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Abstract

Ever since the invention of the Global Positioning System (GPS) and its slow entry into the
public domain in the 80s and 90s, location tracking has become an increasingly important
tool for scientific research, surveillance, and commerce. The potential for increased efficiency
and quality of care has resulted in an increase in Indoor Positioning System (IPS) technology
uptake by the healthcare sector. The main focus of this master’s thesis has been on the
application of search methods from Artificial Intelligence (AI) literature to a logistical problem
in the hospital, facilitated by the use of location tracking technologies.

Using a Requirements Engineering (RE) framework the thesis explores use cases where
time spent looking for wheelchairs can be reduced. The three use cases: “View Wheelchair
Location”, “Find Available Wheelchair”, and “Find Nearest Wheelchair” was identified, where
finding the nearest wheelchair was found to be most suitable for further investigation. The the-
sis proposes a search framework for describing the problem of finding the nearest wheelchair
given the current position and task information of a hospital porter. Furthermore, the RE study
proposes a set of requirements that the search framework must adhere to. A literature study
of AI search methods such as the well known Dijkstra’s and A* algorithm along with different
kinds of acceleration methods were performed, and a prototype of the search framework was
built. The search framework and all the proposed search methods have been evaluated by
performing a series of experiments on two different kinds of datasets made by the author.
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Chapter1
Introduction

St. Olavs Hospital is a university hospital located in Trondheim, Norway, and serves as the

local hospital for the population of Sør-Trøndelag with approximately 300 000 inhabitants

(09.09.2012)[1]. The hospital has several regional and national tasks that span the whole

population of central Norway (Møre and Romsdal, Nord-Trøndelag and Sør-Trøndelag)[2].

The university hospital is tightly integrated with the Norwegian University of Science and

Technology (NTNU), carrying out patient treatment, research, and education.

In 2002 the Norwegian Government decided to build St. Olavs University Hospital at

Øya in the central part of Trondheim. The development is managed by the independent

project Helsebygg Midt-Norge (The Hospital Development Project for Central Norway), which

is owned by both the Ministry of Health and the Ministry of Education and Research[3].

According to the current plans the last phase, 2-2, of the development is set to conclude in

2013. This last phase mainly consists of the construction of The Knowledge Centre.

The main aim of Helsebygg is: “ To develop the university hospital as an organization of

high quality, efficiency and professionalism. This means a hospital based on teamwork in an

integrated health service, with medical expertise, nursing and care focused on the patient.” [4].

The implementation of state-of-the-art Information and Communications Technology (ICT)

has been a priority area in order to fulfill this aim. The ICT solutions include, among other

things, some 1700 access points for wireless communication, wireless IP phones, and smart

cards for controlling access to both buildings as well as computers[5].

1.1 Motivation

Ever since the invention of the Global Positioning System (GPS) and its slow entry into the

public domain in the 80s and 90s, location tracking has become an increasingly important tool

1



2 CHAPTER 1. INTRODUCTION

for scientific research, surveillance, and commerce. In recent years there has been a reduction

of cost in software and hardware equipment necessary for location tracking. This in turn have

increased the demand for positioning systems in businesses and institutions, such as hospitals.

GPS promises a worst case accuracy of about 7.8 meters[6], and has been used for efficient

localization of objects such as cars and people in many outdoor applications; however, as the

object of interest moves indoors the GPS accuracy decreases significantly. This problem is due

to obstacles that absorb, diffract, reflect, refract, and scatter GPS signals, making it nearly
impossible to determine the position of objects that reside indoors. Indoor Positioning Systems

(IPS’s) and Real-Time Locating Systems (RTLS’s) attempts to alleviate some of these issues

using technologies such as ultrasound, radio frequency, and Wireless Local Area Network

(WLAN), among others.

The potential for increased efficiency and quality of care has resulted in an increase in

IPS technology uptake by the healthcare sector. Sun et al. (2008) explores the notion of

“ To Err is Human” [7] by proposing a method for reducing the risk of medication errors by

integrating barcodes and Radio-Frequency Identification (RFID) tags[8]. Emory A. Fry and

Leslie A. Lenert describes an integrated software-hardware RFID tracking system, MASCAL,

designed to enhance the management of hospital resources during a mass casualty event[9].

Other interesting examples of applications utilizing positioning systems includes automatic

timestamp documentation for patient tracking[10], tracking of patients suffering from de-

mentia[11], linking position data and clinical data for improved patient processing[12], and

reducing loss of expensive medical equipment by way of location tracking[13].

One of the new ICT technologies used across St. Olavs Hospital is the IP phone system,

which is heavily used by the hospital logistics group. For instance, an operator is able to assign

tasks to porters, such as helping a patient traverse the hospital, based on their location, rather

than forcing porters to return to base after each task. In many cases, these tasks involve

bringing a wheelchair to the patient. In general, the logistics group is interested in minimizing

the time spent searching for wheelchairs; however, this might not always be easy as there

are no fixed space where available wheelchairs can be found. The purpose of this master’s

thesis is to apply search methods from Artificial Intelligence (AI) literature on the problem of

finding wheelchairs which lie on the way to tasks. A requirements engineering study will be

performed in order to recognize potential use cases where time spent looking for wheelchairs

might be minimized, and a literature study and review of search methods will be performed

based on the use cases from the requirements engineering study. The result of the thesis will be

a concept proposal that reduces the time spent by porters looking for wheelchairs by utilizing

the new IPS at St. Olavs Hospital.
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1.2 Objectives

The following are the main research objectives of this thesis:

Objective 1: Explore and understand use cases of IPS for reducing the time spent by porters
looking for wheelchairs.

Objective 2: Research and compare search methods from AI literature in terms of optimality,
runtime, and explored search space.

The following Research Questions (RQs) were formulated in order to achieve said objectives:

RQ1: How can the time porters spend looking for wheelchairs be reduced?

RQ2: What is considered to be the nearest wheelchair?

RQ3: Which search methods are most appropriate for reducing the time spent looking for
wheelchairs in terms of optimality, runtime, and explored search space?

1.3 Scope

The main research objectives of this thesis are answered in the context of healthcare. Relevant

ethical issues are beyond the scope of this thesis, and even though they might be mentioned

it will not be the focus of this thesis. There is currently a lot of interesting research going on

in areas of IPS applications such as Google’s Project Tango[14], most of which are beyond the

scope of this thesis. For clarity, everything originating from a third party will be attributed to

its original creators.

1.4 Research Methodology

Design science research is a problem solving process, and in order to ensure proper use of

design science this thesis will rely on the research framework proposed by Hevner et al.[15].

The core concept of design science is the creation of artefacts[15, 16], and can be seen

summarized in the research framework in Figure 1.1.

Starting at the far left of Figure 1.1, a set of business needs will be gathered by performing a

Requirements Engineering (RE) study in the context of logistical problems at St. Olavs Hospital.

RE theory and a literature study on AI search methods will be drawn from the knowledge

base of scientific literature. The identified business needs and applicable knowledge from

the knowledge base will facilitate the development of a search framework along with a set

of potential search methods. The proposed search framework, as well as the potential search



4 CHAPTER 1. INTRODUCTION

methods, will be assessed and refined by instantiating a prototype and running simulations on

it. Finally, observations and conclusions are to be extracted from the simulations, structured,

and added back to the knowledge base in the form of this master’s thesis. A demonstration

of the results of the master’s thesis will be presented to our domain contacts; however, due

to our limited access to the IPS at St. Olavs hospital, we will not be able to demonstrate the

search framework appropriateness, in the environment.

Hevner et al. (2004): Design Science in Information Systems Research

Additions to the 
Knowledge Base

Environment IS Research Knowledge Base

People
• Roles
• Capabilities
• Characteristics

Organizations
• Strategies
• Structure & Culture
• Processes

Technology
• Infrastructure
• Applications
• Communications

Architecture
• Development

Capabilities

Foundations
• Theories
• Frameworks
• Instruments
• Constructs
• Models
• Methods
• Instantiations

Methodologies
• Data Analysis 

Techniques
• Formalisms
• Measures
• Validation Criteria

Develop / Build
• Theories
• Artifacts

Justify / Evaluate
• Analytical
• Case Study
• Experimental
• Field Study 
• Simulation

Assess Refine

Business
Needs

Applicable
Knowledge

Application in the 
Appropriate Environment

Relevance Rigor

Figure 1.1: Information systems research framework.

The above steps are inherently iterative, meaning that no single step in the research

framework, for instance gathering knowledge from the knowledge base, is done only once.

1.5 Thesis Outline

The remainder of the thesis is arranged as follows. Chapter two presents background and

related work necessary for understanding later chapters. Chapters three draws on the theo-

retical background from chapter two, and aims to show results concerning RQ1 by describing

the requirements engineering methodology used and the results gained. In the fourth chapter

methods and implementational issues pertaining to the proposed system is described. Chapter

five describes experiments and results done on the datasets and search methods from chap-

ter four pertaining RQ2 and RQ3, while chapter six includes some general observations and

discussions. The thesis concludes in chapter seven, containing a conclusion and future work.

Additional information can be found in the appendix.



Chapter2
Background

This chapter introduces some necessary concepts before we continue on with our methodol-

ogy. As our thesis combines theory from both software engineering and pathfinding, we will

approach various key concepts from both Requirements Engineering (RE) and combinatorial

optimization.

2.1 Requirements Engineering

The importance of RE is often misunderstood; however research has shown that the difference

between good and bad RE can mean the success or failure for a project. In a report from

2004 by the Standish Group on information systems of American companies it was shown that

the top three reasons for overdue projects is lack of user input, imperfect requirements, and

requirements that are modified late in the development cycle. The report shows that project

failure caused by requirements reaches 48.1%[17](original report not available). In general,

a solid RE process will ensure a firm foundation for the rest of the project.

2.1.1 Definition

Requirements engineering can be seen as an exercise of human communication, and a proper

definition constitutes of two key components. Requirements can be seen as specification of the

software to be built, and describes properties, constraints, and behaviours that the finished

system should display. The human element of RE comes in the form of the collaborative

activites that has been shown to be a crucial factor in determining the success of the software

process[18]. Stakeholder is the name that is commonly used to refer to a person or an

organization that is involved or has an interest in the system. They have either direct or indirect

influence on the requirements of the system, and it is therefore important to identify the

5



6 CHAPTER 2. BACKGROUND

potential stakeholders early in the process[19, 20]. It is critical to understand that stakeholders

are not only the users, the requirements engineer(s), and administrators of the system, but

also make up the legal entities, management, hackers, and developers that at some point in

time may influence the requirements of the system.

Now that we have described both what requirements and stakeholders are, we can define

what we mean by requirements engineering. The definition is loosely based on the definition

given by Pohl and Rupp, International Requirements Engineering Board (IREB),[20] and a

literature review of the different international standards of RE.

Definition 1. Requirements engineering is a sub-discipline of software engineering and is a set
of core activities that carries out a systematic and disciplined specification of requirements. Key to
this is achieving a consensus among the stakeholders so that the understanding and management
of requirements minimize the risk of delivering a system that satisfies the stakeholders’ needs and
desires.

A brief overview over the different parts that make up RE will be presented in the following

sections.

2.1.2 Requirement Types

In order to fulfill the systematic and disciplined elements of the RE definition above we need

to formalize requirement types as they appear in a requirement specification, often called a

Software Requirements Specification (SRS)[21, 22]. While there are several international

standards, such as ISO/IEC/IEE 29148:2011[23] and ISO/IEC 25010:2011[24], that define

requirement types slightly differently, they can more or less, be compartmentalized into func-

tional and non-functional requirements. The first type concerns itself with what the system

must do, while the latter can be seen as how the system must adhere to the encompassing

business context. All requirement types limit the solution space. Below is a limited set of

requirement types adapted from [20] by IREB.

Definition 2. Functional requirements are mutable properties that concerns itself with how
functions of the system should behave.

Definition 3. Quality requirements are mutable properties that concerns itself with desireable
qualities that the system should exhibit. Typically, this is properties such as: availability, perfor-
mance, and scalability.

Definition 4. Constraints are immutable properties that the system must adhere to.
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2.1.3 Context

An important part of RE is the identification of relevant parts of the environment where the

resulting system will reside. These parts are usually immaterial and abstract properties that

define already existing systems that can have a huge impact on the scope of the new system.

Pohl and Rupp defines the system context as relevant, often immutable, parts of the system

environment that is important for the understanding of the SRS. The system interfaces with

the context via a system boundary that separates the mutable system to be developed from

parts of the environment that cannot be altered by the by the development process. A context

boundary separates the relevant and irrelevant parts that has to be considered during RE[20,

21].

Ensuring that all stakeholders agree on how existing systems affect the new system –

either implicitly or explicitly – is an important factor in order to reduce the risk of unwelcome

surprises during or after the development and deployment of the new system. Generally,

it is difficult to assign a proper definition of the system and context boundaries during the

early stages of the RE process; therefore, so called gray zones[20] may appear that represent

boundary areas that are less understood. One way of ensuring that any boundary growth or

decrease does not influence the understanding of the SRS is to extend both boundary types

beyond what is initially assumed.

2.1.4 Core Activities

Gathering, documenting, verifying, and managing requirements are the commonly performed

activities during the RE process; however, the actual definition of each activity may differ

depending on, for example, the software development methodology (or process model). In

a comparative study from 2013 by Batool et al.[25] it was found that for traditional process

models that incorporate RE such as the waterfall model, the main bulk of attention is given

to the creation of detailed documentation. On the other hand, in agile approaches such as

Scrum and Extreme Programming (XP), more attention and effort was made to face-to-face

communication with the customer throughout the development process. Increasing the focus

on customer interaction naturally enhances the mutual trust between customers and devel-

opers[17]; moreover, this ensures that requirements can be suggested, discussed, validated,

or even thrown away rapidly. In a paper from 2012, de la Vara et al. argues that new re-

search is necessary for moving towards customer-based RE[26]. A set of research questions

are proposed which includes how customers can and should be more involved in the analysis

and validation of a SRS. Other variations include goal-oriented requirements engineering

(GORE)[27] where every activity concerns itself with different levels of goal abstractions, e.g.

business survival and employee needs, and approaches where the focus is on the integration
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of RE and software process models[28, 29]. The latter has been predicted to be of great

importance in modern software development[29].

Figure 2.1 illustrates the core activities in RE and how they relate to each other. Notice

how the management of requirements is not something that is done after a set of condensed

requirements are gathered, but rather an integral part in each activity.

Elicitation

Documentation

Analysis and negotiation Validation

Management

Figure 2.1: Core activities in requirements engineering.

A brief look on techniques and methods for each core activity will be presented in the next

few sections.

Elicitation

Requirements elicitation is the process of gathering requirements from stakeholders. In the

last decade the acknowledgment of the importance of customers and other stakeholders have

increased steadily. This has been especially evident in the agile RE communities. Below is a

brief look on the most commonly used approaches for requirements eliciation.

