-
tiplication of matrices of size 3xNS and NSx3, where NS is the amount of points in
the source data set. The least quadratic approximation approach and all the relaxation
methods mentioned in section 2.3 all require full resolution data in memory, while the
non–deterministic methods have even more space overhead.

(Pulli, 1999) actually describe their algorithm running on data sets that fit our definition
of ”large”. However, they work with multiple overlapping parts of the whole 3–D shape,
that are to be registered together. Their approach registers the parts in pairs, and each
registration creates constraints to use in the final registration of all the parts. Even though
the final result is a large 3–D object, the proposed algorithm must have access to smaller
parts that constitute that object.

In general, the registration literature focuses a lot on time–space trade–off in the benefit
of time requirements. Most such methods are not interesting for our case. The approaches
that acknowledge the challenge of large data sets still view it as a running time problem
and try to minimize the number of iterations with the matching step in ICP, assuming that
the matching step can in fact be executed. When this is not the case, there are few to none
algorithms to pick from. Chapter 3 desrcibes our proposed solution both for registration
and measuring distance between very large data sets.
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Chapter 3
Comparing large data sets

3.1 Registration of Large 3–D Objects

3.1.1 Overview

The general 3–D registration problem can be described as follows. Given two three–
dimensional objects, called the source and the target, we wish to find the transformation
that minimizes the distance between them when applied to the source. As explained in
section 1.3.1, we are interested in proper rigid Euclidean transformations.

The source and target may be identical, or they may overlap to some extent. Due to
their initial orientation, the extent of this overlap is often not obvious. In our specific case,
the target and source are results of 3–D scans of the same object at different times. The
differences due to erosion over time are small, so the registration must be precise if we are
to analyze them.

The scanned surfaces are represented by such large data sets, that the use of all the
information concurrently is impossible. In fact, most computers are not able to load the
whole object into memory. For this reason, we will need to use sub–sampling and local
information.

3.1.2 Solution

Let the target T and the source S be the data sets we wish to register against each other.
We wish to find the spatial transformation of S that minimizes the distance between S
and T , according to some chosen metric. Due to the large nature of the data sets, even
measuring the distance between them becomes a challenge. The current section deals with
the registration problem, while section 3.2 describes a method for measuring the distance.

The proposed registration technique is summarized in table 3.1.
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1. Perform rough registration on sub–sampled versions of S and T .

2. Apply the transformation found in step 1 to S, resulting in the data set S′.

3. Find the combined bounding box of S′ and T .

4. Divide S′ and T into two octree data structures on disk, using the bounding box
found in step 3 to bound both root nodes. Let the octree of T have a fixed overlap
between its subspaces.

5. Find matching leaf node pairs in the two octrees created in step 4.

6. Register the surface parts corresponding to the leaf node pairs found in step 5.

7. Now it is possible to:

• Apply the registrations found in step 6 to the corresponding surface parts and
proceed with distance measuring and analysis.

• Try to find a global registration for S and T , using the local registration infor-
mation found in step 6.

Table 3.1: Summary of the registration method.

Data representation

We assume the source and target object data is available on disk. The objects may be
organized as point sets or sets of geometric entities comprised of points. The ordering of
the geometric entities may be arbitrary. If the data is represented as a line segment set,
extra case must be taken so a geometric face does not get split between two parts, once
the division starts. The technique does not currently work with implicit and parametric
surfaces.

Knowledge of the boundaries of the space to be subdivided is required. If this infor-
mation is not present, a run through the original data to obtain the bounding boxes for both
the source and the target must be done.

Rough alignment

The first task is to roughly align the two data sets S and T . For this purpose, any con-
ventional registration method, such as ICP will suffice. The algorithm can be run with a
uniform sub–sampling of the data sets, but often requires good initial parameters in order
to not get stuck in a local minimum. (Pulli, 1999) Such initial parameters can be found
with 3–D processing software and supplied manually by the programmer. The proposed
approach is to uniformly sub–sample both data sets, so that they can be loaded with the
software of choice. Let Su and Tu be uniformly sub–sampled point sets from S and T ,
respectively. The sampling probability must be set so the size of the resulting objects is
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manageable for the tasks ahead. We align Su to Tu in the software and extract the aligning
transformation to use as initial parameters.

Given the initial parameters and a uniform sub–sampling of the data sets, we attempt
to further align Su and Tu with the registration method of choice. The resulting trans-
formation must then be applied to each point of S as we read them from disk and store
the transformed points back to disk as the new 3–D object S′ (remember that the data sets
are too large to hold in memory at once). This will often work well enough that the error
is not visible to the human eye, but since we are interested in the erosion of the surfaces,
the differences we are looking for may in fact be too small to see with the human eye.
The sub–sampling approach to registration only uses some of the information of the data,
while we are in fact interested in the displacement error of each and every point in the
data sets. Unless we decrease the registration error as much as possible, we may not be
able to differentiate it from the effects of erosion. For these reasons, we wish take into
consideration all the available information and start dividing the data sets to look at them
locally.

Bounding box combination

Before dividing the data sets S′ and T into octrees, we wish to ensure that the two octrees
represent the same part of space. In other words, we want the bounding boxes of the two
root nodes to be identical. For this purpose, we choose the strictly larger bounding box of
S′ and T . If none of them is strictly larger than the other, we choose their combination.

More precisely, let the bounding box of S′ be described by the eight corner points
BS′ = {bS′1, ...,bS′8} and the bounding box of T be described by the eight corner points
BT = {bT 1, ...,bT 8}. We choose as root bounding box B for both octrees the minimal
axis–aligned bounding box of the point set BS′ ∪BT .

Division of data

Given the data sets S′, T and the bounding box B described above, we divide both data
sets into octree representations, where each leaf node represents a file on disk containing
a surface part of the whole object. Since we will be registering the surface parts at full
resolution later, each file may not contain more than a user specified amount of data. The
technique is summarized in table 3.2

We want the octree representing the data shape T to have a fixed overlap between its
subspaces. In other words, if a node represents a space with center point c and radius r, we
want it to have the same center point, but radius r +

[
δ δ δ

]′
, for some constant δ. This

means that any point in T may be added to several leaf nodes in the octree. Modifications
to the code for building the octree are straightforward, most notably we must add a series
of checks to the procedure that decides which child to add a point to and allow it to add
the point to multiple children.

