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Problem description

CREEK is a system and a method thoroughly described, but at the moment
without a publicly available implementation. In this thesis, the core of the
system will be implemented in a new way.

CREEK is a system for diagnosis and problem solving intended for open do-
mains, and uses a frame-based knowledge representation based on prototype
theory and a prosedural semantics. What would be the consequences of re-
placing that type of frames with Description Logics in CREEK? Can this be
implemented within a reasonable scope? Which consequences will this have,
in terms of benefits and limitations?

The work will include a demonstration of the implemented system within a
suitable domain, and an evaluation of the results.
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Abstract

Creek is a system for diagnosis and problem solving. It makes heavily use of
general knowledge, and is intended for open and weak theory domains. The
system uses this general knowledge in combination with experiences from
previous cases to solve new problems.

We have implemented the core parts of Creek inside the Colibri studio frame-
work, and shown that it is both possible and realistic to create a thorough
Creek implementation. This has resulted in a system named Colibreek.

In this implementation, we have replaced the knowledge representation in
Creek, switching from the original frames to description logics. This has
proven successful, and promising for further development.

We have tested our system on the turbine sensor domain, and shown how our
system can be used for condition monitoring on sensor-monitored equipment
such as turbines. By doing this, we have also shown how the system can
solve real problems people, companies and organisations have.
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Samandrag

Creek er eit system for diagnostisering og problemløysing. Det kvilar tungt
p̊a bruken av generell kunnskap, og skal løyse problem innanfor domene
som er opne og med svak, usikker teori. Systemet bruker denne generelle
kunnskapen saman med erfaringane fr̊a tidlegare hendingar for å løyse nye
problem.

Vi har implementert dei sentrale delane av Creek innanfor rammeverket Col-
ibri studio, og vist at det er b̊ade mogleg og realistisk å lage ein heilskapleg
Creek-implementasjon. Dette har resultert i eit system vi har kalla Colibreek.

I denne implementeringa har vi erstatta kunnskapsrepresentasjonen i Creek,
fr̊a rammer originalt til skildringslogikk. Dette har vist seg å vera suksessfullt,
og eigna for vidareutvikling.

Vi har testa systemet v̊art p̊a turbindomenet, og vist korleis systemet kan
vera veleigna for tilstandsovervaking av sensor-overvaka utstyr som turbinar.
P̊a denne m̊aten har vi ogs̊a vist korleis systemet kan løyse reelle problem
folk, verksemder og organisasjonar har.
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Chapter 1

Introduction and overview

1.1 Background and motivation

The fundamental idea behind this thesis is that we as software developers
today reinvent far too many wheels. Instead of reinventing the wheel over
and over again, we should have a conscious view on taking advantages of
what developers prior of us have done and how our problem can be solved in
an effective and suitable way.

1.1.1 Why CREEK?

Why are we doing the work described in this thesis? Why do we think
CREEK1 is still interesting and worth spending time, money, work and re-
sources on?

Creek is a system for solving diagnosis and repair problems, intended for
expert users and complex problems. It is a system for case-based reasoning,
heavily inspired by the way humans solve such problems.

We believe in the underlying idea of Creek, that a huge degree of general
knowledge in combination with the cases is a good way to solve many CBR
problems.

Opheim[Opheim, 2012] did a study of the state-of-the-art as of autumn 2012,
and found several findings that are interesting for us, bearing in mind our

1Abbreviation for “Case-based Reasoning through Extensive Explicit Knowledge”, we
will in the rest of our report use Creek rather than CREEK, for the sake of readability.
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1.1. BACKGROUND AND MOTIVATION

belief in Creek as a promising system with useful mechanisms. Firstly, there
is no implementation of Creek today available to the public. The private soft-
ware firm Verdande Technology has developed a software, DrillEdge, based
on the earlier implementation of Creek called TrollCreek, and which the com-
pany owns.

We believe that there are several research topics related to the overall Creek
framework not yet elaborated and tested, and that there is a potential of
improving the Creek architecture further, and have ourselves more ideas than
time of how this could be done. In section 8.6, we will list the ideas time and
resources prohibited us to include in this report. With so many ideas to test,
this would be significantly more feasible if there were a program skeleton to
build from. We intend to provide this skeleton in a new system design and
implementation, based on the openly published Creek architecture and core
mechanisms.

This skeleton would serve at least two purposes: it would lower the threshold
of even considering Creek as a system to improve, and it would make it
easier to play around with, tweaking, testing and improving the system. In
order to be able to achieve the purpose with this thesis - to test Creek with
description logics - we obviously need to have an implementation of (parts
of) Creek. Since there is no implementation available, we need to make this
ourselves. We hope to do this process easier for coming students, researchers
and developers interested in improving Creek by providing this skeleton. Here
it is also worth mentioning that Creek is a comprehensive system, and there
are probably a lot of working hours required in order to implement the entire
system. We will in this thesis do our share.

Opheim[Opheim, 2012] also found that Creek introduced several characteris-
tics hardly seen in any other CBR system, neither when the system was de-
signed or now. The crucial role of general knowledge and the active-explain-
focus cycle are good examples of this. We concluded then that no system
beared in it much enough of Creek to satisfy us.

Another important conclusion we made then, was that CBR development
of today usually starts from frameworks. The leading frameworks seemed
promising to build a possible Creek implementation from.

We would also point out that Creek is useful. We have mentioned that
we believe that Creek is a both interesting and promising system, but as
important, we also believe that Creek can solve actual real world problems.
Verdande Technology’s DrillEdge software already mentioned is a good proof
of this, it is used in oil drilling all over the world. Verdande Technology has

2



1.1. BACKGROUND AND MOTIVATION

also adapted DrillEdge to as different domains as finance[Verdande, 2014a]
and healthcare[Verdande, 2014b], where their solutions also are in real use,
though not in the same propagation as DrillEdge is.

We are convinced that Creek can suit many other domains and tasks as well.
In this thesis, we use Creek to help solving a real world problem for a huge
corporation, with a potential saving of millions of dollars a year. Shokouhi
et al.[Shokouhi et al., 2010] gives a brief overview on how CBR can be used
in the oil well domain, and we can easily imagine Creek applied in all these
sub-domains, as well as in the mentioned healthcare and finance, but also
law and other domains as well.

The sum of these considerations lead us to the conclusion that a new imple-
mentation of Creek was desirable. It is beyond our scope - of reasons due to
time and resources - to implement the entire Creek system, we will focus on
implementing essential parts.

1.1.2 Creek and description logics?

Our topic is angled on testing Creek with description logics. We will test
whether it is even possible within a reasonable scope to implement, and sec-
ond, if it is desirable. What will the benefits be, what will the disadvantages
be?

Creek is by design based heavily on frames, as originally described by Min-
sky[Minsky, 1975] as the way of representing knowledge. In the time gone
after Creek was launched, description logics have become increasingly pop-
ular, and we have the strong impression that most of the systems created
today uses some kind of description logics.

Hence, it may be a bottleneck for further Creek development that it is so
heavily based on frames. We fear that this may repel developers from using
Creek.

We will not dive deep into the disagreement between the entuasiasts on re-
spectively frames and description logics, but are eager to find out the possi-
bilities of combining Creek and description logics. During the work on this
thesis, we intend to experience whether this will be a failure, a success or
something in-between.

3



1.2. GOALS AND RESEARCH QUESTIONS

1.2 Goals and research questions

Goal: Study how the core of the Creek system can be adapted to a descrip-
tion logics representation.

Research question 1: What would be the consequences of replacing frames
with description logics in Creek? Which consequences will this have, in terms
of benefits and limitations?

Research question 2: Can DL be implemented in Creek within a reason-
able scope?

Research question 3: How can decision-support for reported turbine fail-
ures be implemented within a DL-based Creek system?

1.3 The structure of this report

Chapter 1 sets off this thesis with the methodological overview just pre-
sented.

Chapter 2 describes our methodology - how we work.

Chapter 3 gives an introduction to the theory and background information
needed to understand the rest of the report and the system produced.

Chapter 4 sketches the architecture of our system.

Chapter 5 depicts the implementation we have done of Colibreek

Chapter 6 shows how Colibreek is applied on the domains travel recom-
mender and turbine sensors.

Chapter 7 evaluates our work.

Chapter 8 concludes the report and lines up further work to be done.

4



Chapter 2

Methodology

We will in this chapter describe how we work in order to answer the research
questions and achieve the goal outlined in section 1.2.

We have investigated the state-of-the-art, we have done background research
on Creek (the system we are going to implement) and we have had a look on
the Colibri framework (the framework we are going to use).

From what we learned during this research phase, we have prioritised our
backlog and worked on the highest prioritised topics.

In section 1.1.1, we indicated that it could demand working hours far be-
yond our resource limitations to implement the entire Creek architecture.
Consequently, we here present a multi-level version of our scope:

• In this thesis, we describe most of the central parts of the Creek archi-
tecture.

• We have sketched out how most of those can be implemented in our
system in our high-level architecture.

• In our implementation, we have focused on making fewer, but better
elements.

• We test and evaluate a subset of the implementation.

This way, we hope to assist future developers in using our work as a spring-
board. We believe that this upside-down pyramide-alike structure indicated
by the list will be clear and clarifying on what is done and what is left out
at each step.

5



2.1. SEARCH PROCESS

Our approach is a combination of a model/abstraction and a design/exper-
imental. Through modeling and an abstract description of our system, we
form the foundation for answers to the research questions, while the complete
answers as well as the achievement of the goal will come through the system
we design and implement with use of the design/experimental approach.

A further elaboration on what we have prioritised is listed in table 4.1.

2.1 Search process

In the work leading to [Opheim, 2012], we did a study of the state-of-the-art
and a lot of background research. This research gave us knowledge, and also
made us get familiar with many articles related both to that work as well as
the issues concerned in this thesis. We will use and reference these articles
when needed during the work.

Of course, we have not found every interesting or rewarding article during
that work. Hence, we will need to search for more information during the
process.

Our search sources are listed in table 2.1. In general, we have found Google
Scholar1 to be the most suitable starting point when searching for articles.
We tend to find what we are looking for when searching here, and if not, we
try the other sources listed below.

ACM Digital Library http://portal.acm.org/dl.cfm

CiteSeerX http://citeseerx.ist.psu.edu

IEEE Xplore http://ieeexplore.ieee.org/Xplore/guesthome.jsp

ScienceDirect http://sciencedirect.com

Springer Link http://springerlink.com

ISI Web of Knowledge http://isiknowledge.com

Wiley Inter Science http://interscience.wiley.com

Table 2.1: Sources

1http://www.google.com/scholar
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2.2. STUDY SELECTION PROCESS

2.2 Study selection process

In [Opheim, 2012], we defined criteria for considering an article relevant and
good enough to be taken into consideration. We were satisfied with these
criteria, so we have chosen to stick with the behind-laying ideas also this
time. As our domain and goal has changed a bit, the criteria also needs to
be updated. We consider an article relevant if it fulfills the following criteria:

• The article regards our topic

• It tells us something useful about Creek, Colibri studio or mechanisms
used in one of those

• It is of acceptable quality.

Easily said, the articles should give information relevant for taking steps
towards achieving our goal. We notice that the last point is somewhat fluid,
but in short, it means that we should see study selection criterias in context
with the quality assessment heuristics, specified below.

2.2.1 Quality assessment

We have made heuristics for evaluating the quality of articles2, and tested
our reading material against those.

1. Are the results reproducible?

2. Are the presented findings supported by the test evidence?

3. Is there a clear and precise methodology description?

4. Is the study reeinventing the wheel? In other words: does the article
provide any new information?

These are not hard criterias, as different types of articles requires different
levels of formality. For example, the tutorial on jColibri2[Dı́az-Agudo et al.,
2008] have proven very useful without being scientifically appropriate accord-
ing to strict definitions.

2Equal to those we used in [Opheim, 2012]
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2.3. TECHNICAL METHODOLOGY

2.3 Technical methodology

2.3.1 Are we developers or designers?

Section 3.7.1 describes how Colibri studio is aligned for both developers and
designers - with two different interfaces and underlying ideas.

The dichotomy between developers and designers leave us in some manners in
a dilemma - with our purposes in mind, are we really designers or developers?
Luckily, this is a straw man question, as there is no contrary between the
two approaches. We hereby choose to use whatever is most suitable at any
given point. Our intention in this work is to study the usage of Creek with
description logics, not dive into technical details on how every part of it is
technically done.

2.3.2 Dynamic architecture

Depending on the choice of development methodology, the initial amount
of architecture varies a lot. The range varies all the way from draw the
final architecture at the beginning to the architecture will grow organically
when needed. Beck and Andres[Beck and Andres, 2004] propose a two-step
approach: first, find a metaphor for the system. They advocate that as high-
level as the architecture is at the initial level, it will hardly give any value
anyway. During the first iteration, the developers should implement a set of
tasks that enforces them to make a skeleton of the whole system. This is
then the initial architecture.

Beck’s proposal is intended for a team of developers actually doing work for
a customer, whereas we are our own customer as well as a one-man team.
However, we believe in the idea of making an architecture that changes when
the requirements change or substantial new insight is gained during imple-
mentation. We chose to start with a quite simple architecture, and evolving it
as required during development. The result is illustrated in figure 4.2 and de-
scribed in chapter 4 . When specifying this architecture, we also pointed out
the direction for the work for ourselves. This procedure is close to the one sug-
gested by Brown[Brown, 2014], which emphasises heavily that a thoughtful,
but coarse, software architecture early on is essential for successful projects.
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2.3.3 Agile?

For the last few years, there seemingly have been a boom in the flora of devel-
opment philosophies. Agile methods3 have gained steadily more acceptance
and popularity, and the iterative, incremental development process in these
methods facilitate collaboration and adaptation, according to its supporters.

We considered a conscious approach to methodology, and quickly found that
the established agile methodologies were mainly intended for groups of de-
velopers working for a customer. As we in a sense are our own customer,
and work alone, neither of the standard methodology frameworks Scrum4 nor
Extreme programming (XP) [Beck and Andres, 2004] are directly applicable.
A good illustration of this is that XP is considered to have 12 practices, of
which we found five5 to be completely meaningless in our setting. However,
we have chosen to stick to the remaining principles.

These are test-driven development (as elaborated below), continuous inte-
gration, refactoring, coding standards, simple design, system metaphor and
sustainable pace.

Continuous integration means that you should integrate your code into the
main branch as soon as possible.6. Refactoring is to improve the design of
code you already have: “Refactoring is the process of changing a software
system in such a way that it does not alter the external behavior of the code
yet improves its internal structure. It is a disciplined way to clean up code
that minimizes the chances of introducing bugs. In essence when you refactor
you are improving the design of the code after it has been written”[Fowler
et al., 1999][p.9]. Coding standards is simply to write all your code with the
same syntax and coding principles. Simple design says that you should design
for what you need today, not what you might (or might not) need tomorrow.
The simpler the design, the easier to maintain. A system metaphor tells the
story about the system in a way that is easy and non-technical to understand.
Sustainable pace means that you should not work overtime more than one
week in a row, and generally limit the amount of required hours - spend
more productive hours instead of just more hours. Each of these practices
are elaborated more in [Beck and Andres, 2004].

3Summarised in the Agile manifesto, see http://agilemanifesto.org/
4http://www.scrumalliance.org/why-scrum
5Pair programming, planning game, small releases, collective code ownership, whole

team
6Trivial for single-person-projects like ours, more crucial for bigger projects
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2.3.4 Choice of develoment-driver

Test-driven development (TDD) is the most crucial part of our methodology.
When doing test-driven development, you first write a test - a failing test.
Then you write exactly enough code to make the test pass, in the easiest
possible way. Third, you refactor the code, while making sure the tests
are still passing. When done refactoring, it is time to write a new test. This
cycle, illustrated in figure 2.1, repeats until you have implemented the desired
functionality.

The tests we develop this way are called unit tests [Osherove, 2011] - we test
a unit in isolation.

