

Using Gamification and Tangible User Interfaces to Treat Asthmatic Children

Esben Aarseth Aleksander Gisvold

Master of Science in Computer Science Submission date: May 2014 Supervisor: Pieter Jelle Toussaint, IDI Co-supervisor: Ole Andreas Alsos, BLOPP Terje Røsand, IDI

Norwegian University of Science and Technology Department of Computer and Information Science

Abstract

Approximately 20 per cent of the Norwegian population has or has had asthma by the age of 10. Treating children for asthma is often a cumbersome and time-consuming task. Research has shown that tangible user interfaces and mobile applications in medical care have given positive effects in a number of different settings. The BLOPP project group has previously proved that distracting the child while he/she is taking his/her asthma medicine is positive for the child's experience. In our research we aimed to answer "How can gamification be used to motivate children to take their asthma medicine?" and "How can tangible user interfaces be used to help children with asthma?". To answer these questions, we have performed a literature study, conducted semi-structured interviews with domain experts and developed prototypes. A tangible user interface, AsthmaBuddy, and a smartphone application, AsthmAPP, was developed. These prototypes were then tested on children, as a validation test. During our research we have discovered several possibilities for how gamification can be used to motivate children with asthma, in addition to some ways gamification is not applicable to the situation. We have discovered several ways a TUI may help asthmatic children and their parents, such as keeping logs, informing, reminding and distracting the children during a treatment.

Keywords: Android, Asthma, BLOPP, Gamification, Healthcare Informatics, Mobile Technology, Prototype Development, Self-management, Serious Games, Tangible User Interfaces

Sammendrag

Omtrent 20 prosent av den norske befolkningen har eller har hatt astma ved fylte 10 år. Behandling av astma kan ofte være tid-krevende, spesielt dersom barnet ikke ønsker å ta medisinene sine. Forskning har vist at "tangible user interfaces" og mobile applikasjoner har en plass innenfor helse og pasientbehandling. Prosjektgruppen BLOPP har gjennom tidligere prosjekter bevist at barn i ung alder er mer positive til bruk av astmamedisiner dersom de har noe som trekker oppmerksomheten deres vekk fra selve medisineringen. I vårt prosjekt har vi forsøkt å svare på spørsmålene "Hvordan kan "gamification" bli brukt til å motivere barn til å ta astmamedisinen sin?" og "Hvordan kan "tangible user interfaces" benyttes til å hjelpe barn med astma?". For å svare på disse spørsmålene har vi gjennomført et literaturstudie, semi-strukturerte intervjuer med domeneeksperter og utviklet prototyper. Et "tangible user interface", AsthmaBuddy, og en Android-applikasjon, AsthmAPP, ble utviklet. Disse prototypene ble testet på barn, som en valideringstest. I løpet av prosjektet har vi oppdaget flere ulike muligheter for hvordan "gamification" kan benyttes for å motivere barn med astma, i tillegg til noen områder hvor "gamification" ikke er passende. Vi har også funnet flere måter "tangible user interfaces" kan hjelpe barn med astma og deres foreldre, f.eks. ved loggføring, informasjons-deling og opplæring, påminnelser og distrahering under en behandling.

Nøkkelord: Android, Astma, Applikasjonsutvikling, BLOPP, Gamification, Helseinformatikk, Mobilteknologi, Medisinering, Prototypeutvikling, Serious Games, Tangible User Interfaces

Acknowledgements

We would like to thank Pieter Jelle Toussaint for excellent guidance and advice throughout the run of the project.

We would like to thank Ole Andreas Alsos for advice, ideas and lending of his UXskills to the project.

We would like to thank Terje Røsand for advice, ideas and expertise on digital prototyping.

Thanks to Elin H. Bergene, Marikken Høiseth and Jonas Asheim for their involvement through BLOPP.

Thanks to Andreas Ystmark for being the voice of AsthmaBuddy and AsthmAPP.

Thanks to Jørgen Aaberg, Eirik Skjeggestad Dale and Yngve Svalestuen.

Thanks to our anonymous test users and interview subjects.

Thanks to the Norwegian Institute for Air Research (NILU) for giving us access to air quality readings.

Thanks to the Norwegian Asthma and Allergy Association (NAAF) for giving us access to pollen forecast readings.

Thanks to Rosenborg Ballklub for providing rewards to our test users.

Thanks to Aleksander's mother for proof-reading and typo correction.

"Asthma doesn't seem to bother me any more unless I'm around cigars or dogs. The thing that would bother me most would be a dog smoking a cigar."

- Steve Allen

Contents

Abstract	i
Sammendrag	iii
Acknowledgements	iv
List of Figures	xiii
List of Tables	XV
Abbreviations	xvii

1	Intr	oduction 1
	1.1	Purpose
	1.2	Motivation
	1.3	Research Questions
	1.4	Research Method
	1.5	Thesis Scope
	1.6	Thesis Outline 4
2	Bacl	kground 5
	2.1	BLOPP Project
	2.2	About Asthma
		2.2.1 Ways Asthma Affect the Family
	2.3	CAPP, KAPP and GAPP
		2.3.1 CAPP
		2.3.2 KAPP
		2.3.3 GAPP
		2.3.4 Known Areas For Improvement
	2.4	Existing Research
		2.4.1 Monitoring Asthma with Mobile Technology
		2.4.2 Children and Mobile Devices
		2.4.3 Children and Gestures
		2.4.4 Assessment of Existing Asthma Applications

	2.5	State of the Art2.5.1Get Up and Move (GUM)2.5.2Sisom2.5.3Meassuring Blood Pressure2.5.4Controlling Your Diabetes2.5.5Quit Smoking2.5.6TUIs and Multimodal Interfaces for Safety-Critical Applications	16 16 17 17 17 18
		2.5.7 Exercise Games	18
3	Gan	nification	19
	3.1	What is Gamification?	19
	3.2	What are Serious Games?	20
	3.3	Criticism of Gamification	21
	3.4	Game Elements	22
		3.4.1 Bartle's Four Player Types	22
		3.4.2 Game Mechanisms Used to Achieve Gamification	23
	3.5	Summary	27
4	Tan	gible User Interfaces	29
	4.1	About Tangible User Interfaces	29
	4.2	Examples of Use	30
	4.3	TUIs Used in Health Care	31
	4.4	Tangible User Interface Paradigms	32
		4.4.1 Token + Constraint Approach	32
		4.4.2 Interactive Surfaces	33
		4.4.3 Constructive Assemblies	33
	4.5	Developing Tangible User Interfaces	34
		4.5.1 Champoux's Development Framework	34
		4.5.2 Development Challenges	35
	4.6	Summary	37
5	Res	earch Method	39
	5.1	Literature Study	39
	5.2	Semi-structured Interviews	40
	5.3	Prototyping	41
	5.4	Usability Testing	41
		5.4.1 Introduction to Usability	41
		5.4.2 Purpose	42
		5.4.3 Test Method	43
		5.4.4 Scenario and Tasks Given to the Users	45
6	∆ et]	ımAPP	47
v	6.1	Architecture and Technology	4 7
	0.1	6.1.1 System Architecture	47
		6.1.2 Technology and Frameworks Used in AsthmAPP	49

	6.2	Design	Rationale			
	6.3	Use of	Gamification in AsthmAPP			
		6.3.1	Design Rationale for Gamification System in AsthmAPP 50			
		6.3.2	Gamification Elements in AsthmAPP			
		6.3.3	Criticism of AsthmAPP's Gamification System			
	6.4	Child F	Partition			
		6.4.1	Treatment			
		6.4.2	Showing Collected Stars			
		6.4.3	Shop			
		6.4.4	Treatment Instructions			
	6.5	Parent	Partition			
		6.5.1	Menu			
		6.5.2	Medicine Plan			
		6.5.3	Register Treatment			
		6.5.4	Medicine Log			
		6.5.5	Manual			
		6.5.6	Reward			
	6.6	Summa	ary			
7	Astl	hmaBuddy 6				
	7.1	Backgr	ound			
	7.2	Techno	blogy			
		7.2.1	Raspberry Pi - Specifications Overview6262			
		7.2.2	Additional Components			
		7.2.3	Components Considered for Use			
		7.2.4	Frameworks and Libraries Used in AsthmaBuddy 65			
	7.3	Design	Rationale			
		7.3.1	Why a Teddy Bear?			
		7.3.2	Interaction Design			
		7.3.3	Answering to Champoux's Development Framework 69			
		7.3.4	Dealing with Bellotti's Challenges			
	7.4	Use of	Gamification in AsthmaBuddy 71			
	7.5	System	N Overview			
		7.5.1	Use Cases			
		7.5.2	Textual Use Cases			
		7.5.3	State Diagram			
		7.5.4	Sequence Diagram			
		7.5.5	Node Server			
	7.6	Prototy	vpe Version 1			
	7.7	-	vpe Version 2			
	7.8		ary			
8	Res	ults	85			
	8.1	Intervi	ews			

		8.1.1 Discoveries Found During Interviews	35
	8.2	Testing AsthmaBuddy on Inexperienced Users	38
		8.2.1 Observations Made During Tests	90
	8.3	Usability Test Results	90
		8.3.1 Parent Partition Tests	91
		8.3.2 Child Partition	95
	8.4	Evaluation)1
		8.4.1 AsthmaBuddy)1
		8.4.2 AsthmAPP)1
0	Dias	region and Conductors 10	17
9	Disc 9.1	Ussion and Conclusions 10 Discussion 10	
	9.1	Discussion 10 9.1.1 Gamification 10	
		9.1.2 Tangible User Interfaces	
		9.1.2 Talgible Oser Interfaces 11 9.1.3 Other Aspects 11	
	9.2	Do's and Don'ts when Using a TUI	
	9.2 9.3	Process Evaluation	
	1.5	9.3.1 Difficulty Finding Test Users	
		9.3.2 Co-Design Sessions	
	9.4	Conclusions	
	9.5	Validity of our Results	
	2.0		
10	Furt	her Work 12	23
	10.1	Future Work on AsthmaBuddy	23
		Future Work on AsthmAPP	
		Testing	
		Future Research	
	10.5	Future Vision	26
A		view Transcripts 12	-
	A.1	PhD/Researcher in Psychology	
	A.2	PhD candidate in Industrial Design	
	A.3	Advisor at NAAF	
	A.4	Nurses from St. Olavs Hospital	
	A.5	Parent 1	
	A.6	Parent 2	4
B	Draf	t for Interview Conducted after Usability Test 14	17
С	Scen	ario and Tasks 14	19
-	C.1	Test for Adult Users	
	C.2	Test for Child Users	50
	C.3	Emergency Plan	

D	Asth	maBuddy Manual 1	153
	D .1	Introduction	153
		D.1.1 Dependencies	153
	D.2	GPIO setup	154
	D.3	RFID Reader	156
	D.4	Source Code	156
	D.5	Running AsthmaBuddy	156
		D.5.1 Compiling	156
		D.5.2 Running	156
E	Asth	mAPP Manuscript	159
	E .1	AsthmaBuddy	159
		E.1.1 Instructions	
		E.1.2 Interactions	160
	E.2	AsthmAPP	161
F	Asth	ima Action Plan	163
F G			163 165
			165
	Aab	erg et. al.'s Further Work	165 165
	Aab	erg et. al.'s Further Work	165 165 166
	Aab	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1	165 165 166 166
	Aab	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1	165 165 166 166
	Aab	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1G.1.3User testing of the guardian application1	165 165 166 166 166
	Aab	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1G.1.3User testing of the guardian application1G.1.4Web application1	165 166 166 166 167 167
G	Aab G.1 G.2	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1G.1.3User testing of the guardian application1G.1.4Web application1G.1.5Support for more children1Ideas and minor improvements1	165 165 166 166 166 167 167
G	Aab G.1 G.2	erg et. al.'s Further WorkIImprovements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1G.1.3User testing of the guardian application1G.1.4Web application1G.1.5Support for more children1Ideas and minor improvements1	165 165 166 166 167 167 167 167
G	Aab G.1 G.2 Con	erg et. al.'s Further Work1Improvements1G.1.1Rewardsystem1G.1.2Distraction sequence for children1G.1.3User testing of the guardian application1G.1.4Web application1G.1.5Support for more children1Ideas and minor improvements1straints1	165 165 166 166 167 167 167 167

List of Figures

2.1	Breathing chamber with inhaler mounted
2.2	Ventoline in disk form
2.3	Starting a treatment
2.4	Inside the treasure chest
2.5	CAPP main menu
2.6	Instructions part 1
2.7	Instructions part 2
2.8	Instructions part 3
2.9	Instructions part 4
2.10	Instructions part 5
	Instructions part 6
	Instructions part 7
	Karotz
	Nanoz
	GAPP main menu
	Register treatment
	View plans
	Information 1
	Information 2
2.20	Medicine log
6.1	System Architecture
6.2	Start menu of AsthmAPP
6.3	Main menu of child partition
6.4	Possible rewards a child can choose from
6.5	A child has bought the reward
6.6	Main menu of partent partition
6.7	Available medicine plans
6.8	Adding a medicine to a plan 57
6.9	Register medicine taken
6.10	Medicine log
6.11	Overview of rewards a child may recieve
6.12	Creating a reward
6.13	PIN challenge in parent partition
7.1	Raspberry Pi Model B Architecture 63

7.2	Digital schematic of the components	63
7.3	AsthmaBuddy holding a breathing chamber and an inhaler	67
7.4	AsthmaBuddy with his nose light turned on	67
7.5	AsthmaBuddy Use Cases	72
7.6	AsthmaBuddy State Diagram.	75
7.7	By Need Treatment - Sequence Diagram	76
7.8	Planned Treatment - Sequence Diagram	77
7.9	Playing Instructions - Sequence Diagram	78
7.10	Finishing a treatment - Sequence Diagram	79
7.11	Synchronizing alarms - Sequence Diagram	80
8.1	CU2 interacting with AsthmaBuddy	98
8.2	CU2 giving AsthmaBuddy a medicine	98
8.3	CU3 knocks out AsthmaBuddy when giving him a high five	100
8.4	The view where CU3 had difficulties reading the information	100
D .1	RGB LED diagram	155
D.2	Raspberry Pi GPIO	155

List of Tables

The eight questions stated by Champoux[1]	34
The challenges of interacting with a TUI[2]	36
Assessment of different game mechanisms	52
Raspberry Pi specifications	62
Rationale behind AsthmaBuddy's interaction design	68
Textual use case: By need treatment	73
Textual use case: By need treatment	74
Interviews performed during the project	86
Evaluation of interaction methods for AsthmaBuddy	89
Usability Test Results: AU1	92
Usability Test Results: AU1	94
Usability Test Results: CU1	96
Usability Test Results: CU2	97
Usability Test Results: CU3	99
Wiring LED pins to GPIO	155
Guide for interactions in AsthmaBuddy	157
	The challenges of interacting with a TUI[2]

Abbreviations

- API Application Programming Interface
- BLOPP Barns LegemiddelOPPlevelser
- **CAPP** Child **APP**lication made by Aaberg et. al.
- GAPP Guardian APPlication made by Aaberg et. al.
- GUI Graphical User Interface
- **KAPP** Karotz **APP**lication made by Aaberg et. al.
- NAAF Norges Astma- og Allergi-Forbund
- NILU Norsk Institutt for LUftforskning
- MMO Massive Multiplayer Online game
- NTNU Norwegian University of Science and Technology
- **REK** Regional Comittee for Medical and Health Research Ethichs
- **RFID** Radio Frequency IDentification
- SSH Secure SHell
- TUI Tangible User Interface
- USB UniversalSerial Bus

To all children suffering from asthma

Chapter 1

Introduction

This chapter will give an introduction to our thesis. It will describe the purpose, motivation, research questions and the research method for the study.

1.1 Purpose

The goal of this project was to explore the use of gamification and tangible user interfaces in the treatment of asthmatic children. The project was based on a system made by Aaberg, Aarseth, Dale, Gisvold and Svalestuen in 2012[3]. During Customer Driven Project 2012 (TDT4290) at NTNU, Aaberg et. al. made an Android application and a Karotz-program in order to motivate, instruct, inform and reward children who suffer from asthma. Their main focus was on the development process of their prototypes, rather than researching the different possibilities to help children with asthma. We intended to improve their versions of CAPP and GAPP (see Chapter 2), in addition to create a tangible user interface from scratch. The new and improved version of CAPP and GAPP was combined into one application, called *AsthmAPP*. The tangible user interface was named *AsthmaBuddy*.

1.2 Motivation

According to NAAF, approximately 20% of the Norwegian population has or has had asthma by the age of 10, and 8% of the adult population suffers from asthma[4]. Many

children find taking their medicine unpleasant, and they often do not understand what the medicine is good for. Children suffering from asthma may have to attend several appointments with asthma specialists. This requires time and effort from the parents¹, and many parents may have to take time off from work.

We hoped to motivate children suffering from asthma to follow their treatment plan, since following their plan may lead to a more controlled form of asthma, where attacks occur less frequently[5]. Research done by Asheim showed that children suffering from HRS-virus² were easily distracted and motivated to finish treatments when shown a non-interactive flash-video during the treatment[6]. We have seen other projects where using gamification elements has provided positive results, such as Get Up and Move made by Penados et. al.[7]³.

By using mobile technology and tangible user interfaces we wanted to make the asthmatic children more aware of their disease and thus make them better understand why they need to take their medicine on a daily basis. By using gamification elements we hoped to motivate the children to take their medicine according to plan. By making a dynamic and user-centered reward system, we hoped to make a system that the children will find interesting for a longer period of time.

1.3 Research Questions

The goal of this project was to explore the use of gamification and tangible user interfaces in the treatment of asthmatic children. The objective was composed into the following research questions:

RQ1: How can gamification be used to motivate children to take their asthma medicine?

RQ2: How can tangible user interfaces be used to help children with asthma?

¹While not all child do not live with their parents, we chose to use the terms parents instead of guardian.

²Center for Disease Control : HSRV - http://www.cdc.gov/rsv/

³A short summary of the relevance of Penados' research is given in Chapter 2.5.1

1.4 Research Method

In order to answer the research questions, we have used qualitative research methods. We started off by conducting a literature study, in order to gain knowledge about the state of the art, find arguments discussing gamification and tangible user interfaces and exploring development frameworks for building tangible user interfaces. We then developed a tangible user interface prototype, using a Raspberry Pi, which was placed inside a stuffed toy animal. Additionally, we continued development of Aaberg et. al.'s smartphone application prototypes; CAPP and GAPP.

In parallell with the development process, we conducted a series of semi-structured interviews, in order to retrieve information and feedback from a wide perspective. Our interview subjects consisted of two parents of children with asthma, a researcher with a PhD in psychology, two nurses with asthma within their field of expertise, a PhD candidate in industrial design, a senior advisor at NAAF and an industrial designer previously involved in the BLOPP project.

At the end of the project, we did a validation test of our prototypes on three children and two parents, by following the usability testing approach.

A more thorough explanation of the research methods used can be found in Chapter 5.

1.5 Thesis Scope

In this project we have focused solely on treatments performed by the use of inhalers (with or without the breathing chamber) and disk formed medication. Although nebulizer treatments are common in the treatment of toddlers, we chose to exclude it, as it differs too much from the use of inhalers. Nebulizer treatments often lasts for 10 - 15 minutes, while treatments performed through an inhaler or a disk formed medication are completed in 1 - 2 minutes, including preparations. Thus, we regarded the application of gamifying nebulizer treatments as a separate scope.

1.6 Thesis Outline

Chapter 2 provides the reader with background information around Asthma, some of the previous projects BLOPP has been involved with, and introduces the latest developments in the use of mobile technology and tangible user interfaces for medical purposes. Chapter 3 will give the reader an introduction to gamification, with discussion around some of the principles that are being used. Chapter 4 dicusses the origins, usage and development frameworks of tangible interfaces. Chapter 5 gives an overview of the research methods we have employed. Chapter 6 provides a product description of AsthmAPP, our prototype for gamifying children's experience with a smartphone, while Chapter 7 provides a description of AsthmaBuddy, our tangible interface. Chapter 8 provides the results we have discovered during our research. Chapter 9 provides discussions and conclusions of our thesis, in addition to discussing the results' validity. Chapter 10 lays out further work that can be based on our thesis, and describes how AsthmaBuddy and AsthmAPP could be used in the future.

Chapter 2

Background

Section 2.1 will give a brief introduction to the history behind the BLOPP project. Section 2.2 will describe asthma and how it affects people. Section 2.3 will go into details of the applications that were developed by Aaberg, Aarseth, Dale, Gisvold and Svalestuen during the autumn of 2012. Section 2.4 will give an introduction to some of the recent research that has been performed on mobile technology in combination with children and health.

2.1 BLOPP Project

The goal of the BLOPP project was to explore how design and technology can motivate children with respiratory diseases to take prescribed medication and to promote positive interactions between children and caregivers, thereby increasing adherence to medical treatment. BLOPP had previously worked with Asheim's "Concept for improved treatment of children affected by asthma/RS-virus"[6] and Høiseth's "Research-Derived Guidelines for Designing Toddlers' Healthcare Games"[8], in addition to several other projects.

2.2 About Asthma

Asthma is a disease that affects the lungs. Asthma causes wheezing, breathlessness, chest tightness and coughing. It is a chronic disease, but asthma attacks will only occur

when something is bothering the lungs. Asthma may be difficult to diagnose, especially in children under the age of five.

An asthma attack may include coughing, chest tightness, wheezing and troubled breathing. The attack takes place in the lungs, the airways tighten which causes less oxygen to pass through. According to the Norwegian Ministry of Health and Care Services, acute asthma attacks were the most common reason for hospitalization of children in 2008[9]. In Norway, approximately 20 per cent of children are suffering from the disease. Due to this fact the condition may be said to have an effect on the economics of the society¹. However, asthma can be controlled and asthma attacks avoided by taking medicine at regular intervals. Some of the medicines, such as Seretide and Flutide, are taken as a preventive measure to avoid asthma attacks. Ventoline is taken before exercise or when an asthma attack occurs, in order to stop or shorten the length of the attack. We will refer to this use as "by need treatments".

A treatment may be done in different ways. For the youngest children a nebulizer is often used. The nebulizer is a device used to reduce liquid to an extremely fine cloud, in order to make it easier to inhale. Treatments using a nebulizer may last up to 10 or 15 minutes.

Older children use medication in spray or powder form (see Figure 2.1 and Figure 2.2 respectively). The spray is often used with a breathing chamber, and the powder form of medication is taken straight from the disk. Before use, the container of the asthma medicine must be shaken in order to stir the particles. If a breathing chamber is used, the protection cap is removed and the container is mounted on the breathing chamber. The chamber is pressed towards the user's face, covering the nose and mouth. The container is then pressed, to release the medicine into the breathing chamber, and the user breaths deeply for ten seconds².

¹Costs of having parents at home instead of working, hospitalization costs, medicine costs, etc.

²There are different ways to conduct a treatment. Some specialists advice to take six breaths instead of breathing for 10 seconds

FIGURE 2.1: Breathing chamber with inhaler mounted

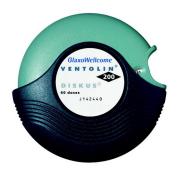


FIGURE 2.2: Ventoline in disk form

2.2.1 Ways Asthma Affect the Family

Before sending children to school or kindergarten, remembering to give the child his/her medication may prove challenging for the parents. Often the child does not enjoy taking his/her medicine, and the child may start an argument, not wanting to finish the treatment. This may result in parents applying the medication incorrectly, applying the wrong treatment, or even forgetting to give the medicine, which in turn may have a negative effect on the overall treatment.

People suffering from asthma are often given an asthma control plan, which tells them how often they should take their medication and what to do if an attack occurs. These plans are often parted into three separate health zones, corresponding with how the user is feeling. In order to make these health zones understandable, an asthma action plan is often represented by a traffic light system (see Appendix F). The green treatment plan tells what the user should do when he/she has no symptoms. The yellow treatment plan indicates what to do when the user is feeling a bit ill, when there is a lot of pollen in the air or otherwise poor air quality or when the user is recovering from a cold. The red treatment plan indicates what to do when the user is feeling ill, or there is an extreme amount of pollen in the air or extremely poor air quality. If the red treatment plan is necessary, the child often has to consult a doctor.

2.3 CAPP, KAPP and GAPP

In the autumn of 2012 Aaberg, Aarseth, Dale, Gisvold and Svalestuen were engaged by the BLOPP Project group through the course "TDT4290 - Customer Driven Project" at NTNU³. During the period of August 2012 to December 2012 they developed a prototype of a mobile information system consisting of two Android applications and a TUI. One application was developed for guardians of a child (GAPP) and the other for children (CAPP). Additionally, they created a Karotz application (KAPP) targeted at children⁴. In this section, we describe these applications, while a full report of their work is available online[3].

Their prototype was the basis for our work in this project.

2.3.1 CAPP

CAPP is an Android application targeted at children. Its main purpose is to guide the child through the medication process. Figure 2.5 shows the main page of CAPP⁵. As the target group for the application is children below the age of 8, it is reasonable to assume that not all of them are able to read, and consequently this application consists mainly of pictures and animations. However, some text is necessary since the amount of pictures and animations needed to explain everything would be overwhelming.

In CAPP, it is possible to start a medication in one of two ways. A parent can either set alarms in GAPP (See Section 2.3.3) for preventive medicines, or a child can access the medication process directly by pressing the Karotz showed in Figure 2.5, which is the way to start a by-need-treatment.

One of the objectives of CAPP is to introduce a gamification experience to the medication process. Accordingly, the child recieves a golden star in his/her treasure chest once the medicine had been taken. However, these stars could not be used for anything, they were solely for display.

By clicking the treasure chest, the child is able to see how many stars he/she has aquired. A screenshot showing the inside of the treasure chest is included in Figure 2.4

³Course Description of TDT4290 - Customer Driven Project - http://www.idi.ntnu.no/emner/tdt4290/

⁴The creative process concerning the name of the applications were unfortunatly not prioritized

⁵All applications have Norwegian as their main language

The last part of this application is an Information-section, where information as to how to take a medicine is available. A part of the functionality that has not been implemented is voice over for these instructions. Thus, a parent should be close by in order to read the information contained in this functionality. Figures 2.6 - 2.12 shows the information-part of this application.

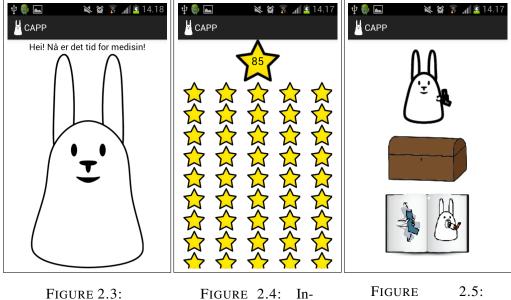
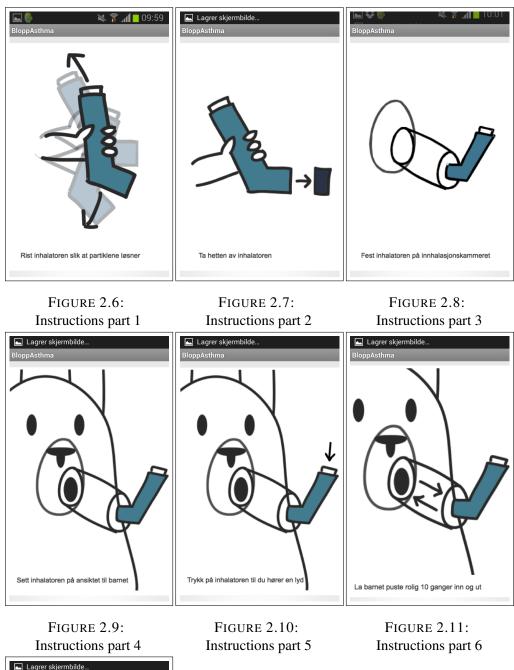



FIGURE 2.3: Starting a treatment

FIGURE 2.4: Inside the treasure chest

FIGURE 2.5: CAPP main menu

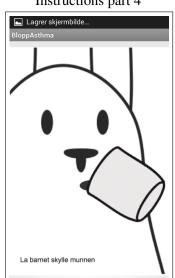


FIGURE 2.12: Instructions part 7

2.3.2 KAPP

KAPP is the TUI-application targeted at children. The application runs on a Karotz⁶, which is a small robot bunny (see Figure 2.14). The purpose of KAPP is similar to CAPP, namely to remind children when it is time to take the asthma medicine and give instructions during treatment. In order to interact with the Karotz, the child may use either a Nanoz (a small bunny with an integrated RFID) or by pressing a button on the top of the Karotz' head. It is not possible to do a by-need treatment with a Karotz as a companion.

FIGURE 2.13: Karotz Image source: Karotz http://karotz.com

FIGURE 2.14: Nanoz Image source: Karotz http://karotz.com

2.3.3 GAPP

GAPP is an Android application targeted at the guardians or parents of the child. Some parents have problems with remembering how often their child has taken his/her medication the last couple of days, when the child should take the medication and how the child's disease has evolved over a period of time. Thus, GAPP's main purpose is to make parents more aware of their child's disease.

Figure 2.15 shows a screenshot of the main menu of GAPP. The main functionality is separated into *Medical Plan*, *Register Treatment*, *Medicine Log*, *Medical Information* and *Manual*.

