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Problem Description

This thesis will investigate and evaluate the possibilities of using autotuning
tools to optimize scientific applications based on the hardware architecture.
Orio is the autotuning toolkit that will be used, and the codebase that will
be investigated is Code_Saturne, a general purpose computational fluid dy-
namics software package.

The goal is to perform an autotuning process and evaluate the results to
describe if and how autotuning tools can be used to enhance software porta-
bility and performance. Ideally, the autotuning can be implemented in such
a way it will result in run-times in the range of, or better than those of gen-
eralized algebra libraries such as ATLAS for any architecture.

Assignment given: 06. May 2013

Supervisor: Anne Cathrine Elster, IDI
Co-advisor: Jan Christian Meyer, NTNU-IT
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Abstract

In recent years multicore computing has taken the step from being new tech-
nology to being used everwhere. Todays supercomputers now have thousands
of cores, and even smartphones use multicore processors. This technological
advance has been an important factor in development of scientific applica-
tions.

A major challenge in the development of these applications is performance, a
problem further increased by the variety of used platform architectures. To
achieve near maximum performance on a specific architecture is a tedious
and difficult process of manual optimization. Furthermore, such optimiza-
tions often have little to no effect on other architectures.

This challenge has encouraged the use of libraries offering highly optimized
mathematical functions. Autotuning software is an attractive alternative for
general and good optimization, for that reason some of these libraries also
take advantage of autotuning. Recently, autotuning toolkits such as Orio
have become available. These tools derive information about the system ar-
chitecture, and use it in conjunction with user-specified parameters to alter
source code to the best possible fit for the current architecture.

In this project Code_Saturne has been explored with the use of profile anal-
ysis tools to find core code sections with respect to run-time. Autotuning
directives have been implemented in these functions to achieve architecture
specific implementations of said functions.

Instrumentation and profiling identified central functions, which were ex-
plored as candidates for optimization. However, autotuning prove to be fea-
sible for only a small number of visits to these functions. The autotuning
problem was very dependent on the type and size of input, which reduced the
impact of auto-tuning to the point where it could not be reliably observed.
This suggests it is required to integrate the tuning process with the applica-
tion.
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Sammendrag

I de siste arene har bruk av flerkjerners prosessorer tatt steget fra a veere
ny teknologi til a bli brukt overalt. Dagens superdatamaskiner har tusenvis
av kjerner, og selv smart-telefoner har flerkjerners prosessorer. Denne tek-
nologiske utviklingen av veert en viktig faktor i utviklingen av vitenskapelige
applikasjoner.

En stor utfordring innen utvikling av slike applikasjon er ytelse, ett prob-
lem som gjores enda vanskeligere av alle forskjellige maskin-arkitekturer som
er tilgjengelig. A oppna maksimum ytelse pa en spesifikk arkitektur er en
krevende og vanskelig manuell prosess. Og slike optimaliseringer har ofte
liten effekt pa andre arkitekturer.

Denne utfordringen har gjort bruk av bibliotek som tilbyr veldig optimaliserte
matematiske funksjoner populaere. Autotuning verktgy er attraktive alterna-
tiver for gode og generelle optimaliseringer, derfor tas autotuning i bruk ogsa
av mange av disse bibliotekene. Nylig har autotuning verktgy som Orio blitt
tilgjengelige. Disse verktgyene bruker informasjon om systemets arkitektur
sammen med parametre brukeren har spesifisert til a endre kode til a passe
en arkitektur best mulig.

I dette prosjektet ble Code_Saturne utforsket ved bruk av verktgy for pro-
fileringsanalyse, for a finne seksjoner av kode som er sentrale i forhold til
kjgretid. Autotuning direktiver har sa blitt implementert i disse funksjonene
for a oppna arkitektur-spesifikke implementasjoner av disse funksjonene.

Instrumentasjon og profilering oppdaget sentrale funksjoner som ble utforsket
og evaluert som kandidater for optimalisering. Det viste seg at det kun var
mulig a optimalisere et fatall av kallene til disse funksjonene. Autotuning-
problemet var veldig avhenging av type og stgrrelse pa input, noe som re-
duserte effekten av autotuning sa mye at den ikke kunne observeres med
sikkerhet. Dette indikerer at autotuning prosessen ma integreres med app-
likasjonen.
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Chapter 1

Introduction

Computers have been an important factor in science, being able to solve com-
plex and massive numerical simulations at great speed. This has mainly been
the task of the CPU, but over the recent years general-purpose computing
on graphics processing units (GPGPU) has seen a steady increase [3].

Initially, it was the desire for gaming graphics that was the main driver for
GPU development. However, the highly parallel and computational capa-
bilities of the modern graphics cards are a good match to the numerous
and simple mathematical calculations that are the basis of many scientific
models[4]. This has led to GPUs emerging as a powerful platform for high-
performance computation. Examples of GPGPU are use in applications such
as a snow simulation [5] or for fluid dynamics [0].

A big problem with GPGPU is the discrepancy of the architectures of various
graphics cards. Code optimized for one architecture will not necessarily be
as efficient on another architecture, and in some cases the impact is great.
This reduces the gain of the often tedious optimization process for a specific
architecture, as these changes introduce limitations to what hardware that
can be used if maximum performance is desired. A way to overcome this
limitation is to make use of auto-tuning.

An auto-tuning system is capable of adapting source code based on configu-
ration parameters and the environment, in order to achieve optimal perfor-
mance for that architecture. This process can then be repeated on another
architecture with very little to no modification, achieving optimal perfor-



mance there as well.

This thesis aims to explore the use of auto-tuning through the use of the
Orio framework[!] to increase the performance of central algorithms scien-
tific applications. Code_Saturne is going to be autotuned, it is a general
purpose computational fluid dynamics package[7]. More details about Orio
and Code_Saturne will be presented in Chapter 4.

The rest of the thesis is structured as follows:

This thesis is structured as follows:

Chapter 2 describes the recent development of parallel computing, and com-
mon architectures.

Chapter 3 provides background information about methods of auto-tuning.
Chapter 5 depicts the profiling analysis used to find central code segments.
Chapter 6 holds information about how the autotuning modifications are im-
plemented in the source code.

Chapter 7 presents the results, offering a comparison of the test results.
Chapter 8 is dedicated to conclusions and discussion about future work.



Chapter 2

Parallel computing models

A recent trend in high performance computing is the use of graphics process-
ing units for general purpose programming[3][3][9]. GPUs are highly parallel
computational units, and the low cost and energy efficiency makes GPUs a
very good alternative to CPUs for compute intensive tasks. This chapter will
give a short introduction to parallel computing in general. General-purpose
computing on graphics processing units (GPGPU) will also be explained.

2.1 Parallel computing

This section will introduce the basic concepts of parallel computing. More
detailed information can be found in textbooks such as [10]. Further infor-
mation with regards to parallel scaling an memory 1/O limitations can be
found in [11].

2.1.1 Parallel computer architectures

Shared memory vs distributed memory
In a single processor system, there is a single processor using a single, and
often cached memory. As more processors are added two options arise: either
give each processors its own memory - a distributed scheme, or let all the
processors work with the same memory, a shared scheme. The two schemes
are visualized in Figure 2.1 on the next page.
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Figure 2.1: Overview of a distributed memory system (left) and a shared
memory system (right).

In a distributed memory system, the nodes (processor + memory) must in
some way be connected so they can communicate. With this scheme, a pro-
cessor can not access the memory of other nodes. This means that to make
it possible for several nodes to work on the same data they have to explicitly
send data to other nodes through a network.

In this regard, the shared memory system is simpler. Here all the processors
access the same, single memory. So for two processors to work on the same
data, the second processor simply has to read the memory address(es) to
which the first processor wrote.

A combination of the two schemes is also possible. For such a system each
processing unit have both some private memory, as well as direct access to
memory shared between all the processing units.

SIMD vs MIMD

The other classification is based on the type of instructions and data streams,
also known as Flynn’s taxonomy[!2]. Non-parallel computers are single in-
struction stream, single data stream (SISD). The single processor is executing
one instruction stream, and working on one set of data.

SIMD is the abbreviation for single instruction stream, multiple data streams.
In this case there are multiple processors that each work on a different set of
data, all performing the same instructions. This type of system is very useful
when there are large amounts of data that need to be processed in the same
way.