Figure 2.1: The TDD cycle, adapted from [Ambler, 2 13]

TDD has two appliances: for developers and for acceptance. Acceptance-
TDD is often also called behaviour-driven development (BDD). Here, code is
written to achieve a specified behaviour from a users perspective. Developer-
TDD is a more technical approach with smaller tests. These two appliances
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can be combined, in fact, if you are to perform BDD, it is our opinion that
you should also perform developer-TDD.

We have used developer-TDD in our work, motivated in two factors: First,
simply to learn it. Second, to make sure that our system behaves the way
we want. When tests run and check the behaviour for each few lines of code,
it is easy to notify when an error is introduced, and it is satisfactory to have
this insurance when writing new code or refactoring: the system still behaves
the way we intended. This means that all of our production code is covered
by tests, which reduces the risk of errors significantly.

The TDD approach is though impeded by our use of the external framework
Colibri studio, which will be further described in section 3.7. While the use
of frameworks have many advantages, there is an obvious disadvantage that
one does not have full control over them, neither the full overview on how
they work.

When we are building our system quite tightly integrated with Colibri studio,
we encounter difficulties in some of our testing - it is challenging to write tests
that are comprehensive and realistic enough to be useful, while still being
short, readable and maintainable.

We have met this difficulty by emphasising that the code we write should be
highly modular and easily testable, as we will amplify in section 5.2.

2.3.5 Tools and libraries

We have used a set of tools and external libraries during our work. As we
are satisfied with all of them, we here briefly present the tools we have used,
and a short justification of why.

Eclipse

Eclipse7 is an integrated development environment mainly used by Java de-
velopers. Colibri studio is delivered inside Eclipse.

7http://eclipse.org
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Infinitest

Infinitest8 is a test-runner-plugin for Eclipse and IntelliJ9. Every time we
save code, Infinitest runs all the tests associated with the code we change.
This ensures us continuous testing, and makes it fast and easy to discover
errors and mistakes.

Emma

Emma10 is an Eclipse-plugin for checking test coverage - it computes how
much of your code that are tested through your tests, both with regards to
lines and branches. It also visualises very clearly what of your code is tested
and what is not.

Google Guice

Google Guice11 is a library for the dependency injection. It makes it easy
to break dependencies between classes, and helps us loose up the coupling
inside our system.

Mercurial

We have used Mercurial12 as our version control system. Every time we
have made major changes, we have saved them to Mercurial. Hence, the
code is securily stored and easy to rollback to. We have used the plugin
MercurialEclipse13, that integrates Mercurial support in Eclipse.

8http://infinitest.github.io/
9Another IDE mainly intended for Java. http://www.jetbrains.com/idea/

10http://emma.sourceforge.net/
11https://code.google.com/p/google-guice/
12http://mercurial.selenic.com/
13http://javaforge.com/project/HGE
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Chapter 3

Theory and background

3.1 Case-based reasoning

Case-based reasoning (CBR) is the response from artificial intelligence to
how humans tend to reason[Kolodner, 1993]. In this situation we are in now,
we choose what to do affected by what we did last time we experienced a
similar situation, and what that action lead to. We scan our mind for similar
episodes and remember those most similar. We use what we did then when
deciding what to do now. We note the differences from the previous episode
to this one, and consider what effects these make to the solution - we adjust
the previous solution and then concludes on our solution this time. We will
remember this solution the next time we are in a similar situation.

A case is in our sense a particular problem situation. This case has a de-
scription and a solution, and possibly a justification and a result as well. The
description is usually a collection of findings, also called features. Cases can
in certain systems have other properties in addition to those, but every case
has at least a description and a solution.

CBR was a major newcoming in the AI society as most AI systems depend
entirely on generalised or general knowledge. In CBR, much of the knowl-
edge is extracted from specific, concrete situations - cases[Aamodt and Plaza,
1994]. CBR is suitable for continuous learning, as this is exactly what hap-
pens when new cases occur.

Standard CBR follows the same type of reasoning. Aamodt and Plaza[Aamodt
and Plaza, 1994] defines what has now become the de facto standard way
of describing CBR at a high-level, rendered in figure 3.1. It defines a CBR
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cycle constructed from “the four RE’s”: Retrieve, reuse, revise, retain.

Figure 3.1: The CBR cycle, adapted from [Aamodt and Plaza, 1994]

Retrieve searches the case base, and returns the case or cases most appro-
priate to the new situation. Often, these cases are described as the most
similar ones, which is often, but not necessarily, true[Leake, 1996]. The cases
should be those which can prove most helpful in finding a good solution to
the incoming case. This can of course be the most similar ones, but it can
as well be more different cases that are easy to adapt or that provide better
explanations. In practice, we have the impression that most systems stick to
the most similar heuristics.

How many cases retrieve should extract varies from system to system. In
many systems, it is perfectly useful with one case, while others require sev-
eral. This is influenced by among others how much the system emphasises
explanations, how complex the solutions suggested by the systems are and
how complex the case descriptions are.

Reuse uses information from the cases found in retrieve to solve the current
problem. This phase transforms the previous solutions from retrieve into a
current solution to our problem. This can be done by simply copying the
solution from the most relevant case, or it can be adapted.
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Revise can be seen as the evaluation step of the CBR cycle. In this phase,
the solution proposed by reuse is evaluated and tested. If it is successful,
then it is passed on to retain, otherwise it is repaired through the use of
domain-specific knowledge. In many system, revise is left as an exercise to
the user.

Retain could also be named learning. If the case is sufficiently different from
the most relevant previous case, either the new case is stored in the case base
or a previous case is updated with the new information from this case. The
system learns from this new situation.

Several CBR types exist, which emphasise different qualifications: textual
CBR, CBR for recommendation systems, CBR for education, for planning
and so on. CBR systems can be distinguished along several axes:

• How much communication is required between the system and the user?

• How much emphasis is put on explanations?

• How much knowledge beside the cases is contained in the system?

3.2 Knowledge-intensive CBR

Our approach in the previous section to how humans reason was correct,
but misguiding. It is definitely so that we reason with the experiences from
previous cases, but we also make our decisions based on how we think the
world is linked together. Our understanding of the world uses to interplay
with the experiences we have made in similar previous situations.

Most humans share a common “base” of knowledge about the world which
is rather domain-independent. A woman is a person, a person is a mammal
or a tree is a part of a forest are typical examples of this type of knowledge.
This knowledge is seldom used directly when we solve problems, but is always
there at the back of our heads when we reason. Every now and then such
relations and general knowledge turns out useful when we are adapting or
parsing solutions as well.

The other part of this picture is the specific things we know about the domain
in question. The more we know about the domain, the higher the chance
that we can use what we know during problem solving.

CBR systems solve many different problems. For some problems, including
much case-independent knowledge would be overkill. Other problems can be
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solved remarkably better, faster or easier through the use of extra knowl-
edge. A rule of thumb is that the value of extra knowledge correlates with
complexity.

It is worth noting here that every system contain knowledge about the do-
main, this is used in most similarity measures. Also cases contain domain
knowledge, so to be specific: when we are talking about general knowledge,
we mean generalised and explicitly represented such.

Figure 3.2: The knowledge-intensiveness-scale, adapted from [Aamodt,
2004]

Figure 3.2 denotes two extremes in the scale of knowledge-intensiveness
(instance-based reasoning on the less-side and Creek on the much-side), and
lists characteristics of both. The figure illustrates that it is a scale between
the two extremes, which is an important aspect to bear in mind.

A benefit in making knowledge-poor systems, is that one avoids the knowl-
edge acquisition bottleneck of encoding, formulating and representing the
general domain knowledge. Opheim[Opheim, 2012] elaborates this benefit
further. The rule of thumb that says that the less complexity, the less risk of
making errors is also a good argument that no more general knowledge than
necessary to solve the problem should be added.

Some claim that “The more knowledge is embedded into the system, the
more effective is expected to be”[Dı́az-Agudo et al., 2000][p.1]. We are not
at all sure that this is true, but we recognise that it for many systems is true
up to a certain degree. Smyth and Cunningham[Smyth and Cunningham,
1996] promotes heavy-weight arguments against this theory, and states that
after the casebase has reached a saturation a point, the efficiency decreases
rather than increases when new cases are added. This is a long discussion
in the discipline, called the utility problem or swamping problem[Francis and
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Ram, 1993], but the underlying premise that always holds is that one should
have a conscious thinking on what knowledge to embed into the system and
how this is done.

Case-independent knowledge allows to build more intricate and advanced
systems and similarity mechanisms. Through the use of it, CBR systems can
compare cases and findings with regards to both pragmatics and semantics,
not just syntactically[Aamodt, 1994a, 2004]. It can also be directly used for
adapting a previous case. When figuring out what of the new case to learn
and retain, it can be used[Aamodt and Langseth, 1998; Aamodt and Skalle,
2004].

To reason with this non-case-knowledge is really a kind of model-based rea-
soning (MBR), thus not strictly case-based reasoning. This means that doing
CBR with the support of external knowledge in fact is a combination of CBR
and MBR. On the other hand, one can say that a CBR without any external
knowledge in fact is instance-based reasoning (IBR)[Aha et al., 1991]. It is
important to keep in mind that knowledge can also be incorporated in the
structure of the cases, and thus that a CBR system with only cases can still
be knowledge-intensive.

The conclusion we draw from this is that there are no watertight bulk-
heads between the different types of reasoning, but that they overlap with
each other. Recio-Garćıa et al.[Recio-Garćıa et al., 2014] pinpoints that
knowledge-intensive CBR is at its best when few cases are available, but
much knowledge about the domain exists.

3.3 Knowledge representation

How to represent knowledge is a challenging area for designing artificial in-
telligent systems. How can the ideas and thoughts we have for our system be
transformed into something a computer can understand? What will be the
benefits and disadvantages of choosing one representation rather than an-
other? These are among the questions the system designer needs to address
before deciding how to represent the knowledge.

How we represent knowledge affects other parts of the system as well. Davis
et al.[Davis et al., 1993][p.17] claims that knowledge representation in fact is
an answer to the question “in what terms should I think about the world?”
Language influences the way humans think[Boroditsky, 2011], and this of
course also affects when the language in question is a programming language.
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Davis et al.[Davis et al., 1993] also states that this is one of five roles a
knowledge representation plays. It is also a theory about reasoning. How we
model and represent also affects what can infer and how and about what we
can reason. This statement is closely related to the previous one, and with the
next, whichh states that knowledge representation is useful for computation.

In addition, a knowledge representation is a surrogate for what it is a model
for. It is also a way for humans to describe the world, and it is through the
use of it we tell the computer how the world is. There is an obvious interplay
between these two roles.

The idea of case-based reasoning originate from Roger Schank and his work
with dynamic memory and memory organisation packages[Schank, 1982],
structures that have much in common with Minsky’s frames[Minsky, 1975].

Over the years, frames has become the industry standard for closed-world-
systems, and description logics for open-world-systems. A discussion of the
background for this is beyond our scope, but we believe that this is mostly
because of the benefits we describe in the upcoming sections.

3.3.1 Domains

The world can be divided into different domains along many axes. In the
CBR context, two of them are important: weak vs strong and open vs closed.

In a strong domain, relations are well-defined and polite and there is little
to no uncertainty. The weaker the domain, the more uncertainty. In weak
domains, communication with the outer world is necessary.

When a domain is closed, we assume that all relations and all facts of the do-
main are encoded. This is not the case in an open domain. Aamodt[Aamodt,
1994a] says that “An open domain is a domain which cannot be realistically
modelled unless the problem solver’s relationships with the external, chang-
ing world are anticipated by the model.” In other words: we realise that we
can hardly model the entire domain precisely. Hence, we define that all that
we can consider true or false is stated in the knowledge base, either directly
or through a series of statements. Anything not included in this do we not
know whether is false or true.

This is called the open world assumption, and is followed by any open domain.
A closed domain will adhere to the closed world assumption, where everything
not stated in the knowledge based is considered false. As a consequence, one
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cannot easily transform between open and closed domains, so the decision
on which assumption to stick to should be taken consciously.

While doing reasoning, which of these domain characteristics present will af-
fect and be constraints for the reasoning. In a weak and open domain, infer-
ence and deductive proofs are hardly the way to go, as the domain may change
or new information is discovered. Hence, instead of the true-false dichotomy,
statements are more or less probable or more or less supported[Aamodt,
1994a]. Consequently, open domains need more general knowledge than the
closed ones. On the other extreme: If we have a strong, closed domain with
enough cases, general knowledge would turn out excessive[Aamodt, 1994a].

Certain techniques are appropriate for certain types of domains. CBR can
be used for all types of domains, but seems most useful for open and weak
theory domains. For closed and strong domains, every possible reasoning can
be represented directly without the uncertainty support or the support for
new situations that CBR can give.

3.3.2 Frames

A frame, as introduced by Marvin Minsky[Minsky, 1975], is a datastructure
for representing a concept or a prototypical situation. Each frame contains
information of several kinds: what is this, how can I use it, what can I expect
to happen next, what do I do if these expectations are not met and possibly
also other types of information.

We can see the frame as a network, consisting of nodes and relations. This
network has two parts, where the top part consists of the statements that are
common for every instance of the frame. The lower part are for the values
that vary between instances, each of these values fill an acquired “slot”. The
slot can have constraints the assigned value must meet. The value can be a
terminal value or it can be a subframe.

A benefit with frames is that it defaults with inheritage, so that subframes
inherit properties from their superframes.

Collections of related frames are put together in frame systems. Central
for frames from the start on was that they should be flexible and non-
formal[Nebel, 1999].

The structure of a frame is formed by the domain it represents, and is typi-
cally close to the way domain experts think about the domain. Constraints
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for allowed values can be domain-defined. A constraint is defined by a so-
called facet.

Description logics (DL) grew out of the work of concretising and implement-
ing frames[Nebel, 1999], as the common perception of frames had deviated
away from Minsky’s original version. As semantics were more and more spec-
ified, central issues such as default inheritance, the procedural semantics and
the flexibility started to fade out. Hence, frames changed into a structure
with declarative, logic-based semantics, without default inheritance, strictly
defined form and where statements are either true or false - corresponding
with the closed world assumption. Thus the assumption seen for instance in
[Wang et al., 2006], that frames is only suitable for closed domains.

Especially the need for a precise and defined semantics was a central moti-
vation for introducing DL.

3.3.3 Description logics

Description logics are made up of two types of building blocks: terminolog-
ical and assertional statements, denoted as TBox and ABox. The TBox is
the terminology or the vocabulary of the domain, and defines concepts and
roles, such as Mother is Parent and Woman, and hasParent(Child,Parent).
ABox has statements about individuals, such as Woman(Anne) and hasPar-
ent(Anne,Nils)[Baader and Nutt, 2003].

This way, a strictly defined semantics is defined and reasoning can be done
through a specified set of rules.

We bear in mind that DLs are not a single language or logic, but a family of
different logics sharing a central set of characteristics and differing on other
aspects.

A central concept in DL is satisfiability - in other words: whether or not
there exists a possible model with all the defined statements that is consis-
tent. A DL reasoner does this check and looks for one such model, while the
frame-reasoner1 checks if the one given model is consistent. Another differ-
ence between a frame- and a DL-reasoner is that the DL-reasoner itself can
determine subclasses, while these have to be explicitly defined in frames. DL
can also determine whether an instance belongs to a class: it does so if it
satisfies all the class’ necessary and sufficient properties. This is not the case

1In this entire paragraph, when saying frames, we mean the deviated, non-Minsky sense
of frames
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with frames. An instance in DL can belong to several classes, while it belongs
to exactly one in frames[Lillehaug, 2011]. An example of this could be a new
mobile phone, which in DL can belong to both the classes MobilePhone and
SmartPhone, while in frames, it can be a member of only one of them.