This multiplies the running time of the algorithm by a constant, though the time com-
plexity remains unchanged asymptotically.
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FUNCTION divide_data
INPUT: data_file, bounding box B, max_points_per_file m

1. root = new octree node
2. set root’s bounding box to B
3. for each data point p in data_file:
4. input_point_in_tree(root, p, m)

FUNCTION input_point_in_tree
INPUT: node root, point p, max_points_per_file m

1. n = leaf node for p, from descendants of root
2. if n.points_written < m:
3. write p to file represented by n
4. n.points_written++
5. else:
6. split_points_to_children(n)
7. input_point_in_tree(n, p, m)

FUNCTION split_points_to_children
INPUT: leaf node n

1. create eight children for n
2. for each point p in file represented by n:
3. c = correct child of n for p
4. write p to file represented by c
5. delete file represented by n

Table 3.2: Object division algorithm

Local registration

Once the data division is done, we can match leaf nodes in one octree with the correspond-
ing leaf nodes in the other octree. There are cases, when no such match can be done, often
because the target and source data sets do not overlap completely. Then, a leaf node may
for example represent a surface part in the source that does not exist in the target. Such
surface parts are of no interest to us.

Leaf nodes may also lack a match as a result of different scanning resolutions used
when the data was collected. If one of the objects contains more points than the other, the
division procedure could produce one octree that is much deeper on average than the other.
In this case, a leaf node’s match in the other octree may be a non–leaf node. Section 3.2.2
describes in detail how to match leaf nodes between the octrees in all possible cases.

Let PS′ and PT be surface parts represented by a match of leaf nodes LS′ and LT and
belonging to S′ and T , respectively. Since the leaf nodes have identical positions in their
octrees and the octree roots have the same bounding box B, we know that both leaf nodes
have the same center point c. Let rS′ be the radius of the bounding box of LS′ . Then, the
radius of the bounding box of LT is rT = rS′ +

[
δ δ δ

]′
.

During registration, we wish to find the closest neighbor in the target to every point
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in the source and find a transformation that brings all these neighbors as close together as
possible. Let P ∗S′ be the surface part PS′ , but transformed in such a way that the distance
between P ∗S′ and T is as small as possible. For every point p∗i ∈ P ∗S′ , i = 1, ..., NP ,
where NP is the amount of points in P ∗S′ , let t∗i be its closest point in T . Let Γ be the
transformation used on PS′ to obtain P ∗S′ , so that it transforms each point pi ∈ PS′ to
p∗i ∈ P ∗S′ . Let the objective function for registration of PS′ and T be

eT = 1
NP

NP∑
i=1
‖ti −Θ(pi)‖ ≥

1
NP

NP∑
i=1
‖t∗i − Γ(pi)‖,

where Θ denotes some proper rigid transformation and for every point Θ(pi), ti is its
closest point in T . Similarly, let the objective function for registration of PS′ and PT be

ePT
= 1
NP

NP∑
i=1
‖ti −Θ(pi)‖ ≥

1
NP

NP∑
i=1
‖t∗i − Γ(pi)‖,

where for every point Θ(pi), ti is its closest point in PT . We are interested in the condi-
tions for when the latter equation can become an equality, because Γ was defined as the
best possible transformation for the part PS′ . In other words, Γ is the answer to the regis-
tration problem for this surface part. We see that the condition for this situation is that the
surface part PT contains all the points t∗i . It follows that

If for every i = 1, ..., NP , t∗i ∈ PT , then the objective function for registering
PS′ with PT and the objective function for registering PS′ with T have the
same global minimum.

The consequence of this is that we can register the matching surface parts and find the
global minimum, without the need of the whole target object. This makes it possible to
perform registration at full resolution, by doing it part–by–part.

It is difficult to be sure that the condition above applies to the surface part in question.
The probability of the condition being fulfilled rises with the quality of the rough regis-
tration between S and T and the size of the overlap constant δ. Figure 3.1 shows a visual
comparison of different values of δ. In anticipation of future work in this area, the only
method now seems to be experimentation with the overlap constant and manual analysis
of the results.

Note that the above local registration technique often results in different surface parts
finding different optimal transformations. This may point to the mentioned condition not
being fulfilled for some of these parts or to the fact that a global registration of the whole
object that is also optimal for all its surface parts does not exist. This will be the case if
there were any problems with the scanning process, a lot of noise in the data or the object
was somewhat wrongly ”glued” together from several scans. Our experience is that such
factors are often present in real world data.

Application to global data sets

Once we have obtained the local transformations of the surface parts, we may try to use
this information to register S′ with T . Given a transformation from some part of S′, we
propose the following two methods:
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(a) Overlap of 3 millimeters. (b) Overlap of 5 millimeters. (c) Overlap of 10 millimeters.

Figure 3.1: Visual comparison of different overlap constants when a surface part (in blue) is matched
with its target (in pink).

1. Direct application. Apply the transformation to S′.

2. Initial parameters. Perform registration between uniform sub–samplings of S′ and
T , using any registration algorithm and the local transformation as initial parame-
ters.

We expect the first method to work in perfect conditions – the local transformation is
indeed globally optimal as described in the previous subsection and the effects of scanning
errors and noise in the data sets S′ and T are negligible. Unfortunately, such perfect
conditions are rarely obtainable with real world data.

The second method hopes that the local transformation steers the new registration pro-
cess into the global minimum. We expect this method to handle scanning errors and noise
better than the first and it may even work if the local transformation is not globally optimal.