Medical Plan

Medical Plan gives parents the option to set up reminders at particular times. It is divided according to the asthma action plan (See Appendix F). A child has three separate

⁶Karotz - www.karotz.com

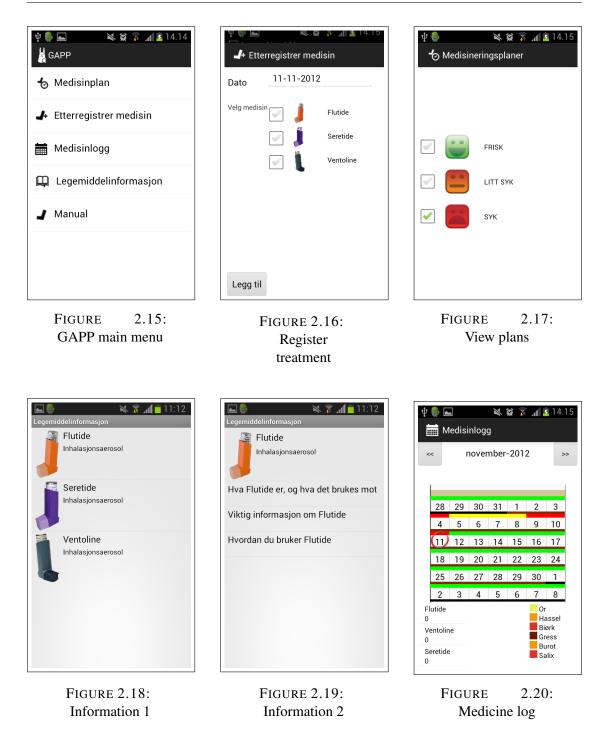
plans, to ensure that an alarm that is set on the *Danger*-plan is not automatically set on the *Doing Well*-plan⁷.

Register Treatment

The *Register Treatment*-option gives parents the possibility to register a treatment that was carried out in case the child for some reason did not go through the process in CAPP or KAPP. This way, the child will be rewarded with stars accordingly. Figure 2.16 shows a screen shot of this process.

Medical Information

Medical Information gives general information about different medicines, what they do and what they are used for. The three medicines that are currently in the system is Flutide, Seretide and Ventoline. Figures 2.18 and 2.19 shows screenshots of this functionality.


Medicine Log

Medicine Log shows how many times a child has taken his/her medicine the last months. Figure 6.10 shows a screen shot of this functionality. A red circle marks the current day. A child's health state is displayed by the Green/Yellow/Red bar at the top of each day. In the bottom left corner, it is possible to show how much medicine was taken on a given day. In the bottom right corner, Aaberg et. al. intended to show the pollen distribution for a given day. However, the pollen distribution data is only available during spring and summer, and thus Aaberg et. al created an artificial pollen distribution for demonstration purposes.

Manual

The purpose of the *Manual* is to help "newcomers" to medicate their child. For instance, if a relative is watching a child with asthma, he/she could use the application as a reference on how to do the process. At the time being, the manual shows Figures 2.6 - 2.12, i.e. the content is equal to information section of CAPP.

⁷In AsthmAPP the different plans were named "Healthy", "A little ill" and "Sick"

2.3.4 Known Areas For Improvement

As Aaberg et. al. finished their work, they commented on several areas of potential improvement for CAPP, GAPP and KAPP. This document is reprinted in its entirety in Appendix G (after permission from Aaberg, Aarseth, Dale, Gisvold and Svalestuen). The main topics for improvement were the reward system, the distraction sequence and a potential web application for storing, sending and visualizing data.

These comments were used as a basis when we decided what to improve in this project.

2.4 Existing Research

This section will give a foundation on some of the research performed on using technology in combination with diseases and children.

2.4.1 Monitoring Asthma with Mobile Technology

Research on self-management of monitoring one's asthma condition through mobile technology has been carried out previously. Much of this research was done by using SMS (Short Messaging System) technology. In 2009, Andhøj et. al.[10] did a feasability study to check how users would respond to a SMS-reminder. Their methodology was to send SMS a couple of times a day, and have the users respond to their peak flow and answer yes/no questions. Users could then access a web page to see different statistics on peak flows, how they've felt the last couple of days, etc.

Andhøj et. al. concluded that SMS is a feasible solution for collecting asthma diary data, mainly because the SMS technology was an important part of the participants' everyday life. Although SMS is a great technology to be used for this purpose, few children in our target group are old enough to use it. According to *The Norwegian Center for ICT in Education*, approximately 40% of Norwegian children under the age of 3 years old have used a tablet, and 6 out of 10 children under the age of 6 have used a touch screen device[11]. Thus our target group is likely to be familiar with the technology we plan to use.

2.4.2 Children and Mobile Devices

According to the Norwegian Media Authority's⁸ latest report on "Young Children and Media", children between the age of one and twelve years old spend an average of 43 minutes each day at playing video games and mobile games combined[12]. They spend 20 minutes using a mobile phone each day⁹. By introducing them to AsthmAPP, we do

⁸Norwegian Media Authority - http://www.medietilsynet.no/

⁹We would like to critique the age span of this research. There are normally huge differences in behaviour between each age group for young children

not intend to increase these statistics. We aim to make an application that is used for a short period of time with each use. AsthmAPP and AsthmaBuddy will be tools for helping the children, and should not be considered a game.

2.4.3 Children and Gestures

Abdul Aziz et. al.[13] performed a study on which gestures children are able to comprehend when playing with an iPad. They tested children's ability to gesticulate on a variety of applications suited for children. The children were between the age of 2 and 12, with three children in each age group. The study found the following restrictions:

- 2 year olds have difficulties with pinching and are unable to drag and drop, spread and rotation of the device, and are not able to focus on the application.
- 3 year olds have difficulties with drag and drop until they are told to do so, in addition to having problems with pinch and spread.
- 4 year olds have difficulties with drag and drop.

In order to make AsthmAPP as child friendly as possible, it only uses "swiping" gestures and button presses for navigation.

2.4.4 Assessment of Existing Asthma Applications

In 2012, Huckvale et. al.[14] conducted an assessment on the existing asthma-related applications on both Google Play¹⁰ and App Store¹¹. They assessed 103 different apps with english as the native language. Out of these applications,

"No apps for people with asthma combined reliable, comprehensive information about the condition with supportive tools for selfmanagement" [14].

They concluded that doctors should be careful when recommending apps for patients with the purpose of self management of asthma.

¹⁰Google Play - http://play.google.com

¹¹Apple App Store - http://www.apple.com/itunes/features

2.5 State of the Art

Mobile computing is evolving at a rapid pace, and finding new ways to use it in health care is a rising challenge for research. This section covers the state of the technological development of some of the areas in which mobile technology is being used with a combination of either gamification or tangible interfaces.

2.5.1 Get Up and Move (GUM)

Penados et. al.[7] created GUM; an interactive toy to measure and stimulate physical activity. GUM is a small creature that needs to be taken care of by a child. The child's objective is to make his/her GUM healthier and happier by moving with it, feeding it and playing with it. GUM is healthy and happy when it has been through a minimal amount of daily physical activity, and since GUM can not move by itself, the child needs to do it. As GUM grows healthier, lighted stars will appear in its ears, until it reaches a maximum healthy state. To increase the number of stars, the child needs to progressively increase and later maintain the GUM's physical activity level. Penados et. al. argues that GUM had a positive effect on reducing sedentary behaviour and motivate physical activity with young children.

2.5.2 Sisom

Sisom¹² is a software created to increase the communication level between physicians and children. It is an interactive game, where the user follows an avatar through different "worlds" of health care subjects. For instance, the avatar takes a boat to a hospital. The user can look around in the hospital and express how he/she feels when giving a blood sample. The results showed that when a child played the game before a consultation with his/her physician, the child was better prepared, the communcication had a better quality, and the child participated more during the consultation[15].

¹²Sisom: Si det som det er - http://www.communicaretools.org/sisom/

2.5.3 Meassuring Blood Pressure

iHealth¹³, Withings¹⁴ and other companies has created blood pressure monitors which are synchronized with mobile applications. By using a wrist monitor; heartbeat, blood pressure level and pulse wave is meassured and stored in the application. The application visually presents graphs of the user's historic blood pressure levels and tracks progress. The application also allows for sharing meassurements with friends, family and doctors. By sharing detailed information with a doctor, a more accurate treatment plan may be laid out.

2.5.4 Controlling Your Diabetes

Cellnovo¹⁵ has created a system that helps users to control their diabetes. It consists of a handheld device for meassuring blood sugar levels, a pump that controls the flow of insulin and a web interface that allows one to access the information. The interface helps users to check for trends and patterns in their blood sugar level, which again motivates users to continue applying the correct treatment. It also allows users to send information to physicians, which helps them make decisions regarding patient care.

2.5.5 Quit Smoking

There are a large amount of mobile applications that help people to quit smoking. For instance, *The Norwegian Heart and Lung Patient Organization* has developed an app called "'Røykeslutt"¹⁶. The application shows what the body is going through after a specific amount of days after the user has stopped smoking, which according to the reviews of the application, is a huge motivational factor. Additionally, they show how much money a user has saved at any given time, which can be seen as "gamifying" the element of money in order to motivate users.

- ¹⁴Withings http://www.withings.com/en/bloodpressuremonitor/features
- ¹⁵Cellnovo http://www.cellnovo.com/
- ¹⁶Røykeslutt https://play.google.com/store/apps/details?id=no.lhl.roykeslutt

¹³iHealth - http://www.ihealthlabs.com/wireless-blood-pressure-monitor-feature_32.htm

2.5.6 TUIs and Multimodal Interfaces for Safety-Critical Applications

Cohen et. al. proposed the use of TUIs and Multimodal Interfaces(MMUI) for safetycritical applications[16]. They present an example with making strategic military planning of a battlefield. By combining special pens with cameras, CPUs and communication units, the lines drawn on a physical map would easily translate to a digital one. These tools made it easier to collaborate on making strategies and sharing them between officers. Cohen et. al. argues that the combination of TUIs and MMUIs may make a suitable improvement for traditionally paper-heavy work.

2.5.7 Exercise Games

In the last few years the exercise equipment industry has embraced gamification through their products. The use of experience points, badges, milestone goals and progress bars are commonly used to market products. Below are two, of many possible, examples of how the industry has made use of gamification.

In 2012 Nike launched their Nike+ Fuelband¹⁷, a wearable device for tracking the user's activity level. The Fuelband is worn as a bracelet, and has small LED lights indicating how active the user has been during the day. By being active the user collects NikeFuelTM, lighting more LED lights on the bracelet. The user may set goals for how active he/she should be in order to collect enough NikeFuel for the day.

Nintendo Wii has gamified the way people exercise at home with Wii Fit and later Wii Fit Plus¹⁸. It gives a user the ability to choose his/her own training programme, including Yoga, Strength and Aerobics. The user can easily track his/her progress over several months. Additionally, it contributes to keeping children healthy, by having games that depend on the child's movement. For instance, if a child flaps his/her arms up and down, a bird on the screen is able to fly.

¹⁷Nike+ Fuelband - https://secure-nikeplus.nike.com/plus/what_is_fuel/ ¹⁸Wii Fit - http://wiifit.com

Chapter 3

Gamification

This chapter will give an introduction to the term "gamification" and introduce the term "serious games". Thereafter we discuss different opinions on gamification and elaborate on different game elements applied in gamification.

3.1 What is Gamification?

"Gamification" as a term was first mentioned by Currier in 2008[17], but did not become a wide-spread term until 2010.

Huotari and Hamari define gamification as:

"Gamification is a process of enhancing a service with affordances for gameful experiences in order to support user's overall value creation."[18]

There are many different ways of describing gamification. Deterding, Dixon, Khaled and Nacke define Gamification as:

"Gamification is the use of game design elements in non-game contexts."[19]

Deterding, Dixon, Khaled and Nacke's definition is often commonly referred to, because of its simplicity and understandability for people who have little or no connection to traditional video games or game consoles.

Today gamification has become a widely used term. Smartphone applications and manufacturers have helped make the term gamification a widespread notion. Examples of this is the application Foursquare, which is built around gamifying "checking in" at restaurants, historical sites and similar places¹. Apple developed a Game Center for iOS in 2010, giving every iPhone/iPod and iPad user a hub for challenges, awards and other gamelike activities², which made every iOS user a potential target for gamification. Lately there have been many games built singularily around gamification, such as Cookie Clicker³ or Farmville⁴. While there are many users of these games, they are often criticised for using gamification to lure players into playing. It is remark worthy that even video game consoles such as Playstation and Xbox makes use of gamification with their achievement/trophy systems⁵⁶. The trophy and achievement systems rewards people playing video games with points and badges for performing certain activities within a game. Gamification elements such as these are often criticized for providing no real-world value other than bragging rights.

3.2 What are Serious Games?

The term "serious game" became a concept with the emergence of the Serious Game Initiative in 2002. Their website defines serious games as:

"The Serious Games Initiative is focused on uses for games in exploring management and leadership challenges facing the public sector. Part of its overall charter is to help forge productive links between the electronic game industry and projects involving the use of games in education, training, health, and public policy."[20]

This definition has been criticised for being too narrow, and for not including any reason as to why businesses should care. An anonymous author⁷ posted an essay on www. lostgarden.com criticizing the definition and suggesting the following definition:

"Serious Games: The application of gaming technology, process, and design to the solution of problems faced by businesses and other organizations. Serious games promote the transfer and cross fertilization of game development knowledge and techniques in traditionally non-game markets such as training, product design, sales, marketing, etc."

¹Foursquare - www.foursquare.com

²Apple Game Center - http://support.apple.com/kb/HT4314

³Cookieclicker - http://orteil.dashnet.org/cookieclicker/

⁴Farmville - www.farmville.com

⁵Xbox - http://xbox.com

⁶Playstation - http://playstation.com

⁷The essay is only signed with the name 'Danc'. Still, we regard this essay interesting and relevant, and it has been mentioned in several scientific publications.

Since it's debut in 2002, serious games have later grown to become a multi-billion dollar industry. Pilots are being trained in simulators, lecturers make lecture quizzes for students[21], Swedish firefighters have used serious games for training[22] and persons suffering from diabetes can use serious games for learning about the illness. These are a few examples of using serious games in situations traditionally not connected to games.

Foldit is a very interesting example of how a serious game may lead to solving bigger problems than the game itself[23]. Foldit is a massive multiplayer online game (MMO). The objective for the player is to fold protein by following a set of rules. The system records how players fold protein and learns patterns for interaction. Humans have much higher skills at interacting with 3D objects than computers, and the system learns patterns and techniques from the players. By playing Foldit, researchers were able to solve the crystal structure of the M-PMV retroviral protease⁸[24].

Serious games and gamification have many similarities; whereas serious games are mainly targeted towards making education or learning more fun, gamification is used in a number of different ways.

3.3 Criticism of Gamification

Gamification is a much debated topic, and no agreement seems to have been reached as to whether gamification is useful or not. Antin and Churchill argue that gamification may be used for goal setting or instruction[25]. Goal setting challenges the users to meet the mark that is set for them, and is known to be an effective motivator[26].

Bogost goes as far as naming gamification as "marketing bullshit", used as a way of moneytizing bad business[27]⁹.

McGonigal's studies on how rewards are perceived over time show that:

"After three hours of consecutive online play, gamers receive 50 percent fewer rewards (and half the fiero¹⁰) for accomplishing the same amount of work."[29]

Steinung argues that gamification is not a powerful enough element to make a task interesting[30]. Simply adding points, badges, a leveling system or similiar, will not

⁸Mason Pfizer Monkey Virus - http://microbewiki.kenyon.edu/index.php/Mason_pfizer_monkey_virus ⁹While this is not a scientific publication, we found it interesting and relevant to the discussion

¹⁰Fiero is an italian term for personal triumph[28]

make a task interesting on its own. Since gamification is based on behavioural pshychology, poor design may be perceived as interesting, for a shorter period of time[30]. Zichermann makes a similar statement, saying gamification needs to take ethical precautions[31].

While McGonigal's research focuses on how rewards are percieved when playing over a longer consecutive time, our intent was to make the user spend only small amounts of time using the application. AsthmaBuddy and AsthmAPP are tools, not pastimes.

In order to achieve a meaningful use of gamification Nicholson[32] suggests using a user-centered design approach[33] when developing systems with elements of gamification. Since AsthmaBuddy and AsthmAPP are computer supported learning systems[34], it was important for us to maintain our focus on the learning and awareness created by our systems, making gamification a tool and not the key feature.

3.4 Game Elements

This section will take a brief look into the different classifications of players that exists, and will introduce the reader to the mechanisms commonly used to gamify users' experiences.

3.4.1 Bartle's Four Player Types

People have different preferences when it comes to playing a game. Richard Bartle proposes a classication of four different player types[35]. These types are *Achievers*, *Explorers*, *Socialisers* and *Killers*. We'll take a brief look on each of these in this section.

3.4.1.1 Achievers

"Achievers regard points-gathering and rising in levels as their main goal, and all is ultimately subserviant to this" [35].

Most young children will fall under this category. Achievers play games mostly just for the fun of it, and do not necessarily need other incentives to the game than being able to finish the challenge imposed by the game. Most children like to see progress in terms of points, clearing a level or a similar sense of progression.

3.4.1.2 Explorers

"Explorers delight in having the game expose its internal machinations to them" [35].

Explorers are thus the players who easily enjoy a game more than once, and potentially want to find every secret embedded in the game. Children will in some cases fall under this category, but with our target group, it is hard to separate between achievers and explorers.

3.4.1.3 Socialisers

"Socialicers are interested in people, and what they have to say. The game is merely a backdrop, a common ground where things happen to players" [35].

This implies that socialisers play games in order to connect with new people or hang out with their friends. The youngest children in our target group will probably not fall into this category, as they will not comprehend that there is someone "on the other side of the screen".

3.4.1.4 Killers

"Killers get their kicks from imposing themselves on others"[35].

"Killers" thrive upon destroying other people's game experience. Hopefully, no children fall into this category, at least not in our target group.

3.4.2 Game Mechanisms Used to Achieve Gamification

There exists some game mechanisms that are widely used for gamifying everyday tasks. This section will explain some of them. We will use the simple concept of a stick figure to examplify each game mechanism.

3.4.2.1 Avatar Systems

Avatars are commonly used in children's games. It gives a player a virtual character, which can be upgraded with different clothing and equipment when players reach certain points in the game. Such equipment can usually be bought for either points awarded or through *In-app purchases*. Players can then show their avatar to other users, compare, and have fun with them. This approach may be seen as giving the avatar a piece of the player's personality. For instance, some players would want their avatar to look as ridiculous as possible, while others would prefer that it looked as cool as possible. Showing off "expensive" gear may also give the player a feeling of accomplishment ("*I'm so good at this game that I could afford this golden armour. Have you managed to get it yet?*").

Example: The stick figure will be a player's avatar, which can be modified to have different pieces of clothing or equipment.

3.4.2.2 Achievements and Badges

Achievements and badges are systems well incorporated into Microsoft's Xbox¹¹ and Sony's Playstation¹². Such achievements and badges are typically given if the player reaches a certain point or level in the game. They may require the user to perform tasks not required to finish the game and often awards players for exploring the environments.

Example: If we combine this mechanism with avatar systems, we can give out a badge when the stick figure has obtained a complete sets of clothes or a specific set (e.g. has purchased all the green clothing).

3.4.2.3 Real-world Rewards

Used together with leaderboards, real-world awards may be given to some of the best players of the game. For instance, they could be rewarded with exclusive tickets to concerts. These real-world awards are often given during marketing campaigns, for instance "Invite your friends to use this system, and recieve one ticket in the lottery to win a brand new computer".

¹¹Xbox - www.xbox.com

¹²Playstation - www.playstation.com

Example: Players may have a real-life stick figure, and the stick figure is rewarded with equipment sent to the player by mail. These rewards could be, for example, different clothing or equipment the player could apply to the figure.

3.4.2.4 Social networking

During the last few years, Facebook feeds has a tendency to be flooded by updates from third-party applications, like Runkeeper¹³, who updates everyone on your friend list that you have been working out. The idea here is to have a common platform, where users may brag about their accomplishments.

Example: Social networking may be used to upload images of a player's stick figure, and show it to his/her friends.

3.4.2.5 Mirroring User Behaviour

This is most commonly used for children, where an animation or a character shows how to go forward with a procedure. For instance, there are a lot of apps on App Store mirroring the process of brushing a child's teeth. A child may use this app as a reference that indicates how long he/she should brush on the same side.

Example: The stick figure mirrors the player's intended behavior.

3.4.2.6 Experience Points

Experience points is an indicator of how much experience the player has gained within a game or setting. These points may be awarded from completing tasks, exploring areas and features or other similar activities. Experience points are usually combined with a leveling system, where the player "climbs a ladder" using these experience points, for example by unlocking new levels, new rewards or new features. A player with many experience points is considered an experienced user, and is percieved as higher ranking than a player with less experience points. Experience points are also often combined with leaderboards.

¹³Runkeeper - http://runkeeper.com/

Example: One experience point may be represented as a stick figure, and the goal is to gather as many stick figures as possible. Another example is that leveling up, based on experience points, may be represented by the size or attributes of your stick figure.

3.4.2.7 Leaderboards

A leaderboard is a list of the players ordered by their collected points, completed activites or any other predefined system. Each user has a score defined by rules set before a competition started. The score is compared and the players are ranked based on the scores. Leaderboards may be fully dynamic, changing when a player has scored points, or state based, where the new order is determined after a certain period of time.

Example: If the stick figure gathers enough experience points, it may find itself on a regional leaderboard, ranking players in your area (neighbourhood, town, country, etc).

3.4.2.8 Progress Bar

A progress bar is used to indicate how far a user has come towards a given goal. When the player completes a task or an activity, the progress bar is filled to indicate the progress of getting closer to a goal. How much the progress bar is moved is often determined by the severity of a task or by using points. The progress bar may often be combined with experience points, where the experience points collected determines the movement of the progress bar.

Example: The stick figure is placed on a road. The figure's position on that road, mirrors the progress a player has made. When completing a task, the figure will be moved closer to its goal.

3.4.2.9 Contests

Gamification can be done through having contests either with players in a duel-like head-to-head contest or a free-for-all contest with no limit on the capacity of players. A duel-like contest may be a knockout style of competition where players compete to get the highest amount of points within a given time period or a similar type of a goal. A player may make progress in the tournament without being the player with the highest score, but being better than his/hers opponent. In a free-for-all contest, the winner is whoever fulfills a specific goal to the best degree. The goal which players try to achieve is set be a specific set of rules determined before the start of the contest.

Example: A player's stick figure may enter a voting contest, where votes are given to the best looking one.

3.5 Summary

Stapleton argues that:

"A variety of [serious game] applications can be thought of here [in Health Care] such as games as a form of motivation and reward for patients undergoing some form of treatment. Games could also be to distract patients during certain procedures such as dental work, for example."[36]

Stapleton's argument is one the reasons for why we believe in the use of tangible user interfaces and applications with gamification as methods for treating children with asthma. Children are easily distracted, and we believe that making the treatment into a serious game will distract the children enough to forget what they are doing and instead look on the treatment process as a fun game.

As McGonigal's studies show, the effect of gamification tends to wither down after a longer period of time[29]. Since asthma is a chronic disease which may affect the person suffering from it for many years, there is a risk of our gamification system being too shallow and becoming boring after a period of time. As Nicholson[32] states, developers should use a user-centered design when designing gamification for a system. With AsthmAPP and AsthmaBuddy we aimed to make a system where the user is responsible for much of the gamification elements, putting the tools in the user's hands, not necessarily guiding them all the way. A description of the gamification system used in our system is given in Chapter 6.3.1.

While there are numerous possibilites of different combinations of gamification elements that may be used in the process of treating children with asthma, we did not have the time and resources to implement all of them in AsthmAPP. We have done an assessment of different gamification techniques. Our review is listed in Chapter 9.1.1.

Chapter 4

Tangible User Interfaces

This chapter will introduce the reader to *tangible user interfaces*, and elaborate on some existing research that has been done on the concept. In addition the chapter will describe the methods we used to develop our tangible user interface.

4.1 About Tangible User Interfaces

In 1997, Ishii et. al. presented an article called "Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms"[37]. They established the term "Tangible User Interface" (TUI) as a way to move beyond the dominant model of Graphical User Interfaces (GUI). While GUIs show information (bits) in the form of pixels mapped to a display, Ishii meant that TUIs would represent the bits in form of physical objects. The objective of TUIs was explained as to *augment the real physical world by coupling digital information to everyday physical objects and environments*[37].

"Urp"[38] is an example of an first-generation TUI. Urp is a workbench used by architects in order to determine shadow patterns for models of buildings. By moving a "clock tool" the lighting on the workbench would move according to what time of day was choosen. Instead of interacting with the lights directly, the TUI factor of the workbench was the clock tool. What made this a first-generation TUI are the fairly simple and state-determined operations.

"Sandscape" [39] is an example of a second-generation TUI. Sandscape uses clay, sand, cameras, digital software and lighting to give an overview of a Geographical Information System (GIS). The users could interact with the clay, forming dunes or dig holes and

the software would calculate landscape analysis based on the interaction. Sandscape is dynamical user interface since it may change to several different non-predefined states. Systems such as this are called "continuous TUIs".

In 2008, Xie et. al. performed a study on how children reacted using different interfaces in order to solve a jigsaw puzzle[40]. The different interfaces were a physical interface (i.e. a standard jigsaw puzzle), a TUI and a GUI. Their main finding was that children enjoyed playing with the different interfaces equally. However, the children were more likely to start a puzzle over again if the interface were physical or tangible, which implies that a repeated task is more likely to be performed if the children are playing with a tangible or physical interface, while it becomes boring to do the same task over and over again on a graphical user interface. As a disclaimer it is worth mentioning that the puzzles were being solved by groups of two, and considering the GUI was a computer with one mouse, the children did not get the same sharing experience as with the other interfaces.

4.2 Examples of Use

Using TUIs instead of GUIs has been proven to work in several different settings. In this section, we will give an overview on some of the domains in which the concept has been proven to work.

Learning

Terrenghi et. al. designed a cube for learning, giving children quizzes where answers had the shape of text or images[41]. Children could then rotate the cube in order to get the correct answer pointing upwards, like a dice. They concluded that the TUI gave children a different set of affordances that prompted a great initial engagement[41].

Information Sharing

Hinckley et. al. created a tangible user interface for neurosurgical vizualisation[42]. Their tool proved helpful for neurosurgeons to provide physical familiar tools that could display information digitally. Their tool showed possibilities for creating and viewing cutting planes and planning neurosurgery. Their tool made it easier for them to display the surgical cutting planes to other surgeons, or to persons with less knowledge in neurosurgery.

Moran et. al. designed a physical wall for sharing information on people in an office[43]. The system, named "Collaborage" showed a person locator and different types of project information. Collaborage showed how the use of traditional use of walls and sticky notes translated into a digital software in a positive manner.

Collaborative Learning

Scarlatos et. al. created a system called TICLE (Tangible Interface in Collaborative Learning), which were used to help children solve a Tangram[44]. Their system consisted of the tangram pieces and a surface to place them on. The tangram pieces had a tracker on them, which was used to guide children when placed a piece in the wrong place. Once the solution had been found, the children were able to explain the underlying geometric principles behind their solution.

Interactive Storytelling

Zhou et. al. designed a cube for storytelling, using a head mounted display and a "magic story cube" in order to let children explore the world while being told a story[45]. Stanton et. al. created a "magic carpet", giving children possiblity to influence a story in the classroom[46].

Social Context

The "Marble Answering Machine" is an invention by Durrell Bishop, dating back to 1992[47]. The interface allows users to drop marbles into a play-back indent on the system, which plays a recorded message. Similarly, Karotz is able to read your Twitter feed if the Twitter application for Karotz had been installed¹.

4.3 **TUIs Used in Health Care**

In 2003, Wada et. al. conducted a study on how the introduction of robotics affected the elderly[48]. They carried out their research at a day service center in Japan, where they placed a robotic seal, named Paro, together with the elderly. It had recently been found that animals have a positive effects on blood preassure, depression and loneliness. They placed a robotic seal in the care center, and analyzed the reactions from the elderly.

The results showed that the elderly were in a better mood after interacting with Paro over five weeks, and became worse once Paro was removed. In addition, nurses' burnout rate

¹Twitter application for Karotz - http://tiny.cc/karotztwitter

decreased during the experiment, which implied that they had easier days when Paro was there. The study showed that the elderly's quality of life improved after Paro was introduced.

Farr et. al. did a study on children with Autisitic Spectrum Condition (ACS), when playing with a TUI called Topobo²[49]. The study compared the level of social interaction when playing with Topobo, compared to playing with LEGO. Their findings showed that ACS children were playing more cooperatively with the TUI than LEGO. Additionally, children with traditional development were able to play more cooperative, solitary and parallell when using a TUI, suggesting that

"(...) programmable digital technology may support more pathways to social interaction."

4.4 Tangible User Interface Paradigms

Ullmer states that a tangible user interface should embody the following four properties[50]:

- 1. Physically Embodied
- 2. Physically Representational
- 3. Physically Manipulable
- 4. Spatially Reconfigurable

Ullmer further states that these four properties describe physical artifacts as representations and controls for digital information.

Ullmer proposes three different paradigms of tangible interfaces; *Token and Constraints*, *Interactive Surfaces*, and *Constructive Assemblies*. These classes are partly based on varying degree of support for continuous and discrete forms of interaction[50].

4.4.1 Token + Constraint Approach

The "Token + Constraint" approach centers on a hierarchical relationship between tokens and constraints. Tokens may be placed within or removed from the compatible constraints. The physical shape of the tokens and constraints display whether or not the

²Topobo - http://www.topobo.com/

tokens are compatible or not. This approach support a combination of continuous and discrete interactions.

A system that is capable of reading RFID-tags is considered a Token + Constraint system. The RFID-tag is considered a token, while the area the RFID scanner can read from is considered as a constraint.

Strenghts of Token + Constraint approach

Ullmer states that interpretive constraints will help to express which of the physical tokens can take part within a given interpretive constraint, which physical configurations these physical tokens can take and the demarcation between interaction regions with different computational interpretation.

These interpretive constraints may help to simplify the human perception since humans are good at comparing shapes and forms. It may help human manipulation since interpretive constraints provide an increased sense of kinesthetic feedback from the manipulation of tokens.

4.4.2 Interactive Surfaces

In this paradigm, users manipulate physical objects upon an augmented planar surface [50]. These objects are then tracked, interpreted and graphically mediated through the surface. A popular usage of interactive surfaces is to create interactive workbenches, where objects are configured upon a horizontal workbench. For instance, metaDESK with the Tangible Geospace application, had a large map of a city as it's workbench[51]. Combined with magnifying glass, it allowed users to look at 3D models of particular places in a town.