Another difference between frames and DL is important to bear in mind:
with frames, you cannot add something to a frame unless there is an explicitly
reserved place for it in its template, while in DL, you can add it as long as
it does not introduce a contradiction in terms[Wang et al., 2006].

OWL

The most common description logics representation used is Web Ontology
Language (OWL)[W3C, 2012b]. The recent version of OWL, OWL 2, exists
in three different profiles, OWL 2 EL, QL and RL[W3C, 2012c], each of
which is intended for different scenarios. OWL 2 EL is the standard profile
suitable for most problems, while OWL 2 QL is excellent for dealing with SQL
databases and lightweight ontologies. OWL 2 RL is the best for operating
on data in RDF triples.

Another term frequently used when speaking of OWL nowadays is OWL 2
DL. This is a term describing ontologies that satisfy syntactic conditions
provided in [W3C, 2012a]. The other type of semantics available is RDF-
based semantics, which semantics are linked directly to RDF graphs. These
are informally named OWL 2 Full ontologies.

The OWL 2 DL ontologies are, as implied by their names, adhering to de-
scription logics semantics.

Lillehaug[Lillehaug, 2011] and we share the feeling that the CBR community
is moving from frames to using OWL. The emergence of the semantic web,
along with OWL’s clear specification and formal semantics are significant
parts of the explantation for this change.

3.3.4 Ontologies

An ontology in our sense is a data model for what entities a domain consists
of, and how they are related[Gruber, 1993]. The data model has a formally
defined meaning and is processable by a machine[Hitzler et al., 2011]. This
way, ontologies make assumptions about the domain explicit, and allow for
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unambiguous communication between different systems. The intention be-
hind them is to provide a shared and common understanding of the domain,
which can be communicated between systems and humans[Fensel, 2001].

The ontology can list both the abstract and the concrete entities - both the
concept person and the person Marie are plausible parts of a person ontology.
Also attributes and relations are included: the ontology states that a typical
person has two legs, and that Marie is a woman. It also states that woman
is a subclass of person. Ontologies can describe one or more domains, and
several ontologies can be merged or imported and then used together.2

Different ontologies can have different purposes. The most noticeable ontol-
ogy types are for the representation of knowledge about domain, metadata,
generic, representational or method-and-task[Fensel, 2001].

Some ontologies do not include individuals, these are typically intended to be
reused across applications. A typical example is the SSN ontology3, which is
an ontology for sensors. If we are to use this ontology to model sensors, we
typically import the SSN ontology and supply it with our own individuals.

3.3.5 Semantic networks

Semantic networks are among the predecessors of description logics, and a
semantical network is a typical way of representing knowledge.

A semantic network represents knowledge as a graph, and is put together of
nodes and links. Each node is a conceptual unit, and a link is the relation
between two units[Lehmann, 1992].

Each node and each link has a meaning, which is the reason for the semantic
part of the name. This is illustrated in figure 3.3. Note the spectrum of
relations and the different meanings a relation in such a network can have.
Other properties than this label can also be put on a link, as we will see
examples of when we discuss this aspect of Creek.

Most of the advantages of using semantic networks comes through reasoning,
as the reasoning can make use of knowledge not directly represented. For
example, if a leads to b, and b leads to c, then it can be reasoned that a leads
to c. This lessens the bottleneck of acquisition dramatically.

2Although this is not necessarily trivial.
3http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Figure 3.3: An example of a semantic network, adapted from [Lalanne,
2008]

Semantic networks are traditionally tightly linked with frames, and it is com-
mon to speak about those in the same breath. A prototypical example of
this is seen in [Baader et al., 2005][p.230], “DLs differ from their predeces-
sors, such as semantic networks and frames, in that they are equipped with
a formal, logic-based semantics.”

DL as a semantic network

We find it important to state that description logics and semantic networks
are a very feasible combination. Sowa[Sowa, 2013] points out that the se-
mantic web is in fact a giant semantic network, and the semantic web is
represented with description logics.

Semantic networks are essential to Creek, and if we were to exchange them
with another structure, large efforts would have to be made. We mentioned
earlier in this section the strong relationships traditionally seen between such
networks and frames. This can be confusing and obfuscating, and it could be
easy to think that this would make it hard to combine semantic networks and
description logics. We were ourselves unsure on this right until we started
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thinking of how a description logics representation really is.

DL represents knowledge as nodes and relations, and when putting them
together, we acquire a network where the nodes and links themselves carry
meaning - a semantic network. Figure 3.4 illustrates this: it represents the
SSN ontology4, and each node is a class in the ontology. Each link is a
relation between two classes, and different types of relations are marked by
different arrows. For instance, subclass-of is marked by solid purple line,
has-property by a dotted purple line and has-input dotted turquiose line.

Figure 3.4: The SSN ontology, visualised in Protege

4http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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3.4 Creek

Opheim[Opheim, 2012] described Creek as follows: “Creek is a CBR system
proposed in [Aamodt, 1991] making excessive use of general knowledge, as
indicated by its name. Creek is primarily intended for solving diagnosis and
repair problems, in the broad sense of these terms: not knowing what to
make for dinner fits into this classification. It is a mixed-initiative system:
it asks the user when the system is itself not capable of providing plausible
enough explanations. Thus, we will define Creek as an expert system, since
the system assumes that the user knows the answer when itself lacks some
information or is unable to do the appropriate reasoning.5 Creek fits into a
sub-group of expert systems called decision support systems – the interaction
with the user is dynamic and the focus is on finding a satisfactory solution
the user will agree to and understand. We will give an intro to the Creek
system, with more extensive focus on the parts distinguishing it from other
CBR systems, and focus on the explanatory consequences of those.6” Note
that when the term expert system is used here, it is in the meaning targeted
at expert users.

In this thesis, we use Creek as a term for the method framework. Read-
ers familiar with the implementation history of the framework will recall
that a subset of this framework has been previously implemented. This im-
plementation was made by researchers at NTNU in cooperation with the
company Trollhetta AS, and named TrollCreek. Insight in TrollCreek can be
obtained from Brede et al.[Brede et al., 2006]. TrollCreek formed the basis
for DrillEdge, as shown in section 1.1.

TrollCreek evolved and was eventually adopted by the company Verdande
Technology. Verdande Technology has developed upon TrollCreek to what is
now the DrillEdge system.7

5Although one may argue that a good-enough trained and elaborated Creek system
eventually will contain so much knowledge that it no longer needs this type of feedback.
We consider this though a very hypothetic situation which will hardly occur in real use.
Hence, Creek is in our opinion an expert system.

6The Creek system is primarily described in [Aamodt, 1994a] and [Aamodt, 2004], and
more detailed in [Aamodt, 1991]. These may be considered the sources for this entire
section.

7http://www.verdandetechnology.com/energy/products-and-services/
drilledge-software/
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3.4.1 The CBR cycle in Creek

This section is in its whole taken as it was from the work we did in [Opheim,
2012].

Each8 of the steps in the CBR cycle is in Creek decomposed into three sub-
steps: activate, explain and focus. Creek uses the same basic tactic for each
of the three steps retrieve, reuse and retain, as visualised in figure 3.5.

Figure 3.5: Activate, explain, focus in each CBR step, adapted from
[Aamodt, 2004]

Activate takes as input the input data (findings, also known as features), task,
goal and constraints for the solution, and returns everything (every concept)
considered relevant for solving the task. It then does two separate, but similar
searches in the semantic network: one finds the relevant concepts through
spreading activation [see Lehmann, 1992] along the different relations. This
starts from both the start (initial findings) and the end (initial goal), and
each creates a so-called sphere through the spreading. Easily said, every node
in both of these spheres, as well as every node on the path between the initial
findings and the initial goal, is activated. The other uses the input findings or
the findings from the activation-spreading to find potentially relevant former
cases. The relations along which activation spreads, can be of several types:
some are generic, while others may be specified during the modelling process.
Examples of generic relations are taxonomic types such as sublass-of and
instance-of, causal and associational such as correlates-with.

Explain takes the activation-output as its input, and its output is a set of pos-
sible solutions with associated explanations. It follows the activated paths
that have the strongest cumulated strength, using the default relation ex-
planatory strength described above. It is worth noting that these strengths
may vary with different contexts, a relation’s explanation may be more useful
or valuable in one situation than another.

8Well, as Aamodt[Aamodt, 1994a] points out, it makes sense to view revise as a non-
existing step in Creek, as it is not handled by the system at all.
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The explain step has a set of defined evaluation strategies in order to evaluate
each explanation, but it might ask the user whether a given hypothesis is
good enough or not, in the situations where the system cannot determine
this itself. Obviously, explain returns only hypotheses that are better than a
specific threshold.

Focus takes this set with explanation-attached solution hypotheses as its
input, and returns the best solution. It handles both provided constraints
(e.g. resource demands of the solution) and priorities (e.g. try the cheapest
solutions first) in its reasoning.

Figure 3.6: Another view on the activate-explain-focus cycle, adapted
from [Aamodt, 1991]

Retrieve

In the retrieve step, activate will first spread as described in the general
section, and consider a finding relevant for a case in the case base if the case
is mentioned in the finding’s list of cases (with associated relevance value)
this finding is relevant for.

Then, explain will try to improve the match between the input case and those
cases activated. For each activated case, it first tries to explain away the
findings provided in only one of the retrieved cases[Aamodt, 1994a]. It finds
paths between the unmatched findings of the input case and the activated,
and finds the strength of this path. If there are several parallell paths, it
sums them up. This way, the system determines how similar to syntactically
different findings actually are. If a finding considered relevant is missing in
the input case, Creek now asks the user, and adjusts case matching values
according to the response.
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Focus usually, but not necessarily, chooses the case with the highest explana-
tory value, or rejects them all. If the designer has provided the system with
limitations (regarding for example resource demands for specific solutions in
the real world), Creek is able to take this into consideration.

Reuse

In the reuse process, activation starts from the solution case provided from
retrieve, and spreads out to all expected findings from this case, as well as
the “risky consequences”[Aamodt, 1994a] of this solution. Explain consideres
whether every expected finding either is confirmed or considered irrelevant,
if not, it tries to modify the solution. If explain is missing some informa-
tion about a finding, it asks the user. This may be about both relevance
and requesting more information. When this information is general (do-
main) knowledge rather than case-specific, the explanation mechanism checks
whether the newly added information contradicts with existing knowledge,
if so, it demands an explanation before the information is added. It will also
identify ambiguities or mistakes[Aamodt, 1991].

Focus checks whether the proposed solution fits with the provided con-
straints, and then presents it to the user for confirmation. The solution
along with an explanation is provided to the last step, retain.

Retain

Activate finds the parts of the new case and explanation that may be worth
saving, as well as updated or new information on other concepts obtained
from the user during the retrieval and reuse processes. This information may
consider cases or the general knowledge, and is thus reducing the problem of
the knowledge acquisition bottleneck.

Explain decides whether this case is to be saved as a new case or not. This
is only necessary if the case is substantially different from every case in the
case base. Regardless of this result, explain will find what information to
save – the relevant findings and the strongest explanation. If there is not one
explanation considered strong enough, several parallell explanations will be
retained. If the system considered the case special enough to be stored as a
new case, it computes how predictive and important each of the finding is
for the case, thus finding the relevance factors.
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Focus makes a case frame for those structures that are to be saved, and
saves them as well as their indices. It also updates the above-mentioned
relevant-cases-list for each affected finding.

3.4.2 Knowledge representation in Creek

We have earlier in this thesis demonstrated how important general knowledge
is in Creek. This knowledge is represented by four modules, as displayed in
figure 3.7.

Figure 3.7: Creek’s four knowledge modules, adapted from [Aamodt,
1991]

• The object-level knowledge model (OKM) - this means concepts, rela-
tions, object-level rules and solved cases

• A model for diagnosis and repair (DRM) - when to look for more info,
when to apply which domain knowledge et cetera

• A reasoning meta-level model for choosing which reasoner to be used
(Combined reasoning model, CRM)

• A reasoning meta-level model for knowledge-supported case based learn-
ing, and rules to direct the process for matching and generalising (Sus-
tained learning model, SLM)

29



3.4. CREEK

We emphasise that the usefulness of this four-part-structure depends on sev-
eral interesting premises. There must be several reasoners available in the
system for the CRM to be useful, which has not been the case in TrollCreek,
for instance.

Creek represents every piece of knowledge in the same structure and using
the same type of representation - regardless of whether the piece is a case, a
finding in the case or a part of the specific or general knowledge. Note the
division between specific and general knowledge: Creek has a high-level set
of generic concepts that are generic and domain-independent, and is a highly
knowledge-intensive system, as illustrated in figure 3.2. These concepts are
for instance thing, symbol, concept and relation. This type of concepts are
supplemented by domain-specific concepts. If our domain of interest is travel,
concepts as hotel, airport and vacation-length are typical concepts here. How
the knowledge fits together is shown in figure 3.8.

Figure 3.8: Creek’s knowledge hierarchy, adapted from [Aamodt, 2004]

Creek’s knowledge is represented in a semantic network where every node
represents an entity in the OKM and every link is a relation, as described in
section 3.3.5.

Creek contains many different types of relations, some are generic and some
are domain-specific. Generic relations include subclass-of, part-of, member-
of, instance-of and caused-by. Every relation in Creek has its inverse, so when
you declare that A is a subclass of B, you also define that B is a superclass
of A.
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Every node in the semantic network is a frame. Here, we must note that a
relation type is also a node in the network, as the semantics of a relation is
also a part of the domain model and should be modelled accordingly.

3.4.3 Creek and frames

Creek uses frames, with the justification of being flexible, expressive and
transparent[Aamodt, 1991]. It allows for many different types of relations
and is in general very flexible, although somewhat restricted in order to still
be able to infer. This trade-off was one of the crucial problems with frames,
as we discussed in section 3.3.2. The frames used in Creek are of the Minsky
type, and hence, Creek sticks to the open world assumption. This fits well
with the intention of the system: to reason with open, weak domains.

Creek’s frames are represented in a system-specific frame language named
CreekL, where every concept is a frame, containing slots, facets, value ex-
pressions and value fields. Each relation type is specified in the network, and
each relation is symmetric. Creek does inference with several techniques,
with the basic one being default inheritance[Aamodt, 1990].The semantics
are mostly clearly defined, but with a trade-off between flexibility and abil-
ity to infer9.

However, problems with the use of frames as the knowledge representation
suddenly occured. As frames deliberately is structured as the domain, there
is hardly any common ground for reusing frames or easily implementing other
systems within Creek. The semantics are also left to the developer to estab-
lish, as it is a procedural semantics. An attempt to solve these problems
is seen in [Aamodt and Langseth, 1998], where bayesian networks are intro-
duced within Creek.

3.4.4 Creek and reasoning

Creek is, as can be assumed by its name, mainly a CBR system. However, the
Creek architecture and also some work on the system introduces the support
for model-based reasoning (MBR) and rule-based reasoning (RBR)[Aamodt,
1991; Skalle et al., 2013b; Shokouhi et al., 2009].

Original Creek uses RBR and possibly MBR as fall-back reasoners when CBR
fails - that is, when the CBR reasoner is unable to propose a sufficient suitable

9For the entire justification for the trade-off, see [Aamodt, 1991][p.148].
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solution[Aamodt, 1991]. Typical occasions when this happens is when the
case base contains few or non-covering cases, the adaptation knowledge is
imperfect or the new case is very special. Later work has attempted to
combine MBR and CBR[Shokouhi et al., 2009]10.

Creek starts out by trying CBR - if the system fails to find an acceptable
solution, it tries to adapt or modify it to become good enough. If the solution
still not is acceptable, Creek resigns from solving this situation with CBR
and tries RBR instead. If RBR can not find a good enough solution neither,
pure MBR is tried. This reasoning-choosing process is seen in more detail in
figure 3.9.

