
A comparison of feature functions for
Tetris strategies

Jonas Balgaard Amundsen

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Acknowledgements

Special thanks go to my project supervisor, Prof. Keith L. Downing, for impor-
tant advice, guidance and encouragement.

Additionally, this research was supported in part with computational resources
at NTNU provided by NOTUR, http://www.notur.no.

Abstract

Finding optimal strategies for the game of Tetris is an interesting NP-complete
problem that has attracted several AI researchers. Their approaches display sub-
tle variations in the implementation details, with unclear relationships between
these details and Tetris performance. This, combined with the absence of confi-
dence intervals in most published results, makes the evaluation and comparison
of Tetris strategies and optimization methods very difficult.

To look further into this unclear relationship, we would re-create every environ-
ment described in several publications. An evolutionary algorithm was executed
within each environment to create multiple AIs and their performance compared
against each other. The scores differed substantially. This suggests that some
aspects of the Tetris environment greatly affects the potentially obtainable per-
formance of an AI. We come to the unfortunate conclusion that nearly no results
of existing publications can be used to compare optimization methods against
each other in terms of suitability for Tetris due to this reason.

Sammendrag

Å finne optimale strategier for spillet Tetris er et interessant NP-komplett pro-
blem som har tiltrukket seg flere AI-forskere. Deres tilnærminger avviker derimot
fra hverandre n̊ar det gjelder enkelte implementasjonsdetaljer og det et uklart
forhold mellom dette og oppn̊add ytelse. Kombinert med manglende konfidens-
intervaller in de fleste publiserte resultater, s̊a er det vanskelig å evaluere og
sammenligne Tetris-strategier og optimaliseringsmetoder.

For å finne ut mer om dette forholdet, s̊a forsøkte vi å gjenskape alle miljøene
beskrevet i flere publikasjoner. En evolusjonær algoritme ble kjørt i alle disse
miljøene for å lage flere AI-er og resultatene ble sammenlignet mot hverandre.
Poengene oppn̊add var svært forskjellige. Dette antyder at enkelte aspekter ved
et Tetris miljø i stor grad p̊avirker den potensielt oppn̊aelige ytelsen til en AI. Vi
kommer av denne grunn til den uheldige konklusjonen at nesten ingen resultater i
eksisterende publikasjoner kan brukes for å sammenligne optimaliseringsmetoder
mot hverandre med hensyn p̊a hvor anvendelige de er til Tetris.

Contents

1 Introduction 1

2 Background 5
2.1 Building a Tetris controller . 5
2.2 Related work . 11
2.3 Difficulty of comparing controllers 12

2.3.1 Domain variations . 12
2.3.2 Large deviation in score . 16
2.3.3 Differing feature functions 16

2.4 Computational cost . 17
2.5 Application optimization . 20
2.6 Estimating performance of a strategy 20

3 Methodology 24
3.1 Inspiration . 24
3.2 Why evolutionary computing? . 25
3.3 What is an evolutionary algorithm? 25
3.4 Implementation . 27

3.4.1 Representation . 27
3.4.2 Fitness function . 27
3.4.3 Selection . 27
3.4.4 Elitism . 28
3.4.5 Crossover . 28
3.4.6 Mutation . 28
3.4.7 Parallelization . 28
3.4.8 Random values . 29

4 Results 30
4.1 Comparing environments . 30

4.2 Unbiased feature selection . 31

5 Discussion 45
5.1 Feature function contribution to search space 45
5.2 Large score deviation & halting evolution 46
5.3 Competitive general purpose optimization 46
5.4 Time constraints . 47

6 Conclusion 48

A Formal feature definitions 51

B Example game 58

Chapter 1

Introduction

Tetris is a tile-matching puzzle game created by Alexey Pajitnov in 1984. A
game of Tetris is played on a 2-dimensional structured grid where each cell can
be either empty or full. Additionally, Tetris consists of several distinctive pieces
called tetrominos, illustrated in figure 1.1. Throughout the game and one by one,
pieces will enter from the top of the board and move downwards. A piece stops
once it hits a full cell or the bottom of the board. The player is able to rotate
falling pieces and move them along the horizontal axis. If a piece is placed such
that a row of cells is completely filled, then that row is cleared, I.E. its cells are
emptied, and all rows above are moved one step down. This process is depicted
in figure 1.2. The game ends once the board become so full that the player is
unable to place the next falling piece without overflowing the board. Points are
usually awarded each time a row is cleared, but a player may be given additional
points for clearing several rows at once, clearing rows consecutively, etc. Thus,
by sensibly placing each falling tetromino, the player can avoid ending the game
and achieve higher scores. A more thorough specification of Tetris can be found
on Fahey’s website [1].

The total number of states, if one consider each possible board configuration and

Figure 1.1: All tetrominos used in Tetris, as specified by Fahey [1].

1

2

Figure 1.2: The process of removing a row from the board: 1) a piece is placed
such that a row becomes completely filled, 2) that row is emptied, and 3) every
row above is moved one step down.

the current falling piece, is vast and a liberal estimate (because it contains some
impossible configurations [1]) is 7.0 · 2199 ≈ 5.6 · 1059. That is many orders of
magnitude greater than even the number of grains of sand on all the beaches on
earth 1. Tetris is also an NP-complete problem, even if the sequence of pieces
is known in advance [2], and it has been shown that every game finishes with a
probability of 1 [3]. This makes it an interesting optimization problem.

The game of Tetris is found in numerous scientific publications where it typically
serves one of two purposes: 1) fulfilling the need for a practical and optimizable
application used to test a new approach for optimization, or 2) being subject of
an ongoing, and possibly everlasting, informal competition for gaining the highest
score through non-human play. Existing publications however vary in terms of
several important aspects which makes the results difficult to compare.

Firstly, applications vary in terms of the problem domain. For example, a player
may be given information in regards to the upcoming pieces. This is called
lookahead and is usually one or zero. A lookahead of more than zero enables a
player to make more educated actions and possible yield a higher score. Secondly,
subtle implementation details such as when the game is considered to be over
differs slightly. Most implementations seem to define game over as when a piece
is placed such that it overflows the board, but at least one implementation differs
in that it ends when a piece touches the top. Lastly, very few publications utilize
the same feature functions to extract information about a Tetris board within
their algorithms. In other words, almost no methods have been tested with the
same information available to them.

We hypothesize that variations in all of these aspects, particularly the
last one regarding different choice of feature functions, may greatly
affect the overall performance of an agent developed to play Tetris.

In order to test this hypothesis, we will to the best of our ability recreate the
exact environment described in each publication (in terms of problem domain,
implementation and choice of feature functions) and evolve an agent within each
one using the same evolutionary algorithm. If the hypothesis is true, then the
overall performance of the agents evolved within these environments should be
significantly different.

A truthy hypothesis will have a somewhat unfortunate consequence. If it can be
shown that variations in Tetris domain affect the performance of an agent, then
the results of agents developed in varying domains is obviously not comparable
to each other at all. Additionally, if variations in the choice of feature functions

1The number of grains of sand on all the beaches on earth has been estimated by researchers
at the University of Hawaii. See http://www.hawaii.edu/suremath/jsand.html.

3

also affect the performance of an agent, then the employed optimization methods
with varying feature functions also cannot be compared to each other in terms
of Tetris play.

Furthermore, we will attempt evolve our very own Tetris controller using feature
functions from all previous works. During this experiment, the evolutionary
algorithm will be allowed to choose which feature function to utilize without any
bias. We suspect that by using an evolutionary algorithm for this purpose, we
can gain more insight as to which feature functions are valuable, and with a
bit of luck, maybe even beat the current best one-piece controller, which to our
knowledge is that of Thiery and Scherrer [4]. Their controller achieves an average
performance of 35,000,000 rows cleared per game.

4

Chapter 2

Background

2.1 Building a Tetris controller

The ideal and completely hypothetical strategy for playing Tetris is that where
each possible successor state is considered for an infinite amount of levels. By
averaging scores obtained through each possible game play and backtracking the
results, the controller would be able to perfectly place any falling tetromino.
However, due to huge computational requirements, this may never be possible.
Instead, a heuristic approach is chosen and employed by all controllers (to the
best of our knowledge).

Controllers that utilize the information of the board and the current falling tetro-
mino only are one-piece controllers. When the next tetromino is known in advance
and that information is also used, the controller is called a two-piece controller. A
two-piece controller will utilize more information than a one-piece controller in its
decision-making and can make more educated guesses of what’s a sensible place-
ment. Two-piece controllers generally perform better than one-piece controllers,
but take considerably longer time to finish.

To decide which orientation and horizontal placement to chose, the controller will
create a tree representing all reachable successor states from the known tetromi-
nos, partially illustrated in figure 2.1. A rating function is used to give each leaf
node state a score. The state that yields the highest score is selected and the
first action leading to that state is played. This process is then repeated for each
falling tetromino and thus, the problem of playing Tetris is reduced to creating
a good rating function.

5

6

Figure 2.1: A partial illustration of a tree of states constructed from two known
tetrominos in a game of Tetris played on a 8 by 6 grid. The first level illustrates
the current state of the board. The second level illustrates all possible successor
states (not counting different rotations). The third level illustrates each possible
successor state (not counting different rotations) from one of the previous states.