Survey techniques are usually driven by questions and requires that the stakeholder is able

to explicitly express knowledge and wishes about the system to be developed. Questionnaires

are one such technique that is useful for eliciting requirements from a large number of par-

ticipants. A questionnaire can contain both open and/or closed questions, however having

predetermined answers may reduce misunderstandings. Thus, questionnaires may be useful

for gaining initial impressions and opinions[30]. Questionnaires can also be used for asking

whether or not the respondent is willing to attend an interview. Interviews is another survey

technique that can be either structured, semi-structured, or unstructured. During a structured

interview a series of questions are asked, while during an unstructured interview a multitude

of topics or scenarios can be explored in a discussion. During semi-structured interviews

open-ended questions are asked while the interviewer steers the course of the conversation.

Unstructured interviews are quite similar to brainstorming and focus groups, where groups
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of stakeholders collectively discuss and comment ideas. These types of techniques are creative

in nature and help facilitate a large number of ideas in a short amount of time. Difficulties in

creative techniques often arise when participants do not get along, e.g. one or more participant

dominates the conversation, ideas are ridiculed, or there is little to no contribution from the

participants. Many of these issues can be remedied by carefully planning the session, e.g.

which scenarios to discuss, and having a moderator.

Observational techniques consists of indirect and direct observation[30]. In indirect ob-

servation techniques such as activity logging is used in order to analyze scenarios that are

relevant to the project. In direct observation trained observers attempts to understand the

nature of tasks in the context in which they are performed. Field study and apprenticing are

two direct observation techniques where an observer gains in-depth knowledge of one or more

tasks.

As stated by Mishra et al. (2008)[31] the state-of-the-art practice in RE is mostly ad hoc,

with little to no planning. Thorough planning of requirements elicitation can be beneficial

and may save additional costs by reducing errors earlier in the development process. A good

understanding of RE techniques may increase the likelihood of high customer satisfaction,

which, in turn, will improve the efficiency of the RE process[31]. Most RE techniques are

context-sensitive, which means that there is no silver bullet that suits every project and every

stakeholder. In the paper by Mishra et al. a combination of different approaches that help

consolidate the large amount of information from stakeholders seem to yield the best result.

The characteristics of new requirements may change depending on the presence or absence

of existing system architectures. Miller et al. (2009) found an inverse relationship between

user needs and technological needs when eliciting requirements[32]. In the presence of a

system architecture the requirements engineer tends to elicit approximately 10% more techno-

logically oriented requirements, while in the absence of a system architecture about 10% more

user-needs oriented requirements are elicited. This is important information when deciding

which eliciation technique/approach is most appropriate. The study was performed by giving

a set of eliciation tasks for a fictitious bank to 24 groups, where half of the groups had access

to the system architecture and vice versa.

Analysis, Validation, and Negotiation

Raw observations, requirements, and other information from the requirements eliciation pro-

cess has to be analyzed, validated, and negotiated into a set of requirements that all stakehold-

ers can agree on. Analysis may include throwing away, keeping, or even combining different

ideas and opinions. Validation ensures that all requirements abide by the same quality criteria.

Negotiation is a general activity that is performed throughout all other activities in an effort
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to reduce conflicts between stakeholders during RE.

The international standard IEEE Std 830-1998[22] presents a set of good SRS characteris-

tics. These requirement quality criteria will be summarized in brief here.

Correctness – An SRS must meet the wishes of the stakeholders, and every requirement

must be one that the system shall meet.

Unambiguous – Every requirement in an SRS can have only one interpretation. This

is important for the whole software life cycle, be it design, implementation, or mainte-

nance.

Complete – All relevant requirements must be documented and each requirement must

contain all necessary information. No requirement can be described as “to be deter-

mined”.

Consistent – It must be possible to implement every requirement in the SRS, there can

be no contradictory requirements.

Ranked for importance and/or stability – Each requirement should have been carefully

considered by the relevant stakeholders in order to rank its importance and/or stability.

Not all requirements are equally important, some can even be optional.

Verifiable – An SRS is verifiable if it is possible to define an acceptance and test criteria

for every requirement. A requirement should be removed or revised if it is not verifiable.

Modifiable – An SRS is modifiable if all requirements can be easily modifed while retain-

ing a coherent SRS structure and style. Good qualities for modifiability is no redundancy

and a coherent SRS structure.

Traceable – A requirements is traceable if it is possible to trace it over the course of the

system life cycle. This may include having a unique name or reference number for each

requirement so it can be referenced at a later date.

Conflict management consists of four tasks: conflict identification, conflict analysis, conflict

resolution, and documentation of the conflict resolution[20]. A multitude of different conflicts

can arise during the RE process, e.g. contradictory requirements from different stakeholders,

and the requirements engineer must pay attention to potential conflicts so that they can be

resolved or even avoided. There are different types of conflicts such as relationship conflicts

and conflicts of interest, and it is important to identify the correct conflict type in order to

be able to apply the appropriate conflict resolution method. Common methods for resolving

conflicts include compromise, voting, overruling, and consensus, where the last method is
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preferable as it is the least likely to create new conflicts. The last task, documentation of

conflict resolution, is useful to be able to quickly resolve new conflicts that are similar to

previous conflicts.

Documentation

Requirements documentation is an activity that is performed together with eliciation, analysis,

and validation of requirements. It consists of systematically representing the condensed set of

requirements, satisfying a set of quality criteria. The result of the documentation activity is

often referred to as a SRS[21, 22], and may include requirements in natural language and/or

conceptual models.

Requirements are frequently documented in natural language, and has the added benefit

that requirements can be easily written down and easily read/understood by stakeholders.

The disadvantage of documentation in natural language is the potential ambiguities due to

its subjective nature. The personal perception of natural language might vary from person to

person and can easily lead to uncorrect and unambiguous requirements. Using requirement

templates, i.e. a blueprint of the syntactic structure of requirements, is one way of reducing

these issues[20]. The following is a minimal example template from [20]: The system shal-
l/should/will/be able to [insert process verb]. This template makes it clear who should perform

the process verb, e.g. display report, and also what kind of obligation the system has.

Conceptual modelling is the idea that anything can be represented using models, where

a model is defined as an abstraction of reality. In the context of computer science these ab-

stractions are often modelled with Unified Modeling Language (UML) or Business Process

Model and Notation (BPMN). All models adhere to a domain which describes a bounded

field of interest or knowledge[33], e.g. a business domain. The so called metamodel is a

formalization of the aforementioned domain, and defines the building blocks, relations, con-

straints, and rules that govern a modelling language. In other words, meta-modelling defines

the abstract syntax, e.g. UML description, and the static semantic of a modelling language,

but not the concrete syntax, e.g. UML graphical notation. Because a metamodel is a relative

concept it needs its own metamodel, called the meta meta model, which describes concepts

that the metamodel is allowed to use. UML is a metamodel instantiated from a meta meta

model called Meta-Object Facility (MOF), an Object Management Group (OMG) standard for

model-driven development[33]1. UML is often talked about in context with Model-Driven

Architecture (MDA)[33]; however, the graphical notation UML uses is often ideal for docu-

menting requirements as models. Using a modelling language like UML has many advantages
1Ironically, UML was defined before MOF and MOF uses concrete syntax from UML, making it even more

convoluted.
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such as the ease of understanding complex and domain-specific knowledge. One typically dis-

tinguishes between three types of perspectives when using conceptual modelling to document

requirements[20]. Entity-Relationship diagrams and UML class diagrams are often used to

model requirements in the data perspective. In this perspective data is modelled as entities

that are connected via relations. UML provides many building blocks, such as association

and generalization relations, that makes it possible to model data efficiently. UML activity

diagrams and UML use case diagrams are often used to model requirements in the functional

perspective. UML use case diagrams relate use cases, e.g. download report, with actors, e.g.

accountant. It is possible to convert graphical use case diagrams to textual ones. BPMN and

UML state diagrams are typically used to model requirements in the behavioural perspective.

These types of diagrams describe how different states are activated using transitions.

In general, it is usually wise to combine modelling languages with natural language, thus

minimizing the disadvantages that either one might have.

Management

Requirements management is what ties all the core activites of RE together, ensuring, for

example, that all requirements can be viewed by the relevant stakeholders. As can be seen

in Figure 2.1, requirements management is not an activity that is done by itself, but rather

a group of methods and techniques that support all the other activites. This includes risk

management, ensuring traceability, change request handling, and proper versioning.

2.2 Graph Theory

The theory of graphs is a major topic in the area of discrete mathematics, and was first

described by the Swiss mathematician Leonhard Euler in 1736[34](see page 513). Unlike

continuous graphs, the graphs that we introduce here are finite, and as we shall see later are

appropriate when trying to visualize and search on maps.

Definition 5. A graph is denoted G = (V,E), where V is a finite non-empty set of vertices, or
nodes, and E is a finite set of cross products between vertices taken from V . The cross product, or
cartesian product, between two sets can be defined as A×B = {(a, b)|a ∈ A, b ∈ B}, thus E can
be formally defined as E ⊆ {V × V }. V and E are commonly known as the vertex and edge sets
of G, respectively[34].

Depending on whether or not E is a set of ordered or unordered pairs of vertices from

V , G is either called a directed graph (ordered set), or an undirected graph (unordered set).

For the rest of the thesis, unless otherwise stated, G will be assumed to be an undirected
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graph. Figure 2.2 exemplifies the differences between an undirected and directed graph.

(a) – representing a directed graph – defines the vertex set as: V = {a, b, c, d, e}, and

edge set as: E = {{a, e}, {e, b}, {e, d}, {b, d}, {b, c}, {c, b}}. Conversely, (b) – represent-

ing an undirected graph – defines the vertex set as: V = {a, b, c, d, e, f}, and edge set as:

E = {{a, b}, {a, f}, {a, c}, {b, f}, {c, e}, {f, e}, {e, d}}, with the additional property that the

order of vertices in the edge set is irrelevant.

a

b

c

d

e

(a) Directed graph

a

b

c

d

e

f

(b) Undirected graph

Figure 2.2: Directed and undirected graph types.

2.2.1 Graph Metrics

In addition to pure visualization, graphs also allows us to perform an array of measurements,

some of which are introduced here.

Cardinality describes the length of the vertex set, termed |V |, or edge set, termed |E|, and

is useful in combination with other metrics in order to reason about graph size.

Degree, or vertex degree, represents the sum of edges that each vertex is an endpoint

of, loops are counted twice[34]. The minimum degree of a graph G is denoted δ(G), while

the maximum degree is denoted ∆(G). In a directed graph, vertex degree is termed either

in-degree or out-degree, depending on whether or not the edge is incoming or outgoing.

Graph centrality is a concept that governs the relative importance of each vertex in V .

Four of the most commonly used centrality measurements will be briefly desribed here. The

first centrality measure is called degree centrality, denoted CD, and it relates the degree of

each vertex as it pertains to the whole graph. A large degree centrality symbolizes that the

vertex has a high probability of being included in whatever flows through the graph. Closeness

centrality on the other hand illustrates how close a certain vertex is to all other vertices, i.e. a

higher closeness value means a lower total distance to all other vertices. Betweenness centrality

quantifies the amount of times a vertex will be included in a shortest path between two vertices.

The last centrality, eigenvector centrality, was first introduced by Bonacich in 1972[35, 36]
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and have later been adapted as a central part of Google’s PageRank algorithm[37]. It is similar

to the degree centrality, however instead of weighing each edge equally it weighs each edge

according to its centralities.

A visual example of the above metrics can be found in Figure 2.3, which uses the undirected

graph from Figure 2.2.

a

b

c

d

e

f

(a) Undirected graph

|V | 6

|E| 7

∆(G) a, e, and f : 3

δ(G) d: 1

max{CD} a, e, and f : 0.6

max{CC} e, and f : 0.714

max{CB} e: 0.45

max{Cλ} f : 0.516

(b) Measurements

Figure 2.3: Graph metrics.

Note that the definitions and terminology that has been introduced here is just a small

subset of the total amount that exists in literature (see chapter 11 of [34] for a thorough

introduction).

2.2.2 Graph Theory and Positioning Systems

As previously hinted at, graph theory can be very useful for problems related to the repre-

sentation and search of maps or networks. Coincidentally, the modelling of both indoor and

outdoor spaces commonly use a graph based model to bring useful information to the user.

In a paper from 2011, Michael Worboys[38] argues how the current focus on outdoor

space when modelling Geographic Information System (GIS) technologies should be extended

to allow for formal models that benefit indoor spaces. Worboys presents the current state

taxonomy of indoor space models as one of semantic and spatial models – where the latter

includes topological, hybrid, and hierarchical models. Models that deliver a rich semantic
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representation of the environment often employ different labelling approaches in order to

classify (indoor) regions into higher-order concepts and domain ontologies, e.g. transitions

such as doors, stairs, and lifts that separate regions[39]. Spatial models on the other hand,

e.g. topological models (as well as hybrid and hierarchical models), are concerned with

connectivities, and are well suited to be modelled by graphs. Worboys makes the distinction

between subtypes of adjacency that are relevant when interpreting the distribution of edges.

In a connectivity graph an edge between two vertices occur when there is a physical connection

between the vertices (representing regions), e.g. a door between two boundary rooms. On

the other hand, in a accessibility graph an edge between two vertices only occurs if the the two

regions (or vertices) are accessible from another.

2.3 Combinatorial Optimization

In the most general case, mathematical optimization relates to either the maximization or

minimization of a real function, i.e. finding a global value such that f(xi) ≥ f(x), or f(xi) ≤
f(x) for all x in A – defined as: f : A→ R. In one special case of mathematical optimization,

called combinatorial optimization, we are concerned with finding the best solution from a set

of discrete (or discretized) feasible solutions. The best solution is usually called an optimal

solution to the optimization problem.

Some examples of problems that are classified as combinatorial optimization problems

includes the knapsack problem, Travelling Salesman Problem (TSP), minimum spanning tree,

and shortest path problem. While there does exists efficient exact algorithms for solving many

combinatorial optimization problems, such as the shortest path problem, many of them are

only solveable – in reasonable time – by approximation algorithms. The knapsack problem

and TSP are two problems where the optimization problem has been shown to be NP-hard, i.e.

there is no known polynomial algorithm which can tell whether or not a solution is optimal,

unless P=NP[40]. However, with approximation algorithms it is possible to find satisfying

solutions for both of these problems[40](chapter 35).

2.3.1 Pathfinding

As mentioned in the previous paragraph, pathfinding or shortest path problem as it is com-

monly known, is classified as a combinatorial optimization problem. The problem can be

formulated as finding the shortest path, or route, between two vertices. In this thesis, these

two vertices belongs to a weighted graph, meaning that each edge ∈ E is associated with a

weight2.
2Edge weights represents the cost of travelling along the edge, e.g. distance.
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There are several variants of the shortest path problem, and they are usually classified as

being the shortest path between one of the following:

One source and one destination vertex (single-pair)

One source vertex and multiple destination vertices (single-source)

Multiple source vertices and one destination vertex

All pairs of vertices

As we will see in later chapters the focus in this thesis will be on the single-pair shortest

path problem – sometimes called point-to-point shortest path problem[41]. Incidentally, the

single-pair shortest path problem can be solved by solving the singe-source problem by setting

the same source vertex. The result of this is that we can utilize algorithms such as Dijkstra’s

algorithm for single-pair pathfinding.