Figure 3.9: The reasoner-choosing process in Creek, adapted from
[Aamodt, 1991]

10An interesting discussion is whether knowledge-intensive CBR with much general
knowledge in fact is MBR combined with CBR.
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3.5 CBR frameworks of today

First step towards achieving our goal of studying how the core of Creek can
be adapted to a description logics destination, is to define where to start. We
intend on implementing this core, and will have to define where we start our
implementation. Should we start from scratch, modify an existing system or
start from an existing framework?

The answer to this question is not obvious up-front. However, we have
earlier done a study on this[Opheim, 2012], and considered especially the
frameworks or systems INRECA[Bergmann et al., 1998], CAT-CBR[Abásolo
et al., 2002], IUCBRF[Bogaerts and Leake, 2005], CBR*Tools[Jaczynski and
Trousse, 1998], Colibri studio and myCBR. Since then, we have become aware
of eXiT*CBR, a distributed CBR tool for the healthcare domain[Pla et al.,
2013]. eXiT*CBR seems promising and includes a lot of promising tech-
niques, we are especially curious on their approaches to multi-agent systems
and distributed CBR. However, eXiT*CBR is deliberately domain-specific,
and it seems also technically directed on other types of problems than we
intend to solve.

We concluded in our previous study that Colibri studio and myCBR are two
very promising frameworks for developing a Creek implementation within,
and we have not seen any indications of other frameworks or systems more
suitable. Hence, we will here have a closer look at these two.

3.6 myCBR

myCBR is a software development kit and a tool for similarity-based re-
trieval[Stahl and Roth-Berghofer, 2008]. This classification clarifies where
the focus of the framework lies, it has a heavy focus on the similarity mea-
sures.

myCBR was originally implemented as a Protégé11 plugin, but the team has
later on developed a stand-alone implementation, and this is being steadily
phased in, while the plugin is no longer supported[Bach and Althoff, 2012].

The motivation leading to myCBR was the lack of a way to easily build fast
CBR applications, with a special emphasis on teaching and tutoring, research
and small projects for business use[Stahl and Roth-Berghofer, 2008].

11An ontology editor, available from http://protege.stanford.edu/
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The framework is also well suited to be combined with the usage of other
frameworks, as data can be easily imported to and exported from myCBR.
This is especially worth noting for Colibri studio, as it is easy to see these
two frameworks as competitors for market share. This is true, but not the
entire truth: the systems have different strengths and different areas of fo-
cus. myCBR is particularly directed at the knowledge modeling phase, while
Colibri easily said is intended for the rest of the development process.

myCBR can perfectly fine be used in combination with Colibri studio. The
developer teams behind the two systems presents how in Roth-Berghofer et
al.[Roth-Berghofer et al., 2012], where they both provide the motivation for
doing so and how it can be done.

3.7 Colibri

Colibri Studio is a platform for creating all types of CBR systems[Recio-
Garćıa et al., 2014]. Colibri studio is the most recent version in a series of
different Colibri versions; the platform has in previous versions been named
both COLIBRI and jColibri[Recio-Garcıa et al., 2006]. Colibri studio is de-
signed to be used by both developers and designers, and facilitates different
approaches for those rather different groups of users.

The idea motivating Colibri is to share knowledge[Recio-Garćıa et al., 2013].
The more boilerplate code included in Colibri, the less effort is needed when
someone wants to create, test or play with a CBR system. Examples of
boilerplate code can be the engine to run the CBR cycle12, the most com-
mon similarity mechanisms or the intermediaries between code and storage
medium. All of these are needed in almost every CBR system, and having
this code supplied with the framework saves remarkable amounts of time and
- more difficult to measure, but not less important - motivation when systems
are to be implemented. We note as a side observation that this idea is close
to what we sketched as our motivation in section 1.1.1.

At the time of writing, the vast majority of the Colibri framework is written
by the inner core of framework developers, the Group of Artificial Intelli-
gence Applications (often abbreviated GAIA) at Universidad Compluense
de Madrid, but some extensions created by other research groups are also
made available. More external extensions are explicitly desired from the
GAIA group[Recio-Garćıa et al., 2013], and the website is facilitated for it.

12As defined in [Aamodt and Plaza, 1994]
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In this thesis, we consequently use the terms Colibri and Colibri studio:
Colibri when we mention the framework, and Colibri studio when talking
about the concrete implemented software. To be precise, Colibri studio is the
implementation of the top layer, built on top of jColibri, which is the lower
level[GAIA, 2014]. As Colibri studio is delivered as a coherent package, we
have found that keep distinguishing between the terms Colibri studio and
jColibri in this thesis would give more confusion than benefit.

3.7.1 The Colibri Studio architecture

Colibri studio is intended to be used by both developers and designers. For
designers, the framework provides a black-box-architecture, while developers
can make usage of a white-box-architecture[Dı́az-Agudo et al., 2008].

Developers here essentially means programmers: the white-box-architecture
has no graphical tools, but is intended for programming. Designers have a
set of graphical tools making it possible to create CBR applications without
writing many lines of code. In Colibri studio terminology, the bottom layer
is for programmers and the top layer for designers, as graphically shown in
figure 3.10. While the elements in each block complement each other, it is
fully possible to leave unwanted parts out and replace with one’s own desired
parts, at least in the programmer’s layer. For instance, we have replaced the
similarity measurement from Colibri, as it hardly fits with Creek. We have
chosen to use most of the remaining parts of this layer in our implementation.

The key idea behind this architecture is to divide the core from the user
interface, after bad experiences on unintended mixing of these in the first
implementation of Colibri[Dı́az-Agudo et al., 2008].

Cases are represented as Java beans - that is, classes where every public
attribute has a set and get method[Recio-Garcıa et al., 2006]. This leaves
freedom to the developer to design cases the way most appropriate for the
domain and problem.

Persistence is handled through the external library Hibernate, which supports
both data bases and XML files, and is flexible and widely used. Here, it is
worth noting that cases are stored differently for persistence than in-memory,
while Hibernate handles the persistence, it is a choice for the designer in each
system to handle the in-memory-storing. Colibri studio offers weak, wide
boundaries for how the cases should be stored in-memory.

When Colibri is to run the CBR system, it does this through a three-step-
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Figure 3.10: An overview of the Colibri studio architecture, adapted
from [Dı́az-Agudo et al., 2008]

mechanism: the case base and the knowledge base is loaded and set up in the
pre-cycle. Then, the reasoning is done in the cycle. Whether the cycle step is
to be done one or several times is a decision left to the implementer. Finally,
the case base and knowledge base is closed and the system shuts down in the
post-cycle. This is illustrated in figure 3.11, where “connector” is the class
handling the knowledge base.

Figure 3.11: The colibri engine on cycles
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3.7.2 Colibri and representation

Colibri allows the user to choose among three ways of storing cases: in a
data base, in plain text or in an ontology[Recio-Garćıa et al., 2014]. For
ontologies, they are handled through the ontology-managing library Onto-
Bridge13[Recio-Garćıa et al., 2014]. Colibri supports several techniques es-
pecially intended at knowledge-intensive CBR systems, though few of them
are directly corresponding to any Creek technique.

Colibri supports ontologies in OWL[Recio-Garćıa and Dı́az-Agudo, 2007].
When a developer specifies the structure of cases in a new CBR system, and
decides that the system should use ontologies, the structure is automatically
mapped into OWL and saved. This structure should of course correspond
with the structure of the cases in the case base, and when this is set up,
the developer no longer notices that she is handling description logics. In
practice, this is an exaggeration, but it illustrates how well Colibri hides this
layer from the developer.

3.8 The domain - turbines

3.8.1 Condition monitoring

Our research question 3 sounds “How can decision-support for reported tur-
bine failures be implemented within a DL-based Creek system?” This will
be a condition monitoring (CM) problem. Condition monitoring is the dis-
cipline of monitoring state of operational machinery whilst in action[SKF,
2014], or in other words, monitoring sensor values regarding this machinery,
with the purpose of identifying possible errors or faults.

Condition monitoring makes planning, predictions and maintenance easier
and can minimise the time and resources spent on repairing[Jardine et al.,
2006]. It can make it possible to schedule repairs so that they can be executed
when suitable - e.g. several at the same time[Gill, 2009].

Condition monitoring is highly linked with condition-based maintenance (CBM)
- condition-based maintenance is significantly more demanding without the
monitoring[Bengtsson et al., 2004]. CM makes CBM a realistic and useful
strategy for performing cheap and on-demand maintenance.

13http://gaia.fdi.ucm.es/research/ontobridge
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3.8.2 Our domain

We have a cooperation with the petroleum corporation ConocoPhillips Nor-
way for this part, they provide us with example data and domain insight.
Hence, we will use real world data for this part, handed by ConocoPhillips
Norway’s Onshore Reliability Centre (ORC). ORC is located in ConocoPhillips
Norway’s centre in Stavanger, and can be seen in figure 3.12.

Figure 3.12: The onshore reliability centre

We will look at gas turbines running offshore, providing electricity to the
Ekofisk field and the surrounding, ConocoPhillips-driven fields. We will look
at errors reported from these, and try to classify reported failures. Operators
at ORC classify reported failures in one of four categories. The types are also
seen in figure 3.13, and are as follows:

1. Sensor issue

2. Data issue

3. Software issue

4. Mechanical issue
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Figure 3.13: The issue types, adapted from a ConocoPhillips flow chart

Each issue type is handled in a specific way. The three first issue types are
to be reported and fixed, but no further action is required from the ORC
operators than logging and forwarding the error messages to the appropriate
recipient.

Mechanical issues are more severe - they can make harm to the turbine if not
handled properly. A such issue can in principle be anything from overheating
to fire to a loose screw. This can be both expensive and harmful to the
environment and workers, and is of huge importance to avoid. At the same
time, it is regarded as really expensive to stop the turbine, as this will cause
a production stop possibly lasting for days. ConocoPhillips estimate this to
cost millions of dollars, and have structures and strategies to make as few
production stops as possible while at the same time keeping safe and with
everything in shape.

To illustrate: Skalle et al.[Skalle et al., 2013c] emphasise that oil and gas
drilling generally costs a lot of money, and hence, every reduction of pro-
duction stops or other cost-driving problem situations, is really valuable and
very quickly gives a positive return on investment. They estimate the po-
tential savings from a global big-scale propagation of DrillEdge to be more
than $2.1 billion a year, given the premise that non-productive time can be
reduced by 5%. We see from this that every decrease, even by a thousandth,
of non-productive time is considered worth many millions. Replication of
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sensors and other equipment is an important part of this work, as is predic-
tion and the usage of condition monitoring as such. Examples we have seen
from ConocoPhillips supports this emphasis.

The earlier an issue is discovered, the better. This makes it possible to
schedule the repair to a suitable time, e.g. combined with other repairs,
when a spare part is delivered or when the right engineer is at place.

Each turbine has tens of sensors attached to it, monitoring the status of
the turbine and attached generators, compressors et cetera. A sensor can
monitor for instance the temperature, the pressure or the vibration.

To discover what type of issue a new issue is, is relatively easy for a skilled
and experienced operator: the three non-critical types are easy to spot:

• If it is a sensor issue, only one of several correlating, connected sensors
start giving changed values, e.g. if only one of two duplicated vibration
sensors change.

• If it is a data issue, floating numbers from the sensors suddenly all
become integers.

• If it is a software issue, the results from one of the monitoring software
programs start showing values not corresponding to the reality offshore,
and different from the other programs.

This is an almost prototypical example of reasoning that is easy to do for
humans, but not at all that easy for a computer. As case-based reasoning is
heavily based on how humans reason, it is tempting to see the problem from
a CBR angle.

Several subtasks can be extracted from this domain as well: to determine
whether a given situation is an error situation or not, determine if it is a
specific error type (e.g. mechanical) or to determine which type of error a
given situation is.

Whether a situation is a potential mechanical error or not can be seen from
the sensor values and how much and how they have changed from previous
values. Trend considerations and history are important utilities here. A
significant drop or rise is typically a warning light.

As we see, to distinguish a mechanical issue from a sensor issue involves
regarding several values and the degree of correlation.
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3.8.3 Use of CBR in condition monitoring

CBR has been used for a variety of condition-based maintenance or condition
monitoring applications. Bengtsson et al.[Bengtsson et al., 2004] used CBR
with success on gearboxes of industrial robots, a problem that tends to show
by that the sound of the box differs from normal. Expert users with long
experience are required to do this classification, so the domain is feasible
for CBR[Bengtsson et al., 2004]. Yang et al.[Yang et al., 2004a] proposed a
combination of CBR with neural networks for early fault diagnosis, with the
example domain electric motors. Yang et al.[Yang et al., 2004b] proposed to
combine CBR with Petri nets, showed on induction motors.

However, while our examples just given show that CBR is being used in
condition-based maintenance, there are notably fewer applications of CBR
for rotating equipment.

3.8.4 Existing CBR systems in oil and gas

The petroleum industry is an industry with a lot of resources and with a
demand and desire for continuos improvement. Accordingly, there exist sev-
eral CBR applications for the domain already. We have already discussed
DrillEdge (in section 1.1), which is based on Creek. The initial Creek, as
described in [Aamodt, 1991], also had oil well drilling as its example domain.
WellCase[Mendes et al., 2003] is a system for petroleum well design, using
CBR to guide designing new drilling wells. Genesis[Kravis and Irrgang, 2005]
is also intended for the well design problem, and provides a very interesting
approach to case adaptation: it adapts from several cases rather than just
one, following the lines pointed out by Smyth et al.[Smyth et al., 2001].

Popa et al.[Popa et al., 2008] made a system for choosing which type of
cleaning technique to use for sanded/seized well failures, which is a problem
particularly similar to ours. We notice that their efforts seemed successful.
Shokouhi et al.[Shokouhi et al., 2009] used CBR and the Creek framework
on hole cleaning problems, with promising results on building a knowledge-
intensive CBR system on this domain.

An extensive overview of CBR systems in the petroleum industry is given in
[Skalle et al., 2013a], and in [Shokouhi et al., 2010].
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3.9 Applications of Colibri

A list of systems making use of different versions of the Colibri frameworks
can be found at http://gaia.fdi.ucm.es/research/colibri/people-users-

apps.

Mart́ın and León[Mart́ın and León, 2010] used Colibri to create a system for
search in a digital library, by using the ontology functionality of Colibri to
provide a recommender system.

Mikos et al.[Mikos et al., 2011] applied Colibri on the thermoplastic injec-
tion molding process domain. They combined CBR with agents to do rapid
problem solving within a manufacturing context, using a basic CBR imple-
mentation.

Water stress problems arisen within different regions can have important
similarities, Kukuric et al.[Kukuric et al., 2008] built a CBR application
using Colibri to provide comparison between such cases.

A combination of CBR and Bayesian networks is tried within [Bruland et al.,
2010] and [Bruland et al., 2011]. It is implemented within Colibri and the
BN-software Smile14, and in the first version also with myCBR.

These few examples, chosen among many, show some of the breadth of ap-
plications implemented within the Colibri framework.

3.10 Existing combinations of elements of Col-

ibri and Creek

We are not the first ones seeing the potential benefits of combining Colibri
and Creek. As both are intended for knowledge-intensive CBR, directed
at expert users, it is natural to explore whether they can be beneficially
combined.

Fidjeland[Fidjeland, 2006] created an OWL ontology for Creek. He used the
then-existing Creek implementation called jCreek, and made it capable of
importing OWL ontologies into the Creek system as well as exporting them
from the system. While some information got lost in the translation, the
approach proved to be promising and for his usage sufficient. This approach

14Developed at the University of Pittsburgh, available from http://genie.sis.
pitt.edu/

42

http://gaia.fdi.ucm.es/research/colibri/people-users-apps
http://gaia.fdi.ucm.es/research/colibri/people-users-apps
http://genie.sis.pitt.edu/
http://genie.sis.pitt.edu/


3.10. EXISTING COMBINATIONS OF ELEMENTS OF COLIBRI AND
CREEK

may very well have proven to be adequate, provided some more development
on both his work and jCreek. However, translation and import/export is
never as good as skipping this middle layer and encoding directly into OWL,
so when jCreek no longer were distributed, also this work became excessive.
His work on defining a meta ontology for Creek has though proven to be
inspiring and useful for providing a future full-scale Creek version, and should
be brought forward during that work.