A rating function is typically a weighted sum of several feature functions. The
purpose of a feature function is to numerically value some meaningful feature or
characteristic of a Tetris board. By weighting a feature positively or negatively,
one can encourage or discourage, respectively, formations of certain features on
a Tetris board during a game. If these features affect the duration of the game
and helps to avoid ending it, they will contribute to an overall performance
improvement. The choice of feature functions and their relative weights is what
constitutes a Tetris strategy.

An example of a typical feature function that nearly all related work employ
is holes. A hole in a Tetris board is an empty cell which is covered by a full
cell, I.E. somewhere in the column above an empty cell is a full cell. This is
a negative feature because in order to fill it and remove its corresponding row,
all rows corresponding to the full cells above the hole must be cleared first. In
other words, a hole in the Tetris board causes a build up of tetrominos and that
is unfortunate in terms of prolonging the game. This is feature which is usually
weighted negatively.

Thiery and Scherrer have previously created a summary of feature functions
found in existing literature. Their findings with some additions of our own can
be seen in table 2.1. Unfortunately, many publications lack any formal definition
of their selected features functions and some Tetris expressions are not used
consistently in the literature. For instance, wells are usually described as a
local board configuration where only the longest tetromino can be placed. It
becomes clear that this description is somewhat ambiguous when attempting to
formally define it. Figure 2.2 shows three different wells, where each requires a
more relaxed definition than the previous. Our interpretation of each mentioned
feature function, except two, (due to lack of documentation) can be found in the
appendix.

Consequently, building a Tetris controller amounts to selecting or inventing fea-
ture functions, tuning the feature functions relative weights and implementing
a simulator application capable of taking strategies as input. Selecting feature
functions is typically done by a person that is well-versed in Tetris and has good
domain knowledge. However, it has previously been suggested [4] to make part of
the search space the problem of combining ”basic features” into high level features
that describes a relevant characteristic of the Tetris board. To this day, no one
seems to have attempted this. Tuning the feature functions relative weights can
be done manually as well [1], but is usually done using some kind of optimization
method [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 4, 15, 16].

A simulator application capable of taking strategies as input and playing games
of Tetris was implemented early in the project. Such application is only required

7

Figure 2.2: Each Tetris board depicts a well, but each well requires a more re-
laxed definition than that of the previous board. The first and left-most instance
is a typical well. The second instance is a well where the pattern does not persist
downwards. The third instance is a well that is covered by a full cell.

to adhere to the specifications of Tetris and its research aspect is limited. Section
2.3, 2.4, 2.5 and 2.6 refers to early experiments performed using strategies from
related work and our simulator application. An example of a game simulated
using our application can be found in the appendix.

8

Table 2.1: A summary of feature functions mentioned is existing literature.
The data was originally collected and constructed by Thiery and Scherrer [17]
and is shown with some additions of our own. Note that the 33rd feature function
was only used by Theiry and Scherrer during the 2008 Reinforcement Learning
Competition and not in the controller referred to in this report.

Feature Description L
ip

p
m

a
n

n
et

a
l.

,
1
9
9
3

T
si

ts
ik

li
s

a
n

d
v
a
n

R
o
y,

1
9
9
6

B
er

ts
ek

a
s

a
n

d
T

si
ts

ik
li
s,

1
9
9
6

K
a
k
a
d

e,
2
0
0
1

L
a
g
o
u

d
a
k
is

et
a
l.

,
2
0
0
2

D
el

la
ch

er
ie

(F
a
h

ey
,

2
0
0
3
)

F
a
h

ey
,

2
0
0
3

R
a
m

o
n

a
n

d
D

ri
es

se
n

s,
2
0
0
4

L
li
m

a
,

2
0
0
5

B
ö
h

m
et

a
l.

,
2
0
0
5

F
a
ri

a
s

a
n

d
v
a
n

R
o
y,

2
0
0
6

S
zi

ta
a
n

d
L

ö
ri

n
cz

,
2
0
0
6

T
h

ie
ry

a
n

d
S

ch
er

re
r,

2
0
0
9

L
a
n

g
en

h
o
v
en

,
2
0
1
0

S
ch

er
re

r,
2
0
1
3

1. Jags
Variability in the contour formed
by the tops of all pieces (not pre-
cisely documented)

x

2. Max height Maximum height of a column x x x x x x x x x x x x

3. Holes Number of empty cells covered by
a full cell

x x x x x x x x x x x x x x x

4. Column height Height of each column x x x x x x

5. Column difference
Height difference between each
pair of adjacent columns

x x x x x x

6. Landing height
The position along the vertical axis
of which the last piece landed

x x x x x

7. Cell transitions
The number of empty cells/borders
touching the edges of full cells

x

8. Deep wells
Sum of well depths, except for wells
with depth 1

x

9. Embedded holes
Sort of weighted sum of holes (not
precisely documented)

x

10. Height differences
Sum of the height differences be-
tween adjacent columns

x

11. Mean height Mean height of columns x x

12. ∆ max height
Variation of the maximum column
height

x

13. ∆ holes Variation of the hole number x

14. ∆ height differences Variation of the sum of height dif-
ferences

x

15. ∆ mean height
Variation of the mean column
height

x

16. Removed lines Number of lines cleared during the
last move

x x x x x

17. Height weighted cells Full cells weighted by their height x x x

18. Wells Sum of the depth of the wells x x x x

Continued on next page

9

Table 2.1 – continued from previous page

Feature Description L
ip

p
m

a
n

n
et

a
l.

,
1
9
9
3

T
si

ts
ik

li
s

a
n

d
v
a
n

R
o
y,

1
9
9
6

B
er

ts
ek

a
s

a
n

d
T

si
ts

ik
li
s,

1
9
9
6

K
a
k
a
d

e,
2
0
0
1

L
a
g
o
u

d
a
k
is

et
a
l.

,
2
0
0
2

D
el

la
ch

er
ie

(F
a
h

ey
,

2
0
0
3
)

F
a
h

ey
,

2
0
0
3

R
a
m

o
n

a
n

d
D

ri
es

se
n

s,
2
0
0
4

L
li
m

a
,

2
0
0
5

B
ö
h

m
et

a
l.

,
2
0
0
5

F
a
ri

a
s

a
n

d
v
a
n

R
o
y,

2
0
0
6

S
zi

ta
a
n

d
L

ö
ri

n
cz

,
2
0
0
6

T
h

ie
ry

a
n

d
S

ch
er

re
r,

2
0
0
9

L
a
n

g
en

h
o
v
en

,
2
0
1
0

S
ch

er
re

r,
2
0
1
3

19. Full cells Number of occupied cells on the
board

x x x

20. Eroded piece cells
(Number of lines cleared during
the last move) × (Number of cells
cleared from the last tetromino)

x x x

21. Row transitions Number of horizontal cell transi-
tions

x x x x

22. Column transitions Number of vertical cell transitions x x x x

23. Cumulative wells
∑

w∈wells(1 + 2 + · · · + depth(w)) x x

24. Min height Minimum height of a column x

25. Max - mean height x

26. Mean - min height x

27. Mean hole depth Mean depth of all holes x

28. Max height difference Maximum difference of height be-
tween two columns

x x

29. Adjacent column holes
Number of holes, where adjacent
holes in the same column count
only once

x x

30. Maximum well depth Maximum depth of a well x x

31. Hole depth Number of full cells in the column
above each hole

x

32. Rows with holes Number of rows having at least one
hole

x

33. Pattern diversity
Number of different transition pat-
terns between adjacent columns

x

10

2.2 Related work

Every related work mentioned in this report employ a controller such as that
described in the previous chapter. Score is consistently defined as the number
of lines cleared during a game. The works vary primarily in which features to
utilize and how to optimize their relative weights. However, some works stand
out as something different, such as that of Lippmann et al. [5]. Furthermore,
a summary of all related work, their choice of feature functions, optimization
method and obtained score can be found in table 2.2.

Lippmann et al. created a framework for pattern classification with neural net-
works, machine learning and statistics. They successfully constructed a neural
network capable of comparing two moves, which together with a preference net-
work was trained by observing another human player. The controller was then
able to mimic the strategies exhibited by the player it had observed. If the hu-
man player consistently played good moves, the network would gradually become
better and better. They reported a score of 18 after 50 pieces had fallen, which
is understandably lower than other controllers, as this would never become any
better than the human it observed.

Dellacherie and Fahey’s Tetris controllers (one-piece and two-piece controllers,
respectively) are notable for performing extremely well despite being optimized
manually, I.E. they used no optimization method to tune the relative weights
of the feature functions. Dellacherie also seems to be the only one who have
considered the original implementation of Tetris without the usual simplifications
made. This is a significantly harder domain, as it does not permit all moves
otherwise considered in the typically simplified domain [17].

Several controllers have been realized using methods of reinforcement learning.
Methods include Value Iteration [6], λ-Policy Iteration [7, 16], Natural Policy
Gradient [8], Least-Squares Policy Iteration [9], RRL-KBR [10] and Linear Pro-
gramming [13]. None of the controllers optimized using these methods perform
particularly well. This may be due to the nature of RL methods, in which the
weights are tuned such that the fitness function approximates the optimal ex-
pected score from any given state.