Dijkstra’s Algorithm

Dijkstra’s algorithm is named after its creator Edsger W. Dijkstra’s which first described the

algorithm in 1959 as a problem of finding the path of minimum total length between two

given nodes P and Q (in a graph G)[42].

Dijkstra’s algorithm solves the single-source shortest path problem for a weighted graph

given that all weights are nonnegative. Pseudocode for the general implementation of Dijkstra’s

algorithm can be found in Algorithm 1.

The general algorithm presented above, without using a min-priority queue has a worst

case runtime of O(|V 2|), which is caused by the linear search for the vertex with the smalles

dist() from the queue, Q. By implementing the queue as a Fibonacci heap the worst case

runtime can get as low as O(|V |log|V | + |E|)[40](page 662). Note that if there is no path

from s to v then dist(s, v) =∞.

If we are only concerned with finding the solution to a single-pair problem, then the single-

source version of Dijkstra’s algorithm in Algorithm 1 can be transformed into a single-pair

version by terminating the search algorithm if the next vertex in the queue, i.e. u, is equal to

the destination vertex. This can be useful if we are searching in very large graphs.

One property that can be inferred from the relaxation step3 in Algorithm 1 is the trian-

gle inequality. The triangle inequality property states that for any edge ∈ E, we have that

dist(s, v) ≤ dist(s, u)+w(u, v). The importance of the triangle inequality will become apparant

in later chapters.
3A relaxation step tests whether or not we can improve the shortest path from s to v by going through u, i.e.

dist(u) + w(u, v) < dist(v).
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Algorithm 1 Dijkstra’s Algorithm: single-source shortest path

Input: A directed or undirected graph, G = (V,E), a list of edge nonnegative weights, we =
{e ∈ E : we ≥ 0}, and a source vertex, s ∈ V

Output: A record of distances where dist(u) represents the distance from s to u, and a record
of shortest paths where prev(u) represents the parent vertex of u

1: procedure D I J K S T R A(G,w, s)
2: for each v ∈ V do
3: dist(v)←∞
4: prev(v)← undefined
5: end for
6:

7: dist(s)← 0
8: Q← create a queue from V
9: while Q is not empty do

10: u← pop vertex with smallest dist() from Q
11:

12: for each edge (u, v) ∈ E do
13: if dist(u) + w(u, v) < dist(v) then
14: dist(v)← dist(u) + w(u, v)
15: prev(v)← u
16: end if
17: end for
18: end while
19:

20: return dist, prev
21: end procedure

A* Search Algorithm

The A* algorithm was first described by Peter E. Hart, Nils J. Nilsson, and Bertram Raphael in

1968[43], and is a commonly used search algorithm in AI. The algorithm is often recognized

as an extension of Dijkstra’s algorithm, and combines information about the problem domain

with a formal mathematical approach in order to find minimum cost paths. Search algorithms

that exploit knowledge about the problem domain, in order to make intelligent choices in

search space, utilize what is known as heuristic information, which is computed by a heuristic

function. The heuristic function makes a rough estimate of the distance from any given

vertex to the destination vertex, and is often symbolised as h(v) where v is a vertex and the

destination is implicitly stated.

Compared to search algorithms such as Depth-First Search (DFS) and Breadth-First Search

(BFS), which ignore any problem-specific information and simply expand4 vertices given a
4Expanding a vertex means to visit the vertex and look at its neighbours.
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basic protocol. In the case of BFS, the protocol is to always expand vertices in the order that

they where discovered, conversely the protocol for DFS is to expand newly discovered vertices

first. A third option, the best-first search approach, is the common name given to search

algorithms that exploit heuristics by gradually piecing together a shortest path by expanding

the best vertices.

A* is the most commonly used best-first search algorithm, and it methodically selects the

best vertices for expansion by evaluating each vertex, as seen in Equation 2.1.

f(v) = g(v) + h(v) (2.1)

Here, f(v) evaluates and estimates the expected cost or distance of a solution path from

source, s, through vertrex v, to a destination vertex. g(v) represents the cost from source, s, to

vertex v, while h(v) represents the heuristic, or estimate, from vertex v to a destination vertex.

Pseudocode for the A* algorithm can be seen in Algorithm 2.

Most of the general A* algorithm is quite similar to Dijkstra’s algorithm, however there are

some subtle differences. In addition to the bookkeeping necessary for including the heuristic

function – mainly g_score and f_score – the algorithm makes a distinction between fringe

vertices5 and explored vertices. The reason for this will become clear when we discuss heuristic

properties.

The E VA L U AT E (u, v ) can be seen in Algorithm 3, and updates the g(v) and f(v) with

respect to the heuristic function.

It is necessary to introduce two properties pertaining to the heuristic function in order to

ensure the optimality of A* – a full proof can be found in [44]. The key result is that the tree

search version of A* is optimal if and only if h(v) is admissible, while the graph search version

is optimal if and only if h(v) is consistent/monotone.

Definition 6. An admissible heuristic never overestimates the actual cost from v to the destina-
tion vertex, meaning that it represents an optimistic estimate, or lower bound, of the remaining
distance from the current vertex, v. As g(v) represents the actual cost from the source to the
current vertex, v, it follows from Equation 2.1 that f(v) will never overestimate the actual cost
from the source to the destination vertex via v.

Admissible heuristics are often found by relaxing, or simplifying, the problem to be

solved[44]. One commonly used heuristic that is useful when the problem resides in a grid

based Euclidean metric space is the city block, or Manhattan, distance. This heuristic computes

a distance metric by considering the Von Neumann neighbourhood6, of the current vertex v.
5The set of all vertices that have been seen but have not been visited yet is called the fringe
6A Von Neumann neighbourhood is defined in 2D as the vertices that orthogonally surround a vertex.
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Algorithm 2 A* Algorithm: single-pair shortest path

Input: A directed or undirected graph, G = (V,E), a list of edge weights, we = {e ∈ E : we ≥
0} a source and destination vertex, where s, d ∈ V .

Output: A record of shortest paths where prev(u) represents the parent vertex of u
1: procedure A S TA R(G,w, s, d)
2: fringe← {s}, explored← ∅
3: prev ← ∅
4: g_score(s)← 0, f_score(s)← g_score(s) + h(s)
5:

6: while fringe is not empty do
7: u← pop vertex with lowest f_score value from fringe
8: add v to explored
9: if u = d then

10: return prev
11: end if
12: for each neighbour v ∈ V of u do
13: if v /∈ fringe and v /∈ explored then
14: E VA L U AT E (u, v )
15: add v to fringe
16: else if g_score(u) + w(u, v) < g_score(v) then
17: E VA L U AT E (u, v )
18: if v in explored then
19: P R O PA G AT E - G -VA L U E S (v )
20: end if
21: end if
22: end for
23: end while
24: end procedure

Definition 7. A consistent heuristic, often called monotone heuristic, ensures that for every
vertex v and every successor v′i of v, the estimated cost of reaching the destination vertex from
v is no greater than the cost of getting to v′i from v plus the estimated cost of getting from v′i to
the destination[44]. In other words, once vertex v is explored, then g(v) is considered to be the
lowest possible cost from source to v. Equation 2.2 neatly encapsulates the consistency property
by utilizing the triangle inequality.

h(v) ≤ d(v, v′i) + h(v′i) where h(destination) = 0 (2.2)

A consistent heuristic is also admissible[44].

Many heuristics are found by relaxing problems, which basically adds edges to the search

space. Norvig et al. argues that an optimal solution in the original problem is, by definition,
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Algorithm 3 A* Algorithm: evaluate current and neighbouring vertex

1: procedure E VA L U AT E(u, v)
2: g_score(v)← g_score(u) + w(u, v)
3: f_score(v)← g_score(v) + h(v)
4: prev(v)← u
5: end procedure

also a solution in the relaxed problem; however the relaxed problem may have even better

solutions. Thus, the cost of the optimal solution in the relaxed search space is an admissible

heuristic for the original problem[44](page 105). Moreover, seeing as this heuristic is an

exact cost for the relaxed problem, it must also obey the triangle equality (Equation 2.2) and

is therefore also a consistent heuristic. This shows that it might be difficult to find heuristic

functions which are admissible but not consistent, however, if the heuristic does not fit this

classification it is possible to visit already explored vertices via a path that yields a lower g

value. One such situation can be seen in Figure 2.4, where vertex k is being explored by vertex

v which has a lower g(v) than the current parent of k, namely u.

g(u) = 30 g(v) = 24

g(k) = 31

Figure 2.4: Vertex k has been found to be a neighbour of v which yields a lower g(k) value
(with u as the parent vertex). In this example every edge has a weight of 1.

Thus, in order to maintain the correct g values throughout the solution path the A* al-

gorithm has to not only change the g value of the current vertex, but also all vertices that

are influenced by this vertex. This is handled by the procedure P R O PA G AT E - G -VA L U E S (v )

which is depicted as pseudocode in Algorithm 4.

Two of A*’s main drawbacks is its time complexity and memory usage. The runtime, or

time complexity, is determined by the heuristic function, meaning that in problems that require

a complex heuristic, it might be useful to accept suboptimal solutions to lower the total time

complexity. On the other hand, the memory issues of A* is caused by keeping every vertex in

memory, which means that A* might run out of space before it runs out of time. For this reason

it can be useful to give up speed to overcome memory issues in very large-scale problems, e.g.
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Algorithm 4 A* Algorithm: propagate g values along the path

1: procedure P R O PA G AT E - G -VA L U E S(u)
2: for each neighbour v ∈ V of u do
3: if g_score(u) + w(u, v) < g_score(v) then
4: g_score(v)← g_score(u) + w(u, v)
5: f_score(v)← g_score(v) + h(v)
6: prev(v)← u
7: P R O PA G AT E - G -VA L U E S (p)
8: end if
9: end for

10: end procedure

by the use of memory-bounded heuristic search algorithm such as M A WA *[45].

Bi-directional search

A common, but often difficult to handle, way of reducing the time complexity of search is to ap-

ply the idea of bi-directional search. The concept is simply to run two searches simultaneously

– the first from the source vertex to the destination vertex and the second from the destination

vertex to the source vertex. If or when, the two searches intersect we have a solution. Norvig

et al.[44] visualizes this as two expanding trees – one from the source vertex and one from

the destination vertex – effectively halving the time complexity. Assuming the time complexity

of an uninformed search to be O(bd), with a branching factor b and distance from source to

destination d, the time complexity for bi-directional search turns into O(bd/2) +O(bd/2), which

is considerably less than O(bd). A visualization of how two such search spaces can look can be

seen in Figure 2.5.

Stopping the search when an intersection at vertex u, between the forward and backward
search, is found might at first glance seem like a reasonable stopping criterion. However,

there is no guarantee that a path through u represents the shortest path between source and

destination vertex. Extra care will therefore have to be given in order to ensure the optimality

of the candidate shortest path.

An informed search version of bi-directional search using heuristics was first described in

1969 in a PhD thesis by Ira Pohl[46]. As with the uninformed version of bi-directional search,

it can be implemented quasi-simultaneously by alternating between the forward and backward

A* search. It requires two distinct heuristic search functions, one for the forward A* search and

another for the backward A* search. The stopping criterion suggested by Pohl is based on the

shortest path seen so far, µ. When either the forward or backward search explores a vertex v,
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(a) Uninformed search (b) Uninformed bi-directional search

Figure 2.5: Visited vertices during (a) uninformed and (b) bi-directional (uninformed) search.
Dark blue represents the source vertex, red represents the destination vertex, and light blue
represents the explored search space.

which has already been explored by the opposite search, then µ = min{gf (v)+gb(v), µ}7. The

algorithm can thus terminate as soon as max{tf , tb} ≥ µ, where tf = min{ff (v)|v ∈ fringef}
and tb = min{fb(v)|v ∈ fringeb}. This stopping criterion guarantees an optimal shortest path

for any admissible heuristic function[47]. An alternative stopping criterion is presented by

Ikeda et al.[48] and utilizes the average of forward and backward heuristic functions.

2.3.2 Acceleration Methods

The classic shortest path search methods discussed so far all have one problem in common:

they do not scale with the ever increasing size of graphs. Graphs representing, for example,

road maps, social networks, and even internet networks can have several million vertices and

billions of edges[49]. Computing exact solutions in a timely manner can in many cases be

difficult using search methods such as Dijkstra’s algorithm or A*. In order to not have to rely

on approximate solutions we can resort to the use of acceleration methods, most of which

rely on some sort of preprocessing. Two acceleration methods will be briefly introduced here,

another – the landmark method – will be described in detail in the next section.

Arc-Flag acceleration[50, 51] is a modification of the standard Dijkstra’s algorithm, and

avoids the exploration of unnecessary paths. The method works by partitioning a graph into

sets of vertices called regions, r ∈ R, and by preprocessing a set of flags, or labels, for each arc

(or edge), a ∈ A. Each arc consists of a binary vector a(Ri) of size |R|, one for each region R,
7Subscript f and b represents forward and backward search, respectively.
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where the flag for region Ri is set to true if and only if a is either inside Ri or is on a shortest

path to at least one vertex in Ri. Thus, Dijkstra’s algorithm can be modified to only traverse

arcs where a(Ri) is true. The somewhat abstract notion of arc-flags allows for any kind of

region partitioning scheme, e.g. using a regular grid or a k-d tree, and also allows the storage

of extra information for each arc. This means that it can be applied to many different kinds of

search problems.

Reach-based pruning is an acceleration method originally described by Ron Gutman in

2004[52] and was later improved by Goldberg et al. in 2006[53]. Let v be a vertex that

lies on a path P with source s and destination t, then the reach of v with respect to P is

defined as min{dist(s, v), dist(v, t)}. The reach of v with respect to the whole graph is defined

as the maximum reach of v for all shortest paths P containing v. Reaches can be used to

prune vertices when performing, for example, Dijkstra’s algorithm by doing a check. Assume

we are currently processing edge (u, v), then we can prune v if the reach of v is less than

min{dist(s, v) + dist(u, v), LB(v, t)}[41], where LB represents a lower bound based on, for

example, Euclidean distances[52] or landmarks[53]. The idea of reach is motivated by road

networks where vertices on highways exhibit high reach, while vertices on local roads have

low reach. The problem with reach-based pruning is the enormous preprocessing time for

exact reach computation, ranging from multiple hours to years (without using heuristics).

The different types of methods discussed here represent only a fraction of the total amount

of acceleration methods out there. In the last few years a great deal of research has gone into

methods that exploit graph hierarchies, such as the previously mentioned reach-based pruning,

highway hierarchies[54], contraction hierarchies[55], and hybrid methods[53]. A survey of

these and other state-of-the-art route planning algorithms can be found in a paper by Delling

et al. from 2009[56].

