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Abstract

NoSQL databases often support scalability and high availability. We address
Voldemort, which is a popular, highly available NoSQL database that can be
run on several nodes. Voldemort can be cumbersome to setup and maintain.
As clusters grow in size, scaling into hundreds of nodes, management and
administrative tasks become increasingly complex. We have therefore focused
on automating management of a running cluster of nodes.

We have migrated the configuration storage of the Voldemort database
from local XML files on disk to global objects using Apache ZooKeeper.

Using native tools and ZooKeeper coordination, we have implemented a
fault tolerant, redundant management service. The service manages node
discovery, configuration generation and propagation. It also has components
for live monitoring and adjustment of responsibility to match each nodes
available system resources.





Sammendrag

NoSQL databaser skalerer ofte bra, og tilbyr samtidig høy tilgjengelighet. Vi
tar for oss Voldemort, en populær, høyt tilgjengelig NoSQL database som
kan kjøre p̊a flere noder. Voldemort kan derimot være tungvint å sette opp
og drifte. N̊ar clusteret vokser i størrelse, gjerne opp til hundrevis av noder,
kan administrasjon og drift fort bli veldig komplisert. Vi har derfor fokusert
p̊a automasjon av administrasjon og drift i en samling av noder som kjører
Voldemort.

Vi har flyttet konfigurasjon av Voldemort bort fra lokalt lagrede XML
filer og over til globalt tilgjengelige objekter ved hjelp av Apache ZooKeeper.

Vi har brukt ZooKeepers egenskaper for koordinasjon og andre verktøy
til å implementere en feiltolerant, redundant tjeneste for å ta h̊and om nye
noder, generere konfigurasjonsfiler, spre endringer og automatisk tilpasse det
kjørende systemet etter hver enkelte nodes tilgjengelige systemressurser.





Acknowledgements

We would like to than Svein Erik Bratsberg for his guidance and assistance in
the project. We would also like to thank LinkedIn for creating and publishing
their take on Dynamo and making it open source. A big thank you also goes
to Yahoo for publishing ZooKeeper. Without them this project would not
have been possible.





Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Voldemort and Dynamo . . . . . . . . . . . . . . . . . 2
1.1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 There and back again . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Energy efficiency of a Raspberry Pi cluster used for

searching . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Post mortem . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background theory and related work 7
2.1 Technical background . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Consistent hashing . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Durability . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Dealing with data conflicts . . . . . . . . . . . . . . . . 11
2.1.4 Membership . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Tunability . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.7 PAXOS . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Related software . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 SIGAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Netflix Priam for Cassandra . . . . . . . . . . . . . . . 24
2.3.2 Autoscaling Cassandra clusters . . . . . . . . . . . . . 25

3 Voldemort and ZooKeeper 27
3.1 Voldemort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Configuration data . . . . . . . . . . . . . . . . . . . . 27



CONTENTS

3.1.2 Rebalancing . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Apache ZooKeeper . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 What is ZooKeeper . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Clarification . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Znodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 ZooKeeper Guarantees . . . . . . . . . . . . . . . . . . 37
3.2.5 Watches . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . 38

4 Integrating Voldemort and ZooKeeper 41
4.1 Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 MetadataStore . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Handling the ZooKeeper connection . . . . . . . . . . . 44

4.2 Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Including rebalance functionality in Headmaster . . . . 45
4.2.2 Recursive triggered writes of meta data . . . . . . . . . 45

4.3 Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Headmaster . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 SigarAgent . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.3 StatusAnalyzer . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Experiments 51
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Benchmark tool . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Single-node benchmarking . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Response time distribution . . . . . . . . . . . . . . . . 53
5.2.2 Adaptive cluster . . . . . . . . . . . . . . . . . . . . . 54

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Response time distribution . . . . . . . . . . . . . . . . 56
5.3.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Adaptive cluster behavior . . . . . . . . . . . . . . . . 63

6 Evaluation 69
6.1 Results discussion . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Network limits . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2 Response time distribution and throughput . . . . . . . 69



CONTENTS

6.1.3 Scaling and balancing . . . . . . . . . . . . . . . . . . . 70
6.1.4 Cost of rebalance . . . . . . . . . . . . . . . . . . . . . 70
6.1.5 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.6 Other notes . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 System evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 General experiences . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Summary and conclusion 75
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Further work 77
8.1 Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Data rebalancing . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Ondemand computing . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Decision support system . . . . . . . . . . . . . . . . . . . . . 78
8.5 Running with backup nodes . . . . . . . . . . . . . . . . . . . 78
8.6 Real world testing . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.7 Management interface . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS



List of Figures

1.1 The Raspberry Pi cluster . . . . . . . . . . . . . . . . . . . . . 6

2.1 Hash ring with several nodes[9]. . . . . . . . . . . . . . . . . . 8

2.2 Hash ring with 3 nodes and 12 partitions from Voldemort[9]
with N=2. Partitions are a fixed number of splits of the
keyspace. Nodes are assigned a number of partitions which
they hold. When a request is routed, one first hashes the key
to find the partition the key belongs on. One then asks nodes
in the order of the preference list for the key. . . . . . . . . . . 10

2.3 Version history for an object[6]. . . . . . . . . . . . . . . . . . 12

2.4 Gossiping about group membership. A node discovers node2
is down, then relays this information to those in his neighbor
list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Structure of a merkle tree. Notice how the root node can be
used for comparing two trees, and how the tree can be used
for identifying divergent data. . . . . . . . . . . . . . . . . . . 17

2.6 A sample Cassandra column1. The row key acts as a primary
key and each key:value pair holds one field in a table. . . . . . 20

2.7 A sample Cassandra composite column. Here we have separate
composite column to efficiently be able to serve queries on
users by item and item by users. . . . . . . . . . . . . . . . . . 21

2.8 A sample Cassandra super column. Here we can see an outer
map containing a person and the inner maps consisting of
various composite columns . . . . . . . . . . . . . . . . . . . . 21

3.1 A sample namespace . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Individual node configs in the shared space. . . . . . . . . . . 43

4.2 Directory structure in ZooKeeper. The nodes or directories
are actually znodes and can hold data. . . . . . . . . . . . . . 44

4.3 System drawing of the management service Headmaster. . . . 46



LIST OF FIGURES

5.1 Response time distribution Core 2 Duo Mac mini . . . . . . . 56
5.2 Response time distribution i5 MacBook Pro . . . . . . . . . . 58
5.3 Response time distribution i7 MacBook Pro . . . . . . . . . . 59
5.4 Throughput and CPU-load under stress test on Mac Mini . . . 60
5.5 Throughput and CPU-load under stress test on i5 MacBook Pro 61
5.6 Throughput and CPU-load under stress test on i7 MacBook Pro 62
5.7 A baseline benchmark for a cluster of 2 nodes serving queries. 63
5.8 Manual moving of 2 partitions from a struggling node (Core 2).

Grey regions mark rebalance period, where data is prepared
and transferred. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 Automatic moving of 2 partitions from a struggling node (Core
2). Grey regions mark rebalance period, where data is pre-
pared and transferred. CPU threshold set at 0.84. . . . . . . . 65

5.10 Automatic migration of partitions in a struggling cluster after
a third node joins. A smoothed average is plotted on top of
throughput, but is excluded from the legend for spatial reasons. 66

5.11 In depth view of thoughput during a big rebalance operation.
The blue vertical line marks average throughput during the
rebalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.12 In depth view of thoughput during a rebalance with 15 million
entries and 32 partitions. The blue vertical line marks average
throughput during the rebalance. . . . . . . . . . . . . . . . . 68

6.1 Fatal bug causing data moved during a rebalance to be in-
accessable for close to the entire duration of the rebalance,
causing major drops in throughput. . . . . . . . . . . . . . . . 73



Chapter 1

Introduction

This thesis is split into 8 chapters. Chapter 1 introduces the project and our
goals and includes a brief summery of our pre-project as well as early work
with Voldemort. Chapter 2 covers technical background, related work on
the topic of automated management and an introduction to Hbase and Cas-
sandra - two distributed systems similar to Voldemort. Chapter 3 discusses
Voldemort and ZooKeeper in detail. In chapter 4 we present our implementa-
tion and we introduce Headmaster, our stand alone automated management
system. Chapter 5 present experiments we have run to test our implementa-
tion along with the corresponding results. Chapter 6 contains our evaluation
of the results as well as our system as a whole. Finally a summary and con-
clusion is located in chapter 7. Our thoughts for further work can be found
in chapter 8.

1.1 Introduction

This section expands upon the background for our project, what goals we
have and what methods we have employed to reach our goals. Our end goal
is a redundant, self balancing service for Voldemort that uses live data about
a nodes health to make management decisions. By balancing we refer to the
distribution of load among the nodes.

1.1.1 Background

Traditional relational database systems are generally very safe to use, usually
providing all of the ACID (Atomicity, Consistency, Isolation, Durability)
properties. This guarantees that all committed transactions are processed
reliably. Today a lot of services needs to support up to millions of users and
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serve thousands of requests per second. Experience has shown that databases
providing ACID guarantees have trouble scaling. To allow for cost effective
scaling, commodity hardware is used instead of expensive specialized servers.
To continue scaling by adding numerous small servers, applications need to
become increasingly distributed.

The main reason for ACID databases having troubles scaling is the strong
guarantees of atomic operations, isolation and consistency. To allow for
atomic operations in a distributed systems a distributed commit log would
be required. Similarly to guarantee isolation distributed locks would be re-
quired. In a system with thousands of concurrent users lock contention can
become a serious issue. Guaranteeing consistency across multiple machines
requires significant overhead with regards to keeping all replicas consistent,
and incurs a heavy cost on performance.

Distributed NoSQL databases often sacrifice consistency and isolation
requirements to achieve higher availability with satisfactory durability. These
systems often provide a highly available service and eventual consistency. The
databases are designed to scale linearly, however managing and scaling these
systems are not always trivial[7].

1.1.2 Voldemort and Dynamo

Voldemort is an open source distributed key-value database based off Ama-
zon’s paper on Dynamo, Amazon’s highly available key-value store. Volde-
mort was created by LinkedIn and the first public release was in 2009. It
is still under active development. Voldemort supports a simple set of oper-
ations limited to put, get and delete. Stored objects are uniquely identified
by a key and are considered by the system as binary blobs. Voldemort is
commonly used for storing lots of smaller objects, typically less than 1MB.
As with other NoSQL implementations, Voldemort sacrifices consistency and
isolation requirements to achieve higher availability with satisfactory dura-
bility. In fact, we will later see that most of this behavior is easily tunable
and left as design choices per implementation. In section 3.1 we will look
closer at the specifics of configuring Voldemort.

Compared with Apaches Cassandra, Voldemort lacks the power of column
families and multi-key lookup. This means that any application powered by
Voldemort requires additional logic to handle more advanced queries. For
simple read heavy workloads however Voldemort is quite fast, reportedly
serving over 20 000 read requests per second per node[6].

Voldemort is currently being used by a number of known companies.
At LinkedIn they use Voldemort both as read-only and read-write stores.
Services powered include LinkedIn Search, news and Who viewed your profile.
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At EBay they use Voldemort as a read-only store for distributed lookups, and
the dating site eHarmony uses Voldemort as a high volume read/write store.

1.1.3 Goals

Configuration of this distributed system is a complex and error prone task
for system administrators. To simplify this configuration process, we want to
move Voldemort’s configuration data into ZooKeeper for easier coordination.
In addition we would like to utilize the powerful features of ZooKeeper to
create an automated service for managing a running Voldemort cluster.

We divide our goals into general goals and implementation goals. The
general goals are as follows:

• Design a solution for simpler management and automatic scaling using
Voldemort and ZooKeeper.

• Test and evaluate the suggested solution.

Our implementation goals will act as a road map for our project. They
will be implemented in listed order:

1. Move Voldemort configuration data away from each local node and into
the global domain of ZooKeeper

2. Integrate the Voldemort rebalance process with ZooKeeper

3. Create a service for automatic management of the cluster, including
node discovery, membership and rebalancing with new members

4. Create a monitor service to monitor live nodes

5. Be able to act and make decisions about the cluster based on gathered
information

While management and monitoring can be both useful and convenient, it
does introduce overhead. This overhead should not have a significant impact
on system performance, with Rabl et al. suggesting as low as 1-2% impact
as tolerable[14].
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1.1.4 Method

We plan to rewrite the MetadataStore in Voldemort to utilize ZooKeeper
instead of local files. We will also create a separate service outside Voldemort
for node discovery, membership and automatic management. For the nodes,
we will create a status monitor service. The monitor service will act as
decision support system for the automated management service.
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1.2 There and back again

In this section we will try to shed some light on the preliminary work that
was done before we ended up on the path that lead to our project. It consists
of two parts. The first will be a summary of our pre-project and the second
on our early work with Voldemort. This section can be skipped for most
readers as it is not the most relevant for the thesis, but have been included
because it was how the project started.