Lastly, some controllers utilize more general purpose optimization methods. Llima
[11] created a controller of which the weights was tuned by a genetic algorithm.
He reports using a population of 50 individuals (corresponding to a set of co-
efficients) over 18 generations. The evolution took 500 CPU-hours, distributed
over 20 workstations. The controller obtained a score of about 50,000 on average.
Böhm [12] also utilized a genetic algorithm, but unfortunately does not report
any averaged results due to running time reasons. Following that, Szita and

11

Lörincz [14] created a controller using Noisy Cross-Entropy. This is where it gets
interesting, as they report obtaining a score of 350,000. Thiery and Scherrer [4]
improved this approach by using the feature functions of Dellacherie along with
two of their own. They report obtaining a striking score of 35,000,000, putting
them on the top. Last in the category of general purpose optimization meth-
ods is Langenhoven [15], which applied Particle Swarm Optimization to train a
neural network. Initially, he tried using a network with hidden nodes, but experi-
ments showed that zero hidden nodes yielded highest score. The network without
hidden nodes simply amounted to a weighted sum of each feature function.

2.3 Difficulty of comparing controllers

The previous section summarized the reported scores, optimization methods and
choice of feature functions of fifteen different Tetris controllers. However, it turns
out that comparing the scores is somewhat difficult for couple of reasons described
in the next sections.

2.3.1 Domain variations

In the original game of Tetris, as specified by Fahey [1], tetrominos appear at
the center of the top edge of the board. The game ends if the tetromino does
not have sufficient space to enter the board. This property encourages a player
to keep that area clear secondary to clearing lines. Figure 2.3 illustrates one
particularly bad board and a conceivably better board, respectively, in terms of
this particular aspect.

In the interest of focusing on the problem at hand, namely creating an agent
that can choose a sensible orientation and position for the next tetromino, most
researchers considers a simplified version of Tetris. This version of Tetris deviates
from the original game in that the tetrominos are dropped directly in the column
decided upon. This allows some actions that otherwise would not be possible and
hence, the game is somewhat easier.

Dellacherie’s controller distinguishes itself from all other related work by adhering
to the original specification. The controller performs significantly better than
all controllers before its time. Thiery and Scherrer [17] reverse-engineered the
algorithm and ran it in the simplified setting previously described. They report a
score of 5,200,000. We also did this, but witnessed an average score of 6,700,000.
To this time the reason for the differing performance reports remains unknown.

12

A
u
t
h
o
r
(s
)

Y
e
a
r

O
p
t
.
m
e
t
h
o
d

F
e
a
t
u
r
e
s

C
o
n
t
r
o
l
l
e
r
T
y
p
e

S
c
o
r
e

L
ip

p
m

an
n

et
a
l.

[5
]

19
93

N
/A

1-
3,

1
6

o
n

e-
p

ie
ce

co
n
tr

o
ll

er
N

/
A

T
si

ts
ik

li
s

an
d

va
n

R
oy

[6
]

19
96

V
al

u
e

It
er

at
io

n
2-

3
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
3
1

B
er

ts
ek

as
an

d
T

si
ts

ik
li

s
[7

]
19

96
λ

-P
ol

ic
y

It
er

at
io

n
2-

5
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
3
,2

0
0

K
ak

ad
e

[8
]

20
01

N
at

u
ra

l
P

ol
ic

y
G

ra
d

ie
n
t

2-
5

o
n

e-
p

ie
ce

co
n
tr

o
ll

er
6
,8

0
0

L
ag

ou
d

ak
is

et
a
l.

[9
]

2
00

2
L

ea
st

-S
q
u

ar
es

P
ol

ic
y

It
er

at
io

n
2-

3,
1
0
-1

6
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
1
,0

0
0
-3

,0
0
0

D
el

la
ch

er
ie

[1
]

20
03

m
a
n

u
a
l

3,
6,

2
0
-2

3
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
6
5
0
,0

0
0

F
ah

ey
[1

]
20

03
m

a
n

u
a
l

3,
16

-1
9

tw
o
-p

ie
ce

co
n
tr

o
ll

er
7
,2

0
0
,0

0
0

R
am

on
an

d
D

ri
es

se
n

s
[1

0]
20

04
R

R
L

-K
B

R
2-

5,
1
1
,

1
8
,

2
4
-2

7
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
5
0

L
li

m
a

[1
1]

20
05

G
en

et
ic

A
lg

or
it

h
m

2-
3,

6
-9

o
n

e-
p

ie
ce

co
n
tr

o
ll

er
5
0
,0

0
0

B
öh

m
et

a
l.

[1
2]

20
05

G
en

et
ic

A
lg

or
it

h
m

2-
3,

6
,

1
6
-1

9
,

2
1
-2

2
,

2
8
-3

0
tw

o-
p

ie
ce

co
n
tr

o
ll

er
N

/
A

F
ar

ia
s

an
d

va
n

R
oy

[1
3
]

20
06

L
in

ea
r

P
ro

gr
am

m
in

g
2-

5
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
4
,7

0
0

S
zi

ta
an

d
L

ör
in

cz
[1

4]
20

06
N

oi
sy

C
ro

ss
-E

n
tr

op
y

2-
5

o
n

e-
p

ie
ce

co
n
tr

o
ll

er
3
5
0
,0

0
0

T
h

ie
ry

an
d

S
ch

er
re

r
[4

]
20

09
N

oi
sy

C
ro

ss
-E

n
tr

op
y

3,
6,

2
0
-2

3
,

3
1
-3

2
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
3
5
,0

0
0
,0

0
0

L
an

ge
n

h
ov

en
[1

5]
20

10
P

S
O

2-
3,

6
,

1
6
-2

2
,

2
8
-3

0
o
n

e-
p

ie
ce

co
n
tr

o
ll

er
2
7
5
,0

0
0

S
ch

er
re

r
[1

6
]

20
13

λ
-P

ol
ic

y
It

er
at

io
n

2-
5

o
n

e-
p

ie
ce

co
n
tr

o
ll

er
4
,0

0
0

T
a
b

le
2
.2

:
A

su
m

m
ar

y
of

re
la

te
d

w
o
rk

a
n

d
th

ei
r

re
su

lt
s.

14

Figure 2.3: In the setting of the original game of Tetris, the left board would
likely lead to game over, while the right board provides better chances of pro-
longing the game.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

15 16 17 18 19 20 21

S
c
o
re

Board height

Figure 2.4: Average performance of Dellacherie’s controller on different board
heights. The scores are measured over 100 games for each board height.

Bertsekas and Tsitsiklis [7] controller also cannot easily be compared to any other
as they defined the game to be over when ”a square in the top row becomes full
and the top of the wall reaches the top of th grid.” We have previously defined
game over as when a tetromino cannot be placed without overflowing the board.
Assuming that our definition is the correct one, this means that they have consid-
ered Tetris on a 10×19 board. Changing the height of the board greatly impacts
the performance of any Tetris controller. Figure 2.4 illustrates average scores for
Dellacherie’s controller in environments of different heights.

Another way a domain can vary is in how points are awarded. As previously
mentioned, an implementation may award additional points for clearing multiple
lines in the same move. As the maximum number of lines that can be cleared
during one move is four and can only be accomplished by using , the forma-
tion of deep wells might actually be beneficial in such an environment, which it
otherwise would not be. Hence, variation on the domain is significant because
they may encourage a player to use a different strategy.

This dependency between optimal strategy and environment means that one
cannot compare agents that have been optimized to perform in different Tetris
domains. Simply putting an agent in a different environment may very well yield
a completely different score. For instance, Böhm et al. [12] reports one score of
over 480,000,000 for their two-piece controller, but our experiments indicate that

15

the agent only clears lines in the number of hundreds in a one-piece environment.

2.3.2 Large deviation in score

We initially ran 500 simulations using Thiery and Scherrer’s Tetris controller
and plotted a histogram showing the frequency of scores, illustrated in figure 2.5.
The figure shows that the score of a Tetris controller may deviate heavily between
each game. Additionally, it shows that the score of a Tetris controller does not
converge around a single, expected value. It does however strongly resemble a
probability mass function of a geometric distribution. Thiery and Scherrer also
argues [17] that it is reasonable to assume that the score follows a geometric
distribution.

Unfortunately, most researchers does not provide a confidence interval with their
results. Of the mentioned authors here, Szita and Lörincz [14] and Thiery and
Scherrer [4] seems to be the only ones. Luckily, however, most researchers re-
ports having performed 100 or more simulations in order to obtain their score,
making them quite accurate. Thiery and Scherrer [4] has already explained how
to calculate a confidence interval, but for completeness it is repeated below.

The difference of an average score of µ̂ between N games and their expected score
of µ where the standard deviation σ is equal to the expected score µ satisfies

|µ− µ̂| ≤ kσ√
N

=
kµ√
N
' kµ̂√

N
(2.1)

|µ− µ̂|
µ̂

≤ k√
N

(2.2)

where k is given by the chosen probability p. We have chosen p = 0.95 for our
confidence intervals and as such k = 2. This means that with 100 simulated
games, the expected value is within ±2/

√
100 = ±20% of the observed average.

During the rest of the report the notation m± c% is used to denote an observed
average of m with a confidence interval of ±c%.