The data division process may result in a large amount of surface parts of the source
and target objects, so it is a point of interest which local transformations we use to search
for the global one. We have singled out some features of surface parts that may make them
suitable candidates:

1. Farthest part before local transformation. Given two corresponding surface parts
P i

S′ and P i
T of S′ and T , we can measure the distance d(P i

S′ , P i
T ) between them.

The farthest part is the surface part P i
S′ , such that d(P i

S′P i
T ) ≥ d(P j

S′ , P
j
T ) for all

j 6= i.

2. Closest part before local transformation. Similarly, the closest part is the surface
part P i

S′ , such that d(P i
S′ , P i

T ) ≤ d(P j
S′ , P

j
T ) for all j 6= i.

3. Farthest part after local transformation. Given two corresponding surface parts
P i

S′ and P i
T of S′ and T , and the resulting local transformation Θ, we can measure

the distance d(Θ(P i
S′), P i

T ) between them. The farthest part is the surface part P i
S′ ,

such that d(Θ(P i
S′), P i

T ) ≥ d(Θ(P j
S′), P j

T ) for all j 6= i.

4. Closest part after local transformation. Similarly, the closest part is the surface
part P i

S′ , such that d(Θ(P i
S′), P i

T ) ≤ d(Θ(P j
S′), P j

T ) for all j 6= i.

5. Biggest improvement after local transformation. This is the surface part P i
S′ such

that d(Θ(P i
S′), P i

T )− d(P i
S′ , P i

T ) ≥ d(Θ(P j
S′), P j

T )− d(P j
S′ , P

j
T ) for all j 6= i.
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6. Largest part. The largest part is the surface part of S′ that contains the most points.

7. Combined corner parts. The combination of corner parts of S′ – these are the parts
that contain the points closest to the corners of the bounding box of S′.

8. Average transformation. Instead of choosing just a couple surface parts, we use
the transformation that is the average of all the local transformations obtained from
the parts P i

S′ .

The farthest part before local transformation is the surface part that the rough regis-
tration had the worst effect on. In other words, the local minimum found by the rough
registration does not give a good distance value for this surface part, and we hope that the
proposed local transformation pushes the global registration into a better local minimum.

The closest part before local transformation is the surface part that the rough registra-
tion had the best effect on. We expect the proposed local transformation to be very similar
to the one obtained after rough registration and have little further effect when applied
globally.

The farthest part after local transformation is the one with the worst end result. This
may mean that the surface part contains more noise or scanning errors than the other parts
and may be of interest to analyze manually. The effect of applying its proposed local
transformation globally is difficult to predict.

The closest part after local transformation is the one with the best end result. For this
reason, one may expect good results when using its local transformation.

The surface part with biggest improvement after local transformation may often coin-
cide with part number 1 in the list above. It is interesting, because the different distance
value before and after local registration may point to there being a large difference between
the resulting transformations too. Thus, there is a bigger chance that the local transforma-
tion guides the global registration into a different local minimum.

The largest part may be worth trying, simply because it contains more data than the
other surface parts.

The combination of corner parts may counteract some scanning errors – if the source
and target objects were ”glued” together from several scans, any error in the ”gluing”
process could propagate outwards and become larger between parts on the object that are
far away. Therefore, we combine the corner parts into one and try their proposed local
transformation globally. If it is not possible to register the combined corners well enough,
this may indeed point to the existence of such ”gluing” errors in the data.

The notion of somehow ”averaging” the local transformations to include all the avail-
able information in the solution is tempting, but presents several technical difficulties. In
fact, ”an average rotation” is a concept that is difficult to define. Let the transformations
be represented by a rotation, followed by a translation. We can extract the Euler angles
from the rotation matrix and average them, thus creating a new rotation. The averaging of
multiple translations is also straightforward. Let for example the rotation of surface part
P i

S′ be a rotation around the z–axis by αi, then around the x–axis by βi and then around
the z–axis by γi. The first rotation around the z–axis of our average matrix would have
angle
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α = 1
N

N∑
i=1

αi,

where N is the amount of surface parts of S′. The problem is that the following rotations
are affected by this z–axis rotation. For any surface part P i

S′ , its rotation around the x–axis
by βi has changed meaning, because it is performed after the z–axis rotation by α and not
αi. Hence, we are no longer averaging the local transformations of the surface parts, but
something entirely else. Another way to view this, is that the pertinent information in the
local transformations lies in the combination of the Euler angle rotations, and we lose this
information if we average them one–by–one.

To circumvent these problems, we may try to express the local transformations in
quaternion form. By use of spherical linear interpolation (Slerp) (Shoemake, 1985), we
can trace a path between two quaternions through 3–D rotations. The average of two
quaternions is then the rotation corresponding to the point in the middle of this path. How-
ever, this technique is meant for averaging only two quaternions. We refer to (Buss and
Fillmore, 2001) for the generalization of Slerp and to (Alexa, 1997) for an approach to
linear transformation approximation.

We have tested the two methods of global application by using the local transforma-
tions of several of the above parts in our data. The results of this are presented and dis-
cussed in chapter 4.

3.2 Measuring Distance Between Large 3–D Objects

3.2.1 Overview
We wish to measure the spatial distance between two 3–D objects whose data represen-
tation is too large to contain wholly in computer memory. The 3–D objects are assumed
to be represented as sets of points. The data may be arranged in any way (triangles etc.),
as long as we have access to the underlying point set. In addition to an overall distance
between the objects, we are also interested in the per–point distance between each point
in one of the objects to the other. We assume these objects have already been registered,
meaning that any aligning transformations required before the distance measure have been
performed.

Regardless of which metric is chosen for the task, surface points in one of the objects
must somehow be matched with surface points in the other. This introduces a problem,
because conventional methods to find the nearest neighbor of a point need access to the
whole data for searching purposes. For example, a k-d tree provides logarithmic search
times, but given a data set of size n, the space requirements are O(n). In our case, we
assume n to be so large, that this becomes unfeasible.

