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Summary

The standard C++ classes for storing ordered sets and maps were created at a time when
the latencies of the memory hierarchy were not as dominant a factor of performance as
they are today. Consequently, the restrictions placed on a conforming implementation of
the C++ standard forces a design similar to a balanced binary search tree. These structures
have many desirable qualities, but do not make effiecient use of the memory hierarchy.

This report presents alternative ordered set structures which conform to a subset of
the C++ standard demands. Drawbacks and strengths of these alternative structures are
discussed, and running time for a number of use cases, set sizes and element types is
measured.

These experiments show that relaxing the requirements of the C++ standard ordered
set definition can give large gains in performance.

Oppsummering

Klassene i C++-standarden som sttter ordnede mengder ble designet i en tid da latency i
minnehierarkiet ikke var en like dominerende faktor for ytelse som det er idag. En kon-
sekvens av dette er at restriksjonene som C++ plegger en korrekt implementasjon tvinger
ordnede mengder til implementert med et balansert binrt sketre.

Denne reapporten presenterer alternative strukturer for lagre ordnede mengder, og
som sttter en undermengde av kravene i C++ standarden. Styrker of svakheter ved disse
strukturene diskuteres, og kjretider for et utvalg use cases, mengdestrrelser of elementtyper
er mlt.

Disse eksperimentene viser at ved fire p noen av kravene for ordnede mengder i C++
standarden, kan gi store gevinster i ytelse.
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Preface

This project was motivated by early experiments of the author on the relative performance
of ordered set structures implemented in C++. The author was subsequently encouraged
by his advisor, M. L. Hetland, to turn this work into a thesis.

The project is more focused on practical and simple solutions rather than theoretical
and possibly complex solutions, as the goal is to contribute to the C++ community with
simple, generic structures that may increase performance in a variety of problem domains.

The reader is assumed to be familiar with C++, but details of the standard library will
be explained when necessary. Specifically, the reader should be familiar with the clear
distinction between value and reference semantics, and the related distinction between
copy and move semantics.
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Chapter 1
Introduction

1.1 Motivation

Storing and querying a dynamic set of elements is a basic building block of many algo-
rithms. Consequently, readily available generic solutions to this task are essential for most
general-purpose programming languages. For a performance-oriented language like C++,
it is also important that the generic solution is competitive with custom-made solutions for
the most common use cases.

An ordered set is a set of elements for which some total order is defined. It is traversed
in sorted order, and consequently allows for efficient range queries. The standard C++
class template for ordered sets is std::set. Even though the C++ standard does not specify
implemententaion details, the requirements for a conforming implementation are such that
the implementation must be similiar to a balanced binary search tree, like Red-Black Trees
or AVL trees [2, 5]. These structures are optimal for any comparison-based structure when
analyzed in the Random Access Machine (RAM) model, but have practical limitations.
Specifically, performance is poor for some tasks because of inefficient use of the memory
hierarchy, which is not captured in the RAM model.

These observations motivate looking at other models besides the RAM model, and
reevaluating the requirements of C++ ordered sets. The Cache-Oblivious (COB) model
will be utilized, to model the movement of data across a single memory hierarchy bound-
ary. We will also look at models attempting to model several levels of the memory hierar-
chy.

Modern hardware is very complex, and so is difficult to model with precision. In ad-
dition to the theoretical models, we will measure the running times of different structures,
for several different use cases. Based on these measurements, we will try to explain what
constant time factors contribute to make a structure more or less practical.

1



Chapter 1. Introduction

1.2 Outline
In Chapter 2 the most important aspects of a useful set structure are discussed, to be used as
a reference when assessing individual structures. The first and foremost aspect is running
time, because a very slow data structure is not likely to be useful to anyone. Section 2.1
will present the theoretical models used to analyze running time, and also discuss some
practiacl considerations not captured by any of the theoretical models.

Section 2.2 will discuss the possible upper bounds placed upon an data structure with
regards to copying and moving elements. Correlated with copies and moves is the iterator
validity gurantees that a structure can offer, which is discussed in Section 2.3. Different
levels of error handling capabilities will be discussed in Section 2.4. Although it is not a
focus area of this paper, thread safety will be briefly discussed in Section 2.6.

Chapter 3 presents the data structures that are compared in this paper. Included among
these are the C++ standard std::set [7], as well as the simpler boost::flat_set [16]. All the
other structures are implemented specifically for this paper, though they are not completely
novel structures. This has been done in order to be able to better understand the design
trade-offs of each structure, and have full control over the iterator validity and exception
guarantees offered.

In Chapter 4 we present the use cases on which empirical performance tests are per-
formed. A single use case is a set of operations to be performed on the data structures, as
well as the type of element which is to be stored in the sets. The goal of these use cases
is to find the situations in which performance of the different structures are significantly
different.

Results from these performance tests are presented in Chapter 5, and form the basis
for the discussion of Chapter 6. In this discussion, the performance results will be com-
bined with the other desirable aspects of the data structures. For example, a large gain in
performance can make up for a relaxed exception guarantee, but a small performance gain
will probably not. There is another reason for ignoring small performance gains: the tests
performed in this paper are for single implementations compiled with a single compiler on
a single computer, and in all likelihood some results will not generalize. When ignoring
small performance gains, it is more likely that the performance gains that are considered
will also generalize better.

The discussion will lead to a recommendation, presented in Chapter 7. This is in-
tended to be a practical recommendation for a developer in need of an efficient ordered set
structure, as well as a guide to future work on developing practical ordered set structures.

1.3 Related Work
The cache inefficiency of balanced binary search trees in general, have been noted by
[20, 24], and many others. Solutions to this problem are mainly centered around different
variations of the B-tree [8, 9, 11, 12], cache-sensitive layout of binary search trees [9, 11,
18] and Packed Memory Arrays [9, 10]. Using these approaches, it is possible to create
ordered set structures that are optimal in both the RAM and COB models. In these papers,
little attention is given to the element types, usually assumed to be some small record or
integer. Running times are only assessed for fairly large n (> 106). As the data structures

2



1.3 Related Work

are not presented as proposals for inclusion in a language like C++, important topics like
iterator validity, exception guarantees and simplicity of implementation are not discussed.

On the more practical side, dissatisfaction with the performance of std::set is expressed
in [4], and the practical advice given there for implementing a small simple set structure
lead to the development of boost::flat_set [16]. As the boost::flat_set was intended for
use as a drop-in replacement for std::set, considerations like iterator validity and exception
guarantees are addressed. However, this structure was only intended for very small sets,
or for large sets only if insertions happen in sorted order.

The Judy Array structure [25] was developed to handle large sets of integers, where
the individual bits of the integer is used to build a trie-structure, essentially using a range
of k bits of the integer in each node to efficiently branch into 2k possible child nodes. As
this approach abandons comparisons as the basis of search, there is a substantial loss of
generality. However, depending on the model used for analysis, it is possible to use this
approach to support O(1) search and efficient range queries, which is not possible when
relying on comparisons. Inspired by this structure, we have developed hash-based ordered
structures, discussing how this less general approach can be extended to more than just
integers, if not to all element types.

3
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Chapter 2
Desirable Qualities of Data
Structures

2.1 Running time
Running time is the primary characteristic of data structures considered in this paper. Some
loss in running time may be acceptable if rewarded by better error handling, lower mem-
ory usage etc., but in general a data structure that is much slower than its alternatives will
not be used. For each structure, running time for different operations will be analyzed
theoretically, as well as measured. The theoretical models serves as motivation for im-
plementing data structures, and makes it possible to define running time independent from
implementation and hardware. It also provides possible constraints for an implementation-
independent definition of the data structures, suitable for standardization.

2.1.1 Theoretical Models
Several models exist for analyzing running time for algorithms. Different models vary in
the level of detail modeled. Simple model make analysis easy, and results general. More
advanced models do generally make analysis more complex, and sometimes less general,
but aims for more realistic results than simpler models. For example, in this report we are
often interested in the effects of memory access patterns on running time, which are not
modeled by the simplest model (RAM).

Random Access Machine Model (RAM)

The RAM model [13] is a simple model, and considers all memory as arranged in a single
unbounded array. The memory may be accessed at any position in constant time. This is a
simple model, and is used for requirements on data structures in standard C++. It does not
model any cache, however, and is therefore unable to distiguish between algorithms with
different memory access patterns.

5



Chapter 2. Desirable Qualities of Data Structures

External Memory Model (I/O)

The external memory model, or I/O model [28], seeks to take access patterns more into
account by introducing a two-level storage system. The first level is bounded by size M ,
while the second is unbounded in size. Data can only be used when it resides in the first
level, and must be brought in from the second level in blocks of sizeB. Originally, the first
level in this respect was main memory, while the second level was disk storage. Later, as
main memory sizes have grown and CPU caches have been introduced, the model is also
used to model the tranfers between a small CPU cache and an conceptually unbounded
main memory.

The parameters M,B are constants known by the program, and running time is mea-
sured by the number of cache lines brought into the cache during the run of the program. It
is assumed that this cost dominates running time, such that tranfers from cache to registers
and computation costs are negligible. The cache/memory layers in this model can model
any two layers in the memory hierarchy. It could be the program working set in memory
and pages stored on disk, where a page is brought into memory by a page fault, but the
model can also be used to model transfers between on-chip caches. There are two main
problems with using this model: Most algorithms developed in this model assume that the
program knows the parameters M,B, therefore the same program may not be able to port
its performance across different hardware. Second, the model only optimizes transfers be-
tween two layers. For all other layers, all transfers are free. An algorithm optimized for
few cache misses might still get many page faults, and vice versa.

Cache-Oblivious Model (COB)

The Cache-Oblivious Model was introduced by Prokop in 1999 [22], and is a modification
of the external memory model. The only difference from the external memory model
above is that the parameters M,B are not known by the program, but this turns out to
make a large difference. The algorithms that perform optimally in this model are often
more complex than algorithms created in the external memory model. For example, the
B-tree is optimized for the external memory model, because the branching factor is chosen
such that a node fits in a cache line, but this is not possible in the cache-oblivious model.

The benefit of the the model, however, is that when an optimal algorithm is found,
it is optimal for transfers between any two neighboring layers of the memory hierarchy
[22]. This means that in theory, it is optimal for any memory hierarchy. Because of this
generality, the COB model is used instead of the external memory model for analyzing
two-level transfers in this report.

The optimality property may unfortunately not be used to predict running time as a
function of input size n on a memory hierarchy, however. The first problem is that cost of
memory transfers at different levels are not part of the model, and are thus incomparable.
Transfers at the lowest levels of the memory hierarchy tend to be slow, but infrequent,
while at the upper levels transfers tend to be cheap, but frequent. Without knowing the
transfer cost of each level relative to the transfer cost of other levels, the total cost at each
level is incomparable to the cost at any other level. In addition, since B,M are specific to
each layer, the total transfer cost of each layer is a function of Bi, Mi and n for each layer
i.

6



2.2 Copying and Moving

Uniform Memory Hierarchy Model (UMH)

The Uniform Memory Hierarchy model (UMH) is a model of memory transfers introduced
by [3]. Instead of modelling memory transfers between two levels as in the external mem-
ory model and cache-oblivious model, the UMH models transfers between a potentially
infinite sequence of memory modules. The model is based on the Hierarchical Memory
(HM) model, in which every memory model has its own total size, cache line size and
transfer cost. The HM can realistically model a concrete memory hierarchy, but is very
complicated and analysis is difficult. The UMH is an effort to remedy this by introducing
a general pattern that all the modules follow. Let ni be the number of cache lines at level
i, and si the size of each cache line, where s0 = 1. We define the aspect ratio of a module
to be the fraction ni/si, which has the value α for all levels in UMH. Furthermore, we
define the packing factor to be the fraction si/si−1, which in UMH is a constant ρ for
all levels. At each level i there is a cost ti to transfer one bit between level i and i + 1.
UMH allows for an arbitrary transfer cost function f(i), which only depends on the levels.
Since the bits must be transferred in a cache line of size ρi, the total cost is ρi · f(i). To
avoid further complicating the model, we will be using f(i) ≡ 1 for all analysis. (TODO:
begrunne dette bedre) This implies a constant bandwidth between all levels, but exponen-
tially increasing latencies.

It follows from this description that the module at level i has cache line size ρi, and
that the number of cache lines is αρi. Thus the total size of the module is αρ2i. When
discussing an algorithm on an input of size n, it is assumed at the outset that the input
resides in the first module it can fit into. The first level u such that n ≤ αρ2u is

⌈
1
2 logρ

n
α

⌉
.

If we assume that the input fits exactly into level u, the cache line size ρu may also be
expressed as

√
n
α .

A major implication of this model is that no useful algorithm is faster than O(
√
n), as

this is the time required to read a cache line from the lowest layer. We base this on the
assumption that every bit of the input can potentially be read, since this is the only reason
to include it in the input.

2.2 Copying and Moving

The number of copies and moves performed by a data structure can significantly affect
the use cases it may support and performance for different element types. Furthermore,
the copy and move semantics of the data structure interacts with both iterator validity and
error handling.

The copy/move characteristics of element types are separated into two categories, hard
and soft. Hard characteristics define which operations are supported by the element type,
while soft characteristics are the cost copy/move operations. The hard characteristics of
the element type determines which operations the data structure may support, as well as
the asymptotic number of element copies and moves per operation. Actual performance is
also affected by the soft characteristics of element types.

In theory, it is possible for the asymtotic number of copies and moves to depend on
soft characteristics of the element type. A data structure could choose appropriate layouts
and paramters based on the cost of copies/moves relative to the cost of cache misses, for
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instance. This would, however, require either compile-time knowledge of these character-
istics, given explicitly by the user, or run-time testing of copy/move costs. The compile-
time option requires possibly tedious annotation of element types by the user, while the
run-time approach adds a level of overhead. Because of these reasons, and in the interest
of limiting the scope, none of these approaches are considered in this report.

2.2.1 Hard Move/Copy Characteristics of Elements

In this paper we consider four possible types of elements, based on whether they are copy-
able and/or movable. Technically, more possiblities exist, but we assume for simplicity
that assignment operators and constructors are consistent, such that any copy-constructible
element is copy-assignable, and likewise for moving.

Non-movable, non-copyable elements are rare, but may exist. The only way to support
such elements is to support the emplace function, and construct the element directly where
it will reside until erased. For this to be possible, the position in which to place the element
must be known without any information about the element, which is impossible for most
structures in this paper. These element typs are supported by the standard std::set, because
all structure may be defined by pointers, such that the relative position of elements in
memory is irrelevant.