Stiklestad[Stiklestad, 2007] did an effort with the goal of importing jColibri
components into Creek. The work was done in close cooperation with Volve,
now known as Verdande Technology. He also made a more general analysis
of Creek and jColibri, and looked on how Creek could be integrated into
jColibri. This is directed on jColibri 1.0, which is now replaced with the
entirely changed jColibri2 version series. This work was to a large degree
directed at Volve/Verdande Technology, and in a situation where both Colibri
and Verdande Technology were far from where they are now. We do however
note his conclusion that integration of Creek in Colibri would be the most
interesting for “an academic version of Creek”[Stiklestad, 2007][p.77].
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Chapter 4

Architecture

Our system is an implementation of Creek within the Colibri studio frame-
work. As Creek is a framework as well as a specific method, this means
that what we do is developing a framework which is a framework inside a
framework.

We intend that our resulting system will appear to users as a single, coherent
framework, providing the best from both worlds. As this is not trivial, we
have put certain effort into the structure of our system.

Furthermore, we hope that our system will be subject to further development,
as it is by no means completed work. We have for instance pointed our efforts
only on the retrieve part of the CBR cycle, leaving the implementation of
the remaining phases for further work. We are aware that this development
should be done, and have facilitated the system for easily extension. If a
developer wants to implement the reuse step in our system, we believe that
the architecture is well adapted for this as well as other expected extensions.

4.1 Characterising parts of Creek?

What caracterises Creek? What parts do we need to implement if we are to
say that what we implement is the Creek system? What are we required to
do to swap out frames with description logics? These are questions we need
to answer in advance.

We have made a priority list for which Creek parts we focus on, prioritised
on a scale from highest (1) to lowest (6), rendered here:
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Priority Part

1 The activate-explain-focus-structure[Aamodt, 1994a]

1
The tight relation between general knowledge and
cases[Aamodt, 1994b]

2 Flexibility on relations - several types supported[Aamodt, 1991]

3 Explanation - and justification[Aamodt, 1994a]

3
All knowledge (both cases, general and domain-specific
knowledge) represented in the same structure[Aamodt, 1994b]

4
Fallback-structures - use model-based or rule-based
reasoning when CBR fails[Aamodt, 1991]

4
Mixed-initiative - ask the user for input
when the system’s explanation is insufficient[Aamodt, 1991]

5 Several of the cycle steps[Aamodt and Plaza, 1994]

5 A thorough implementation of indexing[Aamodt, 2004]

5 Plausible inheritance[Aamodt, 1994b]

6 The four reasoning modules[Aamodt, 1991]

Table 4.1: Priorities

Of course, this is no definitive list of what Creek is, but we find the sum
of these items to be a good limited functional specification for a full Creek
system.

Plausible inheritance is worth mentioning especially, as it through Sørmo’s
work[Sørmo, 2000] was elaborated more. This allows for properties to be
inherited through all types of relations, e.g. that a part-of-relation implies
that the location is inherited. A thorough inclusion of this into Creek would
reduce the knowledge acquisition bottleneck1. An example of how this can
be utilised is seen in [Aamodt, 2004].

The priority of the parts is done by a combination of sorting on how central
the part is for the Creek system, the notion of whether or not the part is
within the scope for this work and what parts are most useful for reaching
our goal and answering our research questions.

This also means that functionality not on this list will not be prioritised.

On non-functional requirements, we find these important to mention:

1This bottleneck is described in section 3.2.
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• Code quality: for a framework, code quality is important

• Runtime: in general, the system should be as fast as possible. The
architecture presented makes it possible to create a fast system

• Resource usage: the same counts here as for runtime

• Adaptability: it should be easy to adapt the system to a new domain

4.2 Why starting with an implementation frame-

work?

We have as mentioned chosen to build Colibreek on top of the existing Col-
ibri framework. This choice hides many low-level details from our sight and
directs our focus to the higher, more application-oriented levels of frame-
work development. Colibri handles file input/output, casebase initialisation,
ontology-to-code-conversion, the execution engine et cetera.

Colibri handles much of the description logics handling, so that we as de-
velopers to a small degree have to consider that the reasoning we are doing
actually computes with description logics. Colibri and its built-in tools ab-
stracts away DL in abstractions and methods.

This means that we do not ourselves control every part of our system, and
that any changes made by the Colibri studio developers may cause our system
to malfunction. This is a tradeoff one always has to do when using external
frameworks, but it is reinforced by the integrated role Colibri plays in our
system.

For most frameworks, the typical way our systems communicate with them
is through one or a very few strictly defined interfaces we make ourselves,
covered by tests, so that we know exactly what results we expect from the
framework. Internal changes made in the framework or even changes in the
framework’s interface will cause few or no problems for our system, as we
at most have to update at one single point. If the Colibri studio developers
suddenly changes a central concept or a central interface, our system might
face big following changes.

These risks are worth taking, the way we see it. If we were to not use
Colibri studio, we would spend a significant amount of our total time dealing
with low-level issues already addressed in the framework, and we would thus
lose corresponding amounts of value-producing time. Figure 4.1 is a good
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illustration of this. Maybe even more important, we find the Colibri studio to
be of high quality, and providing a suitable and solid ground for our system.

Figure 4.1: Time spent on application vs. infrastructure, adapted
from [Recio-Garcıa et al., 2006]

In general, the idea of frameworks corresponds well with the premise we
started this thesis with: avoiding to reinvent the wheel. Frameworks can
make a non-expert able to write more complex applications[Abdrabou and
Salem, 2008], and they tend to provide a well-established way of solving more
generic parts of the problems. A framework can be seen as a semi-complete
application suitable for being specialised to solve specific problems[Bello-
Tomás et al., 2004]. In other words: a framework is an application where the
developer only needs to specify a defined, limited number of classes to get
an application solving her specific problem[Jaczynski and Trousse, 1998].

Even when familiar with these benefits from using frameworks, we find it
important to state that frameworks are tools suitable in many, but far from
all situations. If the framework is not appropriate for the problem you are
trying to solve, do not use it. By appropriate here, we think of a wide
spectrum of criteria - and they boil down to the simple question “can you
solve your problem easier and/or better with the framework or without it,
given your constraints?” Interesting aspects to look at here can be how
similar your problem is to what the framework is intended at, how complex
your problem is, how familiar you are with the domain and technology in
hand, lifetime of your product et cetera. A discussion and calculation on the
cost of reusing code in general is provided in [Brodwall, 2014].
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4.3 Choice of framework - why Colibri?

As we have indirectly said already, we have chosen Colibri studio as the
framework we build our system on. Chapter 2 presented myCBR and Colibri
studio in some depth, and mentioned several other frameworks as well. We
believe that the choice of tools - and a framework is a tool - in fact can be
reformulated into “Which tool(s) is the best suitable to help me solve this
particular problem?” The answer may also totally acceptable be none.

We try to create a CBR software development platform that makes it easy
for developers to create new knowledge-intensive CBR systems. We try to do
as much of the generic, non-business-logic programming as possible, and to
make application-specific usage of our software as easy as possible. We will
make it obstacle-free to introduce a new problem domain into our system.

These criteria can probably be met by several frameworks. We have found
Colibri studio to be the most suitable. We bear in mind that myCBR and
Colibri studio perfectly fine can be combined, and that modelling can be done
in myCBR, then imported to Colibri studio. While this is clearly beneficial
for many systems, and enables better and more thorough representation, we
have found it to be a bit overkill for our project.

Non-functional properties contributed to the choice of Colibri as well: it is
still subject to maintenance, and it is frequently updated and improved. The
Colibri team pointed in [Dı́az-Agudo et al., 2000], published in 2000, now 14
years ago, out some of the main lines for what eventually became Colibri,
and the first version was released in 2004, described in [Recio-Garćıa and
Dı́az-Agudo, 2004]. It has been subject to improvements and refinement
since then, and we find it reasonable to believe that it has now reached a
fairly stable level. The latest version, Colibri studio, was released in 20122.

We also note that Colibri studio is open source software, so the code is
available for us. This means that we can dive into and see for ourselves
what it actually does and how it functions. We find this the only really
trustworthy way to know what other people’s code does, including side effects
et cetera, an approach we share with Atwood[Atwood, 2012]. Of course, one
can understand code by reading documentation or writing tests, but you can
never be entirely sure of potential side effects. On the other hand, reading
code is demanding, and to read all the code of the frameworks we are using
would take serious amounts of our time. We have therefore landed on the

2available at http://sourceforge.net/projects/jcolibri-cbr/files/
COLIBRIStudio/
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compromise that we read the code when we are unsure about what is going
on and how, and otherwise trust our tests and the Colibri team’s provided
documentation.

Note also that Colibri studio uses a lot of other frameworks as well. In
section 1.1 we put a lot of focus on how the use of frameworks and reuse of
software prevents us from reinventing the wheel over and over again. The
Colibri team seem to share this view[Recio-Garćıa et al., 2013], and use
well-established frameworks for parts of the framework’s functionality. The
list of used frameworks is presented at http://gaia.fdi.ucm.es/research/

colibri/jcolibri, and includes the persistence framework Hibernate3 and
the OWL-reasoner Pellet4.

4.4 Uniform knowledge

Also worth adding is how Colibri studio is formed by thoughts similar to ours:
it is designed to be a general-purpose CBR system, and to make it easy to
create new systems on top of. We have most of the time found Colibri studio
to be playing with us, not against us. A good example for this is found in
the knowledge representation: Colibri allows for different types of this, as
persistance can be done to flat files, databases or ontologies according to the
developer’s wishes. We base our work on ontologies, and we found it easy to
do this inside Colibri.

We also emphasise the importance of having every piece of knowledge repre-
sented in the same structure and in the same way. This makes our system
consistent, and lightens the developing burden signficantly. It also makes it
a lot easier to write clean code. We remember from table 4.1 that this consis-
tency is high on our prioritised list, so it could potentially be a deal-breaker
if Colibri enforced us to violate this principle.

Luckily, Colibri studio with ontology represents knowledge uniformly by de-
fault! To achieve our goal at this point was simply to do what the framework
encouraged us to do. To be more precise, we want to have both the cases
and the general knowledge represented in the same semantic network, with
every piece of information represented in triples. We wanted “May” in May
subClassOf Spring to be the same May instance as the one in Case24 has-
season May. This makes both inference and reasoning a lot simpler, and is

3http://hibernate.org/
4http://clarkparsia.com/pellet
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a central part of Creek.

4.5 Our architecture

In this chapter, we have chosen to discuss our choices as we describe them.
This way, the reader will be able to follow our reasoning and choices as we
go.

4.5.1 Introduction

Colibreek, our Creek implementation in Colibri, is built from modular build-
ing blocks. We will here describe the architecture of the system as we intend
it to be with all parts implemented, as this gives the reader a better overview,
while at the same time illuminates the consistency of the system.

We have built the architecture so that it corresponds to the different steps
of the execution.

First, a new case, also denoted a query, is brought into the system. This can
be done manually or through an automated mechanism. Skalle et al.[Skalle
et al., 2013a] test Creek with real-time data and find it promising, a similar
approach can prove to be feasible for Colibreek as well. The query can be
complete or incomplete, we account for some missing case values.

Some configuration is then done, in the core engine. This includes loading
the case base and loading the ontology, if this is not done already. Then the
query is passed on to the reasoner.

The system is preconfigured with what type of reasoner to use. Our architec-
ture supports whatever type of reasoner, as it takes a query as input and can
return a solution proposal as output. That said, we have built the system for
case-based reasoning, and have had CBR in mind during the entire process,
so there ought to be a bias towards CBR in our system. A developer in-
tending to use Colibreek with e.g. model-based reasoning should bear this in
mind. She should also bear in mind that Colibri studio is intended solely for
case-based reasoning[Dı́az-Agudo et al., 2000], which leads to illogicalities.
A good example of this is that the loading of case bases is done in the core
engine, regardless of the type of reasoner chosen.

For a case-based reasoner, the reasoning is divided into the four RE’s known
from Aamodt and Plaza[Aamodt and Plaza, 1994]: Retrieve, reuse, revise
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and retain. Note that revise is not a step included in the original Creek[Aamodt,
1994a], but we find it perfectly fine to include in the architecture, and from
this architectural point of view, it is similar to the other three phases. Each
of the RE’s have its own activate-explain-focus-cycle, as we described in sec-
tion 3.4.1. For each phase, the exact steps done in activate, explain and focus
differ, but the overall structure is the same.

Each step benefits from Colibri’s built in DL reasoner, as well as other tools
included in Colibri.

When the case that is the proposed solution is found, the reasoner handles
this to the executer. The executer then presents the solution to the user.
Exactly how this is done is implementation-dependent, the simple default is
printing to the console.

4.5.2 Major architectural choices

This little review of our architecture illuminates two essential architectural
choices. First, it is flexible, and different implementational solutions can
be chosen for the majority of the steps. In order to make the framework
suitable for solving many different problems of different types with different
techniques, we will allow for as wide application as possible, while still making
it easy to stick to the default settings. This duality is non-trivial, but we
believe that our approach fulfills the intention. Through modality and relying
on sharply defined edges, the number of classes and methods to replace is
minimised.

Second, much of the overall structure for each RE-step is the same, so we
have represented them as one in the architecture. However, there are of
course differences when set on a lower level. This counts especially for revise.
The three other steps are complementary described in the Creek context (in
[Aamodt, 1991] and [Aamodt, 1994a], for instance), while revise deliberately
has been considered a step not part of Creek. We will focus on the retrieve
step in our detailed design and implementation, and we believe that illus-
trating how this is done combined with the insight of how the other steps are
intended makes the reader herself able to elaborate her intended step.
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4.5.3 Domain independence

As the diagram of our architecture - figure 4.2 - indicates, the architecture is
made as domain-independent as possible. This is a natural consequence of
our desire to create a framework that should be applicable to a wide range
of domains. We consider this to be one of the central advantages of our
framework. This also means that taking Colibreek from a framework to a
runnable system in the normal case is to implement your domain logic and
tell Colibreek to use it.

This also means that Colibreek is agnostic to which ontologies it reasons
with, as long as the developer has connected the choicen ontologies to the
system correctly in the few required seams.

All of the domain logic is collected in one place, which makes it easy to add a
new domain to the system and be sure that nothing is forgotten. Doing it this
way, we also lower the risk of tangling the domain logic into our framework.

During the development, the architecture changed, as expected. In section
2.3.2, we sketched out how we were to elaborate the architecture.

An important aspect of the architecture is that most entities in it correspond
to central parts of the domain - the architecture is domain-oriented rather
than technology-oriented.

4.5.4 Our architecture - part by part

The architecture of our system is illustrated in figure 4.2.

The flow starts with a new case, also denoted a query, that comes into the
core engine. The system is agnostic to how this new case comes - whether
it is through input from the user, from another system or from a file, for
instance.

The core engine constructs the system parts. It loads the case base into
memory, initialises the ontology connector (for connecting with the knowl-
edge base) and then passes the new case along with the case base to the
reasoner.

The reasoner can be either model-based, rule-based or case-based, as is sym-
bolised by the light-grey arrows.

If the chosen reasoner is the case-based, the CBR reasoner will use the case
base, the rest of the knowledge base and the query to reason. It will follow
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Figure 4.2: The architecture of Colibreek
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the activate-explain-focus cycle.

The case base and the general knowledge are obtained through tools from
Colibri studio.

First, the activator activates the possibly relevant cases and a broad, possibly-
relevant part of the knowledge base - a rough extraction.

The explainer will receive the activated area and the cases from the activator,
and explain each case more thoroughly. It will find the most relevant cases
and provide explanations for each of these.

The focuser will pick the most relevant case provided from explain.