1.2.1 Energy efficiency of a Raspberry Pi cluster used
for searching

Our pre-project was split into three parts. Building a cluster of Raspberry
Pis, building a search engine and then measure performance and power effi-
ciency of our cluster compared to a Core i5 Macbook Pro. During the build
we constructed our own power supply and built the frame holding the cluster
along with network equipment. The search engine was written in C to be
as fast as possible. We used an existing python program to create an index
over a corpus of text documents, and used tf-idf for scoring results. Through
our performance testing we found that even though the Pis require a lot less
energy to run, they are unable to keep up with modern hardware in a task
so bound by CPU. It is worth mentioning that our entire index fit into mem-
ory, so a more disk bound application could have seen very different results.
We however feel this is unlikely, due to the disk controller on the Pi being
very slow and USB based with no DMA, so it requires CPU cycles to do any
operation.

Early work with Raspberry Pis and Voldemort

In the early days of our project we were planning to use our Raspberry Pi
cluster to host a Voldemort service. However the limited memory of 512MB
quickly turned out to be a problem. The Pis could run Voldemort without
any problems until some of the background data exchange processes started
and killed the JVM. After some debugging we determined that memory was
a serious issue, and abandoned the idea of running Voldemort on our Pis.
They do not have enough RAM for any practical uses of the software.

To try out how much more powerful hardware you need to run a cluster
based on Voldemort, we decided to give virtual machines a try. We used
an older Mac mini (mid 2010) with a 2.4 Ghz Core 2 Duo processor and 8
GB of RAM, and created 4 virtual machines using VMware Fusion. They
were all setup to run Arch Linux with 1 GB memory allocated. Initial tests
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Figure 1.1: The Raspberry Pi cluster

quickly showed that these had no issues with running out of memory. After
querying the institute for a proper solution we were allowed access to 4 virtual
machines running on a server within the institute. These servers were running
on a Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz host, with each VM granted
1 GB RAM. The network to these machines were however clogged by several
100mbit links, so we could not get much performance from them, and decided
to work more locally.

1.2.2 Post mortem

In our pre-project we built a search engine and ran it on a cluster composed
of 8 Raspberry Pis. In this project we wanted to work with a more developed
distributed system and explore what possibilities existed for further work, but
the typical software packages were unable to run reliably on a small system
like the Pi. The main problem was the OS running out of memory.



Chapter 2

Background theory and related
work

2.1 Technical background

The software used in this project employ many different and important tech-
niques known from distributed computing, which will be discussed here. In
section 2.1.1 we will talk about the key aspect consistent hashing. We will
then discuss how consistent hashing techniques help us build available and
durable databases.

Section 2.1.5 discusses how failures are handled in the system. The tun-
ability of the database is introduced in section 2.1.6.

We lastly introduce PAXOS, a protocol for reaching consensus in a set of
independent nodes.

2.1.1 Consistent hashing

Consistent hashing is a technique introduced in 1997 by David Karger[12]
et al. The technique is used to solve problems with locating a key in a
distributed system. Assume you have n servers in the system, then number
these from 0 to n − 1. The hashspace of the keys are then divided into n
partitions. Then, to find which server to put a key on, do a

Hash(key) mod n

and you have the server number for the key.
However, with this scheme if a server fails and you now have n− 1 = m

servers, all the failed server’s data is gone. You have to invalidate all existing
servers, renumber your set of servers and start over. Analogously, if you add

7
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k servers to accommodate higher traffic, you now have

Hash(key) mod n + k

and it is easy to see that all or most keys will have to relocate.
Consistent hashing reduces this problem by assigning each node with a

number of points in the hash space. The hash space is viewed as a ring by
wrapping around 0000-FFFF. The nodes are placed at points along the ring
as in Figure 2.1. When a key is looked up, you find it’s place on the ring and
move clockwise to the first point with an assigned node. In Figure 2.1, key
K is routed to the next node on the ring, node B.

Now remember we let the nodes take on several points along the ring,
thus spreading a nodes responsible key space to smaller pieces along the ring.
I.e. nodes B, E and G in Figure 2.1 could be the same physical node.

Figure 2.1: Hash ring with several nodes[9].

This approach to locating keys has several advantages:

• Like before, we distribute operations on the set of available servers. By
having each server take numerous positions on the hash ring, we also
gain a more even distribution of the amount of key space among the
nodes, compared to giving them a single random or fixed position.

• Consistent hashing can also accommodate different types of servers by
allowing more powerful nodes to have more points assigned on the ring,
and vice versa.

• When adding a new server, a number of different areas around the
circle are affected, and not one contiguous piece. This means the work
of adding in the new node will be spread over the system, and not all
requests routed to a single node.
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• The spread of the key space also avoids rehashing of more than k/n
keys when adding a new node.

• When a node fails, you move along the ring to the next server. When
the nodes occupy several points on the ring, the extra work because of
a failing node will be distributed among all the nodes in the system.

Consistent hashing also conveniently allows for easy, tunable replication
of data to ensure durability, as used by key-value stores Dynamo[9] and
Voldemort[6]. Consider W the number of data replicas to create. Hash the
key, then move along the ring, writing key K to the W first nodes encountered
on the ring. This will also ensure backups to be available along the ring when
a node fails and requests gets passed along.

2.1.2 Durability

As explained in 2.1.1, both Voldemort and Dynamo use consistent hashing
to locate and store keys. They are both key-value stores only. The goals
for the Voldemort project is a database which is highly available and fault
tolerant, providing an always-on experience.

To safely store user data, redundancy is required. The typical approach
to this is synchronously storing replicas at different locations to ensure data
replication. In practice though, providing this kind of strong consistency
in a database system can prove detrimental to availability in some failure
scenarios. A common approach to failure is locking down data and making
it unavailable until the failure is resolved, so as not to serve potentially
stale or erroneous data. While it is convenient for the programmer to never
have to deal with possibly failed data, locking down doubtful data is not
ideal for performance. In distributed systems network and system failures
can be quite common, making guarantees of strong consistency very costly.
In practice, strong consistency can be considered incompatible with high
availability. This makes traditional replication methods unsuitable for highly
concurrent distributed systems.

To help provide higher availability of data, an optimistic approach to
replication is used. By allowing replicas to gradually propagate in the back-
ground and not synchronously, the workload on a distributed database sys-
tem is greatly relieved, allowing for higher throughput. By also allowing
conflicting data, we can continue to serve data in times of failure. This will
cause more work for the application developers, and they need to be aware
of this when using the database. Allowing conflicts also helps availability of
put operations, and allows us the possibility to always accept a write.
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Figure 2.2: Hash ring with 3 nodes and
12 partitions from Voldemort[9] with
N=2. Partitions are a fixed number
of splits of the keyspace. Nodes are
assigned a number of partitions which
they hold. When a request is routed,
one first hashes the key to find the par-
tition the key belongs on. One then
asks nodes in the order of the prefer-
ence list for the key.

It is easy to see how the consis-
tent hashing ring helps implement
this approach in Voldemort. To en-
sure data durability, one can simply
write the data to the next few nodes
on the ring. In Dynamo and Volde-
mort this is a tunable parameter, W,
which controls how many nodes a
write synchronously has to reach to
be successful. Internally it is called
required writes.

Similarly, it is easy to see how
we can implement optimistic repli-
cation: By allowing nodes to push
written objects in the background,
at a later time, to any number of
nodes further down the ring. This
number N, is called the replication
factor, and designates the number
of replicas we eventually want to be
present. I.e. we will have an eventu-
ally consistent form of replication.

You should also note that this replication has two benefits:

• As a data backup should the other node have a hard drive failure.

• As a functional backup. If the other node is off line, the replica can
take over the workload with all the data available.

In Voldemort, the hash ring is split into X equally sized parts, called
partitions. Each partition is assigned a unique ID and maps to a node.
The nodes create a preference list over the partitions, which says to which
partitions it should store the replicas.

Now let N = 2 with 12 partitions as in Figure 2.2. Let a key K’s hash
belong in partition 0. From the preference list, we see that this key should
be put in node0, and replicated to the node holding partition 1, which is
node1. Voldemort also does some sanity checking when replicating, such
that replicas are always replicated to N physical nodes. I.e. In our example,
if both partition 0 and 1 where held by node0, Voldemort would move along
the ring until it finds the next partition that is assigned to a different node
before storing the replica.
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2.1.3 Dealing with data conflicts

Introducing optimistic replication to increase availability of the system, even
in cases of nodes being unavailable for arbitrary reasons, has its price. In a
distributed system nodes can be unreachable for a number of different rea-
sons: Network splits, nodes dying, overloaded network points and concurrent
operations (remember no isolation or locking) may introduce conflicts in the
data set. These conflicts will arise and need to be discovered and resolved
at some point.

How to deal with conflict is an important decision. The question of when
to resolve them and who should have the responsibility of doing so all have
different properties. A traditional approach is to resolve conflicts when they
appear, i.e. on writes. This has the benefit of keeping read logic simple,
but we may have to reject a write if not all (or a majority of) replicas are
reachable. Resolving conflicts on write is also easy for the user to reason
with.

Voldemort however wishes to run an always writable store. No data write
should fail, even during periods of network splits and failing nodes. This
requirement makes it impossible to resolve conflicts on write, and forces us
to do conflict resolution on read.

This leaves the question of who should resolve the conflicts. We can either
let the database store do conflict resolution or leave it to the application.
If the store itself is going to resolve conflicts, it’s choices in doing so are
relatively limited. The store can not include domain knowledge for every
possible application, so it can only do simple choices like last write wins or
append the difference (which isn’t even resolved, and probably destructive to
the stored data). Recall that to the store most of the values are considered
binary blobs.

The application however has intricate knowledge of the data and is in a
much better position to make good decisions. Amazon[9] uses their shopping
cart as an example. If two writes are two different products added to a
shopping cart, we can record both of the writes even if they are divergent.
Then at read, the application can use both versions to create a new cart
with both products in it, i.e. merge the changes in a reasonable way, and
present them to the user. This requires a bit of work from the developer,
which they may not want or need to do, so there is also the option of doing
simple conflict resolution on the server.

To be able to record all changes (writes), Voldemort uses a versioning
system to record the history of all changes. The data are immutable blobs,
and each write creates a new version with a history of predecessors. To record
this version history, Voldemort employs vector clocks.
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Roughly vector clocks are implemented as a list of (node, counter) pairs
and this list is stored with every version of every stored object. By evaluating
the vector clocks between two versions (or more), we can decide if one is an
ancestor of the other or not. If A followed as a version of B, we can discard
B and use A because the changes for B are already included in A. If the
histories are divergent, we have a conflict and need to do some sort of merge
or resolution. More formally an object A is an ancestor of B if all the clocks
in A are less than or equal to the clocks in B. If so, we can safely discard A.

Figure 2.3: Version history for an object[6].

To use vector clocks in this manner safely, it is required that all update
operations (writes) specify which version we are updating, or we would not
be able to infer causality. This version information must first be obtained
through a read of the object, and then passed along with the write. If during
a read the database finds multiple divergent versions of the object, all of
the objects at the end of the divergent paths are returned. The application
then have to decide what to do, but typically a merged version has to be
written. This merged version would specify the union of the versions of its
predecessors as its version, creating a merged version.
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An example of an objects version history is given in Figure 2.3. The
different objects written are labeled DX and the vector clock associated with
the object is given in parenthesis. The distinct nodes are designated with S
followed by a character, for example Sx and Sy are two distinct nodes.

First a new object, D1 is written to the database. This write is handled
by node Sx, and it assigns D1 the vector clock ([Sx,1]). This is because it
is the first version for this key and node Sx managed the write. If another
object, D2, is written to the same key is managed by Sx, we increment the
counter for the Sx version. We then have the object D2 ([Sx,2]). Note that
this means if somewhere we found D1, we could discard D1 if we are also
holding D2 because of the versioning causality. D1 is the direct ancestor of
D2, and is obsolete. Next in Figure 2.3, we have two more objects written
to the key, but they are handled by different nodes. First a client reads D2,
then writes object D3. The write of D3 is handled by node Sy, with the
context from D2. We therefore get the object D3 ([Sx,2],[Sy,1]). We can
say D3 decends from D2.

Another client has also read D2 earlier. This client writes D4, which
coincidentally is also written with the context of D2. D4 ends up being
handled by Sz. D4 gets the vector clock ([Sx,2],[Sz,1]).

As we can see, D3 and D4 are now on diverging paths, as both are based
on D2. Now when a read happens, either D3 or D4 could be returned, but
ideally, and at some point, both D3 and D4 will be returned. The applica-
tion then needs to perform a merge, writing an object, D5, which includes
the histories of both D3 and D4. We see that this indeed occurs, with D5
([Sx,3],[Sy,1],[Sz,1]).

To elaborate, we can see that we will never have to return D2 if we are
following vector clocks. For both D3 and D4, the counter for Sx version for
D2 <= Sx for either D3 or D4. We can therefore discard D2 if we have either
D3 or D4.

Over time, we can see that the list with vector clocks can grow signif-
icantly. Normally only the nodes in the preference list would write new
versions of an object, which would be fine. But especially during network
partitions, writes can be handled by many different servers not in the pref-
erence list for the target partition. According to Giuseppe DeCandia et al.
(Dynamo)[9] they solve this with timestamps. A timestamp is stored with
the individual version counters. When the number of versions exceeds a num-
ber N, the oldest vector clock is deleted. While this could remove important
information and create issues in the database, Giuseppe DeCandia et al.[9]
mentions that this problem has never occurred in production.
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2.1.4 Membership

In a distributed system individual nodes sometimes need to know whichx
other nodes are available in the system. We call this group membership.
Whenever a node crashes we want its membership removed so that other
nodes are aware of the crash. This can be achieved in various ways.