Move-only types are much more common and include std::unique_ptr. The primary
challenge of such element types is that no copies of the element kan be kept in a search
structure, which is required by structures like the B+-tree.

Another challenge that comes with move-only types is with reorganization during in-
sertion into the data structure. The C++ std::set definition requires that the insert function
returns an iterator to the element inserted. As one goal of this report is to present possible
drop-in replacements to std::set, we wish to support the same interface for all structures.
There is a challenge to supporting this, however. All data structures discussed in this report
have a set of invariants that must be respected by all operations. Typically, a single inser-
tion operation will complete quickly without violating invariants, but will often bring the
data structure closer to such a violation. As this insertion operation must involve finding a
suitable place for the new element, returing an iterator pointing to this element is trivial.

Once in a while the quick version of the operation leaves the structure in an invalid
state, and a costly reorganization must be performed to restore invariants. During this re-
organization, the element just inserted might be relocated, thus invalidating any iterator
that was to be returned from the insertion function. When an insertion triggers a reorga-
nization, a simple strategy is to forget the position of the element, but keep a copy. When
the reorganiztion completes, a search is made using the copy, and the correct position is
returned by the insertion function. As creating such a copy is not possible with move-
only elements, the position of the element must be kept track of during the reorganization,
complicating the reorganization code and possibly adversely affecting performance. If this
performance hit is significant, a possible option would be to extend the interface with an
insertion function which does not return an iterator to the inserted element. There is also
another reason why this interface extension might be a good idea. The data structures that
may invalidate an iterator during insertion returns iterators of lower value to the user, since
they may be invalidated by any subsequent insertion. If this possible invalidation makes
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the iterators of no use to the user, the data structure might as well not go the unnessecary
expense of returning a correct iterator.

2.2.2 Soft Move/Copy Characteristics of Elements
By soft characteristics we mean the cost of copying and moving elements. For example, it
is very common for elements to have a fairly expensive copy operation, and a cheap move
operation. The archetype for this behaviour is a large std::string. The std::string object
typically consists of a pointer to a chunk of memory containing the actual characters of the
string. A move may be performed by simply copying the pointer value. A copy operation,
however, involves allocationg a new chunk of memory and copying all the characters from
the original string. For such types, copies should be kept to a minimum and optimally
should be thought of as move-only. However, the necessary copies mentioned in Section
2.2.1 are not usually a big problem, as search structures are usually much smaller than the
entire data structure, and total reorganizations of data structures are rare.

If the elements are copy-only and copies are expensive, or both copy and move is
expensive, this is a bigger restriction. This is the case for large std::array elements. In this
case all reorganization of the structure is expensive. Structures that do less reorganization,
possibly at the cost of being less cache-efficient, might then be preferred.

2.3 Iterator Validity
In C++, iterators are a unifying interface for pointing to elements in a data structure. An
iterator can be used for accessing an element in the data structure, and for efficiently
aquiring an iterator poiting to the next or previous element. In practice, this is achieved by
having the iterator point to one or more substructure(s) of the data structure. For a boost←↩

::flat_set, the iterator will point directly to the element, while for a std::set, the iterator is
typically a pointer to the tree node containing the element.

Because the iterator is conceptually a pointer, it is usually invalidated by moving the
element pointed to. There are ways to avoid this invalidation, but this will incur some
additional cost.

One possible way to avoid invalidation is by storing back pointers from elements to
all iterators pointing to the element. Then these iterators may be updated if the element
is moved. The drawback of this method is that the cost of updates to the data structure
will depend on the number of iterators in existence. Since these iterators may be stored at
arbitrary locations, these updates would also not be cache efficient.

It is also possible to store proxy iterators, pointers to a proxy object that points to
the actual element. Each time an element is moved, it updates its proxy object to point
correctly. As several iterators may point to the same proxy, this avoids updating several
iterators when moving items. However, because these proxy objects are never moved, they
are stored in arbitrary locations in memory. When a bulk of contiguous elements is moved,
the move itself is cache efficient, but the updates to the proxy objects will not be.

Finally, it is possible for the iterator to not store a pointer at all, but keep a copy of
the element to which it conceptually points. Operations on the pointer is achieved by first
searching for the actual element in the structure. This will likely have a severe performance
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impact. To avoid always searching for the element, the iterator may additionally have a
pointer to the last known location of the object. When the iterator is used, some check
must be performed to see if the pointer still points to a valid element. If it does, the element
pointed to can be compared to the copy kept by the iterator. If there is a mismatch, the
element is probably close, such that a local search can be performed much quicker than a
full global search.

Because of the added complexity of keeping iterators valid when moving elements, we
assume for the rest of this report that iterators are always invalidated by moving elements.

2.3.1 Validity vs. Cache Efficiency

Assuming that all element moves invalidate iterators, there is an inherent trade-off between
iterator validity and cache efficiency. If an element is never to be moved, the optimal
position in memory may only depend on the elements inserted thus far, not taking into
account elements to be added in the future. Furthermore, the optimal placement of each
element when all elements are added, i.e. in contiguous order, would not be the optimal
placement for all intermediate steps, as elements would be spread over too large an area.

This is the core reason for the inefficiency of std::set. The demand that iterators are
valid until the element is erased prohibits a cache effiecient structure. In all other structures
presented in this paper, the requirement of iterator validity is relaxed, since otherwise few
improvements in performance are possible.

2.3.2 Validity Guarantees

We distinguish between levels of guarantees for a single operation, and levels of guaran-
tees for entire structures. The guarantees for entire structures are defined in terms of the
guarantees for their operations.

This report distinguishes between three levels of guarantees for functions, from weak-
est (1) to strongest (3).

1. Any iterator may be invalidated.

2. Conditions for iterator invalidation by the operation are well defined, and may be
checked by the user prior to the function call

3. Iterators are only invalidated for elements that are deleted by the operation

The second guarantee is a heterogeneous category, but usually supports some useful
guarantee that naturally follows from the properties of specific data structures. For exam-
ple, the boost::flat_set is modelled as a linear array of elements in order. The smallest
element is placed at the first possible position in the array (left), and the array grows in
the direction of the largest element (right). Consequently, inserting an element x means
moving all elements larger than x one position to the right. All the iterators for elements
larger than x are invalidated, while all iterators for elements smaller than x are not. Before
inserting x, the user can check whether an iterator might be invalidated, by comparing x to
the element pointed to by the iterator. Although such conditional validity guarantees may
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have few use cases, it may be fruitful to identify such guarantees when they do not overly
restrict the implementation.

For structures, three roughly corresponding levels are defined:

1. No iterators are invalidated by const functions. No guarantees are made for non-const
functions.

2. No iterators are invalidated by const functions. For all non-const functions, conditions
for iterator invalidation, and may be checked by the user prior to the function call

3. Iterators are only invalidated by functions deleting the element to which they point.

The first level of guarantee is very useful for reasoning about the code that is using
the data structure. Since iterator invalidation has observable consequences for the user,
invalidating iterators during a const operation is a breach of the const contract, namely that
it should not change the structure in a manner observable to the user. This requirement is
even more important in a multi-threaded context.

There are some interesting data structures that do not fulfill the weakest guarantee. In
[9], a cache-efficient linked list is presented, that moves elements during traversal, such
that they are placed more optimally in memory during subsequent traversals. As traversing
a structure is conceptually a const operation, this is in violation of the weakest guarantee.
Because of the problems associated with violating the weakest guarantee, such structures
are not discussed further in this report.

The third and strongest guarantee effectively demands that no elements are moved after
being inserted. We call the iterators of such structures stable. This is almost as strict as the
no-copy/no-move hard characteristic discussed in section 2.2.1. In the strict no-copy/no-
move case, the element must be constructed in the memory location where it is to reside
until destruction. When supporting the strongest validity guarantee, however, the element
may still be constructed at an arbitrary location, and compared to other elements to find a
better final location. In addition, if the element type is copyable, a search structure may
be built on top of the non-moving elements, and this search structure may be rebuilt to
support more cache-efficient search.

2.4 Exception Guarantees
A theoretical description of a data structure will usually not include a full specification of
how to handle potential errors. No such specification is needed if errors are assumed not
to occur, or if errors cause the entire program to abort. If the user wishes to recover from
errors, however, it is useful to be able to reason about the state of the data structure after
certain errors have occured. For example, knowing that all destructors are correctly run for
elements removed from the data structure may be needed to avoid leaking resources. In
other cases, stronger error handling guarantees may ensure that less work is lost because
of an error. For example, this is the case for errors occurring during reallocation of std←↩

::vector. When adding a new element to the vector, a reallocation might be triggered. A
larger memory block is allocated, and elements are copied from the old memory block. If
an error occurs during copying, the original block is still intact, and the new block may
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simply be discarded. This leaves the structure in the state in which it was prior to the last
insertion attempt. As this behaviour is guaranteed by std::vector, the user of std::vector←↩

may be able to recover from the error faster then would be possible if the user had to
assume that the entire structure was corrupted.

Some sources of errors are practically unavoidable, for example allocating memory. In
C++, the standard error reporting mechanism is through exceptions, so error handling will
be discussed as exception handling. Potential sources of exceptions that will be discussed
are:

• Memory allocation by data structure

• Element constructor

• Element copy - by assignment or constructor

• Element move - by assignment or constructor

As element comparisons are typically read-only operations, we do not consider them
as potential sources of unavoidable errors. Neither do we consider exceptions thrown from
inside destructors, as there is generally no good way to deal with such exceptions [26].

When considering a data structure, it is important to consider what guarantees the
structure can make on its state if any of these exceptions do occur. It is useful to separate
between exceptions caused by structure library code (mainly memory allocation), and the
exceptions caused by user code. Potential guarantees will be discussed for the structures
developed in this project, even though some of those guarantees are yet to be implemented
and/or tested. That is, we will discuss what guarantees can be made without changing
the data layaout and without adversely affecting performance. We consider the following
possible levels of exception guarantees:

1. Weak guarantee - Exceptions cause bad state. No resources are leaked.

2. Basic guarantee - Exceptions cause undefined, but valid state. No resources are
leaked.

3. Partial guarantee - Exceptions cause partially defined, valid state. No resources
are leaked.

4. Strong guarantee - Exceptions leave the state unchanged. No resources are leaked.

5. No-throw guarantee - Exceptions cannot occur.

Other levels of exception safety could be defined. However, these levels summarize the
most important characteristics of exception handling discussed in this report, and does so
in a simple manner. Levels 2, 4 are 5 are defined as the basic guarantee, strong guarantee
and no-throw guarantee, respectively, by [1]. Additonally, we have introduced the weak
guarantee and the partial guarantee. In the rest of this section, the motivation for each of
these levels is presented.

A structure that has absolutely no defined state after an exception is quite unsafe, and
will not be considered in this report. We require for all structures that destructors are
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correctly called for all elements when an exception is thrown, for the same reason. As
noted earlier, the assumption is made that all element destructors are noexcept, as this is
critical to correct exception handling, as argued in [26].

The weak guarantee is most useful for guaranteeing that resources are not lost. Since
the state is otherwise undefined, it may be difficult to reason about the state, so the structure
will most likely be cleared and thrown away. An alternative to this guarantee would be
complete cleanup of the structure, as if clear() had been called. Since the empty state is a
valid state, this would satisfy the basic guarantee. However, leaving the decision of when
to clean up to the user allows for delaying this work to a more appropriate time. In some
situations, the best option for the structure may be to enter a bad state, which only supports
clear(), assignment and destruction. Enough structure is kept to support cleanup in these
three scenarios, but parts of the structure relevant to search, insertion and other operations
may be lost.

An example of the usefulness of bad state can be illustrated by a sorted vector with
unique values. When inserting an element into this vector, all larger elements must first be
moved one step to the right. Assuming the element type is non-movable, the elements must
be copied one step to the right. Furthermore, if the copy operation may throw exceptions,
this can happen when trying to copy any of the elements. When a copy operation fails
in the middle of this insertion operation, how can the structure ensure that the state is
made valid?. The ordered vector now has a gap in which resides the undefined result of
an interrupted copy assignment operation. It is the users responsibility to ensure that the
interruption of the copy operation does not lead to memory leaks, but other than that the
element may be in any state. It is certainly unlikely to be a unique value respecting the
sorted order of the set, so the invariant of the sorted vector with unique values is broken.
Three possible options are:

• Try to redo the failed copy and continue, returning normally. This would attempt to
satisfy the no-throw guarantee

• Try to roll back the copying done so far before rethrowing the exception, thus sati-
fying the strong guarantee

• Delete all elements from the point of failure to the end of the vector, satisfying a
partial guarantee.

As argued in [1], the first two approaches are ill-advised, as they try to redo operations
that have already failed, and may very likely fail again. For example, the failures might
be due to an allocator that is out of memory, so the retries might very well go on in an
endless cycle. The third option is possible, because we have imposed the requirement on
elements that the destructor is nothrow. However, this involves linear time cleanup, that the
user may prefer to do at a later time. In this case the bad state guarantee might be the most
preferable.

The basic guarantee specifies that all invariants of a data structure holds even when
an exception occurs. Note that this guarantee has more implications for an ordered set
structure than it has for a sequential container like std::vector. For example, a std::←↩

vector may fulfill the basic guarantee in insertion operations like the one mentioned above,
because it does not need to respect any ordering among its elements.
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The partial guarantee may be useful for specific operations. Consider bulk insertion
into the back of a std::vector. Given a std::vector along with the begin and end iterator of
an input range, the function should insert all elements of the input range into the back of
the std::vector. Let us further assume that the iterators are input iterators, meaning they
may only be used once, and it is not possible to query the size of the input range before
inserting. Without knowing the size of the input range, it is impossible to know whether a
reallocation will be necessary, so elements are inserted directly into the original memory
chunk, possibly until a reallocation is triggered. If the reallocation fails, there is a trade-
off to be made: All elements inserted thus far could be destructed, and the structure could
thus fall back to the state prior to the function call, thus fulfilling the third level guarantee.
Another possibility is to return the current valid state, even though only elements up to
some point were inserted. The latter approach is an example of the second level guarantee,
in this case that a prefix of the input range is inserted. The user may then look at the new
size of the std::vector to find the number of elements inserted. The structure has already
avoided the work of destructing the inserted elements. If the user is able the save work by
resuming the insertion at the point of failure, the total benefit can be significant. Currently
the C++ standard has no such partially defined guarantees [7], but they will be discussed
in this report nonetheless, motivated by the case above.

The strong guarantee is the highest guarantee given by insertions in the C++ standard
library. This guarantee makes reasoning about state easy, since there is only one possible
state after failure.