4.4.3 Constructive Assemblies

One major approach for tangible interfaces draws inspiration from buildings blocks and LEGOTM. Such "constructive assemblies" of modular, interconnecting elements have been used for modeling real life buildings[52], and geometric modeling of all kind of shapes[53]. Constructive assemblies give an easy-to-use and highly tangible representation of digital information. While there were possibilities for how to use constructive assemblies for developing a tangible user interface to help children with asthma, we decided to not use this paradigm in the construction of AsthmaBuddy. The use of small parts that can easily be lost was not a solution we saw fit for our age group of 3 - 7 year-olds.

4.5 Developing Tangible User Interfaces

4.5.1 Champoux's Development Framework

Much research has been performed regarding the potential benefits of TUI's, but there are few guidelines on how to actually create a TUI. Champoux proposes a mechanism to design TUI's based achieving fitness between the form and its context[1]. He proposes three classes of questions, which corresponds to the different development phases of TUIs:

- Defining the boundaries
- Orienting the components
- Fitting the components

Answering the questions in Table 4.1, will make the development phase easier.

Defining the Bound-	Orienting the Con-	Fitting the Compo-
aries	cepts	nents
BO1 : What should the	OC5a: What is the	FC7: What are the re-
user experience?	nature of the inter-	lations between the ob-
BO2 : What are the hu-	action for each sub	jects and the actions?
man tasks?	task? (Continuous vs	FC8: What is the task
BO3 : What would the	Discrete vs Assembly)	order when using the
artefact represent and	OC5b: What are the	artefact?
control?	electromechanical and	
BO4 : What are the con-	physical ergonomic	
ventions?	constraints for this	
	task?	
	OC6: Does the sub-	
	task need any relational	
	interaction?	

TABLE 4.1: The eight questions stated by Champoux[1]

We considered Question **OC5b** as irrelevant for our purposes, as we developed a stationary artefact without any electromechanical and phyical ergonomic properties, i.e. no moving arms, waving ears, etc. As far as questions **FC7** and **FC8** go, we considered these irrelevant. These questions assume that the tangible interface performs a task for the user, which is not a part of our system. The remaining questions were considered relevant, and will be discussed in Chapter 7.3.3.

4.5.2 Development Challenges

Working with GUI's is quite easy from a usability point of view. Assuming that every potential user has used some sort of GUI-based application before, there should not be any fundemental affordance problems when creating a desktop application. What a user expects from a computer mouse is simply given beforehand. However, with TUIs, no such expectations from the user exist. Bellotti et. al.[2] has found several research challenges with creating usable TUIs and ubiquitous systems. This section will elaborate on some of the questions we have to ask ourselves when we are creating our TUI.

Bellotti et. al. found five basic issues considering communication between a human and a system; Address, Attention, Action, Alignment and Accident. These issues were then formulated as questions, which exposed several challenges regarding each issue. Some of the challenges they found considered ubiquitous computing, assuming there are several possible target systems at the same location. Table 4.2 shows an appropriate subset of their findings, with our project in mind.

Basic question	Exposed Challenges	
Address: How do I address one of	How do disambiguate intended target sys-	
many possible devices?	tem.	
	How to not address the system.	
Attention: How do I know the sys-	How to embody appropriate feedback, so	
tem is ready and attending to my ac-	that the user can be aware of the system's	
tions?	attention.	
	How to direct feedback to zone of user at-	
	tention.	
Action: How do I effect a mean-	How to identify and select a possible ob-	
ingful action, control its extent and	ject for action.	
possibly specify a target or targets		
for my action?		
Alignment: How do I know the	How to make system state perceivable	
system is doing (has done) the right	and persistent or query-able.	
thing?	How to direct timely and appropriate	
	feedback.	
	How to provide distinctive feedback on	
	results and state.	
Accident: How do I avoid mis-	How to control or cancel system action in	
takes?	progress.	
	How to disambiguate what to undo in	
	time.	
	How to intervene when user makes obvi-	
	ous error.	

TABLE 4.2: The challenges of interacting with a TUI[2]

4.6 Summary

Tangible user interfaces are about representing digital information through physical objects. There are a lot of examples on tangible user interfaces, and we have taken a brief look into some of them (see Section 4.2). There seems to be a lot of activity going on in this field of research. However, only a few are commercially available.

Champoux proposed a design mechanism to create tangible interfaces. The design mechanism is somewhat abstract, and lacks obvious issues such as how to actually display information to a user, which Bellotti et. al. (see Section 4.5.2) expose as a challenge with creating ubiquitous systems and TUI's. We used Champoux' approach to a certain extent, and kept Bellotti's challenges in mind when designing AsthmaBuddy.

When developing AsthmaBuddy, we continually looked for ways AsthmaBuddy could be of use for the asthmatic children. Our main focus was on helping children to remember to take their medicine and apply the treatment correctly. In addition, we continued to look for other ways AsthmaBuddy could be of help for the children or their parents.

Chapter 5

Research Method

This chapter will describe the research methods for our project. The chapter elaborates on the different methods applied and how they were conducted. The chapter starts by describing our literature study and the use of semi-structured interviews. Thereafter is a section about prototyping. The chapter concludes with sections about usability, usability testing and how we conducted our validation test.

5.1 Literature Study

We conducted a literature study early in the project, in order to get an overview of the research that is fundemental for our project. In order to find reliable research, we used Google Scholar¹ and the IEEE Xplore Digital Library².

Initially, we used two key search phrases; "Gamification" and "Tangible User Interfaces", which were used to build a foundation of relevant material. Later, we used those terms in a combination with other relevant terms, e.g. "Health", "Asthma", "Development", etc. We also twisted words to find related research fields, e.g. replacing "Gamification" with "Game Elements".

In order to determine if an article was relevant to our project, we read through the papers' abstract and its' discussion and conclusions, before eventually reading the paper in detail. We then searched through the papers' references and skimmed their abstracts to potentially find new sources of information.

¹Google Scholar - scholar.google.com

²IEEE Xplore Digital Library - http://ieeexplore.ieee.org/

To assess an article's validity, we made an assessment, based on a combination of whether an article had been quoted and a check for critiques or comments on the respective article. If the critiques were mainly negative, or pointed out serious deficiencies in the research performed, we decided not to put more effort into the article. In order to create a balanced viewpoint when discussing a specific theme, we searched for contradicting arguments on the specific topic.

Searches for information regarding tangible user interfaces were also performed in standard search engines (i.e. Google) in addition to Google Scholar. The reason behind this is that there exists few commercially available tangible user interfaces, which have been subject for a research article. Thus, it became hard to assess whether the project was a success on a larger scale.

5.2 Semi-structured Interviews

Semi-structured interviews is a data collection method that allows interview subjects to put more weight upon their opinions, and what they perceive as important on a certain topic. As opposed to structured interviews, the interviewers can explore interesting answers more in depth by asking follow-up questions, instead of sticking to a fixed schedule. The interviewer comes up with a plan beforehand, with the main topics that should be covered during the interview, and some of the key questions that should be answered. If the interview stagnates within a specific topic, the interviewer can change the subject according to the plan.

The negative effects of this method is that it limits the creativity of our subjects. For instance, if people are initimidated or surprised by the research performed, getting the best possible feedback could become challenging. It is therefore encouraged to give a brief summary of the research field beforehand, so that the interview subjects are able to make up their own opinion about a topic before meeting for the interview[54].

The purpose of conducting these interviews was to ensure that the end-product was not limited by our own imagination. We wanted feedback on the work we had done so far, in addition to exploring new functionality and elements we should keep in mind. The interview subjects consisted of the following:

A PhD/Researcher in Psychology.

An advisor at NAAF.

A PhD candidate in Industrial Design at NTNU.

Two nurses with asthma within their field of expertise.

Two parents of children suffering from asthma.

5.3 **Prototyping**

Our research involves developing prototypes; one Android application and a tangible user interface. There are several reasons to why we chose to include prototyping in our research; Firstly, it would be great if we were able to develop tools that would help children to get better medically. This aspect provided a lot of motivation during the project. Secondly, we wanted to validate whether some of the literature we had studied were suitable for such a tool. Thirdly, we are creative people, who thrive when we do creative work. If we did not develop anything useful, we would easily have lost interest. Additionally, it is generally considered a good idea to develop prototypes in order to test concepts with potential users[55].

5.4 Usability Testing

5.4.1 Introduction to Usability

There are many ways to describe the term usability.

The International Organization for Standardization(ISO) uses the following definition[56]:

"Extent to which a system, product or service can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use."

The same document defines the term "context of use" as:

"Users, tasks, equipment (hardware, software and materials), and the physical and social environments in which a product is used."

These definitions cover how the system is used, the user's thoughts about the use and the context of the system. This can be broken down further into several subgoals in order to achieve better usability, and to give a better insight as to what usability is. These subgoals are:

- 1. How precisely is the user able to perform a task by using the application?
- 2. How much resources (for example time, or number of tries) was used to perform the given task using the application?
- 3. How many errors occurred?
- 4. Did the user find the use satisfactory?

Schneiderman stated eight golden rules in order to achieve a good usability of computer systems[57]. In his rules he mentions consistency, informative feedback, reducing short term memory load and permitting easy reversal of actions. These eight golden rules have since their publication become a central part of usability engineering.

Today usability is extremely important in order to achieve success for a system. The users expect a functional and easy-to-use system. From the user's point of view, working with a product which is easily understood, leads to increased productivity, which again may lead to increased sales/usage[58]. Proper usability engineering may also lead to lower costs for the developers and higher chances for projects being finished on time[59].

5.4.2 Purpose

Usability tests are usually performed in order to detect errors in a system. We wanted to perform usability tests in a slightly different manner. In addition to discover errors, we observed how children take their medicine in combination with technology. We used the results of the usability tests to find potential for improvements and design ideas for the product, in addition to validate whether or not our concept worked in a satisfactory manner.

The tasks given to the participants were created with routine use of the application in mind. Usability tests were performed with the help of participants with no prior knowledge of the application. These participants were chosen in order to receive valuable feedback on usability problems with the current design and structure, and to prevent invalid feedback from users who already know how to perform the tasks. In addition, this situation resembled everyday life of the users.

As one of the systems we tested was an Android application, we considered whether we should test it on an emulator installed on a computer, or by the use of a smartphone. While the emulator allows for easier screen and input capturing, it suffers from the drawbacks that interaction is performed through a mouse and a keyboard, in addition to running far slower than an Android device. Using an Andriod device would lead to a more realistic interaction pattern, but this again suffers from the drawback caused by the fact that screen capturing is not possible unless the device is rooted³. We chose to test the system on an Android device, as we figured it would seem more natural for a child and the NSEP laboratory has capabilities to record the user interaction through cameras.

5.4.3 Test Method

The usability tests were performed at the NSEP Usability Lab⁴, which provided measures for recording the sessions.

Before each test, we performed a pilot test in order to discover last minute critical errors that could make an impact on the result.

The test was divided into two stages. In the first stage, the parent were to use AsthmAPP for a couple of basic tasks. In the second stage, the child was to perform a set of tasks (the tasks can be found in Appendix C). We wanted children to observe while their parent performed the tasks, in order for them to understand that the process was harmless. Additionally, we let their parents sit next to them and explain the tasks for them, so that the children were not told to perform some seemingly random task by a stranger.

³Android rooting - http://en.wikipedia.org/wiki/Android_rooting ⁴NSEP Usability Lab - www.ntnu.no/nsep

The participants were given an Android mobile device to perform their tasks on. The different tasks were given one by one. The participants were introduced to the "think-aloud"-method[60], and were told to ask questions during the process, even though the test leader was not allowed to answer questions during the test. The main reason for gathering questions was for the discussion afterwards and facilitate for the "think-aloud"-method.

The test leader finished the test by asking questions regarding what the participants thought of the system and by answering the questions that were asked during the test. We also asked parents how they felt that the medication process went, so that they could compare it to their daily situation at home, and if they got the impression that the product could be helpful.

The results were later analyzed in order to discover any improvements needed to the system. The errors were rated after level of severity[55].

- Critical (Level 1) Prevents the participant from completing the task.
- Significant (Level 2) Generates significant problems when trying to complete the task.
- Minor (Level 3) Has minor effect on the usability of the application.
- Non-essential (Level 4) Enchancements to the system. When a participant states that "it would be nice to have this".

An often used approach to measure the usability of a system, is to use the System Usability Scale (SUS)[61], together with the observations made during the test. These scores may give an indication of the usability of a system[62]. As we were dealing with children, we had to use a different approach in order to get feedback from them.

Zaman et. al. proposes a way to measure the likeability of tangible interaction with preschoolers[63]. They based their research on work done by Read, MacFarlane and Casey[64], who found that traditional measures for likeability, for instance a smiley-ometer, proved to give false results. In fact, Read et. al. found that more than 80% of the children being tested gave a "Brilliant" score. Zaman et. al. implies that children are actually lying when giving these scores, which is understandable from a questionnaire perspective. Instead of using scales as a measure of what is likeable or not, they propose a model where they compare different interaction systems against each other. They call it the "This or that" method[63]. For instance, the interviewer asks the child which system the child prefers, followed by "this or that" while pointing to the different systems.

We used a similar approach to understand which forms of interaction children like most, and which system they liked to interact with the most, AsthmAPP or AsthmaBuddy.

5.4.4 Scenario and Tasks Given to the Users

Since the test users spoke Norwegian, and some of them were children, the scenario and tasks were given in Norwegian. A translation of the scenario and tasks handed to the participants can be found in Appendix C, but for convenience the next paragraphs gives a brief summary.

Scenario given to adult test users

The scenario explained that the user was a parent of a 4-year-old child with asthma. They have recently seen a doctor, and will now have to set up treatment plans according to advice given by the specialist. Since they have little experience with asthma, they would have to look up information about the medicines and how the treatment will be done. In order to motivate the child to continue taking his/her medicine, they will have to add a reward via the application menu. Finally, they would have to look through the calendar log in order to find correlations between the child's health state and the use of medicines.

Scenario given to child test users

The scenario given to children was explained to them by their respective parents.

The scenario explained that the child needed to take his/her medicine, and that AsthmAPP and AsthmaBuddy were there to help him/her through the process. The children started out by checking for potential rewards in AsthmAPP. They then did a treatment with the help of AsthmaBuddy, before doing a treatment through AsthmAPP. They were then told to check their amount of stars earned through AsthmaBuddy, before they were instructed to purchase their reward from AsthmAPP's shop.

Chapter 6

AsthmAPP

This chapter gives a description of AsthmAPP, through textual description and screenshots. Note that the main language of the application is Norwegian. We have translated the text where it seemed appropriate.

6.1 Architecture and Technology

6.1.1 System Architecture

Figure 6.1 shows an overview of the architecture we used for our products (AsthmaBuddy included). We reused some of the components Aaberg et. al. created during Customer Driven Project[3].

Data is stored at a MySQL database hosted by NTNU. AsthmAPP and AsthmaBuddy access the database through a webservice written in PHP, which is also hosted by NTNU. The reason for accessing the database through a webservice is twofold. First, it is difficult to access the database when a device is not located on the local network at NTNU. It would be required that a user has configured VPN¹ in order to access the NTNU network. We also can not assume that users have access to the network at NTNU.

¹Virtual Private Network

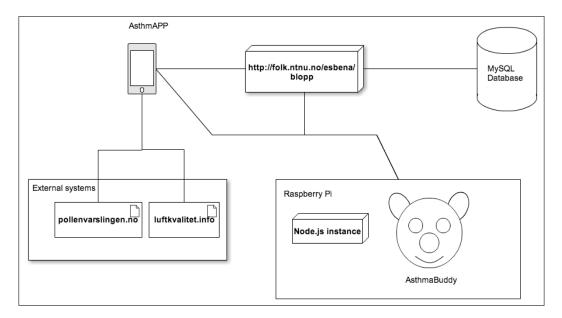


FIGURE 6.1: System Architecture

Secondly, by having a webservice that structures the results given by the database, it becomes easier for the client to deserialize these results, as they are served as JSON-objects².

When one of the applications wants to store data to the database, it does a HTTP POST, with the data as POST parameters, to a predefined route on the webservice. When the application wants to retrieve data from the database, it does a HTTP GET to the webservice, which extracts the data requested from the database, formats it to JSON, and returns the data to the application.

By having a webservice layer between the applications and the database, the system scalability suffers, but modifiability is increased, which we considered as a good tradeoff at the current state of our project.

²JavaScript Object Notation

6.1.2 Technology and Frameworks Used in AsthmAPP

AsthmAPP is developed in native Android code, which implies using Java as the programming language and the Android Application Framework³. Additionally, we used the following frameworks to ease the development:

Gson

As mentioned in previously, our webservice gives out JSON-formatted objects of data stored in our database. We used Google's Gson-library⁴ to deserialize JSON objects into Java objects.

JodaTime

Java's default implementation of time is cumbersome to work with, with a lot of it's functionality deprecated. JodaTime⁵ is an open source project that seeks to handle time in a proper manner on the Java platform⁶.

6.2 Design Rationale

While designing AsthmAPP, we strived for an easy-to-use design with a good overview, in addition to the Android Design Principles[65]. We have also taken Shneidermann's eight golden rules into consideration when designing AsthmAPP[57]. We tried to lighten the short-term memory load by using a combination of sounds, pictures and text to tell the user the options that are available or what is expected from the user.

The application is divided into two partitions, one for the parents and one for the children. In order to access one of the partitions, the user clicks on one of the buttons shown in Figure 6.2. The main menu of both partitions of AsthmAPP gives a general overview. AsthmAPP does not provide shortcuts between different modules, e.g. a parent who is currently viewing the medicine log has to go back to the main menu in order to view the treatment plan. While this breaks with Shneidermann's rules and the Android design principles, we believed that the solution we found was the preferrable one.

³Android Application Framework - http://developer.android.com/develop/index.html

⁴Google Gson - https://code.google.com/p/google-gson/

⁵JodaTime - http://www.joda.org/joda-time/

⁶Oracle has promised that Java 8 has better support for managing time, but Java 8 was released at a time at which our program was already operative.

During a treatment the child is prompted to take action in order to continue through the process, giving the child a locus of control.

6.3 Use of Gamification in AsthmAPP

6.3.1 Design Rationale for Gamification System in AsthmAPP

In AsthmAPP we aimed to use gamification as a distraction and rewarding element for the children. During the start of the project we arranged a brain-storming session to find which gamification techniques we wished to add to AsthmAPP and AsthmaBuddy. The summary of this session is listed in Chapter 6.3.2.

At first thought, we figured that implementing an avatar system was a smart approach to create a gamification system. An avatar system gives possibilities for expansion in order for the application to combat boredom in the long run. When developing avatar systems, a key for its success is that it is balanced and good looking. After having spent a few hours programming an avatar system, we chose to discard the functionality, caused by the lack of skills necessary to make it attractive.

We chose to aim for a system we were sure we were able to implement in a wellworking fashion in order to test the system with users. We expanded on Aaberg et. al.'s use of experience points (represented by stars), by adding a shop where the stars may be used for purchasing rewards. We believed this system has many possibilites for expanding upon on a later stage. The parents have the possibility to create their personalized gamification environment through the reward system. This solution stands to reason with the arguments of Nicholson regarding how to design gamification[32].

The children are rewarded with stars based on their health state. The rationale behind this is that the children may have to take more medicine when they have a cold or there is a lot of pollen in the air. The parents have access to a administrator menu where they may add new rewards for the children. The children will then be able to order the rewards when they have earned a sufficient number of stars. This way the parents and the children create their own gamification environment. Examples of possible rewards could be to give the child an extra 10 NOK in weekly allowance, taking him/her to soccer matches or even to the local amusement park. It is an option where the only boundary is the imagination and how much cost and effort parents wish to invest in it.

The rewards will appear on a "milestone" basis. We do not want children to feel that they lose something if they spend stars on a reward. We do not want to force parents into giving away rewards they cannot afford or do not wish to give. The use of the reward system is optional and decided by the user, making the user in control of how they wish to gamify the experience. We do not wish to have the children spending too much time using the application, since using a tablet or phone at such a young age is considered unhealthy. This had some implications on the complexity of our gamification system.

6.3.2 Gamification Elements in AsthmAPP

We did an assessment of the different gamification elements in order to decide which gamification element suited our purpose. This assessment is included in Table 6.1.

Mechanism	Included in AsthmAPP	Rationale
Avatar sys- tems	No	We did not have time to implement this during our thesis, but we do believe this could be a good feature if it was implemented in a right manner.
Achievements and badges	No	We believe our target group will not enjoy this fea- ture as much as older children, e.g. those of 12 - 16 years of age.
Real-world re- wards	Yes	Children enjoy the feeling of being rewarded with something real.
Mirroring user behavior	Yes	Demonstration has a positive effect on children.
Leaderboards	No	There are no way to implement this in a realistic and legal way. Children would have to share their data, which consists of points based on medicine doses. Parents could be blamed if their child were on the bottom of the list. It would also be negative for small children's motivation if their effort is not reflected on the leaderboard.
Social net- working	No	Much of the same reasons as why we did not choose leaderboards. We also believe that children in our target group would not understand this aspect.
Progress bar	No	In an ideal world, we could have shown how close the child was to becoming fully treated for asthma. However, identifying how close a patient is to be- coming healthy, is virtually impossible. Another us- age may be to match the child's progress for each week against his/her medicine plan. This would however, imply that by-need treatments would not be included, which may seem unfair for the child. Additionally, their progress would be deleted every week, which would not have much motivational ef- fect.
Experience points	Yes	The stars will work as experience points, which may used to cash in rewards from the parents.
Contests	No	Using medical history to participate in contests would be a violation of Norwegian privacy laws. It may also be used to pinpoint "bad" parents.

6.3.3 Criticism of AsthmAPP's Gamification System

Chapter 3 gave an introduction to the term gamification, and how gamification should be used. We have developed a reward system that is highly based on parents' opinions, and thus, have some flaws that we will discuss further in the following.

First of all, children may become bored of the rewards if they are not increasingly difficult to achieve, and have not increased in value. For instance, if a child is rewarded with a ticket to a football match for achieving 10 stars, and then receives a piece of chewing gum if he/she achieves 20 stars, the child may lose interest and important motivation in order to complete his/her treatment.

Secondly, the number of stars rewarded depends on the child's inferred health state (green state yields 1 star, orange state yields 3 stars and red state yields 5). This calculation of rewards leaves a possible exploit where children may pretend to be sicker than they are. In the long run, a child could fake being sicker than he/she actually is, just to achieve a reward more easily. This is a situation that *could* occur, but we did not have the resources necessary to observe this pattern over time.

Thirdly, the gamification during the treatment, i.e. the animation on the phone, could become boring over time. The interactions are not varied, and it takes approximately 2 minutes to complete a treatment. For expert users, who have had asthma for several years, it will become boring. Thus it should be noted that this is an application that probably would work best for young children in the early stage of their disease.

6.4 Child Partition

A screenshot of the first view users meet is included in Figure 6.2. By pressing the top button, the user is brought to the child partition of AsthmAPP.

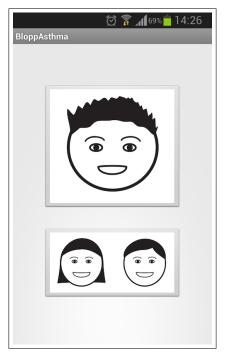


FIGURE 6.2: Start menu of AsthmAPP.

The child partition of our application consists of four parts. This parts are the treatment process, the treasure chest, the reward shop and the instructions for how to finish a treatment.

6.4.1 Treatment

Figure 2.3 shows a screenshot for the application when the child starts his/her treatment. This sequence may be started by on of two events: (i) *The child reacts to an alarm set in the parent partition*, or (ii) *The child needs to take his/her medicine by need*. If (ii) is the case, the child is instructed to pick the medicine from a list shown by the application. If (i) is the case, the medicine is determined beforehand. When a child has started his/her treatment, he/she is taken through an animated sequence, which reacts when a child interacts with the device. The child is being told what to do by the comforting voice of Andreas Ystmark⁷.

⁷A classmate of ours at NTNU

6.4.2 Showing Collected Stars

Figure 2.4 shows a screenshot for the application when the child wants to review how many stars he/she has received, based on the amount of treatments completed. Since we cannot assume that the child is able to read, we have made the stars countable, and hopefully the child is able to comprehend how many stars he/she actually has. We also provide some help to those who are able to read numbers, by showing the number of stars a child has on the top of the screen.

6.4.3 Shop

In the shop, children are allowed to select rewards given by their parent(s). Figure 6.4 and 6.5 show an inside-view of our shop. Children can buy a reward by pressing the selected reward in the menu. Due to time constraints and lack of good software solutions, we have not been able to implement a voice over, so the children may need help with reading the names of the rewards. The possibility of adding pictures to represent the reward should make it easier for the children.

6.4.4 Treatment Instructions

The treatment instructions is a book-styled instruction set which shows generically how to take the medicine. The following steps are included in the instructions:

- 1. Shake the inhaler to loosen the particles.
- 2. Take the cap of the inhaler.
- 3. Attach the inhaler to the inhaling chamber.
- 4. Cover nose and mouth with the inhaling chamber.
- 5. Press the inhaler until you hear a sound.
- 6. Let the child breathe calmly in and out 10 times.
- 7. Let the child wash his/her mouth.

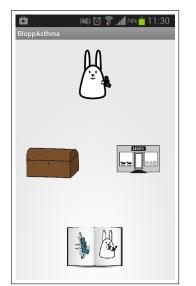


FIGURE 6.3: Main menu of child partition

FIGURE 6.4:

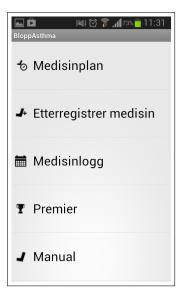
Possible rewards a

child can choose

from

FIGURE 6.5: A child has bought the reward

6.5 Parent Partition


A screenshot of the first view users meet is included in Figure 6.2. By pressing the bottom button, the user is brought to the parent partition of AsthmAPP.

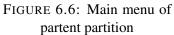
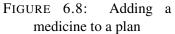

6.5.1 Menu

Figure 6.6 shows the main menu of the parent partition. It has five options (Norwegian translation in paranthesis):


- 1. Medicine Plan (Medisinplan)
- 2. Register Medicine Afterwards (Etterregistrer medisin)
- 3. Medicine Log (Medisinlogg)
- 4. Rewards (Premier)
- 5. Manual (Manual)

In order to access the parent partition the user is prompted with a PIN challenge. This was done in order to protect the child's medical data if a smart phone is lost or stolen. Additionally, children tampering with their medical plan or adding false treatments is avoided.

Legg til med	😻 🗭 🛜 📶 73% 🗖 11:32 disin
Legg til	medisin:
Oran	sje 🗸
Tidspun	ıkt:
+	+
11	30
_	_
	Legg til medisin

						1	
			<u>}</u>	\$} ⊘	ā .1	73%	11:
Blo	ppAst	hma					
<<			Ма	rs-20	014		
	23	24	25	26	27	28	1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	(17)	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31	1	2	3	4	5
17		Lite	n hels	itet i Tro serisiko r ingen :o.	D	n	Poller Or Hass Bjørk Gress Burot Salix

FIGURE 6.10: Medicine log

FIGURE 6.7: Available medicine plans

Etterregistrer med	isin	73% 11:32
	Dato	
+	+	+
17	Mar	2014
_	-	_
Ve	elg medi	sin
]	Oransje
]	Lilla
	1	Blue
	Legg til	

FIGURE 6.9: Register a medicine taken

FIGURE 6.11: Overview of rewards a child may recieve

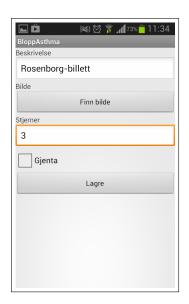


FIGURE 6.12: Creating a reward

FIGURE 6.13: PIN challenge in parent partition

6.5.2 Medicine Plan

Creating a medicine plan for asthma treatment is highly connected to the asthma action plan explained in Appendix F. Users can have three different plans, depending on which health state they are currently in. As we are targeting children, we cannot assume that they are aware of which category they are currently in, and as a result, we let their parents control it. Figure 6.7 and 6.8 show the view in which one may change the medicine plan the child is currently on, in addition to setting alarms where appropriate. For instance, one may set an alarm at 07:00 AM, so it reminds the user before it is time to leave for school. Changing the medicine plan is done by selecting the checkbox at the left side of the panel.

6.5.3 Register Treatment

If a child need to take their medicine, but does not have the possibility to do the treatment with AsthmaBuddy or AsthmAPP nearby, they can take their medicine and register the treatment later. This ensures that children are able to collect their stars even if they did not do their treatment with AsthmaBuddy or AsthmAPP as their companion. Figure 6.9 shows how this is solved in AsthmAPP.

6.5.4 Medicine Log

The *Medicine log* can be used by parents to show how many times a child has taken his/her medicine. We assume that one of the main reasons for a child not taking his/her medicine is lack of communication between parents. A medicine log enables parents to check whether the child has taken the necessary dose on any given day.

Figure 6.10 shows the calendar view of the application, which we will explain in detail. The calendar module used is an open source component developed by Chris Goo⁸, which we modified for our purposes. The cells show any given day of a month. In addition, there is a top bar which shows the health state (or health plan) of the child on the day selected below. At the bottom of the screen there are three panels. The left panel shows which medicine has been taken on the selected day. The topbar of this panel indicates which day is selected. The middle panel shows the air quality in Trondheim⁹. The right panel shows the pollen distribution of the 6 most common pollen types¹⁰. The idea behind this is that asthma symptoms often correlate with allergy symptoms. If parents are able to recognize a pattern between health state and pollen distribution, they may wish to take special precautions, such as no outdoor activity on a day with extreme amounts of pollen.

6.5.5 Manual

The manual contains the same information as shown in Section 6.4.4. The manual is added to both the parent partition and the child partition of the application. This is done because it is important for both children and parents to know how to use the medicine correctly.