This cycle will be repeated, in a slightly different matter, for the additional
CBR cycle steps reuse and retain.

Whatever reasoner chosen, the system needs to explain its results to the user.
This is the responsibility of the explanation engine. When use of CBR, this
task is left to the explainer.

Finally, the reasoner passes the task of displaying the results to the user on
to the visualiser. The visualiser displays, in a way specific per domain, the
results and the explanation to the user.

Figure 4.3: A diagram showing the sequence of a run of the system
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This flow is visualised in figure 4.3, and each step will be described in more
details in section 5.5.

4.5.5 The architectural dependency on Colibri

Section 4.2 revealed the tight dependency between our system and Colibri
studio, coming as a consequence of choosing Colibri as the framework for our
implementation. This is definately true, but the degree of dependence is not
a priori set. The established best-practice approach to using external tools,
as we described in section 4.2, enforces sharp boundaries between our code
and the tool code. We create our own entry and exit points from our code,
and at this entry point, the conversion and communication between our and
their code is done. There is no structural nor basic problem preventing us
from doing this also with the Colibri code.

However, we have tried to stick as much to the Colibri code and ways of doing
things, as far as they do not conflict with the Creek way or our essential
structure. The reason for this is partly to lower the threshold for developers
already familiar with the Colibri structure. This means for instance that we
accept and include the Java Bean structure[Recio-Garćıa et al., 2014], even
though we personally ideally would consider replacing this mechanism. It also
means that changing the essential Colibri classes can hardly be envisaged.

This justification is supplied with the fact that our Colibreek is already thor-
oughly dependent on Colibri in order to run at all. This means that it is
hardly a current issue to replace Colibri studio with another framework or
just our own code. Even if so is to be done, the amount of classes we explicitly
rely on is limited, around ten.

The Colibri classes are no obstacles for our automated testing either, so
this is no argument for encapsulating them. The opposite here are some of
Java’s built-in classes, for instance Scanner (the utility for receiving keyboard
strokes from the user). Scanner can not be easily replaced by a testing
dummy, so Scanner would need to be encapsulated for testing to be possible.

This in sum makes us accept the direct dependencies between our code and
Colibri classes.

We admit that we are not totally convinced that this choice is the best, but
we find it reasonable and at the moment, it fulfills our needs. A developer
not satisfied with this choice can of course do the required changes and create
sharp boundaries.
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Colibreek

In chapter 4, we described the architecture and the high-level structure of our
framework. In this chapter, we will go into more detail and describe our re-
alisation of the architecture. We have implemented parts of the architecture,
and will in this chapter describe our implementation.

The intention behind Colibreek is to be a solid framework where each deliv-
ered part is of high quality. Future developers should be able to rely on that
we have made a trustworthy platform for further development.

5.1 Using Colibreek

5.1.1 Configuring Colibreek for your domain

When a user wants to use Colibreek to solve the problem in her domain, it is
important that Colibreek is configured to use the settings for that domain.
This is done through changing one line in the system, and is in a production
or test setting done during setup, so the end user will not have to worry
about this. The rest of the configuration is also done during the setup.

Colibreek is implemented with the use of subclassing for domain-specific set-
tings, methods and variables. We ship the system with two domain imple-
mentations, TravelRecommender and TurbineSensor. These illustrate how to
adapt Colibreek to the domain you need, and the specific implementational
details related to the domains are depicted in chapter 6.
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When you are to introduce a new domain, you have to make a few more
changes. You have to:

1. Create a package in colibreek.domain with a describing name

2. Implement the classes in that package according to what you need. See
the existing domain packages for inspiration and guidance.

3. Add your domain in the Domains enum

4. Make a method for your domain and create a case in the Colibreek-
Module class

5. Change the first line in DomainChooser to use your domain

The second step in this walkthrough is of course the most complex one. This
also includes acquiring your desired ontology and case base, and creating a
XML config file for it. Good examples of how to do this are the already
implemented ones. These tend to follow the same pattern.

The implementation of Colibreek is shipped with two domains initially im-
plemented, both as a security net for ourselves not to tangle domain logic
into other parts of the framework, as a proof of concept for further develop-
ers, and to test that the framework supports both of these rather different
domains.

5.2 Implementational principles - a system to

be reused

Throughout this entire work, we have emphasised the aspect of reuse, an
aspect we also have encorporated into our code base.

Colibreek is by intention made to be highly modular and testable, as we find
these important qualities of reusable code. It has also been important for
us to build a system that is easy to understand and easy to modify. We
believe that breaking down the system in modular parts, and using small
building blocks makes this possible. Section 4.5.5 emphasised how our use of
Colibri studio complicates this, and how we are sticking to Colibri standards
whereever suitable.

Inner consistency is of particular importance in a framework. We have tried
to be consistent on coding standards, naming, structuring and so on. Our
heuristics have been towards short methods, describing names, limit use of
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null, make use of dependency injection and a few more. The best documen-
tation for such things is the code itself, so we encourage you to read the code
to get the whole picture.

Also, a natural consequence of using test-driven development is a high test
coverage. We have ensured that all the important and all the risk-associated
code is fully covered by tests. We have included three types of tests: unit
tests, integration tests and acceptance tests, unit tests and acceptance tests as
described in section 2.3.4. Integration tests test the communication between
some of the units of the system.

5.3 Implementational choices

5.3.1 Retrieve

The CBR paradigm advocates four phases in the CBR cycle, and Creek leaves
out the revise phase from the system’s consideration. Each phase of the cycle
depends on the outcome from the previous step, and a CBR system with only
a subset of the phases would be limited.

While the CBR process clearly is a cycle, the character changes when we
break it down to the situation for each new case. For a new case, the process
starts with retrieval and sums up with retain1.

We have chosen to prioritise the implementation of phases in decreasing order
from first to last, starting with retrieve. The main reason for this is usefulness
- for an expert user, the outcome from retrieve often is of value in itself.

Hence, we will limit our work to the retrieve phase. Beck and Andres[Beck
and Andres, 2004] state that there are four variables regulating software de-
velopment: cost, time, quality and scope. For us are cost and time defined,
so the two variables we can control are quality and scope. If we lower our
quality requirements, we will break the confidence given to us by those in-
terested in extending or using our system. We take the consequence of this,
and limit our scope to what needed in order to provide the expected level of
quality.

1At least when not taking the setup into consideration.
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5.3.2 Constants and configurations

Colibreek divides between two types of constants and configurations: the
domain-specific and the domain-independent. The domain-dependent are
specified within either the domain package or within the class DomainDe-
pendentConfigurations, which every domain must subclass. The threshold
value for activation of a case, which type of relations that should lead to
application and the algorithm for comparing date/time are examples of con-
figurations set in this class. The values provided in this class are standard
values and methods that tend to be common for many domains, but they
can be overridden when needed.

Every domain is responsible for providing its configurations, such as paths
to its ontology and case base, types of findings in the case description and
how the case solution should be presented to the user.

Domain-independent configurations are in general placed where it is needed
in the code base. Some constants are gathered at program-level, mainly the
generic, standard OWL URLs.

5.3.3 Relevance factor

Creek originally has the concept of relevance factor, computed from the com-
bination of importance and predictive strength. Importance is the degree of
necessity, and predictive strength is the degree of sufficiency, of a finding
describing a stored case[Aamodt, 1994a]. We have chosen to implement only
the relevance factor from this, as we found this sufficient for our use. The
extension to include also the two other factors should though be quite tiny.

Each domain offers a slightly different set of relations, and different findings,
so the relevance factors must clearly be defined per domain. The original
Creek approach is to define relevance factors per finding-case pair, while we
have chosen to assign the same relevance factors for every case related to
the finding. Beck and Andres[Beck and Andres, 2004] point out that when
you are unsure today of whether you will need a future tomorrow, the best
typically is to wait until tomorrow to see if you really need it then. If you do,
you implement it tomorrow. This way, you do not spend time on doing work
which very well may prove to be misguided, overengineered or even useless.
We have found experimentally that our data do not require the possibility to
specify relevance factor per case, so we have chosen not to include it. This
implementation can be changed when - or even if - needed.
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When developing a framework, as we are, this rule of thumb needs to be
taken with a pinch of salt, but we still find the underlying idea to be true.
As Beck and Andres point out, if you keep your code in a good state and
your architecture as simple as possible, the cost will be relatively small if
you are to implement this feature later on. If you intend to do this, use the
Finding class as your starting point, then you should have a pretty good go.

You may however easily change the relevance factors for the findings, as these
are given in the domain-specific setup class you specify for the domain, in the
CaseDescription-subclass. The relevance factor is a floating number between
0 and 1.

5.3.4 Similarity measurement

In [Aamodt, 1994a], the similarity measurement between two findings in
Creek is described concisely. The measurement is done entirely on categorical
values, meaning that also numbers and date-times would have to be cast into
categorical values, despite this being both illogical and ineffective.

We have extended and tweaked the algorithms for this, and provided three
different comparison algorithms. We believe this to be a substantial improve-
ment of this part of Creek, and would encourage further work on Creek to
include this advance.

Numerical values

If the finding is a numerical value - e.g. a decimal, double or float - we do
a mathematical comparison. The exact algorithm for this is given in section
5.5.5.

In Creek, numerical values are grouped into qualitative values, such as ’high’,
’medium’ and ’low’. We have improved this algorithm by allowing for actual
computation with numbers in order to determine how similar they are. This
way, this pre-compilation of knowledge is significantly reduced.

However, limitations in Colibreek enforce us to still group the numbers. Col-
ibreek insists to represent all findings as instances. A consequence of this is
that numbers must be rounded to a limited number of decimals2, while it

2How many decimals depends on the spreading of the values for this finding, in our
turbine domain we have successfully used 0 or 1.
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would have been both easier and more straight-forward to use an associated
data type such as double.

Nevertheless, the reasoning is done automatically, and all we have manually
done is round the numbers. The algorithm we use in Colibreek would be
exactly the same if we were to not round numbers as well, the input data is
the only point of change. Hence, despite the Colibri-introduced limitations,
we see this as a great improvement.

Datetime

We use a specific algorithm to handle date or time as well3. The exact
algorithm for this is given in section 5.5.5.

We have chosen to leave the exact algorithm for comparing times domain-
specific. For some domains, only the dates are interesting, while others em-
phasise minutes and seconds. We have as a consequence formulated a default
algorithm, and made it suitable for overriding.

Categorical values

The similarity between categorical values is computed as described in sec-
tion 5.5.5. It uses a simplified version of the algorithm proposed in [Aamodt,
2004], as it simply computes the length of the path between the two findings.
The relation strength concept is deliberately let out of our implementation,
mainly because it turns out to be challenging and time-consuming to im-
plement it within the Colibri studio limitations. The same counts for the
parallell paths, as our way of doing this also relies heavily on Colibri studio.
These simplifications leave us with a simple, straight-forward computation.

5.4 The implemented architecture

Chapter 4 illustrated and described the architecture of the full Colibreek
system. Here, we present the architecture of the implemented parts of it.
It can and should be seen as a subset of the full-system architecture we
presented in section 4.5.

3It would be technically legit, but logically way off, to handle dates as numbers.
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5.4.1 Step-by-step

Figure 5.1: The architecture of the implemented system

The implemented architecture is visualised in figure 5.1. It is a specialisa-
tion of the general Colibreek architecture seen in figure 4.2. The notable
differences originate from the implementational choices done during imple-
mentation.

The implemented architecture focuses solely on the case-based reasoner, and
the explanation engine is an integrated part of the explain step. These are
the two simplifications of the architecture, while we have also included some
details that are suitable at this level. These are seen right next to the core
engine: config, domains and getInput.

getInput is the module that lets the user give input to the system. In the
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present implementation, it lets the user specify the new case she wants to run
through the system, but it may also be extended later on when implementing
other CBR cycle steps.

The domains module controls which domain the user has chosen to run Coli-
breek on, as well as the consequences of this choice: the domain-specific parts
of the system, such as case structure and configuration files.

The config module contains matching thresholds, default OWL URLs and
which relation types that should lead to activation.

The remaining modules behave as described in section 4.5.4.

5.4.2 The representation of cases and the domain

The domain is represented in Colibreek through five classes, including one
trivial. The four classes describes respectively the case description, case solu-
tion, domain-specific system configurations and input-output-configurations.

The case description consists of a variable per finding, get-and-set-methods
for each, and a method to get all findings.

The input-output-configurations specify how the findings are put into the
system, and how the results of a run is displayed to the user.

A discussion of interest here is to which degree the system should accept
incomplete cases - that is, cases where one or several findings are undefined.
We have chosen to allow this, and to simply ignore these findings. A path to
walk for improving the matching could be to lower the total match degree for
each missing finding. A part of the task for the non-implemented CBR-cycle
steps is to fill these undefined finding-slots.

We are also unsure whether the system should allow for slots to be filled by
classes rather than instances - say for instance in the travel recommenda-
tion domain: if you know that a vacation was during the summer, but not
whether it was in June or July, should it be saved into the system simply as
“Summer”? We are unsure, and have thus chosen not to support this at this
point of implementation. Extending the system to tackle this could be done
later on if found needed.
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5.5 A walkthrough of the system - under the

hood

5.5.1 CBR reasoner

The CBR reasoner class coordinates the reasoning. It exposes the reason
method, which accepts the query as input and calls on the implemented
reasoning steps - at the moment, this is just retrieve.

Retrieve first checks if this query is already present in the case base. This is
not an actual issue for neither of our domains, but we guess that it might be
for other domains. If the query is already present in the case base, we return
that case and the reasoning is finished.

In the usual cases where the query is not already saved, the reasoner fetches
the relations in the semantic network, through the use of Colibri’s methods.
The relations, the case base and the query is provided to the activator. The
resulting activated subnetwork is passed on to the explainer. The explana-
tions are handed to the focuser, and when the focuser returns its solution, it
is the visualiser that presents the results to the user. Each of these steps are
described in more detail below.

5.5.2 Activator

This class handles the activate step. If the number of statements in the graph
provided as input4 to the activator is lower than a domain-specific limit, the
entire graph is activated, to avoid overhead.

Activate follows the Creek standard way. Activation is spread through the
network, starting from the findings of the query. The algorithm is like this:

• All the links to or from the findings of the query are at first activated.

• Every case with at least one finding equal to one in the query is found.

• For each of these cases, all the relations directly linked to its findings
are activated.

• Then, the activation spreads from each now activated node and both
up and down in the network. This algorithm loops through every state-
ment having the findings so far activated as its object, and checks every

4Typically the knowledge base.
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statement having this finding as its subject. If this relation is of a
domain-specific pre-defined type, the statement is activated. This pro-
cess is done recursively until the top node is reached.

In the original Creek, there was proposed a default set of relations to acti-
vate along[Aamodt, 1991][p.280]. The flexibility needed in order to support
a variety of ontologies means that this list has to be domain-specific. For our
testing domains, we have chosen a subset of relations consisting of subClas-
sOf, subPropertyOf, topDataProperty and hasDataValue. Summarised, we
can say that the last item in our list can be expressed as: activate recursively
from the query’s and the activated case’s findings to the top node, as long
as the relations are of a specific type.5

Activator finishes off its work by making sure that all cases it activates
matches the query to a sufficient degree - the two cases have a similarity of
at least the domain-specific, manually set threshold value. A question here
arises: how is this similarity computed? On the one hand, the results we get
out will be better the more sophisticated the computation is. On the other
hand, we want to make this computation efficient: we do this computation
on often the bulk of the case base. This tradeoff is difficult.