Landmark Method

A landmark is a simple, yet powerful data structure that does not rely on any domain-specific

knowledge. A set of landmarks can be computed by storing shortest path distances between

all vertices and each of the landmarks. Thus, a landmark can be seen as the result of a single-

source shortest path algorithm, such as Dijkstra’s algorithm. In essence, landmarks provide

search methods a way to peek at large areas of the search space in constant time.

Proper landmark selection is important in order to ensure a robust set of landmarks[57]. In

many situations it might be beneficial to select landmarks based on domain-specific knowledge

however, this is not mandatory. In general, we are interested in a constant set of landmarks,

` ∈ V , that represents points of interest in a graph. For example, a simple landmark selection

algorithm could be n randomly selected vertices from a graph. Assigning n vertices with the
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highest degree or lowest closeness centrality as landmarks is another selection algorithm that

ensures better distance estimates[49]. Tretyakov et al.[49] suggests selecting landmarks that

covers as many vertex pairs as possible. A landmark ` is said to be covering a vertex pair (u, v)

if ` lies on the shortest path between u and v; this is a classic NP-hard optimization problem

in computer science. The approach presented by Tretyakov et al. is a greedy strategy that (i)
samples M vertex pairs and (ii) selects vertices that are present in most paths of the sample.

Other landmark selection algorithms often apply different partitioning approaches that try to

balance performance with robustness[58].

Landmark A*, often called ALT, was first presented in 2005 by Goldberg et al.[57] and

combines A*, landmarks, and the triangle inequality in order to compute optimal shortest

paths. The technique applies the triangle inequality in order to compute tight lower bounds

based on landmarks. The lower-bounding technique does not rely on Euclidean space and

can therefore be used in many different kinds of search problems. Let s and t represent

the source and destination vertex, respectively, and let u be the current vertex, and finally

let l be the nearest landmark to u. A lower bound, or heuristic, from u to t can then be

computed as max{dist(l, t) − dist(u, l), 0}. This is a guaranteed lower bound on the length

of the shortest path from s to t because from the triangle inequality we have that dist(l, t) ≤
dist(s, l) + dist(s, t), and thus dist(s, t) ≥ dist(l, t)− dist(s, l).



Chapter3
Requirements Engineering

This chapter is more or less divided into two parts. The first part describes the RE methodology

used for gathering requirements based on the background knowledge from chapter 2. The

second part presents the result of the RE process.

3.1 Methodology

The focus of our RE study is to explore and understand use cases where time spent looking

for wheelchairs can be reduced; this is encapsulated by RQ1 from chapter 1. We established

two domain contacts early on in the research process. The first domain contact, Hans Kottum

– Head of Section of the porters at St. Olavs Hospital – served as our contact with St. Olavs

Hospital and allowed us to perform an extensive requirements eliciation study. The second

domain contact, Thomas Jelle, is the CEO at MazeMap and Wireless Trondheim which provides

St. Olavs Hospital its IPS.

The RE study was performed using the RE methodology defined in chapter 2, and consists

of the core activities illustrated in Figure 2.1. The techniques and methods used for each of

the core activities will be detailed in the remained of this section.

Two eliciation techniques were used in the eliciation activity. The first is an observational

techique called field study – a direct observation technique – where the author of the thesis

assumed the role of a porter for two days. The first day started of with an introduction to

what the work of a porter consists of, and during the rest of the day I accompanied a few

different porters around St. Olavs Hospital on different jobs (or tasks). The second day was

mainly used for talking to different porters and inspecting different base stations around the

hospital. Base stations are a new initiative at St. Olavs Hospital where wheelchairs can be

25
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borrowed by hospital visitors by inserting a coin[59] – much like grocery shopping carts1

Notes on ideas and observations was written down during and after both field study days.

The overall goal of the field study was to identify wheelchair availability and usage from the

perspective of porters. The second eliciation technique we performed was a series of semi-

structured interviews with both of the domain contacts. The goal of the interviews with our

domain contact at the hospital was to elicit wishes, needs, and other desirable qualities a

wheelchair location tracking system should or must have. The goal of the interviews with

our domain contact at Wireless Trondheim was to recognize constraints of the IPS and other

needs. While most of the eliciation focused interviews were performed early on in the research

process (August-September of 2013), some of them were also performed at a later date for

demonstration and validation purposes.

The raw requirements, notes, constraints, desirable qualities, and other data from the

eliciation activity were condensed into a set of use cases and requirements by assessing and

refining the elicitation data. This process mainly consisted of organizing the data into require-

ments, using natural language, and use cases, using conceptual modelling. The condensed set

of requirements and use cases was then presented to our domain contacts for feedback. The

processed data were managed by keeping requirements in a table format using the spreadsheet

application LibreOffice Calc, while the conceptual models were drawn using UML notation in

the vector graphics editor Inkscape and the UML tool UMLet2 The rest of this chapter details

the results of the RE activities.

3.2 Context and Stakeholders

We recognize three groups of stakeholders that may influence the proposed system during its

life cycle. The first group are the porters, administrators, and other staff members at St. Olavs

Hospital, where the porters are the main users of the system. The second group is the IPS

provider, that in our case is Wireless Trondheim. The third and last group is the patients or

visitors of the hospital, and represent an important part of any evaluation of the system. Any

system that is able to reduce the time porters spend looking for wheelchairs will also reduce

the waiting time of patients and visitors, thus the members of the last group will be able to

feel the effects of the system indirectly through the porters. In a general implementation the

stakeholders are the hospital, IPS provider, and hospital visitors.

A simplified overview of the system and sociotechnical context boundaries are depicted in

Figure 3.1. Any proposed system using the IPS at St. Olavs Hospital must reside within the
1There are currently a total of three base stations at St. Olavs Hospital. They are located at the main entrances

of Gastrosenteret, Nevrosenteret, and Akutten og Hjerte-lunge-senteret.
2LibreOffice, UMLet, and Inkscape are free and open source.
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context of the IPS, hence the placement of the system in Figure 3.1.

System

MazeMap

Cisco Mobility Services Engine

St. Olavs Hospital

Figure 3.1: System and context boundaries.

MazeMap is an IPS provided by Wireless Trondheim and uses trilateration to find WLAN

devices using wireless access points. It is currently available at NTNU, St. Olavs Hospital, and

University of Tromsø - The Arctic University of Norway (UiT). A mapping of all buildings, and

a-to-b walking paths based on access levels are among some of the features MazeMap provides

its users. In a customer case study from 2013 it was found that MazeMap reduces the stress of

patients, visitors, and employees and reduces the workload at information desks by making it

easier to navigate buildings[60]. MazeMap relies on geometric positioning data from the Cisco

Mobility Services Engine (Cisco MSE) and provides its users with a graphical user interface on

desktop and mobile devices. Cisco MSE is a system that determines the location of a person

or object with an active Wi-Fi device, i.e. a WLAN device, or an RFID tag by utilizing the

already existing wireless infrastructure. It uses the two technologies Received Signal Strength

Indication (RSSI) and Time Difference of Arrival (TDOA) to track the location of Wi-Fi devices

in indoor and outdoor environments, respectively. RSSI determines the location using the

perceived signal strength of three or more access points, while TDOA determines the location

based on the difference in time of arrival of signals as seen by three or more synchronized

access points.

The outermost boundary in Figure 3.1 describes the context in which both the IPS and the

proposed system is intended to be used. Information systems that operate in hospitals and

healthcare are sociotechnical systems where multiple people with different responsibilities

work together. The importance of recognizing the sociotechnical aspects of a system can be

visualized in the triangular representation by Steven Alter called the work system method[61].

In this method a system can be understood as a separation of the process, i.e. participants such

as nurses, porters, and doctors, information and data, and technologies, versus the outcome of

the process, e.g. patient care. It is quite common to think on information systems in isolation,
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therefore, disregarding the impact the system has on its participants (directly or indirectly)

and the information is uses or produces.

3.3 Requirements Elicitation

A summary of the requirements eliciation will be split up into two parts. The first part will

present observations and information from the field study and interviews with our domain

contact at St. Olavs Hospital. The second part will present information from the interviews

with our domain contact at Wireless Trondheim.

St. Olav Hospital has around 9600 employees (9584 in 2012) and is a 1008-bed hospital

with 7 outpatient centers in Trondheim. In 2012 it had a total of 554083 outpatient consulta-

tions and 131547 inpatients. 37 of the hospitals employees are porters that handle (on average)

500 logistical jobs/tasks each day. A logistical task may include but is not restricted to helping

visitors and patients arrive on time for their appointments, answering emergency calls, and

other logistical tasks not involving patients. Porters receive tasks via a IP phone system in

real-time from the porter base station at the information desk on the first floor of Akutten

og Hjerte-lunge-senteret. One or more operators are responsible for receiving and assigning

tasks from patients and visitors to porters based on their current location. The current job

dispatching system is provided by Imatis3 and uses a separate location tracking infrastructure,

based on IP phones, from MazeMap. Tasks are received by porters in the form of textual

messages that describe the building, floor, department, corridor, room, and bedpost that the

patient or visitor is located and where he or she should be transported.

There is no common repository of wheelchairs, and each department is responsible for

purchasing, maintaining, and keeping track of their own wheelchairs. However, wheelchairs

are used between departments by either department staff or by porters that need a wheelchair

for their current task. Compared to hospital beds, the number and condition of wheelchairs are

not known and difficult to determine; hospital beds also have a system in place for tracking

their movements. Regardless of this the porters try to take responsibility and coordinate

wheelchairs in order to minimize the chances of missing wheelchairs. Despite this it is not

uncommon to lose track of wheelchairs4, thus many department employees find it difficult

to lend out wheelchairs across departments. Wheelchairs that have been lost track of are

usually not found again. The typical life cycle for wheelchairs is the following: In most cases

a wheelchair is requested and delivered to the polyclinic where they disappear for a couple of

hours before resurfacing somewhere again. Most wheelchairs resurface at the Nevrosenteret
3Imatis is a software company and delivers solutions designed for the healthcare industry.
4It is not unheard of that hospital visitors take wheelchairs with them home, thus stealing a wheelchair either

knowingly or unknowingly.
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as it is a popular pickup area – taxis can be found here.

From the interviews with our domain contact, Hans Kottum, we were able to gather that

the IP phone system used by the porters has a poor temporal resolution. It might take a few

minutes, one minutes and more was frequently observed, before a porter receives the task

sent by the operator; a time difference which invalidates the position observed by the operator.

The current granularity, or spatial resolution, of task descriptions can be up to a room level

however, hospital branch and corridor level is considered good enough by the porters we

talked to. The newly implemented wheelchair base stations mentioned in section 3.1 have

alleviated some of the issues related to difficulties in finding wheelchairs, however, due to the

skewed demand of departments some of the base stations are more likely to be empty. While

the exact number of wheelchairs is not known our domain contact expects that there are a

couple of hundred wheelchairs that are of location tracking interest. i.e. they are in working

condition. Our domain contact estimates that each porter uses 10 to 15 minutes on each shift

for procuring wheelchairs – this is mainly done by guesswork. There are around 25 available

porters each day, meaning that a total of 312.5 minutes or around 5 hours are used looking for

wheelchairs each day on average.

MazeMap receives geometric positioning data from Cisco MSE relative to building floors,

e.g. (x, y) raw position data for floor F . This data is combined with GPS information in

order to improve accuracy of user requests that are done outside. The combined positioning

data from Cisco MSE and GPS is filtered and then presented to the user using proprietary

techniques. Best case spatial accuracy is typically less than 2 meters and on average it is 5 to

10 meters, however, it can get up to 20 meters depending on access point and WLAN device

location. MazeMap currently supports map display, the ability to find your own position, a-to-b

walking paths, and area usage statistics reports. The current system is able to display any item

on their map as long as it has some sort of WLAN device, e.g. smart phone; however, in order

to track the location of specific items a module that is able to query them would have to be

designed and implemented.

3.4 Use Cases

Analyzing the information from the requirements elicitation we propose three use cases that

can be valuable for reducing time spent looking for wheelchairs. The use cases can be seen

in Figure 3.2. It became evident early on that porters can save unecessay time spent looking

for wheelchairs by having them plotted on a map. Finding those wheelchairs that are near
and available can be seen as an extension of this. For simplicity, all use cases are drawn

independently to illustrate that they can be implemented separately.
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Porter IPS

View Wheelchair
Location

Find Nearest
Wheelchair

System Boundary

Find Available
Wheelchairs

Figure 3.2: Use case diagram for location tracking of wheelchairs.

3.4.1 Actors

Two actors can be seen in Figure 3.2, the porter and IPS. The first actor, the porter, is the typical

user that is interested in the location, status, and nearness information about wheelchairs in

and around a hospital. The IPS is the entity which is able to answer the questions asked by

the porter. In our case the IPS is MazeMap by Wireless Trondheim and the porters handle

logistical tasks in the context of St. Olavs Hospital.

3.4.2 View Wheelchair Location

The first use case that became apparent to us during the requirements elication was the View
Wheelchair Location use case, and it allows porters (and other relevant stakeholders) to view

the location of all wheelchairs on a map. This use case was deemed highly desirable by the

porters, and our porter domain contact predicted that this would greatly decrease the time

spent looking for wheelchairs. Such a system would also grant beneficial side effects, such

as reducing the amount of wheelchairs that are not in the correct hospital branch, stolen, or

otherwise lost.
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During a meeting with our domain contact at Wireless Trondheim we were informed that

the IPS at St. Olavs Hospital already has the ability to display items that have a WLAN device,

e.g. smart phone or a computer. We came to the conclusion that we can classify the use case

as trivial to implement, however, the initial cost of WLAN devices – one for each wheelchair –

is yet to be determined.

3.4.3 Find Available Wheelchairs

The second use case from the the top of Figure 3.2 describes the ability to find available
wheelchairs, for example, by displaying them on a map such as MazeMap, or by getting

textual information via the IP phone system used by the porters. We will formally define

available wheelchairs as a wheelchairs that can be used, i.e. does not require repair, and

is not currently in use by, for example, other patients or visitors. This use case has a more

narrow focus than the one presented above as it prunes away wheelchairs that are either

in use or otherwise deemed unusable. However, it can answer questions such as: are there

any wheelchairs in the process of leaving the hospital grounds? As we found out during the

eliciation, the theft of wheelchairs either knowingly or unknowingly, is not unheard of, thus it

can be valuable to be able to answer such a question.

The problem of finding available wheelchairs is a difficult one, and it is not simply the

case of finding out if the wheelchair is not motion or not. Even humans, with access to

visual information, can have great difficulty with deriving the correct status of a wheelchair.

On the other hand, machines, or computers, have great difficulty with deriving even the

most basic understanding of sensory information, let alone being able to do this in real-time

for, potentially, thousands of wheelchairs. There are a great many questions that have to

be answered before we can say with confidence that this wheelchair is available. Is the

wheelchair moving? Is it moving with or without a passenger? Is the passenger sitting still in

the wheelchair, for example, watching TV? Is the wheelchair in the ownership of a patient,

but currently not used, e.g. it is standing beside a bed? While some of these questions migth

be answerable by recognizing the context of where the wheelchair in question is currently

positioned, it does not diminish the fact that we (porters) must know the answers to these

questions before we decide to take the wheelchair.