2.3.3 Differing feature functions

Table 2.1 summarizes all feature functions mentioned in existing literature. It
comes as no surprise that the choice of feature functions varies between almost
every publication. As previously mentioned in the introduction, we hypothesize

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5e+07 1e+08 1.5e+08 2e+08

F
re

q
u
e
n
c
y

Score

Figure 2.5: A histogram showing frequency of scores of Thiery and Scherrer’s
Tetris controller.

that the choice of feature function may greatly affect the performance of a Tetris
controller.

Another way to look at it is that the choice of feature function may somewhat
determine the potential of an optimization method. This matters when Tetris is
used as an optimization application and the intention is to compare the results
against other optimization methods. If our hypothesis is correct and it turns
out that some feature functions are inherently bad, then the results of some
optimization methods may be underrated.

2.4 Computational cost

The computational costs of running Tetris simulations are undoubtedly very high.
Fahey [1] reports that his first and only game performed using his two-piece
controller took 7.6 days. Szita and Lörincz [14] reports a total execution time of
a month. Thiery and Scherrer [4] reports using a week to tune the parameters
for their experiments, while the experiments itself took about a month. Lets
take a closer look at where all this time gets spent during execution of a Tetris
controller.

When a Tetris controller is served a new tetromino and is asked to place it on the

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

M
a

x
 h

e
ig

h
t

H
o

le
s

C
o

lu
m

n
 h

e
ig

h
t

C
o

lu
m

n
 d

iffe
re

n
c
e

L
a

n
d

in
g

 h
e

ig
h

t

C
e

ll tra
n

s
itio

n
s

D
e

e
p

 w
e

lls

H
e

ig
h

t d
iffe

re
n

c
e

s

M
e

a
n

 h
e

ig
h

t

∆
 m

a
x
 h

e
ig

h
t

∆
 h

o
le

s

∆
 h

e
ig

h
t d

iffe
re

n
c
e

s

∆
 m

e
a

n
 h

e
ig

h
t

R
e

m
o

v
e

d
 lin

e
s

H
e

ig
h

t w
e

ig
h

te
d

 c
e

lls

W
e

lls

F
u

ll c
e

lls

E
ro

d
e

d
 p

ie
c
e

 c
e

lls

R
o

w
 tra

n
s
itio

n
s

C
o

lu
m

n
 tra

n
s
itio

n
s

C
u

m
u

la
tiv

e
 w

e
lls

C
u

m
u

la
tiv

e
 w

e
lls

 (fa
s
t)

M
in

 h
e

ig
h

t

M
a

x
 - m

e
a

n
 h

e
ig

h
t

M
e

a
n

 - m
in

 h
e

ig
h

t

M
e

a
n

 h
o

le
 d

e
p

th

M
a

x
 h

e
ig

h
t d

iffe
re

n
c
e

A
d

ja
c
e

n
t c

o
lu

m
n

 h
o

le
s

M
a

x
im

u
m

 w
e

ll d
e

p
th

H
o

le
 d

e
p

th

R
o

w
s
 w

ith
 h

o
le

s

P
a

tte
rn

 d
iv

e
rs

iy

S
e
c
o
n
d
s

Accumulated time per feature

Figure 2.6: Distribution of time spent during feature function evaluation of
1,000,000 different Tetris board configurations.

board, it needs to consider each possible placement and evaluate the new board
that corresponds to that placement. Table 2.3 shows that the average number of
possible placements for a tetromino is 23.14. That’s 23.14 boards that needs to
be evaluated for each falling tetromino. For the sake of the simplicity of these
estimations, it is assumed that all placements are possible. This assumption is
quite safe due to the fact that the max column height rarely surpasses 16, making
the four topmost rows almost always empty.

Figure 2.6 shows how time is distributed amongst the feature functions when
1,000,000 different boards are evaluated for each type of feature. These experi-
ments was run on an Intel Core 2 Duo 2.40GHz CPU. Since the execution time of
a feature function may vary between different board configurations, evaluations
was done on the first 1,000,000 board configurations of a simulated game using
Dellacherie’s strategy. Total cumulated execution time was 36.08 seconds, which
gives us an average execution time of 1.1276 microseconds per feature function.

Since each tetromino always fill four cells on the board and each row is ten cells
wide, one row must be cleared for every 2.5 tetrominos that are placed in order
to sustain a game of Tetris. This means that the average score of 35,000,000
involves placing 87,500,000 tetrominos. Given the average number of placements
to consider, average execution time of evaluation functions and assuming that a
typical strategy consist of six feature functions, we can estimate the time it takes

18

Tetrominos Possible placements on a board

9

(7 + 10 =) 17

(8 + 9 =) 17

(8 + 9 =) 17

(8 + 9 + 8 + 9 =) 34

(8 + 9 + 8 + 9 =) 34

(8 + 9 + 8 + 9 =) 34

Table 2.3: The number of possible ways one can place each tetromino on an
empty 10 by 20 Tetris board. The average number is 23.14.

to play such a such game.

87.5M · 23.14 · 1.1276µs · 6 = 3 hours 48 minutes 18.65 seconds (2.3)

Tests show that 93% of execution time during a simulated game is spent dur-
ing feature function evaluations 1. With just two pieces known, the number of
boards (corresponding to each combination of placements) to consider increases
to 23.142 = 535.45. This effectively means that the 93% of execution time spent
on feature function evaluation is multiplied by 23.14. It becomes clear that in-
creasing lookahead will greatly reduce performance (in terms of execution speed)
of any Tetris controller.

Unfortunately, there is no easy way to reduce the computational costs of simu-
lating a game of Tetris. It is not parallelizable in any obvious way and no one
reports having attempted that. Reducing the computational costs can therefore
only be achieved by optimizing the application itself. However, all optimization
algorithms mentioned so far requires simulating multiple games and multiple sim-
ulations are parallelizable, as they do not depend on each other. For this project,
we were given 150,000 CPU hours on NTNUs supercomputer Vilje, which allowed
us to perform the necessary computations. See section 3.4.7 for a more detailed
description regarding parallelization.

1Application profiling was done using perf : Linux profiling with performance counters.

19

It should be mentioned for completeness that while Langenhoven [15] points out
that genetic algorithms have been used to optimize the speed of programs evolved
to play Tetris [18], it is not applicable to any type of Tetris controller used in the
mentioned works, nor theirs. The referred publication considers an agent with
variable decision time in terms of placing a tetromino, whereas the controllers
described here utilize a weighted sum of values to sort board configurations, which
is executed in constant time.

2.5 Application optimization

Initial experiments using Tetris strategies from related publications indicated
that our application for simulating games of Tetris was only able to play around
7,000 moves per second during a single simulated game on an Intel Core 2 Duo
2.40GHz CPU. This was significantly lower than the reported performance of
Thiery and Scherrer’s controller of between 50,000 and 100,000 moves per second
[4]. This was a motivator for optimizing the application.

The application was optimized by changing the way a Tetris board was repre-
sented internally in the software. Initially, a board was represented using 10× 20
integer variables (where the size was configurable). When calculating E.G. the
number of holes on the board, each column would be iterated across and consid-
ered on its own and the results would be summed together.

After optimization, the board was represented using 20 16-bit integers variables,
where 10 bits is used to represent the state of one row, where each cell can either
be empty or full. This type of representation allowed us to calculate the number
of holes in each column at the same time by utilizing bitwise operations. In other
words, the number of holes in each column could be calculated simultaneously
instead of considering each column on its own. Figure 2.7 shows how holes are
calculated using bitwise operations.

As a result of the optimization, the application was able to play 30,000 moves per
second during a single simulated game on the previously mentioned hardware.
This amounts to a performance increase of 328%.

2.6 Estimating performance of a strategy

In the interest of reducing the computational costs of simulating Tetris games, it
has been suggested [1] that the performance of a strategy can in fact be estimated
by sampling data from an unfinished game. Figure 2.8 shows how data from the

20

int f_n_holes (struct board * board) {

int n_holes = 0;

uint16_t row_holes = 0x0000 ,

previous_row = 0x0000;

for (int y = 0; y < BOARD_HEIGHT; y++) {

// A cell is a hole if it is empty (~ full) and the cell

above is full or already determined to be a hole.

row_holes = ~board ->lines[y] & (previous_row | row_holes);

n_holes += full_cells_on_line[row_holes];

previous_row = board ->lines[y];

}

return n_holes;

}

Figure 2.7: The method (simplified for clarity) for calculating the number of
holes on a Tetris board using bitwise operations.

beginning of the game and spanning a small time frame compares to that of a
larger time frame.

The left chart illustrates a histogram where each bin corresponds to the number
of tetromino placements that resulted in a particular maximum column height
(after full lines are cleared), hereby denoted as h. The three plots are of the first
250,000, 2,500,000 and 25,000,000 placed tetrominos during a simulated game
using Dellacherie’s strategy. The right chart is a normalized version of the same
histogram.

The normalized plots are practically identical and shows a certain tendency of
convergence. This strongly indicates that the maximum height of a board can be
expressed as a random variable with some expected value and distribution. We
denote the random variable as X and P (X = n) as the frequency of h = n. Fahey
[1] hypothesized that the tail of the plots has an exponential distribution. Thiery
and Scherrer [17] however suggests that the score follows a geometric distribution.