• A central service where nodes register themselves and send keep alive
messages to verify that they are alive. When a new member is added
or removed the service can simply broadcast a message to all members
of the change. A drawback of this strategy is that we now have a single
point of failure, as well as a solution that does not scale very well.
As we expand and get more nodes in the system, the traffic into the
central controller will increase as well. ZooKeeper can be used as one
such central service, and we will look at how in the ZooKeeper section.

• The Gossip Protocol is a decentralized peer-to-peer solution to this
problem. Gossip is modeled after how information spreads in social
networks. By having nodes pair up with random partners at ran-
dom intervals to exchange information, we allow information to spread
throughout the network. Typically this is membership data, or infor-
mation about “who knows who” and what their status is.

For example if Alice discovers Charlie is down, when Bob calls Alice,
Alice will tell Bob that Charlie is down.

Gossiping thus allows the system to reach an eventual consistent state
without having any single broad casted message or a demand for a sin-
gle up to date catalog of the system state. To add a node to the group,
simply pair it with one existing member and let the gossip protocol
allow the news of the new node spread. Similarly if a node is unable
to pair up with its partner the partner is marked as unreachable and
this will be shared with future partners. This approach scales very
efficiently as we only have peer to peer communication, but it is not
without drawbacks. It is possible to create temporary logical partitions
that exists while the information is being spread. Dynamo uses an ex-
ternal system with seed nodes to counteract these logical partitions.

An example for adding a node with Gossip would be to tell, or seed a
couple of nodes in the network with information about the newcomer
manually. They will then gossip about this new node to their neighbors
and the information will gradually spread. In practice this kind of seed-
ing is useful because it really helps propagation go faster. Sometimes
these seeding nodes can also be designated as such, and have a larger
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role in the gossip. One might argue that introducing such hotspots
for information is against the pure peer to peer nature of the gossip
protocol, but Amazon regards it as necessary to speed up inclusion of
new nodes.

Figure 2.4: Gossiping about group membership. A node discovers node2 is
down, then relays this information to those in his neighbor list.

2.1.5 Failures

As we can see, these highly distributed systems are built to allow for failure.
We will here explore how Voldemort and Dynamo try to mitigate for failing
nodes while also keeping the operational requirements for consistency and
durability.

Hinted handoff

In practice, both nodes and network will fail. During such failures, we still
want to continue serving requests. To satisfy durability during failure, Volde-
mort perform a form of sloppy quorum. Instead of requiring all N members
of the quorum to fulfill a durable write, they use temporary hosts. By this,
we mean that in practice, the N nodes in the preference list a write eventually
has to reach, are the next N healthy nodes on the ring. When a node on the
preference list is down (marked as not healthy), the request is routed to the
next healthy node. This write however contains meta data that says who
was the intended target for this replica. The metadata is then used to push
the write back to the intended target once he becomes healthy again.

Looking at Figure 2.2, if a key K hashes to partition 0, the preference
list contains nodes N0 and N1 (recall N=2). If N1 is not responsive, it is not
healthy, and assume N2 is the next healthy node. This means that when N1
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is not responsive, N2 is placed on the preference list, because it is the next
healthy node. Now when N0 receives a write, it will push the replica (to
satisfy durability N=2) to N2 as long as N1 is down. N2 will however receive
a write with a hint that this object actually belongs to N1, so N2 puts it in
a special database to push it to N1 at a later time when N1 is healthy again.
When N2 successfully reaches N1 and delivers the write, this object is deleted
from N2. This process is called hinted handoff.

Using hinted handoff, we can still satisfy durability guarantees during
node failures.

More failures

Hinted handoff helps in environments with low churn and where nodes usually
come back online. But if a node holding a hinted replica goes down before
the intended node comes back up, it may even be permanently down and the
hinted object is never returned to the intended owner.

To mitigate such permanent failures, Dynamo[9] employs a method to
regularly ensure that datasets common between nodes are consistent. A
naive approach to this could be sending your entire key set to the other
node and compare the data directly. This is however very costly, both in
bandwidth used and is also CPU and disk intensive.

To minimize the impact on network load and node performance while
simultaneously doing replica synchronization, the database uses hashes of the
data. Here Voldemort and Dynamo have different approaches. In Voldemort,
each key’s hash is sent to the other node for comparison.

In Dynamo, Amazon have implemented merkle trees for comparing data
sets between nodes. This significantly reduces workload on a replica syn-
chronization. A merkle tree is a binary tree of hashes, see Figure 2.5, where
the leaf nodes are hashes of the key objects. Now make a hash of the two
children nodes. Then to make the parent node, assign the parent the hash
of the two hashes of the children until you have the root node.

Each node keeps a merkle tree for the keyspace that it shares with the
other node. The tree is updated whenever a write is commited. When a sync
happens between two nodes, they only need to compare the value of their
root node to know if they have any differences. One can also see how this
method makes it fast to discover which keys differ. Each comparison will
halve the search area. I.e. we have a binary search for the differing key or
even subtree.
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Figure 2.5: Structure of a merkle tree. Notice how the root node can be
used for comparing two trees, and how the tree can be used for identifying
divergent data.

2.1.6 Tunability

As we have briefly outlined above, the database system has three different
parameters that are key to operation. The system gives the administrator
the opportunity to fine tune certain trade-offs to implementation needs.

Internally, these are called N, R, W and controls certain aspects of the
quorum that is involved in data operations. N is the eventual replication
factor. This is the number of nodes we want to store replicas for a key on,
and is allowed to happen asynchronously.

W is the write factor. This is the number of nodes that synchronously
has to be part when we accept a write, and heavily affects performance.
Typically W is set to two, to make sure an object put must have two replicas
in the quorum to be considered successful.

Another interesting application is the highly writable property store we
get with W=1. This means we would never reject a write as long as there is at
least one node that can process a request. This will however jeopardize the
durability of the data between returning the write and moving the object
to other replicas. This setup also has a tendency to introduce a lot more
inconsistencies in the data[9].

The parameter R controls how many nodes must be involved in a read
for it to be successful. Setting R low (R=1) would give a high performance
read engine. With R=1 though, we might end up with many inconsistencies
in the data. It is the read quorum that must decide what data to return.
During a read multiple versions of an object might occur. The quorum must
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then reconcile their versions and return the latest, or return the conflicting
ones. Because of this, discovering conflicts might be slower when only one
node is involved in a read. We are in other words relying on only this single
node’s world view of the data in a optimistically consistent environment.

Knowing this, when executing a write, the first node to receive the put
takes on the role as a coordinator for the write. The coordinator generates
the new vector clock and writes a local copy. The coordinator then forwards
the request to the top N healthy nodes in the preference list. Nodes that
are not healthy are skipped. If W-1 of the healthy nodes report a successful
write, the coordinator can return a successful request.

Reads are handled similarly. The first node receiving the request take on
the role as coordinator. The coordinator sends the request to his top N other
healthy nodes for the key. After R replies, the coordinator returns the latest
version this quorum can agree upon. If there are any divergently versioned
objects, all of them are returned to the client for reconciliation.

Amazon[9] mention that their most used configuration for Dynamo is a
N=3, W=2, R=2 setup.

2.1.7 PAXOS

Whenever you have a distributed system where errors occur and messages
get lost, even simple tasks like deciding on a value can become troublesome.
PAXOS is a consensus algorithm made to solve this issue.

Say we have a set of processes that all can propose values. (The value
could be related to leader election). Paxos ensures that a single one of these
values is chosen and that all processes involved is notified of this value. If no
value is being proposed, then no value should be chosen.

In Paxos a process can act in three different roles: proposer, acceptor
and learner. A process is not limited to one role at the time. Processes
communicate with one another by messages. These messages follow the non-
Byzantine model and can take arbitrary long time to be delivered, or they
can be lost entirely. They can also be duplicated, however they can not be
corrupted. A process acting in a role might also crash, but we assume some
critical information will remain through a restart.

When acting as a proposer, a process will propose a value to a majority
subset of acceptors. These acceptors will then accept or deny the proposal
according to some rules. Finally if a value is chosen, then all the learners will
be informed of this value. The process of choosing a value is given below:

1. A proposer sends a prepare for proposal message to a majority set of
acceptors with a number n. This number acts as a timestamp, and
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represents the last(newest) message this proposer has seen.

2. Each acceptor receiving this prepare for proposal message will compare
the proposed number n with their own highest observed n. If the pro-
posed number is higher, then a promise of not accepting any proposal
lower than n will be sent back to the proposer along with the accep-
tors highest observed value. If the proposers number is lower than the
acceptors observed number, then the value is sent back along with the
highest observed n.

3. If the proposer receives a promise from a majority of acceptors, it will
send an accept message to the acceptors with the number n along with
the value v, which is the maximum values received from the acceptors.
If the number of promises is less than the majority of acceptors then
the attempt has failed, and the proposer must start again with a higher
number n.

4. When a acceptor receives an accept message, this acceptor will accept
this proposal as long as there has not been issued a new proposal with
a higher number in the meantime.

5. Finally, when an acceptor has accepted a proposal it informs all learn-
ers. Either by sending a message to all learners, or by sending a message
to a designated learner, which in time will inform all other learners.
This second step reduces message load but is less reliable.

It is possible to construct a scenario where two proposers keep out propos-
ing each other and no progress is ever made. To combat this a distinguished
proposer must be elected.

Paxos can typically be used in distributed systems to coordinate pro-
cesses. One example is leader election, another is deciding on the next action
to be taken.
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2.2 Related software

In this section we will cover Cassandra and HBase. Two other distributed
systems with similar applications and techniques as Voldemort. Lastly we
will introduce SIGAR, a cross platform library for monitoring of system in-
formation that we used.

2.2.1 Cassandra

Cassandra is a scalable NoSQL database now available as open source through
the Apache foundation. It was built from scratch with goal of being a mas-
sively scalable NoSQL database. In a cluster running Cassandra there is
no sense of a master node, and all communication between nodes use peer
to peer and the gossip protocol. As an administrator it is possible to scale
Cassandra to meet both current and future system requirements.

Reads and writes

In Cassandra all participating nodes can be accessed for writes and reads.
To ensure durability all writes are preceded by a write to a commit log. If
a node has crashed, a node holding a replica will service reads and writes
according to the hinted handoff strategy. As with Voldemort, Cassandra also
features tunable consistency.

Figure 2.6: A sample Cassandra column2. The row key acts as a primary
key and each key:value pair holds one field in a table.

Data model

The Cassandra data model is based on a key:value model, however Cassandra
extends this model with up to two levels of nesting. This forms a map struc-
ture called columns where the outer row key acts as a primary key and the in-
ner sorted map holds all information: Map<RowKey, SortedMap<ColumnKey,
ColumnValue>>. By using maps we achieve easy lookups and range scans.

2Images taken from www.ebaytechblog.com
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Figure 2.7: A sample Cassandra composite column. Here we have separate
composite column to efficiently be able to serve queries on users by item and
item by users.

Figure 2.8: A sample Cassandra super column. Here we can see an outer
map containing a person and the inner maps consisting of various composite
columns

By adding one more level of nesting we can group columns. These are called
super columns. In Cassandra de-normalization in important to efficiently
perform queries that accesses information stored in separate columns. To
allow for faster loopups composite columns can be created to match the need
of one or more specific queries. These composite columns simply duplicate
information already stored in various columns for more efficient access.

Cassandra is used by several well known companies. Netflix uses Cas-
sandra for several applications, including its subscriber system and viewer
history service. Facebook used Cassandra to power their inbox search, how-
ever this was abandoned in late 2010 in favor of HBase. Spotify also moved
to Cassandra after migrating away from postgreSQL because of scaling is-
sues. They use Cassandra to store playlists, radio stations and notification
notifications.
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2.2.2 HBase

HBase is based on Google’s paper on BigTable. It is a sparse, distributed,
persistent multi-dimensional sorted map.

With regards to the CAP-theorem (Consistency, Availability, Partition-
ing), HBase provides consistency and tolerance to partitioning, making HBase
fault tolerant and easy to reason with in practice.

Important to note is that HBase provides a sparse multi-dimensional
sorted map. Keys in the table are sorted, such that similar items are close
to another when scanning a table.

E.g. when storing data about URLs, the keys are written in reverse:
com.google.www/users. This scheme keeps URLs from the same domain
and subdomain close to each other in the sorted map.

The rows or entries are typically sparse, meaning that most of the columns,
in the table are empty.

To visualize a HBase record, it can help to think of a map of maps:

{
"com.google.www/account": {

"family": {
"special": "value"

},
"anchor": {

"com.cnn.www": "value"
}

}
"com.google.www/users": {

"family": {
"": "value"

},
"anchor": {

"no.nrk.www": "value"
}

}
}

Listing 2.1: A JSON approach to visualize how rows in HBase are structured.
Idea courtesy of Jim R. Wilson[5].

The families for a record is static for the table at creation, but every
family can hold any number of columns within, even many or none. This is
where the sparse property comes from, as most entries will not have a value
for the set of all sub-families in the table, leaving most column values empty.