The alternative, multiple instruction, multiple data (MIMD) is the most flex-
ible. Here each of the processors work on its own data set, possibly executing
different instructions. Multiple instruction, single data (MISD) is the last of
the four. This is a type of parallel computing architecture where processors
perform different operation on the same data. The classification is summa-
rized in Table 2.1

Single instruction | Multiple instruction
Single data SISD MISD
Multiple data SIMD MIMD

Table 2.1: Overview of Flynn’s Taxonomy

2.1.2 Parallel Scaling

Increasing the number of processors would ideally decrease computational
time by the same factor. However, very few problems are perfectly paral-
lelizable, meaning more detailed estimates are required. Amdahls law|[13]
and its reevaluation known as Gustafson’s law[11] are central in obtaining
optimal multi-core performance. They can also be used to find the maxi-
mum overall performance increase for a program where only a part of the
system is parallelized. Speedup S is given by:

S+p 1
S(N) = =
W= Tz =ap+2

where s is the fraction of execution time spent on the serial part, p=1-s is the
proportion of the program that can be parallelized, and N is the number of
processors. It can be deduced from this formula that for small p, the overall
speedup will be small even for big N. This implies that optimizations should
be directed at the parts of the program where most of the time is spent. For
simple programs, these sections are often easy to find, e.g. nested for loops,
but in complex cases the use of a profiler tool is a better choice.



When N grows to infinity,the maximum speedup is given by 1/(1-p). As p
decreases the denominator approaches 1, meaning the value of adding more
processors falls rapidly. As an example, if p is 0,9 (that is, 90% of the pro-
gram can be parallelized) the maximum speedup is a factor of 10. As a result
of this, parallel computing is the most effective for a small number of proces-
sors, or for problems with very high values of p - also called embarassingly
parallel problems. This also introduces a new problem to efficient parallel
computing: the task of designing the code so that the component (1-p) is as
small as possible.

An estimate of p can be found using the measured speedup (SU) on the
number of processors (NP) using the formula

Pestimated = 1 1
NP

This estimated p can then be used in Amdahl’s law to predict the speedup
of a program for different numbers of processors.

If s” and p’ is the time spent on the serial and parallel parts on a parallel
computer, the speedup will be:

s+p-N

SN ==

—s'+p N

The result is known as Gustafson’s law. The two laws are equivalent, but
based on different assumptions. Amdahl assumes that as the computer be-
comes more parallel, it will still be used to run the same problem, in other
words time is constant. Gustafson assumes that the more parallel computer
will be used on a larger instance of the problem, 7. e. constant parallel time.

More information about performance modeling on heterogeneous systems can
be found in [15] and [16]. They detail the trade-off between the complexity
and accuracy of performance models, and the challenges created by utilizing
these models for design decisions.



Chapter 3

Autotuning

This chapter will give an introduction to the topic of autotuning. In par-
ticular, Section 2.1 will explain what it is, Section 2.2 elaborates advantages
and disadvantages of autotuning, while Section 2.3 gives an overview of the
methodology.

3.1 Introduction

Both size and complexity of scientific computations are increasing at least as
fast as improvements in processor technology. Programming of these scien-
tific applications is often difficult, and optimizing them at a sufficient level
even harder. The desire for both bigger and more precise models has resulted
in a quest for high performance technology, leading to rapid changes and in-
creasingly complex and specialized computing architectures.

A consequence of this is a potentially big gap between the current and peak
performance of applications. Many applications have a performance as low
as 10% or less of the peak [17]. Another concern is the inability of current
languages, compilers and systems to deliver the available performance for the
application through fully automated code optimizers.

With regards to scientific computing, it is important to achieve performance
without degrading productivity. When developers try to improve the perfor-
mance of scientific code, they generally attempt one or more of the following
approaches: manual optimization of code fragments; use of libraries for key
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numerical algorithms; or use of compiler-based source transformation tools
for loop-level optimizations.

Manual tuning is both time consuming and will often severely degrade read-
ability, portability and scalability. Tuned libraries are often an easy method
to achieve great performance, but the functionality and portability offered by
these libraries are often limited. The latter method, source transformation
tools, have not yet gained popularity among computational scientists, mainly
because of poor portability and a steep learning curve.

3.2 Advantages and disadvantages

Autotuning can be a simpler optimization method than the aforementioned
techniques. An example is loop unrolling, which can either be managed by
the compiler or done manually. However, autotuning can often find even
better ways to unroll, especially when empirical testing is used to evaluate
changes.

It is also often easy to implement, and requires little to no knowledge about
the target architecture. In a simple case, all that is required is addition of a
few directives in the source code to be optimized. The autotuning tool will
then use the available information to generate a tuned version of the target
code.

Another advantage is how small the imprint of the directives are. It is only
an addition to currently existing code, not a replacement, so a version of
the original code is maintained. That way, there is only a slight decrease in
readability because of optimization. Finally, the main feature of autotuning
is the increase in portability, achieved by doing the hardware parametrized
optimization.

However, the autotuning process does require some knowledge about the
source code. Tuning all of the source code is very inefficient, and this would
also be a tedious process for very large projects even if it is easy to imple-
ment. The autotuning should therefore be directed at core functions. These
can in some cases be obvious, in others they might require either first-hand



knowledge of the code, study of manuals, or profile analysis.

The scalability in terms of size of the source code is questionable. As men-
tioned, it is not only necessary to find core functions, but large projects with
complicated compile and linking processes can complicate the procedure as
the tuning process uses a wrapper compiler. It is not always as easy as just
invoking the autotuning toolkits compiler on the code section that is to be
modified.

Finally, the codes core functions must be in a form (e.g. loops) that can
easily be translated to optimized code. As an example, if the majority of the
run-time is spent in MPI calls, autotuning the code will have very little to
no effect. However, most scientific code is of the form where core functions
are simple mathematical operations.

3.3 Methodology

General autotuning involves three major phases:

1. Identifying code optimization techniques that are relevant to the given
source code and architecture of the system

2. Assigning a range of parameter values using hardware expertise and
application-specific knowledge

3. Search the parameter space to find the best performing configuration
of parameters for the given architecture

Step one is to choose which optimization techniques that should be used
by the autotuning toolkit. This is dependent on both the source code and
the hardware architecture of the CPU or GPU. The next step is to assign a
parameter space that is to explored. This can either be specific, narrowed
by use of knowledge about hardware- and software-specific features, or very
general only limited by the time it takes to search the entire parameter space.
Finally, the autotuning tool searches the parameter space performing tests
for each combination of parameters.



For each of these tests the run-time is compared to the best run-time to check
if the current combination of parameter values is the optimum configuration
so far, if it is not it will calculate how near it is to being the best. Some
procedures also support further searching the area near a found optimum,
thus enabling a more detailed search using smaller parameter steps in the
area close to that where the initial optimum configuration was found. This
attempt might lead to finding a slightly better configuration that was skipped
because of too large steps in the initial search.

This recursive search is an elegant solution to the core problem of param-
eter determined autotuning, but it often requires considerable time to find
the optimum configuration. There is a balance between the level of detail
of the parameter search and the time it takes to run the target code for all
combinations wof these parameter values. In some cases it can be necessary
to limit the range or detail of the search, but this limitation can make the
optimum configuration unachievable. However, recent work [18] shows that
search problems arising from autotuning can be formulated as mathematical
optimization problems, and illustrates the potential for mathematical opti-
mization algorithms to find high-performing tuning parameters in a shorter
computation time.

The parallel capability of graphics processing units are often utilized to
achieve a significant speedup compared to CPU implementations. Many
scientific applications also have multiple core algorithms executing simulta-
neously. In such applications each core function (kernel) should be autotuned
independently, as they may each require a specific configuration to achieve
the best performance. This is especially important as the impact of moving
an application between GPU architecture is often bigger than moving be-
tween CPU architectures. The base of scientific applications are often simple
mathematical equations, and their algorithms are very similar on GPUs and
CPUs. For this reason a great variety of available optimization techniques
and configurations are also available for the GPU platform, many of which
also used for autotuning on CPUs.

Balaprakash et. al.[19] describes a set of extensible and portable Search Prob-
lems in Automatic Performance Tuning (SPAPT), aiming to aid in the de-
velopment and improvement of search strategies and performance-improving
transformations. SPAPT also contains representative implementations from

10



a number of lower-level, serial performance tuning tasks in scientific appli-
cations. Modeling, search space characteristics, and performance objectives
are discussed. Finally, an illustrative experimental study is also presented in
the paper.
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Chapter 4

Orio, Scalasca and
Code_Saturne

This chapter will introduce the toolkits and software package that will be
used. Code_Saturne is the software package that will be investigated. Scalasca
will be used for profiling analysis, and Orio for the autotuning process.

4.1 Orio

Orio is an extensible framework for annotated transformation and autotun-
ing of codes written in different source and target languages, including trans-
formations from a number of simple languages to C, Fortran and CUDA
targets[l]. It generates code based on set configuration parameters, and
empirically evaluates the performance of these generated code segments, ul-
timately selecting the one with the best performance.