The no-throw guarantee is difficult to support for many operations in practice. Any
operation that needs to allocate memory risks allocation errors. In addition, any operation
that calls user code that might throw must deal with exceptions. This is often the case for
element copying, when elements perform memory allocation as part of the copy operation
(e.g. std::string).

Standard C++ containers are non-intrusive, which means that they perform their own
memory allocation and do not expose implementation structures such as node types to the
user. Because they allocate memory, operations like insertion can not be noexcept, but this
is not true for intrusive containers. Intrusive containers do expose internal structure to the
user, allowing the user to perform all memory allocation. Consider for example a search
tree. The standard non-intrusive way to create a new node is for the user to pass an element
to the search tree. The search tree then allocates a node object, and copies or moves the
element into this node. The user need not be aware of this node object, as it is not part of
the interface of the search tree. In an intrusive search tree, however, the node type is made
explicitly visible to the user. The user may create such a node on either the stack or the
heap. The user then passes a reference to this node to the search tree, and the search tree
updates both the referenced node object and other node objects to include the new node
into the search tree. As the node objects may be allocated on the stack, this may potentially
involve no heap allocations. This makes it possible to eliminate the risk of heap allocation
errors, but might of course eventually lead to stack overflow. An introduction to intrusive
data structures can be found in [15]. Even though intrusive containers have interesting
qualities, they require a radically different interface from the standard containers in C++,
and do a worse job of abstracting away implementation details. For this reason, intrusive
data structures are not covered in this report.
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2.5 Element Requirements
When writing generic libraries, an important goal is to be as general as possible without
sacrificing performance. This means putting as few requirements on the types of elements
supported as possible. Some of these requirements are discussed above, specifically copy-
/move requirements in Section 2.2 and exception specifications in Section 2.4.

In addition, the element types must support some comparison operation, otherwise the
notion of an ordered set is meaningless. In C++, the standard way to conform to support
comparison is by overloading the < operator, or by passing a custom comparator object
to the ordered set structure. All structures in this report assume one of these operations
to be present. Additionally, this comparison function must be transitive, irreflexive, and
asymmetric.

Some structures presented in this report demand that elements support a larger inter-
face, and some structures also base performance characteristics on assumptions on the
distribution of elements. This does make the structures less generic, but may be justified
with a large gain in performance.

2.6 Thread Safety
Data structures designed specifically for multi-threaded usage is beyond the scope of this
paper. However, the restrictions placed upon iterator validity and error handling are in
part motivated by multi-threaded use. Similar to the standard C++ library specification
[7], const operations should be considered read operations in a multi-threaded context.
As such, any concurrent execution of const member functions is valid, and should not be
observably different from single-threaded execution.

The iterator validity guarantee of const may be seen as a consequence of the thread
safety guarantee, as a const operation on one thread should never invalidate an iterator
held by another thread.

No restrictions are placed upon non-const member functions, as it is assumed that the
user will provide the necessary synchronization protocols, with full knowledge of when
such protocols are needed.
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Chapter 3
Data Structures

This chapter presents the data structures that are considered in this report as possible imple-
mentations of an ordered set. Most structures are implemented specifically for this report,
and their implementation will be presented in detail. For other structures, like std::set and
boost::flat_set, a briefer overview is presented. The decision to implement these structures
from scratch gave several benefits:

• Simplicity of explanation - Instead of viewing structures as a black box, guessing
which strategies might have been employed, or trying to gleen these details from
studying source code, all implementation details are available to the author. This
has been a great aid in explaining performance characteristics of the data structures.

• Ease of modification - Implementing the data structures gave the necessary under-
standing to try out several modifications of the data structures.

• Common interface - Many available implementations of data structures do not fol-
low the C++ standard interface, and some are not even type generic.

• Common underlying structures - Ensuring that all structures use the same basic
structures when sensible can make comparisons fairer. This was highlighted when
implementing array-based alternatives to boost::flat_set. The new implementations
used std::vector as an underlying array instead of boost::vector, and this resulted in a
large speedup for similar operations (∼ 6x). Switching to a custom implementation
of flat_set using std::vector, the difference was eliminated.

• Fun - When given the choice between writing new implementations, and study-
ing/modifying other implementations, the former was certainly a more motivating
prospect for the author.

The data layout and operation of each structure will be presented. We will also discuss
to what degree the structure may fulfill the desired qualities presented in Chapter 2. Where
design choices reflect trade-offs between fulfilling conflicting demands, the rationale for
the final choice will be given.
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Figure 3.1: Typical structure of std::set

3.1 Set

The C++ standard version of an ordered set is std::set, described in [7]. Although the C++
standard does not explicitly enforce a specific implementation of std::set, the specification
of running times for its operations, along with iterator validity guarantees, directs the
implementation to some variant of a binary search tree, e.g. red-black trees [5] or AVL
trees [2]. This is oulined below:

One important characteristic of std::set is that it requires that elements may be com-
pared with the < operator, or that an alternative comparison object is supplied by the user.
As this comparison result is the only information available for searching, the worst case
search time must be O(log n). This can be be seen from the fact that each comparison
operation restricts the range of possible positions to one of two possible subdivisions, de-
lineated by the elements to which the query element is compared. The best worst-case
running time is achieved when the division is balanced, that is, when both division have
size roughly equal to n/2. The number of comparisons needed is then log2 n. More gen-
erally, a constant number k comparisons can be made in each step. This would divide the
range into k + 1 subdivisions in each step, thus requiring about k logk+1 n comparisons
in total.

As std::set requires searches in O(log n) time, any implementation must find good
comparison elements in constant time. A good comparison element is an element that is
close to the middle of the remaining search range, such that a comparison between this
element and the query element leads to a large reduction in the remaining search range.
This is achieved in array-based structures by binary search [21], calculating the position of
the next comparison element in constant time at each step. It is also achived by balanced
search trees, both binary and B-trees. It is not achieved by skip lists [23], as the comparison
elements are not guaranteed to reduce the remaining search range by a constant factor.

Another important requirement of the std::set is that it must fulfill the strictest possible
iterator validity guarantee. This means that iterators to an element must be valid from the
insertion of an element until the element is deleted from the std::set, no matter what other
operations are run on the std::set in between. Due to reasons explained in Section 2.3, this
means that elements may not be moved after their creation. This restriction means that
array-based implementations of std::set are not possible, because it is not possible to keep
a dynamic set of elements ordered in memory using O(n) space, without occasionally
moving some elements. Neither are B-trees possible, because splitting and merging its
nodes require moving elements around in memory.
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Although we have not completely ruled out the possibility that radically different struc-
tures from balanced binary search trees may exist that fulfill all properties of std::set, we
assume for the remainder of this report that std::set is implemented as a balanced binary
search tree.

Running time

For the RAM model, the running times listed in this section are not the result of analysis,
but simply a restatement of the requirements defining std::set. For the COB and UMH
models, however, the results are based on the assumption that std::set is implemented as a
balanced binary search tree.

Searching a balanced binary tree takes O(log n) in both the RAM and COB models.
In the UMH model, however, the running time is much worse. We assume that all the
data initially reside in level 1

2 logρ
n
α and that cache line size is

√
n
α . There is no guarantee

that any of the nodes that must be traversed during search reside on the same cache line,
therefore the log n cache lines might need to be read from the slowest cache. As each
cache line requires

√
n
α time to read, the total search time is O(

√
n log n).

When elements are added to or deleted from a std::set, some rotations are sometimes
necessary to keep the tree balanced. Although the number of rotations may be O(log n),
the amortized cost is a constant number of rotations [27]. These rotations therefore have
amortized costO(1) in the RAM and COB model, but

√
n
α in the UMH model. The UMH

cost is due to the fact that each rotation requires following a pointer to an arbitrary memory
location, therefore it might have to read from the slowest cache level.

For insertions and deletions there are two versions, one requiring a search and one
which does not. For insertion this means supplying the position of a neighboring element
together with element to be inserted. No search is needed, but rotations might still be
needed. For deletions, the user may supply either the value of the element to be deleted, of
its position. In the value case, a search is needed, but for the position case only rotations
are needed.

Operation RAM COB UMH Dominating factor

Search log n log n
√
n log n Tree search

Insertion, w/o position log n log n
√
n log n Tree search

Insertion, w/ position 1 1
√
n Rotation

Deletion, value log n log n
√
n log n Tree search

Deletion, position 1 1
√
n Rotation

Iteration n n n3/2

Table 3.1: Running times for std::set
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memory begin

element begin element end

memory end

Figure 3.2: Structure of boost::flat_set

Copy and Moving

The std::set never moves elements after they are included, and may even support no-
copy/no-move elements. Such elements may be constructed in an arbitrary location, and
pointers are then updated to include the element into the structure.

Iterator Validity

The std::set gives the best possible guarantee for iterator validity, no iterators are invali-
dated until the element to which they point are deleted.

Exception guarantees

When errors occur during any operation of std::set, this leaves the std::set in the same
state as it was before the start of the operation. This is the strong guarantee of Section 2.4,
and is the strongest possible guarantee when errors might occur, either because of memory
allocation done by the std::set itself, or by user code exceptions.

Furthermore, assuming that comparison is noexcept, the no-throw guarantee may be
given for deletions.

Element Requirements

The std::set only requires that element types support comparison.

3.2 Flat Set

Flat set is a simple array-based set structure developed as part of the Boost Container Li-
brary [16], based on the recommendations of [4]. Elements are stored contiguously and in
order in a dynamic array, as seen in Figure 3.2. This means that searches can be performed
by simple binary search, and iterating over all elements is as fast as for std::vector. Inser-
tions are performed by moving all elements larger than the inserted element one position
to the right before inserting the element. Deletions are performed by moving all elements
larger than the deleted element one position to the left.
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Running time

Most operations on the boost::flat_set consist of a combination of searching, moving el-
ements one step to the right or to the left, and the amortized cost of infrequently reallo-
cating the underlying dynamic array. As searching is done by binary search, this can be
performed in O(log n) time. In the cache-oblivious model, the running time is slightly
better. After k iterations, the search range is reduced to size n

2k
. When the search range

reaches size B, at most two cache lines are needed in the cache, and no more cache lines
need to be brought in from memory. This happens when n

2k
= B, so we have k = log2

n
B ,

thus running time of search is O(log nB ).
When analyzing binary search in the UMH model, it is assumed that the entire data

structure is located in the first cache level into which it fits, which is at level 1
2 logρ

n
α . The

cache line size at this level is
√

n
α , which is also the time required to read a cache line.

Similar to the case for the cache-oblivious model, data must be read from this layer until
the range is small enough to fit into the cache line. This requires log2

(
n/
√

n
α

)
iterations

of binary search, which is equal to 1
2 log2nα. Thus, the time required in the lowest cache

level is 1
2

√
n
α log2nα. For each subsequent level of the cache hierarchy, the remaining

search range must be reduced to the new cache line size, which means reducing the range
by a factor ρ. This requires log2ρ steps. The time taken for each cache line transfer is
reduced by a factor ρ for each layer, which means the time taken for all layers except
the lowest is log2ρ ·

(√
n
α/ρ+

√
n
α/ρ

2 + · · ·+ 1
)
. This is dominated by the cache line

transfers at the lowest level, such that total search time is O(
√
n · log n).

Analyzing the running time of moving elements one position to the right or left is a
simpler task. In the standard RAM model, this can be done in O(n) time. Furthermore,
since this task uses the cache optimally, it can be done in O(n/B) cache line reads in
the COB model. Again, the UMH model is a bit more complex, but still simpler than
for search. Since transfer time is equal to cache line size at each level, each transfer cost
may be amortized over the subsequent reads and writes of the same cache line, thus each
level has running time O(n). Since reads and writes are not concurrent at all levels of the
memory hierarchy, the sum of the cost at each level must be used as the upper bound on
total running time. As there are 1

2 logρ
n
α levels, total running time is O(n log n). This

might seem very slow for an operation usually thought of as linear, but keep in mind that
n random accesses has a running time of O(n3/2) in this model, so the sequential access
pattern of the element moves can still be characterized as relatively efficient in this model.

Analysis for the amortized cost of reallocation is done for growing an array because of
insertions only, as the boost::flat_set does not automatically reduce in size when elements
are deleted. Such a reallocation may only be triggered when Θ(n) elements have been
added to the set. The reallocation requires moving n elements, which takes O(n) and
O(n/B) time in the RAM and COB model, respectively. Thus, in both these models,
the amortized cost is O(1). For the UMH model, however, the cost of reallocation is
O(n log n). The amortized cost is therefore O(log n).

The running time for iteration is defined as the running time of iterating over the entire
set. For the RAM model, this is simply O(n), while for COB, it is O(n/B). For the UMH
model, this takes O(n log n) time, based on the same analysis as for moving elements.

The running times of various operations are shown in table 3.2. For insertion and
deletion at the back of the set, there are two different versions. When the element to be
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inserted is larger than all elements already in the set, this can be discovered by a simple
comparison to the largest element already in the set. If this check is not performed, a
full binary search may be needed. The boost::flat_set does not perform this check, but it
would be a very simple addition, therfore the time taken with this optimization is included
in the table.

For front and back insertions and deletions, it is assumed that several such operations
are performed sequentially, such that the beginning/end of the underlying array is already
in the fastest level cache.

Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n · log n Binary search

Insertion, random or front n n/B n log n Element moves

Insertion, back, w/ search log n log n
B

√
n · log n Binary search

Insertion, back, w/o search 1 1 log n Reallocation

Deletion, random or front n n/B n log n Element moves

Deletion, back, w/ search log n log n
B

√
n · log n Binary search

Deletion, back, w/o search 1 1 log n Reallocation

Iteration n n/B n log n

Table 3.2: Running times for boost::flat_set

Copying and Moving

The boost::flat_set requires that elements are copyable or movable. Copying or moving
elements dominate the running time for most operations, so the structure is excpected to
be most useful for small objects.

Iterator Validity

The boost::flat_set follows the second level iterator validity guarantee of section 2.3,
namely that conditions for iterator invalidation may be checked by the user. For both
insertions and deletions, iterators to elements larger than the inserted/deleted element are
invalidated, because these elements are moved one step to the right/left. Furthemore, an
insertion might invalidate all iterators if a reallocation is triggered. As this will only hap-
pen when the boost::flat_set size is equal to its capacity, this condition may be checked by
the user.