3.4.4 Find Nearest Wheelchair

The third and last use case in Figure 3.2 describes the ability to find the nearest wheelchair to

a given location. Note that this question does not say anything about the availability of the

nearest wheelchair; however it can be combined with, for example, the use case that finds

available wheelchairs. This use case offers an endless amounts of customizability where the
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nearest wheelchair can be found given, for example, personal preference for each individual

porter and wheelchair type. Due to the way the job dispatching system at St. Olavs Hospital

works it is natural to consider the problem of finding the nearest wheelchair relative to the

current porter job. If a porter is on his or her way to a patient or visitor and is asked to bring a

wheelchair it would be beneficial to pick up a wheelchair on the way to the task. Wheelchairs

are typically only needed by porters during a task, thus we predict that if the porters not

only have an overview over where the wheelchairs are but also have information about which

wheelchair would be beneficial to use, then the time spent looking for wheelchairs could be

reduced even further than the “View Wheelchair Location” use case. In addition, this use case

would also gain all of the beneficial side effects of the “View Wheelchair Location” use case

as it requires most, if not all, of its functionalities. Such a system could send wheelchair

suggestions, including their location, along with the textual information that is already sent

over the IP phone system. An alternative solution is a path display system that draws paths on,

for example, the MazeMap frontend; this could be displayed to porters by using smart phones.

Due to the numerous benefits that accompany this use case and its scaleable complexity

we argue that this concept is suitable for further investigation; therefore, this section, and the

rest of the thesis, will be dedicated to the analysis of this use case.

3.5 Requirements

Based on the description of the use cases above, a set of requirements have been compiled in

Figure 3.3. The requirement name is constructed using a slightly modified version of the briefly

mentioned requirement template from chapter 2. As mentioned by the previous paragraphs the

thesis will concern itself with the use case “Find Nearest Wheelchair”, thus only requirements

for this specific use case will be itemized here.

A list of the system requirements pertaining to the “Find Nearest Wheelchair” use case

can be seen in Figure 3.3. Notice that the requirements does not specify in which way the

results of the system should be presented to the user, i.e. the user interface. Beyond what was

mentioned in section 3.3, any discussion about the user interface is beyond the scope of this

thesis.

The most obvious requirement, Req-1, is necessary in order be able to deliver a functioning

system – it is taken for granted. Req-1 is the only requirement that uses the term “will be able
to”, hence it is also the only mandatory requirement; all the other requirements supplement

and enhance Req-1 to the users’ delight. Req-1 defines the quality of the solution as the most
efficient path, it therefore follows that the path or paths the system outputs to the user should

be an exact, or at least a close approximate, solution.

Developers must be able to utilize the current state-of-the-art acceleration and search
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Identifier Name Type

Req-1 The system will be able to find the most efficient path from the
current position of the porter to the task end point via one of a set
of wheelchairs

functional

Req-2 Due to the rapidly growing literature on new and better search
methods the system should provide the system developers with a
clear interface that separates the search from the search method

functional

Req-3 The system shall be able to rank paths according to their efficiency functional

Req-4 The system should be able to find the nearest wheelchairs within
a maximum of 30 seconds

quality

Req-5 The system should scale well with increasing hospital sizes and
increasing amounts of wheelchairs

quality

Req-6 The system should be able to finish any necessary preprocessing
offline

quality

Req-7 The system should be able to work with the current IPS at St. Olavs
Hospital

constraint

Figure 3.3: System requirements.

methods and not be restricted to the current status quo. Req-2 ensures that there exists a

clearly defined interface that separates the search framework from the search method.

Req-3 provides porters with the ability to select paths from personal preference and ex-

perience rather than forcing a path upon them. The system should act as a tool by helping

porters find suitable wheelchairs and not force them to select any one specific wheelchair5. In

other words, the porter should always be in control over which wheelchair is selected. Req-3

is designed to decrease the likelihood of frustration and increasing the system usage after

implementation.

Req-4 is perhaps the most important of the quality requirements and is an aspect of the

usability of the system, i.e. the system’s ease of use. Porters are always on the move and

are not able to wait around for wheelchair suggestions that take too long to compute when

they could have just as easily found one by themselves. The current IP phone system used for

distributing tasks to porters already has a considerable delay, during which the porter is likely

to either (i) wait around for another task or (ii) make their way to the base station. As was
5This can be defined as striking a balance between informal and formal information systems in software engi-

neering literature. Informal information systems are often recognized as very chaotic and allows each individual
to choose for themselves. On the other hand, formal information systems are very restrictive and does not allow
for any individual choice.
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mentioned in section 3.3, porters were quite frequently able to return, or almost return to, the

porter base station before receiving a new task. Another motivation for Req-4 is the temporal

resolution problem, where the longer the computation takes the greater the results margin of

error becomes. In other words, the margin of error starts to increase from the time the system

recognizes the porter’s position to the results have been computed – a porter’s position may

change within this time.

Req-5 refers to the system’s ability to handle growing amounts of work such as, large

hospitals and increasing amounts of wheelchairs. System scalability is directly related to Req-4

as it influences the system’s ability to solve the task set in Req-1 in a timely manner. Req-5

only specifies that the system should scale well, thus leaving it up to the developer to decide

the actual implementation, allowing the system to use the current state-of-the-art acceleration

and search methods.

Req-6 is a complementary to Req-5 and is important for any hospital where system down-

time should be minimized. Req-6 ensures that any preprocessing necessary for the system to

work, should be able to run offline. By offline we mean that the preprocessing step should

not interfere with Req-1, i.e. preprocessing runs asynchronously of the system. Furthermore,

Req-6 acknowledges the need for acceleration methods as a means to ensure system scalability.

The last requirement, Req-7, ties the system proposed here and the already existing system

at St. Olavs Hospital together. It is the only constraint requirement and is important in order

to correctly place the system in the context described in section 3.2. The system can be

generalized for any hospital by relaxing Req-7 and ensuring that the system should work with

any IPS at any hospital; however, for the purposes of this thesis we will restrict our scope to

St. Olavs Hospital.
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Methods and Implementation

This chapter describes the problem of finding the nearest wheelchair and proposes a search

method, or algorithm, that can solve it. A discussion of the term length will be given alongside

our explanation of the datasets that will be used to evaluate our approach.

4.1 Problem Description

The problem description will be based on the use cased termed “Find Nearest Wheelchair” and

the discussion presented in chapter 3.

Porters receive jobs/tasks via a job dispatching system that is controlled by one or more

operator. Tasks are dispatched given porter’s position and will in most cases include (i) the

starting point of the task, e.g. the location of a hospital bed, (ii) the destination point of the

task, e.g. a specific hospital ward, and (iii) any extra information such as “bring wheelchair”.
If this is the case then it would be beneficial to pick up the wheelchair on, or close to, the path

to the patient/visitor. Thus, the problem can be reformulated as a minimization over the set

of all wheelchairs subject to the shortest path from the porter to the starting point of the task.

LetW = {w1, w2, ..., wn} be the set of all wheelchairs, s be the current position of the porter,

t be the starting point of the task, and Ps,t = (v1, v2, ..., vm) be the shortest path between s

and t, then the nearest wheelchair, w∗, with respect to Ps,t can be defined as the wheelchair

that minimizes the sum in Equation 4.1.

w∗ = min
w

n∑
i=1

(d(Ps,wi) + d(Pwi,t)), ∀iwi ∈W = {w1, w2, . . . , wn} (4.1)

Ps,wi is the shortest path between s and wi, Pwi,t is the shortest path between wi and t,

and w∗ is the optimal, or nearest, wheelchair with respect to Ps,t.

35
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The correctness of Equation 4.1 can be proved by considering the triangle inequality:

d(Ps,t) ≤ d(Ps,wi) + d(Pwi,t). The closer wi lies with respect to Ps,t, the more equal d(Ps,wi) +

d(Pwi,t) becomes to d(Ps,t). If d(Ps,wi) + d(Pwi,t) should become equal to d(Ps,t) then wi must

lie on the shortest path between s and t itself. Thus, w∗ must represent the nearest wheelchair

to Ps,t.

A visual representation of the problem can be seen in Figure 4.1. It becomes self-evident

that any path via one of the wheelchairs from W must be equal to or greater than P .

P

PatientPorter

W

Figure 4.1: Visualization of the nearest wheelchair problem.

The nearest wheelchair problem can be generalized to the Travelling Salesman Problem

(TSP) by relaxing the problem constraints and reformulate the problem to ask for the shortest

path via all wheelchairs in W . As mentioned in chapter 2 the optimization version of TSP has

been shown to be in NP-hard but not necessarily in NP, so it is not in NP-complete[62]. With

that said, due to the constraints on the nearest wheelchair problem it might not be necessary

to resort to approximation algorithms in order to achieve complete and optimal solutions in a

timely manner.

4.1.1 Nearest Wheelchair Algorithm

In this thesis we propose a direct approach for solving Equation 4.1. By letting Equation 4.1

be our search framework the minimization can be solved by selecting an appropriate search

method that computes P , the shortest path between two vertices. This means that the frame-

work runs each search method twice for every wheelchair. Referring back to the requirements

in Figure 3.3, any algorithm solving the problem must be able to deliver exact, or near approxi-

mate solutions (Req-1), must separate the search framework from the search method (Req-2),

and must be able to rank paths according to their efficiency (Req-3). This search algorithm

fulfils Req-3 by making the ranking of wheelchairs a natural part of the framework, Req-2 is

achieved by letting the actual shortest path search method be up to the developer. Req-1 will

in this case be directly dependent of Req-2, thus the most efficient path will be relative to the
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selected search method. Furthermore, the lack of constraints put on the selection of a search

method means that just about any state-of-the-art search method is applicable.

Our approach to solve the nearest wheelchair problem requires that the IPS is able to (i)

query the location of all wheelchairs in real time and (ii) has a sufficiently high enough spatial

resolution. The first demand placed on the IPS concerns the quality of the temporal resolution,

which indicates how long time the IPS needs to detect changes to the location of WLAN devices.

This can have considerable effect on the quality of the solution given by the algorithm such

as being able to select wheelchairs that are already in use. The second demand concerns the

level of detail the IPS is able to report. This can be important in edges cases where the wrong

level of detail can lead to considerable detours.

Some implementational issues will not be considered by this thesis, such as the constraint

that a porter should not have to use stairs after having retrieved a wheelchair. Such problems

are often easy to solve and usually boils down to simple checks in the implementation.

A prototype of the search method has been implemented in Python, version 2.7, and a

technical overview of the implementation, along with an example, can be found in appendix

A. The rest of this section will consider strengths and weaknesses of potential search methods,

and they will be put up for scrutiny with respect to the quality requirements in Figure 3.3 –

Req-4, Req-5, and Req-6 – in later chapters.

Dijkstra’s Algorithm

Dijkstra’s algorithm is the obvious choice for any shortest path problem, and the single-source

version can easily be transformed into a single-pair version by terminating the search after

the target has been found. Dijkstra’s algorithm falls into a class of algorithms known as

uninformed search algorithms, hence no distinction is made between vertices.

Dijkstra’s Algorithm with Landmarks

Dijkstra’s algorithm can easily be extended with the landmark acceleration method by con-

sidering each landmark as structure that allow the search algorithm to quickly jump around

the search space. Each landmark consists of shortest path information to every vertex in a

graph from the landmark vertex, this means that a landmark also contains the shortest path

to the target vertex. Dijkstra’s algorithm with landmarks can therefore be implemented by

jumping automatically to the target vertex if a landmark is encountered, i.e. if it is the currently

inspected vertex. The problem with this approach should be obvious as even though the path

from the landmark to the target is optimal, the path from the source vertex to the landmark is

not. Our implementation tries to reduce these types of errors by terminating the search only

after a second, better landmark is encountered.
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A* Algorithm

The A* algorithm is an informed version of Dijkstra’s algorithm and is implemented alongside

a heuristic function that estimates the distance from the current vertex to the target vertex.

The heuristic function differentiates the vertices that the search can branch to from the current

vertex. This is different from Dijkstra’s algorithm which in the naïve case treats all vertices

equally. Consequently, the explored search space differs for uninformed and informed search

algorithms. This can be seen in Figure 4.2 where the uninformed search algorithm expands

vertices in a sphere around the source vertex, while the informed search algorithm expands

vertices towards the target vertex. Note that the behaviour in Figure 4.2 (b) depends on the

properties of the heuristic function being used. Strictly speaking, no correlation between ex-

plored search space and runtime exist1, however it is assumed that informed search algorithms

have better scalability and thus perform better in larger search spaces.

(a) Uninformed search (b) Informed search

Figure 4.2: Visited vertices during (a) uninformed and (b) informed search. Dark blue rep-
resents the source vertex, red represents the destination vertex, and light blue represents the
explored search space.

As mentioned in chapter 2 the A* algorithm is optimal as long as the heuristic function

is admissible and consistent for tree and graph search, respectively. Three different heuristic

functions were implemented in this thesis.

The first heuristic we implemented is based on the ALT algorithm (A* and landmarks) first

proposed by Goldberg et al.[57] in 2005 that we have termed TE1. The technique uses the

triangle inequality on landmarks in order to compute lower bounds on distance estimates. The
1The runtime, or time complexity, of the A* algorithm is constrained by the heuristic function, i.e. a computa-

tionally heavy heuristic function will yield a higher runtime, and vice versa.
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heuristic function can be seen in Equation 4.2. h(u, v) is the heuristic estimate from u – the

current vertex – to v – the target vertex – and l is the closest landmark to u. Finding l can

either be done by (i) a linear search of all landmarks in ` or (ii) by pre-computing the nearest

landmark for every vertex in the landmark generation phase. Our implementation uses the

second option. TE1 is both admissible and consistent due to the triangle inequality, the proof

of which can be seen in the last section of chapter 2.

h(u, v) = max{d(l, v)− d(u, l), 0} (4.2)

Our second heuristic termed TE2, is a novel extension of TE1 and produces an ever tighter

lower bound by considering the ideas of TE1 symmetrically. The heuristic function can be seen

in Equation 4.3. The definitions are the same as for TE1 except for l which in TE2 is defined

as lu and lv which represents the closest landmark to u and v, respectively. Admissibility and

consistency are both natural properties for TE2 as they are for TE1.

h(u, v) = max{d(lu, v)− d(u, lu), d(lv, u)− d(v, lv), 0} (4.3)

The third and final heuristic is the commonly used Euclidean distance heuristic, termed ED,

and naturally only works in Euclidean space. In other words, compared to TE1 and TE2, ED
only works if vertex coordinates are available. The heuristic function for a two-dimensional

Euclidean space can be seen in Equation 4.4. Notice that we decided to keep the expensive

square root operation in order to preserve admissibility. If the square root operation is removed

the distances returned from h(u, v) will be much higher than the g(u) cost function which in

turn will cause overestimating the actual distance. The Euclidean distance is multiplied by

(1 + 0.00001) in an effort to avoid situations with equal edge costs. By scaling the heuristic

slightly upwards the informed search will prefer to expand vertices closer to the target. As

long is the upward scaling is small enough the admissibility property will still apply. The ED
heuristic function is naturally consistent.

h(u, v) = h(v, u) =
√

(vx − ux)2 + (vy − uy)2 × (1 + 0.00001) (4.4)

Bi-directional Search Algorithms

A bi-directional search executes two searches, one from the source to the target called a for-

ward search and one from the target to the source called a backward search. The general

idea is that the two searches will meet in the middle somewhere more quickly than a forward

search will reach the target. We have implemented a bi-directional version of both the reg-

ular Dijkstra’s algorithm and the A* algorithm. The stopping criterion is the same for both
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algorithms, where the algorithm terminates if the currently expanded node has been explored

by both the forward and backward searches. The algorithms have been implemented to run

quasi-simultaneously by alternating between the forward and backward search.