The proposed solution is to first split both 3-D objects into parts, and measure the
distance between the resulting smaller parts conventionally. The distances between the
parts can then be summed together and normalized over the total number of points in the
large 3-D objects. This requires a procedure to divide both objects into small enough parts,
without losing track of which corresponding pieces must be measured against each other.
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1. Divide both surfaces into small enough parts.

2. Match the divided surface parts into pairs.

3. Calculate distance between each pair of surface parts.

4. Add and normalize results.

Table 3.3: Overview of distance measuring solution

It is also important that the resulting distance produced by this approach does not differ
from the result that would be produced by a hypothetical machine with the capacity to
measure the distance by using a conventional method.

The solution makes a couple of assumptions that will be explained thoroughly in the
following sections. Mainly, we assume that only parts of the surfaces that overlap to
some degree are of interest. In other words, we assume there is an upper threshold for
the distance between the points of the surfaces and we disregard values above it. The
other assumption of note is that the objects are dense – there are no large gaps between
neighboring points. This constraint is usually fulfilled when the objects are the results of
a 3–D scan.

Table 3.3 gives a summary of the solution. The following section starts with the math-
ematical background and elaborates on each point in the table in the subsections. Then
follows a discussion of potential problems with this solution and alternative metrics to use
for the distance calculations.

3.2.2 Solution

We will describe the approach in general terms with regard to the distance metric, before
looking into specific ones. Let f be a function that takes a three dimensional point x and
a three dimensional surface Y and outputs the distance between x and Y . We define the
surface distance d(X,Y ) between data sets X and Y as the normalized sum of distances
between each point of X and Y :

d(X,Y ) = 1
N

∑
x∈X

f(x, Y ),

where N is the number of data points in X .
Let S and T be aligned data sets. We wish to divide both the sets into parts denoted

S1, S2, ..., Sn and T1, T2, ..., Tm respectively, such that no part contains more than some
constant k points and

n⋃
i=1

Si = S and
m⋃

j=1
Tj = T
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By working on single pairs of corresponding surface parts at a time and restricting the
constant k, we can be certain that the memory requirements of the algorithm do not exceed
the capacities of the computer available. We will be looping through each point in each
part of the S data set, and we do not wish to count the distance of the same point multiple
times, so we require that there is no overlap between the parts S1, S2, ..., Sn:

Si ∪ Sj = ∅ for i 6= j

After the surface division process, we wish to find for each part Si ∈ {S1, S2, ..., Sn}
a corresponding part Tji

∈ {T1, T2, ..., Tm} such that for each point in Si, Tji
contains

the point’s true closest neighbor in T . We then loop through each part of S and sum the
distances between its points and the corresponding part of T . If this condition is fulfilled,
we have for i = 1, 2, ..., n:

f(x, Tji
) = f(x, T ) for all x ∈ Si

Let NS be the number of points in S and NSi be the number of points in Si for
i = 1, 2, ..., n. Combining all conditions given so far, we have

1
NS

n∑
i=1

∑
x∈Si

f(x, Tji
) = 1

NS

∑
x∈S

f(x, T ) = d(S, T )

and so we see that our approach gives the same result as a conventional distance mea-
surer that does not split up the data sets beforehand.

Surface division

First, both surfaces S and T have to be split into smaller parts. As explained above, the
following constraints must hold, in order for our approach to work and produce correct
output:

1. Each part has no more points than some constant k

2. The parts are collectively exhaustive with respect to the surface being divided

3. The parts of surface S are mutually exclusive

4. We must be able to match pairs of surface parts from the two objects, such that they
contain points in the same part of space

5. Within each pair, one part has to contain all of the true closest neighbors of the
points in the other part

Constraints 1-3. The first three of these constraints are fulfilled when we use the
octree surface division algorithm described in section 3.1.2 and set the maximum allowed
points in an octree node to k. This restricts the size of each surface piece, and the pieces are
collectively exhaustive and mutually exclusive, as a direct result of the octree algorithm.

Constraint 4. Constraint number four becomes challenging, if we naively apply the
octree algorithm to both surfaces. The solution is to ensure that the root node of each
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octree represents the same bounding box in space. We can find the bounding boxes of each
surface by simply looping through all points once as they are read from disk (remember
that the surfaces are too large to hold in memory). Then we use the minimum bounding
box of these two bounding boxes for both octree root nodes. In other words, if surface S
has a bounding box represented by the set of corner pointsA and surface T has a bounding
box represented by the set of corner points B, then we use the bounding box of A ∪ B as
the space at the outermost level of both octrees. This will somewhat change the division
of one or both surfaces and may add to the depth of the octrees, but gives the following
useful results:

Let V and U be the octrees resulting from division of data sets S and T respectively.
We enumerate the children of each non-leaf node from zero to seven and say that two paths
α and β in the octrees are equivalent (α = β), if their choices of child to travel to agree at
each step. Then,

• If α is a path from the root node of V to node a and β is a path from the root node
of U to node b, and α = β, then a represents a (non-strict) subspace of the space
represented by b.

• If α is a path from the root node of V to node a and β is a path from the root node of
U to node b, and β is a prefix of α, then a represents a (strict) subspace of the space
represented by b.

These observations allow us to find matching pairs of surface parts. The details of this
procedure will be explained in section 3.2.2.

Constraint 5. Once we have matching parts, we want one of the parts to contain the
true neighbors of the points in the other part, as per constraint number five above. This
becomes problematic along the borders of the surface part, since we cannot be sure that
the true neighbor of a border point does not lie in the bordering octree node.

This observation is troublesome, because to ensure ourselves that we have found the
correct neighbor for a border point, we would have to find all the bordering octree nodes
and check the distance to all points contained within them. This would have to be done
for each border point in each octree leaf node and most importantly, since multiple surface
parts are searched we no longer can ensure that the memory requirements are constrained
by the constant k (constraint number one above), without submitting to an unsavory num-
ber of disk accesses per data point. The worst case scenario are border points that are near
the center of the outermost bounding box of the octree, which adds all branches from the
root node into consideration when searching for closest neighbors.