Their theory is that by deciding upon a distribution, one can use regression to
estimate the parameters of it. With the distribution known as a function, one
can calculate P (X = 21) (which is when the game of Tetris ends) and thus
estimate the expected duration of a game by only playing some n tetrominos.
Unfortunately, neither Fahey nor Thiery and Scherrer has experienced success in
their attempts of estimating performance of strategies.

21

22

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 5 10 15 20

F
re

q
u
e
n
c
y

Maximum height

250,000 tetrominos
2,500,000 tetrominos

25,000,000 tetrominos

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

Maximum height

250,000 tetrominos
2,500,000 tetrominos

25,000,000 tetrominos

Figure 2.8: Frequencies of maximum column height during the first n moves of
a simulated game using Dellacherie’s strategy, where n is 250,000, 2,500,000 and
25,000,000. The bottom chart shows the scaled plots of the top chart.

Figure 2.9: A relatively full Tetris board that is certainly doomed to fail during
placement of the next tetromino.

However, P(X = 21) does not include all possible ways that a game of Tetris can
end. Some board configurations will necessarily result in a board height of at least
h = 22 for a given falling tetromino. An example of such board configuration is
shown in figure 2.9. Placing will result in either h = 22 or h = 23. Hence,
both P (X = 22) and P (X = 23) must somehow be factored in. We have not
investigated this any further.

23

Chapter 3

Methodology

3.1 Inspiration

Genetic algorithms are a subset of evolutionary computation, a field of comput-
ing that is largely inspired by Charles Darwin’s theory of evolution [19] and his
explanation of biological diversity in nature and the underlying mechanisms that
they are a result of. He explained that in a limited environment that can only
host a certain number of individuals and where each individual has an instinc-
tual desire to reproduce, natural selection will inevitably occur because of the
competition that arise.

Natural selection is the process by which phenotypic traits (the physical and
behavioral characteristics that an individual exhibits in a population) change
and become more or less common as a result of the effect that they have on the
reproductive success of the holding individuals. Good traits, in terms of their
effect on the ability to create offspring, will over time dominate a population and
bad traits will disappear.

Darwin suggested that phenotypic traits are inherited, but that tiny, random
variations occur during reproduction. This gives rise to new combinations of
traits and with bad combinations being lost due to natural selection, evolution of
the population will progress. With time, it will become more and more adapted
to fit in its environment. This is sometimes called macroevolution.

Modern molecular genetics offers another perspective on natural evolution and
helps to explain what happens on a lower level. The main observation to make is
that every individual can be seen as containing both a genotype and a phenotype,

24

where the genotype encodes the phenotype. Genes are the inheritable units and
evolutionary mechanisms such as recombination and mutation that occurs during
reproduction works on the genome of an individual. This is sometimes called
microevolution.

3.2 Why evolutionary computing?

Evolution occurring in nature has proven itself to be a powerful problem solver
and has come up with vastly complex solutions such the human brain. Methods
of evolutionary computing has previously been employed to a vide variety of
problems and often with good results.

One example of a practical problem where an evolutionary algorithm has been
successfully applied is the design of NASA’s ST5 spacecraft antenna, by Globus
et al. [20]. The evolved antenna was superior to the conventional antenna design
in regard to power consumption, fabrication time, complexity and performance.

Another example of a similarly successful employment of an evolutionary algo-
rithm is the satellite dish boom holder by Keane and Brown [21]. This ladder
connects a satellite to the communication dish. The ladder must dampen vibra-
tions as there is no air resistance in space to do it otherwise. They report that
the evolved solution performed 20,000% better than traditional constructions.

Both of these examples are particularly remarkable. The applications of both
examples, namely radio antennas and satellite dish booms, is something that
traditionally has been crafted by hand and required extensive domain knowledge.
This naturally encourages some kind of convention, which is in itself not a good
driving force towards quality. They both illustrates the power of the evolutionary
approach and its ability to devise seemingly random, but better solutions. It does
so without any intelligence, but being purely driven by quality and not limited
by convention, aesthetic considerations or human thinking and our preference for
symmetry.

3.3 What is an evolutionary algorithm?

There are many variants of evolutionary algorithms, where some of the most no-
table ones are genetic algorithms (GA), genetic programming (GP), evolutionary
programming (EP) and evolution strategy (ES). However, these are all very sim-
ilar in that they share the underlying idea of Darwin’s theory of evolution: given

25

population = initialize_random_candidate_solutions

until termination_condition_met? do

parents = select_parents(population)

children = recombine_pairs_of_parents(parents)

mutate_children(children)

evaluate_children(children)

population = select_surviving_children(children)

end

Figure 3.1: Pseudo code showing the scheme of a typical evolutionary algorithm.

that a population is restricted by limitation of resources, competition will arise
and natural selection will occur.

In a typical evolutionary algorithm, a population of random candidate solutions
are initialized. A fitness function is then applied to each candidate. The candi-
dates that are better in terms of fitness value is used to seed the next generation.
Seeding typically involves a recombination function that takes multiple candi-
dates as input, as well as a mutation function. This process is often repeated
until a targeted solution is achieved or a computational limit is reached. This
scheme is outlined with pseudo code in figure 3.1.

There are especially three features that serves as extra important when construct-
ing an evolutionary algorithm:

• Problem and solution representation. The method of representing solutions
must be capable of representing a broad spectrum of the actual solution
space, as to not lose possibly good solutions.

• Recombination and mutation functions. These must be able create and
maintain a certain degree of diversity in the solutions represented by the
population.

• Parent and survival selection methods. The selection mechanisms must
ensure that the quality of the population increases over time and progresses
towards the goal.

26

3.4 Implementation

The genetic algorithm and all subsequent methods for simulating games of Tetris
was written in C 1.

3.4.1 Representation

The genotype consist of one sequences of integers. The values encodes the weights
for each feature function. Since each feature function can have multiple weights
associated with it (such as 4. and 5., see table 2.1), the length of this sequence
is

∑nf nw,i, where nf is the number of features that are chosen and nw,i is the
number of weights of feature i.

3.4.2 Fitness function

As previously mentioned, the genotype of an individual encodes several integer
values. These values serves as a candidate solution to the given problem (namely
the game of Tetris). The fitness of the individual is determined by the average
number of lines cleared during a configurable number of nt trial games using its
encoded values for feature weights..

3.4.3 Selection

Three different types of selection mechanism was implemented: stochastic uni-
versal sampling (a development of fitness proportionate selection), tournament
selection and a modification of Goldberg’s sigma scaling, where an individual’s
modified fitness value is given by

f ′(i, g) = 1 +
f(i)− f ¯(g)

2σ(g)
(3.1)

where f(i) is the original fitness of individual i, f ¯(g) is the average fitness value
of the individuals in population g and σ(g) is the standard deviation of the popu-
lation’s fitness. There is no survivor selection, only full generational replacement.

1The source code is available on Github under the MIT license: https://github.com/

badeball/tetris-ea.

27

For the tournament selection mechanism, a group of tn individuals is randomly se-
lected from the population and the individual with highest fitness value is selected
to become a parent. Additionally, with a probability of tp, a random individual
will be selected from the tournament group instead of the best individual.

3.4.4 Elitism

Elitism was implemented, where a configurable number of ne of the best individ-
uals of a generation is automatically transferred to the next generation without
competing with the other individuals. The purpose of this feature in an evolu-
tionary algorithm is to not lose good genetic traits due to random events.

The implications are however twofold. By keeping good individuals, evolution
will consistently evolve better individuals. On the other side, by always sticking
with previously evolved good solution, it will lose some of its ability to search for
solutions outside of the locality of its total genetic diversity.

3.4.5 Crossover

Both N-point crossover and uniform crossover was implemented. For each crossover
operation, the genotypes are considered to consist of nf pieces, meaning that
weights that are associated to the same feature are transferred together from the
same individual. Crossover between two parents will only occur with a proba-
bility pc. In case where crossover does not occur, one random parent is selected
and copied to the next generation.

3.4.6 Mutation

For mutation, the genotype is iterated across and each allele is randomly modified
with a probability pm. In case of mutation, the allele is adjusted with a random
number in a configurable range mr. Hence, the values can drift and obtain large
relative weights by chance.

3.4.7 Parallelization

In every variant of evolutionary algorithm mentioned above, many candidate
solutions are created during execution: firstly by random initialization, then
by recombination and mutation. A fitness function usually must be applied

28

to each individual in order to perform some kind of selection. In some cases,
including our own, applying the fitness function to each candidate solution can
be done independently. This allows for some parallelization. In our case, almost
all execution time is spent during fitness evaluation and as such, parallelization
yields a large performance boost.

Parallelization was performed using Message Passing Interface (MPI). With MPI,
the same program is spawned multiple times across nodes of processors and each
process is given a unique rank ranging from zero and upwards. With our program,
every process assumes a role based on their rank: the zero-ranked process is tasked
with initializing and maintaining a population of candidate solutions, and every
other process simply listens for requests to calculate fitness value of candidate
solutions.

Our simulations was executed on NTNUs supercomputer Vilje. This computer
cluster is composed of 1404 nodes running SUSE Linux Enterprise Server 11,
whereas each node consists of 2 Intel Xeon E5-2670 CPUs (2.6 GHz, 8 cores with
hyper-threading). A typical execution of the program was performed using 4
nodes and 32 processes was spawned on each node.