4.2 Landmarks

As previously described, a landmark is a data structure that contains single-source shortest

path information for a set ` of n vertices from V . Landmarks have a number of applications,

including a way to compute heuristics for non-Euclidean space as seen in the previous para-

graphs. Our implementation builds n landmarks given a graph G = (V,E) by running the

single-source version of Dijkstra’s algorithm for n vertices and storing the solution in an asso-

ciative array, or dictionary, consisting of a collection of key-value pairs. A second dictionary

is pre-computed to keep the nearest landmark for each and every vertex in G. The second

dictionary speeds up the operation of finding the nearest landmark for vertex u and v in the

heuristic function TE1 and TE2. Dictionaries allow for easy access with an average get item
time complexity of O(1) and amortized worst case of O(n)[63]. Two questions have to be

answered in order to use landmarks:

Which landmark selection algorithm should be used?

How many landmarks should be constructed?

The first question will be described in more detail in the next paragraph, while the second

will be thoroughly tested in the next chapter.

4.2.1 Selection Algorithms

Arguably the most important aspect of any landmark data structure is the landmark selection

algorithm. For example, TE1 and TE2 will most likely calculate worse distance estimates if

every landmark in ` are close together. A landmark should represent a robust point of interest

in a graph, and can in some cases be constructed using domain-specific knowledge. There

are two important aspects of landmark selection algorithms, the first is the landmark building

runtime or time complexity, and the second is the landmark quality or robustness. Finding a

suitable selection algorithm must involve a careful balancing between these two aspects. There

might not be a correlation between landmark build time and robustness, thus it is important

to test selection algorithms in order to find the one most suitable for the current problem. We

have implemented four different kinds of landmark selection algorithms, each of which will

be thoroughly tested in the next chapter.
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The first and most basic form of landmark selection we have implemented is a uniform

selection of random landmarks, and is implemented by selecting n unique vertices from V

uniformly.

The second selection algorithm we have implemented is the selection of n vertices with

the highest vertex degree, i.e. ∆(G,n). This is a common landmark selection algorithm and

can be found in the paper by Tretyakov et al.[49].

An intuitive way of selecting points of interest on a graph is to select the n vertices with the

highest centrality, and one of the most suitable of the centralities for this task is the eigenvector

centrality. Equation 4.5 describes the eigenvector centrality of a vertex x in two ways, as an

(adjacency) matrix equation and as a sum[36]. λ is the largest eigenvalue of A and n is the

number of vertices in V , where the eigenvector centrality of a vertex x is proportional to the

sum of the centralities of its neighbours. Our third landmark selection algorithm selects the n

vertices with the highest eigenvector centrality.

Ax = λx, λxi =

n∑
j=1

aijxj , i = 1, . . . , n (4.5)

Tretyakov et al. describes a selection algorithm that samples a set of M vertex pairs,

computes the shortest path for each pair, and selects the vertices that are present in most paths

of the sample[49]. The idea behind the algorithm is to select the vertices that covers most of

the shortest paths, hence the name B E S T- C O V E R A G E. Our implementation is an extension

of this and works by sampling 2n vertices, uniformly, computing the single-source shortest

paths for these vertices, and selecting the vertices that are present in most paths of the shortest

paths. This is an intuitive, yet slow, algorithm that computes a set of robust landmarks.

4.3 Datasets

As discussed in chapter 2 graphs are a useful way of modelling both indoor and outdoot

environments. In this thesis we will be using two types of datasets that model hypothetical

indoor environments slightly differently. The datasets will be used in order to evaluate the

aforementioned search methods. Both dataset graph types can be classified as connectivity

graphs, according to Michael Worboys’ taxonomy[38], where edges occur between two vertices

if there is a physical connection between the two, i.e. a connection of regions. However, one

of datasets will reside in Euclidean space while another will not. In the Euclidean dataset each

vertex will be associated with a position – a two-dimensional vector (X,Y ) – whereas edges

will represent Euclidean distances between vertices. In the non-Euclidean dataset vertices will

not be associated with any valus, however, edges will represent travel time (in seconds).
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4.3.1 Akutten og Hjerte-lunge-senteret

The first dataset models the first floor of Akutten og Hjerte-lunge-senteret (AHL) at St. Olavs

Hospital, and represents the time-dependent non-Euclidean dataset. It is time-dependent

because every edge is associated with a a travel time instead of a Euclidean distance, which for

our purposes is randomly generated depending on the type of regions that are connected. A

modified version of the MazeMap frontend map can be seen in Figure 4.3 and is used as a base

for our graph. Each room, corridor, stair, and lift of the first floor of AHL has been assigned

one of four prefixes and a number that together uniquely labels each region. The prefixes

determines what kind of region it is, e.g. room, corridor, stair, or lift, and is used in a random

number generator to generate plausible travel times for the edges that connect the regions.

For example, if one of the regions is a lift and another is the corridor outside then the travel

time will between the two will be very low. The graph of Akutten og Hjerte-lunge-senteret is

suitable for testing search methods that utilize landmarks, and seeing as it is in non-Euclidean

space it can not be used with the Euclidean distance heuristic seen in Equation 4.4.

Figure 4.3: A modified version of the MazeMap visual representation of Akutten og Hjerte-
lunge-senteret.

In an effort to reduce the manual work needed to create such a graph we have decided

to only model the first floor of AHL. The first floor consists of 203 vertices connected with

231 edges and can be seen in Figure 4.4 (b). Larger versions of the non-Euclidean graph are

obtained by connecting multiple versions of the same floor via vertices classified as stairs and

lifts. This lets us generate non-Euclidean graphs with 203n vertices and 231n+15(n−1) edges.

There are 15 lifts and stairs on floor one, hence the 15(n− 1) part.
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4.3.2 Random Geometric Graph

The second dataset is a random geometric graph and represents a non-time-dependent Eu-

clidean graph. The graph is generated by creating a k-d tree of randomly sampled points, or

vertices, from a circle with a user defined radius. An edge between two vertex pairs, quickly

queried from the k-d tree, is created if the distance between the two is less than a threshold

value. A visual representation of a random geometric graph with 203 nodes sampled from a

circle with radius 0.6 can be seen in Figure 4.4 (b). Notice that the number of edges is com-

pletely determined by the threshold and cannot be defined by the user. The random geometric

dataset can be used to evaluate every search method and heuristic mentioned above, however,

it will be especially useful for assessing the ED heuristic as this is not possible with the AHL

dataset.

(a) A random geometric graph with |V | =
203 and |E| = 568 sampled from a circle
with a radius of 0.6.

(b) The first floor of Akutten og Hjerte-
lunge-senteret with |V | = 203 and |E| =
231.

Figure 4.4: Visual representation of the datasets used for evaluating the system.



Chapter5
Experiments and Results

In this chapter we explore the experiments and the results obtained from our search approach

presented in the previous chapter. The experiments are split up into four scenarios, each

focusing on the different qualities that make up our search method. Only a brief set of

observations will be presented in this chapter, a more detailed discussion will be found in

the next chapter.

5.1 Scenarios

The first scenario focuses on the landmark selection algorithms. The scenario is split up

into two experiments that evaluate both the landmark build time and the achieved search

runtime of different number of landmarks and selection algorithms. The scenario is designed

to recognize strengths and weaknesses of the different selection algorithms. The rest of the

scenarios utilize the results from this scenario in order to reduce the dimensionality of the

experiments – a fixed selection algorithm and number of landmarks is chosen.

The second scenario explores the efficiency, or optimality, of the different search algorithms

that can be used to find the nearest wheelchair. The scenario is split up into two experiments

that test for two different amounts of wheelchairs. The classic Dijkstra’s algorithm is used

to measure optimality due to its guaranteed optimality when the input graph contains no

negative edge weights. In addition to counting solution inaccuracies the experiments also

output weighted inaccuracies, or cumulative distance errors.

The third scenario focuses on the search runtimes for different amounts of wheelchairs and

graph sizes. The scenario is split up into four experiments that test the two datasets on each

of the scenario types, i.e. graph size and wheelchair amounts.

Similarly to the third scenario, the fourth scenario is split up into four experiments that

44
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test the two datasets on each of the two scenario types; however, the fourth scenario measures

the fraction of explored search space instead of runtimes.

For simplicity, algorithms and heuristics will sometimes be abbreviated in order to reduce

clutter. Dijkstra’s algorithm with landmarks will be referred to as DL and bi-directional versions

of algorithms will be referred to as BD, e.g. BD A* TE1 refers to the bi-directional version of

the A* algorithm using the regular triangle inequality heuristic.

5.2 Environment

As with the prototype of our search approach, all experiments in the thesis were developed

in the Python programming language, version 2.7. The CPython implementation of Python

was used as the interpreter of our experiments as it is the default and most widely used imple-

mentation of Python[64]. The choice of programmming language was due to a combination

of the author’s knowledge and previous experiences, the possibility of rapid prototyping, and

the abundance of useful Python packages. The following third-party Python packages were

used to implement the experiments: NumPy, a package for doing scientific computing with

Python, matplotlib, a plotting library, and mpltools, a set of tools for matplotlib[65, 66, 67].

virtualenv[68] was used to create isolated and predictable Python environments.

5.2.1 Dataset

The experiments will use the datasets described in chapter 4 to evaluate the search methods

and heuristics. The A* algorithm and the bi-directional version using the ED heuristic will only

be tested on the random geometric graph. The first two scenarios evaluating the landmark

selection algorithms and the search method optimality will use datasets generated on the fly,

while the last two scenarios will be using pre-generated datasets. The reason for this is simply

to save time as the last two scenarios will be testing a large number of datasets that can range

from around 800MB to up to 1GB in size. The pre-generated datasets will be stored on the

author’s computer using the Python object serialization module, pickle.

5.3 Landmark Selection Efficiency and Effectiveness

The first scenario measures the efficiency, or landmark build time, and effectiveness, or search

time, for the four landmark selection algorithms: uniform, degree, eigenvector centrality, and

coverage selection algorithms. Both of the effectiveness experiments will be applying the A*

algorithm with the regular TE1 triangle inequality heuristic on a dataset of connected floors of

Akutten og Hjerte-lunge-senteret. 500 searches will be run and then averaged for each number
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of landmark, and the sample variance will be shown as fill colour in the search time plots. A

formula for the sample variance can be seen in Equation 5.1, where n is the sample size, xi is

the ith sample value, and m is the sample mean.

s2n−1 =
1

n− 1

n∑
i=1

(xi −m)2 (5.1)

Experiment 1: All Landmark Selection Algorithms

The first experiment uses a dataset with 20 connected floors, consisting of 4060 vertices and

4905 edges. The dataset does not change for each of the experiments, thus edge travel time

remains the same for every experiment. A maximum of 50 landmarks was tested over a period

of 1 day. The resulting graph plots can be seen in Figure 5.1.

(a) Landmark build time. (b) Landmark search time.

Figure 5.1: Build and search time for all landmark selection algorithms. Up to 50 landmarks
are tested.

In Figure 5.1 (a) the coverage selection algorithm dwarfs every other selection algorithm

where it can take up to 30 minutes to build 40 landmarks. This can easily be explained by the

NP-hardness of the coverage computation that performs an exhaustive single-source shortest

path search and counting procedure for 2n vertices, e.g. 50 landmarks times 2. The next

experiments omits the coverage selection algorithm, so the uniform, degree, and eigenvector

centrality build times should be more visible. The search times for the selection algorithms

in Figure 5.1 (b) are quite variable, with the coverage selection algorithm, unexpectedly,

performing worse than the rest of the algorithms, at least for larger numbers of landmarks.
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Experiment 2: Uniform, Degree, and Centrality Selection Algorithms

The second experiment uses a dataset with 5 connected floors, consisting of 1015 vertices and

1215 edges. The purpose of this experiment is to gain a better understanding of the uniform,

degree, and eigenvector centrality build and search times that were dwarfed by the coverage

selection algorithm in the first experiment. The results of the experiment can be seen in

Figure 5.2, where the maximum number of landmarks is 20.

(a) Landmark build time. (b) Landmark search time.

Figure 5.2: Build and search time for uniform, degree, and eigenvector centrality selection
algorithms. Up to 20 landmarks are tested.

In Figure 5.2 (a) we can see the landmark build times much more clearly than in Figure 5.1

(a). Landmarks constructed using uniform and degree selection increase at a slow pace, and

lie around 0.1 seconds for up to 20 landmarks. Eigenvector centrality landmark building

increase at a slower but more varying pace and usually take around a second to build. This is

considerably less than the coverage selection algorithm which increase at a much more rapid

rate. The A* search time for the respective algorithms in Figure 5.2 (b) are comparable to

the first experiment. Uniform selection, predictably, displays the most variable results, degree

selection displays average performance, while eigenvector seem to perform just a bit better

than degree selection.

For the rest of the experiments we will be using 15 landmarks created with the eigenvec-

tor centrality selection algorithm. As we saw in Figure 5.1 and Figure 5.2, this is a good

compromise between efficiency and effectiveness.
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5.4 Search Efficiency

The second scenario measures search efficiency, or optimality, for each search algorithm with

a varying number of wheelchairs. The first experiment will be testing for the base case of one

wheelchair, while the second experiment will test for ten wheelchairs. Each algorithm is run

1000 times with a constant number of 15 landmarks created with the eigenvector centrality

selection algorithm. The random geometric graph dataset is used in order to be able to test the

regular and bi-directional version of the A* algorithm with the Euclidean distance heuristic (A*
ED and BD A* ED). The random graph will consist of 1015 nodes sampled from a circle with

radius 1.1 and 4051 edges, which is equivalent to the AHL dataset with 20 connected floors.

The number of errors and distance errors are calculated by comparing against a guaranteed

optimal solution calculated using Dijkstra’s algorithm. An error is defined as a solution path

and accompanying distance that does not match the optimal solution. The number of errors is

normalized by dividing the errors with the number of wheelchairs, thus the maximum number

of errors is 1000. The calculation of the normalized cumulative distance errors can be seen in

Equation 5.2 and is defined as the absolute of the difference between distances of the inspected

and optimal solution. n is the number of wheelchairs while xi,d and x∗i,d is the distance for the

ith wheelchair of the inspected and optimal solution, respectively.