To avoid this, we require the space of each octree node of surface T to overlap with
all of its neighboring spaces. We choose an overlap constant δ and expand the bounding
box of each node with δ in all eight directions. When comparing a surface part Si with its
match Tji

, Tji
will then contain the nearest neighbor in T of any point in Si, as long as

the distance between them is less than δ. Thus, we satisfy constraint number five, but add
the following constraint to our data:

f(x, T ) < δ for all x ∈ S
This will be fulfilled in cases where the data points are dense and in cases where point–

to–point distances above some threshold are to be ignored. 3–D scanners often output data
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in the shape of densely packed small triangles and it is possible to set a maximum of how
much change is done by erosion to a material surface over a certain time, so both of these
points apply to the case described by this thesis.

The above means that each point may be added to multiple nodes during construction
of the octree, so the parts T1, T2, ..., Tm are no longer mutually exclusive. Note however,
that all constraints and observations discussed above still hold.

Finding matches for surface parts

Once both surfaces S and T have been divided as detailed above, we wish to loop over the
parts S1, S2, ..., Sn and for each Si, find the matching part Tji

. For this purpose we use
the octree representations of the two surfaces, but we disregard leaf nodes that contain no
points. Then there is a bijection between the parts S1, S2, ..., Sn and the leaf nodes in the
octree of surface S. The same holds for surface T , though the surface parts do overlap, as
described in the previous section.

For each leaf node in the octree of surface S, we search the octree of surface T for
a matching node. Let V and U be the octrees resulting from division of data sets S and
T respectively. Let a be the leaf node representing the surface part Si currently under
inspection and α be the path from the root node of V to a. We use the same definition of
equality of paths as in section 3.2.2. There are four possible cases of interest: (see also
figure 3.2)

1. There is a path β from the root node of U to a leaf node b and α = β.

2. There is a path β from the root node of U to a leaf node b and β is a prefix of α.

3. There is a path β from the root node of U to a non-leaf node b and α = β.

4. There is no path in U equal to α and there is no path from the root node of U to a
leaf node that is a prefix of α. In other words, none of the first three cases hold.

Case 1. The first case is straightforward. By observation 1 in section 3.2.2, node
b represents the surface part Tji

that matches Si. The distance between them can be
calculated using any 3–D distance algorithm of choice.

Case 2. By observation 2 in section 3.2.2, the bounding box of node a is fully con-
tained in the bounding box of node b. Thus, node b represents the surface part Tji

to match
Si, as in case 1.

Case 3. Here the same observation is made about the bounding boxes of the nodes
as in case 2, but the non–leaf node b does not directly represent any of the surface parts
T1, T2, ..., Tm. In fact, it contains multiple of them, since the node is further split into
children nodes. We cannot combine them into one part without possibly violating the
memory constraint on our algorithm. The solution is to further divide Si into equivalent
parts and perform distance measuring on each of them. For each point in Si, we use the
already existing structure of T ’s octree and find which subspace of b it falls into. We end
up with a partition of Si where each part matches one of T1, T2, ..., Tm. Pseudo code
follows:
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(a) Case 1.

(b) Case 2.

(c) Case 3.
(d) Case 4.

Figure 3.2: (a) Si is matched with its equivalent node in T . (b) Si is matched with a higher level
node in T . (c) Si is split into parts using T ’s octree and each part is matched with its equivalent leaf
node in T . (d) Si’s equivalent node in T is empty, so there are no points close enough to measure
against in T . Si can be safely ignored.
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1. M = empty map of leaf nodes to point sets
2. for each point x in S i
3. node = root node of U
4. while node is not a leaf do
5. leaf = node.find_correct_child(x)
6. if node is a non-empty leaf then
7. M[node] = M[node] ∪ x
8. for each leaf node λ in M
9. calculate_distance(λ.data_points, M[λ])

Note the conditional statement in line 6, resulting from the fact that we disregard leaf
nodes that have no data points. If a point x ∈ Si would fall into such a leaf node, then
its distance to any point in T is larger than the threshold δ described in section 3.2.2 and
should not be taken into consideration. This is a similar situation to case 4, described
below.

Case 4. In this case, the 3–D object T simply has no points residing in the bounding
box of node a. We are interested in points in T that have a distance to points in Si less
than the threshold δ. If such a point were to exist, it would have to be closer than δ to the
bounding box of node a. Since the octree of T is built of subspaces using an overlap of
δ in all directions, this point would force the creation of a node b, such that the path from
the root node of V equals α. We see that either case 1 or case 3 would then be correct,
which is a contradiction. Hence, there are no points x ∈ Si such that f(x, T ) < δ, so we
can safely disregard all points in Si from the distance measuring.

3.2.3 Distance Calculation
Since the parts S1, S2, ..., Sn are mutually exclusive, we can safely sum the distance results
from cases 1 - 3 from section 3.2.2 to a total sum, without counting the distance of any
point multiple times. Since the parts are collectively exhaustive with regard to S, we
can be sure that all points in S are part of the calculation, apart from those we wish to
disregard. Hence, we have obtained the desired distance d(S, T ). The distance can also be
normalized over the amount of points used in the calculation.

3.3 Potential Issues

3.3.1 Overlapping and Point Clusters
As explained in section 3.2.2, we use a constant overlap δ for the subspaces of T ’s octree,
regardless of the size of the subspace itself. This can lead to strange situations, like a leaf
node representing a space that was originally smaller than δ in one or more dimensions, but
has been expanded more than twice its own size in that direction because of the overlap.
We could make δ dependant on the size of the subspace, something like δx = 0.01Tjx,
where Tjx is the size of node Tj’s bounding box in the x–direction, and the same for the
other two dimensions. However, remembering constraint number 5 in section 3.2.2, we
can no longer be sure that the distance calculation is correct. δ can now become arbitrarily
small, so no leaf node of T is guaranteed to contain the true neighbors in T for the border
points in its matching S node.
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We conclude that δ must be kept as a constant. The only technical problem that can
arise from this is during the construction of the octree. If there are geometrically very
small clusters containing very many points in the object T , then it is possible that the con-
struction of the octree ends up in an endless loop. This happens because the large amount
of points calls for a division of the octree node, but the node’s children are expanded to be
as large or larger than their parent because of the δ overlap. Then each child contains the
same amount of points as the parent node, so the algorithm tries to divide the children in
the same way, ending up in a loop.