Exception Guarantees

The exception guarantees that may be given by the operations of boost::flat_set depends
on the possible sources of errors. The simplest sources to handle are memory allocation
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during reallocation. If a reallocation is triggered, the memory is allocated before copying
or moving any elements. If boost::flat_set fails to allocate the necessary memory, there is
no modification of the original memory chunk, and the strong exception guarantee holds.

For copying or moving, however, the situation is more complicated. Copying or mov-
ing is needed in two situations: Shifting elements to the right/left during ordinary inser-
tion/deletion, and during reallocation.

For reallocation, the guarantees provided are the same as for std::vector. If elements
are copied, the original memory chunk is not altered during reallocation, and thus it is
possible to simply discard the new memory chunk and return to the old state if exceptions
occur. Thus copying reallocation can respect the strong guarantee. If elements are moved,
the original memory chunk will usually be altered during this operation, thus it may not
be used as a fallback. Thus, if the move operations may throw, it is impossible to give the
strong guarantee.

Shifting elements during ordinary insertion/deletion is more unsafe, because it is done
in-place, which means there exists no complete backup in case of copy/move failure. As
discussed in Section 2.4, there are two viable options when such an error occurs: Delete
all elements from the point of failure to the last element, or simply return a bad state.
The first option is an instance of the partial guarantee, since it may be guaranteed that the
boost::flat_set still includes all elements smaller than the inserted/deleted element. The
second option is an instance of the weak guarantee. As far as the author can tell, boost←↩
::flat_set follows the second approach. Thus, if the element type has either a noexcept

copy or noexcept move operation, boost::flat_set may give the strong exception guarantee.
If both copying and moving may throw exceptions, the boost::flat_set may only give the
weak guarantee.

Element Requirements

The boost::flat_set only requires that element types support comparison.

3.2.1 Custom Flat Set
In preliminary experiments with boost::flat_set, it was discovered that insertion into the
middle of the set was much slower than similar insertions into a std::vector. As the boost←↩

::flat_set is based on the underlying boost::vector, the two vector implementations were
tested against each other, and showed large differences in performance on the test platform.

For this reason, a custom implementation using std::vector was developed, called
custom_flat_set. In addttion to changing the underlying array, the search procedure was
augmented by checking the last element of the range, to allow for O(1) time insertion in
ascending order.

3.3 Circular Set
As the boost::flat_set is built upon an underlying dynamic array, it can only grow effi-
ciently in one direction, similar to std::vector. Inserting an element in the middle of the
array causes all elements to the right of the inserted element to be moved. This means a
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3 4 5 1 2

memory begin

element end element begin

memory end

Figure 3.3: Structure of circular_set

random insertion will cause n
2 moves on average. Insertions at the lower end of the set

will cause n moves.
The circular_set uses a circular buffer representation of a sequence to store elements

in sorted order, as shown if Figure 3.3. This means that the sequence of elements can wrap
around the end of the underlying memory buffer, and the sequence can therefore shrink
and expand equally efficient in both directions. When inserting an element into the middle
of the sequence, the elements can be pushed left or right depending on the position of
the inserted element, never causing more then n

2 elements to be moved. On average, n4
elements will be moved during one random insertion.

3.3.1 Circular Iterators

To support iteration of the circular_set, a new type of iterator was implemented. This
iterator consists of three iterators to its underlying range:

• current, pointing to the actual element in the underlying range

• first, corresponding to the memory begin position in Figure 3.3

• last, corresponding to the memory end positions in Figure 3.3

When the current iterator reaches the last iterator, it wraps around to the first iterator.
Compared to using the underlying iterators directly, there is some overhead associated
with this circular iterator. First, it uses three times the amount of memory, as it must store
three underlying iterators. Second, for every incrementation of the current iterator, it must
be compared to the last iterator to check if it should wrap around to the first iterator.

Running Time

In the asymptotic sense, the running time for most operations on the circular_set is equal
to that of boost::flat_set. The only difference is for insertions and deletions in the front of
the set. As an extra optimization, the search operation of circular_set starts by checking
the query element against the extreme values of the circular_set. This eliminates the need
for a complete binary search if the element is to be placed in the front or the back of the
circular_set.
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Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n · log n Binary search

Insertion, random n n/B n log n Element moves

Insertion, front or back 1 1 log n Reallocation

Deletion, random n n/B n log n Element moves

Deletion, front or back 1 1 log n Reallocation

Iteration n n/B n log n

Table 3.3: Running times for circular_set

Copying and Moving

Although the circular_set copies or moves about half as many elements the boost::←↩

flat_set, this still dominates the cost of insertions or deletions.

Iterator Validity

Because elements on both sides of an inserted/deleted may affected by a insertion/deletion
(though not at the same time), circular_set follows the first and lowest level of iterator
validity guarantee. This means that any iterator may be invalidated by insertions and
deletions.

Exception Guarantees

The handling of exceptions during insertion/deletion in circular_set is similar to that of
boost::flat_set, which is discussed in Section 3.2. If the element type has either a nothrow

copy operation or a nothrow move operation, circular_set can give the strong guarantee. If
none of these operations are nothrow, circular_set can only offer the weak guarantee.

Element Requirements

The circular_set only requires that element types support comparison.

3.4 Slide Set
As seen in section 3.3, the circular_set improves upon some aspects of boost::flat_set←↩

, namely more efficient random inserts and much more efficient front insertion. These
improvements come at a cost, however, as the circular buffer structure is more complex
than a simple linear array. Most notable is tha fact that elements are no longer guaranteed
to be located contiguously in memory.

The aim of the slide_set is to retain the benefits of the circular_set without the com-
plicated structure. This is achieved, at keast in theory, by a very simple mechanism. The
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1 2 3 4 5

memory begin

element begin element end

memory end

Figure 3.4: Structure of slide_set

1 2 3 4 5

1 1.5 2 3 4 5

Figure 3.5: Ordinary insertion into slide_set

basic idea is to store elements contiguously in order in the middle of the underlying mem-
ory buffer, making insertions at both ends efficient, as shown in Figure 3.5. This is possible
until the elements reach the end of the memory buffer in either direction. The next inser-
tion in this end must force a move of many elements (> n/2). Instead of moving all the
elements one step towards the other end, all the elements are moved to the middle of the
memory buffer, thus restoring some order. This case is shown in Figure 3.6.

Random insertions in this structure is about as fast as is possible with any structure
that stores all elements in order with no gaps, namely n

4 moves on average. As this is also
the class of structures that supports iterators with no overhead over raw pointers, this is
arguably an important class of structures.

For insertions in order, the analysis is slightly more complex. We will look at front
insertions, with no loss of generality. Consider a slide_set with its n elements in the
middle of a memory buffer, with a gap of n

2 elements at both sides. The n
2 first elements

will be inserted without causing a move. The next insertion will trigger a move, creating
new gaps of size n

4 before the element is inserted. As the gaps will be halved in each step,
the number of steps before the buffer is full is Θ(log n), during which n elements are
inserted. Given that each of these steps cause Θ(n) elements to be moved, the total cost
is Θ(n · log n). As a consequence, the amortized cost of each insertion is Θ(log n). The
next insertion will then cause an expansion of the underlying memory buffer, such that 2n
elements are now stored in the middle of the buffer with size n gaps at each side. The
same analysis will apply for the next insertions.

There is a way, however, to remove this Θ(log n) factor. Instead of filling the array

1 2 3 4 5

1 1.5 2 3 4 5

Figure 3.6: Relocating insertion into slide_set
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completely before expanding the memory buffer, it is possible to set the maximum number
of elements to some constant fraction 0 < α < 1 of the buffer size. Suppose that the
memory buffer has just been doubled in size, and now has size m. This means the there
are α·m2 elements in the middle of the buffer, and that gaps are now of size (m−α·m2 )/2 =
m( 1

2 −
α
4 ). The buffer will be expanded when the gaps are (m− α ·m)/2 = m 1−α

2 . As
the gaps are halved at each step, the number of steps k is approximately given by

m( 1
2 −

α
4 )

2k
= m

1− α
2

,

which gives

k = log2

(
2− α
1− α

)
− 1 .

For a constant α, this gives a constant number of steps, each moving Θ(m) elements,
giving Θ(m) moves in total. The number of elements inserted in total is α·m−αm2 = αm2 ,
which is Θ(m). The amortized cost is therefore Θ(1).

Any choice of α will cause the asymptotic bound of Θ(1) insertions, but the value cho-
sen has practical implications. A small α will cause earlier reallocations and fewer relo-
cations in the same memory buffer. On the other hand, this will also cause the slide_set

to use more memory, as the occupancy of the memory buffer will be lower on average.
A large α value will use less memory, but as α tends toward 1, running time for ordered
insertion will tend toward Θ(log n).

For a small enough α, it is possible to eliminate the need for relocations altogether dur-
ing ordered insertion. Assume that a slide_set with n elements has just been reallocated to
a memory chunk of size 2m. Since the reallocation was triggered, we must have n ≥ αm.
In addition, as the previous memory buffer had size m, we also have n ≤ m. The gaps at
each side has size 2m−n

2 = m− n
2 . The ordered insertion will fill one of these gaps before

triggering either a relocation to the middle or a reallocation to a larger memory buffer. At
this point there are n+m− n

2 = n
2 +m elements in the slide_set, and in order to trigger

reallocation we need
n

2
+m ≥ α · 2m,

but since we have n ≥ αm, it is enough to find an α such that

αm

2
+m ≥ α · 2m.

This is accomplished by choosing α to be 3
2 . Even though this eliminates the need for

relocations, it means up to 3n memory may be used to store n elements.

Running Time

The analysis of the running time for slide_set is largely equal to that of circular_set,
found in Section 3.3.
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Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n · log n Binary search

Insertion, random n n/B n log n Element moves

Insertion, front or back 1 1 log n Reallocation

Deletion, random n n/B n log n Element moves

Deletion, front or back 1 1 log n Reallocation

Iteration n n/B n log n

Table 3.4: Running times for slide_set

Copying and moving

In addition to the copies or moves that a circular_set must perform, the slide_set must
perform relocating moves. For a sensible value of α, between 0.8 and 0.9, about 1.5 to 2.5
relocations may be necessary between two consecutive reallocations. As these relocations
cost n each, and are amortized over the n/2 elements inserted between reallocations, this
means that the amortized number of element relocations per insertion can be as high as
3 to 5. This could make the slide_set slower than the circular_set for ordered insertion,
particularly for elements types with costly copy/move operations.

Iterator Validity

Because elements on both sides of an inserted/deleted may affected by a insertion/deletion
(though not at the same time), slide_set follows the first and lowest level of iterator validity
guarantee. This means that any iterator may be invalidated by insertions and deletions.

Exception Guarantees

The handling of exceptions during insertion/deletion in slide_set is similar to that of
boost::flat_set and circular_set, which is discussed in Section 3.2. If the element type
has either a nothrow copy operation or a nothrow move operation, slide_set can give the
strong guarantee. If none of these operations are nothrow, slide_set can only offer the
weak guarantee.

Element Requirements

The slide_set only requires that element types support comparison.

3.5 Merge Set
Inserting k random elements into a set of size n takesO(k(n+k)) for ordered array struc-
tures like boost::flat_set, circular_set and slide_set, because each insertion may trigger
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the movement of O(n + k) elements. Inserting k ordered values in a single operation,
however, can be done in O(n + k) time, as the two ranges can simply be merged. This is
the basic idea behind the merge_set: Initially insert new elements into an input buffer, and
periodically merge the input buffer and the main array into a new main array. The goal of
this structure is to keep some the benefits of a simple ordered array, while using the input
buffer to speed up the insertion procedure. Figure 3.7 shows a merge_set with an ordered
array as the main structure and using a balanced binary search tree as an input buffer.

Although the internal structure of the merge_set is separated into two structures, this
can not be allowed to affect its interface. To support viewing the two structures as a unified
structure, we have developed a merging iterator, with which it is possible to view separate
ordered ranges as a single range. This is achieved by internally keeping two pointers, one
for each structure, pointing to two separate elements. Logically, the merging iterator points
to the smallest of the two elements. When the merging iterator is incremented the internal
iterator pointing to the smallest element is incremented. The merging iterator is explained
in detail in Section 3.5.1.

When inserting an element into a merge_set, both the main array and input buffer is
searched for the element. We define the lower bound element of a query element q in a
set S to be the smallest element that is equal to or larger than q in S. This search returns
iterators to the lower bound elements in both structures. If the element does not already
exist, it is inserted into the input buffer, and a merging iterator is returned. This merging
iterator internally points to the newly inserted element in the input buffer, as well as to the
lower bound element in the main array.

How large should the input buffer be in relation to the main array, and what structure
should be used for the input buffer? Let the main array have size n, and let f(n) denote the
size of the input buffer. Furthermore, let g(m) denote the time taken to insert an element
into an input buffer of size m. Filling the input buffer would then have a running time
of O(f(n) · g(f(n))), and the resulting merge operation would have a running time of
O(n+ f(n)). The amortized running time for insertion would then be

O

(
f(n) · g(f(n)) + n+ f(n)

f(n)

)

= O

(
g(f(n)) +

n

f(n)

)
.

As the first term of this expression grows with growing f(n), and the second term shrinks
with growing f(n), the optimal f(n) is one that makes the two terms equal. If the input
buffer is also an ordered array, then insertion runs in linear time, so g(f(n)) = f(n). The
solution of f(n) = n/f(n) is f(n) =

√
n, so the input buffer should be proportional to

the square root of the main array size. Using a balanced binary search tree, however, we
have g(f(n)) = log2f(n), and the optimal f(n) is a solution to log2f(n) = n/f(n). The
exact solution is

f(n) =
n · log22

W (n) · log22
,

where W (z) is the Lambert W function [14]. As the Lambert W function is Θ(log n), the
running time for insertions is Θ(log n). The Θ(log n) running time for insertions is also
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1 3 4 6 8
2 7

5

iterator

Figure 3.7: Structure of merge_set

achived by simply using f(n) = Θ(n), so this value will be used instead in practice. We
will only describe and measure running times for the version of the merge_set using a bal-
anced binary search tree of size Θ(n), as this structure has the most promising asymptotic
bounds.

The merge_set was not conceived with efficient deletion in mind, and with the structure
defined above it is difficult to support fast deletions. The simplest solution, and the one
implemented, is to call the delete operations of both substructures, which takes linear
time if the element resides in the main array. As most of the element are located in the
main array, this is a slow operation. Due to initial dissapointing results of the overall
performance of merge_set, we did not spend much effort trying to improve the deletion
operation.