There are several ways in which Orios annotation approach differs from ex-
isting compiler- and annotation-based systems. One is that by designing an
extensible annotation parsing architecture there is no committing to a single
general-purpose language. As a result of this annotation grammars which
restrict the original syntax can be defined. This enables more effective per-
formance transformations.

13



Another feature is that Orio was designed based on the following require-
ments: portability (which precludes extensive dependencies on external pack-
ages), extensibility (adding new functionality should require little or no change
to the existing Orio implementation), and automation (Orio should provide
tools that manage all steps of the performance tuning process).

Lastly, Orio is usable in real scientific applications without requiring reimple-
mentation. This ensures that the significant investment in the development
of scientific code is leveraged to the greatest extent possible. A high-level

overview of Orio’s code generation and tuning process is depicted in Figure
4.1 below.

- Sequence of (Nested) .
Annotated C Code Annotations | : Tuning
\_/J_) Parser Annotated Regions Specifications

Transformed C [€ Code < Code
Code € === Generation [<~ — — | Transformations [
1 A
| — 1
| Empirical L1
= = > Performance [~ — —”?| Search Engine [
Evaluation

1
best performing version
Optimized C
Code

Figure 4.1: Overview of Orio’s code generation and empirical tuning process.
Figure from [1].

4.1.1 Related work

John Mellor-Crummey et.al. [20] describes LoopTool, which also supports
annotation-based loop fusion, unroll/jamming, skewing and tiling. Qing Yi
et.al. [21] presents POET: Parametrized Optimizations for Empirical Tuning.
Azamat Mametjanov et. al. [22] have done work on autotuning stencil-
based computations on GPUs, using the Orio framework. A autotuning
framework for stencil computations on parallel multi-core has been described

14



by Shoaib Kamil et. al. in [23]. Active Harmony, I-Hsin Chung and Jeffrey
K. Hollingsworth [21], is an automated runtime performance tuning system,
intended to be used for large-scale scientific programs.

4.1.2 Annotation Language Syntax

Orio annotation is denoted as a stylized C comment starting with /*@ and
ending with @*/. An annotation region consists of three main parts: leader
annotation, annotation body and trailer annotation. In the form of a gram-
mar, the structure of Orio annotations can be described as:

<annotation-region> ::=<leader-annotation><annotation-body><trailer-annotation>
<leader-annotation> ::=/#@ begin <module-name> (<module-body>) @x/
<trailer-annotation>::=/*@ end @x/

The annotation body can either be empty or contain C code that may include
other nested annotation regions. The leader annotation holds the module
name of the code transformation component that is to be used. A high
level abstraction of the computation and the performance hints are coded
in the module body inside the leader annotation and are used as input by
the transformation module during the transformation and code generation
phases. The annotated region is closed by the trailer annotation, which has
a fixed form. Orio has two main functions: a source-to-source transformation
tool, and an automatic performance tuning tool

4.1.3 As a source-to-source code transformation tool

There are several code transformation modules that are implemented and
ready to use. One of them is the module for loop unrolling. This is a loop
optimization aiming to increase register reuse and reduce branching instruc-
tions by combining instructions that are executed in multiple loop iterations
into a single iteration. On the next page is an example of an annotated region
set to use the loop unrolling module, with the unroll factor set to four.

15



/*@ begin Loop (
transform Unroll(ufactor=4)
for (i=0; i<=N-1; i++)
y[i]l = y[i] + ailxx1[i];
) @x/
for (i=0; i<=N-1; i++)
y[i]l = y[i] + alxx1[i];
/*@ end @x/

The resulting unrolled code comprises two loops, one with the fully unrolled
body and another loop for remaining iterations not included in the unrolled
loop. In addition, the original code is included and available for use through
setting a preprocessor variable.

4.1.4 As an automatic performance tool

When used as an automated performance optimizer, Orio adaptively gener-
ates a large number of code candidates with various parameter values for the
given section of code, followed by execution of all these code variants and
an empirical evalution. The code variant with the best performance is cho-
sen, and its correlating parameters used. This entire process is automated
through annotations: an example is given on the next page.

One PerfTuning module holds all the tuning parameters. This can also be
done in a separate file to increase readability, and imported by the PerfTuning
module. The other section holds the code that should be optimized, as well
as the optimization techniques that will be used. The original code section
can also be included so that the program can run normally without changing
any files.
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/*@ begin PerfTuning (
def build {
arg build_command = ’gcc -037;
}
def performance_params {
param UF[] = range(1,33);
}
def input_params {
param N[] = [10,100,1000];
}
def input_vars {
decl static double y[N] = 0;
decl double al = random;
decl static double x1[N] = random;
}
) @x/
int i;
/*@ begin Loop (
transform Unroll (ufactor=UF)
for (i=0; i<=N-1; i++)
y[i]l = y[il + alxx1[i];
) @x/
for (i=0; i<=N-1; i++)
y[i] = y[i] + alxx1[i];
/%@ end @x/
/*@ end ©x/

In this example the goal of the tuning process is to determine the optimal
value of the unroll factor for different problem size. The PerfTuning module
is used to define the tuning specifications that include the following four basic
definitions:

e build: to specify all information needed for compiling and executing
the optimized code

o performance_params: to specify values of parameters used in the pro-
gram transformations

e input_params: to specify sizes of the input problem
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e input_vars: to specify both the declarations and the initializations of
the input variables

For this example, the code is compiled using the GCC compiler with the
-O3 optimization option. The unroll factor is tested for values including inte-
gers from 1 to 32, inclusively. Three problem sizes are tested: N=10, N=100
and N=1000. Finally, all scalars and arrays used in the computations are de-
clared and initialized in the tuning specifications, to enable the performance
testing driver to empirically execute the optimized code.

4.2 Scalable Performance Analysis of Large-
Scale Applications

Scalable Performance Analysis of Large-Scale Applications (Scalasca) is a
software tool supporting performance optimization of parallel programs by
measuring and analyzing their run-time behaviour [25]. It is specifically de-
signed for large-scale parallel applications, attempting to aid in the problem
of writing efficient code for modern supercomputers, which can have tens of
thousand cores.

Applications run at this scale are often limited by excessive communication
and synchronization overheads. This is especially true in cases where domains
are irregular or dynamic, which causes wait states under message passing and
computational imbalance if processes fail to reach synchronization points si-
multaneously. While covering single-node performance via hardware-counter
measurements is possible, Scalasca is mainly targeted towards communica-
tion and synchronization issues as these are the most critical to achieve op-
timal performance levels of applications in the petaflops scale [20].

We will be using Scalasca to perform a profile analysis on the Code_Saturne
package, to be able to extract important functions with regards to run-time.
Even though Scalasca’s main focus is MPI communication, it can also be
used to find call central callpaths.
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4.2.1 The Scalasca Architecture

The target application must be instrumented before any performance data
can be collected, 7. e. probes must be inserted into the code to trigger and
carry out the measurements. This can be done at three different levels, source
code, object code or through libraries. A Scalasca command is prepended to
compile and link commands to activate instrumentation, the type of instru-
mentation is decided through arguments to the Scalasca command.

By default, MPI and OpenMP operations are instrumented, most compilers
can also instrument all routines found in source files. Manual instrumenta-
tion can substitute automatic instrumentation and improve the structure of
analysis reports, making them more comprehensible. Annotations are used
to mark potentially nested sequences or blocks of statements, e.g. functions
or loops. Measurements are controlled by a set of variables which can be
specified in a configuration file in the working directory, or by setting the
corresponding environment variables. Scalascas architecture is depicted in
Figure 4.2 below.

Qptimized measurement configuration
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Figure 4.2: The Scalasca architecture. Figure courtesy of scalasca.org

The user can choose between generating a runtime summary report, or an
event trace before running the instrumented executable. When tracing is
enabled, each process generates a trace file containing records for its process-
local events. It is recommended to optimize a instrumentation based on a
previously generated summary report to avoid the instrumentation produc-
ing too large or inaccurate traces.
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After application termination, Scalasca loads trace files into main memory
and analyzes them in parallel, using as many cores as was used for running
the application. Wait states are located and classified by category, and quan-
tified by their significance. The final result is a wait-state report similar in
structure to the summary report, but enriched with higher-level communica-
tion and synchronization inefficiency metrics.

Both summary and wait-state reports contain performance metrics for every
combination of function call path and process/thread, and can be interac-
tively examined in the provided analysis report explorer along the dimensions
performance metric, call tree, and system. Reports can also be combined
and/or manipulated for comparisons, aggregations or extracts of reports.
Examples are comparing two reports to check the effect of an optimization,
or remove uninteresting phases like initialization.