In order for this problem to arise, the bounding box dimensions of the point cluster
cannot be much larger than δ, but still contain more points than our memory constraint k.
In practice, this rarely occurs and is best dealt with in a case–by–case basis. Often, the
cause will be a large amount of duplicate points, which can be removed before building
the octree. The algorithm can be kept stable by enforcing a maximum depth of the octree
and noting the cases when it wishes to exceed this depth for further examination by the
programmer.

3.4 Distance Metrics
We have explained the distance measuring approach somewhat abstractly with regard to
the function that actually gives us the distance in space. All that we require is a function
f that takes a three dimensional point x and a three dimensional surface Y and outputs
the distance between x and Y . In this section, we mention some alternatives for such a
function and metrics to use for the distance between the 3–D surfaces themselves.

3.4.1 Sum of Point Distances
As explained in section 3.2.2, we define the distance between surface S and T as

d(S, T ) = 1
NS

∑
x∈S

f(x, T ),

where NS is the number of points in S. This has been assumed throughout the discussion
so far. Note that this is not technically a metric, since it is not necessarily symmetric.
To see this, imagine that S consists of only the origin, while T consists of two arbitrary
points with different distances to the origin. Then, d(S, T ) 6= d(T, S), simply because T
has more points than S. To solve this, we would have to define the metric as

d(S, T ) = min{ 1
NS

∑
x∈S

f(x, T ), 1
NT

∑
y∈T

f(y, S)}

or

d(S, T ) = max{ 1
NS

∑
x∈S

f(x, T ), 1
NT

∑
y∈T

f(y, S)}

This effectively doubles the computational work when calculating the distance, since
we must run the algorithm twice, including splitting up the objects. The proposed approach

37



is to use the distance function as defined previously, but be aware of the potential pitfalls.
One should be careful not to compare the results of two distance calculations, where the
roles of the objects have been ”reversed”. In other words, keep in mind that d(S, T ) and
d(T, S) are not measures of the same thing.

3.4.2 Hausdorff Distance

In our case of discrete data sets, we can define the Hausdorff distance between D and M
as

d(S, T ) = max{max
x∈S

f(x, T ),max
y∈T

f(y, S)},

assuming that f(x, Y ) returns the distance between the point x and its closest point in
Y . The Hausdorff distance is a well–defined metric on the space of 3–D objects and
has the benefit that d(S, T ) = d(T, S). However, it again requires us to do double the
computational work, as discussed in section 3.4.1.

Note that the Hausdorff distance basically measures the largest distance between clos-
est neighbors found in the objects. This means that noise and erroneous scan data will
more often than not be the deciding factor in the result. In our case, where we disregard
distances over a certain threshold, the Hausdorff distance does not seem like a good choice.
A possible scenario where it could be used, is to check that nearly identical objects have
been registered correctly, such that no neighbor point pairs are too far away from each
other. However, this requires data with very little or non–existent noise. Furthermore, the
same goal can be obtained by using the normalized sum of point distances and requiring a
result very close to zero.

3.4.3 `0 Distance

We define the `0 distance between S and T as

d(S, T ) =
NS∑
i=1

#(i|f(si, T ) 6= 0),

where NS is the amount of points in S and f(si, T ) gives the distance between si and T ,
as before. In other words, the distance between S and T is the amount of points in S that
have non–zero distance to T . This approach can make sense in the context of registration,
since we are trying to align points and wish to maximize the amount of points that have
zero distance from their target. The metric can be applied directly if we expect the points
to match exactly. In real world sensor data however, we would need to define a threshold
below which a distance counts as zero. This deals with the floating point data produced by
for example 3–D scanners.

We refer to (Bouaziz et al., 2013) for more details about using the `0 norm as well as
the `p norm for other values of p ∈ [0, 1] for registration purposes.
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3.4.4 Point Distance Function
The distance function f(x, Y ) operates on parts of the surfaces after they have been split
up. Since every surface part contains no more than some chosen constant amount of
points, we can be certain that the calculation will not be too memory intensive. Let f
return the distance from x to the closest point in Y . In order to avoid looping through
all the points in Y every time, one can construct a k–d tree out of the points in Y , which
takes O(NY logNY ) time (NY being the number of points in Y ). Each search then takes
O(logNY ) time.

The distance itself can be measured using the Euclidean or Euclidean squared metric.
Let x = (x1, x2, x3) and y = (y1, y2, y3) be two three–dimensional points. Then the
Euclidean distance between x and y is

d(x,y) =

√√√√ 3∑
i=1

(yi − xi)2

The Euclidean squared distance is

d(x,y) =
3∑

i=1
(yi − xi)2

The Euclidean distance represents what we usually think of as distance and makes
reasoning about the results as simple as possible for a human. If the units used by the
3–D scanner are millimeters for example, the result of an average distance of 3 millimeters
between surface S and T immediately makes sense to us.

The Euclidean squared distance has the benefit of avoiding the computationally costly
square root operation in the innermost loop of the distance algorithm and is therefore often
the metric of choice. However, when reasoning about results, one must remember that an
average Euclidean squared distance of j millimeters between two surfaces does not mean
that they are j or

√
j millimeters apart on average in reality. In conclusion, one should use

the Euclidean squared distance when computational performance is of the essence, and the
Euclidean distance when an exact answer in common distance units is required.

There are other metrics, like Chebyshev and different orders of Minkowski distance,
but we do not benefit from applying these to our case.