6.5.6 Reward

Figure 6.11 shows the list of possible rewards a child may receive. They are added by parents through *Add reward*. The idea of having parents set their children's rewards is to tailormake rewards according to children's interest (see Chapter 3.5). Figure 6.12

⁸The source code is licensed under the Apache License, Version 2.0. At the time we wrote this thesis, we were no longer able to find the source code available online.

⁹Measured by NILU - http://luftkvalitet.info/

¹⁰Measured by NAAF - http://www.pollenvarslingen.no/

shows how one may add a reward. The user inserts a description, then either adds a photo or selects one out of our standard images. It is possible to set a reward on *Repeat*, which will make the reward appear multiple times, each time with an increased cost. When the user press *Save* (Lagre), the reward is added and the child is able to select it.

6.6 Summary

To build our application AsthmAPP, we have continued development of Aaberg et. al.'s Android applications, by focusing on a user-centered gamification system. In AsthmAPP we have made use of three gamification mechanisms; Real-world rewards, mirroring user behavior, and experience points.

After completing a treatment, the child is given experience points, in the shape of golden stars, based on their current health state. These stars can be used to purchase rewards defined by the child's parents.

AsthmAPP is an application divided into two partitions, one for parents and one for children. The parent partition give users the right to change a child's treatment plan, view a child's medicine log and add rewards that children can purchase. This partition is protected by a PIN challenge, in order to hide user data and deny children access.

In the child partition, the child can be guided through treatments and use his/her earned stars to purchase rewards. It also gives a guide for how to perform a treatment, in the shape of a comic book.

Chapter 7

AsthmaBuddy

7.1 Background

As mentioned in Chapter 2; in 2012, we did a similar project using Karotz¹ as the platform for the tangible user interface[3]. This project left us with mixed feelings towards Karotz as a platform. The thought behind Karotz is great. It is an open source robot which allows people to build applications and launch it to the Karotz store. However, in our subjective opinion, it is not ideal to work with. Firstly, the Karotz starters kit costs 200 USD. Thus it is a pretty large investment for a family wanting to use our application. Secondly, the API is only documented in French, which limits the number of developers who are willing to develop applications for the Karotz. Thirdly, the Karotz is pretty cumbersome to configure for a person with little knowledge of computer configurations, e.g. the Karotz requires SSH access (Secure SHell access) for initial configurations. Fourthly, we did not want our product to be constrained by the limitations of the Karotz.

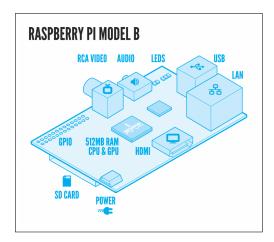
We researched other alternatives in order to create a tangible user interface from scratch and we looked into was Arduino and Raspberry Pi. Arduino is an open source electronics prototyping platform[66], which allows for many different combinations of configurations. Arduino shields comes in many shapes and sizes and is built for modularity and extendability. A wide range of components are available if one wishes to add technical functionality to an Arduino system, such as Bluetooth, WiFi or small motors. While

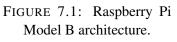
¹Karotz - www.karotz.com

Arduino allows complex hardware configurations, Raspberry Pi makes larger abstractions, which seemed like the better choice for us as developers. Arduino programs are normally written in C[67], which we had little to no prior experience with. Additionally, Arduinos generally have low-powered CPUs, in order to keep them cheap. These lowpowered CPUs tend to have problems with decoding MP3-files, which would lay heavy constraints to our system (without using sounds or a display, it is hard to communicate with children). Due to these facts, we choose to develop the system on a Raspberry Pi.

Our tangible user interface was planned to have similar functionality to what KAPP had, with some modifications.

7.2 Technology


7.2.1 Raspberry Pi - Specifications Overview


The Raspberry Pi was initially intended to teach british school children about computer programming[68]. Since its release, it took an unexpected turn when a large number of computer enthusiasts bought the product to do their own mini projects for a cheap price.

The specification of a Raspberry Pi (Model B) is included in Table 7.1. Figure 7.1 shows an overview of the Raspberry Pi.

Property	Specification
CPU	700 MHz ARM1176JZF-S core
Memory	512 MB
USB 2.0 ports	2
Video Output	HDMI
Audio Output	3.5 mm jack, in addition to ability
	to play sound through HDMI
Low-level Peripherals	8 x GPIO (General Purpose In-
	put/Output)
Power Source	5 volt MicroUSB
Storage	SD card (available with preinstalled
	OS)
Network	10/100 Mbps Ethernet

TABLE 7.1: Raspberry Pi specifications

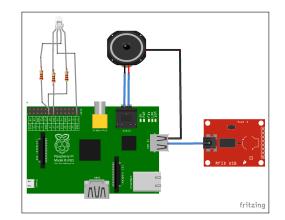


FIGURE 7.2: Digital schematic of the components

7.2.2 Additional Components

In addition to the Raspberry Pi we needed some components that children are able to interact through. These components and their functionality are summarized in this section.

RFID Reader

In order to interact with AsthmaBuddy, children can register RFID-tags against AsthmaBuddy's stomach. The RFID-reader we used was a Sparkfun ID-12LA². Our requirements when choosing a reader was that it should be able to connect through an USB-port, and be able to communicate with UNIX-systems.

USB speakers

In order to play sounds we decided to integrate speakers inside AsthmaBuddy. Since we did not want to pull too many wires out of the bear, we decided to use USB-powered speakers.

²Sparkfun ID-12LA documentation - http://tiny.cc/sparkfundoc

LED lights

We used LED lights connected to a breadboard in order to play around with the first prototype. The LED lights emits light in different colors to correspond to what action(s) is expected from the user during a treatment (see more in Section 7.6).

In order to display the correct colors to the child, according to the color of the medicine, we tried to use PWM³. However, these experiments resulted in a significant weaker light. Thus, we used a simple combination of blue and red in order to display purple, and a combination of red and green to display orange.

Digital overview

Figure 7.2 shows a digital overview of AsthmaBuddy. The green figure to the left is our Raspberry Pi. While it is also connected to a power supply and an internet cable, we chose not to include these in our figure. The red figure to the right is the RFID reader. It is connected to the Raspberry Pi through a USB cable. The black figure on top is the speaker, connected to the Raspberry Pi through the audio port. The grey lines and the lamp represents our LED light. It is connected to three of the GPIO (General Purpose I/O) ports on the Raspberry Pi, through a resistor. The last leg of the LED light is connected to ground on the Raspberry Pi, without a resistor.

A complete guide for wiring the components and running the application is included in Appendix D.

7.2.3 Components Considered for Use

In addition to the components mentioned in the last section, we considered using buttons, touch sensors and a microphone. Even though we did not use these components, we simulated them during user tests using the Wizard-of-Oz technique.

Buttons

One or more buttons could have been used on AsthmaBuddy. Buttons could have been used to manage boolean values, for instance if the progression of an instruction needed a yes/no answer. We did not include buttons, as it could disturb the impression of AsthmaBuddy as a regular teddy bear, i.e. it would seem more mechanical.

³Pulse-width Modulation - http://en.wikipedia.org/wiki/Pulse-width_modulation

Touch sensors

A touch sensor could serve the same purpose as a single button. We did not include this component, as it would require a set of low level programming skills.

Microphone

A microphone could be used for speech recognition purposes. However, the Raspberry Pi does not have the processing power required to do speech recognition. Additionally, it would require writing code that is able to distinguish between noises⁴. We thought it could have been a cool feature that would help establishing a relationship between the user and AsthmaBuddy, but we found it infeasible to implement given our limited time and resources.

7.2.4 Frameworks and Libraries Used in AsthmaBuddy

Pi4j

We wanted to write the code on our Raspberry Pi in Java, as it was our most familiar programming language. It is, however, cumbersome to use Raspberry Pi's GPIO-ports and serial communications with native Java. Pi4j⁵ solved this problem, by making the necessary hardware abstractions.

Gson

Refer to Chapter 6.1.2 for a description of Gson.

JLayer

JLayer⁶ is an open source MP3 decoding library. We used it to play back audio tracks on the Raspberry Pi. It is an old project, and might be out dated, but it served its purpose for our research.

⁴We were not able to find any open source libraries that are able to do speech recognition for the Norwegian language

⁵Pi4j - http://pi4j.com

⁶Javazoom JLayer - http://www.javazoom.net/index.shtml

7.3 Design Rationale

7.3.1 Why a Teddy Bear?

When designing AsthmaBuddy we chose a teddy bear as an avatar for our system. There are several reasons as to why we think a teddy bear is an appropriate avatar: Teddy bears are well known toys, and have been loved by children for a long time. They are considered gender-neutral[69][70] and in our subjective opinion it is a toy that could be discretely placed in a child's room. With the appearance of a teddy bear, AsthmaBuddy can easily be placed among other toys and not stand out. It was also important for us to choose a teddy bear of some size. A too thin a bear could lead to problems when fitting the system inside the bear, and could be met with scepticism by the children. AsthmaBuddy will have similarities to Tamagotchi[71] and Furby[72], but AsthmaBuddy's purpose is to motivate, instruct and teach children about asthma, not be a toy purely for playing with.

While designing our system we also wanted to make sure that our system did not have robot-like features or robotic similarities. While children tend to find technology very interesting, we wanted to make AsthmaBuddy seem as natural as possible, making a stuffed toy animal, rather than a technological toy. We believe that these design choices served our purpose of making children more aware of their asthma, while not being a constant reminder and a stress element.

Norwegian fire fighters have used a teddy bear in order to calm down children who find themselves in dramatic situations⁷. The fire fighters state that the children respond positively to the teddy bear. While we were not able to find scientific research done on the use of teddy bears in dramatic situations, we found this news article interesting and worth mentioning in our research.

A teddy bear has also been used as an avatar for giving instructions on how to apply a treatment correctly. Glaxo Smith Kline, a leading company within consumer health care, uses a teddy bear in their instruction manual for the use of asthma medicine and the breathing chamber[73].

Below are two pictures of how AsthmaBuddy looks in its final form.

⁷NRK: Firefighters use teddy bears to calm down children - http://www.nrk.no/trondelag/bamser-iutrykningsbilene-1.11548966

FIGURE 7.3: AsthmaBuddy holding a breathing chamber and an inhaler

FIGURE 7.4: AsthmaBuddy with his nose light turned on

7.3.2 Interaction Design

When we started developing the interaction design of AsthmaBuddy, we had a brainstorming session with the intention of coming up with reasonable interaction patterns. By "reasonable", we imply that the underlying functionality should be relatively cheap to implement. The interactions should also be fun for the children to perform, in addition to being efficient.

Interaction Pro-	Rationale	Possible implementation
cess		
Give	Demonstrates to children that	A gyroscope and a preassure
AsthmaBuddy a	AsthmaBuddy is friendly. It	sensor combined could verify
"High five"	is intended that a child should	that a high five has been re-
	hold AsthmaBuddy's arm up,	ceived.
	and high five AsthmaBuddy	
	with his hand.	
Hold	Demonstrates to children that	Preassure sensor within the
AsthmaBuddy's	AsthmaBuddy is friendly.	hand of AsthmaBuddy could
hand	5	solve this.
Hold smart-	Could demonstrate	Could be solved by Blue-
phone close to	the "smartness" of	tooth.
AsthmaBuddy's	AsthmaBuddy, i.e. it	
belly	can communicate with other	
beny	devices.	
Press	Demonstrates to children that	Preassure sensor within the
AsthmaBuddy's	AsthmaBuddy is friendly.	nose of AsthmaBuddy could
nose		solve this.
Press	Demonstrates to children that	Preassure sensor within the
AsthmaBuddy's	AsthmaBuddy is friendly.	belly of AsthmaBuddy could
belly		solve this.
Hold medicine	Demonstrates that	An RFID-tag attached to
close to	AsthmaBuddy also needs	the medicine, and an RFID-
AsthmaBuddy's	his medicine.	reader inside the nose of
mouth		AsthmaBuddy could be used
		here to control the flow.
Hold RFID-	Is a relatively easy way to	A loose RFID-tag could be
tag close to	proceed with the process.	used together with an inte-
AsthmaBuddy's		grated RFID-reader, in order
mouth		to proceed.
Hold RFID-	Is a relatively easy way to	A loose RFID-tag could be
tag close to	proceed with the process.	used together with an inte-
AsthmaBuddy's	1 1	grated RFID-reader, in order
belly		to proceed.
Clap your hands	Should be a fun way of in-	Sound recognition could be
T J	teracting with systems, con-	used here.
	sidering the age of our target	
	group.	
Combination of	Makes the process more fun	N/A
the interactions	through variation.	1 1/ / 1
above		
abbve		

TABLE 7.2: Rationale behind AsthmaBuddy's interaction design

7.3.3 Answering to Champoux's Development Framework

In Chapter 4.5.1 we described the development framework presented by Champoux et. al. When developing AsthmaBuddy, we tried to answer the proposed questions that we considered relevant.

BO1: What should the user experience? The user should experience an interactive guide for correct application of asthma treatment. AsthmaBuddy should give correct information in an understandable manner.

BO2: What are the human tasks?

- Fetch an adult
- Fetch inhaler and breathing chamber
- Shake medicine
- Attach the inhaler to the breathing chamber
- Put the breathing chamber on your face, covering nose and mouth

BO3: What should the artefact represent and control? AsthmaBuddy represents a caregiver, who supervises the child during the treatment. The artefact controls that the child takes the medicine at the correct time, and in a correct manner.

BO4: What are the conventions? Children must have their inhaler and breathing chamber stored within a short distance of AsthmaBuddy. The RFID-tags are assumed to be attached to the inhalers.

OC5a: What is the nature of the interaction for each sub-task (Continuous vs Discrete vs Assembly)? The sub-tasks performed when taking a medicine are the following:

- 1. Fetch an adult
- 2. Fetch inhaler
- 3. Fetch breathing chamber
- 4. Prepare medicine
 - (a) Shake the inhaler
 - (b) Attach inhaler to the breathing chamber
- 5. Inhale dosage
 - (a) Hold medicine towards mouth
 - (b) Press the inhaler
 - (c) Breathe heavily for 10 seconds

6. Optional, depending on the medicine: Rinse mouth

Step 4 is an assembly task, 5(c) is a continuous task for a short period of time, while the remaining tasks are all discrete.

OC6: Does the sub-task need any relational interaction? None of the described subtasks needs relational interaction. However, registering the RFID tag can be seen as a relational interaction, as the proximity of the RFID tag and the reader is essential.

7.3.4 Dealing with Bellotti's Challenges

Chapter 4.5.2 introduced some of the challenges that are encountered when designing tangible interfaces. In the following we will discuss how we handled the challenges encountered, by answering those of Bellotti's questions which we found relevant.

Address: How do I address one of many possible devices?

One of the challenges mentioned here is "How to not address the system". This is an interesting challenge when the system is intended for children, as they are likely to pick things up and carry them around. If a child picks up AsthmaBuddy, it could be interpreted as an interaction. We solved this potential problem by only starting treatments in one of two ways, either because it is triggered by an alarm or because an RFID-tag attached to an inhaler is read by AsthmaBuddy. The RFID-reader is only capable of reading the tag from a distance of 3 - 5 cm. Thus, as long as no alarm is triggered, and no inhaler with attached RFID-tag is not withing the reach of the RFID-reader, the system should not respond.

Attention: How do I know the system is ready and attending to my actions?

As mentioned previously, AsthmaBuddy has a LED-light on it's nose. When the light is green, the user can expect that the system is running in idle mode.

Action: How do I effect a meaningful action, control its extent and possibly specify a target or targets for my action?

The part that regards specifying a target or several targets is considered irrelevant. The interesting part is how the user can effect a meaningful action and control its extent. This will be taken care of by interactions between the user and AsthmaBuddy. AsthmaBuddy will never run several instructions at once. It will always give short and clear instructions, and wait for feedback from the user in order to proceed.

Alignment: How do I know the system is doing the right thing?

By listening to AsthmaBuddy speak, the user should be aware of what is happening. There is not a lot of room for human error in this connection. By following the normal sequence of operation, the worst thing that may happen is a system crash. This will be handled by shutting down the lights, and AsthmaBuddy will not be running.

Accident: How do I avoid mistakes?

A part of the challenge is to recover from mistakes that have occured. For instance, if the user proceeds further than what was actually intended, and missed out on an instruction they needed, AsthmaBuddy should have a way to revert to the missed instruction. AsthmaBuddy has functionality to replay instructions, but it needs to be told to do so by keyboard input from the "Wizard-of-Oz". During user tests, children were told to say "Repeat" loud and clear, in order to replay an instruction. Moving beyond the "Wizard-of-Oz", this could be handled by a separate form of interaction, e.g. shaking AsthmaBuddy's head, in order to make him repeat the instruction.

7.4 Use of Gamification in AsthmaBuddy

AsthmaBuddy works together with AsthmAPP to create our gamification system. While AsthmAPP handles the support for creating and purchasing rewards, AsthmaBuddy is able to reward children with stars and keep track of how many stars the child has collected. When finishing a treatment, the child is told how many stars he/she collected for finishing the specific treatment. AsthmaBuddy states "Well done. As a reward, I'll put N stars in your treasure chest" where N is replaced by 1, 3 or 5, based on the health state of the child. Afterwards, the child is told "You have now collected M stars" where M is replaced by the total amount of stars the child has collected.

AsthmaBuddy also supports telling the user how many stars have been collected without having to go through a treatment first.

7.5 System Overview

7.5.1 Use Cases

Figure 7.5 shows a general overview of the use cases we have included in our prototype. A medication process can be started by two ways: A parent can register an alarm by using AsthmAPP. This alarm is then set of by the AsthmaBuddy instance running⁸, giving the child a notification that it is time to take the relevant medicine.

The alternative to a registered alarm is if a child needs to take the medicine by need. In such case, the child or parent simply registers the RFID-tag before the child is guided through a quicker process (see Manuscript E).

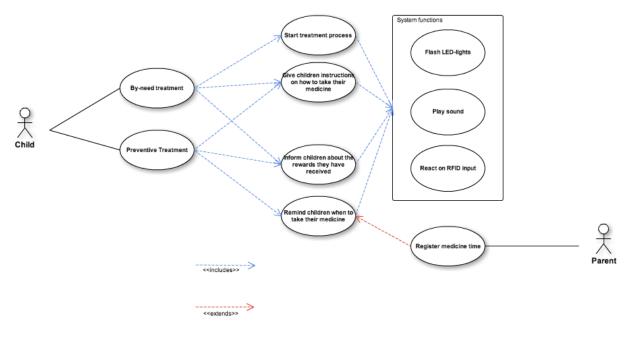


FIGURE 7.5: AsthmaBuddy Use Cases

⁸The reader should take notice that the tangible user interface AsthmaBuddy differs from the program running on the Raspberry Pi, which is called AsthmaBuddy(note the change of font)

7.5.2 Textual Use Cases

Title	By need treatment
Preconditions	-
Scenario	 User triggers treatment by holding a specific RFID-tag close to AsthmaBuddy. System flashes LED-lights to notify user that the system is ready for use. System plays sound to instruct the user to shake the medicine. System plays sound to instruct user to mount the medicine on the mask and place the mask on his/her face. User starts a treatment by interacting with AsthmaBuddy (by pressing it's hand or similar interaction). System plays sound to count during treatment (1-2-3-4-5-6-7-8-9-10), while flashing lights for each count. System plays sound to tell user he/she has done a good job. System plays sound to reward user with the calculated number of stars. System plays sound to tell the user how many stars he/she has collected totally.
Extensions	x.a User aborts treatment by not continuing the se- quence.

 TABLE 7.3: Textual use case: By need treatment

Title	Planned treatment
Preconditions	The current time corresponds with the time for a
	1
Scenario	 The current time corresponds with the time for a planned treatment. The system recognizes the time for a planned treatment. The system starts blinking with LED-lights and playing sound to notify user. Child interacts with AsthmaBuddy, to notify that he/she is ready for the treatment. Start instructions by playing a sound, telling the user to find a grown-up who can keep watch. System waits for interaction to make sure the user is ready. System tells the user to mount the medicine on the mask and put the medicine towards AsthmaBuddy's face. System plays sound to simulate breathing. System plays sound to tell the user how easy it was to take medicines and that it is the user's turn. System plays sound to instruct user, telling the user is ready. System plays sound to instruct user to put the mask on his/her face. System plays sound to tell the user how has a done a good job. System plays sound to tell the user he/she has done a good job. System plays sound to reward user with the calculated number of stars. System makes a HTTPGet call to the server to find the total number of stars collected.
	how many stars the user has collected totally.
Extensions	x.a Child does not interact with AsthmaBuddy when prompted

 TABLE 7.4: Textual use case: By need treatment

7.5.3 State Diagram

Depticted in Figure 7.6 is a state diagram of AsthmaBuddy. It is possible to start a by need treatment, which removes unnecessary parts from the sequence. This decision was made in order to make it faster to do by need treatments, as children are often stressed if an asthma attack occurs.

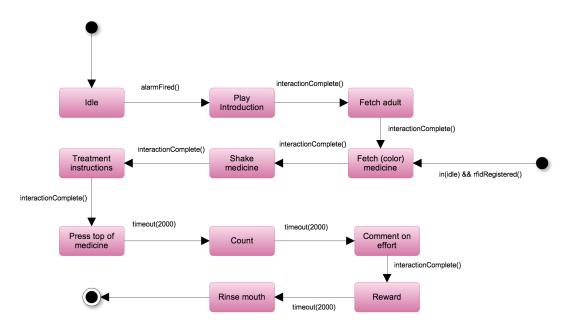


FIGURE 7.6: AsthmaBuddy State Diagram.

7.5.4 Sequence Diagram

Figures 7.7 - 7.10 shows sequence diagrams of how the system works internally. Some abstractions have been made, in order to reduce the cluster of arrows.

By need treatment The sequence diagram for starting a by need treatment is depicted in Figure 7.7. In order to start a treatment, the user provides a medicine code, which is represented by the first letter of the color of the medicine. The sequence number referred to in the sequence diagram is a number which corresponds to the faster sequence of instructions.

After inserting these parameters, the LogicHandler retrieves a LinkedList of Interaction-objects that is to be played. After this sequence is ended, the system jumps to Figure 7.9.

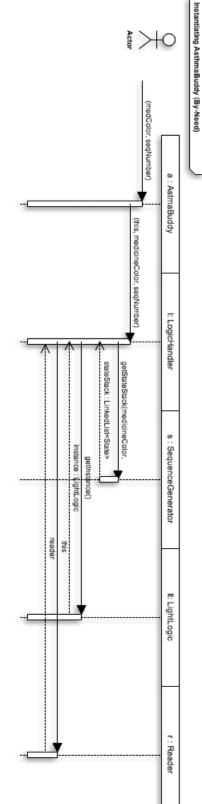
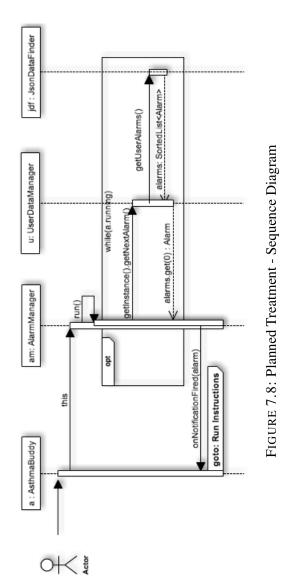
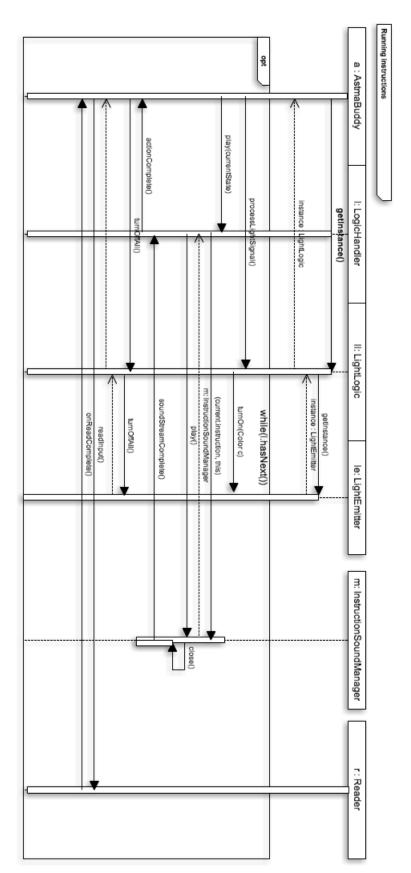
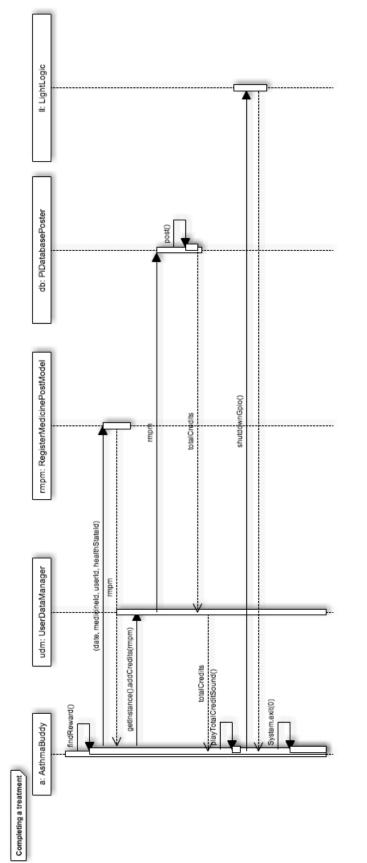
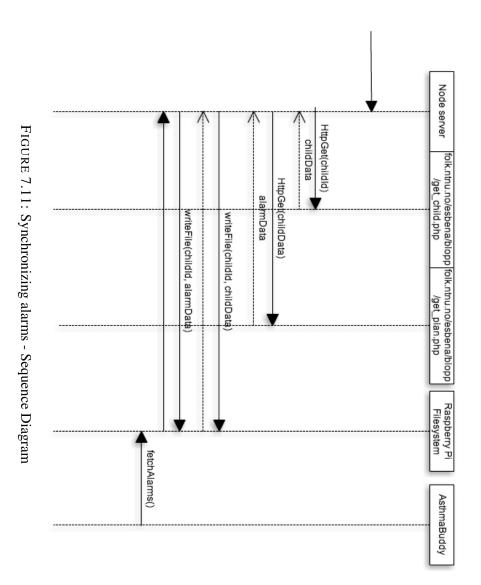





FIGURE 7.7: By Need Treatment - Sequence Diagram



Planned treatment

If an AsthmaBuddy instance is started without any parameters, it starts looking through alarm files (see Section 7.5.5) every 60 seconds. If no alarm is returned from UserDataManager, it waits. Once an alarm is found, AsthmaBuddy is notified through onNotificationFired, which starts the treatment process. The sequence diagram for this process is depicted in Figure 7.8.

Playing instructions

Playing instructions is mainly a loop of playing a sound, and turning on and off the LEDlights through the LightEmitter instance. The sequence diagram for this process is depicted in Figure 7.9.

Finishing a treatment

When a treatment is finished, i.e. we are out of the while loop in Figure 7.9, we register the treatment in the database. This ensures that the child is able to see the rewards in AsthmAPP. The sequence diagram for this process is depicted in Figure 7.10.

7.5.5 Node Server

In addition to the Java application running on the Raspberry Pi, we developed a Node.js server⁹. This backend system was developed in order to easily visualize the rewards given to a child after a treatment using AsthmaBuddy. The initial problem is that AsthmAPP stores data to a MySQL database, with childId as the primary key for most tables. Initially, AsthmaBuddy has no way of knowing which childId to add rewards to, or for which user alarms should be triggered. The current solution to our problem was to develop a Node.js server on AsthmaBuddy, which run as a background process. Whenever we want to switch users, AsthmAPP does an HTTP POST to this server, including the childId as a parameter. The server then retrives JSON-formatted data from our webservice, which includes the rewards a child has been given until now (for instance, by using a smartphone), and the alarms set for this user. When AsthmaBuddy starts running, it checks for alarms to be set off every 60 seconds. When a child has finished a treatment, AsthmaBuddy updates the database, with the childId previously retrieved, and the number of stars a child collected during his/her treatment. With the

⁹Node.js - http://nodejs.org/

data retrieved from the database, AsthmaBuddy has the capability to tell the user how many stars a child has collected¹⁰. This process is shown in Figure 7.11.

7.6 Prototype Version 1

Our first version of AsthmaBuddy was supposed to have capabilities to guide a child through a treatment. It was possible to interact with AsthmaBuddy through the interactions described in Table 7.2. Version 1 did not have the ability to synchronize rewards with AsthmAPP, nor informing the user about the total amount of stars collected. We tested the version on inexperienced users (results can be found in Chapter 8.2), in order to discover information flaws and difficulties when interacting with AsthmaBuddy. We assumed that if an adult was not able to perform a treatment correctly with AsthmaBuddy, then children would not be able to do it either.

We did not have the resources available to implement all of the interaction methods listed. As such, we simulated the interactions through the Wizard-of-Oz technique[74].

This version was also used for demonstration purposes during our interviews, which provided us useful feedback on functionality we could add to AsthmaBuddy.

7.7 Prototype Version 2

The improved version of AsthmaBuddy, hereby referred to as AsthmaBuddy 2.0, had some changes done since version 1.0. After testing version 1.0 on inexperienced users, we removed some of the interaction methods. A summary of the interaction methods available in version 2.0 is provided in Chapter 8.2. AsthmaBuddy 2.0 is able to synchronize collected stars automatically between AsthmAPP and AsthmaBuddy. This was done to automate some tasks that previously needed manual interaction, and to create a tighter coupling between the two prototypes.

AsthmaBuddy 2.0 also received some new features, such as a method for letting children more easily check the total amount of stars they have collected. By registering an RFID tag, AsthmaBuddy tells how many stars the child has. This was implemented to make

¹⁰Since this is a prototype, this functionality only works until a child has collected 20 stars. It became cumbersome to handle rewards totalling more than 20 stars

AsthmaBuddy more of a stand-alone system, and to avoid the problem where parents may not want their child to use their smartphone to use AsthmAPP.