4.3 Code Saturne

Code_Saturne is a software package whose general purpose is computational
fluid dynamics [27]. Development started in 1997 at Electricité de Frances
R&D, and it is distributed under the GNU GPL license. It solves the Navier-
Stokes equations for 2D, 2D-axisymmetric and 3D flows, steady or unsteady,
laminar or turbulent, incompressible or weakly dilatable, isothermal or not,
with scalar transport if required.

A variety of turbulence models are available, from Reynolds-Averaged models
to Large-Eddy Simulation models. In addition, several more specific physical
models are also available as modules: radiative heat transfer, fuel combus-
tion, magneto-hydro gas, compressible flows, two-phase flows, Joule effect,
electric arcs, weakly compressible flows, atmospheric flows and rotor/stator
interaction for hydraulic machines.

It is based on the Finite-Volume method [28][29]. This method can easily be
formulated to allow for unstructured meshes, as a result of this meshes with
any type of cell (tetrahedral, hexahedral, pyramidal etc) and any type of
grid structure (unstructured, block, hybrid etc.) is accepted. Code_Saturne
is composed of two main elements and an optional GUI, as show in figure
4.3:
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Figure 4.3: Core elements of Code_Saturne. Figure from [2].

The preprocessor handles reading and verficiation of chosen meshes, as well
as handling connectivity between meshes in the case several are used. The
preprocessor does not handle partitioning of meshes in the case where MPI
is used.

This task is part of the kernel, where mesh modification, data setup and parti-
tioning is done. The solver finds the solution to the Navier-Strokes equations,
either through the use of built-in or user-specified funtions. Post-processing
and output writing is also handled by the Kernel. MPI communication is
executed by the kernel for every step.

The graphical user interface offers easy navigation of the many simulation
options. Inserting all the parameters using the command line can easily be-
come incomprehensible. Especially the mesh setup and configuration is made
easy by the use of the GUIL Information about the navigation of meshes and
how they are connected will quickly get complicated if done through com-
mand line. The simulation options are saved in XML notation, so it is also
possible to import a complete set of simulation options. Simulation results
can be read directly by visualization tools such as Paraview or EnSight.
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Chapter 5

Profiling instrumentation
method and results

This chapter will describe the profiling of Code_Saturne. The entire process is
covered: how instrumentation of Code_Saturne was set up, the computation
cases that were profiled and their results. Two Code_Saturne cases will be
tested, one being a tutorial example running on a desktop computer, the
other sizable enough to require a supercomputer.

5.1 Setting up instrumentation

Scalasca is used for the profiling analysis of Code_Saturne. The profile analy-
sis is run on the Vilje[30] supercomputer at NTNU, where the Scalasca mod-
ulefiles are of version 1.4.2. This module must be loaded before Code_Saturne
is configured, so that it is included in the setup. During configuration build
folders are created, and their makefiles generated based on the system state
and environment, as well as input arguments to the configuration.

Every folder and subfolder has its own Makefile. Instrumentation with Scalasca
is done in two steps, an additional Scalasca argument must be prepended to
both the original compile and execute commands. For more details, see sec-
tion 4.2. In the case of running a large project on a supercomputer it is a bit
more complicated. With regards to profiling analysis only the source folder is
of interest, as it is this folder that contains the files in which instrumentation
needs to be inserted.
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Each of the makefiles consist of thousands of lines, however it is only one
that needs to be changed to enable instrumentation. That is the variable
indicating which C compiler that should be used, CC. As Code_Saturne was
configured to use intel compilers for instrumentation, this variable was orig-
inally set to:

CC = icc
This must be extended to include the Scalasca command, so it is changed to:
CC = scalasca -instrument icc

All the Makefiles in the source folder were modified by prepending this
Scalasca command. Makefiles were then invoked so that all the C files in
the source folder were compiled with Scalasca instrumentation. Output from
the makefile generation should indicate that files are compiled with scalasca
in addition to icc.

Step two is to once again prepend a Scalasca command, this time to the
original execution command. This is difficult to do directly because of how
Code_Saturne is using python wrapper scripts to invoke execution. Another
problem is that Vilje uses SGI MPT[31] as the MPI library, which is not
included in the list of MPI libraries Code_Saturne can autodetect. Thus,
another workaround is needed to be able to successfully execute using MPT.
The section responsible for assembly of the MPI execution command is found
in the file cs_case.py. The relevant lines (960-964) are given below.

mpi_cmd = 7’

mpi_cmd_exe = ’’

mpi_cmd_args = ’’

if n_procs > 1 and mpi_env.mpiexec != None:
# ... omitted ...

The first line is simply changed to:
mpi_cmd = ’scalasca -analyze mpiexec_mpt °’

This change hardcodes Code_Saturne to use the MPI execution command
defined and used by SGI MPT. The mpi_cmd string is later inserted into the
execution command created by the python wrapper. With the source files
now instrumented during compilation, and the wrapper set up to correctly
use MPT, a Code_Saturne case can be run to create a profile analysis.
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5.2 Profiling results

This section will cover the results of the profiling analysis. The main focus
will be to pinpoint the function(s) where the majority of the run-time is spent.
Only the computationally intensive functions are of interest. Functions man-
aging MPI communication will also be encountered as it is responsible for a
large portion of the run-time. However, they will be disregarded as this is
code that can not be optimized with the use of autotuning.

Two cases has been profiled: One a PRACE UEABS large benchmark prob-
lem, sizable enough to be executed on a supercomputer. The other a small
example from Code_Saturne’s tutorial, designed to run on a desktop com-
puter. As they both resulted in a similar call-graphs, and distribution of
time spent in various functions only results from the PRACE case will be
presented for the sake of simplicity.

As the Scalasca profile will hold all the functions called during all steps of
execution it is unfeasible to present call-graphs in a perceptible way using
screencaptures of Scalascas GUI. For that reason call-paths will be visualized
using figures only including the relevant functions, i. e. those responsible for
the majority of the run-time. Of the functions called by the main method it
is cs_run that takes up almost all of the run-time. Other than that the main
function only calls a handful very small setup functions, as well as the MPI
initialization.

Figure 5.1 on the next page shows the important functions called by cs_run.
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cs run

h 4
CS_preprocessor
- cgdcel resmgr
data read_mesh 9 - ar_
cs join all reslin_

Figure 5.1: The important functions called by the cs_run function.

Added together, these functions and their subsequent calls are responsible for
96.54% of the total run-time. These are all massive functions, with lots of
subroutines. The two leftmost functions are part of the preprocessor module
of Code_Saturne, while the other three are part of the main kernel.

The remainder of this section will dive further into the callgraphs for each
of these functions to pinpoint their base functions, which are responsible for
the majority of the run-time. The functions found with this method will be
evaluated as possible targets for an autotuning process in Section 5.3.
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cs_preprocessor_data read_mesh

This function is part of the preprocessing module, and handles reading and
basic partitioning of the input data mesh. It has three major base functions.
Figure 5.2 below covers the call graph for this function. MPI is not used in
the preprocessing module, so this function is purely computational.

CS_preprocessor
data read_mesh

1

cs_partition

l

cell rank by sfc

LN

fvm io num create from sfc pre_compute cell center g

., l

create from_coords morton ¢s block to part create adj

VA

fvm_morton_build rank_index fvm_morton_get coords extents

l l

bucket sampling local_to global extents

Figure 5.2: Call graph for the cs_preprocessor_data_read_mesh function.
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cs_join_all

This function is also part of the preprocessing module. It is responsible for
applying the defined join operations on selected meshes. Figure 5.3 below
gives an overview of the call graph for this function. As this is also part of
preprocessing, no MPI communication is invoked here.

cs _join_all

v

build_join_structures

J

get work struct

v

cs_join_intersect faces

v

fvm_neighborhood_by boxes

y

update bt statistic

v

fvm box tree get stats

Figure 5.3: Call graph for the cs_join_all function.
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cgdcelL

This is the first function to be part of the computational kernel of Code_Saturne.
It is the gradient calculation that is performed by this function. It is a two
step process, first the scalar gradient is intialized, then the iterative calcula-
tion is executed. MPI communication is performed after each iteration, and
can be found in the cs_halo_syn_var_strided function. Figure 5.4 below holds

the call graph for this function.

cgdcel
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iterative_scalar_gradient
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sync_scalar_gradient_halo
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cs_halo_sync_var strided
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initialize_scalar_gradient

Figure 5.4: Call graph for the cgdcel. function.
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reslin_

This function computes the matrix-vector product that is part of the Jacobi
iteration. The matrix-vector multiplication is also a two-step process. First
up is the MPI communication and synchronization process executed in the
cs_halo_sync_var function, followed by the matrix-vector computation per-
formed in mat_vec_p_l_native. Figure 5.5 below shows the call graph for this
function.