Every row or entry also has an associated timestamp, used for versioning.
This is typically a monotonically increasing number, such as seconds since
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epoch. HBase stores a given number of versions of an entry, and can be
queried for these. These different versions are stored in descending order,
such that the highest number entry, i.e. the newest, is the first entry.

This gives a possible query structure as such <key, family:column,
timestamp>. Timestamp is optional. If no timestamp is given, the newest
entry is returned. If the query has a timestamp, the record with version equal
to or less than the given timestamp is returned. If there is no such record,
null is returned.

I.e. if we have a query <no.nrk.www, referrals:no.nrkbeta.www, 999>,
and we have records in the database:

<no . nrk .www, r e f e r r a l s : no . nrkbeta .www, 1001>
<no . nrk .www, r e f e r r a l s : no . nrkbeta .www, 777>

<no.nrk.www, referrals:no.nrkbeta.www, 777> will be returned.

2.2.3 SIGAR

SIGAR (System Information Gatherer and Reporter)[15] is a cross-platform
library and API for monitoring and gathering of system data. It is mainly
written with java bindings in mind, providing a cross platform library that
can be distributed as a single package. SIGAR also has bindings to many
other popular languages, as the core is implemented in C, and accessed over
Java JNI.

SIGAR provides a variety of features and information, translating it into
operating system provided information where available. It can provide infor-
mation about CPU, processes, memory, state, arguments, network interfaces,
network routes and various system loads.

We use SIGAR as the low-level backend for collecting information on
individual nodes.
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2.3 Related work

In this section we will overview and discuss some related work to automatic
scaling of distributed systems. Some are fully automatic, while others re-
quires human intervention to execute.

2.3.1 Netflix Priam for Cassandra

Priam is a tool made open source by Netflix in 2012. It is a management
tool that seeks to provide backup and recovery, automatic token assignment,
a centralized system for configuration, and a RESTful interface for man-
agement and monitoring of Cassandra nodes. It is heavily integrated with
the Amazon EC2 ecosystem (AWS), where Netflix keeps its clusters. Priam
runs on every node that runs Cassandra, providing a novel interface to these
services.

Backups use Cassandras built in snapshot tool to store SSTable snapshots
in a (data center) local Amazon S3 bucket, which conveniently can be ac-
cessed everywhere. This SSTable backup is done daily. Incremental backups
are then stored locally. Recall that SSTables are immutable, and it is easy
to see this allows for efficient backup routines. Cassandra can also use these
SSTables as a base when recovering a node, then use Cassandras internal
mechanisms for conflict resolution to bring the new node fully up to speed.
Netflix calls this an eventually consistent backup.

For scaling, Priam only allows doubling the size of the cluster. Priam
does this by coupling existing nodes with a new node, then splitting the
keyspace between them. This split of the keyspace for each node ensures a
balanced ring when scaling up, so we don’t end up with a imbalanced cluster
that requires costly redistribution.

Priams token assignment (position in ring) can also be made aware of
zones when distributing tokens. This is to ensure that there is at least one
replica in each Amazon data center zone. In case of a network split, or
connection issues in a data center, some replica will still be online at another
one.

In summary, Priam has two very clear limitations with regards to scaling
a cluster: the tool currently only runs on AWS (Amazon Web Services) and
can only double the size of the cluster. Priam also makes sure to keep a
cluster balanced when scaling.
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2.3.2 Autoscaling Cassandra clusters

Baakind[2] created a system, called Hecuba, for automatic expansion of Cas-
sandra clusters.

The goal of the project is an automatic scaler for Cassandra. The scaler
should be able to increase or decrease the cluster size, based on resource usage
in each node of the cluster. The scaler should not affect the performance of
Cassandra. This includes the overall operational capacity for the cluster, as
well as only executing scaling when the cluster can handle it, i.e. during
times of lower load. The latter has not been implemented yet.

Hecuba includes a master service, which collects information from all the
nodes in the cluster, and tries to keep a view of the current status. The
Cassandra nodes periodically sends status reports to the master, e.g. one
every second. The status report includes size of database, CPU load and
memory usage. The master is configured with certain parameters for what
loads are allowed, such as maximum memory and CPU load over a given
period of time.

Like Netflix’ Priam, Hecuba does scaling if a threshold is broken for a
given period of time. Let’s assume a CPU load of 60%, threshold 55%, and a
period of 10 seconds. Hecuba will then only scale if the CPU load is reported
as greater than threshold for at least 10 seconds in a row.

This setup leads Hecuba to heavily stressed nodes in the cluster, ie.
Hecuba tries to identify hotspots to rebalance. In Cassandra, each node
is responsible for a given token range (based on the hash of the key). If a
node is under heavy load, Hecuba can split the nodes token range in half,
assigning one half to the new node and keeping the other half. This split will
hopefully halve the workload on the node.

A problem with this approach is that the data might end up being un-
evenly distributed. If we start with 4 partitions of the key range and 4 nodes.
Assigning each node an equal part of the keyspace, we would ideally end up
with 25% of the data on each node. Now if we split node 4, we might
end up with 25% of the data on nodes 1-3, and 12.5% on node 4 and 5,
creating an unbalanced cluster. This imbalance might eventually require a
total rebalance, a very costly redistribution of the key space at a later stage.
Hecuba scales the cluster by adding or deleting nodes one at time, so this
fragmentation could quickly become a problem if not administered carefully.

Summarizing, the Autoscale system Hecuba scales a Cassandra cluster
by identifying individual nodes that are under heavy load. This is done by
having each node report their health to a given master. The master can then
take action by splitting the token range for the node by adding a new node.
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Chapter 3

Voldemort and ZooKeeper

In this chapter we will go into more detail with Voldemort and ZooKeeper.
We will present Voldemorts various configuration data and have a closer look
at the rebalance operation. With ZooKeeper we will explain key features as
well as some common ways to use them.

3.1 Voldemort

In this section we will explore the essential configuration data used to man-
age Voldemort. We divide these configuration files into two groups: global
and local files. Global files are identical files hosted by each individual node
in a cluster, but they also need to be consistent between all nodes. These
files contains persistent cluster metadata. As the number of nodes increase,
managing these files can become cumbersome. Local files typically contain
per-node specific persistent configuration data like hostname, ID and perfor-
mance metrics.

3.1.1 Configuration data

Each node has at any point a full view of all the other nodes in the cluster and
what partitions they hold. This is necessary to always directly route a key to
the correct node. To provide this information, Voldemort distributes a XML
file that describes the cluster, containing all hosts and partition information.
This information is and needs to be consistent across all nodes. Note that the
partitioning is strictly speaking decoupled from the storage, leaving (N,R,W)
as a per storage setting.

Another feature of Voldemort is client side routing. Clients usually do
routing of requests themselves, using the information of the cluster topol-
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ogy to find correct node for a key. A client fetches the cluster config when
connecting, then uses this information for routing. When the client starts
receiving errors of wrong routing from one or several nodes, it rereads the
config to receive the updated information.

In our running cluster we use the following global configuration files:

• cluster.xml contains persistent information on all nodes involved in
a cluster. All nodes must have an entry in this file before they can
join the cluster. The fields in the file is relatively self explanatory. In
addition to listing communication ports, each entry must have a unique
ID and hostname. The partition field tells each node which parts of
the keyspace a node is responsible for. In Voldemort each partition
can be moved between nodes, however the total number of partitions
is not changeable after the cluster is running. In the example below
the reader can verify that we have 16 partitions spread across 3 nodes.
It is also possible to assign nodes into zones. Zones are typically used
when operating in multiple data centers limiting traffic between them.

<cluster >
<name >ntnucluster </name >
<server >

<id >0</id>
<host >voldemort1.idi.ntnu.no </host >
<http -port >8081 </http -port >
<socket -port >6666 </ socket -port >
<admin -port >6667 </admin -port >
<rest -port >8085 </rest -port >
<partitions >4, 3, 8, 0, 13, 11</partitions >

</server >
<server >

<id >1</id>
<host >voldemort2.idi.ntnu.no </host >
<http -port >8081 </http -port >
<socket -port >6666 </ socket -port >
<admin -port >6667 </admin -port >
<rest -port >8085 </rest -port >
<partitions >7, 1, 6, 15, 9</partitions >

</server >
<server >

<id >2</id>
<host >voldemort3.idi.ntnu.no </host >
<http -port >8081 </http -port >
<socket -port >6666 </ socket -port >
<admin -port >6667 </admin -port >
<rest -port >8085 </rest -port >
<partitions >12, 2, 10, 14, 5</partitions >

</server >
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</cluster >

Listing 3.1: Sample cluster.xml

• stores.xml contains persistent metadata on all stores operated by a
cluster. One cluster running Voldemort can have several pluggable
stores, served by different backends. These backends can even poten-
tially be other databases, like a mysql or BDB database. As with
cluster.xml, each node must have it’s own copy of this file. The pa-
rameters in this file control each store’s behavior.

The persistence field defines what kind of backend storage is used.
Voldemort supports BDB, mySQL, memory, read-only, and cache. Cache
and memory are both implementations that reside only in memory, the
difference being how they react when out of storage space. It is possible
to have multiple stores using different backend technology.

Routing-strategy defines how replicas are stored in the cluster. Volde-
mort offers three alternative strategies: consistent routing, zone rout-
ing and all-routing. When using consistent routing all requests will be
routed to the first N nodes from the keys location in the consistent
hashing ring. Here N is the replication factor. Zone routing sits on
top of consistent routing and ensures that each request goes to zone-
local replicas. This is used to limit traffic across data centers. It also
allows for zone aware replication where we want replicas in different
data centers. Finally All-routing simply routes the request to all nodes
specified by the call.

As with routing, we also have 3 alternatives for hinted handoff strat-
egy: any-handoff, consistent handoff and proximity handoff. When
using any-handoff, a random live node in the cluster is selected for the
request. With consistent hand-off enabled, one of the N nodes on the
hash ring after the failed node will handle the request. Finally with
proximity handoff requests will be routed according to the zone prox-
imity of the clients zone id. This is especially useful if an entire data
center is offline.

We can also finely tune each individual store with regards to availabil-
ity, consistency and durability. Replication factor specifies how many
duplicates we want for each entry in the database. Required read and
writes specifies how many nodes must respond to a request before it is
considered successful. These three parameters greatly influences per-
formance.
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Finally it is possible to specify the format on keys and values. Sup-
ported key formats are: json, java-serialization, string, protobuff, thrift
and identity. Values can have the same formats and can be compressed
with gzip or lzf.

<stores >
<store >

<name >test </name >
<persistence >bdb </ persistence >
<description >Test store </ description >
<owners >harryhogwarts.edu,

hermoinehogwarts.edu </owners >
<routing -strategy >consistent -routing </routing -

strategy >
<routing >client </routing >
<hinted -handoff -strategy >consistent -handoff </hinted -

handoff -strategy >
<replication -factor >2</ replication -factor >
<required -reads >1</required -reads >
<required -writes >1</required -writes >
<key -serializer >

<type >string </type >
</key -serializer >
<value -serializer >

<type >string </type >
</value -serializer >

</store >
</stores >

Listing 3.2: Sample stores.xml

• server.properties is used to configure individual nodes in a cluster.
The node ID must map to an entry in cluster.xml for it to be valid.
Using the maximum threads field one can tune the application running
to the hardware of the individual node. This config file also contains
store related login infomation used to access those.

node.id=0
max.threads =100

############### DB options ######################
http.enable=true
socket.enable=true

# BDB
bdb.write.transactions=false
bdb.flush.transactions=false
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bdb.cache.size=2G
bdb.one.env.per.store=true

# Mysql
mysql.host=localhost
mysql.port =1521
mysql.user=root
mysql.password =3306
mysql.database=test

#NIO connector settings.
enable.nio.connector=true
request.format=vp3
storage.configs=voldemort.store.bdb.BdbStorageConfiguration ,
voldemort.store.readonly
ReadOnlyStorageConfiguration

Listing 3.3: Sample server.properties

• We also have several local configuration files used during a rebalance op-
eration. rebalancing.steal.info.key contains information on which
partitions the node will need to fetch from other nodes in the sys-
tem. The rebalance process also stores the existing cluster.xml and
stores.xml before starting the rebalance operation in case of a roll
back. Finally there is a server.state file that is used to persistently
store rebalance state in case of a failure. It is either NORMAL SERVER or
REBALANCING MASTER SERVER.

3.1.2 Rebalancing

In this section we will discuss how rebalancing is done in Voldemort. A
rebalance operation involves repartitioning and moving data between nodes.
There can be several reasons for rebalancing a cluster including adding nodes
(cluster expansion), adding nodes to zones(zone expansion) and load balanc-
ing by shuffling partitions around. We would also like to be able to shrink
the cluster (cluster contraction), however this is not yet supported by Volde-
mort. During a rebalance Voldemort suffers no down time and clients should
not experience any noticeable performance drops. In addition there should
be no loss or corruption of data if anything goes wrong and the rebalance is
aborted. A rebalance is split into three steps which we will explain below.
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Terminology

Before we can go into details about the rebalance process we need to define
a few terms:

• Stealer-node: When rebalancing this node will steal a partition from
another node and copy its data.