Running Time

Searching the merge_set involves searching both the main array and the input buffer, so
total running time depends on which structure dominates. The sizes of the two structures
are asymptotically equal, so in the RAM model they both have Θ(log n) running time
for search. Since the search tree makes less efficient use of the cache, it dominates the
runnning time for search in the COB and UMH models. During random insertion, the
search tree version only requires amortized O(1) rotations.

Merging and reallocation is not cache-efficient for the search tree, thus iterating over
the input buffer dominates the running time in the COB and UMH models. In the RAM
model, iterating over both structures take linear time.

Operation RAM COB UMH Dominating factor

Search log n log n
√
n log n Tree search

Insertion log n log n
√
n log n Tree Search

Deletion n n/B n log n Element Moves

Iteration n n n3/2

Table 3.5: Running times for merge_set
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Copying and moving

The merge_set needs no copying or moving when inserting into the input buffer, as this
is just insertion into a std::set. During merging, however, all n elements are copied or
moved. This cost is amortized over the size of the input buffer, call this βn, such that each
insertion has the amortized cost 1/β. For a reasonable β between 0.1 and 0.2, this means
that insertion costs 5 to 10 element moves. Even though this is a constant factor, it can
severely impact performance, especially for large objects.

Iterator Validity

Internally, the merging iterator stores four simpler iterators, thus the merging iterator can
only stay valid if none of these iterators are invalidated. In addition to staying valid, the
simpler iterators must retain their semantic properties. The four iterators are:

1. Iterator pointing to actual element (in main array or input buffer)

2. Iterator pointing to lower bounding element in opposite structure

3. Iterator pointing to the end of the main array

4. Iterator pointing to the end of the input buffer

If the input buffer is a balanced search tree with stable iterators, no iterators are invalidated
unless a merging reallocation is triggered. This is because the main array is not modified
during an insertion. The API of the merge_set may easily be extended to allow checking
for this condition. Even though no simple iterators are invalidated, the lower bounding
element may be changed by an insertion, because a new lower bounding element is in-
serted. This situation is shown in Figure 3.8. The upper figure shows an iterator pointing
to the element 2 in the main array, while the lower bounding element in the input buffer
is the element 3. The middle figure shows the insertion of the element 2.5, which subtly
changes the meaning of the iterator. The iterator is no longer correct, as the lower bound-
ing element is now 2.5. In the lower figure, the iterator is incremented, but since it has
no knowledge of 2.5, it now points to 3. The insertion invalidated the iterator, causing
it to behave incorrectly when incremented. As these problems are subtle, and not easily
detectable by the user, no guarantees are made for iterator validity for insertion.

For deletion, there is the additional chance of modifying the main array, which will
invalidate the merging iterator in less subtle ways, so there is certainly no chance of guar-
anteeing iterator validity for deletions.

Exception Guarantees

The merge_set can give the strong exception guarantee if the element type is copyable, or if
it is noexcept movable. This is easy to see for normal insertion into the input buffer, which
itself supports the strong guarantee. When merging is necessary, this is done by allocating
a new memory chunk for the new main array. If the allocation fails, the old structure is not
corrupted. If elements are copied over to the new array, then a failed copy also leaves the
old structure uncorrupted. Moving the elements can only be done safely if the operation is
noexcept, as the move operation usually changes the element moved from.
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Figure 3.8: Invalidation of iterator in merge_set

Element Requirements

The merge_set only requires that element types support comparison.

3.5.1 Merge Iterator

It is sometimes useful to view a set of sorted ranges as a single merged range. The C++
standard provides the function merge(), but this function physically merges the two ranges
into a new container. The purpose of the merge iterator presented in this section is simply
to give a view of the merged range, without physically merging the underlying containers.
We have only implemented merge iterators for pairs of ranges, but in theory there is no
limit to the number of sets that can be merged.

Implementation

The merging iterator uses two iterators to continously keep track of one position for each
range, in the same way one would in a merging algorithm. The smallest item pointed to by
one of these iterators is the next element in the sequence. Incrementing the merging iterator
is simply implemented by incrementing the iterator pointing two the smallest element.

In addition to the two iterators, the merging iterator stores the end iterator for both
ranges. This is needed because one range will reach the end before the other. When this
happens, one should stop comparing items and only increment the range that has not yet
reached its end.
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Multiple Ranges

The implementation of merging iterators above have not addressed the possibility of merg-
ing more than two sequences. If merges of more ranges are needed, this can be imple-
mented by using the simple two-way merging iterator recursively. The number of compar-
isons used to increment such a merging iterator tree is linear in the size of the tree.

As each merging step in an N -way merge can be performed in O(log(N)) time, this
is not optimal. This problem can be solved in at least two ways:

1. Cache the current item pointed to by each merging iterator node, and make sure
the merging tree is balanced. Dereferencing the iterator will be a constant time
operation, because the item is cached in the root. Incrementing an iterator will only
trigger an update in the subtree containing the smallest item, and recursively this
leads to O(log(N)) time increments, which is optimal.

2. Create an N -way merging iterator that internally uses a priority queue to efficiently
read and update the positions. The N -way merging iterator could also be imple-
mented by internally using the balanced tree of two-way mergers described above.
The first method is flexible because it can be used without the programmer knowing
whether the underlying iterators are merging iterators. The problem, however, is that
this lack of knowledge means no guarantees on the height of the merge tree. The
second solution is less flexible, requiring access to all basic, nonmerging iterators.
The advantage of this solution is that the balance of the tree can be guaranteed. The
advantage is evene greater if the explicit priority queue is shown to be faster.

Caching Iterator

The need for a caching merging iterator is outlined in Section 3.5.1. This could be imple-
mented in several ways:

1. merge_iterator could be changed to always cache its current item. This would guar-
antee the performance of balanced merge trees, but the storage overhead of caching
would be unavoidable.

2. merge_iterator could optionally cache its inputs, this guarantees that the iteration is
no less efficient than possible given the effieciency of its underlying iterators.

3. A new caching_iterator class could be defined, that does nothing but cache the value
of its underlying iterator. This adaptor could be wrapped around the underlying it-
erators for a merging iterator, or wrapped around the merging iterator itself, and
model the previous two solutions. From a design perspective, the third solution is
preferable, as it divides two unrelated concepts (merging and caching) into two sim-
ple classes. From a performance perspective, there is probably not much difference,
as a good C++ compiler will be able to remove the apparent indirection.
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Figure 3.9: Conceptual view of a Packed Memory Array

3.6 Slack Set

Simple structures like slide_set and boost::flat_set gives optimal iteration speed because
they store elements contiguously, but have to move O(n) elements around during inser-
tion. This cost is inevitable if the elements are to be kept in strict contiguous order at all
times. This contiguous storage has two major benefits: The code required to iterate over
the elements is very simple, resulting in low instruction overhead, few branch mispredic-
tions and a very low chance of instruction cache misses. The iteration is also optimal in the
cache-oblivious model, which means it will always efficiently use all levels of the mem-
ory hierarchy during iteration. In contrast, iterating over an unrolled linked list can only
efficiently use levels of the memory hierarchy where cache line size is smaller than each
node, as detailed in section 3.8.2.

The contiguous storage requirement is sufficient for cache-efficient iteration, but it
is not necessary, if ignoring constant factors. One possible relaxation of the contiguous
storage is to allow for gaps between elements. This is called a packed memory array
(PMA) [17]. For a PMA with n elements, we require that the total size of the PMA is
Θ(n). If the total size is βn, for some constant β ≥ 1, iterating over the entire structure
will cause βn/B cache misses, which is Θ(n/B), and therefore optimal.

When inserting into a PMA, the insertion point is found by binary search. The only
elements that need to move are the elements between the insertion point and the next gap.
For a good distribution of gaps, this costs few moves. The tricky part is keeping the gaps
well distributed across the PMA. This is done by breaking up the PMA into chunks of
constant size k. When an insertion causes a chunk to be full, this triggers a redistribution
of elements. The elements must be redistributed over a contiguous set of chunks containing
the recently filled chunk.

To search for a suitable set of contiguous chunks, we organize the chunks into a virtual
binary tree, where the chunks are leaf nodes. This tree structure is illustrated in Figure 3.9.
Each internal node represents all chunks in its leaf nodes. From the leaf representing the
recently filled chunk, we walk upwards in the virtual tree, and redistribute over the first
viable internal node. An internal node is viable if the average occupancy of its chunks are
within bounds. These bounds are given by:

α− αd

h− 1
≤ average occupancy ≤ β +

d(1− β)

h− 1
,
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2 3 4 5 6 7 8 9 10 11 12

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Root

Figure 3.10: Structure of slack_set, using static_slide_set for chunks

where d is the depth of the node, h is the height of the virtual tree and α, β are parameters
of the structure, fulfilling the requirement 0 < 2α < β < 1. The intuitive understanding
of these bounds is that the leaves are bounded by 0, 1, the root is bounded by α, β, and the
levels in between have bounds given by a linear interpolation. If the root node fails meet
the required bounds, this triggers a reallocation of the entire PMA, similar to a dynamic
array.

The key to the amortized running time analysis of insertion is the linear interpolation
of bounds. The difference in threshold between each level is 1−β

h−1 . At each level d in the
tree, a redistribution will only happen when level d+ 1 is out of bounds. Let level d have
capacity m, level d + 1 then has capacity m

2 . Since the last redistribution of level d, at
least m2 ·

1−β
h−1 elements have been added, in order to bring level d+ 1 out of bounds. The

redistribution itself costs m, which means that the amortized cost of rebalancing level d is
2(h−1)
1−β which is Θ(h). Since this cost must be paid for each level of the virtual tree, the

total amortized cost is O(h2).
Setting the chunk size k to a constant we get h ∈ Θ(log n), and the amortized worst-

case insertion time is O(log2n). A similar analysis is valid for deletions, which has the
same amortized bounds. Clearly, the best case is O(log n) for insertion that includes
search, andO(1) for insertion at a known position. This is achieved if all inserts are spread
perfectly in the array. When a chunk is first filled, this will then trigger a reallocation of
the entire array, thus performing no more copies than a dynamic array.

The most direct implementation of a PMA maintains gaps by marking slots as used or
unused. Chunks are only a virtual entity, representing an interval of the PMA. Searching
in this gap structure requires a modified binary search algorithm, because the middle slot
of the range might be unused. Similarly, the used/unused distinction must be checked for
every step of an iteration. Fearing that this would lead to code complexity and frequent
branch mispredictions, we instead opted for a class representing chunks explicitly. This is
the basic idea of the slack_set.

The slack_set keeps a std::vector of chunks, where the class of the chunk is a template
parameter of the slack_set. In order to retain the cache efficiency of the PMA, the chunk
class is required to store elements directly inside the object, not through indirection, so
basing the chunk implementation on std::array is a natural option. As the size of each
chunk is constant, the asymptotic behaviour is not important, so the structure should most
importantly be simple. When testing the slack_set, we have used a static size version of the
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Figure 3.11: Insertion into slack_set, triggering redistribution

slide_set, termed static_slide_set, to represent chunks. The static_slide_set internally
uses a std::array to store elements directly, as opposed to the indirect std::vector used by
the slide_set. The resulting structure is illustrated in Figure 3.10.

Binary search on the slack_set is implemented by first searching on the last elements
of each chunk, thus locating the chunk where the element must be if it exists. This chunk
is then searched by ordinary binary search. This allows for a simple implementation of
binary search. Iteration is achieved by using a two-level iterator, which internally keeps
an iterator to a chunk and an iterator to an element inside that chunk.

Running Time

The search procedure of the slack_set is a slight modification of the simple binary search,
but the running time is equal in all models. That is because the last elements of chunks
are distributed evenly among all the elements, so the cache is essentially used in the same
manner, although the spread nature of the elements will give a O(1) factor increase in the
number of cache misses.

Insertion has already been analyzed in the RAM model, where it has an amortized
running time of Θ(log2n). We have already shown that a node at level d we may amortize
the m element moves over at least m

2 ·
1−β
h−1 , or Θ

(
m

log n

)
elements inserted. In the

COB model, the m element moves cost m/B cache misses, so amortized running time is

O

(
log2

n
B

)
.

What is the cost of iterating over m elements in the UMH model? In the worst case,
the iteration might need to read a cache line from the slowest layer, which takes

√
n
α time.

This cost dominates the cost of all layers with cache line sizes larger than m. This is
because the cache lines are aligned, such that a read at the slowest level ensures that no
more reads are necessary in the faster levels. This holds up to the layers with cache lines
smaller thanm. The first level with cache line size< m requiresO(1) cache line reads, for
a total cost of Θ(m). For each faster level beyond this, the number of reads are multiplied
by ρ, but the time taken for each read is divided by ρ. For this reason, all layers with cache
line sizes less than m have a cost of Θ(m). Since there are Θ

(
logρ

m
α

)
such levels, the

total cost of the m element moves is O
(√

n
α +m logρ

m
α

)
. The amortized cost for a level
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with capacity m is then

O

(
log n ·

[√
n

αm
+ logρ

m

α

])
.

The
√

m
αm term is maximized in the leaf nodes, while the logρ

m
α term is largest in the root

node. Since m has O(1) size in the leaf nodes, and doubles in size for every level upward,
the sum of the first term for all levels is Θ(

√
n
α ). As the sum of the second terms for all

levels can be at most the root level cost times the number of levels, or O(log2ρ
n
α ), the first

term dominates. Thus the amortized running time for insertion is O (
√
n log n).

Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n log n Binary Search

Insertion log2 n log2
n

B

√
n log n Redistribution

Insertion, random log n log n
B

√
n log n Binary Search

Deletion log2 n log2
n

B

√
n log n Redistribution

Deletion, random log n log n
B

√
n log n Binary Search

Iteration n n/B n log n

Table 3.6: Running times for slack_set

Copying and Moving

When insertions and deletions are spread very evenly, at most a constant number of copies/-
moves are necessary for each insertion/deletion. However, when the distribution is more
skewed, up to log2 n copies/moves are necessary per insertion/deletion. Therefore we ex-
pect this structure to perform poorly for expensize copy/move types when distributions are
skewed.

The current implementation does not support move-only element types. This is be-
cause the insertion operation is required to return an iterator to the inserted element. When
a redistribution is triggered, a copy is made of the inserted element, in order to search for
this element after redistribution is completed. It would certainly be possible instead to
store the order of the element with repect to the set elements to be redistributed. A scan
could then be made after redistribution, counting the number of elements in order to find
the inserted element. We did not have the time to implementat this copy-free alternative,
but we excpect is would be possible to do so without adding much overhead.