3.4.8 Random values

Early experiments quickly uncovered issues with our choice of random number
generator. Initially, our source of random numbers was just a local implementa-
tion of a linear congruential generator. This was seeded using system time added
with a multiple of the process rank. However, these linearly correlated seed num-
bers proved to be inefficient. This was solved by using GNU Scientific Library
and seeding it using a hash function of system time and process identifier, as
suggested by Katzgraber [22] and illustrated below.

int seed () {

int s, pid;

s = time(NULL);

pid = getpid ();

return abs(((s * 181) * ((pid - 83) * 359)) % 104729);

}

29

Chapter 4

Results

4.1 Comparing environments

In order to test our hypothesis described in the introduction, the evolutionary
algorithm was executed in each environment described in all mentioned publi-
cations (hereby referred to as just the environments). Nearly all the mentioned
works utilize completely different sets of feature functions, except for Bertsekas
and Tsitsiklis [7], Kakade [8], Farias and van Roy [13], Szita and Lörincz [14]
and Scherrer [16], which all have chosen 2-5. However, Bertsekas and Tsitsiklis
[7] utilize a definition of game-over which differs from the rest and consequently
their result is not trivially comparable to the rest.

Due to time constraints during the project period, we were not able to implement
the original specifications of the Tetris game as described by Fahey [1]. A con-
servative approximation to these specifications is a game of board height of only
16 tiles. Any action possible on such a board with the simplified setting would
also be possible on a board of full height with the original specification, as no
tetromino is higher than 4 tiles. This approximation was used when considering
the environment described by Dellacherie. We were also not able to execute our
algorithm in any two-piece environment for the same reason.

Each evaluation was run using the parameters shown in table 4.1, which was found
to yield good results. Figure 4.2, 4.3, 4.4, 4.5, 4.6, 4.8, 4.9, 4.10 and 4.11 shows
the results of evolution within each environment. The top illustrations depict
the progress of evolution, showing the score of the worst and best individual of
each generation, as well as the average score and the 25% and 75% quartile. The

30

Parameter Value

ne elitism 2
np population size 100
ng generation limit 50
nc crossover points 2

selection mechanism tournament
tn tournament group size 10
tp tournament random selection rate 0.1
pm mutation rate 1/l
pc crossover rate 0.5
nt number of trials 100
mr adjusting mutation range [−100, 100]

Table 4.1: Parameters found to yield good results and subsequently used in the
experiments. l is the number of integers contained in a genotype, described in
section 3.4.1 Representation.

bottom illustrations shows the performance of the resulting evolved controller.
400 evaluations was performed to obtain a confidence interval of ±10% with
probability 0.95. The numbers are summarized in table 4.2.

4.2 Unbiased feature selection

The same genetic algorithm was run in an environment were it could freely choose
between every feature function. The ”enabled status” of a feature function would
be randomly initialized upon execution and would be subject to mutation during
evolution. The status bits had the same probability of being mutated as a feature
function weight and both possible values (true and false) was equally probable.
The mutation rate pm was configured to 0.0625 (= 2/32) and all other parameters
remained the same.

Figure 4.12 shows the result of evolution within this environment. The final
controller obtained a score of 14,690,265 and consisted of the weights shown in
table 4.3.

31

C
o
m
p
e
t
it
o
r
s(
s)

F
e
a
t
u
r
e
s

T
h
e
ir

sc
o
r
e

O
u
r
sc

o
r
e

E
v
o
lv

e
d

w
e
ig
h
t
s

L
ip

p
m

an
n

et
a
l.

[5
]

1-
3,

16
N

/A
4
2
±

1
0
%

(0
*
,

-4
4
,

-3
,

7
5
)

T
si

ts
ik

li
s

an
d

va
n

R
oy

[6
]

2-
3

31
4
0
±

1
0
%

(-
4
5
,

-3
3
)

B
er

ts
ek

as
an

d
T

si
ts

ik
li

s
[7

]
2-

5
3,

20
0

2
±

1
0
%

(7
,

3
7
,

1
6
,

4
2
,

-4
4
,

-2
5
,

3
1
,

-9
1
,

-2
4
,

4
,

-3
,

-4
3
,

5
0
,

-1
3
,

-3
7
,

1
0
,

-3
6
,

-3
0
,

-2
2
,

-2
7
,

-4
3
)

K
ak

ad
e

[8
]

2-
5

6,
80

0
0
±

1
0
%

(-
1
5
,

9
,

6
4
,

6
,

2
7
,

-6
,

-4
9
,

-6
,

-1
2
,

1
8
,

4
0
,

-1
1
,

-3
7
,

-1
9
,

3
1
,

1
,

2
7
,

-4
4
,

6
1
,

3
2
,

4
1
)

L
ag

ou
d

ak
is

et
a
l.

[9
]

2-
3,

10
-1

6
1,

00
0-

3,
00

0
1
,9

6
7
±

1
0
%

(5
,

-4
4
,

-1
3
,

-8
2
,

8
7
,

4
0
,

-4
6
,

3
2
,

-6
2
)

D
el

la
ch

er
ie

[1
]

3,
6,

20
-2

3
65

0,
00

0
5
4
6,

3
7
7
±

1
0
%

(-
4
1
,

-2
0
,

1
4
,

-1
6
,

-5
0
,

-1
7
)

F
ah

ey
[1

]
3,

16
-1

9
7,

20
0,

00
0

N
/
A

N
/
A

/

R
am

on
an

d
D

ri
es

se
n

s
[1

0]
2-

5,
11

,
18

,
24

-2
7

50
0
±

1
0
%

(3
9
,

4
1
,

2
3
,

-1
5
,

-2
2
,

-1
7
,

-3
5
,

8
7
,

3
8
,

3
7
,

2
8
,

-1
5
,

1
5
,

-2
9
,

1
4
,

2
1
,

-1
6
,

-4
0
,

2
7
,

5
,

-3
2
,

-2
0
,

-4
8
,

-1
5
,

5
0
,

-1
,

-2
4
)

L
li

m
a

[1
1]

2-
3,

6-
9

50
,0

00
4
1
8
,9

4
4
±

1
0
%

(7
,

-9
0
,

-1
5
,

-1
7
,

-3
6
,

0
*
)

B
öh

m
et

a
l.

[1
2]

2-
3,

6,
16

-1
9,

21
-2

2,
28

-3
0

N
/A

N
/
A

N
/
A

F
ar

ia
s

an
d

va
n

R
oy

[1
3]

2-
5

4,
70

0
0
±

1
0
%

(-
1
5
,

9
,

6
4
,

6
,

2
7
,

-6
,

-4
9
,

-6
,

-1
2
,

1
8
,

4
0
,

-1
1
,

-3
7
,

-1
9
,

3
1
,

1
,

2
7
,

-4
4
,

6
1
,

3
2
,

4
1
)

S
zi

ta
an

d
L

ör
in

cz
[1

4]
2-

5
35

0,
00

0
0
±

1
0
%

(-
1
5
,

9
,

6
4
,

6
,

2
7
,

-6
,

-4
9
,

-6
,

-1
2
,

1
8
,

4
0
,

-1
1
,

-3
7
,

-1
9
,

3
1
,

1
,

2
7
,

-4
4
,

6
1
,

3
2
,

4
1
)

T
h

ie
ry

an
d

S
ch

er
re

r
[4

]
3,

6,
20

-2
3,

31
-3

2
35

,0
00

,0
00

3
2
,2

5
4
,6

0
4
±

1
0
%

(5
,

-3
3
,

9
,

-2
0
,

-7
6
,

-3
1
,

-2
,

-6
5
)

L
an

ge
n

h
ov

en
[1

5]
2-

3,
6,

16
-2

2,
28

-3
0

27
5,

00
0

2
,9

0
5
,7

3
7
±

1
0
%

(-
6
0
,

-1
5
5
,

-4
6
,

2
2
,

-2
,

-8
3
,

1
4
,

3
3
,

-7
2
,

-1
5
1
,

4
5
,

-9
7
,

-3
2
)

S
ch

er
re

r
[1

6]
2-

5
4,

00
0

0
±

1
0
%

(-
1
5
,

9
,

6
4
,

6
,

2
7
,

-6
,

-4
9
,

-6
,

-1
2
,

1
8
,

4
0
,

-1
1
,

-3
7
,

-1
9
,

3
1
,

1
,

2
7
,

-4
4
,

6
1
,

3
2
,

4
1
)

T
a
b

le
4
.2

:
A

su
m

m
ar

y
of

ou
r

re
su

lt
s

si
d

e-
b
y
-s

id
e

w
it

h
th

e
co

m
p

et
it

o
rs

.
T

h
e

m
a
rk

ed
(*

)
w

ei
g
h
ts

a
re

w
ei

g
h
ts

o
f

fe
at

u
re

fu
n

ct
io

n
s

th
at

w
e

w
er

e
u

n
ab

le
to

im
p

le
m

en
t

d
u

e
to

la
ck

o
f

d
o
cu

m
en

ta
ti

o
n

.

33

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

L
ip

p
m

a
n
n
 	e

x
tite

t a
l.