• Donor-node: When rebalancing this node will act as a donor and send
data to one or more stealer nodes.

• Donor-stealer pair: During a rebalance donors and stealers form pairs
and copy data while proxying requests.

• Task: A list of all patition-stores that must be cloned from the donor
node.

• Zone n-ary: Closely tied to how many replicas there is of each data
item. If we have a replication factor of 3 then the original entry is the
Zone 0-ary, the first duplicate the zone 1-ary and the last one zone 2-
ary. This information is used when deciding stealer-donor relationships
during a rebalance.

• Proxy-bridge: When moving partitions during a rebalance, stealer-
nodes are responsible for data they do not yet hold. To solve this,
proxy bridges are put up between donor and stealer nodes so any re-
quest can be forwarded to a node holding the data.

Preparation

Before a rebalance can start, we need a plan. This plan contains which
partitions to move to which nodes. When choosing where to move partitions,
Voldemort has a set of design principles to assist in deciding where each node
should copy its data from during a rebalance:

1. Only steal if you do not already host the required partitions

2. Try to steal from a node in the same zone, if this is not possible, steal
from a donor in the same zone as the primary partition.

3. When you have to steal, steal from the same zone n-ary.
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Following these principles the plan generated will limit data movement
across zones in addition to aligning proxy-bridges with stealer-donor pairs.
The output of such a planning operation is a file called final cluster.xml.
This is a modified version of the cluster.xml and contains the newly pro-
posed cluster setup. Planning is done by running one of the rebalance scripts
provided with Voldemort.

./bin/rebalance -cluster -expansion.sh -c current_cluster -s
current_stores -i interim_cluster -o output dir

Listing 3.4: Sample command to plan a cluster expansion. Outputs a
final cluster.xml as well as a plan

Execution

The first issue that needs to be handled when rebalancing is dealing with
already connected clients. When a client connects it requests cluster meta-
data from Voldemort. The client uses this metadata for routing all future
requests. When rebalancing, this metadata is no longer valid and clients
must be informed. Voldemort has two ways of dealing with this issue. Either
the client can check metadata version on each request or nodes can alert the
client if they receive a request for a key they do not have responsibility for.
This alert is implemented by throwing an InvalidMetadataException. In the
latter case clients only refresh their metadata after requesting a partition
that has moved.

Voldemort offers a proxy-pause option while rebalancing which is a win-
dow of time where the updated cluster metadata is propagated, and proxy-
bridges are set up. This allows connected clients to request the new metadata
before any actual rebalancing is done. The rebalance is executed using the
supplied administrator tool.

The steps involved in executing a rebalance are the following:

1. Upload interim metadata: To allow for a new node to join the clus-
ter it must have an entry in cluster.xml. This is done by replacing
cluster.xml with a modified interim cluster.xml. In this file an
entry for the new node has been added. This node will not yet be
responsible for any partitions.

2. Gather verification data: To later be able to verify that the rebalance
was successful it is possible to extract some verification data for com-
parison before running the rebalance.
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3. Stop asynchronous tasks: These tasks could cause the rebalance to
abort.

4. Execute rebalance: Run the appropriate rebalance script.

./bin/run -class.sh voldemort.tools.RebalanceControllerCLI --url
\$URL --final -cluster final -cluster.xml --parallelism 8 --
proxy -pause 900

Listing 3.5: Sample command to execute the rebalance. Parallelism defines
how many tasks can be run at the same time.

Servers will be notified of the rebalance by the client sending the new
cluster.xml files and changing their state to REBALANCING MASTER SERVER.
Servers will now start proxying requests according to the new partition setup.
During the proxy-pause interval, nodes will pair up in donor-stealer pairs
based on tasks and start proxying requests as needed. After the proxy-pause
has ended, donors will start to send data to the stealers. Once all task has
been completed proxy-bridges are torn down, server state changes back to
NORMAL SERVER, and the cluster returns to normal operation.

Verification

After a rebalance is completed, it can be useful to verify that the rebalance
was a success. There is also a repair job that should be run after the rebalance
to delete any orphaned keys. Recall that the entries shared by a donor node
are now orphans, and can be cleaned up by deleting them.

./bin/run -class.sh voldemort.utils.KeySamplerCLI --url
$BOOTSTRAP_URL --out -dir key -samples --records -per -partition
5

./bin/run -class.sh voldemort.utils.KeyVersionFetcherCLI --url
$URL --in-dir key -samples --out -dir key -version -fetches

Listing 3.6: Commands for pulling a key sample from a store and the
versioned data objects stored under the keys. These are used to verify that
the rebalance did not corrupt data

./bin/voldemort -admin -tool.sh --repair -job --node ’-1’ --url \
$URL

Listing 3.7: Sample repair job script. Passing -1 as node will run the script
on all nodes.
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Recovery from failure

A benefit of having a strict key-value store, is that there are no advanced
features to consider when moving data. No invariants that must be kept
or avoided, no joins, foreign keys, searches or other indexes (except for the
primary, the key) that complicates moving and partitioning of data. Think
of Voldemort as a giant, distributed and persistent hash map. This simplifies
the process for performing rebalancing, i.e. scaling a lot. We can simply copy
the partition, with some precautions to ensure durability and integrity.

When scaling, we give a list of (node, partition) → node pairs. The left
side is the FROM node and right side TO, the destination node. A list of
such pairs is called a rebalance plan, a set of transfers that are to be executed
during the rebalance. The first part of a secure transfer, is the setup of proxy
bridges. This starts the routing of request to the new layout. ie. if we are
moving (node0, 3) → node1, all requests that are going to partition 3, are
now routed to the new node, node1.

After allowing proxy settings to propagate for an interval, the receiving
node, the stealer, initiates a request to transfer the target partition from the
donor. Now to allow for a safe transfer, all PUTs to node1 are also sent
(proxyed) back to node0. This ensures no writes are lost in case of an abort
or other failure. All GETs are first looked up locally in case they already
have been transferred. If not, the key is fetched explicitly from the donor
and returned. In case of failures, we abort the plan and set the routing back
to the old configuration.

It is easy to see that this set of rules allows a partition move to be canceled
or crash at any time without incurring data loss.
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3.2 Apache ZooKeeper

We have relied heavily on ZooKeeper in order to store our Voldemort con-
figuration data as well as handling coordination in our management system.
In this section we will explain what ZooKeeper is along with how it works.
Finally we will present which techniques we have used along with how we
used them.

3.2.1 What is ZooKeeper

From Apache ZooKeepers own website[1] they explain ZooKeeper as:

ZooKeeper is a centralized service for maintaining configuration
information, naming, providing distributed synchronization, and
providing group services. All of these kinds of services are used
in some form or another by distributed applications.

ZooKeeper was designed without specific primitives (i.e. locks and leader
election). The reason being that they didn’t want to tie down the developer,
and instead expose a simple jet powerful API. This allows developers to create
their own primitives based on their application specific needs. This means
ZooKeeper can be adapted to suit the requirements of different applications.

3.2.2 Clarification

A write or put in the context of ZooKeeper is considered a ZooKeeper
setData operation.

A ZooKeeper event, is an event triggered by a watch set in ZooKeeper,
giving push information to a client about a change in a ZooKeeper znode.

In the context of ZooKeeper, the word file might be used for a znode.
File used in the context of a local filesystem is a local file.

3.2.3 Znodes

ZooKeeper behaves almost like a file system with one key difference. Instead
of files and directories - we have znodes. All znodes can contain information
in the form of bytes. One znodes can have children which again can have
more children. Together they form an hierarchical structure, addressable like
a unix filesystem path.

Znodes also include version numbers for data changes, ACL changes and
timestamps to allow cache validations as well as coordinate updates. When-
ever a znodes data is changed, it’s version number increases.
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Figure 3.1: A sample namespace

These znodes can have different flags set which control their behavior.
These are persistent, ephemeral and sequential. Persistent is rather self ex-
planatory. When this flag is set during a PUT operation, the data will remain
in ZooKeeper even though the client disconnects. Ephemeral is the opposite.
Data placed in ZooKeeper with this flag will be deleted when the client ends
its session. If sequential is set, each child of the znode will have a monotonic
increasing sequence number appended to its path. This number is relative
to the parent znode, so children znodes can have equal or different names.
Ephemeral and sequential are powerful features which enable us to utilize
ZooKeeper for leader election, coordination as well as locks.

3.2.4 ZooKeeper Guarantees

ZooKeeper provides two basic ordering guarantees:

• Asynchronous linearizable writes

• FIFO client order

Since we have asynchronous writes a client can have several outstanding
operations, but ZooKeeper guarantees that they will be executed in FIFO
order. ZooKeeper also provides clients with the option to listen for changes
on a znode. ZooKeeper guarantees that a client will receive a changeEvent
before seeing the new state of the system following the change.

3.2.5 Watches

As mentioned above, a client can request a watch on a znode in ZooKeeper.
This watch will give the client a changeEvent the next time this znode is
modified. This could be changes in number of children, changes in the data
or that the znode has been deleted. These watches can also be put on non
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existing znodes which gives the client a changeEvent when the znode is reg-
istered in ZooKeeper. It is however important to note that a watch will only
trigger once, and it is not possible to request infinite watches. So it is up to
each individual client to request a new watch after receiving a changeEvent.

Because of ZooKeepers linearizable guarantees a read following one of
these watchEvents will always return the new state of the system. In the
event of several changes in quick succession it is possible for a client to not
be notified of each individual change. It will however always be able to
determine the final state of the system after all the changes.

3.2.6 Implementation

As mentioned ZooKeeper can be used for more than just storing configuration
data. In this section we will explain some different ways to use ZooKeeper.

Group membership

ZooKeeper can be used to keep track of group membership. To do this we
create a znode for the group at a given path. Now members can register their
membership by creating a child znode with the ephemeral flag set. As long
as they have a session with ZooKeeper they will be listed as a member of
the group. When a member registers as a child they also put a watch on the
parent node. If there is a change in membership, for example when a node
is added, then all nodes will receive the changeEvent.

Note that only a message of change is delivered. This means that if 3
nodes quickly joins, one watch is delivered for the first change. The client
must then query for a new children list. Because of ZooKeepers FIFO order-
ing guarantees, this request will either include all changes, or the second and
third write will trigger a new watch. In effect we will never have the case
that when a node is added, and a process watching is not notified.

Leader election

Leader election is something that frequently needs to be addressed in a dis-
tributed system. In our own management service we used ZooKeeper to
handle this issue.

To elect a leader we utilize the sequential and ephemeral flags of a znode.
We have a znode called leaders in ZooKeeper where potential leaders can
register themselves. This znode has the sequential flag set so we get a total
order on the potential leaders. We also force each potential leader to use the
ephemeral flag when registering. This ensures that when a client disconnects,
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it is removed from the children list. When it rejoins, it is given a new sequence
number. By default the znode with the lowest sequence number will be the
leader.

If a node registers as a potential leader but does not win the election (i.e:
There is another contender with a lower sequence number) it puts a watch on
the winner and waits for changes. If eventually the leader disconnects then
there will once again be elected a new leader based on sequence numbers.

Any client wanting to get a hold of its leader can simply ask ZooKeeper
for all the children of the parent znode, and then determine which one is the
leader based on sequence numbers. Now the client can put a watch on this
leader znode and be notified whenever there is a change in leadership. If said
event is received the client simply ask ZooKeeper again for the children and
repeat the process.

This however can cause a thundering horde effect. When the leader dis-
appears, ZooKeeper suddenly have lots of watches to deliver, as well as a
horde of incoming requests for children lists of the parent node. To avoid
this, every node waiting to be the leader can listen on the previous node
in the queue. Because of the linearizable guarantees, we know that we will
never become the leader until the one in front disappears. This way only one
watchEvent has to be delivered, causing only one request for the updated
znode list.

Locks

Another use case for ZooKeeper is managing access to resources. This is
implemented with locks. To create a lock we have a reserved znode for the
resource in ZooKeeper. To queue for the lock, clients must create sequential
and ephemeral children on this node. The client with the lowest number
holds the lock. We use ephemeral to prevent a client for keeping the lock
forever in case of a disconnect, and sequential is for ordering of clients.

It is also possible to separate locks into read and write locks. In ZooKeeper
their only difference will be in the naming of the znode, but the client now
can regard them as read or write locks. The case explained above is a typical
write, or exclusive lock. In the case of a read lock, the client will be allowed
access to the resource as long as there is no write locks ahead of it. If there
is a write lock ahead of the read, the client will put a watch on the previous
exclusive lock and wait until it is deleted. Such read/write locks can typically
be created by prepending a “r” or an “x” on the client znode, to signal a
read or exclusive lock, respectively.
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Chapter 4

Integrating Voldemort and
ZooKeeper

In this chapter we will cover our implementation process. It is structured in
4 parts. Part 1 consists of integrating ZooKeeper support and mechanisms
into the Voldemort project, making Voldemort read and store configurations
in ZooKeeper. Part 2 contains our work towards rebalancing with the help
of ZooKeeper. In part 3 we create the service Headmaster, which is a man-
agement service to run along side of the Voldemort. Headmaster keeps track
of active nodes in the cluster and generates configuration for new nodes that
are added at runtime. It also includes them in the current cluster and ex-
ecutes rebalances to transfer data to the new nodes. We have also created
SigarAgent and StatusAnalyzer to allow for Headmaster to make manage-
ment decisions based on recent node activity levels. All our work and code
can be found in our git repository[3].