Iterator Validity

As a single insertion or deletion may cause any number of elements to move, the slack_set←↩

can not offer any iterator validity guarantees for insertions/deletions.
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Figure 3.12: Structure of the proxy_slack_set searching cache

Exception Guarantees

In the current implementation of slack_set, redistribution is done by first copying/moving
all elements in the redistribution range over to a temporary buffer. The elements are then
copied/moved back in a second pass. If any of these passes are interrupted, the slack_set

is in an invalid state, and it is impossible to restore validity without repeating element
operations that may throw new exceptions. If all elements in the buffer are discarded, this
would probably leaves some chunks empty, violating the distribution invariants. Because
of this, the slack_set can only meet the weak exception guarantee if no noexcept copy or
move operation exists for the element.

If a noexcept copy or move operation does exist for the element type, the slack set can
give the strong exception guarantee. When an element is about to be inserted or deleted
into a chunk, we can check if the operation will trigger a redistribution. If it will, the
redistribution buffer may be allocated ahead of time. If this fails, the operation is aborted
without having modified the slack_set.

Element Requirements

The slack_set only requires that element types support comparison.

3.6.1 Proxy Slack Set
Motivated by the fact that binary search dominates the running time for random insertions
in slack_set, the proxy_slack_set is a variation of the slack_set attempting to speed up
this binary search. The proxy_slack_set simply keeps a cache containing copies of all the
largest elements in one contiguous array, as seen in Figure 3.12.

As the proxy_slack_set has to store copies of elements, it can only be used for copyable
types. This restriction could be lifted somewhat by introducing the notion of a comparable
proxy of a non-copyable type, discussed in Section 3.8.1.

3.7 Adaptive Slack Set
The PMA structure presented in Section 3.6 does not take insertion patterns into consid-
eration when redistributing elements, but always redistributes elements evenly, as shown
in Figure 3.11. If several insertions will occur in the same part of the PMA in the future,
it would be beneficial to leave more gaps in this part during redistribution. This is the
basic idea of the Adaptive Packed Memory Array (APMA), presented in [10]. The APMA
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achieves the same O(log2n) amortized bound for arbitrary inserts, but can additionally
insert contiguous elements in O(log n) time.

We first show how the APMA achieves the same bound for arbitrary inserts as the
PMA. Consider a node in the virtual redistribution tree of the APMA. During redistribu-
tion, the node will not necessarily distribute elements equally between its two subtrees. It
will, however, ensure that both subtrees have an occupancy that is within the upper and
lower limits for this node, as described in Section 3.6. Because this property is satisfied,
the analysis of the PMA insertion time is also valid for the APMA. This is called the
rebalance property in [10].

If we assume that all insertions happen in the same leaf node of the redistribution tree, it
is quite easy to see the optimal rebalancing algorithm that satisfies the balancing property.
Without loss of generality, let all insertions happen at the start of the APMA. When a node
a needs to be redistributed, the optimal policy is to put as many elements as possible in
the subtree that will not have insertions in the future, the right subtree. The right subtree
will now have occupancy at the upper limit of a. The next time the left subtree of a has
occupancy above its bounds, so will a have. Its right subtree is already filled as much as
possible, and its left subtree is above the upper limit for a. Therefore, each node will only
redistribute once before delegating the task to its parent. The maximum number of times a
node can redistribute before reallocation is then the number of redistributions in all levels
above the node plus one time before the next reallocation. For the root node, there is only
one redistribution. For a node at level d, the maximum number of redistributions is

R(d) = 1 +

d−1∑
i=0

R(i) = 2d .

Because the work required to redistribute at level d is n
2d

, the total work at each level is
O(n). As there are Θ(log n) levels in the tree, the total work is O(n log n). The number
of elements inserted to force a reallocation is Θ(n), so the amortized cost of each insertion
is O(log n).

The O(log n) bound is shown to hold for the APMA structure of [10]. We have devel-
oped a modification of the slack_set, inspired by the APMA, but we have not proved that
the structure achieves the theoretical bounds. We have called this structure adaptive_slack_set←↩

. It keeps track of hot spots by keeping an insertion counter for each chunk. When we in-
sert a new element, all insertion counters decay by multiplication with a number φ, where
0 < φ < 1. Then the insertion counter of the active chunk is increased by one. This
ensures that more recent insertions are given more weight. The insertion counters are not
maintained at all times, but are only updated when their value is needed. When the value
is needed, the time stamp of their last update, tL, is compared to the a global time stamp of
the latest insertion, tG. The counter is then multiplied by φtG−tL and the local time stamp
is set to the value of the global time stamp.

During redistribution, the insertion counters are used to decide how many elements
to store in each subtree. Specifically, the ratio of insertion counter value to gap number
should be close to equal for the two subtrees. When this would lead to a violation of the
lower or upper bounds, these bounds are used instead.
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Running Time

The running time for search is equal to that of slack_set. Arbitrary and random inser-
tion/deletion patterns also give the same running time as for the slack_set, as random
insertions are already dominated by search, and the adaptive_slack_set offers no improved
redistribution scheme for arbitrary patterns. Indeed, it is impossible to adapt to an arbitrary
pattern, as the pattern seen so far can be used to predict future patterns.

The only operation that is improved by adaptive_slack_set is repeated insertions in
the same area of the adaptive_slack_set. The full range of insertion patterns that may
benefit from the adaptive rebalance scheme is difficult to describe, but at least it includes
insertion of contiguous values. By contiguous we mean that the elements are inserted in
order (ascending or descending), and that the inserted elements do not interleave with any
preexisting elements in the adaptive_slack_set.

If the above condition holds, we can analyze the amortized cost of redistributions be-
tween two reallocations. From before we know that a node at level d will need at most
2d redistributions, each redistributing Θ(n/2d) elements. For the RAM model, this means
simply that cost for each level is O(n), so the total cost for all levels is O(n log n). In
the COB model, redistributing Θ(n/2d) elements costs Θ( n

2dB
) cache misses, so total

work is O((n log n)/B). Thus the amortized cost of redistributions are O(log n) and
O((log n)/B) for the RAM and COB models respectively.

In the UMH model, moving Θ(n/2d) elements has the cost

O

(√
n

α
+

n

2d
logρ

n

α2d

)
,

so each level d has the cost

O

(
2d
√
n

α
+ n logρ

n

α2d

)
.

Starting at the leaf level, the first term may be summed up for all levels as follows:

n

√
n

α
+
n

2

√
n

α
+
n

4

√
n

α
+ · · ·+

√
n

α
= O

(
n

√
n

α

)
.

The second term is maximal at the root node, with the value n logρ
n
α . Using this as

an upper bound for all levels, it can easily be seen that the first term dominates the total
cost. Amortizing this cost on the Θ(n) insertions between two reallocations, we get the
amortized running time of O(

√
n).

Copying and Moving

Aside from copying/moving fewer elements during contiguous insertion/deletion, the adative_slack_set←↩

have the charateristics as the slack_set.

Iterator Validity

The adaptive_slack_set suffer the same problems as slack_set, an can not guarantee itera-
tor validity for any insertion, deletion operation.

40



3.8 B+ Set

Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n log n Binary Search

Insertion log2 n log2
n

B

√
n log n Redistribution

Insertion, random log n log n
B

√
n log n Binary Search

Insertion, contiguous log n log n
B

√
n log n Binary Search

Deletion log2 n log2
n

B

√
n log n Redistribution

Deletion, random log n log n
B

√
n log n Binary Search

Deletion, contiguous log n log n
B

√
n log n Binary Search

Iteration n n/B n log n

Table 3.7: Running times for adaptive_slack_set

Exception Guarantees

The exception guarantees offered by adaptive_slack_set are the same as for slack_set←↩

. For element types with a noexcept copy or move operation, adaptive_slack_set can offer
the strong exception guarantee, otherwise it may only offer the first level guarantee of not
leaking resources.

Element Requirements

The adaptive_slack_set only requires that element types support comparison.

3.8 B+ Set
The B-tree, first presented in [6], is well-known structure specifically designed to store
and update large sets of records on permanent storage. Since permanent storage systems
usually read and write data in large blocks, the B-tree is organized in a way that minimizes
the number of blocks that are read and written. Memory hierarchies also have blocked
reads and writes, so the blocked structure of B-trees may improve locality of reference.

A modification of the B-tree, called a B+-tree [19], was implemented for this project.
In a B+-tree, elements are stored in leaf nodes, with copies stored in internal nodes. In-
ternal nodes store a std::array of element copies and pointers to child nodes, while each
leaf node stores a slide_set of elements. Two independent paramters specify the number
of elements per internal node and the number of elements per leaf node.

Running Time

Even though the size of internal nodes and leaf nodes may be different, we simplify the
analysis and use b for both. Searching the B+-tree is done by searching through Θ(logb n)
nodes. For each node, binary search is performed to find the correct child node. In the

41



Chapter 3. Data Structures

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 5 8 10 14

8 14

Figure 3.13: Structure of the b_plus_set

RAM model, searching a node takes log2 b time, so the total running time is logb n ·
log2 b = log2 n.

In the COB model, the search of each nodes costs log2d bB e cache misses. Thus total
running time is logb n · log2 d bB e. For b < B this reduces to Θ(log n). When b is close to
B, the running time is Θ(logB n). As b goes toward n, the cost is Θ(log n

B ), and becomes
equal to ordinary binary search. This indicates that search is the fastest when b is roughly
equal to B, which is not surprising. When B is unknown, or there are many levels of
cache, it is difficult to use each level of the cache efficiently.

If we assume that b <
√
n/α, each node fits in one or two cache lines in the slowest

cache level in the UMH model. As the cost of reading these cache lines dominate the
search time for a single node, each node costs O(

√
n) cache line reads. As there are

logb n nodes to traverse, total search time in the UMH model is O(
√
n log n).

The search procedure dominates the cost of all insertions/operations on the b_plus_set←↩

.

Operation RAM COB UMH Dominating factor

Search log n log n
B

√
n log n Binary Search

Insertion, random log n log n
B

√
n log n Binary Search

Deletion log n log n
B

√
n log n Redistribution

Iteration n n n3/2

Table 3.8: Running times for b_plus_set

Copying and Moving

The amortized number of copies or moves per insertion/deletion is O(1), but the con-
stant factor depends on the maximum allowed sizes for leaf nodes and internal nodes. As
larger nodes lead to more copies or moves, the optimal node size is likely to decrease with
increasing copy/move cost for the element type.

Since the search structure keeps copies of elements in the internal nodes, elements
must be copyable. However, for many move-only types, it is possible to create a proxy
element that may only be used for comparison. This idea is discussed in more detail in
Section 3.8.1.
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Iterator Validity

The b_plus_set can only offer the weakest iterator validity guarantee.

Element Requirements

The b_plus_set only requires that element types support comparison.

3.8.1 Comparable Proxy

When implementing search structures for sets, it is often useful to store copies of the
elements in the set. An example is a B+-tree where the elements are stored in an iteration
friendly way in the leaf nodes, while copies of the elements are used in the internal nodes
to direct the search.

Storing copies directly would lead to a requirement that the element types are copy-
able, which is a non-trivial restriction. It is not unusual to store a set of resource-owning
objects, and for unique ownership this means non-copyable. Even when objects are non-
copyable, it might be safe to store some identifying information, as long as it is only used
for comparison. Consider std::unique_ptr, which is the archetype of exclusive ownership.
When storing a set of std::unique_ptrs, it would be safe to copy the pointer value if it is
only used for comparisons, never dereferenced. To assure this, the raw pointer could be
wrapped in a type which only supports the comparison operators.

Even for copyable types, storing copies in the search structure could be suboptimal.
The type could be some large record type, which only uses a few data members for com-
parison operators. The search tree could then store only these necessary data members
in the search structure. For large std::strings, the proxy type could store the first few
characters directly in a std::array, to make comparisons for cache-efficient.

The above cases motivates the need for a general interface comparable_proxy<T>, which
is a templated class overloading operator () ( const T&). The return value is an object of a user-
defined type which can be compared to other proxys and to the original elements. The
class defaults to returning a simple copy for all copyable types, and in general has no
default for non-copyable types. We do define a specialization for the smart pointer types,
since this allows for sets of std::unique_ptrs, and avoids unnecessary reference counting
overhead for std::shared_ptr.

An alternative to defining the comparable_proxy interface, is to create a map with the
requirement that the key type is copyable. Then a set of non-copyable elememts can be
created by creating a map from proxy to element. For example, a set of std::unique_ptr←↩

<T>s can be implemented as a map from T* to std::unique_ptr. This alternative is arguably
clunkier, but is possible without defining a new interface for elements. The main disad-
vantage of this approach is that since the types of key and value in a map are completely
separate, both need to be stored for every element. In the std::unique_ptr example, this
means doubling the memory usage.
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3.8.2 Unrolled Linked List

The unrolled linked list is a hybrid of an array and a linked list. Instead of storing one
element in each node as is done in a linked list, several elements are stored in an array
inside each node. This structure has two major benefits over the linked list: Since node
pointers are only stored once per node, the memory overhead of these pointers are amor-
tized over the whole array of elements, making the overhead negligible even for moderate
size arrays. In addition, since all elements are stored contiguously in each node, the node
can be efficiently iterated over in the cache-oblivious model.

The cache efficiency of an unrolled linked list depends on the size of the cache line,
B, and the size of each array. The optimal amount of cache misses for an iteration is d nB e.
The unrolled linked list has dnk e nodes. When iterating over the unrolled linked list, each
of these nodes must be brought into cache, causing dnk e misses. In addition, each node
will incur up to d kB e additional cache misses, resulting in a total of dnk e · (1 + d kB e) ≈
n
k + n

B ≈ d
n
B e · (

B
k + 1) cache misses. For B ≈ k, this is about twice the optimal. For

B � k the iteration is close to optimal. For B � k, however, the unrolled linked list is
not able to efficiently utilize the cache.

In practice, there are reasons to limit k to a fairly small number, because typical oper-
ations on each array take O(k) time. This means that the structure will effieciently use the
top layers of the memory hierarchy, like caches. It will not, however, be able to utilize the
lower levels, like memory paging.

3.9 Comparable Hash Set
Hash functions are powerful tools in creating efficient data structures, but can only be
used for unordered collections. In this section we present the concept of a comparable
hash function and its applications in creating efficient ordered collections. This notion
of a comparable hash function is a generalization of the interger-only key values of Judy
Arrays [25].