reslin

solve_ni

jacobi

A

cs_matrix_exdiag_
vector multiply

/

pre_vector multiply_sync mat_vec_p_|_native

Y

¢s_halo_sync_component

Y

cs_halo_sync_var

Figure 5.5: Call graph for the reslin_ function.
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resmgr_

This function is the sparse linear system solver. It is responsible for around
two thirds of the total run-time in our case. The multigrid solver is used
as this is MPI communication is used. This function is divided in three
sections: cs_sles_solve is the general sparse linear system solver. It makes
use of three simple vector multiplication functions found in the cs_blas.c file.
The second step is the matrix-vector multiplication, which is described in
the reslin_ function above. The third step is the MPI communication and
synchronization between each iteration. Figure 5.6 represents the call graph
for this function.
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Figure 5.6: Call graph for the resmgr_ function.
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5.3 Evaluation of base functions

This section will elaborate the base functions found in the profile analysis,
explain their purpose and evaluate how well suited they are for an autotuning
process.

cs_block_to_part_create_adj

This is a base function of the cs_preprocessor_data_read_mesh method. This
function intializes the block to partition distributor for entities adjacent to
already distributed entitites. The main work of this function is reading from
file and data management. Additionally, this step is only executed once,
meaning this function’s contribution towards the total run-time diminishes
as the number of iterations in the calculation increases. For these reasons it
is not a good target for autotuning, and will not be autotuned.

bucket_sampling

This is another base function of the cs_preprocessor_data_read_mesh method.
It is used to compute a sampling array which assumes a well-balanced distri-
bution of leaves of the tree among the ranks. Like the function above, this
one does not have any computationally intensive parts. And as a function
part of preprocessing it will only be executed once. Thus function will not
be autotuned as it would have no effect.

local_to_global _extents

The last base function of the cs_preprocessor_data_read_mesh method. This
is a very small function, intended to transform local extents to global ex-
tents. The main body of this function is a single for loop, and could for that
reason seem a viable target for optimization. However, it is responsible for
only a few per cent of the total run-time. This ratio will only decrease as the
number of iterations is increased. This function will not be autotuned.

fvm_box_tree_get_stats

The only base function of the cs_join_all function. It is responsible for gath-
ering global box tree statistics. Its main task is data management of data
organized in a tree structure, as well as printing statistics. Like the other
three preprocessor functions listed above, it will not be autotuned.
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12_norm_3

This is a base function in the cgdcel method, and is thus part of the gradi-
ent calculation. More specifically, this function calculates the L? norm, or
the square root of the sum of absolute values squared, of the input vector.
The core of this function is computationally intensive, it is for that reason a
possible autotuning target. But it is only responsible for a couple per cent
of the total run-time. Any improvement from an autotuning process on this
function would be neglibile, thus it will not be prioritized. To achieve better
precision the 13superblock60 algorithm [32] is used.

cs_halo_sync_var & cs_halo_sync_var_strided

These two functions are handling the halo updates, that is, the border cells
of each processors data set that must be shared between each iteration. This
is a central task, so they are called from all of the computation methods. For
this reason they are responsible for the majority of MPI-related run-time.
Alas, autotuning have no effect on MPI functions, so these functions will not
be optimized.

mat_vec_p_l_native

This is the first computationally intensive function that also contribute to a
decent amount of the total run-time. The cs_matrix_exdiag_vector_multiply
function is split in two parts, one synchronization step using the halo sync
functions listed above. The other is the matrix-vector multiplication. This
function is called from several core functions, and is one of the functions with
the highest number of visits. There is a large variety of matrix-vector multi-
plication functions, which of them that is used is dependent on the matrix’
properties. In our test case mat_vec_p_l native is the used function. This
function will be autotuned.

cs_dot

This function is found in the file cs_blas.c, which in itself is an indication that
it involves mathematical calculations. This is a basic vector multiplication
calculation, computing the product of vectors x and y, xy. It is called by
several of the core functions, at various steps. To achieve better precision
the 13superblock60 algorithm is also used in this function. This function is a
prime target for autotuning, and will be an important test target.

cs_dot_xx_xy
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This function is also found in the file cs_blas.c. It calculates two dot prod-
ucts of the two vectors x and y, returning x.x and x.y. These dot products
could be computed separately using the function above, but simultaneous
computing adds more optimization opportunities and cache behaviour, even
before autotuning. The superblock algorithm is also used here. Just like the
previous function this will be a prime target for an autotuning process.

cs_dot_xy_yz

This is the third function from the cs_blas.c file that is frequently called. It
calculates two dot products of the three vectors x, y and z, returning x.y and
y.z. Like the previous function, the two dot products are calculated simul-
tanously for better performance, using the superblock algorithm for better
precision. It is almost identical to the previous function, so also a good target
for an autotuning process.
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Chapter 6

Implementation

This chapter will give information about implementation considerations, and
how the Orio directives were implemented for each of the selected functions.
Orio will be used as an automatic performance tool in this project.

6.1 Implementation considerations

This section details the implementation process. Which autotuning parame-
ters were chosen, and how encountered problems were solved.

6.1.1 Parameter space exploration strategies

The most detailed way to explore the given parameter space is by an exhaus-
tive search. Though, this can often result in an infeasible procedure as the
size of the search space can be exponentially large. As a consequence of this,
alternative search heuristics are available.

Two effective, and more practical search heuristic strategies have been de-
veloped and integrated into Orio’s search engine. These two heuristics are
the Nelder-Mead Simplex method [33] and Simulated Annealing method [34].
The exhaustive approach is the default method in Orio, the preferred search
method can however be specified by using the search argument. We used the
exhaustive search, as feasible search durations were obtainable for the chosen
search parameters and functions.
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The space search can also be set to terminate early using the time_limit and
total_runs arguments. If the search time exceeds the specified limit the search
is suspended and code for the best optimization so far is returned. The num-
ber of runs enforces the search to finish in a specific quantity of full search
moves. However, this can result in the returned configuration being far from
the optimal, especially if limits are set considerably lower than they should
be for the given parameter space.

To further improve the quality of the search result, each search heuristic is
enhanced by applying a local search after the main search completes. This
local search compares the best performance with neighboring coordinates. In
the case that a better coordinate is discovered the local search will continue
recursively until no further improvement is found.

6.1.2 Autotuning of problems with low workload

One problem encountered during the autotuning process was autotuning of
problems with low workload. It was observed that if the execution time of a
loop was around 1.0x10~® or lower, Orio would evaluate the run-time as a flat
0. A specified amount of executions of the loop is done for every combination
of autotuning parameters, and the run-time of all the tests are averaged. The
resulting average becomes incorrect as these zero-values are included in the
average.

This was observed during the autotuning of the Code_Saturne tutorial case,
designed for use on a desktop computer. For this reason the autotuning of this
case had to be discarded, since reasonable and useful results were unobtain-
able. This problem also impacted the tuning for the supercomputer-sized
case. The superblock matrix-muliplication formula has a triple-nested for
loop as the main body, which was autotuned, as well as a single for loop
after the main body. This latter loop could not be reliably optimized for the
tested cases as it was too small.

Results showed that in the case of simple vector addition or similar operations
the size of the for loop had to be around 10000 for Orio to produce appreciable
results. In the tutorial example designed for desktop PCs the size of this
vector was never higher than 936.
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6.1.3 Resolving various array size

One problem encountered during the autotuning process is that the size n of
the arrays, or vectors, varies. As a result of this the for loops have various
size. This size is one of, if not the most important consideration during the
autotuning process. For this reason, a generalized autotuning for a specific n
is likely to be very ineffective, even if autotuning is performed for the most
important value of n.

This was resolved by printing all encountered values of n for a specific func-
tion to the output, and then parsing the output file summarizing the number
of hits for each size n. That way autotuned functions could be generated for
the values of n with the most hits, while the others would be directed to the
original function. The code of the file parser is given in Appendix A.1l.

6.1.4 Explanation of used parameter variables

The performance tuning process need a variety of configuration parameters.
The used definitions and their parameters are listed below.

build - The build_command parameter is used to define the build command.
performance_counter - The repetitions parameter is used to define how
many tests are run for each combination of tuning parameters.
performance_params - This section defines the tuning parameters. Their
range or set of values is also defined here.

input_params - This section defiens the parameters used in the tuning pro-
cess, such as loop size.

input_vars - This section defines all the variables used in the code segment
that is to be autotuned. Initial values can also be set to zero, a specified or
randomized value.

search - This section defines which the type of search that will be used, as
well as parameters limiting the max length of the search.
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6.2 Implementation of functions

This section will cover the implementation of the autotuning of all chosen
functions. All implementations will be done for two configurations: one run-
ning on 1152 processors where MPI and computation are evenly distributed,
and one on 288 processors where computation is responsible for the major-
ity of the run-time. In the latter configuration it is easier to spot potential
speedups related to computational optimizations.