Lastly we have included a part 4 on how we wrote tests to validate our
implementation during development.

4.1 Part 1

Integrating ZooKeeper into Voldemort and taking advantage of the coor-
dination services ZooKeeper provides, proved rather difficult. We chose to
override and rewrite much of the current MetadataStore implementation to
one that uses ZooKeeper as the backend storage engine instead of local files.
Actual data is still of course stored locally, but configuration (metadata)
now resides in the ZooKeeper cluster. This abstraction works rather well for
shared data files, but causes some issues with information that is stored for
individual nodes. As such, we landed on a fixed path scheme, where certain
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configuration files are expected to reside on known locations, and will be
presented later.

Using ZooKeeper as storage backend introduces a dependency of a run-
ning ZooKeeper cluster for normal operation of any node. While this is
a liability and potential source for downtime in a highly available service,
ZooKeeper is itself a highly available system and the 5 node setup is re-
garded as very stable and in heavy use at Yahoo[10]. In any case, the system
will in general be able to operate through short ZooKeeper outages, as all
meta and config data is cached locally, and will not affect operation.

4.1.1 Configuration

Configuration is stored in a VoldemortConfig object. Normally this is created
from settings stored in local files per node. At startup, the server looks for a
properties file in a directory given by environment variable VOLDEMORT HOME.

Now, if you specify a ZooKeeper connection URL as a command line
parameter, the program looks for configuration in ZooKeeper. We have
given an example outline of the expected directory structure in Figure 4.1.
This is for the three nodes vold0.idi.ntnu.no, vold1.idi.ntnu.no and
vold2.idi.ntnu.no. You can see the expected path follows the pattern
/config/nodes/HOSTNAME/server.properties.

The startup code then reads and tries to parse the config file. If parsing
fails, the server will fail. This is to clearly signal that something is wrong
during startup, and needs immediate fixing. If the file is not found, the server
registers a watch on the path in ZooKeeper. If there is a write to this file,
ZooKeeper will let the server know and the config file can be re-read.

One can argue whether to fail or listen when a config is not found, but
we decided for the latter, to listen for changes, after implementing the man-
agement service. As we later will see, listening allows us to push new config
files to a node by the help of our management daemon Headmaster.

Our modification inherits from the original VoldemortConfig object, so
that the ZooKeeper capable version can be used in the same code, in the same
manner. The modified code reads data from a fixed location in ZooKeeper,
and sets the necessary settings and properties for the server to boot and join
the cluster. The ZooKeeper connection URL is passed as a command line
parameter.

The directory structure for the whole program can be viewed in its en-
tirety in Figure 4.2, and has been included for completeness.
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/ ... (root directory)
config

nodes ... (individual node configs)
vold0.idi.ntnu.no ... (hostname)

server.properties
server.state
node.id

vold1.idi.ntnu.no
server.properties
server.state
node.id

Figure 4.1: Individual node configs in the shared space.

4.1.2 MetadataStore

The internal state for a node is written to a Store called MetadataStore.
It consists of an in memory cache store, and a persistent one on disk. The
different stores are implementations of an abstract data Store. As such, we
wrote a Store using ZooKeeper as the backend, and used this for persistent
storage.

At startup we read the global configuration, the cluster and stores set-
tings, from the Store. The Store fetches the requested files from ZooKeeper,
and leaves a watch on the nodes. Because a store only stores data, the Store
itself can not take advantage of the event deliveries from ZooKeeper: The
Store keeps no application logic, and can be thought of as a hash map.

To notify and update the internal state of the node on events, we found
it necessary to receive events in the configuration management logic, written
in the MetadataStore.

When an event from the ZooKeeper client is delivered to the MetadataStore,
we first sort it by type. If it is a management event, like a disconnect event,
we temporarily disable the ZooKeeper backend and serve data from the cache
until it is reconnected. In our testing, such disconnects (session expiry) hap-
pened about once every hour, but the reconnect was usually done in less than
two seconds. This instability may be due to our ZooKeeper cluster consisting
of a single node and being on a different network.

After a session expiry, we receive a reconnected event when the ZooKeeper
client reestablishes a connection. At this point, all set watches are lost, and
all events during the connection loss will have been lost. We must therefore
reset all watches and check the global configuration data on reconnect.
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/ ... (The root can also be a chroot.)
active

vold0.idi.ntnu.no ... (ephemeral)
vold2.idi.ntnu.no ... (ephemeral)

config ... (persistent)
nodes (individual node configs)

vold0.idi.ntnu.no
server.properties
server.state
node.id

vold1.idi.ntnu.no
server.properties
server.state
node.id

vold2.idi.ntnu.no
server.properties
server.state
node.id

cluster.xml
stores.xml

headmaster
headmaster 0009 ... (ephemeral & sequential)
headmaster 0011 ... (ephemeral & sequential)
headmaster 0012 ... (ephemeral & sequential)

Figure 4.2: Directory structure in ZooKeeper. The nodes or directories are
actually znodes and can hold data.

4.1.3 Handling the ZooKeeper connection

Our way of handling of the ZooKeeper client and connection went through
many stages and changes as we got a better understanding of its features.

Our currently preferred design can be viewed in ActiveNodeZKListener.
The ActiveNodeZKListener class wraps a ZooKeeper client connection, pro-
viding event delivery to the interface ZKDataListener. This approach re-
moves a lot of the noise generated by the client, and delivers clear events
that are simpler and clearer to handle and reason with when coding applica-
tion logic.

We provide the following listener events:

dataChanged(path): This method is called when data has been written
to the watched znode on path.
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nodeDeleted(path): A call to the listener to let it know the znode on path
has been deleted.

reconnected(): The connection handler provides a simple call reconnected()
when a connection is reestablished after session expiry. When this call
happens, we know it is safe to do sanity checking of our state and
register watches again.

childrenList(path): This one is a little bit special. This method is called
whenever a znodes childrenList is changed. Recall that znodes are like
nodes in a tree, and can have many children. This method call indicates
new or removed children for the node on path.

We also include the possibility for receiving the raw events from the
ZooKeeper client in the interface:

process(event): Event is the raw WatchedEvent from the ZooKeeper client.
Registering as a Watcher will forward every internal ZooKeeper event
to the listener.

4.2 Part 2

4.2.1 Including rebalance functionality in Headmaster

Voldemort uses external scripts for triggering rebalancing and repartition-
ing. This made incorporating this functionality into Headmaster very cum-
bersome. We included two classes into the project: RebalancePlannerZK
and RebalancerZK. These expose the methods: createRebalacePlan() and
rebalance(RebalancePlan plan) used to trigger these events. Both classes
utilize ActiveZooKeeperListener to fetch required configuration data from
ZooKeeper. Headmaster now have access to these methods and can trigger
them if deemed necessary.

4.2.2 Recursive triggered writes of meta data

While adding the rebalance features, we bumped into an issue related to the
architecture of Voldemort. In a rebalance, the new config files are pushed
(written) to each node separately using Voldemort admin data requests. This
causes every node to execute a PUT of the new data on the MetadataStore.

As explained above, we use ZooKeeper for (persistently) sharing the
global configuration files. Also, we would like to be notified about changes
to the config files using watches. So first you have N nodes in the cluster,
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executing N writes to the same file. Each file write potentially triggers N
watches, causing a read and watch reset. Worst case we will end up with N
writes and N*N watch triggers and reads, all in quick succession (less than a
second). We therefore decided to ignore such put requests in the ZooKeeper
driven persistent Store, and only put the new data in the Metadata cache
store, deferring the admin to use a ZooKeeper write operation to put the
new config out, making the nodes do a re-read.

Headmaster

Cluster

StatusAnalyzer

new Thread

SigarListener3. status messages

new Thread

4. Deliver status message

ZooKeeper
1. Elect leader

2. Find leader
(Headmaster)

5. doRebalance(Plan)
    (eventually)

6. Execute rebalance 
operation

Figure 4.3: System drawing of the management service Headmaster.

4.3 Part 3

4.3.1 Headmaster

Headmaster is our clusters management service. It can be started on any
node as long as ZooKeeper is reachable. When an instance of Headmaster
is started an ephemeral and sequential znode is created on the path /head-
master in ZooKeeper. This means that each instance will automatically have
its own sequence number appended to its name. So at runtime with 3 nodes
running Headmaster we typically have a structure like in Figure 4.2

Headmaster can be running on multiple nodes concurrently, and a leader
election protocol based on ZooKeeper is responsible for only having one active
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Headmaster at the time. If the current Headmaster becomes unavailable, one
of the waiting Headmasters will take over and become active.

Whenever a node is starting Voldemort, the node registers itself under a
znode called /active in ZooKeeper. This is done with the ephemeral flag
set. When a node creates this znode it also put its node id as the value. If
the node has not yet received an id, it sets the value to “NEW”.

Through ZooKeeper, Headmaster is informed of all changes on the /active
path. So, whenever there is a node registering, Headmaster checks for the
value “NEW”. Headmaster then checks if the node has an entry in the cur-
rent cluster.xml. If the node has an entry, Headmaster simply changes the
value to the correct id. If there is no entry in cluster.xml, Headmaster
assigns the node a unique id and creates a znode under /config/nodes/ and
uploads the corresponding server.properties file. Finally cluster.xml is
updated with a new entry for the new node. This node will not have respon-
sibility for any partitions yet. A rebalance to give the newcomer a part of
the keyspace can be triggered manually or by StatusAnalyzer.

4.3.2 SigarAgent

SigarAgent is our service for monitoring activity on nodes in the cluster.
Our solution is heavily inspired by the work of Andreas Baakind[2]. We
utilize Hyperic’s sigar API to gather system information on each individual
node and send this to Headmaster. We continuously send status on current
CPU usage, memory used and how much data the node has stored compared
to a given maximum. In contrast to Baakind who only informed his scaling
service if any value was above a set threshold, we send a status message every
5 seconds. To prevent these messages for taking up too much resources, we
use UDP instead of TCP as we do not require all messages to arrive at
Headmaster. During all our testing we had 0 lost packages.

SigarAgent utilizes ZooKeeper to keep track of who is current Headmas-
ter, and will react if there is a change of leadership. If there is no Headmaster
active, SigarAgent will sleep until it is notified of a new Headmaster.

4.3.3 StatusAnalyzer

StatusAnalyzer is a decision system available to the current Headmaster.
StatusAnalyzer receives status messages from all nodes running SigarAgent
and stores them in a HashMap<String, LinkedList<StatusMessage>>. We
store the last 10 messages received from each node, corresponding to 10
intervals of data. This HashMap is used to analyze the cluster state and
trigger rebalancing actions if deemed necessary.
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StatusAnalyzer has a few useful member functions:

getAvgCPU(String hostname)
getCalmestNode ()
analyzeCPU ()
migratePartitions(List <String > strugglingNodes)

Listing 4.1: Helper functions in StatusAnalyzer.

Every 30 seconds analyzeCPU is run to see if the average CPU-utilization
of any node is over a threshold. We have defined a node running at over 84%
as a struggling node. If any nodes are above this threshold, getCalmestNode
is run to see if there are any calm nodes . Any node with less than 70% load
is defined as a calm node. If any node is struggling and there is a calm node,
migratePartitions is triggered. This will inform Headmaster that we need a
rebalance action to stabilize the cluster.

We have two strategies for moving partitions. If we have more than one
struggling node, we pick a node at random and move one partition over to
the calm node, or we move one partition from each struggling node over to
the calm node. The former strategy will ensure a slow and steady transition
while the latter could arrive at a stable state faster at the cost of performance
during the more heavy rebalance. Moving several partitions at once could
lead to a calm node being overwhelmed.

Figure 4.3 gives an overview of the monitor/decision cycle and the typical
ordering of events.

4.4 Part 4

4.4.1 Testing

When working on large projects, a lot of code lines are involved. To prevent
breaking functionality underway, and to help verify correct (desired) behavior
while working, we decided to write unit tests. Because of the complex series
of events that need to happen while running the program to execute your
desired code, it is much easier and more efficient to test and verify your code
programmatically in a test environment. The design and verification of our
Headmaster program greatly benefited from this approach. The event chain
to test the code can be fairly complex, even though the application logic is
fairly straight forward.
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To create a test environment, we used JUnit and the Mockito project to
mimic the behavior we need for validation. Mockito is a testing framework
for Java. It allows to create “mock” objects that can be used to trigger and
verify program behavior in a predictable and controlled manner. The “fake”,
but controllable objects are very useful for eliminating outer dependencies,
and instead having them behave in a completely predictable and controlled
way.

Listing 4.2 shows a short example of how Mockito and JUnit is used to
write short, simple yet powerful functional tests that verify behavior. It is
also worth noting that the resulting test code is quite readable by a program-
mer.