T
s
its

ik
lis

 a
n
d
 v

a
n
 R

o
y

B
e
rts

e
k
a
s
 a

n
d
 T

s
its

ik
lis

K
a
k
a
d
e

L
a
g
o
u
d
a
k
is

 	e
x
tite

t a
l.

D
e
lla

c
h
e
rie

R
a
m

o
n
 a

n
d
 D

rie
s
s
e
n
s

L
lim

a

F
a
ria

s
 a

n
d
 v

a
n
 R

o
y

S
z
ita

 a
n
d
 L

ö
rin

c
z

T
h
ie

ry
 a

n
d
 S

c
h
e
rre

r

L
a
n
g
e
n
h
o
v
e
n

S
c
h
e
rre

r

S
c
o

re

Our controller
Their controller

Figure 4.1: A comparison of the performances of our controller evolved in each
environment and every other reported result.

Feature Value

3. Holes -35
6. Landing height -51
7. Cell transitions -46
8. Deep wells -12
10. Height differences 19
11. Mean height 6
12. ∆ max height 50
13. ∆ holes 25
15. ∆ mean height 17
18. Wells -19
21. Row transitions -38
23. Cumulative wells -42
24. Min height -41
26. Mean - min height -60
29. Adjacent column holes -155

Table 4.3: The Tetris strategy evolved in an environment where the evolutionary
algorithm could freely choose between every feature function.

34

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

F
re

q
u
e
n
c
y

Score

Figure 4.2: Progress during evolution using the same environment as Lippmann
et al. [5] (top chart), and the performance of the resulting Tetris controller,
illustrated with a histogram showing the frequency of scores (bottom chart).

35

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

F
re

q
u
e
n
c
y

Score

Figure 4.3: Progress during evolution using the same environment as Tsitsiklis
and van Roy [6] (top chart), and the performance of the resulting Tetris controller,
illustrated with a histogram showing the frequency of scores (bottom chart).

36

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

F
re

q
u
e
n
c
y

Score

Figure 4.4: Progress during evolution using the same environment as Bert-
sekas and Tsitsiklis [7] (top chart), and the performance of the resulting Tetris
controller, illustrated with a histogram showing the frequency of scores (bottom
chart).

37

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90 100

S
c
o
re

Generation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

F
re

q
u
e
n
c
y

Score

Figure 4.5: Progress during evolution using the same environment as Kakade
[8] (top chart), and the performance of the resulting Tetris controller, illustrated
with a histogram showing the frequency of scores (bottom chart).

38

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

F
re

q
u
e
n
c
y

Score

Figure 4.6: Progress during evolution using the same environment as
Lagoudakis et al. [9] (top chart), and the performance of the resulting Tetris
controller, illustrated with a histogram showing the frequency of scores (bottom
chart).

39

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06

F
re

q
u
e
n
c
y

Score

Figure 4.7: Progress during evolution using the same environment as Dellacherie
[1] (top chart), and the performance of the resulting Tetris controller, illustrated
with a histogram showing the frequency of scores (bottom chart).

40

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

F
re

q
u
e
n
c
y

Score

Figure 4.8: Progress during evolution using the same environment as Ramon
and Driessens [10] (bottom chart), and the performance of the resulting Tetris
controller, illustrated with a histogram showing the frequency of scores (bottom
chart).

41

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 70

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

F
re

q
u
e
n
c
y

Score

Figure 4.9: Progress during evolution using the same environment as Llima [11]
(top chart), and the performance of the resulting Tetris controller, illustrated with
a histogram showing the frequency of scores (bottom chart).

42

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1 2 3 4 5 6 7

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+08 2e+08

F
re

q
u
e
n
c
y

Score

Figure 4.10: Progress during evolution using the same environment as Thiery
and Scherrer [4] (top chart), and the performance of the resulting Tetris controller,
illustrated with a histogram showing the frequency of scores (bottom chart).

43

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 70

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

F
re

q
u
e
n
c
y

Score

Figure 4.11: Progress during evolution using the same environment as Lan-
genhoven [15] (top chart), and the performance of the resulting Tetris controller,
illustrated with a histogram showing the frequency of scores (bottom chart).

44

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 5 10 15 20 25 30 35 40

S
c
o
re

Generation

 0

 10

 20

 30

 40

 50

 60

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1e+08

F
re

q
u
e
n
c
y

Score

Figure 4.12: Progress during evolution using an unbiased selection of feature
functions, and the performance of the resulting Tetris controller, illustrated with
a histogram showing the frequency of scores (bottom chart).

Chapter 5

Discussion

5.1 Feature function contribution to search space

A curious observation to make is that the presented evolutionary algorithm per-
forms very poorly in environments that consists of the feature functions 4 and
5. It does not manage to evolve a controller that is capable of clearing any lines
at all. During evolution within these environment, the algorithm would search
frantically for candidate solutions, but not find anything that yielded any score.
One possible explanation for this particular result is that with these two feature
functions as part of the environment, the search space increases dramatically, as
they require 10 and 9 weights to be tuned, respectively. Comparatively, every
other feature function only depend upon one weight and only increase the search
space by a single dimension.

An increase of search space will make a problem more difficult for any general
optimization method. However, most of the related work that consists of the two
previously mentioned feature functions utilize reinforcement learning methods,
which are fundamentally different in the way they find a solution. In the works
of these methods, weights are tuned such that the fitness function approximates
the optimal expected score from any given state. This does not in itself explain
why these optimization methods are able to provide a solution, while our general
purpose method is not. It does however provide some grounds to the conception
that these two types of optimization methods might perform differently in some
areas.

45

5.2 Large score deviation & halting evolution

It turned out that the large deviation of Tetris score affected the general per-
formance of our evolutionary algorithm more than we had hoped for. Due to
the random nature of an evolutionary algorithm, states of the search spaces, IE.
candidate solutions, would be re-visited and re-evaluated. Together with elitism,
identical solutions would be evaluated multiple times and the best observed av-
erage of a limited number of trials would be kept.

This ”duped” the evolution and contributed to seed generations with genetic
traits that were really not as good as its fitness value indicated. We observed that
the progress of evolution would halt once an individual received an unusual high
score and was mistakenly threated as an elite. This phenomenon is illustrated in
figure 5.1. The horizontal line marks the generations where the best individual
actually never changed, but was simply re-evaluated. It can be seen that the
average fitness of the population stops to progress.

This issue was addressed by increasing the number of trials that was performed
for each individual during evolution, from 30 to 100, making the scores more
statistically significant. This increased the overall performance of the algorithm.
For the environment described by Llima [11], our algorithms score increased from
287,791 to 418,944. Another way this could have be solved would be to simply
keep a record of every evolved individual of every generation and never calculate
an individuals fitness value if it had previously been visited. Possibly even better
would be a combination of never re-evaluating candidate solutions and having a
high number of trial runs per individual.

5.3 Competitive general purpose optimization

Another interesting observation to make is that the genetic algorithm evolves
Tetris controllers that are very competitive compared to that of other general
purpose optimization methods [4, 11, 15]. This does not come as a complete
surprise, as the problem at hand (namely evolving coefficients/relative weights)
exhibits attributes that are beneficial for an evolutionary algorithm. First of all,
the domain has a fitness landscape that is not jagged, but quite smooth. Secondly,
the mutation operators previously described are such that they don’t change an
individual too much. Lastly, it possible to combine two sets of coefficients to
create another candidate solution and get decent results. This very same genetic
algorithm has previously been tested in the domain of Rubik’s Cube [23], but it
achieved very poor results due to its lack of these three attributes.

46

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

S
c
o
re

Generation

Figure 5.1: The line marks the generations where the best individual remains
the same, but still achieves a higher score. This halts the progress of evolution.

5.4 Time constraints

It can be seen in figure 4.10 and 4.12 that some executions of the evolutionary
algorithm did not continue long enough for the progress of evolution to stagnate
and halt. This was due to constraints of the granted CPU hours on the super
computer and was obviously very unfortunate. How an evolutionary algorithm
can perform in the corresponding environments is therefore still not completely
answered.

47

Chapter 6

Conclusion

We hypothesised initially that the choice of feature functions may greatly affect
the overall performance of a Tetris controller. In order to test this, we tried to
evolve a Tetris controller using the same feature functions and Tetris environment
described in several scientific publications. The results clearly shows scores that
differs substantially. This strongly suggest that the choice of feature functions is
important and will greatly affect the overall performance of a Tetris controller.
It also confirms the notion that it is impossible to compare optimization meth-
ods tested in the Tetris domain unless one has chosen the exact same feature
functions. This is unfortunately not the case for most publications.

Thiery and Scherrer [17] specifically asks under what conditions the cross-entropy
method could perform better than genetic algorithms or if they do. For the time
being, it would seem like it beats the evolutionary approach in the domain of
Tetris. However, we strongly believe that our implementation will experience
some performance improvement when properly addressing the issues of re-visited
candidate solutions. Given that our results are so similar, we hesitate to exclude
the option that this might put the evolutionary approach on the top. To address
these issues is left as further work.

48

Bibliography

[1] C. P. Fahey, “Tetris.” http://www.colinfahey.com/tetris/tetris.html.
[Online; accessed 15-March-2014].

[2] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris is hard, even
to approximate,” in Computing and Combinatorics, pp. 351–363, Springer,
2003.