Additionally, some small changes were made to the use of the LED light on AsthmaBuddy's nose. AsthmaBuddy 1.0 changed the color of its nose fairly often. This was intended to make the treatment process more interesting; however, it ended up being more confusing than helpful, and was therefore changed to mirror the breaths of the user, and the color of the medicine container.

7.8 Summary

We have developed a prototype for a tangible user interface called AsthmaBuddy, who can be used to guide a child through a treatment process. The software behind the prototype is built upon a Raspberry Pi, which was placed inside AsthmaBuddy. We designed a set of interaction methods that we considered appropriate for children. This set was narrowed down after a round of user tests on inexperienced users (see Chapter 8.2). It is currently capable of reading RFID tags, playing sounds and changing the light of its' nose. During the user tests, we simulated the usage of microphones with voice recognition, sensing touches to it's hand, sensing a smartphone's precence and distinguishing between a touch and a high five.

Chapter 8

Results

8.1 Interviews

We performed interviews on a set of domain experts in order to receive input on the work we had accomplished. Table 8.1 summarizes the interviews we performed, why we interviewed these subjects and the topics we covered during the interviews. Transcripts from the interviews are included in Appendix A.

8.1.1 Discoveries Found During Interviews

Operating time

The longest duration for taking a planned treatment was about 2 minutes for an experienced user, and about 2.5 minutes for an inexperienced user. This treatment included the part where AsthmaBuddy completes the treatment before the child. A normal treatment taken without AsthmaBuddy usually takes 1 - 2 minutes, according to our interview subjects. Since AsthmaBuddy only takes 0.5 - 1.5 minutes longer than normal, it should not be considered a time-waster. From another point-of-view, if a child does not want to take his/her medication, it may cause an argument and it may take a much longer time to complete the treatment. If AsthmaBuddy can help on shortening the time spent arguing with the child, time may be saved.

•	J		1
Domain	Kationale	Lopics covered (keywords)	to interview
			transcript
PhD/Researcher in Psy-	Input on reward sys-	Rewards for children, Gamification,	Appendix A.1
chology.	tem.	Motivation.	
PhD candidate in indus-	Collect data to de-	Reward systems for children, de-	Appendix A.2
trial design. Experi-	sign for children.	signing for children, interaction de-	
ence from the BLOPP		sign.	
project.			
Senior Advisor at	Has expertise on	Asthma among children, smart-	Appendix A.3
NAAF.	asthma in general.	phone applications, motivation.	
Two nurses with ex-	Collecting data from	Information in AsthmaBuddy and	Appendix A.4
pertise on asthma treat-	treatment experts.	AsthmAPP, smartphone applica-	
ment.		tions, problems with asthma.	
Parent of a child with	Collecting data from	Asthma in the family, smartphone	Appendix A.5
asthma. Has expertise	parents.	applications, TUI, motivation, re-	
in computer science.		warding children, asthmatic child at	
		school/kindergarten.	
Parent of a child with	Collecting data from	Asthma in the family, reward sys-	Appendix A.6
asthma. Works in a	parents.	tems, asthma in the kindergarten,	
kindergarten.		teaching inexperienced users.	

TABLE 8.1: Interviews performed during the project

By need treatments

We got some feedback regarding the *by need* treatments. Some parents stated that they would not use AsthmaBuddy to complete a by need treatment, as their child was suffering from an asthma attack. However, one of the parents noted that if children were used to performing their treatment with AsthmaBuddy, it could create a dependency toward it, i.e. AsthmaBuddy could help the parents to calm the child. Whether or not the by need functionality would actually be used needs more research, as AsthmaBuddy would need to be placed within a home and be nearby when such an attack occurs.

AsthmaBuddy as a stand-alone system

One of the interview subjects commented that AsthmaBuddy should be able to operate as a stand-alone system if the parents do not allow the child to borrow a smartphone and the child does not have a smartphone of his/her own. The same interview subject commented that she would not take the time to use AsthmaBuddy for two minutes every time the child needed to take a treatment, and that AsthmaBuddy might become boring after a period of time.

Feedback on gamification system

The expert in psychology noted that letting parents choose when and what children should receive as rewards was good, but comes with a downside: If the parents do not have an understanding as to how fast a child needs his/her reward, the child could easily loose interest. The amount of time necessary between each reward is highly individual. Preschoolers would need rewards almost every day, while older children could manage with a reward twice a week. The part that is somewhat hard to understand from a parent's perspective, is that children needs to know they are rewarded for a treatment well done, and not necessarily something completely different. She proposed that if an application like this should be launched, a parental guide should follow along, as parents often do not understand this principle.

Furthermore, there has to be a balance between the rewards a child receives, and the work they are actually doing. For instance, a child cannot receive a bike after completing three treatments. Parents also have a materialistic mindset, i.e. parents think that rewards have to be something material. Kayed implied otherwise. Letting children choose a dinner, which TV program to watch at nighttime, or even being allowed to eat

their breakfast under the table could be just as effective and fun as giving them materialistic rewards. In order to equalize rewards across families, she concluded that parents already do this in other "domains", like allowance.

8.2 Testing AsthmaBuddy on Inexperienced Users

Before we did user tests on children, we ran a round of tests to verify AsthmaBuddy's ability to explain the treatment process for inexperienced users. We tested on ten students at NTNU, where one of them had had asthma during childhood. While doing so, we also tested the different interaction methods AsthmaBuddy could be used with. The reason we wanted to test the interaction methods was to get an overview of how adults perceived the interactions. If adult users are incapable of doing some of the interaction methods, we figured that children were probably incapable of doing the same. Additionally, since we had problems to get a significant amount of children to test the system on (which will be elaborated further in Chapter 9.3.1), we did not want to waste a usability test on a child by initially having a bad interaction design.

The results of the interaction testing is summarized in table 8.2.

Interaction Method	Comments	Suitable for children?
Give AsthmaBuddy a "High Five"	Worked out fine. A high five is cool and may make AsthmaBuddy seem more friendly to the children.	Yes
Hold AsthmaBuddy's hand	Easy to understand and use during a treat- ment. Should give feedback to indicate that the user has interacted correctly.	Yes
Hold smart- phone close to AsthmaBuddy's belly	Smartphones are cool, but may be easily damaged if dropped. Too risky to let small children handle a smartphone. The size of the smartphone may require use of two hands, which may cause complications for the child.	No
Press AsthmaBuddy's nose	Users tended to press the LED light on the nose. Risk of damage to light.	No
Press AsthmaBuddy's belly	Easy to understand and use during a treat- ment. Should give feedback to indicate that the user has interacted correctly.	Yes
Hold medicine close to AsthmaBuddy's mouth	Created some complications when the user was supposed to hold the breathing chamber to his/her mouth and then hold the medicine close to AsthmaBuddy's mouth to proceed.	No
Hold RFID- chip close to AsthmaBuddy's nose	The thickness of AsthmaBuddy's nose made it difficult for the RFID tag to communicate with our reader, this caused problems for the user.	No
Hold RFID- chip close to AsthmaBuddy's belly	Works fine. Letting children have their "magic token" which interacts with AsthmaBuddy may be considered cool.	Yes
Clap your hands	Works fine. At one point the user has to clap hands when having the breathing chamber in his/her hands, which may cause some prob- lems, but should not be a big problem.	Yes
A variation of the above interactions	Some of the interaction methods made it con- fusing for the user, e.g. they were asked to hold the medicine towards AsthmaBuddy be- fore having fetched the medicine.	Yes, but in a revised form.

TABLE 8.2: Evaluation of interaction methods for AsthmaBuddy

8.2.1 Observations Made During Tests

In order for AsthmaBuddy to be useful for inexperienced users, it could have even clearer and more informative instructions. Even though it may seem self-explanatory to take the cap off the medicine before mounting it on the breathing chamber, it may not be that obvious to new users. Since AsthmaBuddy's purpose is to instruct and inform, it should have a completely "foolproof" instructions. For instance some of the test users tried to attach the inhaler to the breathing chamber without removing the protective cap from the inhaler. Since the breathing chamber's mount is made from rubber, it gave them the idea that one should just push the medicine into the mount by force, which is incorrect.

When using AsthmaBuddy, some users found it difficult to hear all of the instructions. Supporting replay of the last instruction was important.

8.3 Usability Test Results

In order to protect the identity of our test subjects, especially considering the children, we have used identifiers as names. Names starting with the letter "A" is an adult user, and names starting with "C" denotes a child.

As mentioned in Chapter 5.4.3, the problems discovered were rated according to the severity. These errors can be found under the header *Level* in the respective tables. To recap, the ranking goes as follows: Level 1 is a critical error, Level 2 is a significant problem with accomplishing a task, Level 3 is a minor issue with the usability and Level 4 is non-essential issue.

8.3.1 Parent Partition Tests

8.3.1.1 Adult User 1

Name	AU1
Age	36
Gender	Male
Date	May 2nd, 2014
Testleader	Aleksander
Observer	Esben

Task	Problem	Level	Cause	Proposal for solu- tion
0	The user was unable to separate between the image for child and par- ent partition.	3	The images were not entirely intuitive.	The image for adults could have a bearded man, or other recognizable features.
1	It was unclear whether he had to press on the healthy medicine plan, as the child was in the healthy medicine plan by default.	3	Challenging GUI.	Could make it clearer for the user which treat- ment plan is being followed.
1	The spinners for hour/minutes should be able to be written into.	3	The standard Android slider contains a mi- nor bug when one writes into it.	N/A
1	The timestamp con- tained seconds, which caused annoyance.	4	Timestamp contains seconds.	Remove seconds from the times- tamp.
2	The user expected that he could press the medicine, and not just the checkbox which was the case. He found this a little annoying.	3	Implementation of listener.	Make the entire list item touchable.
2	He wanted function- ality for adding two medicines at once.	2	This has not been im- plemented yet.	Implement it later.
3	The view shows a but- ton with "Add Activ- ity", which he felt was wrong.	3	This was not in- tended, as it should have said "Add Reward".	Change it to "Add Reward".
3	When pressing the back button one too many times, he was chal- lenged with the PIN code again. This caused annoyance.	4	PIN-challenge appears as soon a parent returns from the parent partition.	Could implement a timer who checks when the user last completed the chal- lenge.
4	The test user said it was not logical to see where he could check the air quality cast.	3	Bad task description.	Change task de- scription to make it more understand- able.
4	The test user wanted functionality for differ- ent views, for instance showing the log for a week or a single day.	4	Confusing calendar view.	This feature could be implemented with more time and resources.

8.3.1.2 Adult User 2

Name	AU2
Age	35 years old
Gender	Male
Date	May 7th, 2014
Testleader	Aleksander
Observer	Esben

Task	Problem	Level	Cause	Proposal for so- lution
2	The user did not know whether the alarm should fire at a given time or if the child should actually take the medicine at that time.	2	The view only prompts the user to insert a time.	Could change the text "Time" to "Time the alarm should trigger", or similar.
2	Alarms were not added properly.	1	Discovered a bug; When the user opens the application for the first time, it adds a user to the database. As the device was not connected to any net- work, this failed, and we had not implemented feedback to the user.	Implement the functionality needed, and give feedback to the user.
3	The user did not know whether he had actually selected an image.	2	The "Add Reward" mod- ule does not provide enough feedback as to whether or not the user has actually selected an image.	This functionality should be imple- mented.
3	The user did not understand what repeat meant.	3	Repeat means to give the same reward on a continuous basis, for the same amount of stars given. This was not ex- plained well enough on the user test.	Clarify this aspect with a help box.
5	The air quality cast does not change with regards to which day is picked.	3	The air quality is currently only imported for the current date.	AsthmAPP should give feed- back that the queried data is not available for days later than today.
5	The user was confused when deciding which day was se- lected.	2	The view does not provide enough feedback to ensure the user of which day is se- lected.	Implementation of the feature could be per- formed. Addition- ally, we could add separate views to show a week or a day, and not only showing the month.

Comments about the test

The execution of this user test unfortunately suffered from a mistake made before initiating the test. When we started it, the Android device were not connected to the network. As such, task 2 uncovered a bug that we had never seen before. In order to get any useful testing started, we had to reset the application and connect it to the network, before we started over again. The first impression was probably not the best.

8.3.2 Child Partition

During the user tests, AsthmaBuddy was configured to use the varied interaction scheme. This involved a preset combination of the remaining interactions from Table 8.2. This decision was made in order to test all of the possible interactions, as we did not have enough users to test them one-by-one.

8.3.2.1 Child User 1

Name	CU1
Age	6 years old
Gender	Female
Date	May 2nd, 2014
Testleader	Aleksander
Observer	Esben

Task	Problem	Level	Cause	Proposal for so- lution
2	It seemed like she had a hard time keeping up with AsthmaBuddy's instructions.	2	The voice of AsthmaBuddy was speaking too fast	Record sounds with lower speed.
4	It was difficult to drag the medicine above the breathing chamber in order to start the treat- ment.	3	The treatment only starts when the medicine is directly above the breathing chamber.	Should make a treatment sim- pler to start when alarms are triggered.
4	It was hard for the child to keep ut with the voice of the rabbit in AsthmAPP.	2	The voice talked too quickly, and AsthmAPP does not have a repeat functionality when a treatment is running.	Should consider implementing repeat.
5	It was hard to get a clean reading of the RFID tag.	3	It was not entirely clear where the user had to put the card in order to get a read- ing.	AsthmaBuddy should have an indicator as of where the card should be held in order to be read.

 TABLE 8.5: Usability Test Results: CU1

Comments about the test

CU1 was very shy when arriving at the test lab. It quickly became clear for us that we had to leave the area and rather observe from the back room, in order for her to speak up. The parent was instructed with the tasks that were to be performed, and he explained the tasks to her. Once we were back stage, she started responding to the instructions given. We made a note that the observer should sit in the back room and observe from there, in order for the children to respond more easily.

When asked which method CU1 preferred, i.e. AsthmAPP or AsthmaBuddy, CU1 replied "I don't know". CU1 was also asked if both were equally fun, which to CU1

replied "Yes". CU1 was also asked if the usage of AsthmAPP and AsthmaBuddy was more fun than a regular treatment, which to CU replied "Yes"¹. We asked if this was because of her reward, which was candy, but we were unable to get a reply.

8.3.2.2 Child User 2

Name	CU2
Age	7 years old
Gender	Male
Date	May 2nd, 2014
Testleader	Aleksander
Observer	Esben

Task	Problem	Level	Cause	Proposal for solu-
				tion
2	The user did not know whether he should hold the medicine or the breathing chamber to- wards the mouth.	N/A	We believe this falls under the cat- egory of human errors, as he may not have been able to distinguish be- tween the two.	The voice instruction could put more em- phasis on <i>medicine</i> .
2	When the user was sup- posed to count to 10, he counted too fast, leav- ing AsthmaBuddy to breathe for several sec- onds after he had fin- ished counting.	3	He may not be aware of how long time a second takes.	The light on AsthmaBuddy's nose could light only when he is supposed to count.

TABLE 8.6: Usability Test Results: CU2

¹There is reason to believe that the answer was biased due to the reward

FIGURE 8.1: CU2 interacting with AsthmaBuddy while taking his medicine

FIGURE 8.2: After having completed one treatment, CU2 decided to give AsthmaBuddy another round of medicine

Comments about the test

When asked about which system he liked the most, CU2 first replied that he liked both systems equally. When we "pushed" him to pick one, he thought that AsthmaBuddy was more fun to interact with, as it had lights that blinked. He also liked AsthmAPP, as it contained the store where he could buy a reward.

8.3.2.3 Child User 3

Name	CU3
Age	5 years old
Gender	Male
Date	May 7th, 2014
Testleader	Aleksander
Observer	Esben

Task	Problem	Level	Cause	Proposal for solu-
				tion
2	The user did not understand whether he should clap his own hands or AsthmaBuddy's.	3	The voice of AsthmaBuddy spoke to fast.	Record sounds that talks slower.
2	When giving AsthmaBuddy a high five, he hit too hard, giving AsthmaBuddy a knock out.	2	AsthmaBuddy has a stability issue.	The high five in- teraction might only be suitable for more stable artefacts.
3	The user did not know whether he should press AsthmaBuddy's head or the animation on AsthmAPP.	4	The user had both AsthmaBuddy and AsthmAPP in front of him during the user tests.	This could easily be avoided by remov- ing AsthmaBuddy from the scene when we switched tasks.

TABLE 8.7: Usability Test Results: CU3

FIGURE 8.3: CU3 knocks out AsthmaBuddy when giving him a high five

Comments about the test

When asked about which system he liked the most, CU3 switched back and forth between the AsthmAPP and both. After analyzing the recordings, we found strong reason to believe that he had most fun when using AsthmAPP.

A problem not mentioned in Table 8.7, was that he was not able to read the text when he was to buy a reward. We have put a lot of effort into minimizing the reading ability required from the children, but at a certain point, some text is in required. An option for reducing the reading capabilities required at this stage, could be to prerecord potential rewards, but it required too much resources to do this, in addition to becoming unsustainable in the long run when parents are to give personalized rewards. An image of the view he had problems with is included in Figure 8.4.

FIGURE 8.4: The view where CU3 had difficulties reading the information

8.4 Evaluation

8.4.1 AsthmaBuddy

After completing all of the validation tests, it occured to us that not one out of the three children we tested AsthmaBuddy with were able to listen to *every* instruction and interact accordingly. I.e. every user had to make use of the repeat functionality. There is reason to believe that this is a problem caused by the speed AsthmaBuddy talks in. It seemed like a somewhat hard task for children to keep up with both the instruction, e.g. "Shake the blue medicine, and attach it to your mask", and the interaction that was to performed, e.g. "Clap your hands to proceed".

As mentioned, CU3 discovered that AsthmaBuddy was not stable enough to handle a proper high five. This problem would probably have been avoided if the child had gotten used to interacting with AsthmaBuddy, giving him more knowledge of which preventive measures that needs to be taken, e.g. supporting his back while giving him the high five. However, a more valid argument is that the choice we made regarding AsthmaBuddy as a teddy bear was not ideal in the first place.

Overall, it seemed like all of the children were able to interact with AsthmaBuddy as intended. Additionally, it seemed like all of the children found AsthmaBuddy enjoyable.

8.4.2 AsthmAPP

During the user test on AU2, we discovered a critical error that almost rendered the application completely useless. The error originates from the fact that AsthmAPP needs to communicate with the database, and we had not implemented proper feedback to the user that an error had occured. This error should obviously not have occured in the first place, as these types of errors will result in less incentive for parents to use AsthmAPP.

As for the children, it seemed like all of them liked to use AsthmAPP. However, with the low sample size and bearing in mind the fact that it was children we tested, there is reason to question the validity of this result. On one hand, none of the children had big problems to do what AsthmAPP told them to do and had very few problems navigating the application. On the other hand, the only child able to read was CU2, who is seven years old. More effort should have been made to make the process of purchasing a reward even clear for the youngest users of our target group. As far as the gamification system goes, it seemed like children were happy with the fact that stars appear immediately after the treatment was finished. They also seemed happy with the rewards they were given. However, a question that remains unanswered is whether our approach to a gamification system is sustainable over a longer period of time.

Chapter 9

Discussion and Conclusions

In this chapter we discuss some of the main discoveries made during our project. The chapter concludes by presenting the research questions, providing answers where possible, and evaluating the process of obtaining these answers.

9.1 Discussion

9.1.1 Gamification

9.1.1.1 Understanding Children's Perception of Rewards

Our proposal for gamification elements contained within AsthmAPP is tightly coupled with the parents' participation. In order for our reward system to have any motivational effect, parents have to be closely involved. They need to understand how often their child needs a reward, in addition to understanding what defines a "good" reward for their children.

Webster-Stratton and Herbert claims:

"Preschool children aged between the ages of three and four may be rewarded by the special sticker or token itself without needing a back-up reinforcer. Youngsters aged four to six should be able to trade in stickers for something each day if they like. Children of seven and eight can wait a few days before getting a reward." [75]

In order for our systems to have a motivational effect, parents have to be aware of their children's maturity. Rewards that suit a three year old girl do not necessarily suit a six year old boy. Webster-Stratton further claims that parents should expand the efforts children have to put into a task, in order to receive their reward. We will elaborate more on this in Section 9.1.1.4.

Parents could be under the impression that the rewards given should be something material. However, according to our domain expert in psychology:

"Rewards do not have to be a material reward, it may be a fun activity or letting the children choose what they will eat for dinner. Doing something entertaining with their parents can be as much of a reward as a physical toy. An example of an easy and fun reward is to eat dinner underneath the table or taking a walk in the woods. It is important for you [the developers] to tell the parents that the reward does not need to be material, but can be simple and easy rewards."

She implies that spending quality time with the family can in fact be just as effective as material rewards. She also pointed out that we should include some sort of manual to our reward system, in order to maintain the maximum motivational effect and ensure that parents understand that the rewards do not have to be material. However, creating a manual for reward systems for children could be an own master thesis in psychology, and we will not delve further into this aspect.

It is reasonable to assume that most parents have used some sort of reward system with their child, for instance to get their child to behave the way the parents want them to. One of our interview subjects had used stickers in order to toilet-train her son. The amount of rewards and their "attractiveness" should be correlated to the task performed by the child.

"Collectors" vs. "spenders"

Children perceive rewards in a different manner. Some children like to collect their rewards and will never choose to spend the rewards as currency. To these children the collected amount of rewards is important, and they often value the rewards more as a collector's item than as a currency. Some children like to spend their rewards and cash them in as currency. These children often care more about spending the rewards on items rather than saving the rewards, even if the item they spend their reward on is a short-lasting joy, such as an edible item or an arcade credit. AsthmAPP's reward system is made to accomodate the wishes of both "collectors" and "spenders". Since the reward

system is a milestone-based system where the stars do not disappear when a reward is purchased, both user types may have what they want. Making the reward system as motivating as possible will be up to the parents.

Understanding the family situation

It may be argued that our reward system could cause internal jealousy within a family. For instance, if a family has three children, where two of them suffers from asthma, the third child could potentially become jealous of the other two, as they may receive rewards which seems unfair for the third child. In such cases, we leave the responsibility to the parents to balance these rewards in a way that is not unfair for the healthy children in their family.

9.1.1.2 Bartle's Four Player Types

In Chapter 3.4.1 we presented Bartle's four player types and how they enjoy gamification. In order to understand how gamification can be used to motivate children with asthma, we have explored some solutions for how to build an enjoyable gamification system for the four player types; achievers, explorers, killers and socializers.

Killers

In Chapter 3.4.1.4 we stated that hopefully no children in our target group hope to gamify their experience by imposing themselves on others. We found no positive and meaningful way to support "killers" in our system. The only scenario we could come up with was that children could slow down the progress for others (e.g. steal other children's stars), which is against the purpose of AsthmAPP.

Socializers

While AsthmAPP has little support for socializers, we believe there is potential for use of social features in a system such as AsthmAPP. An example of such would be the use of an avatar system where the children may share their avatar with others and meet other users of AsthmAPP in a social hub similar to Club Penguin¹ or Farmville².

¹Club Penguin - www.clubpenguin.com

²Farmville - www.farmville.com

Explorers

AsthmAPP in its current state has little to explore. However, we believe that there is a potential for functionality to motivate explorers. The use of progress bars, leveling systems or achievements and badges can easily be transferred to a system like AsthmAPP in order to achieve a gamified experience targeted at explorers. Linander's interactive story concept showed how the progress in a story may be tied to the use of asthma medicine[76]. Possibilities for adding new stories over time would create an even more engaging system for children.

Achievers

AsthmAPP provides game elements suitable mainly for achievers. The gamification system in AsthmAPP is built around performing a treatment correctly and being rewarded for doing so. The use of stars as experience points and support for real-world rewards through the shop is applicable for all children, but may be of most interest to achievers. There is endless potential for how gamification may be used to engage achievers, and there are many possibilities for further research on these areas.

9.1.1.3 Reception of AsthmAPP's Reward System

In order to get feedback on the gamification system of AsthmAPP, we asked our test users and interviewees what they thought about our solution for gamification. Specifically regarding how the reward system racks up when the user is following the yellow and red treatment plan, we received interesting feedback.

"I think that there should be no differentiation in the rewards at all. One star per treatment should do, regardless if the child is in good or bad shape. In general a sick child would need to take more [typically blue] medicine anyway, resulting in more stars. If there is a multiplication factor in addition to the increased number of treatments the number of starts would go up quite quickly and from the psychological perspective it might make the child think it is a good thing to be ill."

This statement differs to an argument made by one of our other interview subjects:

"It is difficult to determine if there is a risk of children pretending to be sick. Children often do not like going to the doctor's office, which may stop them from pretending to be sick."

Due to the contradictory arguments, we are not in a position to make an assessment on how the stars should be awarded, and we advice further research on how the different treatment schemes should be linked to the amount of stars received for completing a treatment.

9.1.1.4 Gamification over time

According to Webster-Stratton and Herbert, parents have a tendency to not phase out reward systems[75]. When this occurs, children do not receive the message that is in the essence of reward systems; that parents expect their child to perform a task on their own without receiving a reward. In the example Webster-Stratton et. al. describe regarding raising a child, parents could give a reward for making the bed every day for one week. After a week, the parents should expand the task to include making his/her own breakfast every morning. Similarily, parents should increase the cost for receiving a reward in AsthmAPP.

Based on findings we did during Customer Driven Project[3], we believe that gaining access to a new star could be rewarding enough when a child first starts using AsthmAPP. After a while, it will become boring, and parents should provide a means of a tangible reward (material or social). For instance, parents could start out by giving an ice cream sandwich to their child if they take his/her medicine as planned during the first day. Then they could expand the challenge by one day, giving the child some extra allowance if they manage to do it two days in a row. When time passes and their child has gotten used to taking the medicine, the system should be phased out. AsthmAPP in its current state would then serve the purpose of reminding, informing and logging the user's use of medicine.

9.1.1.5 The use of different gamification mechanics

When building AsthmAPP and AsthmaBuddy we chose to focus on the use of realworld rewards, mirroring user behaviour and experience points. While these were the elements we chose, there are endless possibilities for other combinations of game elements. In the following, we discuss the potential use of different game mechanics in the future.

Avatar systems

The use of avatar systems has huge potential for gamifying the treatment for children suffering from asthma. An avatar system can be a simple game where the user is rewarded with clothing and equipment for their avatar, or an extensive game where the users' use of asthma medicine controls an avatar in a game. Linander's "Concept for Improved Experience of the Treatment of Asthma" [76] showed potential for this.

Achievements and badges

There are many possibilities for the use of achievements and badges. Examples of this is badges for "Follow treatment plan for 5 consecutive days" or "". The use of achievements are a two-edged sword. They must not be of a kind that may lead to a non-positive behaviour, i.e. "Not have an asthma attack for one week" where the user may not want to use Ventoline, in order to win an achievement.

Real-world rewards

Our application is built around real-world rewards. We believe there are many possibilities for the use of real-world rewards when it comes to treating children with asthma. We also believe that having real-world rewards will motivate the children over time, since a candy bar, a trip to the local lake or a ticket to the local football match will not wither over time. Real-world rewards demands more from the users, since it demands that a parent or an other adult gives the child the rewards. While this might help motivate the children it may also put too much work on the parents, and they may consider the reward system too demanding.

Mirroring user behaviour

Mirroring user behaviour has recieved positive results from younger users, and there have been an increased amount of applications using this gamification technique. Applications such as the Grush toothbrush³ is built around mirroring user behaviour. We find user behaviour a positive and useful technique.

Leaderboards

We had trouble finding how to implement leaderboards in an ethical and positive manner. Using a leaderboard may be in breach of Norwegian privacy laws, which is unacceptable. Making the use of medicines into a competition would probably recieve heavy

³Grush - https://www.indiegogo.com/projects/grush-the-gaming-toothbrush-for-kids# home

criticism, since it may be viewed as a move to increase the income of the companies manufacturing the medicine. While the use of anonymous avatars and usernames may combat the privacy concerns, it may still be viewed as unethical and a bad marketing scheme.

Social networking

One should be very careful when designing social networks for people who suffer from a disease. There are many privacy concerns to take into account. An anonymous social network may be positive for parents with asthma. They may share success stories, ask questions and recieve help through the network.

Progress bar

There are possibilities for the use of a progress bar within an application for health care. While it will be impossible to evaluate the progress towards being cured from a disease, there are other uses. Combining a progress bar with experience points is easy to implement and has many possibilities for how a developer wishes to make use of the gamification element.

Experience points

As mentioned previously, there are many possibilities for the use of experience points. The main challenge with using experience points is to make them have a meaningful value over time. As McGonigal argues, gamification withers over time and there is risk for boring the user[29].

Contests

As with leaderboards, making the use of medicines a contest has it's risks. One might think of contests such as "remember to follow treatment plan perfectly for a long period of time" as a suitable contest, since it is a positive competition. However, to our knowledge this will be in conflict with Norwegian privacy laws.

9.1.2 Tangible User Interfaces

During our project we discovered different areas where tangible user interfaces may be of use for asthmatic children, their parents and other caregivers. The main areas include learning, motivating, distracting and informing. Other areas where TUIs could be of use are elaborated on in Section 9.1.3.

9.1.2.1 TUI as a Tool for Learning

When a child gets diagnosed with asthma, his/her parents receive a lot of information at the doctor's. It occurs that the parents are not paying attention, do not understand the information given, or do not communicate the information correctly to other caregivers. As two asthma nurses stated in an interview:

"We always make sure to teach the parents and the children how to apply the medication correctly, however, they may forget it over time. If the parents do not remember how and when to give the children medication, it may have a negative effect on the treatment of the child's asthma."

AsthmaBuddy can be used to relieve parents from the responsibility of remembering exactly how and when the medicine should be taken. Parents will probably remember the process after a couple of days, but AsthmaBuddy could help them get started.