@Mock
ActiveNodeZKListener activeNodeZKListener;

Headmaster headmaster;

public void whenDataChangedTestIfWatchIsReset () {
String path = "/config/cluster.xml";

when(activeNodeZKListener.getStringFromZooKeeper(
path , true)).thenReturn(EXAMPLE_CLUSTER);

headmaster.setZKListener(activeNodeZKListener);

headmaster.dataChanged(path);

/**
* verify method is called with params path , and

watch flag set to true.
*/

verify(activeNodeZKListener ,
times (1)).getStringFromZooKeeper(path , true);

}

Listing 4.2: Test code utilizing Mockito. Think of the @Mock class as a
subclass with all methods overrided return null;.

Here we are verifying that upon receiving a notification that a znode has
changed, the znode (path) is fetched with a new watch set. All without
actually providing a working third party object (ActiveNodeZKListener) to
the test, the object is entirely faked with the static when and thenReturn
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methods. After setting the dependency class up with the desired behavior, it
is injected into the class we are testing, then verify that the desired method
is called once and only once (times(1)). Similarly it is easy to see how you
can verify two calls (times(2)). For zero calls, it is recommended to use the
more readable method never.



Chapter 5

Experiments

In this chapter we will present benchmarks we have run and their correspond-
ing results. We will benchmark both the original Voldemort implementation
and our own to compare the impact of our work on the overall throughput
and performance of the system. We will look at requests processed per sec-
ond, response time distribution and CPU-utilization under a typical usage
pattern.

Our experiments are done in two phases. First part is a single-node
benchmark of each node that will participate in the tests. This is to get an
understanding of their performance. As our cluster consists of very differ-
ent hardware it will be useful to have an idea of what to expect from each
individual node before we add them together. The second part concerns per-
formance and scaling after and during rebalancing of a cluster. The rebalance
process will be executed both manually and using our automatic system for
balancing.

The goal of these experiments is to verify that after our modifications the
performance remains intact. For Voldemort, near linear scaling of throughput
is expected when adding worker nodes to the cluster.

5.1 Setup

We will here present the setup and tools used for our testing.

5.1.1 Benchmark tool

We use Voldemorts provided benchmark tool to send data to our cluster. The
program is heavily based on the work by Yahoo Cloud Serving Benchmark[8].
This allows us to generate different types of workloads, request loads and

51
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number of sending threads. We also had to do some modifications to get
a running average throughput, instead of a total average throughput when
measuring.

We parse most of the logs in python to transform the data points into
something useful. In some cases we also have to manually put the data
together. For analysis, we mainly use R[13] with extensive use of the Hmisc[11]
library. Our Rscripts can be found in our project on github[4]. All the
diagrams in this chapter has been generated with R.

An example run with the benchmark tool could be:

r ead pe r cent=95
w r i t e p e r c e n t=5
metr ic=histogram # [ summary | his togram ]
ops=1 000 000 # t o t a l r e qu e s t s to run
threads=54
recordcount=1 000 000 # records to i n s e r t dur ing warmup
v a l u e s i z e =1024 # by t e s per record

voldemort−performance−t o o l . sh −−threads $ threads −−metric−type
$metr ic −−ops−count $ops −−u r l $ur l −−value−s i z e $v a l u e s i z e
−−s to re−name $ s t o r e −−record−count $ recordcount $@

These are also the settings we used for most of our tests.

5.1.2 Hardware

We have 4 computers involved in these experiments:

1. Desktop computer: Intel Core i7 3.5 GHz Quad Core 16 GB Memory
250GB SSD (load generator)

2. MacBook Pro: Intel Core i7 2.6 GHz Quad Core 8 GB Memory 250GB
SSD

3. MacBook Pro: Intel Core i5 2.5 GHz Dual Core 8 GB Memory 120GB
SSD

4. Mac Mini: Intel Core 2 Duo 2.4 GHz Dual Core 8 GB Memory 250GB
SSD

In addition we use a D-Link Dir-655 gigabit router for networking. All
computers are equipped with a single gigabit ethernet connection.
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5.1.3 Software

All computers run Apple OS X 10.9.2 operating system and Java JDK
1.7.0 51.

5.2 Single-node benchmarking

To verify our modifications are not too costly for performance, we will be
concentrating on two metrics during our tests. The response time distribution
has been included to verify how fast we are answering most queries. The
throughput metric has been included to verify whether raw, overall work
performance is intact, ie. how many queries we can answer.

In this part we want to investigate how our computer and cluster behaves
in various scenarios. We will in all experiments use a workload of 95% read
and 5% write requests as is common on a typical social website where most
browse with a few comments or status updates. Each data entry is 1kB.
The database is seeded with 1 million entries before each test starts, unless
otherwise specified. In all tests the i7 desktop is generating requests.

5.2.1 Response time distribution

Response time is an important metric and the response time distribution is
very helpful in determining perceived performance. Response time is impor-
tant for both user experience when using a service and for upholding SLAs.

We want to establish a baseline for how each individual node performs
with regards to time used responding per request. This is to verify the
impact our modifications have on the users experience of performance. In
this experiment we will setup a single node Voldemort instance, and measure
the service time over a given number of requests. We will run this test
with both our ZooKeeper implementation and the official Voldemort code
for comparison. Queries are generated as fast as possible to test response
time at maximum load, i.e. the worst case.

We expect comparable results between the nodes, as all nodes will run
at maximum capacity. We also expect the majority of these requests to be
serviced in under 1 ms as found by Rabl et al.[14].

Throughput of single nodes

We also want to get an overview over each node’s ability to serve requests.
To test throughput we will again run single node clusters and send requests
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at maximum load. The throughput is measured over 1 million requests, for
values of 1024 bytes.

As our hardware is so different we expect vast difference in individual
node performance. The old core 2 duo will not fare well compared to the i5
and i7.

5.2.2 Adaptive cluster

In these experiments we have a look at how a cluster consisting of several
nodes performs. We will explore different scenarios both with and without
rebalancing, and look at how throughput and CPU usage is affected. For
these experiments we increase the preloaded values in the system to 3 million
to get a bigger data set to move during each rebalance operation.

Baseline

This experiment will act as a baseline for how a cluster behaves under load.
We have 2 nodes sharing 16 partitions, 8 partitions each. We run this exper-
iment on the two slowest nodes to make increases in performance clearer, as
the other two nodes limits are beyond the capability of our load generator.
As we only have 2 nodes in the cluster we only use one required read / write
on each request and no data duplication. Recall that this is a (1,1,1) system
if we refer to the (N,R,W) parameters of Voldemort.

We expect both nodes to struggle with servicing their workload and as
a result the throughput should be less than optimal. In other words we do
not expect the throughput of these two nodes combined to be equal to the
sum of their individual throughputs, i.e. we expect to experience sub-linear
scaling.

Manual rebalancing

In this experiment we want to see how the cluster behaves when we allow a
struggling node to move partitions over to a node under less stress. We will
manually move one partition at the time over from a struggling node to one
less worked. The cluster will consist of the Core 2 and the i5, the two slowest
machines. We will use the same criteria as in our automatic system, which
means that a struggling node is defined as a node running at 85% utilized
CPU or higher. We will continue to move partitions until there are no nodes
over 85% utilization. This experiment is run on the original Voldemort code.

During rebalancing we expect the throughput to suffer somewhat, how-
ever we expect to see an increase in performance over time as we gain a more
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optimal distribution of partitions.

Automatic rebalancing

This experiment is a rerun of the previous one except there is no manual
interaction and Headmaster, our management service, is executing all oper-
ations based on monitor data.

We expect this experiment to play out the same way as the previous one,
with comparable performance. We expect the performance to be comparable
as we did not observe any additional costs introduced by our code in the
earlier tests.

Automatic cluster expansion

In this test we will utilize all our features by adding a node to an already
struggling cluster and automatically move partitions to alleviate the existing
nodes. We will have a cluster consisting of the Mac Mini and i5 MacBook
Pro and we will add the i7 Macbook Pro during the experiment. Headmaster
will be in charge of triggering rebalance as needed.

We expect the system to perform poorly during the initial phase as both
computers will be running at near max capacity. After we add the third
computer and move the first partition, the performance should increase. As
the system migrates more partitions away from the struggling nodes the
overall performance should keep increasing.

Large scale move of partitions

Finally we want to investigate how much throughput suffers during a rebal-
ance. We will increase the size of the data set to 15 million records to have a
longer rebalance stage. This will also make sure that the entire work set does
not fit in memory. We run this as a stand alone test because the other tests
moved data too quickly to yield enough data points for proper analysis. We
will run this experiment with a cluster consisting of 16 and 32 partitions to
see if there is a relationship between partition size and performance during
a rebalance. In both experiments the nodes will host the same amount of
keys, but spread over varying numbers of partitions.

As the entire work set does not fit in memory, we expect throughput to be
lower than in the other tests. During a rebalance, we expect the throughput
be consistent but lower than before the rebalance started.
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5.3 Results

In this section we present our results from the experiments. The experiments
follow the same order as they were presented.

5.3.1 Response time distribution
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Figure 5.1: Response time distribution Core 2 Duo Mac mini

On Figure 5.1 we see that both implementations perform similarly on the
Mac mini. The vertical lines mark the 0.9 and 0.999 percentile of requests.
We see that 90% of the requests are serviced within 2 ms while at the .999
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percentile the response time is at 197 ms for our implementation and 247 ms
for the original code.
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Figure 5.2: Response time distribution i5 MacBook Pro

On Figure 5.2 we see that the i5 MacBook Pro fares better. The verti-
cal lines again mark the 0.9 and 0.999 percentile of requests. At the 0.90
percentile we see no improvement, however at the 0.999 percentile we see a
noticeable improvement with 58 ms on our ZooKeeper implementation and
48 ms on the original code.
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Figure 5.3: Response time distribution i7 MacBook Pro

Finally in Figure 5.3 we see the results on the i7 Macbook Pro. At the
0.90 percentile the system responds in 1 ms in both cases and again we see
a great increase in performance at the 0.999 percentile with 5 ms for both
systems.

5.3.2 Throughput
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Figure 5.4: Throughput and CPU-load under stress test on Mac Mini

On Figure 5.4 we see that the Mac Mini’s Core 2 Duo is clearly running
at maximum capacity keeping up with the workload, running at close to
100% utilization of the CPU. Maximum throughput is hovering around 17k
requests per second.
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Figure 5.5: Throughput and CPU-load under stress test on i5 MacBook Pro

Figure 5.5 paints a very similar picture. The Core i5 in the MacBook
performs a lot better than the Mac Mini, but it is still not able to keep up
with the workload. It reaches saturation at around 32k requests per second.
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Figure 5.6: Throughput and CPU-load under stress test on i7 MacBook Pro

Finally we have the Core i7 Macbook. Figure 5.6 shows us the Core i7
saturated at around 44k requests per second. It is worth noting that in this
experiment the CPU-utilization is at less than 80% meaning there is another
factor limiting the system. Our explanation is that disk access might act as
a bottleneck and thus limiting the i7 at 44k requests per second.
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5.3.3 Adaptive cluster behavior

In this section follows the results form our adaptive cluster experiments.
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Figure 5.7: A baseline benchmark for a cluster of 2 nodes serving queries.

In Figure 5.7 we see a cluster of 2 nodes serving queries and their CPU
utilization. The average throughput for these two is 36k requests/s, yet their
individual performance is at 17k and 33k, respectively. We can also note that
the CPU of node 1 is bound around 64%, where as node 2 is at above 95%
the entire run.
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Figure 5.8: Manual moving of 2 partitions from a struggling node (Core 2).
Grey regions mark rebalance period, where data is prepared and transferred.

In Figure 5.8 we see 2 manual rebalances. We see total CPU-utilization
increase as we move partitions away from a struggling node and over to one
less worked. The aim of this experiment was to get a baseline to compare
our automatic rebalance service to. We see throughput steadily increase after
each rebalance moving from around 36k up to 45k. During the rebalance we
have two very distict drops in throughput. The first one is from when request
starts being proxied and all client threads must reconnect. The second one
is from the actual data transfer.
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Figure 5.9: Automatic moving of 2 partitions from a struggling node (Core 2).
Grey regions mark rebalance period, where data is prepared and transferred.
CPU threshold set at 0.84.

Figure 5.9 shows the same experiment just automated by Headmaster.
We again see a steady increase in throughput as partitions are moved. We
start out at about 36k requests per second, moving up to 46k requests/s as
the load balances out. Also here we see two dips in performance per rebalance
period. The first one stems from the clients reconnect after new metadata is
discovered. The second one is during the moving of records between nodes.
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Figure 5.10: Automatic migration of partitions in a struggling cluster after
a third node joins. A smoothed average is plotted on top of throughput, but
is excluded from the legend for spatial reasons.

Figure 5.10 shows the result adding a node to a struggling cluster and
rebalance live. At t=380 the i7 is introduced to the cluster. We see a steady
increase in performance as more and more partitions are moved to the i7. In
the end the different nodes are holding different number of partitions. This
is 3,5,8 for the Core 2, i5 and i7 respectively.

At t=1700 there is a significant loss of throughput after a rebalance. We
found no reason for this in our logs, so we suspect this to be related to
unrelated work done by the operating system on the workload generating
computer, but we failed to find any verification on this. The test is quite
long, running for over 40 minutes and a quite a few of our tests got affected
by random events on this time frame.
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Figure 5.11: In depth view of thoughput during a big rebalance operation.
The blue vertical line marks average throughput during the rebalance.