We have chosen a rather simple similarity measure: how many findings are
equal between the old case and the query, weighted with relevance factors?
The precise formula is given in equation 5.1. The computational efforts of
this compared to running the system without the activator was, according to
our integration tests, approximately the half. The threshold as well as the
aggregation levels for each finding can be adjusted to tweak this algorithm
to include the desired cases. Note that we have assumed that the number of
findings are the same for every case in the domain.

n∑
i=1

relevanceFactori ∗ findingIsEqualInCaseAndQueryi

n∑
i=1

relevanceFactori

(5.1)

5As always, the best documentation is the source code itself. To get the precise and
definite view of the algorithm, look at the source code. Appendix A points to where the
code can be found.
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5.5.3 Explainer

The explainer receives the graph with the activated statements and cases
from the activator. Explain looks at every activated case, and does a more
sophisticated comparison in order to find a more precise similarity. The
explainer compares, for each activated case, each finding to its equivalent in
the query, and finds their similarity and the path between them in the graph.
How this is done is described in more depth in section 5.5.5.

The explainer creates an explanation for each of the activated cases. This ex-
planation contains a reference to the case and the collection of all the finding
similarities. Each finding similarity contains the finding class it describes,
the similarity value, the trace and the relevance factor for that class. The
explainer returns the explanations, and is done with its work.

5.5.4 Focuser

Focus takes as input the set of explanations from the explainer, and finds the
single most suitable case to solve the problem in question. In our system, as
in Creek, the job done by the focuser is trivial. It chooses the most similar
case from the input, or if none is considered similar enough, it returns the
empty case, saying that no solution was found.

5.5.5 Explanations to the user

Colibreek, as Creek, is primarily targeted at expert users. The explanations
provided by our systems take this into account. Sørmo et al.[Sørmo et al.,
2005] found that explanations can be categorised into four boxes:

• Reasoning trace - what are the steps in the reasoning?

• Justification - why is the system reasoning that way?

• Strategic - how does the system reason? What is its strategy?

• Terminological - to explain terms and concepts from the domain

While novice users typically want terminological or justification explanations,
experts wants to know about the reasoning trace and the strategical decisions.
Colibreek compares the query to a case in the case base by comparing finding
by finding.
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For each finding, the system will compute how similar the two cases are
with regards to just this finding class. We have three different strategies for
doing similarity measurement in Colibreek, depending on the data type of
the finding in consideration.

Numerical values

If the findings are numeric, the system will compute how similar the two
findings are by using the formula 5.2. Max and min in this equation are the
highest and the lowest, respectively, number of this class registered in the
ontolology. For example, in our turbine sensor domain, the highest registered
exciter field voltage is 3.9. Max is thus 3.9. The lowest registered is 2.9, and
this is min.

1− |FindingInNewCase− FindingInActivatedCase|
Max−min

(5.2)

Date or time values

If the finding is a date or a time, the system does a specific type of comparison
between the two findings - it compares year to year, month to month and so
on. The default algorithm is as follows:

Start with similarity 0.0

If year is equal, similarity += 0.25

If month is equal, similarity += 0.2

If date is equal, similarity += 0.2

If hour is equal, similarity += 0.2

If minute is equal, similarity += 0.15

If second is equal, similarity += 0.0

Categorical values

If the finding is neither a number nor a date-time, the system makes use of
the graph. Every finding is a separate node in the system’s semantic network.
The corner case first: if the finding is the same in both the new and the old
case, the similarity is simply 1 and no more reasoning is done. Otherwise,
the system finds the shortest possible path between the two findings in the
graph. This is done by finding the lowest common ancestor of the two nodes.
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This ancestor can however be a concept too generic to provide any useful
information about the similarity, typically when the ancestor is a node that
is common for all instances of a class. This can be the class itself or it can
be thing. When no ancestor lower than this level is found, it means that the
findings are not similar at all. The similarity returned is then 0.0 and the
path is discarded.

Two findings with some, but not total similarity, will have its similarity de-
gree computed based on how long the path between them is. The shorter the
path, the higher the similarity, and the equation is given in 5.3. This com-
putation is a simplification from Creek, as Creek utilises relational strengths
when computing this similarity[Aamodt, 2004]. However, to incorporate re-
lation strengths within Colibri as is of today, proved out to be too much
labour for too less benefit.

1

length− of − the− path
(5.3)

Presentation to the user

When the system has finished its reasoning, the results and explanation must
be presented to the user. How this is done is domain-specific. How this is
done in the implemented domains, can be seen in section 6.5.
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Chapter 6

Application of Colibreek on our
domains

This chapter describes the application of the general problem-solving tool
Colibreek on the domains travel recommender and turbine sensors.

6.1 How to use Colibreek - as an end user

To use Colibreek, the user solely has to enter the query she wants to solve.
A query has the same structure as the description part of the case, and will
during reasoning be handled the same way. Let us see how this works out
in practice, we look at how an end user can use Colibreek with our turbine
sensor domain.

The user hits the run button, and Colibreek starts. The user is then ques-
tioned on the properties describing her new turbine sensor case: the exciter
field voltage of the turbine generator, the power value of the generator, the
id of the generator in question, at what time the case happened, and a few
more variables related to the generator (exciter field current, reactive load,
phase-A-current and phase-B-current). The system then does its reasoning,
and presents the solution to the user along with an explanation.

Keep in mind that Creek is supposed to be used by expert users. Hence, it
is important that the explanation provided justify how the system reached
its conclusions[Sørmo et al., 2005]. We have solved this by presenting to the
user the 10 most similar cases, including findings and solutions, as well as
the single most similar case. For different categorical findings in this case,
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Colibreek presents how it computed the finding’s similarities with the query.
If for instance the query has a finding for month with value July, and the
solution case has June, the system states that July is a summer month, and
June is a summer month, hence they are quite similar. This is an application
of the mechanisms described in section 5.5.5.

6.2 Our choice of ontology

A crucial factor for success for every knowledge-intensive CBR system is the
availability and application of general knowledge. This general knowledge is
within DL represented in ontologies, as discussed in section 3.3.4. As there
are a diversity of available ontologies, the choice of ontologies to use should
be taken consciously.

Ontologies are both general-purpose and more domain-specific. We have
tried our system using solely domain-specific ontologies as well as with the
combination of domain-specific and general-purpose. In addition comes of
course the possibility to create your own ontologies.

We have considered both the domain-specific ontologies Semantic Sensor
Network (SSN)1 and ISO 159262, as well as the general-purpose ontologies
DOLCE Ultra Lite (DUL)3, Suggested Upper Merged Ontology (SUMO)4

and COSMO5. The general-purpose ontologies are used in combination with
the domain-specific ones.

It seems obvious that a domain-specific ontology should in all but the most
generic situations be used. We have found SSN to be simple as well as
suitable for our condition monitoring domain, so have chosen to stick to it
for our turbine sensor domain. When testing to combine it with an upper-
level ontology, we have noticed that each of the three ontologies mentioned
made the system slower. SUMO and COSMO to a remarkable degree, while
the difference was smaller with DUL, though still approximately doubling
the runtime.

To be able to make use of the upper-level-degree ontology, it must be con-
nected with the domain-specific ontology. This will demand insight in the

1http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
2http://15926.org/
3http://www.loa.istc.cnr.it/ontologies/DUL.owl
4http://www.ontologyportal.org/index.html
5http://micra.com/COSMO/
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ontologies and some time. SSN and DUL is initially coupled from the SSN
developer team, so advantage can here be taken from combining these two.

There are advantages and benefits for whatever choice made, and the major
tradeoff is between time and the potential for improved precision. This trade-
off did for our domain tilt towards sticking to only SSN, but this varies with
the domain

6.3 What is in a case?

The general properties listed in section 5.4.2 holds for the concrete domain-
specific case structures as well. Here, we will describe the case structure for
the travel recommender and turbine domain, respectively.

6.3.1 Travel recommender

The travel recommender domain is a prototypical domain for CBR systems,
and our case structure here is taken from the Colibri studio documentation6.

A travel recommender case consists of a description and a solution. The
description structure is as follows:

• mainConcept - also known as caseId.

• HolidayType - e.g. bathing or wandering

• NumberOfPersons

• Transportation - e.g. plane or car

• Destination - e.g. Egypt or Turkish riviera

• Duration - number of days

• Season - divided by months, so e.g. May or December

• Accommodation - e.g. Holiday flat or Three stars

The solution is simpler:

• mainConcept

6More precisely, “test 10”, available at http://gaia.fdi.ucm.es/files/people/
juanan/jcolibri/doc/api/jcolibri/test/test10/package-summary.html
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• Price

All values are categorical. Price, duration and numberOfPersons could ad-
vantageously have been numerical values, but this is not originally supported
by Colibri, and we chose to put our categorical-to-numerical-effort in the tur-
bine domain rather than the travel domain.

6.3.2 Turbine sensor domain

The data for this domain are provided by ConocoPhillips Norway, and the
choice of findings are defined based on the data received from them.

The monitored turbines are covered with a lot of sensors, and the data
amounts are huge. Each type of mechanical issues are discovered by a differ-
ent set of sensors. We found during development that every extra parameter
introduced extended the runtime dramatically, so we have limited the num-
ber strictly. In order to make the scope practically manageable, we have
chosen to refine the implementation to cover a specific type of mechanical
issues.

The structure of a case description is as follows:

• CaseID - categorical

• Timestamp - with year, month, date, hours, minutes, seconds. Seconds
are excessive for the test data. Datetime

• GeneratorID - the ID of the monitored generator. Categorical

• GeneratorPower - numerical

• ExciterFieldVoltage - numerical

• Frequency - numerical

• ExciterFieldCurrent - numerical

• ReactiveLoad - numerical

• PhaseACurrent - numerical

• PhaseBCurrent - numerical

The potential problems are typically found when the proportion between
the generator power and exciter field voltage values is wrong. The last five
findings are also properties of the generator at the given time, and are part
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of the case description to minimise bias and ensure the sustainability of the
system.

A case solution is also here a simpler structure:

• CaseID - categorical

• IsAlarmingSituation - i.e. is this a situation where it seems probable
that something is wrong? The user should take a deeper look into this
situation.

The structure of the Java class representing the case solution can be seen in
figure 6.1.

Figure 6.1: The case solution structure for the turbine domain

6.4 Runtime analysis

The figures 6.2, 6.3 and 6.4 show from different angles what the computational-
heavy parts of the system are, and the distribution of CPU usage among
them. The numbers are accumulated through a run of each of the 423 cases
for the turbine sensors.

6.2 shows that much of the computation is demanded from the Jena reasoner,
as can be seen if you look at the package each method belong to - a vast
majority of the most consuming methods belong to various com.hp.hpl.jena
packages. Of course, the Jena methods are linked together with and used
within our own-made Colibreek methods, so these numbers should only be
taken as an indication. For instance, the toString and hasNext methods are
used within several of our algorithms. Thus, the figure should be seen in
connection with figure 6.3 and 6.4.
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Figure 6.2: Resource-consuming methods for turbine sensor domain

Figure 6.3 shows the distribution between the modules of our system. As
we can see, the explain step is by far the most resource-consuming step. A
further break down of the explain step is found in figure 6.4.

Figure 6.3: Distribution of resource-demand between our modules

Figure 6.4: Distribution of resource-demand in the explain module

6.5 Presentation to the user

The results from the reasoning are presented through plain text. When the
system is done reasoning, it will present to the user an explanation and a
solution.
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The ideas behind the explanation is described in section 5.5.5. The system
presents the query provided, the n7 cases most similar to the query and the
proposed solution.

For each presented case, it explains each feature. This similarity is given as
a decimal number, and for the categorical values the path between them is
also included. An example of this can be shown from the travel domain as
follows8:

SEASON: similarity is 0.5, through

[[vacation.owl#June, 22-rdf-syntax-ns#type, vacation.owl#SUMMER],

[vacation.owl#July, 22-rdf-syntax-ns#type, vacation.owl#SUMMER]]

How this looks for numerical values is shown in figure 6.5. Perhaps the
most important line here is the one describing the proposed solution: “The
case proposed as solution was: CaseID: Case1, isAlarmingSituation: NotA-
larmingSituation, with similarity 0.9946666666666667. This is based on the
explanation” If the user’s belief in this conclusion is weak, she can easily
view the n-1 next most similar cases and their conclusions as well, and what
findings that affected the solution.

Figure 6.5: Explanation and solution

7In the provided implementation, n is set to 10.
8This example is taken from the travel domain, as it contains categorical values suitable

for comparison, something the turbine domain does not.
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6.5.1 A Colibreek run, step by step - from the user’s
perspective

We will in this section follow the user through a step-by-step run of Colibreek,
on the turbine sensor domain.

Given that the domain is initially chosen - either by code or by user input - to
be the turbine sensor domain, the first things presented to the user after she
presses run are the mandatory prints enforced by Colibri studio: information
about namespaces and classifying, as seen in figure 6.6.

Figure 6.6: Run: Namespaces and classifying

The user is then allowed to prompt her query - the findings of the new case.
If she does not know, she can simply let the text be empty and press enter,
then that finding is left undefined, as seen with generator ID in figure 6.7. If
she provides a non-recognised input, she is allowed to try again, as seen with
frequency in figure 6.7.

The system then does the reasoning, which is usually the most time-consuming
part of each run. The print is provided directly from Colibri studio, and is
as seen in figure 6.8.

When reasoning is finished, Colibreek repeats your query, to make it easy to
manually compare the query with the returned cases. The query is displayed
as in figure 6.9.

The system then prints the 10 most similar cases, with description, explana-
tion (if it is a categorical value) and the case’s solution. An example of this
is seen in figure 6.10.
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Figure 6.7: Run: Input from the user

Figure 6.8: Run: Colibri’s realizing-print

Figure 6.9: Run: The query displayed to the user
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Figure 6.10: Run: A case and explanation presented to the user

Eventually, Colibreek prints the most similar case, and the proposed solution
for your query. The findings of both the query and the solution case are also
presented, to make it easy for the expert user to at a glance see similarities
and differences. The print-style is as in figure 6.11. If no good enough
solution is found, the system says so.

Figure 6.11: Run: The proposed solution and solution case
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Chapter 7

Evaluation

To be able to learn from work done, the work should be evaluated, so that
the good things are preserved and brought further, while the bad parts are
either improved or replaced. We will in this chapter evaluate our process
and results. “Evaluation provides a basis for the accumulation of knowl-
edge”[Cohen and Howe, 1988].

7.1 Evaluation through the five-stage model

A five-stage model for how AI research is done is presented in [Cohen and
Howe, 1988], along with evaluation aspects for each stage. We will look at
each stage and how it fits with our situation. The content in the following
tables are all taken from this article.

7.1.1 Stage 1 - task and view

The initial stage one consists of linking the topic to a task, and identify a
view on it - that is, a coarse idea on how to do it.

We have throughout the report answered all of these questions - we started
the report by justifying our task, we have explained why we consider it
important, and have been honest about our system’s limitations, scope and
intention. Additional research questions have been pointed out explicitly.
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1. Is the task significant? Why?

2. Is your research likely to meaningfully contribute to the problem? Is the
task tractable?

3. As the task becomes specifically defined for your research, is it still repre-
sentative of a class of tasks?
4. Have any interesting aspects been abstracted away or simplified?

5. What are the subgoals of the research? What key research tasks will be
or have been addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to
the task? Is the task one in which a solution can be demonstrated?

Table 7.1: Questions for stage 1

7.1.2 Stage 2 - refine the view to a method

In this stage, the view from stage one is refined to a particular method - how
the task should actually be solved.

1. How is the method an improvement over existing technologies?

2. Does a recognized metric exist for evaluating the performance of your
method (for example, is it normative, cognitively valid)?

3. Does it rely on other methods?

4. What are the underlying assumptions?

5. What is the scope of the method?

6. When it cannot provide a good solution, does it do nothing or does it
provide bad solutions or does it provide the best solution given the available
resources?
7. How well is the method understood?

8. What is the relationship between the problem and the method? Why does
it work for this task?

Table 7.2: Questions for stage 2

We have been clear about the scope of our work and our priorities. The
system depends especially on the Colibri studio framework, as explained in
section 4.5.5.