Hospitals hand out flyers and treatment schemes to parents when children are diagnosed with asthma. However, flyers are often lost, and miscommunication often occurs when parents leave their child with other caregivers, like grandparents, babysitter, etc. By sending the child off together with AsthmaBuddy, the implications of any miscommunication could be minimized.

Teaching children

In addition to teaching parents about asthma, AsthmaBuddy could be used to teach children about their disease. In some cases, parents do not explain to their children why they are sick, and what is causing their breathing problems. After a child has taken a dosage, AsthmaBuddy could proceed to read a book about asthma, specifically written for children. As more treatments have gone by, new chapters can be read, increasing child's knowledge and awareness of his/her disease.

Information correctness

When informing children and parents about asthma, it is vital that they receive correct information. If the information provided contains errors, it could have significant consequences for the asthma treatment. The information provided should be approved by either medical doctors or organizations like NAAF. This will provide a quality assurance, in addition to gaining potential families' trust.

Understanding their disease

One of the nurses we interviewed, stated the following:

"Children below your target group (i.e. younger than 3 years old) can be even harder to motivate, as children in oup 3 - 5 years old have an understanding as to why they need to take their medicine."

Children in the age of 3 - 5 years old understand that they get better from taking their medicine. However, not all parents tell their child specifically what is wrong with them. One of the interview subjects noted that mistakes do occur, and some parents do not understand all of the information received while at the doctor's office, which can result in parents communicating wrong information to their children.

AsthmaBuddy could have been used to inform children about what happens with their lungs before and after they take their medicine. Some children may get a better understanding of their disease and therefore understand better why they need to remember their medication. There is always a risk that children will be scared when told what their asthma is doing to their lungs. Thus the parents must be aware of how anxious their child is.

9.1.2.2 TUI as a Tool for Motivating

Feedback

Tangible user interfaces could be used to give feedback to children about their treatment. They could for instance notify how they have been at taking their medicine during a week, and notify if they have forgotten a medicine one day. This feedback should however be discrete and implemented in a non-obtrusive manner, as parents could interpret AsthmaBuddy as yet another noisy and annoying toy in the house.

Calming down children before a treatment

If a child is scared before he/she takes his/her medicine, tangible user interfaces could help calming the child down. A friendly character such as a teddy bear may help distract the child and make him/her forget what scared them in the first place.

Turn the process into a game

TUIs could be used to motivate children by turning each treatment into a game. At the moment, AsthmaBuddy and AsthmAPP makes the long run process into a game. A TUI could be used to turn a single treatment into a game, e.g. by saying that "If you take the cap off the medicine, you get ten points" and "If you breathe for ten seconds, you get a hundred points". Then children could do the math to calculate their total sum, that the TUI can state is correct or incorrect.

Responsibility

A TUI could be used to make children more responsible regarding their own disease. Children could for instance be prompted to check whether there is enough medicine in their inhaler, and be responsible for telling their parents if they need new supply. AsthmaBuddy could be used for the same purpose by postponing the alarm, and check to see if the child reacts without it. If the child reacts, AsthmaBuddy could provide positive feedback, and if the child does not react, AsthmaBuddy could give a strict notice that the child cannot rely entirely on a stuffed toy animal⁴.

9.1.2.3 TUI as a Tool for Distracting

Distracting children while taking a medicine In its current state, AsthmaBuddy distracts children while taking their medicine by counting to 10, which is the number of seconds a child should breathe in his/her breathing chamber. Additionally, the LED-light at its nose is blinking, which we will discuss further in Section 9.2.

Since we only have 10 seconds to work with, there are big limitations on what AsthmaBuddy can actually do in order to distract them in a natural way. It could be argued that having AsthmaBuddy by their side is actually enough distraction, as they have something to look at. If a TUI with movable parts had been developed, these parts could be used to give children something else to look at, by for instance introducing them to a new dance.

A more interesting case would be to distract children that are using a nebulizer in their treatment, as these often lasts for about 10 minutes or more. Children would then have to rely on something more exciting, like an audio book.

⁴This could prove to have a negative effect, but is an option to give children more responsibility.

Distracting children between medicines

Children often have to take two different medicines after each other, but not immediately. A reguler scheme is to first take Ventoline, then wait for five minutes, before a dosage of Flutide should be taken. One of the interview subjects pointed out that:

"The teddybear could help children to keep up with the time while they're waiting to for the next dosage."

He further noted that it was easy to get "overly excited" and take the Flutide dosage earlier than 5 minutes after Ventoline has been taken, which will reduce the effect of Ventoline. AsthmaBuddy could in this case distract the child from taking the medicine too early, by for instance reading an audio book, playing songs or even count down to the next dosage. The effect this distraction could vary from child to child. If a child really hates to take his/her medicine, having AsthmaBuddy count down to the next dosage could seem frightening for the child.

9.1.2.4 TUI as a Tool for Informing

For children with astma there is a lot to remember. We have already discussed the theme of learning about asthma, which is a very important aspect. There is still more to remember, and we have found some ideas for how the tangible user interface may help.

Counting doses left in the inhaler

One of parents we interviewed noted that:

"It is annoying when medicines go empty, so we're keeping a journal"

Since the inhalers have a certain amount of doses in them, and the amount of doses varies between different medicines and their vendors, it may require an effort to remember how many doses are left. The disk-formed medicine often comes with an indicator, while inhalers do not. Inhalers make a "poof" sound when pressed, and this sound may occur regardless of whether or not there are any doses left. By using a RFID on the medicine and a RFID-reader on the TUI, the TUI may keep up with how many doses have been taken, and the system automatically warns the user when the number of doses is running low. There are many other ways to solve this digitally, but we believe that having AsthmaBuddy count how many doses are left and tell the user by sound could be fun for children and helpful for parents.

Pollution levels and pollen forecast

There are many different applications and web pages for reading and recieving information about air quality and pollen forecast. These web sites often offer data to third party services. AsthmAPP has the functionality for getting air quality readings and pollen forecast in the same application (see Chapter 6.5.4). AsthmaBuddy could help the children with the same functionality, starting the day by telling how the air quality is and what the pollen readings are for the day.

In a future version, AsthmaBuddy could calculate and foresee the amount of medicine needed when there is much pollen or bad air quality and update its alarm schedule based on the knowledge gathered. However, this is a functionality which will require further research.

Reminders

AsthmaBuddy has functionality for firing alarms based on the treatment plan set in AsthmAPP. This makes it easier for the children and parents to remember to apply the treatment at the planned time. While taking medicine is often a routine for families with asthmatic children, AsthmaBuddy could be a useful embodyment of a reminder.

In a future version AsthmaBuddy should be able to know that if a treatment has been completed within a short time before a planned treatment, the planned treatment will not be necessary. For a user having completed their planned treatment, an alarm firing 5 minutes later can be annoying. AsthmaBuddy's purpose is to help the user to remember, and if the user has already completed the treatment, AsthmaBuddy should be satisfied.

9.1.3 Other Aspects

During the project we discovered different areas where AsthmaBuddy could be of use, some of these did not sort under the topics learning, motivating, distracting and informing. These findings are presented in this subsection.

9.1.3.1 Helping Kindergartens, Schools and Caregivers

During our interviews, we discovered a potential problem when children are in the kindergarten or at pre-school. It may occur that the caregivers do not know how to handle an asthma attack properly. According to one of our interview subjects:

"The biggest problem is that the teachers/kindergarten teacher may not have knowledge of what to do when an asthma attack occurs. An application with instructions may be of help to them."

A solution to this problem was provided by a kindergarten teacher we interviewed, who said that it was hard to keep track of which child was supposed to take his/her medicine at the correct time. They sometimes had this information stored on their own phone, or had a note in their pocket. In some cases, no such tool were used, which relies heavily on the teachers' memory. If the teacher forgets it, there is a possibility that the child does not take his/her medicine properly on the given day. The kindergarten teacher proposed an application that allowed parents to register a medicine that was to be taken, and sent push notifications to the teachers, that could remind them of their child's need for a treatment. We concluded that this functionality is out of the scope of this thesis, but we found the idea interesting.

In our opinion, having a shared AsthmaBuddy in a kindergarten could lead to complexity and problems. First, AsthmaBuddy would have to learn the names of the children in order to keep track of children whose turn it is. Second, there could be no overlapping of treatments, which might become inefficient (depending on the teachers). Third, having a shared AsthmaBuddy in a kindergarten could easily result in being destroyed. If placed in a kindergarten, AsthmaBuddy in its current state would probably cause more problems than help the kindergarten teachers. With changes and modifications, we still see the use for tangible interfaces in kindergartens and preschools, as a useful tool to help teachers and children.

9.1.3.2 Tangible Interfaces to Help Parents Help Children

When children suffer from asthma, they often have to rely on their parents in order to maintain control of the disease. Parents have to maintain a clean house and they have to keep an eye on pollen, as pollen and asthma are often related. One of the features AsthmaBuddy could have in order to help parents is a morning forecast, informing parents about the weather, pollen distributions and air quality.

In the future, AsthmaBuddy could communicate with dust sensors, that could indicate whether or not parents actually needed to clean the house. Additionally, AsthmaBuddy

could communicate with a Roomba⁵, which in turn starts cleaning. AsthmaBuddy could also indicate the air humidity at the child room, starting up the air condition.

9.2 Do's and Don'ts when Using a TUI

Mobility

When developing a TUI for children it is important that the TUI is mobile. Children become attached to their toys and like to take them with them. To make the most out of a tool such as AsthmaBuddy it is important that the children may take it with them. The problem of power usage may be solved by a battery. The problem of recharging can be solved by charging at night. It is also possible to buy a WiFi shield for the Raspberry Pi that could handle internet connection. This would solve mobility within a home. However, it would not solve the problem when a child is travelling, for instance by car. Being able to use AsthmaBuddy in a car would require their parents to have created a hotspot.

Use of colored lights

With AsthmaBuddy we tried the use of LED lights to make AsthmaBuddy more interesting than a normal teddy bear. During a treatment the LED light would indicate which medicine was supposed to be taken, by beaming lights in the same color, blink to count the seconds when breathing and using red light to indicate the seriousness of having to find an adult to overview the process.

One of our interview subjects, a PhD candidate of product design stated in an interview:

"People's perception of and preference for sensory stimuli differs. The use of lights and sound may affect the children in different ways, but that will have to be explored in user studies."

We believe that the use of colored lights as a distraction method during a treatment is a complete field of research on it's own. There already exists some research, such as Mæhlum's "Concept for Increased User Acceptability When Treating Children With Respiratory Infections[77]". During our project, we have not conducted enough research to draw conclusions on the use of colored lights during treatments.

⁵iRobot Roomba - http://www.irobot.com/us/

Interaction Methods

AsthmaBuddy in its prototype form was not able to sense interaction, and was operated by using a "Wizard-of-Oz technique"[74]. AsthmaBuddy was not able to give feedback that the user did interaction correctly. The only form of confirmation was that the next sound clip would start playing. This may lead to confusion and uncertainties among users as to whether they interact correctly.

9.3 **Process Evaluation**

As with all other software development projects, the development of AsthmAPP and AsthmaBuddy has hit some bumps in the road. This chapter will look into possible improvements of the developments process. It will also evaluate the experiment design and point out different elements which could have been done differently.

9.3.1 Difficulty Finding Test Users

When performing user tests and interviews involving gathering personal medical information, there are requirements to be followed. Before contacting potential test users, the research project must be evaluated by an ethical committee⁶, and while the paperwork has easy-to-follow standards, this took some time⁷.

The search for potential test users proved more difficult than initially anticipated. We contacted different hospitals and persons with expertise on asthma. We asked them to help us recruit test persons for our project. In order for the hospitals to help us, we needed an approval from their marketing/ethical committee. In our efforts we were a bit unlucky. After applying for an approval, we did not hear from the hospital for a while. After numerous phone calls and e-mails, we got the answer that the person responsible for our processing our application had been on sick leave for a long period of time. In hindsight we understand that this process should have started some months before the actual project, in order to allow for such unforeseen events.

 ⁶Regional Etisk Komite - https://helseforskning.etikkom.no/ikbViewer/page/forside?_ikbLanguageCode=n
 ⁷Our project was authorized in January 2014, under case number REK 2012/159

In parallell to the contact with hospitals and doctors we tried recruiting test persons through friends, colleagues, social media and mailing lists from NTNU and local organizations. This proved less fruitful than we hoped. We have no concrete feedback as to why we had so little response, but we have our assumptions. Firstly, the user group is a very specific group. There may not be that many children living in Trondheim at the age of 3 - 7 years, suffering from asthma, who also have parents willing to participate in our research. Secondly, people tend to not care if they do not get an attractive reward for helping, and since we had little to offer in terms of economical compensation or rewards, the interest might have withered away for some people. Thirdly, there may have been scepticism from the potential test users. While all the different paperwork was in order and the project may prove positive for the children and parents within the target group, the fact that we are two students writing a master thesis may be less encouraging⁸.

9.3.2 Co-Design Sessions

Our original plan was to arrange co-design sessions with several experts present at the same time. We believe this would have helped the creativity of the feedback for AsthmAPP and AsthmaBuddy. However, this proved too difficult to arrange. The persons we wanted to invite were very busy and after several failed attempts to find a time suitable for all experts, we gave up trying to arrange co-design sessions. The arguments stated Section 9.1.1.3 is an example of a situation where a focus group session might have lead to an interesting discussion, since the interview subjects did not completely agree on the differentiation of rewards based on health state.

9.4 Conclusions

The study was set out to explore the concept of gamification and tangible user interfaces in the treatment of asthmatic children.

The research questions presented in Chapter 1.3 provides a basis for summarization of results discussed in Chapter 8.

⁸We *believe* that if the researchers were publicly acknowledged, it would have been a bit easier to recruit users

RQ1: How can gamification be used for motivating children to take their asthma medicine?

During our research, we have looked into several methods for how to apply gamification to these treatments.

Based on the information gathered through privacy laws, user tests, literature study and interviews, we have developed a prototype containing a subset of these mechanisms. As discussed in Section 9.1.1.2, we identified mirroring user behavior, experience points, real-world rewards and avatar systems as suitable for this domain. We have developed a prototype, AsthmAPP, which makes use of experience points, real-world awards and mirroring user behavior, in order to motivate children to take their medicine. The prototype was validation tested with three asthmatic children, which provided nonconclusive, but positive results.

In the context of treating asthmatic children, it is essential to have a well balanced gamification system. Children should not be encouraged to take their medicine too many times, and they should not feel punished if they forget to take their medicine once in a while. Gamification should be used as a tool to motivate children to use their medicine according to their treatment plan, and gamification as a motivational tool should be designed with this in mind.

In a broader context, we believe gamification can be applied to the treatment of children suffering from a wide range of diseases. Further research for how to tailor gamification to specific diseases should be conducted.

RQ2: How can tangible user interfaces be used to help children with asthma?

Understanding the effect asthma has on the child is central to treating the disease. Many families find the treatment process troublesome, and sometimes apply treatments incorrectly, at the wrong time, or even forget to carry out the treatment. This study has done research on how tangible user interfaces can be used to relieve parents of this responsibility. We have identified four key areas where tangible user interfaces may be applied to the treatment of asthmatic children. These areas are *learning*, *motivating*, *distracting* and *informing*.

TUIs can be used to teach children and parents about their disease, how to perform treatments correctly, and the importance of following their treatment plan. TUIs could motivate children by providing feedback, giving a calming effect during asthma attacks, turning the treatment process into a game, and give children a sense of responsibility in order to take care of themselves. TUIs can distract children during and between treatments. Lastly, TUIs can inform parents about the dosages left in an inhaler, the pollution level and pollen distribution at a given day, and remind them to give their children medicine according to their treatment plan.

We developed a prototype, AsthmaBuddy, which is capable of reminding children to take their medicine, guiding them through the process and rewarding them afterwards. Although AsthmaBuddy in its current state did not incorporate all of the aspects identified, it is a starting point for further research in this context.

As a stand-alone system, using the token + constraint approach, it is difficult to see a future for AsthmaBuddy without *any* connections to other systems (such as a smartphone application). We have relied heavily on the ability to synchronize user data with AsthmAPP, in order for AsthmaBuddy to be aware of alarms, rewards and treatment plans. Due to the amount of information necessary in the treatment of asthmatic children, it would be difficult to display all of it on a tangible user interface such as ours in a non-obtrusive manner. Thus, future TUIs should be a part of a larger system.

9.5 Validity of our Results

Sample size

The validity of our study suffers from a low sample size of test users. Testing AsthmaBuddy and AsthmAPP on three children and two adults are not enough to draw any conclusions of whether or not AsthmAPP and AsthmaBuddy has potential to become a successful tool or not. As such, we have included testing on several more children in Chapter 10 - Further Work.

Interview transcripts

Interviews were performed by having one interviewer and one transcriber, with no means of recording. In hindsight, we should have recorded the interviews in order to process them more in depth, in addition to making it easier to ask follow-up questions at a later stage in the project. The interviews were performed in Norwegian, and later translated to English by us. The transcripts were then sent to our interview subjects for validation of citations. Even though the transcripts were validated by the interview subjects, some of the semantics could have been lost during the translation.

Testing environment and equipment

The testing lab at NSEP has little similiarities to a home, where the user will normally use AsthmaBuddy or AsthmAPP. The lab is situated within a hospital building, which again is next door to the pediatric clinic of the hospital. This may have intimidated our users and placed them in a situation they were not comfortable with.

During the user tests we used placebo medicine, which contains compressed air instead of medication. The users were told this very clearly before the test started. Since users of asthma medicine are adviced to not overdose on medication, this was important to tell the users. Even though the users were told very clearly that the medicine had no effect, one of the users did not want to take the medicine, and asked if it was okay if the container was not pressed, so the particles were not released into the breathing chamber. We also used masks that we brought with us. The fact that the masks differed from the masks the users have at home may have made them insecure or intimidated. This may have biased the outcome of the user test.

Time period

A central aspect to gamification is whether it will work over a longer period of time. While we have discussed AsthmAPP's gamification system and how it makes it own spin on gamification by being so user-centric, we have not researched how the user reacts over time. Preferrably we would have done user testing over a period of time, in order to receive continuous feedback on how the children and their parents reacted to using the gamification system over a week, a month, or several months.

The lack of testing over a longer period of time is a threat to the conclusions regarding the use of gamification.

Chapter 10

Further Work

AsthmAPP and AsthmaBuddy are early prototypes, and need further work and changes before finalization. This chapter presents different solutions to previously mentioned evaluation and other changes based on user feedback.

10.1 Future Work on AsthmaBuddy

During our research, AsthmaBuddy was operated using the Wizard-of-Oz technique. A future version of AsthmaBuddy should have different methods for interaction, such as touch sensors, separate actions for replaying instructions and feedback on user interaction. AsthmaBuddy now relies on a couple of configurations that have to be made before running the application. The amount of configurations that needs to performed should be reduced to a minimum.

There are many possibilities for functionality that may be included in AsthmaBuddy. These are listed in Chapter 9.1.2. This list is not exhaustive, and there is still much research that may be done in this area.

10.2 Future Work on AsthmAPP

AsthmAPP has some challenges regarding usability which we have already discovered. Thorough iterations of user testing and improvements will be necessary in order for AsthmAPP to become a success. Low usability will frustrate the user and may bias the research, and if AsthmAPP should be used for future research it will need these improvements.

There are several possibilities for functionality that may be added to AsthmAPP. An example of this is keeping track of dosages left in a container, with automatic user warning if there are less than 15 dosages left¹. Functionality for telling how many dosages was planned and how many were taken may give a better overview of the use over time. Since the number of dosages varies with the treatment plan, such functionality would make it easier to check how well the treatment plan was adhered to over time.

The calendar/log in AsthmAPP now only supports showing a month at a time. Viewing one week or one day at the time would be useful to get a more closer view of the use of medicine. Logging when a medicine was taken, down to the minute may also be interesting for users.

AsthmAPP only supports one child. There is no way of tracking more than one child per app, which may cause problems for parents who have two or more children suffering from asthma. In a future version of AsthmAPP there should be support for more than one child. AsthmaBuddy has support for being used by different users, but the alarm functionality will only run for one user at the time, and will block other users for starting a treatment while it is waiting for an alarm. Future AsthmaBuddy should be able to keep track of more than one child at the time.

Connection between health state and rewards

AsthmAPP has a gamification system where rewards are tied to the health state of the user. We have received contradicting comments as to whether this solution is a good one or not. One of our interviewees offered a possible solution for how to link health states and rewards.

"...In fact, one star for completing the plan might even be a better approach than one star per treatment (though the gifts can be adjusted in "price"). Maybe even have two types of stars? For example a silver one for taking the medicine as planned, followed by a gold star once the treatment for the day has been completed."

We advice further research on how to make the connection between health states and rewards.

¹15 was chosen since this will leave the user with enough medicine for one week's use. The user should be able to set his/her own limit for when a warning is given.

Rewards and shop

While AsthmAPP's gamification system is built around the use of real-world rewards, this might not be suitable or even necessary for all users. Some children might motivated by the stars on their own. The user should have the possibility of choosing the stars as rewards. When setting up the system for first use the user could be asked the question of which system they would like to use. If they chose to not use real-world rewards, the menu options for rewards should be hidden in order to not confuse the child.

10.3 Testing

We did a validation test at the end of our project to discover whether or not our prototypes have any potential in the future. The test results suffered from a low sample size, and more tests on children should be performed in order to discover potential improvements and usability errors.

As stated in Chapter 3.3, the motivational effect of gamification withers over time. Because of lack of test users and resources, we have not been able to test our prototypes over a longer period of time. As such, there is an existing risk that using AsthmaBuddy and AsthmAPP may loose its effect when used over a longer period of time. Testing which rewards, and when they should be given, should undergo further research.

10.4 Future Research

During our research we have discovered a few research areas that could be explored further. This section aims to cover some of those.

Other Treatments

The underlying concept behind our prototypes, i.e. use of gamification and tangible user interfaces, could be explored further for other diseases than asthma. For instance, testing our approach on diabetics or childen with heart defects. We believe in the motivational factors that gamification introduces to the treatment of children suffering from a disease.

Gamification Elements to Treat Ashmatic Children

We have introduced a broad specter of gamification elements we considered using in AsthmAPP and AsthmaBuddy. We cannot guarantee that the set of gamification elements used in AsthmAPP and AsthmaBuddy are the most effective, in terms of providing motivation, information or enjoyment, but it is a start.

Researching the different possibilities of combining these elements will become a key for the eventual success a product such as ours could have.

Tools for Kindergarten Personell

During our interview with a kindergarten teacher (see Appendix A.6), we discovered the possibility for creating a tool to help kindergarten and school teachers with treatment of asthmatic children. This could be extended to concern other diseases as well. Guiding adults through treatments they are not used to performing could be important and potentially life saving for children, as they are not around their parents at all time on any given day.

10.5 Future Vision

In order to tie together loose ends, we have created a scenario for the future use of AsthmAPP and AsthmaBuddy.

John is a 5 year old child who has recently been diagnosed with asthma. He is the oldest child in his family, and his parents do not have any prior knowledge of asthma. After consulting with John's pediatrician, his family has acquired AsthmaBuddy and AsthmAPP to help them make the transition easier.

Johns parents wake him up at 7:00 AM a cold winter morning. They get dressed and start to make their way to the kitchen. On the way, they stop by AsthmaBuddy, who greets them with the morning status regarding asthma. AsthmaBuddy informs the parents that the air quality is poor outside, due to heavy traffic and the cold weather. He also mentions that there is currently no pollen in the air today. AsthmaBuddy asks whether or not he should add an additional treatment to the plan for today, in order to comply with these conditions. His parents shakes AsthmaBuddy's hand in order to indicate that this is wanted. John eats his breakfast, and goes back to his room.

While John is getting ready for kindergarten, an alarm is triggered in AsthmaBuddy, indicating that John is due to take his medicine before leaving. John calls for his mother, and together they are guided safely through the treatment. John is now ready for another cold day, and leaves for kindergarten, where they have planned an activity day outside. John wants to take AsthmaBuddy with him to kindergarten, since the new version of AsthmaBuddy is portable. John's parents does not think this is a good idea, since it may be lost or broken if all the children want to play with AsthmaBuddy, and thus AsthmaBuddy must stay at home.

At home, AsthmaBuddy senses that there is a high amount of dust in John's bedroom. AsthmaBuddy contacts the family's Roomba, who starts dusting and mopping the floors. AsthmaBuddy turns on his red light and sends a push notification to AsthmAPP, indicating to the parents that the floor has been cleaned.

At noon, John gets an asthma attack after playing some serious rounds of tag. The kindergarten teacher, Lucy, is the closest grown-up around and runs over to help John. She's new on the job, and has little experience in how to handle the situation. Luckily, she has a kindergarten version of AsthmAPP, where she can press the emergency button in order to receive guidance on how to help John. With the help of AsthmaBro, AsthmaBuddy's digital brother, they are guided safely through the treatment. John's parents receives a call about the incident, in order to let them know that everything is fine. They register the medicine on AsthmAPP, in order to ensure that John gets his stars.

During the day, John's parents meet at the pediatrician's office for a follow-up meeting. They display AsthmAPP's log for the doctor. The doctor recommends to follow the yellow treatment plan, given the recent high pollution and cold air. He also tells them that if John keeps getting asthma attacks, he should change to the red treatment plan.

Before picking John up at the kindergarten, John's parents have added a reward, which allows John to choose today's dinner. The reward is received when John has gained a total of two stars, which he currently has accomplished. On his way home, John cashes in this reward; deciding to order pizza for the family. When they arrive at home, his parents starts dusting John's room. During dusting, John's father turns his attention to AsthmaBuddy. He is uncertain about the number of dosages left in the inhaler, as he does not know how often he needs to purchase a new inhaler. He holds the medicine towards AsthmaBuddy's belly, who informs that there is a large number of dosages left. AsthmaBuddy tells him that he will schedule an alarm when there are 15 dosages left. Before John goes to bed, he needs to take his preventive medicine, which is scheduled for 8:00 PM. However, John has had a long and eventful day, and starts to get tired. He takes his medicine at 7:45 PM, and AsthmaBuddy removes the alarm scheduled at 8:00 PM. After taking his treatment, AsthmaBuddy starts reading a chapter from a book about how the dragon Seath once conquered the magical land of Ooo, after gaining control of his asthma.

Appendix A

Interview Transcripts

The following appendix contains brief interview transcripts we made during interviews. *Italic* font is used when we as interviewers asked a question.

A.1 PhD/Researcher in Psychology

PHd in Psychology. Expertise on reward systems when raising a child.

Date: 25th of March

Place: Trondheim

How do children react to reward systems such as the one in AsthmAPP?

Children react very differently regarding reward systems. Some children find the rewards interesting, while some may not care at all. A common problem is that they may not be able to see the value of a reward given in the future. Younger children tend to choose rewards given immediately instead of a bigger reward given in the future[78]. The difference in how children percieve the value of a reward is very individual and there may be huge differences between age groups.

Is there a possibility that children may manipulate the reward system by pretending to be sicker than they are?

It is difficult to determine if there is a risk of children pretending to be sick. Children often do not like going to the doctor's office, which may stop them from pretending to be sick.

The parents set the rewards themselves, how do you think this will work?

The rewards has to be interesting for the individual child, and must be tailored to their interests.

Do you think the reward system can lead to jealousy between children?

Children percieve rewards differently, and a reward for one child may not be interesting for the other child. However if one child gets a reward that is much more valuable than the other children, if may lead to a situation where the children who recieve lesser rewards may be jealous. The parents of the children in the same class/kindergarten can make an agreement on what rewards should be set, in order to give equal rewards. It is important to find a reasonable level for the value of the rewards, to ensure it will not be a burden to the parents.

Rewards do not have to be a material reward, it may be a fun activity or letting the children choose what they will eat for dinner. Doing something entertaining with their parents can be as much of a rewards as a physical toy. An example of an easy and fun reward is to eat dinner sitting underneath the table or taking a walk in the woods. It is important for you [the developers] to tell the parents that the reward does not need to be material, but can be simple and easy rewards.

Can the reward system lead to differences between children that use the application and recieve rewards and children that do not use the application?

There at not that many children with asthma in each kindergarten. I believe that parents will talk to each other and share experiences which may result in positive sharing of knowledge.

The stars earned in the application are not removed. Will this cause a problem with regarding teaching children the value of money and rewards?

This is different from one child to another. Some children are "collectors" and would not spend the stars if they go away, but instead hoard them. There will be a risk that these children never spend their stars on rewards if they have to remove stars to get rewards.

[Demonstration of how AsthmAPP works]

Have you [the developers] thought about letting the players play a game as a reward? Games such as Flappy Bird¹ are very popular with children, and a round doesn't take such a long time.

It is also important to remember that the reward must be reflected in the severity of the task.

[Demonstration of AsthmaBuddy]

I believe that a cute bear like this may help in making children more positive to remembering their medicine. For a small child the bear itself may be enough of a reward.

The use of AsthmAPP and AsthmaBuddy are quite repetitive over time. Do you think it can be boring over time?

A treatment takes less than 2 minutes, which will help. The app should have support for experts children, so they do not have to follow the instructions when they have become expert users.

I do not see any negative aspects with the system. Leaving the reward system for the parents to choose is a good solution, but will require advice and information in order for it to work as a positive manner for both parents and children. You must also remember that it must not take a long time between the activity and the rewards, since children may not see the connection.

A.2 PhD candidate in Industrial Design

PhD candidate in industrial design.

Date: 26th of March, 2014

Place: Trondheim

[Interview started with a demonstration of AsthmAPP and AsthmaBuddy]

It's a good idea that the stars represent something different than the digital picture itself. The stars by itself may lose value after a short period of time. Children and parents can decide the rewards together. This could become a social activity for them. It seems smart to guide them as far as the rewards goes, and it does not necessarily need to be material. It is entirely up to the user to choose the amount of effort they'll put in it, and they decide how they reward their children. It is easy to forget that stuff like deciding where the sunday trip goes could be rewarding enough. It is important not to limit these rewards.

Do you have any experiences as far as repetivity goes for this usage pattern?