Figure 5.11 shows a large partition being moved. The partition holds
almost 1 million entries or almost 1 gigabyte of data. Before the rebalance
we have a steady throughput of 42k requests per second. For the duration
of the rebalance, we average around 39,5k requests per second. We move a
around 6% of all values and the rebalance causes a 6% loss of throughput,
running at roughly 94% of performance before the rebalance.

Contrary to our expectations, we have a sudden drop in throughput fol-
lowed by a steady increase during the rebalance. The sudden drop is caused
by all clients being forced to fetch the newest metadata. The steady increase
in throughput is a result of an increasing number of the entries being available
at the stealer node, and lessening the need for proxying GET requests.
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Figure 5.12: In depth view of thoughput during a rebalance with 15 million
entries and 32 partitions. The blue vertical line marks average throughput
during the rebalance.

In Figure 5.12 we see the results of moving one of the 32 partitions.
Before the rebalance we service 39,2k requests per second, while during the
rebalance we average 38,6k requests per second. This shows that over 98%
of the cluster performance is maintained during the process. For comparison
we now move 3% of all values.



Chapter 6

Evaluation

This chapter will cover discussion regarding our results. In section 6.1 we
discuss our results from the experiments. Section 6.2 covers our thoughts
on the system we have created as a whole and in section 6.3 we share some
general experiences we had during the project.

6.1 Results discussion

In this section we will discuss our results as well as issues related to network
limits.

6.1.1 Network limits

We did not have access to different network hardware while doing this project.
Our computers proved very capable, with each individual node pushing 34-70
MB per second in raw network data. This made us quickly reach the network
speed limit of our gigabit network infrastructure. During benchmarking the
load generator was receiving over 130MB/s from the cluster. This limit was
reached at around 60k requests per second each of 1024 kB values, providing
a hard limit for our throughput. This is why throughput is capped at 60k
in our experiments, even though there still are nodes with lots of idle CPU-
cycles. On a 100Mbit connection we could only send or receive about 5k
requets per second equaling to around 12 MB/s

6.1.2 Response time distribution and throughput

In our initial benchmarking experiments we have found no significant dif-
ference in the performance when comparing our ZooKeeper implementation
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with the original Voldemort code. In some cases our implementation is per-
forming slightly better, while in other the opposite is true. We interpret this
shifting variance between them to suggest the two versions are quite simi-
lar. If the jitter between tests are seemingly larger than the impact of the
changes, it is hard to find anything more conclusive.

Contrary to our expectations, the response time distribution varies greatly
on different hardware. In our results the 0.999 percentile response time varies
from 250 ms on the slowest hardware to 5 ms on the fastest. On the .90
percentile there is however is much less difference with response times of 2
ms on the slowest hardware and 1 ms on the fastest.

Single-node throughput results are more in line with what we expected.
The slow Core 2 Duo is barely able to serve 17k requests per second while
the Core i5 and i7 are able to serve 32k and 44k.

6.1.3 Scaling and balancing

To achieve full throughput from scaling, some skewing of partitions is re-
quired. In our adaptive cluster experiments we have compared automated
to manual rebalancing and found our automatic solution to perform on par
with the manual one. We have also done a extensive cluster expansion test
and monitored CPU-utilization and throughput. These experiments show
that our implementation works as intended.

With optimal partition distribution, a cluster consisting of the two slowest
machines was able to service 46k requests per second providing almost the
sum of both individual nodes. We also see that a cluster of all three nodes
with proper partition distribution easily was able to service the maximum
request rate of 60k requests per second.

6.1.4 Cost of rebalance

The last two results focuses on the performance cost of transferring partitions
live. We see how partition-size affects performance loss during a rebalance.
Our results suggests that performance cost is tied to the percentile of keys af-
fected by the rebalance. With 98% performance retained when 3% of keys are
copied, and 94% retained performance when 6% of keys are copied we would
suggest taking this into consideration when deciding number of partitions.

Contrary to our expectations, we have a sudden drop in throughput fol-
lowed by a steady increase during the rebalance. The sudden drop is caused
by all clients being forced to fetch the newest metadata. The steady increase
in throughput is a result of an increasing number of the entries being available
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at the stealer node, and decreasing the need for proxying GET requests to
the donor.

We would also argue this makes sense in the relationship between keys
moved and performance loss. When the proxy bridges are setup, all requests
for the affected keys are routed to the stealer node, which do not yet hold
any of these keys. This means the percentage of keys being moved, are now
temporarily unavailable, in the sense that all requests for this percentile of
keys must be proxied to the donor node and fetched, before the query can
be answered. This performance cost should in other words relate to the
percentage of keys affected.

6.1.5 Issues

Before starting we were worried of getting into scenario where two or more
nodes ends up endlessly juggling partitions. We deemed this the biggest
weakness of such a automated system. This situation did however never
occur in our testing. We still think this is something that potential users need
to be aware of, and need to watch out for. To mitigate this behavior, having
a high number of partitions to minimize performance impact of moving one,
seem like a good option.

Having a high number of partitions have been a point we have made
several times in this thesis. There is however a draw back. If there is a very
high number of partitions in the system, and not a lot of data, we could
have situations were moving a partition has little to no impact on the target
systems. This would lead to waste of network and system resources for little
to no gain. This could be somewhat mitigated by moving several partitions
at once, but we consider this to be more error prone.

6.1.6 Other notes

Overall we found the performance to be very consistent. Our results were
on large very reproducible and saw little variance between benchmark runs
in the longer tests. The shorter benchmarks of the individual nodes did
show some variance between versions, but we could not find any consistent
patterns.

6.2 System evaluation

Overall we are happy with our results. They show that we have not noticeably
affected the performance of Voldemort when adding automatic scaling. For
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now the monitor service is started as a separate process on each node involved
in Voldemort. This could be incorporated into Voldemort, but we think
Headmaster should be isolated for stability reasons. Crashing Headmaster
should not affect your database.

For now Headmaster is implemented as a standalone service so that it
can be run remotely, and independently from Voldemort. While working,
we had at one point inadvertently started two Headmasters at once, which
kept fighting for control. We spent a fair amount of time debugging weird
race conditions until we realized there was two services operating at the
same time. It is now a master based service with leader election through
ZooKeeper that can run on any number of nodes, without fighting for control.
The only dependency for any operation or function is an available ZooKeeper
instance. The cluster still works fine even if Headmaster is down, not working
or crashed.

Our system is best used in diverse clusters of heterogeneous nodes where
Headmaster can help automatically distribute the partition set across differ-
ent nodes to improve cluster load balance. As the performance loss while
rebalancing is not too bad, it could be possible to utilize Headmasters re-
balancing before peak hours to alleviate struggling nodes. This of course is
heavily dependent on partition size. A large amount of partitions will give
smaller amounts of data to move, but if each partition is only held by a single
node, nothing can be done even if you have many nodes and partitions. They
are just too large to move in this scenario. It is therefore of significant im-
portance to assign enough partitions for a huge data set when first creating
the cluster.

Our work should be rather failure tolerant, but we have not done very
extensive failure scenario testing, there might still be some bugs.

6.3 General experiences

In this section we cover general experiences we have made and problems we
encountered that we find worth sharing.

Server side caching

While testing, we noticed no real difference in performance between a 12MB
and 2GB database cache on our Voldemort servers. This might suggest there
is a problem with the cache setting in Voldemort. All of our hardware run
on SSDs, but we would still consider this result surprising. This could be
investigated further using largely different of data sets, but this was not our
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main focus in this thesis. However, a theory is that the data files fit into the
OS file caching, still providing very good read speeds.

Client updates

While benchmarking rebalancing we found a critical bug we had introduced
in the way clients receive updates of configuration. It caused values being
moved during a rebalance to be unavailable for the entire rebalance duration.
This would have been hard to discover if we did not compare with the original
Voldemort implementation. A graph illustrating the issue is available in
figure 6.1.
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Figure 6.1: Fatal bug causing data moved during a rebalance to be inaccess-
able for close to the entire duration of the rebalance, causing major drops in
throughput.

VectorClock of Stores

We also had issues with translating a config files version number in ZooKeeper
to a valid vector clock in Voldemort. When a config file is committed into
Voldemort internally, it is supposed to follow the same rules for vector clock
versioning as normal keys. The bug caused the rebalance cluster.xml and
stores.xml sent to nodes when getting ready for a rebalance to be rejected,
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failing the rebalance attempt. The bug was also only discovered after the
first rebalance in a single session, so it took some time until we encountered
it.

It is related to how the StoreDefinition object is versioned internally and
was quite hard to track down. When the first rebalance occurs, the new
StoreDefinition is saved to the cache only, with a incremented version clock.
When the next rebalance occurs, the StoreDefinition is fetched from the
persistent store. This version does not include the vector clock from the
previous one stored in the cache, so when the new StoreDefinition is saved,
the vector clock has the same or an old value and is rejected by the store.

We circumvented this by making sure we fetch StoreDefinitions from the
cache only when we are rebalancing, preserving the vector clock between
runs.



Chapter 7

Summary and conclusion

7.1 Summary

Through our project we have fundamentally changed how Voldemort stores
configuration data and utilized ZooKeeper to provide powerful new features.
We have created Headmaster to administrate the cluster and allow for new
nodes to automatically be included in the cluster. Finally we have created a
monitor service using the SigarAPI and the decision taker StatusAnalyzer.
Through our experiments we have verified that our implementation does not
suffer any noticeable performance loss and successfully migrates partitions to
achieve a more balanced cluster, and more optimized workload distribution.

7.2 Conclusion

Management of a cluster consisting of lots of nodes is cumbersome and sur-
prisingly error prone. We have shown that a more automatic approach can
be viable, especially in terms of delivered performance. Automating man-
agement and scaling of such systems can be immensely helpful, but there is
still work to be done before it can manage a live production system.

Management of distributed systems becomes increasingly difficult as the
number of nodes increases. Scaling a system to meet computing requirements
is also not a trivial task, because demands change over time. We have suc-
cessfully created a management system for Voldemort that automates some
of these tasks, automatically adjusting the system according to its current
load and assists in maximizing throughput on available resources.

75



76 CHAPTER 7. SUMMARY AND CONCLUSION



Chapter 8

Further work

We will here introduce and expand upon some ideas we have for further work
on this topic. Some ideas we did not find the time for. Others are not as of
this writing possible yet.

8.1 Downscaling

Voldemort as of this project, does not support downscaling, ie. downsizing
the cluster. There is work going on for this, but it is not a current priority.
We would of course like to include this functionality into our project once it
is possible.

8.2 Data rebalancing

A cluster serving requests might over time develop an uneven data distribu-
tion like in Table 8.1. The reason for this uneven data distribution is simply
bad luck.

If certain partitions end up with a skewed amount of data, even shuf-
fling partitions around to idle nodes might be fruitless. One might have to
do a very expensive rehash, effectively moving the partition key space. If
this could be done live in an efficient manner, it could greatly improve the
balancing and performance of each node in such edge cases.
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Node Partition data %

0
0 12.5
1 12.5

1
2 12.5
3 24.0

2
4 1.0
5 5.0

3
6 20.0
7 12.5

Table 8.1: A cluster where partitions exhibit uneven data distribution. This
cluster potentially needs rebalancing of data.

8.3 Ondemand computing

With the recent years advancement in cloud computing, especially those
driven by Amazons EC2 service, it is now easy to rent computing capacity as
you go and pay for what you use. With the current design, having physical
computers ready is an absolute requirement, ie. to insert a new node one
needs actual hardware.

An idea we have for future work is a module to the Headmaster rebalancer
that can automatically create, setup and assign Amazon EC2 machines on
demand. This would allow for scaling the cluster up and down on demand
with rented computing.

8.4 Decision support system

We think it would be interesting with further decision support for scaling. We
currently don’t do anything with regards to available disk space or memory
usage. Combining this with the possibilities in ondemand computing would
be interesting. This could allow for ordering and extending both disk space
and memory in running nodes, which is currently possible with e.g. Amazon
Web Services.

8.5 Running with backup nodes

One could assign a certain znode path or a certain property with new nodes
in /active to add a node as a backup node. A backup node can be a queued
node that is kept ready for use in case another node dies permanently. E.g.
if a node has a permanent failure, this backup node is put in to replace
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it immediately. A challenge here could be false positives, replacing a node
before we need to.

One could also see backup nodes waiting on znodes in /active to disap-
pear, then immediately replace them. This does not seem like very efficient
use of resources though.

8.6 Real world testing

As we have done this project without a real application using Voldemort,
we do not have access to realistic test data. We feel a few more real world
tests should be done before our management system can be deployed to a
live production environment.

It would also be interesting to apply it to a already running instance and
see if and what improvements could be made, both to the code and to the
running cluster. Seeing how and if a running real world cluster can gain
anything from the automatic load adaption would help furthering this kind
of automatic management.

8.7 Management interface

Another idea we got while working on this project, is live monitoring of
status in a web based interface. Managing nodes in the cluster through a
web interface could add a lot of value, especially for system administrators.
Manually configuring and monitoring large clusters of over 100 computers is
tedious and error prone, if not impossible by humans. Using our framework to
automate such tasks through a interface would not be too hard to implement.
We can easily see it being used for both introducing new nodes, replacing
and overall monitoring of system health.
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