Our system is based on a recognised existing framework, Creek, and im-

80



7.1. EVALUATION THROUGH THE FIVE-STAGE MODEL

plemented within another recognised framework, Colibri studio. It is thus
reasonable to say that the method is good understood. We have in addition
discussed our deliberate architectural and implementational choices in their
respective chapters.

7.1.3 Stage 3 - implement it

The third stage consists of actually implementing the method described in
stage two.

1. How demonstrative is the program?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

4. Is the program’s performance predictable?

Table 7.3: Questions for stage 3

Our implementation is freely available, so everyone is free to herself look
into our implementation and evaluate it. We have done a continuous eval-
uation by emphasising writing tests, so each feature of the implementation
is tested, as is the system as a whole. Our implementation is by choice
domain-independent, as described thoroughly in section 5.1.1.

We have done some changes to the original Creek method, including both
extensions and simplifications. These are described and discussed in the
implementation chapter.

7.1.4 Stage 4 - design experiments

Stage 4 handles the experiments of the newly designed system - this can be
seen as a test of the system.

The audience for the system are expert users, as pointed out in section 3.4.
The users can be experts on any domain, so the system must be flexible
and is domain-independent, exemplified by the two implemented domains,
travel recommendation and turbine sensors. The performance criteria for the
system naturally varies along the domains, for instance whether real-time is
an interesting consideration or not.
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1. How many examples can be demonstrated?

2. Should the program’s performance be compared to a standard such as
another program, or experts and novices, or its own tuned performance?
Should the standard be normative, or cognitive validity, or outcomes either
from the real world or from simulations?
3. What are the criteria for good performance? Who defines the criteria?

4. Does the program purport to be general (domain-independent)?

5. Is a series of related programs being evaluated?

Table 7.4: Questions for stage 4

Cohen and Howe lists six types of studies that can be used when evaluating:

Comparison
Measures for the program are selected, and both our program
and a bottom-line “standard” program solve them. Finally,
the measures are compared.

Direct assessment
The system does some work, and then an expert user evalu-
ates the performance

Ablation and
substitution

Parts of the system are removed or substituted, enabling anal-
ysis of the different parts’ role in the system

Tuning The system is fine-tuned with some data, and tested on other
data

Limitation We test the system at its known limits

Inductive The system is tested on a new set of problems

Table 7.5: Evaluation types

Of these evaluation types, we evaluate our system with ablation, substitution,
tuning and induction. Comparison evaluation proved out of scope - we have
no bottom-line system at hand. We consider limitation and direct assess-
ment tests to be more suitable later on, when the system is more completely
implemented.

The ablation and substitution evaluation is done in each unit test, where
we test specific parts of the system either in isolation or in a stripped-down
version of the system.
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7.2. COLIBRI AND TEST-DRIVEN DEVELOPMENT

The tuning and inductive tests will follow in the sections 7.3 and 7.4.

7.1.5 Stage 5 - run experiments

The results from stage four are analysed in this final stage. This stage consists
of what is usually considered evaluation.

1. How did program performance compare to its selected standard (for ex-
ample, other programs, people, normative behavior)?
2. Is the program’s performance different from predictions of how the method
should perform?

3. How efficient is the program in terms of space and knowledge require-
ments?
4. Did the program demonstrate good performance?

5. Did you learn what you wanted from the program and experiments?

6. Is it easy for the intended users to understand?

7. Can you define the program’s performance limitations?

8. Do you understand why the program works or doesn’t work?

Table 7.6: Questions for stage 5

Performance in terms of resource usage has not been prioritised during our
work, neither has the user interface. We have by choice made a proof-of-
concept where these aspects clearly could be better. However, the system
does what it is supposed to do, and gives the expected results.

7.2 Colibri and test-driven development

We have encountered some difficulties using test-driven development while
extending an existing framework, Colibri studio. This enforced us to get to
know parts of the Colibri framework in depth, and made us discover much
of the internal structure of the framework.

Unfortunately, it turned out that crucial parts of Colibri are not optimised
for testability - for example, it requires comprehensive rewriting and circum-
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7.3. ADAPTING COLIBREEK TO A NEW DOMAIN

vention to write unit tests that do not depend on reading XML files from
the file system. Class construction, file reading, setup and initialisation is
tangled tightly together. This makes the tests slower, more vulnerable and
less pinpointed than they would have been with a better code structure. For
every unit test not testing exactly this functionality, it would be better if we
could have simulated the file reading.

We did not dive into this refactoring work, and as a consequence, our tests
are slower and more vulnerable than desired. However, we have experienced
during our progress that the unit tests were very valuable. Whenever we
made a change to existing code, the relevant tests ran within seconds, and
we could at all times be sure that we did not break existing functionality -
and discover this in less than a minute from the change was made.1

We draw two major conclusions from this: it can be perfectly fine to do
test-driven development inside a non-test-oriented framework, and we had
success with test-driven development in this work.

7.3 Adapting Colibreek to a new domain

As Colibreek is emphasised to be domain-independent and flexible towards
new domains, it is important to make it easy to adapt to a new domain. We
have evaluated the required amount of needed work in order to use Colibreek
to help solving problems within another turbine-related field, with the aim
of finding turbine AGB failures. These are a type of mechanical failures in
a turbine that are different from the ones we have considered so far in this
report.

It took us about an hour to make the system run as predicted on this domain,
including time fixing errors in the ontology.

This required changes in three existing Java files, the creation of one XML
config file, the ontology and case base and a total of five new Java classes.
The total amount of new Java lines are approximately 240.

1The tools that supported in this are listed in section 2.3.5.
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7.4. TURBINE DOMAIN TEST RESULTS

7.4 Turbine domain test results

We have used the leave-one-out-cross-validation strategy to evaluate the re-
sults. This strategy involves a rather simple algorithm:

1. Pick and remove one case from the case base

2. Use this case as the query

3. Run the system

4. Check if the solution returned by the system is equal to the case’s
solution

5. Repeat for every case

We have run this algorithm on our turbine sensor domain, where the case
base consists of 423 cases. Of these, the system returned the correct solution
in 422 of them. This evaluation took a total of 2241 seconds, or 37 minutes
and 35 seconds.

We also ran this evaluation on the new turbine AGB domain, and got results
showing 264 successes and 25 failures, as shown in figure 7.1. This indicates
that our approach is successful, but that tuning remains, particularly of
relevance factors.

Figure 7.1: Evaluation results for the turbine AGB domain

Similar runs for the travel domain return very bad results, which should
also be expected: the travel recommender domain makes excessive use of the
reuse step and adaptation of the retrieved case, for instance with regards to
number of travellers, duration or accomodation level. This adaptation is not
present to nearly the same degree for the two turbine domains.

Table 7.7 presents the results of the leave-one-out-runs, as well as the average
number of cases activated for every run.
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7.4. TURBINE DOMAIN TEST RESULTS

Domain Total#
of cases

Avg # of cases
post-activate

Successes Failures

Travel 125 34 6 119

Turbine sensors 191 423 422 1

Turbine AGB 289 7 264 25

Table 7.7: Leave-one-out-results
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Chapter 8

Discussion and conclusion

8.1 Frames vs DL in Colibreek

A central question in our work has been what the consequences would be
of replacing frames with description logics in Creek. With Colibri studio,
DL is the standard way of representing knowledge for knowledge-intensive
CBR systems. Thus, the implementation of DL itself has been trivial, a
consequence of Colibri’s DL support discussed in section 3.7.2.

To implement frames within Colibri studio would have proven to be a sub-
stantially more demanding task.

Our inclusion of direct comparison for numerical values has been an im-
provement to Creek. Section 5.3.4 highlighted how this functionality has
been limited due to the representation. It might be tempting to blame this
on DL, but it is due to implementational choices in Colibri.

The most honest answer to our research question on the consequences of
replacing frames with DL would be that the consequences are small. Much
of this is due to the use of libraries that take care of the direct handling
with the ontology. We have experienced that the characteristics of Creek, as
listed in 4.1, are perfectly well suitable for a DL representation. We find this
theory strengthened by our implementation as well.

The benefits of replacing frames with DL in Creek would summarised be:

• Numbers of users - DL is the more widespread representation today

• Colibri support - Colibri supports DL easily
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• Defined semantics

• Reusability - ontologies can be reused and merged easily

The major disadvantages are:

• Change - frames is the original representation in Creek, it would have
to be replaced

• Frames are flexible

We find the first disadvantage to require some more explanation: in Creek,
frames is the initial knowledge representation, and this means that the system
is built with this in mind. It also typically means that the vast amount
of research assumes frames, so that border cases and tricky questions are
examined more thorough with frames than with an alternative. This issue
is present for all major changes of a software, but it is easy to forget or
to neglect. A conclusion we draw from this fact is that the effect of the
replacement should be significant in order to be worth the risk.

8.2 DL in Creek within a reasonable scope?

Our implementation is in itself a proof that it is possible to inject description
logics in Creek within a reasonable scope. Our angle for dealing with this
challenge was that of a proof-of-concept, so there will be other implemen-
tational questions and challenges occuring during development intended for
production, but the main questions and main challenges are dealt with and
can be handled.

That said, a DL implementation requires significant amounts of knowledge
to be provided: an ontology and possibly an initial case base. To create an
ontology for a domain may be lots of work. The same though counts for
creating an equivalent knowledge structure for frames for the same domain.
In addition, ontologies can be merged or partly reused, so the amount of
required work may be less than initially assumed.

The use of libraries as Pellet, Jena and Ontobridge are preconditions for this
conclusion to hold. Were we not to accept these dependencies, a lot more
effort would have to be put into this task.
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8.3 Decision-support for turbines in DL-Creek

By using this domain as our example domain, we have shown how a DL-
based Creek system can be done. The system shows promising results, and
it is our belief that Colibreek can, with more hours put into it, turn into a
practically useful and value-bringing system for such problems.

Some obstacles must be handled on the way, primarily execution speed. Our
system runs with data from a small set of sensors, while a turbine park in real
has a lot of such sensors. In order to handle real-time data, the system must
be able to run noticeably faster than it is able to do today. The problem
with scaling has though been around for CBR systems for a long time, and
much research and many techniques have been put into effort to overcome
the difficulties.

8.4 Achieving the goal

We have during this work constructed a proof-of-concept partial Creek imple-
mentation with description logics as its knowledge representation. This im-
plementation can form the basis for further research or for a more production-
oriented version. We have pointed out the directions for how both can be
done.

8.5 Conclusion

We have in this project worked to fulfill the goal and answer the research
question we listed in section 1.2:

Goal: Study how the core of the Creek system can be adapted to a descrip-
tion logics representation.

Research question 1: What would be the consequences of replacing frames
with description logics in Creek? Which consequences will this have, in terms
of benefits and limitations?

Research question 2: Can DL be implemented in Creek within a reason-
able scope?

Research question 3: How can decision-support for reported turbine fail-
ures be implemented within a DL-based Creek system?
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8.6. FURTHER WORK

We have in this report described the fields of knowledge required to under-
stand our field, and the systems and frameworks we have used. In particular,
we have described the Creek system. We have described how we have worked
and the results of it, and we have evaluated our work.

We have shown that Creek can be implemented with description logics in-
stead of frames, and that the consequences of this are manageable. Section
8.1 discusses the advantages and disadvantages of this switch.

We have provided a proof-of-concept realisation of Creek with DL. In this
realisation, central parts of Creek are implemented. We conclude from this
that yes, it is possible to implement DL in Creek within a reasonable scope.
We have used the turbine domain as our domain of choice during imple-
mentation and testing, and hence shown how the system can be used for
decision-support in this domain.

8.6 Further work

Our work has revealed several lines of potential further work.

More phases

We have described how Colibreek can handle the entire CBR cycle, but the
current implementation only handles the retrieve step. To extend Colibreek
to also do reuse, retain and possibly revise, would be a substantial improve-
ment.

Revise

We have proposed, in section 4.5, that revise can be included as a step in
Colibreek. Further elaboration on how this can be done is required, including
specifying how the activate-explain-focus-cycle would fit in. We propose a
skeleton of a way revise could be included into Creek, in a six-step algorithm:

1. Add the reused case (temporarily) to the case base

2. Run retrieve again

3. Assure that the correct case is retrieved when re-running. This can
possibly be done with a twist
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8.6. FURTHER WORK

4. Display the retrieved, reused case to the user

5. Let the user accept or decline the solution

6. If the solution is declined, it must be repaired

User interface

A thorough user interface could lift the usability of the system dramatically.
This counts for both the presentation of the results and the explanation.

Optimising

To be able to handler bigger amounts of data, work on speeding up the
system is needed.

A better algorithm for computing similarity between two cases in the activate
step could improve the system’s accuracy.

Indexing

The indexing of cases is in Colibreek done through a built-in mechanism
in Colibri studio. This differs from the Creek way of indexing[Aamodt,
1991][p.203], adapting Colibreek to use the Creek way of indexing cases is
important.

Types of problems

Colibreek is at present intended for diagnosis and problem solving. It would
be interesting to see the system directed at other goals - e.g. tutoring or
learning.

Transform existing Creek system to DL

Another aspect related to our work is whether an existing Creek system can
be ported to use DL within a reasonable scope, including transforming the
knowledge base and the cases. We believe that this would be possible, and
would like to see a conducted attempt of doing so.
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Finish up

Section 4.1 listed our priorities. We have realised most of them, but the
remaining ones are still to be implemented.

Relational database

It is worth experimenting with moving the ontology into a relational database.
This could very well speed up the application as well as simplifying the struc-
ture.

Improve Colibri studio

Particularly section 5.3.4, but also other sections in this report, pointed out
how the limitations in Colibri studio restricts us from implementing parts of
Creek. We have in this work made a conscious choice of not doing these im-
provements, but in order to make a more sustainable implementation, Colibri
should be improved. The Colibri studio framework should be improved by
allowing for the concrete improvements we have pointed out, but also with
tests and refactoring.

Replace Colibri studio

For situations where the dependency on and integration into Colibri studio
is not desirable, it might be suitable to use Jena and Pellet directly to still
have the DL handling. This would give extra work, for instance on replacing
connectors and the casebase handling, while on the other hand giving extra
flexibility.
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Pla, A., López, B., Gay, P., and Pous, C. (2013). eXiT* CBR. v2: Distributed
case-based reasoning tool for medical prognosis. Decision Support Systems,
54(3):1499–1510.

Popa, A. S., Popa, C. G., Malamma, M., and Hicks, J. (2008). Case-based
reasoning approach for well failure diagnostics and planning. In SPE
Western Regional and Pacific Section AAPG Joint Meeting. Society of
Petroleum Engineers.
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Appendix A

Licenses

This report is lisenced under a license as given on page II.

The code we have produced ourselves is licensed under a GNU Lesser General
Public License, version 3.0.

The details are available at http://opensource.org/licenses/LGPL-3.0.

Attached code libraries are licensed according to its respective developers.

The entire code base is available at https://bitbucket.org/madsop/colibreek-
public. At this page, you can also easily find an easy-runnable, non-setup
version of Colibreek.
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Appendix B

How to run

When the code is obtained from the resource given in appendix A, the code
can be run in two ways: either via the pre-made runnable jar-file, or by
importing the Java project into an IDE and running from there.

Bitbucket uses the version control system Mercurial, and the instructions for
retrieving the project to your computer is given at the Bitbucket page. This
can be done from within Eclipse using the plugin MercurialEclipse. All of
these tools are described briefly in section 2.3.5.

The easiest is however to download the runnable jar-file. All the source code
and config files1, as well as the required external code-libraries, are included
in this file. To run it, browse to the folder containing the file, and run it with
java -jar colibreek.jar.

The system is configured to choose domain based on the domain passed by
the user. If no parameter is given, it defaults to the travel recommender
domain. This means that if you want to run the system on the turbine
sensor domain, you write java -jar colibreek.jar TurbineSensor. However, as
the turbine sensor data are not included, this will not be a success.

1Except for the data files from ConocoPhillips, which we are not allowed to distribute
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