It is a lot of difference between children in the different age groups. It is important that the application is an aid to help them, and not something they're forced to use. The application could help during the startup of their treatment. Then parents can decide whether or not they should continue using it. It is important to creative a positive frame around the treatments. In the best case scenario, the child understands why they use their medicines. The application could help by creating a better attitude around the use of medicines.

Do you have other ideas to what AsthmaBuddy can be used for, besides guiding them through their treatments?

It is important not to exaggerate the amount of functions it can have. It will become annoying if AsthmaBuddy required a lot of attentions. We had a case where we had to put Furby into a closet because it become to needy. It is important that the user remains in control, and that AsthmaBuddy is subtle. It depends on how AsthmaBuddy is presented and introduced. The user has to be able to control the tool. It is important to include the end user in the development. So that we (designers and developers) can learn about them and make products that are adapted to their lives. Do you have any ideas regarding the interaction methods between the child and AsthmaBuddy?

It is useful to build a relation between AsthmaBuddy and the child. It is important to show what can be done in order to get a technological response. It is also important to reduce interactive touch points. As far as ideas go, maybe ability to speak with AsthmaBuddy could be an idea?

Regarding use of lights/sounds/pictures in applications targeted towards asthmatic children. Do you have any experiences or do's and don'ts we should know of?

People's perception of and preference for sensory stimuli differs. You should take a look at Tori's master thesis². The use of lights and sound may affect the children in different ways, but that will have to be explored in user studies.

In AsthmAPP we use pictures of the Karotz as an avatar. What are your thoughts on this?

Have you considered using pictures of the bear, in order to create a connection between the application and the bear? It is preferable to have a relation between icons in the application and the look of the bear. If the bear is not present at all times, the bear within the application could be the little brother to the big bear to create a tighter relation.

[Demonstration of AsthmaBuddy in use]

There is no feedback that the bear knows you have interacted?

The bear will continue talking after the user interacts.

That may not be enough feedback for the child. It is smart to show the child that he/she interacts in the right way. You should also look for how the color of the light affects the user. The change of color of the light may be confusing, but that will have to be user tested.

You should remember that interaction between the bear and the user can be difficult when taking taking a medicine. The user only has two hands.

The teddy bear could help with other things such as remembering to brush teeth for a long enough time or similar activities that may be boring for children.

²DIPP - Utvikling for konsept for økt brukeraksept innen medisinsk behandling av barn med luftveisinfeksjoner

A.3 Advisor at NAAF

Advisor at NAAF.

Date: 26th of March, 2014

Place: Trondheim and Oslo³

[The interview started with an explanation of AsthmAPP's reward system]

Are there any aids that are used on a regular basis?

At the hospital or during a treatment, there are a lot of people who read for the child, or play an audio book, use an iPad to watch a movie or play an easy game. In order to distract the youngest children, they sometimes use a toy (something with sound or light that are "active"). Having something interesting to distract the children usually works good. These tactics are also used for children with eczema, where they have to sit in a bath for 15-20 minutes. During shorter treatments, the children usually gets a reward after the treatment, as the treatment is too short to distract them from anything.

Do parents remember to apply the medicine at the right time? And do they use any tools in order to help them keep up with the plan?

Usually, they medicine are given at the morning or by evening. Some children need medicines more often, and this must be explained to employees at the kindergarten or at the school. Children often have to take responsibility, as they can't necessarily call their parents to check. It is possible the employees use this (tools), but I'm not sure about the security. There are a lot of temporary employees in the kindergartens, and they do not necessarily have the same overview as the full time employees. A tool specifically targeted at temporary employees could be useful.

Do parents use forecasts for pollen and air quality?

NAAF has an app for pollen casts. I consider it useful to gather more information in one application.

Do you see any problems regarding logkeeping of medicines?

Is it only the parents who have access to the data? *Yes, but the idea is that other caregivers could use the application.* You should ask the Norwegian Data Protection Authority in order to be sure.

³Performed over the phone

I recommend you checking out the application "MinAstma".

Regarding ACT-test, is this something the child would benefit from showing to the doctor?

Some take ACT tests at home and bring them to the doctor, these results are useful for the consultation.

Will the doctor/nurse consulting the child have any benefit from having detailed logs of the use of medicine?

If it is a log showing the use over a period of time, it will be very useful. "The dream" is to have a complete record of what medicines were taken and the health state of the child. Sending such logs to the doctor ahead of an appointment will be useful. I personally believe this will become standard in the future, when the tools for easy log keeping have become widespread.

The children receive more stars if they are following the yellow or red treatment plan. Do you think children will exploit this?

Yes, I believe children may want to trick the system. Children are sneaky, and all children are different. It will be important to talk to parents in order to find a suitable reward system that will work over time.

[Oral explanation of AsthmaBuddy]

Do you have ideas for what else our system can do, such as measure the indoor climate? The indoor climate is a combination of many factors, how are you planning to measure all the different factors? It is problematic to measure all the parameters in order to achieve a complete overview of the situation.

Children often care very much about their stuffed toys. They often play with them and carry them with them wherever they go. To parents it will be important to be able to wash the stuffed toys, since it get dirty over time. Parents to children suffering from asthma often wash stuffed toys even more often. I would advice having a teddy bear with some durability.

The following question was asked via email at a later time.

Do parents explain to their children what is actually happening to them and why asthma attacks occur?

Yes, most parents explain it for them, but it depends on whether they have received enough information and whether they (the parents) understand it.

Health care personell is responsible for making sure that parents have reliable information, in addition to explaining children about it if necessary. However, mistakes do occur, and as such, having an application with more information is a good idea.

A.4 Nurses from St. Olavs Hospital

Two nurses working at St. Olavs Hospital, with expertise on asthma.

Date: 27th of March, 2014

Place: Trondheim

[Brief demonstration of AsthmAPP]

The colors (of the medicines) differs between different companies, which should be kept in mind. Children of 3-8 eight years usually remember their medication as their parents keep control and remember to give them their treatment. Youngsters are among the hardest, as they have to take care of themselves and often do not remember or do not want to take their medication. The application has to belong to parents (reminding parents that their children should take their medicine).

We're developing a physical user interface which we'll try to use for motivational purposes among children. It contains light, sound and sensors that will communicate to children.

Not all children wants to take their medicine. They fight with parents because it is boring. Children below your target group (i.e. younger than 3 years old) can be even harder, as children in the group 3-5 years old has an understanding as to why they need to take their medicine.

Do you have any tools that are provided to parents for taking medicine, remembering their children's medication, or to motivate them?

Some companies have developed reward systems, but we don't give them to children.

Why is that?

These tools often come with commercials for other tools from the company, which causes us to not want to use them.

Do you have any suggestions for a reward system? It could be nice to use reward systems, as they often help the motivation for doing activities children normally don't want to perform. Do you have any past experiences with parents that have created reward systems for their children? We can't remember being told that parents have created reward systems. It could be that parents don't tell us about it, or they simply

don't do it. Taking an asthma medication is quickly over with, and children often realize that they get better by taking their medication.

We're thinking about displaying pollen forecast and information about air quality. Is this information something you notify parents about, with regards to paying attention every day?

Yes, we talk a lot about pollen, as it has a direct relation to asthma. We also mention air quality, especially when it is cold outside. Highly trafficated streets will also have worse air quality, and parents should be aware of this.

[More detailed demonstration of AsthmAPP] Users can register a medicine after it has been taken, instead of going through a 2 minutes long sequence]

The medicine log is really nice. To ask a user how they've been today is important, as they won't remember how they felt a few weeks ago.

Children don't need to wash their mouth after taking the blue medicine. This could create confusion if they should take it ahead of exercising.

If parents were to use the log, do you believe parents could cheat, in order to make it look better when they're at the doctors office?

A lot of parents are already writing a journal, and consider it useful.

How do you provide information about usage of medicines?

We hand out some flyers and talk to tgem. We demonstrate how they should use their medicines, in addition to distributing a treatment form. Parents also receive information specific to the medicine they are given.

When the parents receive the medications and the instruction of how to take the different medications, do they have problems with understanding and remembering how to use the different medications?

We always make sure to teach the parents and the children how to apply the medication correctly, however, they may forget it over time. If the parents do not remember how and when to give the children medications, it may have a negative effect on the treatment of the child's asthma.

When school teachers, grandparents or babysitters take care of the children, parents will have to relay the information about the medicine and the treatment. Have you experienced or been told of problems with this relay of information?

This is very individual. Some parents are very good at telling other caretakers about how to do the treatments. There is of course the risk that if a parent remembers the information incorrectly, the information relayed will be wrong, which may have effect on the treatment of the children. In order to make AsthmAPP or AsthmaBuddy be of help, it is important that the information stored within the app and the bear is correct and easily understandable. Having false information in the application would be negative for the user.

[Demonstration of AsthmaBuddy, through a video]

The bear looks like a nice tool for the youngest children. Here at our clinic we have a bear called "Asbjørn". We use him to demonstrate to children and parents how you should take the different medications.

A.5 Parent 1

[WAIT FOR QUOTE CHECK]

Father of a 6 year old girl suffering from asthma.

Date: 1st of April, 2014

Place: Trondheim

Do you use the traffic light scheme? No, I use a treatment scheme instead, but the details are essentially the same as the traffic light scheme. Are you under the assumption that the child don't want to take the medicine? Yes. If not, everything is fine, and the application will be obsolete. She had difficulties during the first couple of weeks. After a while, she realized that she became healthier by taking her medicine.

The reward system works by receiving stars after a treatment. It is up to the parents to choose a suitable reward (which implies that it does not necessarily need to be materialistic rewards)

It is annoying when medicines go empty, so we're keeping a journal. The different medicines has a set amount of doses. The application could give a warning/notification that a medicine will soon be empty.

[Demonstrating AsthmaBuddy]

RFID-tags attached to the medicine could be useful way of interacting with AsthmaBuddy. Does your application require that children have their own smartphone? *No. Parents should have this application installed on their own phone.* I think it is custom for children to have their own smartphone. By giving the application to children, it could give them a sense of responsibility.

Has it been a problem to get your child to take her medicine?

She was 4 years old when she first started. It was a problem then, as she was scared of taking her medicine. It took about a week before she understood that she needed it, and after that it has not been a problem.

Have you used reward systems to motivate her?

Yes. We promised her a trip to to the local water park if she took her medicine correctly the first week. Financially, it could be cumbersome if this ought to be a habit. You have

to be careful when designing how the rewards, as there is a lot of differences across children.

We have previously spoken to a child psychologist. She recommended that the reward comes quickly after a treatment.

In my case, the fact that she breaths more easily after a treatment was rewarding enough, and it was worth more than the material reward she got.

Did you use an alarm on your phone or similar in order to remember when she should take her medicines?

No. Mainly, we just had to remember to give it to her before sending her to school and before she went to sleep. If she had an asthma attack, she's supposed to take the blue medicine, then wait for 5 minutes, before taking the orange medicine. The teddybear could help children to keep up with the time while they're waiting for the next doses.

Do you think the teddy bear could have told a story or similar to make those 5 minutes seem shorter?

My child is very patient, but other children might become impatient. In that case, it could be useful to have something that could distract them.

Did you use a journal to keep up with the dates where your child switched treatment plans?

No, I usually remember when she has been feeling ill. I meet the practicioner very often and can converse with him on regular basis.

When the child is in kindergarten/school. Have problems with not taking medicine occured?

The child does not need to take preventive medicine during the day. The child only needs to take medicine if an asthma attack occurs. The child always carries extra equipment in the backpack to be prepared. The biggest problem is that the teachers/kinder-garten teacher may not have knowledge of what to do when an asthma attack occurs. An application with instructions may be of help for them.

When you leave the child with relatives/other caretakers; do you spend much time explaining how to apply a treatment?

Yes, we always make sure that the relative/caretaker knows how the medicine is applied and what to do if an asthma attack occurs. We also tell the caretaker that the child is not allowed to take the medicine on its own, and they need to watch that the medicine is taken correctly.

AsthmaBuddy is very stationary. What do you think of the fact that it can't be moved?

If you have to set up the bear every time it is unplugged that may be a problem for some. For my child I don't think it would be a problem that the bear is not present at all times.

Do you have any other ideas for functionality or areas that AsthmaBuddy can be of use?

Pollen forecast is a useful tool, but it can often be too general. I have trees in my backyard, they may release pollen before other trees and the general pollen forecast may not pick that up.

Regarding dust sensors, what should they be used for? If the dust sensors may communicate with my robot vacuum cleaner, that could be a cool and helpful tool.

When your child has an asthma attack. Do you think you would take the time to use AsthmaBuddy as a help tool?

No. Taking the time to locate the bear and start the treatment would take to long time. It is more important to apply the medicine quickly. Although, I think that the functionality for registering the use of medicine afterwards would be a useful functionality.

How long time does it usually take to apply a treatment of preventive medicine?

It usually takes about 1-2 minutes.

The following question was asked via email at a later time.

Children will be rewarded 1 star per treatment when following the "doing well (green)" treatment plan, 3 stars per treatment when following "caution (yellow)" and 5 stars per treatment when in "danger (red/syk)". What do you think of this system where children recieve more rewards when they are ill?"

I think that there should be no differentiation in the rewards at all. One star per treatment should do, regardless if the child is in good or bad shape. In general a sick child would need to take more [typically blue] medicine anyway, resulting in more stars. If there is a multiplication factor in addition to the increased number of treatments the number of starts would go up quite quickly and from the psychological perspective it might make

the child think it is a good thing to be ill. In fact, one star for completing the plan might even be a better approach than one star per treatment (though the gifts can be adjusted in "price"). Maybe even have two types of stars? For example a silver one for taking the medicine as planned, followed by a gold star once the treatment for the day has been completed.

A.6 Parent 2

Mother of a 4.5 year old boy with a "weak" form of asthma.

Date: 17th of March, 2014

Place: Trondheim and Bergen⁴

Do you have to "fight" with your children when applying the asthma medicine?

No, usually it is over quickly.

Is it hard to keep up with the treatment plan

I find it a bit difficult.

Have you used any tools in order to keep up with the plan?

No. I miss an app that can easily structure when and how much a medicine have been taken. I also find it difficult to meet up at a doctors appointment, and remember when I have switched the medicine plans.

How do you calm him down when he is stressed with regards to taking the medicine

Usually by either singing or counting while he's breathing.

[Explanation of our reward system] *Have you experimented with the use of rewards, either in the context of treamtents or similar?*

We have used bumperstickers on a sheet of paper while toilet training. In my opinion, this was rewarding enough. I do believe that your reward system could be useful for other kids though. A target group consisting of children between 3-7 years old is a very differing group in terms of cognitive development, and you should keep this in mind.

Do you use demonstration to prove that the treatment is harmless?

Demonstration works pretty good, but is not necessary in the long run. The demonstration helped calming him down during the start phase.

What do you think of having a tangible user interface (a bear) that helps him taking his medicine?

⁴Performed over the phone

I'm positive to that. But I do not think it could replace the role of the parent, as someone has to watch that he actually takes his medicine.

What do you think of the requirement to have a shorter sequence for by need treatments? I do not really see the need, as it would slow the process down (finding it, starting it, etc.). On the other hand, children are often stressed out when they have an asthma attack, so having a teddybear could help during the process in order to calm them down.

Do you have any further comments? As a kindergarten teacher, I give several children help to take their medicine. An application that are able to help reminding kindergarten teachers when a specific child was to take their medicine would be much appreciated.

Also, teaching children about their disease could be given more of an effort.

All in all, I think a shared mobile application that can help other caregivers as well as parents can be very benefitiary, as I often have to explain how and when to give a medicine to others. I regard the alarms as the most important feature.

Appendix B

Draft for Interview Conducted after Usability Test

After each usability test, we asked some questions to the test users, in order to make sure we collected as much feedback as possible. The questions asked to adult users and child users differed, and are listed below.

Questions Asked to Adult Test Users

Do you have any thoughts or comments on how the test went? Where there any aspects of	
the test that you found diffi- cult?	
Why was it difficult?	
Have you used any similar application(s) earlier?	
Anyothercom-ments/ideas/thoughtswe should take notice of	

Questions Asked to Child Test Users

Which method did you	
prefer with or without	
AsthmaBuddy?	
Which method did you	
prefer? AsthmAPP or	
AsthmaBuddy?	
Do you want to play	
with AsthmAPP or	
AsthmaBuddy one more	
time?	

Appendix C

Scenario and Tasks

The following is a translation from Norwegian of the scenario and tasks given to test users.

C.1 Test for Adult Users

You are the guardian of a child who has recently been diagnosed with asthma. In order to keep track of taking the medication on the right time in the right manner you have downloaded the application AsthmAPP. The system does not require you to register your name or any other personal information, since you do not want this information to be obtained by others. In order to make the best possible use of AsthmAPP, you must complete some tasks.

Task 0: Navigate to the adult partition of the application. you will be asked to register a PIN-code. Set this to "1111".

Task 1: You shall now set up a medication plan according to the recommendation from the doctor. To start you must set up the plan for the "Healthy" health state. You can start by adding an Orange medicine to 1:37PM and a Purple medicine to 6:30PM. Thereafter, choose to follow the "Healthy" treatment plan.

Task 2: Your child already took a dosage of medication when you were at the doctor's office. In order to start the logging, you must add the use of a Purple medicine to the log.

Task 3: In order to motivate your child to take his/her medicine, you wish to add a reward he/she may get when he/she has followed his/her treatment plan for some time. Navigate to the menu for adding rewards and add a reward named "Ticket to a football match". As a picture you may choose the picture of a football from the menu of standard icons. Set the number of stars to three stars. The reward shall not be repeated.

Task 4: Look for information about your child's progress towards getting the reward you just listed. Tell us what information you find.

Task 5: You wish to check the air quality readings for today, before your child leaves for football practice. Take a look at the air quality readings and check if you should take preventive measures before going to practice.

You have now completed the test. We would like to ask you some questions regarding the use of the application.

Test leader asks questions from Appendix **B**.

C.2 Test for Child Users

Even though this test will require you to take a dose of medicine using the inhaler, this is not real medicine. This is a placebo inhaler which only contains compressed air, and it will not have any effect on your asthma. If you do not wish to continue the test, it is okay, and you do not have to continue if you do not want to.

Task 0: This is AsthmaBuddy. He has recently been diagnosed with asthma, and since he is a bear, he needs some help taking his medication. Can you say hi to him and ask if he is ready to complete his treatment.

Task 1: If you help AsthmaBuddy completing his treatment, you may earn a reward. Can you take a look in the toy shop in AsthmAPP to take a look for rewards. How many stars do you need in order to buy the reward?

Task 2a: Now it's time to help AsthmaBuddy taking his medication. If you are ready to help him, you must clap him on the head. In order to help him, he will instruct you on how to do it.

Task 2b: Now it's your turn to take some medicine. Follow the instructions given by AsthmaBuddy. Maybe you will earn some stars for taking your medication.

[Disassemble the breathing chamber and medication before continuing. Then set an alarm using AsthmAPP]

Task 3: Soon an alarm will ring on AsthmAPP. You will need to follow the instructions given on the AsthmAPP. If you follow the instruction, you will be rewarded with more stars.

Task 4: AsthmaBuddy keeps track of your stars even if you do not take the medicine together with him. By holding your card in front of his belly, AsthmaBuddy will tell you how many stars you have collected. Can you try if it is working?

Task 5: Now you have collected many stars. Check in the shop if you have earned enough stars to buy a reward. If you have earned enough, you may choose your reward and buy it.

C.3 Emergency Plan

In order to make sure the children are not intimidated by the test lab, we tried to limit the amount of unfamiliar persons in the test room together with the children. We also brought coloring pencils and mobile games the children could play with if they were bored. What will we do if the children do not want to play with AsthmaBuddy? - We ask the parents if they want to finish a treatment in order to demonstrate for the children that it is not dangerous. If the parent does not want to demonstrate, we will demonstrate by ourselves. - We tell the children that they do not need to take the medicine, but they can give it to AsthmaBuddy twice instead. - If the children seem shy, we will leave the room leaving the child and parent alone in the room, and follow the test using cameras.

If power-/internet-cord is disconnected from AsthmaBuddy We tell the children that AsthmaBuddy is no super-hero, and that he needs power to function properly, like a television or a lamp. He is not damaged, and we just need to put the cords back in their place. In the meanwhile the children will have to wait.

If the children do not finish the test, and we have to abort If the children do not wish to finish the test, we give them a gift card for three stars. The gift card can be exchanged for a reward on their way out.

What will we do if the children start crying/become frustrated? We ask the parents if they can talk to the children and try to calm them down. In the meanwhile we leave the room and turn off the cameras recording.

Appendix D

AsthmaBuddy Manual

The following Appendix works as a user manual for AsthmaBuddy.

D.1 Introduction

The source code is specifically written to be run on a Raspberry Pi. As such, the program WILL NOT work on other computers.

D.1.1 Dependencies

We have used a couple of frameworks in order to make the development process easier. Downloading and placing them in the correct folder is important in order to compile and run the application.

Java As of September 2013, all Raspberry Pis are shipped with Java by default. If your version of Raspberry Pi was bought before this, Java can be downloaded and installed through this command:

sudo apt-get update && sudo apt-get install oracle-java7-jdk

Pi4J Pi4J can be downloaded from the following URL: http://pi4j.com. To install it, simply follow the installation guide at the same page¹.

¹Pi4J Installation guide - http://pi4j.com/install.html

Google Gson Google's Gson can be downloaded from the following URL: https: //code.google.com/p/google-gson/downloads/list. Put it in the folder

/home/pi/Downloads/

The path to gson-2.2.4.jar should be:

/home/pi/Downloads/google-gson-2.2.4/gson-2.2.4.jar.

JLayer JLayer can be downloaded the following URL: http://www.javazoom. net/javalayer/javalayer.html. Put the file jl1.0.1.jar in the folder

/home/pi/jlayer/JLayer1.0.1/,

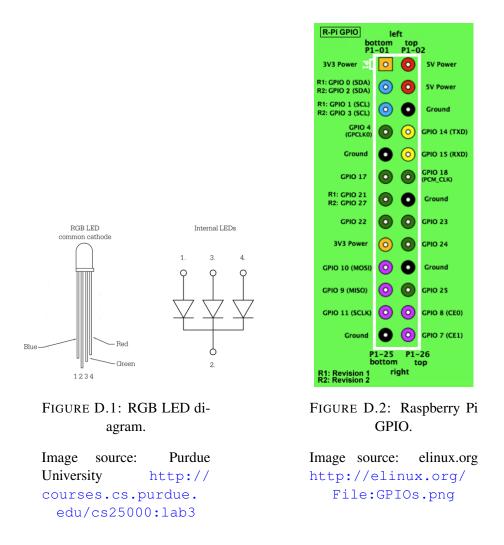
which should make the path to the file:

/home/pi/jlayer/JLayer1.0.1/jl1.0.1.jar.

Joda Time Joda Time can be downloaded from the following URL: http://www.joda.org/joda-time/. Put the file joda-time-2.3.jar in the folder

/home/pi/Downloads/joda-time-2.3,

which should make the path to the file:


/home/pi/Downloads/joda-time-2.3/joda-time-2.3.jar.

Node.js Node.js can be downloaded from the following URL: http://nodejs.org/. Finding the source code for our Node.js server is found in Section D.4

D.2 GPIO setup

In order for AsthmaBuddy to work properly, you need to use an RGB LED diode, which is connected to the Raspberry Pi through the GPIO pins. This section will elaborate on the details of this process.

Figure D.1 shows the RGB LED-diode we used to emit light signals. As you can see, there are four pins: Blue (1), Ground(2), Green(3) and Red(4). Pins 1,3 and 4 are

connected to a 220 Ohm Resistor. Figure D.2 shows an overview of the available Gpio ports. Table D.1 shows how the pins are then wired to the Raspberry Pi.

LED Pin	Wired to GPIO
	port
Blue (1)	GPIO 17
Ground (2)	Ground
Green (3)	GPIO 18
Red (4)	GPIO 21/27 (Re-
	vision 1/Revision
	2)

TABLE D.1: Wiring LED pins to GPIO

D.3 RFID Reader

We used the Sparkfun ID-12LA RFID-reader. This was connected through the bottom USB port on the Raspberry Pi. The application needs the port name of the USB reader. This can be found by the following command:

ls /dev | grep USB

If the output is not equal to /dev/ttyUSB0, you can insert your name in the variable comPort in the file src/com/blopp/pi/readers/RFIDReader.java.

D.4 Source Code

For any questions or enquiries regarding licencing or the source code, please contact Ole Andreas Alsos (oleandaidi.ntnu.no

D.5 Running AsthmaBuddy

D.5.1 Compiling

If the guide in D.1.1 was followed carefully enough, the program can be compiled by running:

./src/compile.sh

Alternatively, you may extract the exact command from compile.sh, and run it directly from the terminal window.

D.5.2 Running

The program can run by using the following script:

```
./src/v2.sh
```

Alternatively, you may extract the exact command from v2.sh, and run it directly from the terminal window.

Parameters Once the program is running, it checks for alarms stored for the user.

Once the message "*Did not find any alarms*" appears, you can type in parameters on this format: *CN*.

C is the color of the medicine that is to be taken. $C \in \{b = Blue, o = Orange, p = Purple\}.$

N is the interaction method you want to use. $N \in \{0, 1, 3, 4, 6, 9\}$. The interaction methods provided are summarized in Table D.2.

An example on a valid input is:

Ν	Interaction method
0	Clap your hands
1	Variation of those provided in this table
3	Hold AsthmaBuddy's hand to proceed
4	Hold your card against AsthmaBuddy's
	stomach
6	Give an high five
9	Press AsthmaBuddy's stomach

b1

TABLE D.2: Guide for interactions in AsthmaBuddy.

After this, you can press *Enter* every time the user has interacted with AsthmaBuddy, and the windows says *Ready for User Input*.

Appendix E

AsthmAPP Manuscript

AsthmaBuddy and AsthmaBuddy has a prerecorded manuscript, which is included below.

C is the color of the medicine, i.e. $C \in \{Blue, Orange, Purple\}$.

N is the number of stars a child gets, i.e. $N \in \{1, 3, 5\}$, depending on the current health state of the child.

E.1 AsthmaBuddy

AsthmaBuddy's manuscript is twofold, depending on the interaction we want to run with.

E.1.1 Instructions

The following are the instructions a child receives, and where the manuscript reads "(Interaction)", one of the interactions in E.1.2 are insterted. The norwegian manuscript is used in the applications, while the english manuscript is included for the reader's convenience.

1. Hei! Jeg heter Blipp, og nå er det tid for å ta pustemedisinen din.(Interaction). Hi! My name is Blipp. It's time to take your breathing medicine. Press my head, and I'll tell you more (Interaction)

- 2. Hent en voksen som kan se på, og (Interaction). *Fetch an adult who can supervise, and (Interaction)*
- 3. Hent den C medisinen din, og masken du puster i. (Interaction). *Fetch your C medicine, and the mask you're breathing in. (Interaction)*
- 4. Rist den **C** medisinen din (ristelyd), og fest den på masken din. (Interaction). *Shake your C medicine, and attach it to your mask. (Interaction)*
- 5. Sett masken mot munnen min, og tell til 10 mens jeg puster inn og ut. *Put the mask towards my mouth, and count to ten while I breathe in and out.*
- 6. (Pustelyd i 10 sekunder). (Breathing sound for ten seconds)
- 7. Så du hvor lett det var? Nå er det din tur. *Did you see how easy that was? Now it's your turn*.
- 8. Av den C medisinen skal du ta 1 puff. Sett på deg masken, og (Interaction). You are going to take one spray of the C medicine. Put on your mask, and (Interaction).
- 9. Når jeg sier i fra skal du trykke på sprayen. Jeg skal telle til 10 mens du puster inn og ut. Klar, ferdig, TRYKK! When I tell you, you are going to press the spray. I'm going to count to 10 while you breathe in and out. Ready, set, PRESS!
- 10. En, To, Tre, Fire, Fem, Seks, Syv, åtte, Ni, Ti. One, Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten!
- 11. Flott innsats! Som belnning får du N stjerner i skattekista di. Well done. As a reward, I'll put N stars into your treasure chest
- 12. Da er vi ferdige for nå. Nå må du huske å skylle munnen din, så sees vi neste gang We are done for now. Remember to rinse your mouth. We'll see each other next time.
- 13. Du har nå samlet M stjerner. You have now collected M stars.

E.1.2 Interactions

- 1. Hold meg i hånda når du er klar. Hold my hand when you are ready
- 2. Hold mobiltelefonen din foran magen min for å gå videre. *Hold your mobile phone in front of my belly in order to proceed*
- 3. Trykk på nesen min når du er klar. Press my nose when you're ready

- 4. Gi meg en high five for å gå videre. Give me a high five in order to proceed
- 5. Hold medisinen foran munnen min for å gå videre. *Hold your medicine in front of my mouth in order to proceed*
- 6. Trykk på magen min for å gå videre. Press my belly in order to proceed
- 7. Hold kortet ditt foran magen min for å gå videre. *Hold your card in front of my belly in order to proceed*
- 8. Hold kortet ditt foran nesen min. Hold your card in front of my nose
- 9. Klapp hendene dine for å gå videre. Clap your hands in order to proceed.