Err(x) =
1

n

n∑
i=1

|x∗i,d − xi,d|, (5.2)

Experiment 1: All Search Algorithms, One Wheelchair

The first search efficiency tests all search algorithms with one existing wheelchair. The result

of the experiment can be seen in Figure 5.3. In Figure 5.3 (a) we see that Dijkstra’s algorithm

with landmarks (DL) and the bi-directional A* algorithms are the only algorithms that con-

sistently return the wrong answer. However, even though the bi-directional A* algorithm has

errors in almost 90% of all searches, the severity of the errors is almost non-existent compared

to Dijkstra’s algorithm with landmark shortcuts; as can be seen in Figure 5.3 (b). For example,

bi-directional A* with the Euclidean distance heuristic have almost zero distance errors even

though over 20% of the solutions contain errors. The general observation between the heuris-

tics seem to be that there is an inverse correlation between the quality heuristic estimate and

the number of errors; however, we will have to test and see how the explored search space

looks before confirming this.



5.4. SEARCH EFFICIENCY 49

A* TE1 A* TE2 A* ED BDA*TE1 BDA*TE2 BDA*ED

(a) Normalized number of errors.

A* TE1 A* TE2 A* ED BDA*TE1 BDA*TE2 BDA*ED

(b) Normalized cumulative distance errors.

Figure 5.3: Search inaccuracies and cumulative distance errors with one wheelchair.

Experiment 2: All Search Algorithms, Ten Wheelchairs

The second search efficiency tests all search algorithms with ten wheelchairs. The result of the

experiment can be seen in Figure 5.4.

A* TE1 A* TE2 A* ED BDA*TE1 BDA*TE2 BDA*ED

(a) Normalized number of errors.

A* TE1 A* TE2 A* ED BDA*TE1 BDA*TE2 BDA*ED

(b) Normalized cumulative distance errors.

Figure 5.4: Search inaccuracies and cumulative distance errors with ten wheelchair.

The number of errors in Figure 5.4 (a) is comparable to Figure 5.3 (a), the only difference

being the slightly less number of errors for the bi-directional A* with the TE2 heuristic, and
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a slightly higher number of errors for Dijkstra’s algorithm with landmarks. Overall, we see a

marginally better performance for all algorithms that display errors in Figure 5.4 (b). Notice

that bi-directional A* with the ED heuristic exhibit almost no distance errors in both Figure 5.4

(b) and Figure 5.3 (b) meaning that the errors observed in Figure 5.4 (a) are minimal at best.

5.5 Search Runtime

The third scenario measures search runtime for either an increasing graph size or an increasing

number of wheelchairs. The first two experiments will test how each of the dataset types fares

with an increasing graph size, while the latter two experiments will test how they perform

with increasing amounts of wheelchairs. As before, every dataset will be using a constant

number of 15 eigenvector centrality landmarks. Every search algorithm is run 5 times with a

new random source and target vertex for each graph size or number of wheelchairs.

Experiment 1: Increasing Graph Size, Non-Euclidean Dataset

The first experiment uses 40 pre-generated datasets of AHL from 1 floor to 40 connected floors

(a maximum of 8120 vertices). A constant number of 100 wheelchairs is used for each graph.

The results can be seen in Figure 5.5. Notice that the ED heuristic can not be used on this

dataset.

Figure 5.5: Search time for increasing non-Euclidean graph sizes.

We can see that the bi-directional versions of Dijkstra’s algorithm and A* perform much

better than the regular versions; however the runtime of the bi-directional A* algorithms tend
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to oscillate more the larger the graph size is. The TE2 heuristic also seem to perform better

than the TE1 heuristic for every graph size. Furthermore, the runtime of Dijkstra’s algorithm

with landmarks can be compared to the A* algorithm, but with more inconsistency.

Experiment 2: Increasing Graph Size, Euclidean Dataset

The second experiment uses 40 pre-generated datasets of the random geometric graph and

has exactly the same number of vertices as the AHL graph in the first runtime experiment.

A constant number of 100 wheelchairs is used for each graph. The results can be seen in

Figure 5.6.

Figure 5.6: Search time for increasing Euclidean graph sizes.

Surprisingly, every algorithm and heuristic beside ED perform considerably worse com-

pared to the AHL dataset. However, as we can see by the yellow and dark blue lines at the

bottom of Figure 5.6, the ED heuristic performs significantly better than the others. Another,

yet surprising, observation is that the bi-directional version of Dijkstra’s algorithm performs

consistently worse than the regular version. This behaviour might be caused by the fact

that the random geometric graphs tend to have more edges connecting the vertices than the

non-Euclidean datasets.

Experiment 3: Increasing Number of Wheelchairs, Non-Euclidean Dataset

The third experiment uses an increasing amount of wheelchairs on a pre-generated graph of

the AHL dataset with 20 connected floors (4060 vertices and 4905 edges). Due to the fact that
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differences in runtime between n and n+ 1 wheelchairs do not add up to much, we decided to

increase the amount of wheelchairs by 100 for each search up to 2000 wheelchairs. The results

can be seen in Figure 5.7. Notice that the ED heuristic can not be used on this dataset.

Compared to the the previous two experiments we can see that the number of wheelchairs

have a much bigger impact on how fast the search methods perform. The bi-directional version

of A* TE1 and TE2 perform significantly better than the regular versions, with a difference of

up to 10 seconds, compared to the rest of the algorithms. Both the regular and bi-directional

version of Dijkstra’s algorithm do not scale well with increasing numbers of wheelchairs.

Figure 5.7: Search time for an increasing number of wheelchairs on a non-Euclidean graph.

Experiment 4: Increasing Number of Wheelchairs, Euclidean Dataset

The fourth and last experiment for measuring search runtime uses the same setup as the third

experiment, however, a random geometric graph dataset with 4060 vertices is used instead.

The results can be seen in Figure 5.8.

As with the second runtime experiment, every algorithm and heuristic besides ED perform

much worse compared to the AHL datset, with runtimes lasting as long as 4 or 5 minutes in

the worst cases. The bi-directional and regular version of A* with the ED heuristic can barely

be seen at the bottom of the graph search times ranging from 0 to 20 seconds. We can again

see that the bi-directional Dijkstra version performs worse than the regular version.
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Figure 5.8: Search time for an increasing number of wheelchairs on an Euclidean graph.

5.6 Explored Search Space

The fourth and last scenario measures explored search space by counting up the number

of explored vertics and dividing it with the total number of vertices, thus the range of the

explored search space is between 0.0 and 1.0. These experiments ran simultaneously with

the search runtime scenario, thus the first two experiments tests how the datasets perform

on increasing graph sizes, and the last two experiments test how the datasets perform with

increasing amounts of wheelchairs. As before, every dataset will be using a constant number of

15 eigenvector centrality landmarks. Every search algorithm is run 5 times with a new random

source and target vertex for each graph size or number of wheelchairs.

Experiment 1: Increasing Graph Size, Non-Euclidean Dataset

The results of the first experiment can be seen in Figure 5.9, it uses the same exact setup as

the first experiment in the search runtime scenario.

Dijkstra’s algorithm explores, unsurprisingly, more of the search space than any other algo-

rithm. We can also see the significance of the TE2 heuristic as even the regular A* algorithm

perform better or equal to the bi-directional A* algorithm with the TE1 heuristic. Interestingly,

the algorithms, with the exception of Dijkstra’s algorithm, all explore less than 50% of the

search space; however, the explored search space does not seem to go down with larger search

spaces.
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Figure 5.9: Explored search space for increasing non-Euclidean graph sizes.

Experiment 2: Increasing Graph Size, Euclidean Dataset

The second experiment uses the same setup as the second experiment in the search runtime

scenario.

Figure 5.10: Explored search space for increasing Euclidean graph sizes.

As we can see from Figure 5.10, the performance of the search methods is comparable to

the results in Figure 5.9, however, except for the versions of A* that use the ED heuristic, the

size of the explored search space is quite variable. There seems to be no obvious pattern or

reason for the variable results, however, it is clear that the ED heuristics perform much better
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on the Euclidean datasets. In fact, the ED heuristic does not even explore 10% of the search

space, it is more close to 1% or 2% of the total search space. As we saw in Figure 5.9 the size

of the explored search space neither seem to decrease or increase with increasing graph sizes,

but rather seem to oscillates between high and low values.

Experiment 3: Increasing Number of Wheelchairs, Non-Euclidean Dataset

The results of the third experiment can be seen in Figure 5.11, it uses the same exact setup as

the third experiment in the search runtime scenario.

Figure 5.11: Explored search space for an increasing number of wheelchairs on a non-
Euclidean graph.

Compared to the third and fourth experiment in the search runtime scenario we do not see

any extreme increase, or decrease, of the explored search space. Compared to the first and

second search space experiments it actually seems that the number of wheelchairs is irrelevant

with respect to the size of the explored search space. As before only Dijkstra’s algorithm seem

to crawl past the 50% explored search space mark, with most of the algorithms staying well

below 40% of the explored search space, on average.

Experiment 4: Increasing Number of Wheelchairs, Euclidean Dataset

The results of the fourth and last experiment can be seen in Figure 5.12, it uses the same setup

as the fourth experiment in the search runtime scenario.

The graph exhibits the same oscillatory behaviour as the second experiment, which from

what we have seen from earlier experiments might have something to do with the Euclidean
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dataset itself. As we saw in Figure 5.11, the number of wheelchairs do not seem to have any

effect on the size of the explored search space, and just like the second search space experiment

the search methods using the ED heuristic seem to only explore about 1% or 2% of the total

search space.

Figure 5.12: Explored search space for an increasing number of wheelchairs on an Euclidean
graph.



Chapter6
Discussion

In this chapter we discuss the results from chapter 3 and chapter 5, while also drawing upon

the work presented in chapter 4. The chapter is split up into two parts. The first part discusses

the results from chapter 5 by evaluating the performance of the search methods, while the

second part discusses the search framework and search methods from chapter 4 with respect

to the requirements from chapter 3.

6.1 Performance

The discussion of the experimental results will be split up into two parts. One part discussing

the landmark selection algorithms, while another part discusses the search methods

6.1.1 Landmark Selection

There are both strengths and weaknesses to the four landmark selection algorithms we have

prototyped here, and the performance or quality of the selected landmarks can have a signifi-

cant impact on the heuristics and algorithms that use them. The most obvious result is the fact

that more landmarks lead to longer preprocessing times, with the coverage selection algorithm

having the longest build time, by several orders of magnitude. Compared to the other selection

algorithms, the build time for uniform, degree, and eigenvector centrality selection uses, at

most, just a few seconds, meaning that they can even be run online without having a major

impact on the total search time. Uniform selection proved to be the most unstable selection

algorithm, whereas the coverage selection algorithm yielded disappointingly high search times

compared to the more simple algorithms. We can only speculate that the uniform sampling

of the two times the number of landmarks vertices coupled with the variable performance of

the random selection of candidate landmarks only lessened the coverage landmark robustness.

57



58 CHAPTER 6. DISCUSSION

Degree and eigenvector centrality selection generated comparable results, with eigenvector

centrality having just a bit better search times for increasing numbers of landmarks.

6.1.2 Search Method

The bi-directional and regular version of Dijkstra’s algorithm do not scale well for neither

increasing graph sizes or increasing numbers of wheelchairs. While displaying decent runtime

performance for small graph sizes and wheelchair amounts, the runtime quickly increased

for larger numbers. From the users’ perspective, even though these algorithms do guarantee

optimal solutions it might be better to accept a solution with some flaws instead of having to

wait up to one or more minutes for an optimal solution. Our attempt at combining Dijkstra’s

algorithm with landmarks as shortcuts proved to be a disappointment, with runtimes compa-

rable to the regular A* algorithm, unpredictable runtimes, and a significant error rate. In fact,

it displayed the highest amount of weighted distance errors compared to the other algorithms.

On the other hand, the A* algorithm displayed the most promising results, regardless of

heuristic. The bi-directional version of A* has better runtimes compared to the regular version;

however, we can observe that speed is indeed traded for correctness. Optimality aside, it is

clear that the bi-directional version of the A* algorithm scale much better than the alternatives.

In retrospect, we should have implemented a stronger stopping criterion, such as the average

of heuristics presented by Ikeda et al.[48]. Interestingly, there seems to be a strong case for an

inverse correlation between the tightness of the heuristic estimate and the correctness of the

search, i.e. a better heuristic estimate from both sides increases the chance of the two searches

intersecting at the optimal path.

The TE2 heuristic performed better than the regular TE1 heuristic in all cases on the non-

Euclidean dataset, even though it also has to find the nearest neighbour of the target vertex in

order to be able to exploit the ideas of TE1 symmetrically. An interesting property with both

TE1 and TE2 is that the lower bound becomes better the more landmarks are present in the

graph, meaning that there is an trade-off between landmark preprocessing and lower bound

tightness for sufficiently many landmarks. This property follows naturally from the triangle

inequality and the fact that both heuristcs rely on the nearest landmark, i.e. the closer the

landmark the better the heuristic estimate. The ED heuristic is a clear winner for the Euclidean

dataset where it performs several orders of magnitude better than the other two heuristic

functions.

The behaviour experienced on the runtime and explored search space experiments using

the random geometric graph, or Euclidean dataset, can partially be explained by the increased

amount of edges compared to the non-Euclidean dataset. An example of this can be seen

in Figure 4.4 where the number of edges on the random geometric graph is over double the
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size of the number of edges on the AHL graph. This is an implementational issues as edges

are created between two vertices if the distance between the pair of vertices is less than a

threshold value. This means that there is large chance that the Euclidean distance between

any two vertices will prove to be a good heuristics. With that said, the ED heuristic will only

work on graphs with Euclidean distances and not on graphs modelling travel time. More on

the topic of distance types will be covered in the last section.

The explored search space proved to neither increase or decrease with regards to the shift-

ing graph and wheelchair parameters for any of the search methods that we tested. However, it

did show that there is a correlation between search methods and heuristics where, for example,

the methods applying the TE2 heuristic performs consistently better than the TE1 alternative

with regards to both runtime and explored search space.

6.2 Appropriateness

In this section we will consider each of the requirements in Figure 3.3 and see if any of the

proposed search methods manages to fulfil them.

The first requirement, Req-1, states that the system should be able to find the most efficient
solution to the problem. As previously discussed, both the regular and bi-directional version

of Dijkstra’s algorithm and the regular version of the A* algorithm is able to guarantee correct

solutions, in our prototype. However, depending on the type of graph it is clear that the best

search method would be the A* algorithm with either the TE2 heuristic function for graph

models that do not have any vertex coordinate information, or the ED heuristic function for

graph models with vertex coordinates. The choice of graph type depends on how, or in what

way, the environments are modelled. The obvious and most commonly used type is the use

of vertex coordinates such as latitude and longitude, where distances between vertices are

measured using, for example, meters. While this might give an accurate description of the

environment itself, it does not give any indication as to how long it takes to travel from A to

B. Alternatively, the environment can be modelled as physical areas connected together by

edges describing travel time, for example, in seconds. This gives an accurate description on

how long it takes to travel from A to B, and resolves questions such as: is it quicker to use the

stairs or the lift? In the first case, the ED heuristic function is a good choice, while the TE2
heuristic function is a good choice for the latter.