6.2.1 mat_vec_p_l_native

The core of the computations in this function has source in a for loop set-
ting up the matrix-vector multiplication. It can be found in Appendix A.2
The size n of the loop is a critical tuning parameter and must be obtained.
Figures 6.1a and 6.1b shows the distribution of the loop size n for the two
test cases.
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Figure 6.1: Distribution of loop sizes for the mat_vec_p_l_native function.
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On 288 processors (left) there were around 114 million visits in total. For
this case only values of n with more than 750000 hits are shown on the graph.
When run on 1152 processors (right) there were around 424 million visits in
total. In this case values of n with more than 4000000 hits are shown on
the graph. That the distribution of visits is dependent on the number of
processors is an important observation. This greatly degrades the chances of
a flexible and automatic tuning process.

These are not good results. On 288 processors there is not a single value of n
with more than 1% of total visits. As a result of this there is not really any
values that can be prioritized for autotuning. It is only barely better when
run on 1152. It is just as evenly distributed, and the value with the most
visits has only just over 1% of the total visits.

For the autotuning to have any noticeable effect at least 20 functions would
have to be autotuned. Considering each search can have a search time in
hours, this is not a very feasible solution. Especially the flexibility of the
solution is negatively impacted as these sizes and their distribution are de-
pendent on both the input mesh(es) and the number of processors used. Even
if the autotuning search times could be cut to half an hour it would still re-
quire 10 hours of autotuning to optimize 20% of this function only. It would
also severely impact readability as twenty or more new and nearly similar
functions would have to be implemented and called appropriately.

In addition it is the smallest loop sizes that have the most visits. As the
work done in the loop decreases, in this case because of the loop size, the in-
accuracy and inefficiency increases. Because of the even distribution of loop
sizes and small workloads this function can not be autotuned efficiently.
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6.2.2 cs_dot

This is the first of the three vector product functions. The function in its
entirety can be found in Appendix A.3. The size n of the arrays, or vectors,
must also here be extracted. The distribution of the size of n for the two
configurations are given in Figures 6.2a and 6.2b below.
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(a) Distribution of loop sizes for 288 pro- (b) Distribution of loop sizes for 1152
Cessors. Processors.

Figure 6.2: Distribution of loop sizes for the cs_dot function.

On 288 processors (left) there were arround 77 million visits in total. For 288
processors only values of n higher than 2500000 are shown. When run on
1152 processors (right) there were nearly 260 million visits in total. In this
case the threshold was set to 6000000 or higher. Once again the number of
processors impacts the loop size.

This is much more promising results. For this function there is a single value
of n much higher than the others, and it is also alone responsible for well over
a third of the total visits. The autotuning process will be performed for these
two values of n, 44463 and 11116 for 288 and 1152 processors respectively.
The used tuning parameters, as well as the function that is to be autotuned
is given in Figure 6.3 on the next page.
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spec cs_dot_tune_spec {

def build {

arg build_command = "gcc —fopenmp
—D_POSIX_ SOURCE —DHAVE CONFIG H
—funsigned —char —pedantic —std=c997;

}

def performance_counter {

arg repetitions = 50;

def performance_params {

param Ui[] = range(1l, 15);
param Uj[] = range(1l, 15);
param Uk[] = range(1l, 15);
def input_params {

param n[] = [11116, 44463];

def input_vars {
decl int sid = 0
decl int bid = 0
decl int i = 0;
decl int start_id =
decl int end_id = 0;
decl double sdot = 0.
decl double cdot = 0
decl int block_size = 60;
decl int n_blocks = n / block_size;
decl int n_sblocks = sqrt(n_blocks);
decl int blocks_in_sblocks =
(n_sblocks > 0) ?
n_blocks / n_sblocks : 0;
decl double dot = 0.0;

)
i

decl static double x[n] = random;
decl static double y[n] = random;
}

def search {

arg algorithm = ”Exhaustive”;

b}

/+*@ begin PerfTuning (
import spec cs_dot_tune_spec;

) @x/

/+*@ begin Loop (
transform Unroll
for (sid = 0;
sdot = 0.0;

(ufactor=Ui)
sid <= n_sblocks —1; sid++){

transform Unroll (ufactor=Uj)
for (bid = 0; bid <= blocks_in_sblocks —1; bid++){
start_id = block_size =x

(blocks_in_sblocksx*sid + bid);
block_size =*

(blocks_in_sblocks*sid + bid + 1);

end_id =

cdot = 0.0;

transform Unroll (ufactor=Uk)

for (i = start_id; i <= end_-id —1; i++)
cdot += x[i]*y[i];

sdot += cdot;

3
dot 4= sdot;

) @x/
/+@ end @x
@

/
/+@ end /

Figure 6.3: The used tuning spec (left) and the code segment (right) that

was autotuned.
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This will generate two new tuned versions of the main for loop of the cs_dot
function, one for each n. These new functions should only be called for
their specific values of n. They are invoked from their parent function in the
cs_sles.c file. Initially, this is done in one line:

double s = cs_dot(n_elts, x, y);

Where n_elts is an integer holding the array sizes. An if statement is created
using this value to launch the appropriate function:

double s = 0.0;
if(n_elts == 11116){

s = cs_dot_n_11116(n_elts, x, y);
}
else if(n_elts == 44463){

s = cs_dot_n_44463(n_elts, x, y);
}
else

s = cs_dot(n_elts, x, y);

The last step is to create the function definitons for these two new functions
in the header file cs_blas.h. These are similar to the already existing defini-
tion of the cs_dot function, the function name is the only change.
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6.2.3 cs_dot_xx xy

This is the second of the three vector product functions. The full function
can be found in Appendix A.4. Array size n of the arrays were obtained for
both of the tests. The distribution of the size of n for the two configurations
are given in Figures 6.4a and 6.4b below.
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Figure 6.4: Distribution of loop sizes for the cs_dot_xx_xy function.

On 288 processors (left) there were arround 77 million visits in total. For
288 processors only values of n higher than 2000000 are shown. When run
on 1152 processors (right) there were just over 300 million visits in total. In
this case the threshold was set to 6000000 or higher. Once again the number
of processors impacts the loop size.

Once again good results. Just like cs_dot this function has a single value of n
much higher than the others. It is the same values of n, also responsible for a
third of the total visits. The autotuning process will be performed for these
two values of n, 44463 and 11116 for 288 and 1152 processors respectively.
The used tuning parameters, as well as the function that is to be autotuned
is given in Figure 6.5 on the next page.
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spec cs_dot_xx_xy_tune_spec {

def build {

arg build_command = ”"gcc —fopenmp
—D_POSIX_ SOURCE —DHAVE CONFIG H
—funsigned —char —pedantic —std=c997”;

}

def performance_counter {

arg repetitions = 50;

def performance_params {

param Ui[] = range(1l, 15);
param Uj[] = range(1l, 15);
param Uk[] = range(1l, 15);
def input_params {

param n[] = [11116, 44463];

def input_vars {
decl int sid = O0;

decl int bid = 0
decl int i = 0;
decl int start_id = 0;
decl int end_id = 0;
decl double sdot_xx = 0.0;
decl double sdot_xy = 0.0;
decl double cdot_xx = 0.0;
decl double cdot_xy = 0.0;
decl int block_size = 60;
decl int n_blocks = n / block_size;
decl int n_sblocks = sqrt(n_blocks);
decl int blocks_in_sblocks =
(n_sblocks > 0) ?
n_blocks / n_sblocks : 0;
decl double dot_xx = 0.0;
decl double dot_xy = 0.0;
decl static double x[n] = random;
decl static double y[n] = random;
}
def search {
arg algorithm = ”Exhaustive”;
1}

/+*@ begin PerfTuning (
import spec cs_dot_xx_xy_tune_spec;

) @x/

/+*@Q begin Loop (

transform Unroll (ufactor=Ui)

for (sid = 0; sid <= n_sblocks —1; sid++) {
sdot_xx = 0.0;

sdot_xy = 0.0;

transform Unroll (ufactor=Uj)

for (bid = 0; bid <= blocks_in_sblocks —1;

start_id = block_size =x*
(blocks_in_sblocksxsid + bid);

end_id = block_size =*

(blocks_in_sblocks*sid + bid + 1);
cdot_xx = 0.0;
cdot_xy = 0.0;

bid-++

transform Unroll (ufactor=Uk)

for (i = start_id; i <= end_id—1; i++) {
cdot_xx += x[1]*x[i];

cdot_xy += x[i]*xy[i];