If the surfaces we are measuring are represented as sets of triangles, then there may
be a difference between the result of the point–to–point approach and the actual distance
between them. For example, if a point x ∈ S lies on the line between its two closest
points in T , we will obtain the distance from x to one of these neighbors in T . However,
if we consider the line between the two neighbors to be part of the surface of T , then the
distance between x and T is in fact zero. If we know that all the points are sufficiently
densely packed, as may be the case in scanned objects, the error resulting from this will
often be negligible.
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Chapter 4
Results and Discussion

4.1 Data Sets
The experiments were run on real world data procured by the PRESIOUS project. The
model T is a 3–D scan of the surface of a column approximately two meters in height and
approximately 1.5 meters in diameter. It consists of 226 343 250 points, arranged into 75
447 840 triangles. The data S is a partial 3–D scan performed at a different time of one of
the column’s walls, approximately 75 centimeters tall and 30 centimeters wide. It consists
of 292 386 669 points, arranged into 97 462 223 triangles. Sub–sampled versions of these
data sets can be seen in figure 4.1.

Both data sets were combined from several scans, since it is difficult to scan a large
object in one go.

The data S was first registered with the model T , using the singular value decomposi-
tion based ICP version described in section 2.2.1 with a point–to–point distance measuring
approach and a uniform sampling of about 3 000 000 points each. The registration ran for
a maximum of 200 iterations or until the error improvement from the last iteration became
lower than 10−6. Initial transformation parameters had to be found manually, using 3–D
software and sub–sampled versions of S and T . The code was supplied by the libicp li-
brary, created by Andreas Geiger. (Geiger et al., 2012) The result of the coarse registration
can be seen in figure 4.2.

Both T and S were then divided using the octree algorithm described in section 3.1.2,
allowing a maximum of 1 000 000 triangles per surface part. The octree generated for the
model T had a border overlap of 3 centimeters. This process produced a total of 262 parts
for T and 282 parts for S.

After initial registration and division, each part of S was registered with its correspond-
ing part in T . The registration was run for a maximum of 200 iterations, with the same
error threshold of 10−6, but this time done at full resolution. Corresponding parts were
matched following the procedure in section 3.2.2.

The distances between the corresponding parts were measured using the mean Eu-
clidean distance. The following pieces were chosen post rough registration as parts of
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interest:

Part 1: Farthest part. The part of S that had the largest distance to its corresponding
part in T of all the pairs. It contained 35 937 points and had a distance of 7.58317
to its match.

Part 2: Closest part. The part of S that had the smallest distance to its corresponding
part in T of all the pairs. It contained 294 points and had a distance of 0.119567 to
its match.

Part 3: Largest part. The part of S that had the most points. It contained 2 957 853
points and had a distance of 1.17794 to its match.

Part 4: Corners. Two corner parts of S combined into one part. It contained 577 953
points and had a distance of 1.750950 to its match.

See also figure 4.3. We shall refer to these surface parts by their number in the above
list.

4.2 Potential Sources of Error
There are several potential sources of errors in a real world data set resulting from a
3–D scan. Noise may be induced by the 3–D scanner, resulting in data points that do not
represent the actual object and disturb the registration procedure. Noisy data points that
are above the distance threshold described in section 3.2.2 can be safely ignored, and will
not have an effect on the results. However, noisy points that are similar to the real data
points may still have an effect. If there is for some reason a lot of localized noise, its effect
is hampered by the uniform sub–sampling done in the coarse registration step. However,
it will have a much larger effect on the local registration done afterwards.

If the data set is ”glued” together from several surface scans, as it is in our case, the
”gluing” process may induce errors at the ”seams” of these individual scans. If two pieces
of the object are combined together slightly wrong, this error propagates outward on the
surface and has a higher effect far away from the erroneous ”seam”. Examination of corner
pieces, such as part 4 described in section 4.1 may expose these errors, since the corners
are relatively far away from each other. In presence of ”gluing errors”, we expect part
4 to have a comparatively worse distance result both after coarse registration and local
registration.

4.3 Local Transformations
The results of local registrations on the surface parts can be seen in table 4.1. The initial
distance column shows the distance between the surface parts and their matching part
in T after coarse registration. The resulting distance column shows the same thing, but
after local registration between the matching parts. The max. distance columns shows
the largest distance found between neighboring point pairs after local registration. This
is the same as the Hausdorff distance between the surface part and its match in T (see
section 3.4.2 for definition).
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(a) Data set T .

(b) Data set S.

Figure 4.1: (a) Sub–sampled 3–D scan of the whole column surface. (b) Another sub–sampled 3–D
scan of a part of the same column. Images are to scale relative to each other.
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Figure 4.2: Result after coarse registration. The red rectangle shows the placement of data set S.

(a) Part 1. (b) Part 2.

(c) Part 3. (d) Part 4.

Figure 4.3: (a) Surface part with largest distance to its match. (b) Surface part with smallest distance
to its match. (c) Surface part with most points. (d) Surface part consisting of two corners.
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Surface part Initial distance Resulting distance Max. distance
Part 1 7.583170 0.478686 1.084190
Part 2 0.119567 0.066857 0.147486
Part 3 1.177940 0.111948 0.854903
Part 4 1.750950 0.227744 1.287340

Table 4.1: Resulting average distances between surface parts after local registrations.

ICP iterations Resulting distance Improvement
0 68.081100 N/A

200 0.914787 67.166313
400 0.913825 0.000962

Table 4.2: Resulting average distance between S and T after different numbers of ICP iterations.
The ”Improvement” column shows improvement over the result in the previous row.

4.4 Application to Global Data Set
The local transformations of the parts of interest were applied in different ways to the
whole data set S. The distance between the resulting transformed data set and the model
T was measured using the procedure in section 3.2. The following experiments were run:

• Direct application. The local transformation is applied directly to the data set S.

• Initial parameters. Registration between S and T is run for 200 more steps, using
the local transformation as initial parameters.

To be certain that any improvement is not simply a result of running more steps of
the ICP algorithm, we ran registration between S and T for 200 more iterations using the
identity transformation as initial parameters, and use that as the base of comparison. The
results can be seen in table 4.2.

The results of the runs can be seen in table 4.3.