[3] H. Burgiel, “How to lose at tetris,” Mathematical Gazette, vol. 81, pp. 194–
200, 1997.

[4] C. Thiery and B. Scherrer, “Improvements on learning tetris with cross-
entropy,” International Computer Games Association Journal, vol. 32, 2009.

[5] R. P. Lippmann, L. Kukolich, and E. Singer, “Lnknet: Neural network,
machine-learning, and statistical software for pattern classification,” Lincoln
Laboratory Journal, vol. 6, pp. 249–249, 1993.

[6] J. N. Tsitsiklis and B. V. Roy, “Feature-based methods for large scale dy-
namic programming,” Machine Learning, vol. 22, no. 1-3, pp. 59–94, 1996.

[7] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming,” Athena
Scientific, Belmont, MA, 1996.

[8] S. Kakade, “A natural policy gradient,” Advances in Neural Information
Processing Systems, vol. 14, 2001.

[9] M. G. Lagoudakis, R. Parr, and M. L. Littman, “Least-squares methods in
reinforcement learning for control,” in Methods and Applications of Artificial
Intelligence, pp. 249–260, Springer, 2002.

[10] J. Ramon and K. Driessens, “On the numeric stability of gaussian processes
regression for relational reinforcement learning,” in ICML-2004 Workshop
on Relational Reinforcement Learning, pp. 10–14, Citeseer, 2004.

49

[11] R. E. Llima, “Xtris readme.” ftp://ftp.x.org/contrib/games/xtris.

README. [Online; accessed 15-March-2014].

[12] N. Böhm, G. Kókai, and S. Mandl, “An evolutionary approach to tetris,”
in 6th Metaheuristics International Conference (6th Metaheuristics Interna-
tional Conference Wien August 22-26, 2005), 2005.

[13] V. F. Farias and B. V. Roy, “Tetris: A study of randomized constraint
sampling,” in Probabilistic and Randomized Methods for Design Under Un-
certainty, pp. 189–201, Springer, 2006.

[14] I. Szita and A. Lörincz, “Learning tetris using the noisy cross-entropy
method,” Neural computation, vol. 18, no. 12, pp. 2936–2941, 2006.

[15] L. Langenhoven, W. S. van Heerden, and A. P. Engelbrecht, “Swarm tetris:
Applying particle swarm optimization to tetris,” in Evolutionary Computa-
tion (CEC), 2010 IEEE Congress on, pp. 1–8, IEEE, 2010.

[16] B. Scherrer, “Performance bounds for λ policy iteration and application to
the game of tetris,” The Journal of Machine Learning Research, vol. 14,
no. 1, pp. 1181–1227, 2013.

[17] C. Thiery, B. Scherrer, et al., “Building controllers for tetris,” International
Computer Games Association Journal, vol. 32, pp. 3–11, 2009.

[18] E. V. Siegel, A. D. Chaffee, and L. EarthWeb, “Genetically optimizing the
speed of programs evolved to play tetris,” Advances in genetic programming,
vol. 2, pp. 279–298, 1996.

[19] C. Darwin, On the Origin of Species. 1859.

[20] A. Globus, G. Hornby, D. Linden, and J. Lohn, “Automated antenna design
with evolutionary algorithms,” 2006.

[21] A. Keane, “The design of a satellite beam with enhanced vibration perfor-
mance using genetic algorithm techniques,” The Journal of the Acoustical
Society of America, vol. 99, no. 4, pp. 2599–2603, 1996.

[22] H. G. Katzgraber, “Random numbers in scientific computing: An introduc-
tion,” arXiv preprint arXiv:1005.4117, 2010.

[23] J. B. Amundsen, “Attempting to use and unbiased evolutionary approach
for solving the rubik’s cube,” 2013.

50

Appendix A

Formal feature definitions

Below is a formal definition of each feature function mentioned in table 2.1, except
for Jags and Embedded holes due to their lack of documentation. The width
and height of the board considered in these definitions are denoted as w and h,
respectively, with W and H denoting the corresponding sets W = {0, 1, . . . , w−1}
and H = {0, 1, . . . , h−1}. References to cells are denoted as b(x, y) and is defined
as

b(x, y) =

{
cx,y if x ∈W ∧ y ∈ H
nan if x 6∈W ∨ y 6∈ H

(A.1)

where cx,y is a reference to the cell values depicted in figure A.1. A full cell has
a value of 1, while an empty cell has a value of 0. A set-builder notation is used
and has the form {x : Φ(x)}. Here, x is a free variable and the set contains all
possible values of x such that Φ(x) evaluates to ’true’. Some feature functions use
helper functions defined in some other definition. In such case, the last definition
of matching name applies, unless specified otherwise.

. .

fmax height = max({ch(x) : x ∈W}) (A.2)

where

51

52

Figure A.1: Cell indices on a Tetris board used in the formal definitions of
feature functions.

ch(x) =

{
max({y : y ∈ H ∧ b(x, y) = 1} ∪ {0}) if x ∈W
∞ if x 6∈W

(A.3)

. .

fholes = |{(x, y) : b(x, y) = 0 ∧ ch(x) > y}| (A.4)

. .

fcolumn height = ch(x) (A.5)

. .

fcolumn difference = ch(x)− ch(x+ 1) (A.6)

. .

flanding height = ty +
th − 1

2
(A.7)

where ty is the landing height of the lowest part of the tetromino, I.E. the y-
coordinate of the lowest cell filled, and th is the height of the tetromino.

. .

fcell transitions = |{(x, y) : b(x, y) = 0 ∧ b(x, y − 1) = 1}| (A.8)

+ |{(x, y) : b(x, y) = 0 ∧ b(x, y + 1) = 1}| (A.9)

+ |{(x, y) : b(x, y) = 0 ∧ b(x− 1, y) = 1}| (A.10)

+ |{(x, y) : b(x, y) = 0 ∧ b(x+ 1, y) = 1}| (A.11)

53

. .

fdeep wells =
∑

(x,d)∈Swd

d (A.12)

where

Swd
= {(x, d) : (x, d) ∈ Sw ∧ d > 1} (A.13)

Sw = {(x,max(min(ch(x− 1), ch(x+ 1))− ch(x), 0)) : x ∈W} (A.14)

. .

fmean height =
1

w

w−1∑
x=0

ch(x) (A.15)

. .

fheight weighted cells =
∑

(x,y)∈Sc

y (A.16)

where

Sc = {(x, y) : b(x, y) = 1} (A.17)

. .

fwells =
∑

(x,d)∈Sw

d (A.18)

. .

54

ffull cells = |Sc| (A.19)

. .

frow transitions = |{(x, y) : b(x, y)⊕ b(x+ 1, y) = 1}| (A.20)

+ |{y : b(0, y) = 0}| (A.21)

+ |{y : b(w − 1, y) = 0}| (A.22)

. .

fcolumn transitions = |{(x, y) : b(x, y)⊕ b(x, y + 1) = 1}| (A.23)

+ |{x : b(x, 0) = 0}| (A.24)

+ |{x : b(x, h− 1) = 1}| (A.25)

. .

fcumulative wells =
∑

(x,y,d)∈Sw

d (A.26)

where

Sw = {(x, y, d(x, y)) : b′(x− 1, y) = 1 ∧ b′(x, y) = 0 ∧ b′(x+ 1, y) = 1} (A.27)

b′(x, y) =

1 if x < 0

1 if x ≥ w
b(x, y) if x ≥ 0 ∧ x < w

(A.28)

55

d(x, y) = max({i : i ∈ H ∧ ∀n ∈ {0, 1, . . . , i} (b(x, y − n) = 0)}) (A.29)

. .

fmin height = min({ch(x) : x ∈W}) (A.30)

. .

fmax - mean height = fmax height − fmean height (A.31)

. .

fmean - min height = fmean height − fmin height (A.32)

. .

fmean hole depth =
fhole depth

fadjacent column holes
(A.33)

. .

fmax height difference = fmax height − fmin height (A.34)

. .

fadjacent column holes = |{(x, y) : b(x, y) = 1 ∧ b(x, y − 1) = 0}| (A.35)

56

. .

fmax well depth = max({d : (x, d) ∈ Sw}) (A.36)

where Sw is as defined in fdeep wells.

. .

fhole depth =
∑

(x,y,d)∈Sd

d (A.37)

where

Sd = {(x, y, d(x, y)) : b(x, y) = 0 ∧ b(x, y + 1) = 1} (A.38)

d(x, y) = max({i : i ∈ H ∧ ∀n ∈ {0, 1, . . . , i} (b(x, y + n) = 1)}) (A.39)

. .

frows with holes = |{y : y ∈ H ∧ ∃x∈W (b(x, y) = 0 ∧ ch(x) > y)}| (A.40)

. .

fpattern diversity = |{p : p ∈ {−2, . . . , 2} ∧ ∃(fcolumn difference = p)}| (A.41)

57

Appendix B

Example game

The following illustrations show the progress of one game using the implemented
controller described in this paper and the strategy depicted in the table below.
The illustrations should be read from left to right and from top to bottom.

Feature Value

3. Holes 5
6. Landing height -33
20. Eroded piece cells 9
21. Row transitions -20
22. Column transitions -76
23. Cumulative wells -31
31. Hole depths -2
32. Rows with holes -65

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