}

sdot_xx += cdot_xx;

sdot_xy += cdot_xy;

dot_xx 4= sdot_xx;
dot_xy += sdot_xy;
) @x/

/*@ end @x/
/+*@Q end Q@x/

Figure 6.5: The used tuning spec (left) and the code segment (right) that

was autotuned.
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This will generate two new tuned versions of this code segment, one for each
n. These new functions should only be called for their specific values of n.
They are invoked from their parent function in the cs_sles.c file. Initially,
this is done in one line:

cs_dot_xx_xy(n_elts, x, y, s, s+l1);

Where n_elts is an integer holding the array sizes. An if statement is created
using this value to launch the appropriate function:

if(n_elts == 11116){
cs_dot_xx_xy_n_11116(n_elts, x, y, s, s+1);
}
else if(n_elts == 44463){
cs_dot_xx_xy_n_44463(n_elts, x, y, s, s+l);
}
else
cs_dot_xx_xy(n_elts, x, y, s, s+1);

Unlike the cs_dot function this one does not return any values, but rather
uses pointers to correctly place the computed values. Function definitions for
these two new functions must be added in the header file cs_blas.h.
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6.2.4 cs_dot xy_yz

This is the final vector product function. The full function can be found in
Appendix A.5 The sizes of n was extracted for both test cases. The distri-
bution of the size of n for the two configurations are given in Figures 6.6a
and 6.6b below.
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Figure 6.6: Distribution of loop sizes for the cs_dot_xy_yz function.

On 288 processors (left) there were arround 77 million visits in total. For
288 processors only values of n higher than 2000000 are shown. When run
on 1152 processors (right) there were just over 300 million visits in total. In
this case the threshold was set to 6000000 or higher. Once again the number
of processors impacts the loop size.

Good results, as in the two previous functions. This function has a single
value of n which is alone responsible for around a third of the total visits.
The autotuning process will be performed for these two values of n, 44463
and 11116 for 288 and 1152 processors respectively. The used tuning param-
eters, as well as the function that is to be autotuned is given below in Figure

6.7.
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spec cs_dot_xy_yz_tune_spec { /+*@ begin PerfTuning (

def build { import spec cs_dot_xy_yz_tune_spec;
arg build_command = ”gcc —DHAVE_.CONFIG_H ) @Qx/
—D_POSIX_.SOURCE -DNDEBUG —0O3 —std=c99
—funsigned —char —pedantic —fopenmp”; /+*@ begin Loop (
} transform Unroll (ufactor=Ui)
def performance_counter { for (sid = 0; sid <= n_sblocks —1; sid++) {
arg repetitions = 50; sdot_xy =

0.0;
sdot_yz = 0.0;
def performance_params {

param Ui[] = range(1l, 15); transform Unroll (ufactor=Uj)
param Uj[] = range(1l, 15); for (bid = 0; bid <= blocks_in_sblocks —1; bid++) {
param Uk[] = range(l, 15); start_id = block_size =x
(blocks_in_sblocksxsid + bid);

def input_params { end_id = block_size =
param n[] = [11116, 44463]; (blocks_in_sblocksxsid + bid + 1);

cdot_xy = 0.0;
def input_vars { cdot_yz = 0.0;

decl int sid = 0;
decl int bid = 0;

transform Unroll (ufactor=Uk)

decl int i = 0; for (i = start_id; i <= end_id—1; i++4) {
decl int start_id = 0; cdot_xy += x[i]*xy[i];
decl int end_id = 0; cdot_yz += y[i]*z[i];
decl double sdot_xy = 0.0; }
decl double sdot_yz = 0.0; sdot_xy 4= cdot_xy;
decl double cdot_xy = 0.0; sdot_yz += cdot_yz;
decl double cdot_yz = 0.0; }
decl int block_size = 60;
decl int n_blocks = n / block_size; dot_xy += sdot_xy;
decl int n_sblocks = sqrt(n_blocks); dot_yz += sdot_yz;
decl int blocks_in_sblocks =
(n_sblocks > 0) ? ) @x/
n_blocks / n_sblocks : 0; /+*@ end @x/
decl double dot_xy = 0.0; /+*@ end @x/
decl double dot_yz = 0.0;
decl static double x[n] = random;
decl static double y[n] = random;
decl static double z[n] = random;
}
def search {
arg algorithm = ”Exhaustive”;
1+

Figure 6.7: The used tuning spec (left) and the code segment (right) that
was autotuned.
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This will generate two new tuned versions of the main for loop of the cs_dot_xy_yz
function, one for each n. These new functions should only be called for their
specific values of n. Like the other two matrix multiplication functions they
are called from the parent function in the cs_sles.c file. Initially, this is done

in one line:

cs_dot_xy_yz(n_elts, x, y, z, s, s+l1);

Where n_elts is an integer holding the array sizes. An if statement is created
using this value to launch the appropriate function:

if(n_elts == 11116)1
cs_dot_xy_yz_n_11116(n_elts, x, y, z, s, s+1);
}
else if(n_elts = 44463){
cs_dot_xy_yz_n_44463(n_elts, x, y, z, s, s+1);
}
else
cs_dot_xy_yz(n_elts, x, y, z, s, s+1);

This functions is similar to the cs_dot_xy_yz function in that it uses pointers
to correctly place the computed values. The function definitions for these
newly created functions must be added in the header file cs_blas.h.
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Chapter 7

Results and discussion

This chapter will present the results. First to be discussed is the inconsistent
results encountered during the autotuning process. Next the results from
running on 1152 processors will be presented. When running on this many
processors Code_Saturene was was found to have a nice balance of run-time
spent on computing and communication. The other set of tests were run on
only 288 processors, resulting in a much bigger part of the run-time used on
computation. This was done so potential speedups would be easier to detect.

7.1 Autotuning inconsistencies

As described in Section 6.1.2 autotuning of cases designed for desktop sized
computers proved to be unreliable. Even when this was not the case, and
the autotuning seemingly worked correctly the results from the autotuning
process were not consistent. The chosen values for the unroll parameters did
often vary from test to test, even if the code segment and the autotuning pa-
rameters were unchanged. As an example, for the cs_dot function the three
unroll values from the outer to the inner loop were 4, 7 and 5 in the first
search. In the second search unroll values of 9, 2 and 6 were reported as
optimal values.

Though, no matter which unroll factors were reported to be the optimial
configuration, they were all reported to have significantly shorter execution
times than the original function with no unrolling. All of the functions were
found to have unroll values offering between 20% and 30% speedup.
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A higher number of test per value could resolve some of these problems, but
that would greatly impact the execution time of each search. The imple-
mented search configurations had a run-time of just under two hours with
the 50 repetitions used per test. With 50 repetitions the average should be
adequately accurate.

These results are ambiguous. On one hand they indicate there are possibili-
ties for speedup, on the other hand the reliability must be questioned because
of the inconsistencies.

7.2 'Test results on 1152 processors

Running on 1152 processors offered a good balance between time spent on
MPI communication and computations. This balance point is where the code
has the lowest run-time, in other words the most likely configuration to be
used. For that reason it is a good starting point for evaluating the effect of
changes from the autotuning process.

The run-times were obtained from Code_Saturnes clocking values in the ex-
ecution report. The values considered are the average CPU time for a single
processor. Each test were run 10 times, every value is reported as well as
the average. For the original code the results are depicted in Figure 7.1
on the next page. The average run-time was 436,954 seconds. The biggest
deviations from the average were just over 5%.

In the next test Code_Saturne were compiled to use the ATLAS|[35] libraries.
The ATLAS project is an ongoing research effort attempting to provide a
toolkit offering portable performance improvement with the use of empirical
techniques. Figure 7.2 shows the results of these tests.
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Figure 7.1: Test results for the original code on 1152 processors.
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Figure 7.2: Test results for the original code compiled to use ATLAS on 1152
Processors.

The average run-time when using ATLAS libraries was 438,190 seconds. With
deviations in the same range, around 4%. In other words, there was no gain
by using ATLAS libraries. The average run-time increased by quarter of a
per cent, but considering the deviations this is most likely due to test devia-
tion rather than slower algorithms.
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The last tests were performed using the implemented modifications suggested
by Orio’s autotuning process. Three of the four computationally intensive
functions were optimized, all three vector multiplication functions. While the
matric-vector multiplication function could not be optimized, as explained
in Section 6.2. Figure 7.3 shows the results for tests run on the autotuned
version.
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Figure 7.3: Test results for the autotuned code on 1152 processors.

The average run-time for the optimized code was 433,293 seconds. With
deviations in the same range, around 4%. Compared to the 436,954 seconds
for the original code the difference is neglible, this means autotuning was no
improvement gained by autotuning the code. While there is a slight decrease
in run-time this is, like the case for ATLAS, this is most likely due to test
deviation rather than faster algorithms.