Surface part Application Global result Improvement over
(average distance) 200 ICP runs 400 ICP runs

Part 1 Direct 47.121000 -46.206213 -46.207175
Initial parameters 0.913526 0.001261 0.000299

Part 2 Direct 37.240800 -36.326013 -36.326975
Initial parameters 12.002600 -11.087813 -11.088775

Part 3 Direct 1.052460 -0.137673 -0.138635
Initial parameters 0.913589 0.001198 0.000236

Part 4 Direct 1.294780 -0.379993 -0.380955
Initial parameters 0.913718 0.001069 0.000107

Table 4.3: Results of testing local transformations globally.
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4.5 Observations and Discussion

4.5.1 Local Registration

Results from local registration for some chosen surface parts can be seen in table 4.1. We
immediately notice a clear distance improvement in all four cases. Part 1 in particular has
a very large improvement over its initial distance value, which is much higher than for the
other parts. Still, part 1 ends up with the worst result of the four. Since it had the farthest
distance to its match out of all the surface pieces in S after coarse registration, we may
assume that the sources of error described in section 4.2 had the most effect on this part.
We conclude that analyzing a surface part with comparatively bad local registration result
in a real world data set should be done while paying extra attention to possible errors in
the data set.

Part 4 is a combination of surface parts that are far away from each other in the original
data set S. Hence, if the ”gluing” error described in section 4.2 is an issue with the data
set, we expect part 4 to have a comparatively high distance to its match, both before and
after local registration, since the error would have ample time to propagate before both
surface parts are glued to the final object. We see that this is somewhat true, with part 4
being the second worst performer of the group.

Part 2 and 3 both showed good and similar improvement after local registration, even
though they are very different in size.

Under the assumption described in section 3.1.2 that the locally transformed surface
parts contain the correct information about local differences between T and S, the surface
parts are ready for analysis. The discrete point distances can for example be encoded as
color information for visual inspection. Figure 4.4 shows this approach for part 3, where
a more intense red color means a larger distance from T in that area. The surface parts are
shown at full resolution.

4.5.2 Application to Global Data Set

We see from table 4.3 that the application of local transformations to the global data set at
best results in marginal improvements over additional iterations of the ICP algorithm, with
identity transformation as initial parameters. The best result comes from using the local
transformation of part 1 as initial parameters for ICP. This brings the points in S 0.000299
millimeters closer to T on average than if we don’t use the local transformation. Interest-
ingly, the worst performer was direct application of the same part’s local transformation to
S, which brought the points in S 46.207175 millimeters on average further away from T ,
than the basic ICP runs.

Overall, using local transformations as initial parameters for further global registration
performs better than direct application to the global data set. This makes sense, since we
can not expect the distance function of the whole surface to have the exact same local
minima as the distance function for a smaller part of the surface in real world data. Any
source of error, be it outlying points, noise or other problems with the scanning process
would hinder this ideal scenario from happening. For visualization, a sub–sampling of
part 1’s results can be seen in figure 4.5. When running further global registration, we try
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(a) Part 3 after coarse registra-
tion.

(b) Part 3 after local registra-
tion.

(c) Part 3 showing only largest
distances.

Figure 4.4: Visualization of surface part distance. Black color denotes zero distance from T . (a)
The most intense red color denotes a distance of 3.24 millimeters from T . (b) The most intense red
color denotes a distance of 0.85 millimeters from T . (c) Same as (b), but only showing distances
larger than 0.2 millimeters.

(a) Direct application. (b) Used as initial parameters.

Figure 4.5: Local transformation of part 1 applied to the global data set.
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to minimize the effects of such errors, while hopefully benefiting from starting in the local
minimum found in the smaller surface part’s distance function.

Direct application of part 1’s local transformation to S gives especially bad results.
We see from table 4.1 that part 1 does not agree well with the coarse registration of S and
T . Local registration therefore moved part 1 a larger distance than the other parts, and the
same transformation then moves the whole data set S too far away from T .

Using the local transformations of the different surface parts as initial registration pa-
rameters performed very similarly, with the exception of part 2, which had much worse
results than the others. We assume this is because of the low amount of data points in
that surface part. With only 294 points taken into consideration, the local distance func-
tion may be too different from the global one, to find any meaningful correspondences
between their local minima. After a certain threshold however, it seems that the amount of
points has little effect. For instance, part 3 has more than 80 times as many points as part
1, but performs only slightly worse.
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

We have presented a novel approach for registering of large 3–D data sets. The technique
divides both the source and target into smaller surfaces and performs local registration.
We have identified the conditions necessary for the local registration to be able to reach
the same global minimum as the global registration. The same technique can be used for
precise measurement of point distances between registered 3–D objects.

We have tested experimentally several methods of using transformations found in the
local registration to find the global registration of the large data sets. The results and
discussion of these experiments have been presented.

5.2 Future Work

We see several avenues for exploration in the future. Experimentation can be done on the
size of sub–space overlap in the octree of the target data set in order to examine its effects
on the local registrations of the surface parts. A point of interest is at what values of the
overlap constant, combined with a measure of success of the initial rough registration, can
we be sure that the objective function for local registration contains the desired global min-
imum. The answer to this question would completely validate the part–by–part approach
to registration of large data sets.

Several different ways to use the information gained by the local registration of surface
parts in order to find an optimal global transformation remain to be examined. One pos-
sibility is to use the generalization of spherical linear interpolation in (Buss and Fillmore,
2001) or the linear interpolation of transformations approach in (Alexa, 1997) to see if all
the local transformations can be combined in a meaningful way for our purposes. What
effect the averaging of transformations that correspond to local minima in the objective
function of registration has is an exciting question for the future.

We believe there is more to be gleaned from the information lying in the local surface
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part registrations. By combining corner parts that are far away on the original surface,
it may be possible to detect gluing errors in the data set, where the original object has
been erroneously combined together from several parts. In general, there is research to be
done about the possible explanations of two surface parts of the same rigid object having
significantly different optimal registrations with another rigid object.
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