Given an ordered set of elements S, a comparable hash function from S to an unsigned
integer must satisfy the following property: For elements e1 < e2 we must have h(e1) ≤
h(e2). In addition, the set of unsigned integers are represented by a number of bits, w,
which is Θ(log n). Furthermore, the values returned by the function should be distributed
such that the chance of collision is low. A collision happens when h(e1) = h(e2) for
two elements e1 6= e2. In particular, any element should collide with at most O(1) other
elements. Given such a function, it is possible to insert, search and delete in an ordered set
very efficiently. Specifically, it is possible to do all these operations in a small fraction ofw
lookups. Even thoughw is a fixed number for any practical implementation,w = 64 in our
case, it must be specified as log n in order to allow for the number of distinct representable
integers to grow without bounds.

The demands on the comparable hash function are much stricter than for a normal
hash function, since normal hash functions only need to worry about exact identity. A
typical example of a problematic type for the comparable hash is a character string. A
normal hash function can use the information in all the characters to form its value. The
comparable hash function may only concatenate the first few characters. This means that
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Figure 3.14: Structure of comparable_hash_set

collisions will be rampant when many strings begin with the same prefix. An example of
such a problematic domain is web addresses, where the first 8 characters may be http://w

for most of the strings. To accomodate for such types, the concept of comparable hash
defined above is probably too narrow, and should be extended to return a value of variable
width. However, we believe that the simpler description can lead to a simpler and faster
implementation, so the element types that fit the simple description should not need to pay
the cost of added complexity. For the same reasons mentioned here, a Judy Array supports
two types of key values: integers and character strings.

We have implemented two slightly differing comparable hash structures, comparable_hash_set←↩
and comparable_hash_set2, shown in Figure 3.14 and 3.15, respectively. Both structures

have a search tree of constant height connected to a linked list of slide_sets at the leaves.
For all operations, the search tree can be traversed in O(1) time. At the leaf, the tree is
connected to a slide_set. The size of each slide_set is ideally bounded by a constant
parameter, but may grow beyond this size if there are many collisions.

For both structures, each level of the search tree represents a set of possible values for
the hash function. For each level, k bits are used to branch to the next level. The branches
are created when the number of elements stored in the subtree grows above a constant
threshold. The root node represents all possible values. When the number of elements
grow above the threshold, 2k children are created, representing all possible values of the
first k bits. Each element is sent to the child node representing its first k bits, where the
same operation might happen recursively at some later time.

Since there are onlyw bits there can only be dwk e levels in the search tree. At the lowest
possible level, each node represents just one value of the hash function, so the number of
elements in this node is bounded by the number of colliding elements with this value.

In the comparable_hash_set, each leaf node is connected to its own slide_set. When a
node is split, a slide_set is created for each non-empty child node. Since each slide_set

is part of the linked list, empty slide_sets would slow down iteration.
Even if there are no empty slide_sets in the comparable_hash_set, the linked list may

consist of many very small slide_sets. This is addressed in comparable_hash_set2. Instead
of keeping one slide_set for each leaf node, nodes may share a slide_set. We define
the size of a node A to be the number of elements in the subtree rooted in A. When the
size of a node grows beyond half the maximum size of a slide_set, the node is split, and
all children point to the same slide_set. Each slide_set is also augmented with a std::←↩

vector of back pointers to all leaf nodes pointing to the slide_set. When the size of the
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Figure 3.15: Structure of comparable_hash_set2

slide_set grows above the threshold, a new slide_set is created, and roughly half of the
elements are moved. The nodes are divided into a left and right set in such a way that
the difference in size is minimized. The worst split is achieved when the biggest node is
exactly in the middle, because this would lead to a bad split no matter which set the node is
put in. However, since no node is bigger than half the threshold, the split can be no worse
than ( 1

4 ,
3
4 ).

By using this sharing policy, the comparable_hash_set2 can guarantee a lower threshold
on the number of elements in each slide_set, at the cost of a more complicated insertion
strategy.

Running Time

With integer sizes w = log n, and using k bits for each node, the height of the search tree

is at most log
2
n

k . Each jump node access leads to a cache miss, as the nodes are located at
arbitrary positions in memory. A simple amortization argument can be used to show that
splitting and merging nodes do not contribute to the theoretical running time.

In the RAM and COB model, running time for all operations is simply O(log n), and
the running time is O(

√
n log n) in the UMH model.

Copying and Moving

The hash-based structures only copy or move elements in single constant-size slide_sets
during normal insertions/deletions, and the costs of splitting and merging nodes are amor-
tized over many insertions and deletions. However, for elements that are expensive to copy
or move, inserting into the slide_set may incure a large cost. Because of this, we expect
the optimal maximum size for slide_sets to be smaller for expensive elements.

Iterator Validity

Because insertion into the slide_set may cause many elements to move, there hash-based
structures can not offer any iterator validity guarantees beyond level one.
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Exception Guarantees

Inserting elements into slide_sets means that exceptions during copying or moving may
cause bad state. therefore, noexcept copying or moving is required for the hash-based
structures to offer the strong guarantee, otherwise only the weak guarantee may be offered
for insertions and deletions.

Element Requirements

In addition to the standard comparison operation, the hash-based structures require the
elements to support the comparable hash-interface, and the elements must be distributed
evenly to benefit from the hash-based structures.
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For all of the structures compared in this report, the performance is measured for a com-
mon set of use cases. The uses cases consist of a set of operations along with a element
type. The use cases are chosen to highlight the performance impact of different usage pat-
terns, and to aid in choosing an appropriate structure for a given use. This section presents
the different elements types used and the sets of operations performed.

4.1 Element Types

The element types used in this report are divided by two characteristics, size and indi-
rection. For size, the most importatnt distiction is between elements small enough to fit
several elements into a cache line, and elements larger than a cache line. The smaller types
will benefit more from contiguous storage in memory, as several elements can be loaded
by a single cache line read. Larger element types may still benefit from other cache effects
of contiguous storage, like prefetching.

The second important distinction made in this report is between direct and indirect
elements. Direct elements store their data in the same memory location as the element
itself. In indirect elements, on the other hand, only a pointer to the data is stored in the
same memory location as the element itself, and the data is stored in some other location.
This has important implications for performance. Comparing indirect elements typically
incur an extra cache line read, as the actual data has to be read. On the other hand, moving
an indirect element can be achieved by simply moving a small pointer, which is typically
cheap. Copying an indirect elements is expensive, as it usually involves allocating memory
for the copied data, and then copying the data to the newly allocated memory.

To represent small, direct element types, int is used. Comparing, moving and copying
are all cheap operations for the int , and accessing contiguous ints make effective use of the
cache.

The representative of large, indirect elements is the std::string. This element type con-
sist of a pointer to an array of characters. The number of characters is 50 for experiments
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in this project. The std::string type is characterized by slow comparisons due to cache
misses, fast moves and slow copies.

Finally a custom type has been implemented to represent large, direct object. This type
has been dubbed record, and uses std::array to store 50 characters directly. This type does
not suffer an extra cache miss during comparisons, but both moves and copies are slow.

4.2 Operation Sets
The operation sets used in this project have two basic motivations. One motivations is to
simulate real usage of the structures, another motivation is to understand why structures
differ in their performance. For example, deleting all elements in a structure one by one is
not a realistic scenario, because it would be much quicker simply call clear(). On the other
hand, a mix of equal amounts of insertions and deletions is a very realistic scenario, but is
best understood if insertion only and deletion only scenarios are also tested.

4.2.1 Search
We have used two search scenarios, random order and ascending order. While random
order search is perhaps the most general, the ascending search scenario is important to
illustrate how the structures perform when access patterns are more structured. Searching
in ascending order can model how searching performs for ordered insertions and deletions,
and can also model the speedup gained when query items are localized in the structure. The
scenarios are measured in the following ways:

• Random order The structure is filled with randomly generated elements, and copies
of the elements are stored in a std::vector. The std::vector is shuffled, and used as
queries for the search. The time taken to search for all n queries is then measured.

• Ascending order The structure is filled with randomly generated elements, and
copies of the elements are stored in a std::vector. The std::vector is shuffled, and
used as queries for the search. The time taken to search for all n queries is then
measured.

4.2.2 Insertion
Because expected insertion performance of the different structures vary significantly with
the insertion pattern, there are four different insertion only scenarios. In all these scenarios,
n elements are first generated randomly and inserted into a std::vector. The elements are
then ordered according to the scenario. The time taken to insert all n elements into an
originally empty structure is then measured. The scenarios are:

• Random order Elements are shuffled randomly before insertion. This is perhaps
the most realistic insertion pattern.

• Ascending order Elements are sorted, such that each inserted element is larger than
previous elements.
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• Descending order Elements are sorted in reverse order, such that each inserted
element is smaller than previous elements.

• Middle order Elements are ordered such that each inserted is the new median value.
This scenario is included to represent insertions that are highly localized, but not
localized at the lower or upper end.

4.2.3 Deletion
Although the excpected performance for deletion vary with the deletion pattern as much as
for insertion, we have not included as many different scenarios for deletion as for insertion.
This is because, except for merge_set, deletion performance is excpected to be similar
to insertion performance. So in order to reduce the amount of use cases, we have only
included a random order deletion scenario.

In this scenario, the structure is filled with n randomly generated elements, and copies
are stored in a std::vector. The std::vector is shuffled, and the time taken to delete all the
elements of the std::vector from the structure is measured.

4.2.4 Iteration
The iteration scenario is important for ordered sets, because answering range queries ef-
ficiently is a feature not shared by unordered sets. In this scenario, the structure is filled
with n ramdomly generated elements. Each element type is given a evaluation function,
which converts the element to a number. The evaluation function is the identity function
for int , while for std::string and record the sum of all characters is returned. The time is
measured for iterating over all elements of the structure, and summing up the evalution
of each element. The actual operation performed on each element is not very important,
but an important requirement is that the operation should depend on the data. In that way,
reading the data can not be left out by the compiler during optimization.

4.2.5 Mixed Insertion/Deletion
This scenario is included to measure the performance of insertions and deletions in the
absence of large changes in structure size.

In this scenario, the structure is filled with n randomly generated elements, and copies
are stored in a std::vector and shufffled. In addition, another std::vector is also filled with n
randomly generated elements and shuffled. Deleting elements of the first std::vector from
the structure is then interleaved with inserting elements of the second std::vector into the
structure, and the time taken for these n insertions and n deletions is measured.
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Chapter 5
Results

5.1 Experimental Setup

All experiments were run on an Intel ®Core ™i7-3517U @ 1.90GHz CPU. Cache sizes
were 32KB, 256K and 4096KB for L1, L2 and L3, respectively. The source code was
compiled with the g++ compiler, version 4.8.1, using the -O3 optimization option.

Each measurement was repeated a minimum of 50 times, and was further repeated until
the standard deviation of the mean was a small fraction of the average measured value.

5.2 Tuning

Some of the structures tested have some tunable parameters. These include block sizes for
all structures dividing elements into fixed-size blocks, occupancy limits for the PMA-based
structures. These paramteres were tuned specifically to element types, but parameters are
constant for all use cases. The motivation was that while the user will typically know the
type of element stored, it is more difficult to know which use case presented here that most
resembles an the users actual usage pattern. Furthermore, the actual usage pattern is likely
to be a mix of several use cases, so results based on less specific tuning will probably
generalize better to actual usage patterns.

The use of tuning parameters is nonetheless an inconvenience for the user, and espe-
cially when using these structures in a generic context, where the specific element type is
not known. The optimal solution would be if parameters could be automatically tuned at
compile-time, using no input from the user. This could be simple for direct types like int

and record, because tuning could be based on element size, but it would be difficult for
indirect types like string. As there is no simple way to know whether an object is direct or
not, automatic compile-time tuning for general types seems impossible.

When tuning the slack_set, we found that the occupancy limits heavily influenced its
ability to handle ordered inserts. To get reasonable performance on these insertion patterns,
the occupancy limit at the root level had to be set to 50%, which means that the structure
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uses up to 4n space after a reallocation. The adaptive_slack_set was able to handle much
higher density (90%). This benefit of the adaptive_slack_set is not visible in the results
below, but is important to note.

5.3 Search

5.3.1 Random Order

The measured running times for search is shown in Figure 5.1. For int , most structures
perform equally well, with the exception of std::set and merge_set. For n = 300 000, std←↩
::set uses 500 ns per query, merge_set uses 267 ns, while all other structures use between
120 ns and 170 ns. Although most structures have quite similar performance for search,
the hash-based structures do have a small advantage for 1 000 < n < 100 000, while the
b_plus_set is at a slight disadvantage.

For sets of std::strings, the performance gap between std::set and the other structures
is musch smaller, while merge_set performs worse than std::set. The performance of the
hash-based structures is significantly better than all other structures, and especially the
comparable_hash_set. For n = 1000, the comparable_hash_set search is about twice as fast
as the fastest non-hash-based structure.

For sets of records, std::set and merge_set again shows significantly worse performance
compared to the other structures. The hash-based structures perform better than other
structures, but the difference is less significant than for std::string. This use case also
shows a small, but significant difference between the simple, array based structures, and
the more advanced slack_set and b_plus_set. The exception to this pattern is proxy_slack_set←↩
, which is more similar to the simple array structures in performance.

5.3.2 Ascending Order

The measured running times for search is shown in Figure 5.2. As expected, all structures
benefit from ordered search, as each mostly visits the same parts of the structure as the
previous search, thus utilizing the cache very efficiently.

For sets of ints, all structures show a clear performance drop when the size of the struc-
ture grows larger then the L2 cache. Most structures show similar performance, except for
very good performance shown by comparable_hash_set, and poor performance by std::set

and merge_set.

The hash-based structures also perform well for sets of std::strings, while merge_set

is significantly slower than other structures. All other structures show remarkably similar
performance.

For sets of records, the hash-based structures are less clearly faster than other struc-
tures, but std::set is yet again significantly slower than the other structures.
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Figure 5.1: Searching for elements in strucure with size n

5.4 Insertion

5.4.1 Random Order

Results for random order insertion are shown in Figure 5.3. For sets of ints, the best overall
performance is achieved by b_plus_set, slack_set, proxy_slack_set and comparable_hash_set←↩

. The comparable_hash_set2 has good performance for n > 10 000, but performs eratically
for small n. The performance of std::set is competitive for n < 10 000, but for larger
n the relative performance tapers off. The performance of merge_set is overall poor, and
the adaptive_slack_set performs significantly worse than the other PMAs. The boost:←↩

flat_set performs poorly for all n, but custom_flat_set shows that this is mostly an imple-
mentation issue. The circular_set is competitive for 300 < n < 4000, and slide_set is
the fastest structure for n < 4000.
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Figure 5.2: Searching for elements in strucure with size n

The situation is a bit different for sets of std::strings. While the best structures for
ints also do well for std::strings, the std::set now outperforms many of them. The best
structure, however, seems to be the comparable_hash_set. The array based structures are
not competitive even for small n.