The search framework presented in Equation 4.1 describes a natural way of separating the

search framework from the search method, thereby fulfilling Req-2.

Every search method presented in this thesis is able to rank paths according to their effi-

ciency, thus fulfilling Req-3. However, in practice it should be possible to relax this requirement

to only require, for example, the k best wheelchair choices, with k being less than the number
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of wheelchairs. In a real life situation a porter would probably be satisfied with, for example,

a list of the 5 best wheelchairs choices instead of a ranking of several hundreds of wheelchairs.

For several thousands of wheelchairs in a fairly large hospital only the bi-directional version

of the A* algorithm and the regular A* algorithm with the TE2 heuristic function is able

to find the nearest wheelchair within a maximum of 30 seconds. In the case of St. Olavs

Hospital, where there are just a few hundred wheelchairs of location tracking interest, the

suggested search method will have no problem finding the nearest wheelchair. Regardless, Req-

4 is fulfilled for any small to medium sized hospital and partially fulfilled for large hospitals

depending on the number of wheelchairs. There is a trade-off between correctness and speed

which will need to be considered for larger hospitals and larger amounts of wheelchairs.

The search framework proposed by this thesis follows directly from Equation 4.1 which

describes the nearest wheelchair as the wheelchair with the shortest path from source to target

via a set of wheelchairs. This approach ultimately suffers due to the exhaustiveness of the

search as each wheelchair will have to be checked, regardless. If the focus on keeping a

set of ranked solutions is relaxed to simply the k best wheelchairs or removed completely it

would be possible to make use of algorithms that yield approximate solutions, such as genetic

programming, simulated annealing, and ant colony optimization. Another approach would

be to prune away large parts of the set of wheelchairs by disregarding those that lie in, for

example, another building given that both the porter and patient is in the same building. Req-5

is partially fulfilled as the system scales well with increasing hospital sizes but does not scale

well with large numbers of wheelchairs.

Not only is the landmark preprocessing able to run offline, thereby fulfilling Req-6, the best

landmark selection algorithm, using eigenvector centrality, is quick enough to be used online.

Req-7 states that an implementation of the nearest wheelchair problem must be able to

work with the current IPS at St. Olavs Hospital. As discussed in chapter 4, our search approach

requires that the IPS is able the query wheelchair locations in real time and has sufficiently

high enough spatial resolution. From the requirements eliciation we found that MazeMap,

the IPS at St. Olavs Hospital, is able to display items, such as wheelchairs, and compute

paths between two points on the map. During one of our meetings with Thomas Jelle at

Wireless Trondheim we found that there should not be anything in MazeMap that limits the

implementation of a system such as the one proposed in this thesis.
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Conclusion and Future Work

7.1 Conclusion

The main focus of this master’s thesis has been on the application of search methods from Ar-

tificial Intelligence (AI) literature to a logistical problem in the hospital. First, a Requirements

Engineering (RE) study was performed to recognize potential uses of IPSs for the reduction

of time spent looking for wheelchairs, where finding the nearest wheelchair was found to be

suitable and beneficial for further investigation. Next, a search framework based on the tri-

angle inequality was developed that leverages location information from an IPS. Then, using

existing search methods from AI literature as starting points, a set of potential search methods

have been developed and evaluated with respect to efficiency and effectiveness.

The main contributions of this thesis is the concept of minimizing time spent searching for

wheelchairs by considering the current task of the porter. In addition, a novel extension of the

commonly used triangle inequality heuristic function (TE1), termed TE2, has been developed

by applying the ideas of TE1 symmetrically. The proposed TE2 heuristic function outperforms

TE1 by computing a better heuristic estimate.

7.1.1 Answers to Research Questions

The following section elaborates on how the RQs in section 1.2 have been answered by the

thesis:

RQ1: How can the time porters spend looking for wheelchairs be reduced?

A RE study was performed in order to recognize a set of use cases and requirements that answer

this RQ. Chapter 3 proposes three use cases that have the potential to reduce time spent
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looking for wheelchairs. The three use cases are: “View Wheelchair Location”, “Find Available
Wheelchair”, and “Find Nearest Wheelchair”, where finding the nearest wheelchair, with respect

to the current task of the porter, was found to be most suitable for further investigation.

Furthermore, the RE study also resulted in a set of requirements for the aforementioned use

case.

RQ2: What is considered to be the nearest wheelchair?

A search framework defining the nearest wheelchair was presented in chapter 4 and defines

the nearest wheelchair as the wheelchair with the shortest path from source to target via a

set of wheelchairs. In addition, a discussion on the definition of distance and its effects on

users were presented in chapter 4 and chapter 6. The discussion recognizes two useful ways

of modelling distances. The first, considers distances between physical areas in the traditional

time-independent Euclidean way by, for example, the use of meters. The second, considers

distances as time-dependent by modelling connections between adjacent physical areas as,

for example, travel time. Both approaches offer different strengths and weaknessess, where

the traditional approach offers an accurate description of the physical environment, while the

time-dependent approach offers an accurate description on how long it takes to travel from A

to B.

RQ3: Which search methods are most appropriate for reducing the time spent looking

for wheelchairs in terms of optimality, runtime, and explored search space?

A prototype of the proposed search framework was implemented in order to evaluate potential

search methods and heuristic functions from AI literature. The evaluation of the search

methods was performed in chapter 5 and a discussion with respect to optimality, runtime,

explored search space, and the answers of RQ1 took place in chapter 6. It shows that the

regular and bi-directional version of the A* algorithm using the TE2 or Euclidean distance

heuristic functions outperforms the other search methods. With TE2 being a good choice for

models modelled in a time-dependent manner, and the ED heuristic being a good choice for

models modelled in a traditional time-independent manner.

7.1.2 Research Objectives

RQ1 and partially RQ2 achieves the first research objective of exploring and understanding

use cases of IPS for reducing the time spent by porters looking for wheelchair. RQ2 and RQ3

achieves the second research objective of researching and comparing search methods from AI

literature in terms of optimality, runtime, and explored search space.
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7.1.3 Limitations

The prototype of the proposed search framework implements only rudimentary functionality

with the purpose of evaluating the search framework and potential search methods. However,

the findings and results of the thesis should be applicable to most IPSs, as none of the proposed

theory is IPS-specific. We were not able to perform a proper demonstration of the search

framework in the hospital environment due to our limited access to the IPS at St. Olavs

Hospital; however, this should not have had any impact on the answers to the RQs.

7.2 Future Work

This section presents possible future work.

The most obvious work is to instantiate the proposed system in the context of the IPS at

St. Olavs Hospital, in collaboration with Wireless Trondheim. This would involve purchasing

WLAN devices for a set of wheelchairs, implementing the necessary modules into the IPS, and

assessing the usefulness of the system.

Another avenue for future work is usability, or ease of use, of the system. While functional,

a textual description of nearby wheelchairs on a smart phone is not exactly aesthetically

pleasing. It would be pertinent to investigate the user experience (UX) of the system by

considering a user-centered design approach using, for example, ISO 9241-210:2010[69].

The final point would be to extend the problem of finding the nearest wheelchair by

generalizing it. This could prove to be very useful as there are many logistical and other

problems that are similar to TSP, such as the problem of picking up a limited set of different

types of items while travelling from A to B. When generalizing the nearest wheelchair problem

it also becomes natural to explore and develop approximate approaches to the the problem.
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Technical Overview

A.1 Introduction

The following appendix briefly describes the Python package nearest_wheelchair which

implements a prototype of the system proposed by the thesis. The code itself can be found in

the accompanying attachment of the thesis.

The appendix is split up into three parts. The first part lists the prototype requirements,

while the second part presents an overview of the implementation itself. Part three presents

examples of how the package can be used and also presents the accompanying demonstration

file.

A.2 Requirements

The system is implemented in the Python programming language, version 2.7, and has been

tested with the CPython interpreter[64]. We decided to use the Python package NetworkX[70]

in order to avoid having to implement a graph module from scratch, and due to the flexible

implementation of NetworkX we were able to extend it with extra features. The third-party

Python packages NumPy, matplotlib, and SciPy are required by NetworkX and are also used in

other areas of the prototype[65, 66, 71]. For example, the k-d tree implementation in SciPy is

used by the random geometric graph module in order to build random graphs faster.

A.3 System Description

The package nearest_wheelchair is comprised of several modules, each of which is responsi-

ble for different parts such as dataset generation, graph definition, and search algorithms. A
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UML class diagram of the system can be seen in Figure A.1, for simplicity the modules have

been split up into two sets of modules, namely algorithms and datasets. The demonstration

module and third-party packages have been omitted to reduce clutter. A description of how to

use the package is found in the next section.

algorithms contains an implementation of different variations of Dijkstra’s, A*, and

bi-directional variants, that can be used by the nearest wheelchair search algorithm. The

bidirectional module is associated with the astar module in order to gain access to the

heuristics TE1, TE2, and ED. The landmarks module contains both an implementation of the

landmark acceleration method and four landmark selection algorithms. Some of the selection

algorithms utilize static functions from the statistics module, however, most of the contents

of statistics is used for experimentation purposes. The quickest_path module contains the

algorithm for finding the nearest wheelchair given a source and target vertex. The five meth-

ods below find_quickest_path() are wrapper functions and makes sure that every algorithm

conforms to a common interface.

The set of modules in datasets are responsible for generating datasets, or graphs, that we

search on. Graphs are defined by the dataset_definition module, and is an extension of the

graph data structure provided by NetworkX. Our extension provides methods for placing n

wheelchairs, setting random edge weights, drawing the graph using matplotlib, and selecting

random vertices. The module also contain a definition of vertices and wheelchairs and also

two static functions. The ahl_graph and random_geometric_dataset modules are able to

generate graphs. The first generates a manually defined graph of the first floor of Akutten og

Hjerte-lunge-senteret at St. Olavs Hospital, where multiple floors can be connected via vertices

labelled as lifts and stairs. The second generates a random geometric graph with n vertices

sampled from a circle with a user defined radius; an edge between two vertices is created if

the distance between them is less than the threshold value. The datasets module acts as a

wrapper and simplifies the dataset creation process. Writing and reading graphs to and from

disk is also supported.

A.4 Examples

This section introduces an example of how the nearest_wheelchair package can be used to

find the nearest wheelchair with respect to the shortest path between a porter and a patient.

Additional examples can be found in the accompanying demo.py file. The file can be run from

the command-line if all the required Python packages are installed.
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Only the nearest_wheelchair package has to be imported in order to be able to use its

modules.

import neares t_whee lcha i r as nw

As previously seen in the UML class diagram, a graph can be generated from the datasets

module. In this example a random geometric graph is generated by sampling 400 vertices from

a circle with a radius of 0.4. The datasets module forces graph reachability automatically1.

graph = nw. ge t_euc l idean_da ta se t (n=400, rad ius =0.4)

Landmarks can be built by instantiating the Landmarks object. In this example, ten land-

marks will be built using the eigenvector centrality selection algorithm.

landmarks = nw. Landmarks( graph )

landmarks . bui ld_landmarks (10 , nw. c e n t r a l i t y _ s e l e c t i o n )

The code snippet belows randomly distributes 40 wheelchairs among the graph nodes.

whee lcha i r s = graph . p lace_n_wheelcha i r s (40)

Finding the nearest wheelchair with respect to the shortest path between a porter and a

patient can done by instantiating the Quickest_path object and calling the

find_quickest_path() method. In this example we will be using the A* algorithm with a

regular triangle inequality heuristic (commonly known as ALT). A source and a target vertex

has been selected randomly.

por te r = graph . select_random_node ( ) # sour c e
p a t i e n t = graph . select_random_node ( ) # t a r g e t
qp = nw. Quickest_path ( graph , wheelchairs , landmarks )

r e s u l t s = qp . f i nd_qu i cke s t_pa th ( qp . as ta r_a lgor i thm ,

porter ,

pa t i en t ,

nw. landmark_heur i s t i c_1 )

The result is a sorted list of Python dictionaries, where each element contains a reference to

the current wheelchair, distance and path from the source to the target vertex via the current

wheelchair, the number of explored vertices, and runtime information. The list is sorted in

ascending order with respect to the path distance, meaning that the first element is the nearest

wheelchair.

1Vertex u is reachable from vertex v if there exist a path between the two vertices. By forcing graph reachability
we ensure that it is possible to get from every vertex to every other vertex.
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algorithms

statistics
pmean(population)
pvariance(population, mean)
pstdev(population, mean)
variance(sample, mean)
stdev(sample, mean)
graph_cardinality(graph)
n_largest_vertex_degree(graph, n)
n_smallest_vertex_degree(graph, n)
n_largest_centrality(graph, centrality, n)
n_largest(dictionary, n)
n_smallest(dictionary, n)

Object::Quickest_path
+find_quickest_path(algorithm, source, target, heuristic)
+dijkstra_algorithm(source, target)
+dijkstra_landmarks_algorithm(source, target)
+astar_algorithm(source, target, heuristic)
+bidirectional_dijkstra_algorithm(source, target)
+bidirectional_astar_algorithm(source, target, heuristic)

landmarks

Object::Landmarks
+build_landmarks(n, selection_algorithm)
+nearest_landmark_query(node)
+shortest_path_query(source)

uniform_selection(graph, n)
degree_selection(graph, n)
centrality_selection(graph, n)
coverage_selection(graph, n)

dijkstra
dijkstra(graph, source, target, landmarks)
update_best_landmark(current_node, target, dist, paths, landmarks)

bidirectional
bidirectional_astar(graph, source, target, heuristic, landmarks)
bidirectional_dijkstra(graph, source, target, weight)

astar
landmark_heuristic_1(u, v, landmarks)
landmark_heuristic_2(u, v, landmarks)
euclidean_distance(u, v, landmarks)
astar(graph, source, target, heuristic, landmarks)
reconstruct_path(current_node, parent, explored_set)

(a) A set of modules that handle the landmark generation and nearest wheelchair computation.

datasets

datasets
get_euclidean_dataset(filename, n, radius)
get_noneuclidean_dataset(filename, floors)
read_dataset(filename, filetype)
write_dataset(filename, graph, filetype)

random_geometric_dataset
random_geometric_graph(n, radius, threshold, force_reachability)

ahl_graph
ahl_graph(n)
connect_graphs(graph_1, graph_2, conn_1, conn_2)
create_ahl_floor_1(graph, floor_id)

dataset_definition

networkx.Graph::Hospital_graph
+select_random_node()
+place_n_wheelchairs(num_wheelchairs, n_types)
+set_random_travel_times()
+reset_wheelchair_placement()
+reset_edge_weights()
+pretty_print_edges()
+draw(radius)

Object::Node

Object::Wheelchair

id_generator(size)
travel_time_generator(tt_type)

(b) A set of modules that handle dataset generation.

Figure A.1: A UML class diagram of the prototype system. Together, (a) and (b) make up the
nearest_wheelchair package.
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