E.2 AsthmAPP

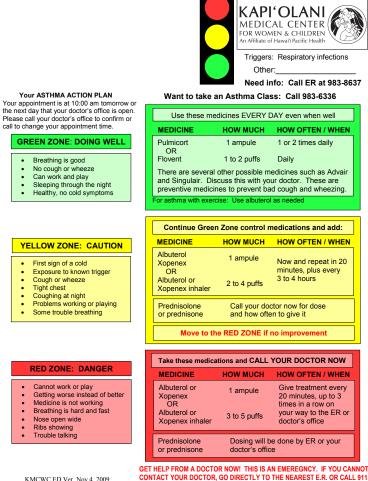
- 1. Hei! Jeg heter Blipp, og nå er det tid for å ta pustemedisinen din. Trykk på hodet mitt, så setter vi i gang. *Hi. My name is Blipp. It's time to take your breathing medicine. Press my head, and I'll tell you more*
- 2. Hent en voksen som kan følge med, og trykk på hodet mitt når dere er klare. *Fetch an adult who can supervise. Press my head to proceed*
- 3. Hent den C medisinen din, og masken du puster i. Trykk på hodet mitt når du er klar. *Get the C medicine and the mask you're breathing in. Press my head to proceed*
- 4. Rist den C medisinen (ristelyd), og fest den på masken din. Trykk på hodet mitt for å gå videre. *Shake the C medicine, and attach it to your mask. Press my head to proceed*
- 5. Av den C medisinen skal du ta ett puff. Sett på deg masken, og trykk på hodet mitt når du er klar. *You are going to take 1 spray of the C medicine. Put on your mask and press my head when you're ready*
- 6. Når jeg sier i fra skal du trykke på sprayen. Jeg skal telle til 10 mens du puster inn og ut. Klar, ferdig, TRYKK! *When I tell you, you are going to press the spray. I'm going to count to 10 while you breathe in and out. Ready, set, PRESS!*
- 7. En, To, Tre, Fire, Fem, Seks, Syv, åtte, Ni, Ti. One, Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten!
- 8. Flott innsats! Som belønning får du N stjerner i skattekista di. *Well done. As a reward, I'll put N stars into your treasure chest*

9. Da er vi ferdige for nå. Nå må du huske å skylle munnen din, så sees vi neste gang *We are done for now. Remember to rinse your mouth. We'll see each other next time.*

Appendix F

Asthma Action Plan

•


.

.

•

.

• • • •

KMCWC ED Ver. Nov 4, 2009

CONTACT YOUR DOCTOR, GO DIRECTLY TO THE NEAREST E.R. OR CALL 911.

Emergency Department

Appendix G

Aaberg et. al.'s Further Work

*This appendix is reprinted from the final report of 'BLOPP - Development of a prototype for treatment of asthmatic children, using Android and Karotz'*¹[3]

This chapter gives an overview of some of the ideas both the customer and the developers had for further development of the application. This includes a description of further development, analysis of the user groups and work towards NAAF and the health department. The main part of the work to be done after the end of this project is connected to requirements that has been taken out of this project due to limitation of time and resources. Other issues remaining is connected to the security and privacy of the patient's treatment log and storing sensitive information. Section ?? ² lists the overall requirements that have not been implemented during the project. These requirements has either been requested early in the process of have been brought up during discussions and meetings with the stakeholders.

G.1 Improvements

The following sections describes the ideas we had for future improvements to the applications. It is parted into subsections for improvements in the fields of database records, the reward system, the distraction and the web application.

¹Reprinted with permission from Aaberg, Aarseth, Dale, Gisvold and Svalestuen

²This section is not included in the thesis, and will therefore on purpose result in '??'

G.1.1 Rewardsystem

The children's application (CAPP) is all about changing the children's view of medication to something positive. It shall be a motivation for the children to take their medication. It is therefore an important task to entertain them and give them some form of reward when they take their medication. As for now, we have given stars to the child after completed medication. The stars are in a treasure chest where the child can see how many stars he or she has. This is a simple reward, but worked fairly well during the user tests. However, it may be boring over time.

The initial idea was to have a shop where the children could buy clothes and other items to their avatar. The stars earned from finishing treatments would serve as credits in the shop. This was not implemented due to time restrictions. It is also possible to take this to the real world, e.g. that the child gets a lollipop for every 10th star, but this would have to be supervised by the parents.

There is an endless line of opportunities for this reward system, and we chose the simplest implementation, so we would have something to test.

G.1.2 Distraction sequence for children

During our workshop, we came up with a lot of ideas for distractions for the children. These would range from simple animation sequences, like what we decided to implement, to more complex things like games that would not require a lot of movement and could therefore help during longer treatments.

The distraction sequence is one of the fields were we feel it has more or less never ending possibilities for improvement, and as more research into what children finds distracting, but not to the point where they can't take their medicine, this distraction sequence can be evolved.

G.1.3 User testing of the guardian application

GAPP has not yet been user tested on actual parents of asthmatic children. This has to be done to get an understanding of how they interact with the system, and to get knowledge about what they think of an application of this type. This is a system to make it easier for the guardians to give their children medications. While it is important that the children likes the system, it is also important that the parents feel it helps them give their children their medicines, without it being a big time waster.

G.1.4 Web application

There is a possibility of making this application as a web application, as a whole. By extracting the functionality and running it on a web service it would make it easier for people to use it across platforms. Done right, it may run on all devices with an internet connection. This may also give an easier integration with external information such as air pollution forecast, pollen forecast, temperatures, etc. Since our application is written in Java, using Android SDK, it will not run on an internet server as is. Making a web application will require an almost complete refactoring of the source code.

G.1.5 Support for more children

Currently, the application only use one child, but there are implemented support for using more children. Each child has its own id (childId), and support for more children can be implemented without much change of the existing code. There should also be concidered using accounts for the guardians connected to the children, in case of the guardians having more than one asthmatic child.

G.2 Ideas and minor improvements

- **Webinterface** The doctors may prefer to set up the users medication plans through a web interface on their computers. This part may be integrated into existing systems.
- **Other devices** The application are fitted for a phone running the Android operating system. For the future it should also be scalable to tablets. There may be more interesting for a child to work on a tablet than a phone. There will also be much more space for content. This extra space gives greater potential of the reward system. It should also be available on other operating systems than Android, e.g. iOS or Windows Phone. This will improve the availability for the users, not limiting them to Android phones.

- **Overall graphical design** The priorities have been to make the major functionality work. We have used lots of time making the applications understandable and easy to use, but there is still a great potential in making the applications interaction design better.
- **Personalize the system** The application may be more personalized. E.g. "It's time to take medication" could be "It's time to take medication, Eric". By involving the users name more in the system, they may feel more appreciated.
- **Integration of external elements** The distraction part of the application may be integrated with a story or other external elements. I. eg. a story where the children will need to take medicine in order to get the next part of the story.

Appendix H

Constraints

By law, we have some constraints in order to conduct usability testing. This Appendix cover these.

H.1 The Health Register Act

Norway has specific laws for storing of medical information. The most significant act is "The Health Register Act¹"[79]. This act determines who is allowed to store health records and how such records are to be stored.

The most significant consequence is that the information must be stored on servers on Norwegian soil. This eliminates the option of using cloud-based services such as Amazon EC2, Windows Azure or Google App Engine.

In addition, a permission from REK^2 is needed in order to store medical records in the application. This document is attached as Appendix I. If the mobile application were ever to be deployed to Google Play, or AsthmaBuddy commercialized, we would need permission from *The Data Protection Authority*, but it is not required if the application is just for research purposes.

¹Lov om helseregistre og behandling av helseopplysninger

²Regional Committees for Medical and Health Research Ethics - https://helseforskning.etikkom.no/

H.2 Measures for Anonymization

Pursuant to section 16 of the Health Register Act[79] all information that may identify a person, must be encrypted, i.e. it should be impossible to find which person a specific record corresponds to by looking at a database dump. We chose to rename medicines mentioned in the application, in order to obscure their connection to their real-life counterparts.

Appendix I

REK Approval

Included below is the approval made by REK Midt-Norge¹ regarding our project, filed under case number REK2012/159 in their register.

¹REK - Regional Committees for Medical and Health Research Ethics - https://helseforskning.etikkom.no/

Region: REK midt Saksbehandler: Tone Natland Fagerhaug **Telefon:** 73597506 Vår dato: 16.01.2014

15.12.2013

Vår referanse: 2012/159/BEK midt

Deres dato:

Deres referanse:

Vår referanse må oppgis ved alle henvendelser

Elin Høien Bergene MTFS Vest

2012/159 Barns legemiddelopplevelser (BLOPP)

Vi viser til innsendt klage på avslag om prosjektendring. Klagen er behandlet av leder for REK midt på fullmakt med hjemmel i Forskrift om behandling av etikk og redelighet i forskning § 10, og helseforskningsloven §§ 10 og 11.

Forskningsansvarlig: Gunn Fredriksen Prosjektleder: Elin Høien Bergene

Komiteens opprinnelige vedtak

Det søkes her om en videreføring av det opprinnelige prosjektet, der det er ønskelig å undersøke hvordan teknologiske hjelpemidler påvirker hvordan barn og foreldre opplever medisineringssituasjoner. Prototypene på de teknologiske hjelpemidlene videreutvikles og det søkes om prøve disse ut på inntil 10 familier som var en del av den opprinnelige studien.

REK midt har vurdert endringsmeldingen for prosjektet. "Barns legemiddelopplevelser (BLOPP)" handlet opprinnelig om utvikling av prototyper som skulle støtte medisinering. Denne nye endringen fører studien videre ved å teste noen spesifike prototyper og anses av komiteen som en ny studie. Komiteen ber derfor om at det sendes inn en ny prosjektsøknad der prototypen(e) utdypes, testingen av prototypen(e) presenteres gjennom protokoll, samt informasjonsskriv til pasientene som representerer endringene i studien.

Regional komité for medisinsk og helsefaglig forskningsetikk Midt-Norge godkjenner ikke endringen av prosjektet. Komiteen ber om at prosjektleder sender en separat prosjektsøknad for den skisserte studien.

Klagers anførsler

Jeg ønsker å fremme en klage på vedtaket, da jeg tror det hersker en misforståelse om hva denne endringssøknaden innebærer. Misforståelsen kan ha opphav i min ordlyd i endringssøknaden. Det beklager jeg, og jeg ønsker å komme med noen oppklaringer. Dette vedtaket ønskes omgjort, og det opprinnelige prosjektet ønskes videreført.

Blopp-prosjektet er et utviklingsprosjekt. Vi har utviklet noen prototyper på medisineringsstøtte som inneholder nok funksjonalitet til å teste dem på frivillige deltagere. Testene innebærer at barna og foreldrene prøver dem ut, blir observert under utprøvingene, og/eller blir spurt om hvordan de opplevde dette og hva de mente virket og ikke virket. Det innebærer ingen intervensjon på medikamentene til barna. Disse testene gir oss informasjon om hvordan brukerne opplever disse prototypene. Denne informasjonen inkorporeres i neste utviklingssteg - en iterasjon. Prototypene er langt fra ferdige, og bruk av utprøving i denne sammenhengen

Besøksadresse: Det medisinske fakultet Medisinsk teknisk forskningssenter 7489 Trondheim E-post: rek-midt@medisin.ntnu.no Web: http://helseforskning.etikkom.no/ All post og e-post som inngår i saksbehandlingen, bes adressert til REK midt og ikke til enkelte personer betyr et lite antall personer som kan gi direkte tilbakemeldinger om hvordan de opplever prototypen. Ordlyden i den opprinnelige, godkjente søknaden er følgende: "Utviklingen vil ha stor grad av brukermedvirkning. Barn med astma 0-6 år vil observeres direkte i workshops og via video for utvikling og utprøving av prototyper. Foreldre/foresatte, søsken, helsepersonell og designere vil intervjues i forbindelse med kartlegging og utprøving av prototyper." Dette prosjektet vil direkte videreføre deler av det opprinnelige prosjektet. Utprøvingene fra det opprinnelige prosjektet viste at det var flere designretninger som ble tatt vel i mot og noen som var mindre vellykkede. Studentene som jobber videre med dette prosjektet tar nå tak i flere av disse aspektene og programmerer videre for å se om de kan forbedres. De er helt avhengig av å teste ut disse nye versjonene på nye brukere for å vurdere brukernes opplevelser slik det er beskrevet i den opprinnelige søknaden.

Komiteens vurdering

Klagen gjelder avslag på søknad om prosjektendring. Komiteens leder vurderte at prosjektendringen (REK midt 2012/159-21) var å anse som en ny studie, og prosjektleder ble bedt om å sende ny prosjektsøknad.

l den opprinnelige studien var hensikten å støtte medisinering av barn 0-6 år ved å utvikle prototyper på mobilapplikasjon samt hjelpemidler knyttet til inhalasjonskammeret ved inhalasjonsbehandling mot astmasykdom hos barn 0-6 år. I prosjektendringen ble det søkt om en videreføring av prosjektet, med ny uttesting. I innsendt skjema "Klage" ble det presisert at endringen gjelder uttesting av en forbedret modell av en slik prototype fra opprinnelig studie på 10 av de samme familiene som deltok i den opprinnelig studien. Ettersom det var noe uklart om prosjektendringen omfattet endringer i selve inhalasjonskammeret eller av administrasjon og/eller mengden medikament som ble gitt, ble prosjektleder invitert til et møte med komiteens leder og sekretariatet av REK midt.

I møtet som fant sted 15.01.2014, presiserte prosjektleder at inhalasjonskammeret og mengden medikament og administrasjonen av dette var uendret. Prosjektendringen gjaldt en brukbarhetstesting av en forbedret mobilapplikasjon som man tror kan gjøre det enklere for barna å ta medisinen. Administrasjonen av og mengden medikamentet er med andre ord uendret, men det er tilnærmingen til hvordan medikamentet skal gis som studeres. Ved å utforme hjelpemidler, som mobilapplikasjoner, håper man å få til en bedre compliance, det vil si at medikamentene som foreskrives faktisk blir tatt.

Den samlede vurderingen på grunnlag av innsendte dokumenter og tilleggsinformasjon gitt fra prosjektleder i møtet, er at klagen tas til følge. Prosjektleder trenger ikke sende inn ny prosjektsøknad for den omsøkte prosjektendringen, og komiteen behandler søknaden om prosjektendring. Søknad om prosjektendring godkjennes med følgende vilkår:

Vilkår:

- 1. Informasjonsskrivene må revideres slik at de inneholder korrekt informasjon i samsvar med prosjektendringen det søkes om. Reviderte skriv skal sendes til komiteen til orientering.
- Godkjenningen er gitt under forutsetning av at prosjektet gjennomføres slik det er beskrevet i søknader og protokoll, og etter de bestemmelser som følger av helseforskningsloven med forskrifter.
- 3. Forskningsprosjektets data skal oppbevares forsvarlig, se personopplysningsforskriften kapittel 2, og Helsedirektoratets veileder for «Personvern og informasjonssikkerhet i forskningsprosjekter innenfor helse- og omsorgssektoren». Prosjektdata skal oppbevares i minimum 5 år etter prosjektslutt.
- 4. Prosjektleder skal sende sluttmelding til REK midt når forskningsprosjektet avsluttes. I

sluttmeldingen skal resultatene presenteres på en objektiv og etterrettelig måte, som sikrer at både positive og negative funn fremgår, jf. helseforskningsloven § 12.

Vedtak

Komiteen omgjør sitt opprinnelige vedtak, jfr. forvaltningsloven § 33, annet ledd. Med hjemmel i helseforskningsloven § 11, jfr. forskingsetikkloven § 4 godkjenner komiteen at prosjektendringen gjennomføres i samsvar med det som framgår av søknaden.

Vi ber om at alle henvendelser sendes inn via vår saksportal: <u>http://helseforskning.etikkom.no</u> eller på e-post til: <u>post@helseforskning.etikkom.no</u>.

Vennligst oppgi vårt referansenummer i korrespondansen.

Med vennlig hilsen,

Sven Erik Gisvold Dr.med. Leder, REK midt

> Tone Natland Fagerhaug Rådgiver

Kopi til: gunn.fredriksen@sykehusapoteket.no

Bibliography

- [1] Bernard Champoux and Sriram Subramanian. A design approach for tangible user interfaces. *Australasian Journal of Information Systems*, 11(2), 2007.
- [2] Victoria Bellotti, Maribeth Back, W Keith Edwards, Rebecca E Grinter, Austin Henderson, and Cristina Lopes. Making sense of sensing systems: five questions for designers and researchers. In *Proceedings of the SIGCHI conference on Human factors in computing systems: Changing our world, changing ourselves*, pages 415–422. ACM, 2002.
- [3] Jø rgen Aaberg, Esben Aarseth, Eirik Skjeggestad Dale, Aleksander Gisvold, and Yngve Svalestuen. Blopp - development of a prototype for treatment of asthmatic children, using android and karotz. 2012. URL http://folk.ntnu.no/ esbena/kpro/FinalReport_main.pdf.
- [4] Norges asthma- og allergiforbund fakta om astma. URL http://www.naaf. no/astma/fakta_om_astma/.
- [5] Global Initiative for Asthma. Pocket guide for asthma management and prevention. URL http://www.ginasthma.org/local/uploads/files/ GINA_Pocket2013_May15.pdf.
- [6] Jonas Asheim. Konsept for forbedret behandling av barn rammet av astma/rsvirus. 2012.
- [7] Andrea Leal Penados, Mathieu Gielen, Pieter-Jan Stappers, and Tinus Jongert. Get up and move: An interactive toy that measures (in) activity and stimulates physical activity.
- [8] Marikken Høiseth, Michail N Giannakos, and Letizia Jaccheri. Research-derived guidelines for designing toddlers' healthcare games. In CHI'13 Extended Abstracts on Human Factors in Computing Systems, pages 451–456. ACM, 2013.

- [9] Nasjonal strategi for forebygging og behandling av astma- og allergi-sykdommer. URL http://www.regjeringen.no/upload/hoD/Dokumenter% 20fha/astmastrategi.pdf.
- [10] Jacob Anhøj and Claus Møldrup. Feasibility of collecting diary data from asthma patients through mobile phones and sms (short message service): response rate analysis and focus group evaluation from a pilot study. *Journal of Medical Internet Research*, 6(4), 2004.
- [11] Toddlers use tablets often, 2011. URL http://www.nrk.no/nyheter/ norge/1.7921036.
- [12] Medietilsynet. Foreldre om småbarns mediebruk. 2014.
- [13] Nor Azah Abdul Aziz. Childrens interaction with tablet applications: Gestures and interface design. *Children*, 2(03), 2013.
- [14] Kit Huckvale, Mate Car, Cecily Morrison, and Josip Car. Apps for asthma self-management: a systematic assessment of content and tools. *BMC medicine*, 10 (1):144, 2012.
- [15] Communication of illness related experiences of chronically ill children and the effect of sisom, a computerized symptom assessment tool. URL http://www.communicaretools.org/sisom/research/ the-effect-of-sisom.aspx.
- [16] Philip R Cohen and David R McGee. Tangible multimodal interfaces for safetycritical applications. *Communications of the ACM*, 47(1):41–46, 2004.
- [17] James Currier. Gamification: Game mechanics is the new marketing, 2008. URL http://blog.oogalabs.com/2008/11/05/ gamification-game-mechanics-is-the-new-marketing/.
- [18] Kai Huotari and Juho Hamari. Defining gamification: a service marketing perspective. In *Proceeding of the 16th International Academic MindTrek Conference*, pages 17–22. ACM, 2012.
- [19] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From game design elements to gamefulness: defining "gamification". In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, MindTrek '11, pages 9–15, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0816-8. doi: 10.1145/2181037.2181040. URL http://doi.acm.org/10.1145/2181037.2181040.

- [20] Serious games initative, 2013. URL http://http://www. seriousgames.org/.
- [21] Alf Inge Wang, OK Mørch-Storstein, and T Øfsdahl. Lecture quiz-a mobile game concept for lectures. In *Proceedings of the 11th IASTED International Conference* on Software Engineering and Application (SEA07), pages 305–310, 2007.
- [22] Mikael Lebram, Per Backlund, Henrik Engström, and Mikael Johannesson. Design and architecture of sidh–a cave based firefighter training game. In *Design and Use of Serious Games*, pages 19–31. Springer, 2009.
- [23] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, et al. Predicting protein structures with a multiplayer online game. *Nature*, 466(7307):756–760, 2010.
- [24] Firas Khatib, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, Miroslaw Gilski, Szymon Krzywda, Helena Zabranska, Iva Pichova, James Thompson, Zoran Popović, et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. *Nature structural & molecular biology*, 18(10): 1175–1177, 2011.
- [25] Judd Antin and Elizabeth F Churchill. Badges in social media: A social psychological perspective. In CHI 2011 Gamification Workshop Proceedings (Vancouver, BC, Canada, 2011), 2011.
- [26] Kimberly Ling, Gerard Beenen, Pamela Ludford, Xiaoqing Wang, Klarissa Chang, Xin Li, Dan Cosley, Dan Frankowski, Loren Terveen, Al Mamunur Rashid, et al. Using social psychology to motivate contributions to online communities. *Journal* of Computer-Mediated Communication, 10(4):00–00, 2005.
- [27] Ian Bogost. Gamification is bullshit, 2011. URL http://www.bogost.com/ blog/gamification_is_bullshit.shtml.
- [28] Paul Ekman. *Emotions revealed: Recognizing faces and feelings to improve communication and emotional life.* Macmillan, 2007.
- [29] Jane McGonigal. Reality is broken, why games make us better and how they can change the world, 2011.

- [30] Truls Steinung. Interessante utfordringer: En studie av gamification og belønningsstrukturer i et spillperspektiv. 2012.
- [31] Gabe Zichermann and Christopher Cunningham. *Gamification by Design: Implementing game mechanics in web and mobile apps.* O'Reilly Media, Inc., 2011.
- [32] Scott Nicholson. A user-centered theoretical framework for meaningful gamification. *Proceedings GLS*, 8, 2012.
- [33] Theodore W Frick Michael D. Corry and Lisa Hansen. User-centered design and usability testing of a web site: An illustrative case study. *Educational Technol*ogy Research and Development, 45:65–76, 1997. URL http://www.jstor. org/stable/30221343.
- [34] Gerry Stahl, Timothy Koschmann, and Dan Suthers. Computer-supported collaborative learning: An historical perspective. *Cambridge handbook of the learning sciences*, 2006, 2006.
- [35] Hearts, clubs, diamonds, spades: Players who suit muds. URL http://mud. co.uk/richard/hcds.htm.
- [36] Andrew J Stapleton. Serious games: Serious opportunities. In Australian Game Developers Conference, Academic Summit, Melbourne, 2004.
- [37] Hiroshi Ishii and Brygg Anders Ullmer. Tangible bits: towards seamless interfaces between people, bits and atoms. In *Proceedings of the ACM SIGCHI Conference on Human factors in computing systems*, pages 234–241. ACM, 1997.
- [38] John Underkoffler and Hiroshi Ishii. Urp: a luminous-tangible workbench for urban planning and design. In *Proceedings of the SIGCHI conference on Human Factors in Computing Systems*, pages 386–393. ACM, 1999.
- [39] Hiroshi Ishii, Carlo Ratti, Ben Piper, Yao Wang, Assaf Biderman, and E Ben-Joseph. Bringing clay and sand into digital designcontinuous tangible user interfaces. *BT technology journal*, 22(4):287–299, 2004.
- [40] Lesley Xie, Alissa N Antle, and Nima Motamedi. Are tangibles more fun?: comparing children's enjoyment and engagement using physical, graphical and tangible user interfaces. In *Proceedings of the 2nd international conference on Tangible and embedded interaction*, pages 191–198. ACM, 2008.

- [41] Lucia Terrenghi, Matthias Kranz, Paul Holleis, and Albrecht Schmidt. A cube to learn: a tangible user interface for the design of a learning appliance. *Personal* and Ubiquitous Computing, 10(2-3):153–158, 2006.
- [42] Ken Hinckley, Randy Pausch, John C Goble, and Neal F Kassell. Passive realworld interface props for neurosurgical visualization. In *Proceedings of the SIGCHI conference on Human factors in computing systems*, pages 452–458. ACM, 1994.
- [43] Thomas P Moran, Eric Saund, William Van Melle, Anuj U Gujar, Kenneth P Fishkin, and Beverly L Harrison. Design and technology for collaborage: collaborative collages of information on physical walls. In *Proceedings of the 12th annual ACM symposium on User interface software and technology*, pages 197– 206. ACM, 1999.
- [44] Lori L Scarlatos, Yuliya Dushkina, and Shalva Landy. Ticle: a tangible interface for collaborative learning environments. In CHI'99 Extended Abstracts on Human Factors in Computing Systems, pages 260–261. ACM, 1999.
- [45] Zhiying Zhou, Adrian David Cheok, JiunHorng Pan, and Yu Li. Magic story cube: an interactive tangible interface for storytelling. In *Proceedings of the 2004* ACM SIGCHI International Conference on Advances in computer entertainment technology, pages 364–365. ACM, 2004.
- [46] Danae Stanton, Victor Bayon, Helen Neale, Ahmed Ghali, Steve Benford, Sue Cobb, Rob Ingram, Claire O'Malley, John Wilson, and Tony Pridmore. Classroom collaboration in the design of tangible interfaces for storytelling. In *Proceedings of the SIGCHI conference on Human factors in computing systems*, pages 482–489. ACM, 2001.
- [47] Gillian Crampton Smith. The hand that rocks the cradle. *ID magazine*, pages 60–65, 1995.
- [48] Kazuyoshi Wada, Takanori Shibata, Tomoko Saito, and Kazuo Tanie. Effects of robot-assisted activity for elderly people and nurses at a day service center. *Proceedings of the IEEE*, 92(11):1780–1788, 2004.
- [49] William Farr, Nicola Yuill, and Hayes Raffle. Social benefits of a tangible user interface for children with autistic spectrum conditions. *Autism*, 14(3):237–252, 2010.

- [50] Anders Brygg Ullmer. *Tangible interfaces for manipulating aggregates of digital information*. PhD thesis, Massachusetts Institute of Technology, 2002.
- [51] Brygg Ullmer and Hiroshi Ishii. The metadesk: models and prototypes for tangible user interfaces. In *Proceedings of the 10th annual ACM symposium on User interface software and technology*, pages 223–232. ACM, 1997.
- [52] Robert Aish and Peter Noakes. Architecture without numberscaad based on a 3d modelling system. *Computer-Aided Design*, 16(6):321–328, 1984.
- [53] David Anderson, James L Frankel, Joe Marks, Aseem Agarwala, Paul Beardsley, Jessica Hodgins, Darren Leigh, Kathy Ryall, Eddie Sullivan, and Jonathan S Yedidia. Tangible interaction+ graphical interpretation: a new approach to 3d modeling. In *Proceedings of the 27th annual conference on Computer graphics and interactive techniques*, pages 393–402. ACM Press/Addison-Wesley Publishing Co., 2000.
- [54] Margaret C Harrell and Melissa A Bradley. Data collection methods. semistructured interviews and focus groups. Technical report, DTIC Document, 2009.
- [55] Joseph S Dumas, Janice C Redish, and KA Schriver. A practical guide to usability testing. *IEEE Transactions on Professional Communications*, 38(1):45–45, 1995.
- [56] International Organization for Standardization (ISO). Ergonomics of human system interaction-part 210: Human-centred design for interactive systems (formerly known as 13407). 9241-210, 2010. URL http://www.iso.org/iso/home/store/catalogue_tc/ catalogue_detail.htm?csnumber=52075.
- [57] Ben Shneiderman. Designing The User Interface: Strategies for Effective Human-Computer Interaction, 4/e (New Edition). Pearson Education India, 2003.
- [58] Eelke Folmer and Jan Bosch. Architecting for usability: a survey. *Journal of systems and software*, 70(1):61–78, 2004.
- [59] Jakob Nielsen. Usability engineering. Access Online via Elsevier, 1994.
- [60] Clayton Lewis. Using the" thinking-aloud" method in cognitive interface design. IBM TJ Watson Research Center, 1982.
- [61] J. Brooke. Sus- a quick and dirty usability scale. pages 189–194, 1996.

- [62] Kortum P. Bangor, A. and J. Miller. Determining what individual sus scores mean: Adding an adjective rating scale. *Journal of Usability Studies*, 4:114–123, May 2009.
- [63] Bieke Zaman and VV Abeele. How to measure the likeability of tangible interaction with preschoolers. *Proc. CHI Nederland*, 5, 2007.
- [64] JC Read, SJ MacFarlane, and Chris Casey. Endurability, engagement and expectations: Measuring children's fun. In *Interaction Design and Children*, volume 2, pages 1–23. Shaker Publishing Eindhoven, 2002.
- [65] Android design principles. URL https://developer.android.com/ design/get-started/principles.html.
- [66] Arduino. URL http://www.arduino.cc/.
- [67] Brian D Strahl and C David Allis. The language of covalent histone modifications. *Nature*, 403(6765):41–45, 2000.
- [68] About the rasperry pi foundation. URL http://rasperrypi.org/about.
- [69] Karen Stagnitti, Sylvia Rodger, and John Clarke. Determining gender-neutral toys for assessment of preschool children's imaginative play. *Australian Occupational Therapy Journal*, 44(3):119–131, 1997.
- [70] Isabelle D Cherney and Kamala London. Gender-linked differences in the toys, television shows, computer games, and outdoor activities of 5-to 13-year-old children. Sex Roles, 54(9-10):717–726, 2006.
- [71] Tamagotchi. URL http://www.tamagotchi.com.
- [72] Electronic furby the furbsters guide to all things furbish. URL http://www. mimitchi.com/html/furby.htm.
- [73] Glaxo smith kline aerochamber plus. URL http://hcp.gsk.co.uk/ content/dam/Health/en_GB/HCP_Home/content/aerochamber/ How%20to%20use%20child%20facemask.pdf.
- [74] James Wilson and Daniel Rosenberg. Rapid prototyping for user interface design. 1988.
- [75] Carolyn Webster-Stratton and Martin Herbert. *Troubled familiesproblem children: Working with parents: A collaborative process.* John Wiley & Sons, 1994.

- [76] Hanne Linander. Utvikling av konsept for forbedret opplevelse av behandling av astma. 2013.
- [77] Tori Klakegg Maehlum. Dipp utvikling av konsept for kt brukeraksept innen medisinsk behandling av barn med luftveisinfeksjoner, 2013.
- [78] Walter Mischel, Ebbe B Ebbesen, and Antonette Raskoff Zeiss. Cognitive and attentional mechanisms in delay of gratification. *Journal of personality and social psychology*, 21(2):204, 1972.
- [79] Lov om heleseregistre og behandling av helseopplysninger, May 2001. LOV-2001-05-18-24.