For records, the std::set is the best performing structure for small n, while comparable_hash_set←↩

performs best for n > 2500.

5.4.2 Ascending Order
Results for ascending order insertion are shown in Figure 5.4. For sets of ints there is
no competition to the slide_set and custom_flat_set, which consistently inserts in < 9 ns
for large n. The circular_set also have an essentially constant insertion time < 30 ns.
Performance is also consistently good for boost::flat_set and b_plus_set. The hash-based
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Figure 5.3: Inserting n elements in random order

structures are generally fast, but runnig time is very inconsistent for different n. The
other structures also perform ordered insertions quite fast, ≈ 200 ns per insertion for n ≈
1 000 000, but is an order of magnitude slower than the fastest structures.

For sets of std::strings, the slide_set and custom_flat_set still performs best, but the
gap is smaller. The hash-based structures are consistently good for different n, and com-
petitive with circular_set for large n. The std::set outperforms the PMA-based structures,
and perform almost as well as the boost::flat_set and b_plus_set for large n.

The same trends generally hold for sets of records as for std::strings, except that
custom_flat_set outperforms the slide_set.
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Figure 5.4: Inserting n elements in ascending order

5.4.3 Descending Order

Results for descending order insertion are shown in Figure 5.5. These results are similar
to the results for ascending order insertion. The biggest exception is boost::flat_set and
custom_flat_set, which now unsurprisingly show very poor performance for almost all
element types and values of n. The only exception is that custom_flat_set is competitive
for small sets of ints. Another difference is that the gap between slide_set and the other
structures is smaller, especially for sets of std::strings.

5.4.4 Middle Order

Results for middle order insertion are shown in Figure 5.6. By middle order we mean that
the nest element inserted always becomes the new median element of the set. For large val-
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Figure 5.5: Inserting n elements in descending order

ues of n, no simple array based structures perform well, but slide_set is the best performer
for small sets of ints. The b_plus_set is the best structure overall sets of ints, but the hash-
based structures are equally good for large n. The hash-based structures do show the same
inconsistent timings as for other insertion patterns, and especially comparable_hash_set2 is
very slow for small n.

For sets of std::strings, the best results are achieved by the comparable_hash_set, while
std::set also achieve good overall results. The b_plus_set and comparable_hash_set2 are
competitive for large n, but are significantly slower than std::set for smaller n. The same
trends continue for sets of records.
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Figure 5.6: Inserting n elements in middle order

5.5 Deletion

Running times for deletion in random order are shown in Figure 5.7. The simple ar-
ray based structures and the merge_set are much slower than other structures, although
the slide_set and merge_set perform reasonably well for very small n. For sets of int←↩

s, the std::set is significantly slower than the fastest structures for n > 10 000. The
comparable_hash_set outperforms the other structures for all element types, though the gap
is more consistent for std::strings and records.
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Figure 5.7: Deleting all n elements in random order

5.6 Iteration

Running times for iteration are shown in Figure 5.8. Iteration speed is almost identical for
most structures, with a few notable exceptions. The std::set is much slower than all other
structures, and for large sets of ints, it is up to 40 times slower than most other structures,
and almost 70 times slower than boost::flat_set.

The three structures with fully contiguous elements, boost::flat_set, custom_flat_set

and slide_set, are significantly faster than all other structures for sets of ints, probably
benefiting from their simple iterator types.
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Figure 5.8: Iterating over structure with n elements

5.7 Mixed Inserton/Deletion
Running times for iteration are shown in Figure 5.9. Performance is remarkably similar
for all non-quadratic time structures. The std::set, however, is significantly slower than
other structures for sets of ints. The adaptive_slack_set is slower for all element types,
while the comparable_hash_set is significantly faster than all other other structures for the
heavier element types.
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Chapter 6
Discussion

6.1 Data Structures

6.1.1 Set

When discussing the running times for std::set in comparison with other structures, it is
important to remember the additional gurarantees given by std::set. It is is the only struc-
ture to give the strong exception guarantee, even when both the copy and move operation
might throw an exception. It is also the only structure for which iterators are stable. This
allows for many efficient usage patterns that are not tested in this report, as it can not be
supported efficiently by the other structures. For example, consider a set of objects who
want to register themselves as observers to another object, where the observed object may
want to query on the set of observers. If every observer is given an iterator to its entry in
the observer set, it may unregister itself in constant time, and this is only made possible by
stable iterators.

That being said, the std::set is quite a bit slower than other structures for many im-
portant use cases. One important weakness of std::set is search, in particular for ints, and
this has a large impact most of the other operations. Search times are similar to insertions
times for all insertion patterns, meaning that search is probably the most costly part of the
insertion procedure. This matches well with std::sets performance when inserting into sets
of std::strings and record, where searching is not as slow compared to other structures. For
these data types, std::set and b_plus_set are the best performing general purpose structures
that do not require comparable hashing.

The second major weakness of std::set is iteration. As it potentially incurs a cache
miss for every single element visited, performance is more than an order of magnitude
worse than other structures for sets of ints. The gap is much smaller for the larger element
types, and is quite competitive while the set of elements can still fit in the LLC.
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6.1.2 Flat Set
The boost::flat_set is perhaps the simplest structure tested in this project, and in general
it performs exactly as escpected. It cannot efficiently insert elements except at the upper
end, but its simple memory layout means that binary search is fairly efficient, only beaten
by the hash-based structures. The fact that elements are contiguous in memory also means
that pointers to subranges may be passed directly to lower level C libraries.

For insertion in ascending order, the boost::flat_set is significantly slower than slide_set←↩

and circular_set, even though all these structures move O(1) elements. This is because
the boost::flat_set performs a full binary search for every insertion, while the other two
structures include a check to see if the inserted element is larger than the last element. This
is verified by the fact that custom_flat_set is just as fast as the slide_set.

In general, there are few uses cases where boost::flat_set ot custom_flat_set is among
the best performing structures, and in all those use cases the slide_set performs about
equally well. There might be an exception to this for insertion in middle order with very
small n, but even then the difference is not very large.

6.1.3 Circular Set
In general, circular_set achieves the goals for which it was designed. Performance is
very good for front and back insertion, but constant factors seem to be higher than for
custom_flat_set and slide_set. There are no use cases in which circular_set performs
better than slide_set, even though the circular_set moves fewer elements. In addition,
the iterators for circular_set are slightly more complex to support the wrap-around, which
leads to a noticeable slowdown when iterating over ints.

6.1.4 Slide Set
Although likely not to be completely novel, the slide_set was not based on any prior work
known to the author, and is a structure with several benefits. The simple layout in memory
makes iteration and binary search just as fast as for flat_set, and the ability to slide from
side to side in a memory buffer makes insertions in both ends possible.

Even though the slide_set moves more elements than the circular_set during insertion
in order, performance is much better, probably because of the simplicity of the structure.

For any sizeable n, however, the O(n2) running time makes it unusable for anything
but very specific insertion patterns. For sets of ints, the performance is competitive up to
a few thousand elements. For the heavier element types, however, std::set is faster for
n > 100.

Even though the slide_set has O(1) insertion at both ends, this performance benefit is
brittle. If an element is to be inserted just one position from the end, a full binary search
is needed. This could be mitigated by starting a search at both ends simultaneously. In
each iteration, the distance from the search positions to their respective end of the set
could be doubled, and thereby the search complexity would be logarithmic in the distance
from the element to its nearest endpoint. This would be a more robust way of speeding
up insertions and deletions close to one of the endpoints, but would probably add some
unnecessary overhead when the element was not close to the end.
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6.1.5 Merge Set

Even though the merge_set is able to achieve logarithmic insertion times while iterating
over elements much faster than std::set, the running times for most operations are not
impressive. It seems that the frequent global merging leads to very large constant factors,
such that the merge_set is not very competitive for insertion, for any n. Performance of
deletion is very poor, but this was expected due to the quadratic deletion complexity of
the main linear array. Earlier on in the project, more advanced deletion mechanisms were
considered, but the slow insertion times gave little motivation to add more complexity to
the structure.

In general, merge_set was not found to be a suitable structure for any of the use cases
considered. It is unable to give the same iterator validity and exception guarantees as
std::set, so the faster iteration times comes at too high a price.

6.1.6 Slack Set

The starting point of this project was experiments showing the performance lead of ran-
dom insertions into a slack_set compared to a std::set for large sets of ints. The slack_set

is faster than std::set for several use cases, like search and iteration, but is not a real com-
petitor to b_plus_set. Theoretically, the slack_set is more cache-efficient than b_plus_set

for iteration, but in practice performance is very similar for the two structures.
This theoretical benefit was the prime motivation to build a structure with all elements

sorted in one large array, as unrolled linked lists are much more flexible.
The proxy_slack_set did not perform significantly different from slack_set, which can

be taken as a sign that the overhead during

6.1.7 Adaptive Slack Set

Instead of being faster than the slack_set for ordered insertions, the adaptive_slack_set is
able to get similar performance with almost half the memory usage. This effect did not
manifest for middle order insertions, which probably shows a weakness in the specific
insertion counter strategy implemented. This could probably be refined to handle middle
order insertion just as well as ascending/descending order.

For random insertions, the slack_set and adaptive_slack_set should perform about the
same number of redistributions, so the low performance of the adaptive_slack_set is prob-
ably due to inefficiencies in the redistribution algorithm. Instead of redistributing elements
in large blocks like the slack_set, the adaptive_slack_set must interleave the redistribution
with extra logic dealing with the insertion counters. If this could be improved, there is a
potential for the adaptive_slack_set to be a better performing and more general alternative
to the slack_set.

Even if this is possible, however, it would probably not be able to outperform the
b_plus_set.
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6.1.8 B+ Set
The b_plus_set is perhaps the most versatile of all structures tested. For sets of ints, it beats
the std::set for all use cases, while for heavier element types none of the two structures
consistently beats the other.

Perhaps most importantly, the b_plus_set has insertion/deletion performance compa-
rable to std::set, while search and iteration are both far better. One of the main reasons to
use ordered sets rather than unordered sets is support for range queries, and these consist
of searching and iterating. For this reason, it might be desirable to include an alternative
to std::set in the C++ standard, supporting the characteristics of b_plus_set.

It is not entirely clear, however, how a such structure could be specified by the C++
standard. The only obvious change is that the new structure cannot have stable iterators,
or at least stable iterators must be in addition to faster, unstable iterators. A goal of the
C++ standard is not to specify implementation details, and the asymptotic running times
of the B+ sets is equal to that of balanced binary search trees, when analyzed in the RAM
model. The only precedent in the C++ standard for specifying cache-efficient layout is
std::vector, in which elements are guaranteed to be contiguous in memory. One possible
minimal specification is that the new structure introduces some notion of a partial contigu-
ity of elements. That is, for some integer b, no fewer than b elements are stored contigously
in memory. This property must be satisfied by all but one block of the structure, namely
the root block. The structure must also be allowed to store up to O(logn) copies of each
element, but no more than O(n) copies in total. Aside from this, the structure should have
the same complexity guarantees as std::set.

6.1.9 Comparable Hash Set
The hash-based structures are among the fastest structures for all use cases tested, although
they do show some erratic behaviour, especially comparable_hash_set2. It is remarkable that
the they perform about as fast as circular_set and slide_set for descending order insertion
into large sets of strings, when the latter two structures can do this with constant amortized
running time.

In addition to the great performance achieved by the structures, there is a large poten-
tial for improvement, as several variants of these basic structures could be explored. Over-
all, the comparable_hash_set shows the best performance, probably because they avoid the
added complexity of sharing leaf nodes. However, the fact that leaf nodes in comparable_hash_set←↩

may be arbitrarily small, leads to less efficient iteration. This is evident when iterating
over large sets of ints.
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Based on the results and experience gathered during this project, the author has come to
the following conclusions:

• The slide_set can be a useful alternative to boost::flat_set. In addition to being
about as fast as the boost::flat_set for middle and ascending order insertion, the
slide_set can insert in descending order in O(1) time, as well as perform random
insertions with half as many moves as the boost::flat_set. Experiments with more
advanced data structures also show that slide_set and its static counterpart can be
used efficiently as a basic building block of these structures.

• A new specification of ordered sets based on the characteristics of b_plus_set could
be a useful addition to the C++ standard. This would make searching, iteration and
specifically range queries much more efficient for small data types.

• Structures built upon sparse arrays like the packed memory array structures tested in
this project show no significant benefits compared to structures using unrolled linked
lists. Even though unrolled linked lists are theoretically inefficient, this effect does
not seem to be an important concern for the set sizes tested in this project. Since
unrolled linked lists are far more flexible, practical cache effiecient set structures
should probably be based on these rather than on sparse arrays.

• The most promising approach to dramatically improving search performance for
ordered sets is to explore hash-based structures. Even though the b_plus_set is the-
oretically able to exploit the cache better than simple binary search, actual search
performance is remarkably similar. The hashed-based structures, on the other hand,
has shown the potential to dramatically speed up search.

7.1 Future Work
As discussed in Section 6.1.9, the node sharing strategy of comparable_hash_set2 leads to
significant overheads, while the small leaf nodes of comparable_hash_set can lead to less
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consistent iteration speeds.
A possible strategy to combine the best of both worlds is for the bit ranges of each

node to be dynamic. By being able to increase the bit range of a node in small increments,
rather than jumping from 0 to 8 during a node split, it could be possible to avoid small
leaf nodes without resorting to leaf node sharing. This strategy also has a possible benefit
in the other direction: The bit range of the root node may be increased beyond the 8 bits
tested in this project, to allow for constant time search for very evenly distributed element
sets.

If the hash-based structures are to be generalized to less evenly distributed data sets, the
simple node types used for this project are not suitable. Consider a set of 64-bit integers
for which the most significant 32 bits are all zero. Small bit ranges would waste little
space, but would take many meaningless jumps to get to the interesting bits. A large bit
range would traverse fewer nodes, but waste lots of space for unused nodes. Although it
is clear that another node type is needed, it is not clear what this node type should look
like, or if indeed only one additional node type is needed. The addition of new node types
must be accompanied by simple dynamic strategies to choose node types based on element
distribution. The static decision of which composition of nodes are best for searching a
set of elements is probably a difficult problem in itself. The fact that the decision must be
taken dynamically, quickly, and taking into account the cost of changing the composition,
possibly makes this a very challenging task.
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