7.3 Test results on 288 processors

The other test configuration used only 288 processors during the execution
phase. This leads to more time spent on computation than on MPI commu-
nication. This will result in a slower overall run-time, but it will also make
changes in the average run-time more apparent. This test is intended to ob-
serve potential changes in the run-time that could have been overlooked in
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the previous configuration.

For the sake of consistency the run-times were obtained from Code_Saturnes
clocking values from the execution report in this test as well. The values
considered are the average CPU time for a single processor. Each test were
run 10 times, every value is reported as well as the average. For the original
code the results are given below in Figure 7.4
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Figure 7.4: Test results for the original code on 288 processors.

With an average run-time of 708,072 seconds it is clear that this is a less op-
timal configuration than running on 1152 processors. Deviations also nearly
doubled, now around 8%. This indicates that more time spent computing on
each CPU leads to more inconsistent run-times.

The next test Code_Saturne on 288 processors used the ATLAS libraries.
Figure 7.5 on the next page depicts the results of these tests. The average
run-time using ATLAS on 288 processors was 719,820 seconds, once again a
slight increase compared to the unmodified version. Still it is only a 1,5%
increase, so the effect is neglible.
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Figure 7.5: Test results for the original code compiled to use ATLAS on 288
Processors.

The final test was performed used the implemented modifications from the
autotuning process. With the exception of a reduced number of processors
this test is identical to the one run on 1152 processors. Figure 7.6 shows the
results for tests run on the autotuned version.
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Figure 7.6: Test results for the autotuned code on 288 processors.
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The average run-time in this test was 716,569 seconds. Deviations were the
same as those in the two other tests on 288 processors. This average is
slightly higher than the 708,072 seconds for the unmodified tests. In the bal-
anced test autotuning was slightly quicker, in the case of more computation
the impact should be more noticeable. However it was slightly slower instead.

This is a clear indication that the autotuning process, just like using the
ATLAS libraries have no effect, and that the small differences are a result of
deviation in tests. If more tests were performed for all the configurations the
averages would have converged to the same value.
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Chapter 8

Conclusions and future work

The full methodology of an autotuning process has been presented, from pro-
filing analysis, through extracting important autotuning parameters to the
actual implementation and testing the effect.

It has become apparent that the current design of Code_Saturne limits the
possibilites for efficient autotuning. The length of the loops executed in the
computationally heavy functions greatly varies. This loop length is the most
important consideration in an autotuning process. An important observation
is that this length is dependent on both the input mesh and the number of
processors used, requiring code, execution parameters and input data to be
adapted and tuned in conjunction. For some cases this distribution of loop
sizes might be more beneficial with regards to autotuning, in others worse.
This makes autotuning of Code_Saturne very unpredictable and inefficient.

The other limitation of the dependency between loop sizes and mesh size and
number of processors is that any modification to either of these will require
the full autotuning process to be redone for the new loop sizes. Cutting the
number of processors used in half would require new empirical searches and
implementations for each function. Even in cases where autotuning would
offer great optimization, it would only be feasible to implement it if the cases
executed many times with the same mesh and number of processors.

In the case tested the sizes of the loops were very evenly distributed: for

the three vector multiplication functions it was only reasonable to autotune
for a single value, responsible for a third of the sizes. In other words, only
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a third of calls to these functions could be optimized for this specific case.
Optimizing for additional loop sizes would greatly decrease readability, and
also be very inefficient as the gain for each value would be neglible. The
function handling matrix-vector multiplication could not be optimized at all
as not a single loop size was used in more than 1% of the calls to that function.
For this reason the majority of the computationally heavy functions were not
fit for optimization with Orio, and no significant autotuning potential could
be identified in the tested cases.

Orio did report potential for the autotuned for loops, suggesting that the
run-times for the chosen code segments could be decreased by up to 30%.
However, there were inconsistencies in the results of the autotuning process,
as it did not suggest the same optimizations every time the same search was
performed. No matter the suggested changes they were all reported to be
quicker, but the reliability is questionable, since no effect was found from
implementing the suggested modifications.

Another observation made was that Orio is not fit to tune loops with low
workloads. If the time taken to execute the chosen code segment was too
small Orio’s test benchmarking was wrong. This was especially the case for
workloads related to Code_Saturne problems designed for desktop comput-
ers, but it was also noticeable for the smaller loops in the case when running
on a supercomputer.

The default code, the code compiled to use ATLAS and the autotuned code
all had the same run-time, both when computation and MPI communication
was balanced and when there was an imbalance towards more computation.
The majority of the computationally heavy functions where not fit for im-
provements suggested by Orio, so they could only be implemented for a small
portion of the code. Any potential effect was lost.

8.1 Future work

If the use of autotuning is to be further pursued large parts of Code_Saturne
will have to be redesigned. If, e.g. the vector multiplication functions were
called with the same and large array size almost every time the effect of au-
totuning would be greatly increased. However, this would require massive
changes to the core of Code_Saturne, so whether it is a feasible option must
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be considered.

Another option could be modifying data sets to result in more coherent sub-
problem sizes, resulting in greater potential for automatic tuning. Identifying
important characteristic for such adaptions and applicable problems would
make an interesting direction for further research.

Another option for further optimization is implement an option to use GPUs
for the computationally intensive functions. This could greatly improve run-
time, and it does not require large modifications, as it could be an additional
option only requiring porting of a few core functions.
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Appendix A

Relevant code

A.1 parser

This is the parser file used to scan the output of the various array sizes.

#include <stdio.h>
#include <stdlib.h>

FILE *file;

void main()
{
int i, temp;
int lines = 0, threshold = 3000000;
int array[50000];
char 1line[10];

for(i = 0; i < 50000; i++){
array[i]l = 0;

}

file = fopen("input.txt", "rt");
while(fgets(line, 10, file) != NULL)
{
sscanf (line, "%d", &temp);
array[temp] += 1;
lines += 1;
}
for(i = 0; i < 50000; i++){
if (array[i] > threshold){
printf ("%d = %d\n", i, arrayl[il);
}
}
printf("Lines parsed: %d\n", lines);
fclose(file);

64



A.2 mat_vec_p_l_native

The is the matrix-vector multiplication function.

static void _mat_vec_p_l_native(bool exclude_diag,
const cs_matrix_t *matrix,
const cs_real_t *restrict x,
cs_real_t *restrict y)

{

cs_lnum_t ii, jj, face_id;

const cs_matrix_struct_native_t *ms = matrix->structure;
const cs_matrix_coeff_native_t *mc = matrix->coeffs;
const cs_real_t *restrict xa = mc->xa;

/* Tell IBM compiler not to alias */
# if defined(__xlc__)
# pragma disjoint(xx, *y, *xa)
# endif

/* Diagonal part of matrix.vector product */

if (! exclude_diag) {
_diag_vec_p_l(mc->da, x, y, ms->n_cells);
_zero_range(y, ms->n_cells, ms->n_cells_ext);
}
else
_zero_range(y, 0, ms->n_cells_ext);

/* Note: parallel and periodic synchronization could be delayed to here */
/* non-diagonal terms */

if (mc->xa != NULL) {
if (mc->symmetric) {
const cs_lnum_t *restrict face_cel_p = ms->face_cell;

for (face_id = 0; face_id < ms->n_faces; face_id++) {
ii = face_cel_p[2+face_id] -1;
jj = face_cel_p[2xface_id + 1] -1;
y[ii]l += xal[face_id] * x[jjl;
y[jjl += xalface_id] * x[iil;
}
}
else {
const cs_lnum_t *restrict face_cel_p = ms->face_cell;
for (face_id = 0; face_id < ms->n_faces; face_id++) {
ii = face_cel_p[2+face_id] -1;
jj = face_cel_p[2xface_id + 1] -1;
y[ii]l += xa[2xface_id] * x[jjl;
y[jjl += xal[2xface_id + 1] * x[iil;
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A.3 cs_dot

This is the first of the vector multiplication functions.

double cs_dot(cs_lnum_t n,
const cs_real_t *x,
const cs_real_t *y)

const cs_lnum_t block_size = 60;

cs_lnum_t sid, bid, i;

cs_lnum_t start_id, end_id;

double sdot, cdot;

cs_lnum_t n_blocks = n / block_size;

cs_lnum_t n_sblocks = sqrt(n_blocks);

cs_lnum_t blocks_in_sblocks = (n_sblocks > 0) ? n_blocks / n_sblocks : 0;
double dot = 0.0;

# pragma omp parallel for reduction(+:dot) private(bid, start_id, end_id, i, \
cdot, sdot) if (m > THR_MIN)

for (sid = 0; sid < n_sblocks; sid++) {
sdot = 0.0;
for (bid = 0; bid < blocks_in_sblocks; bid++) {

start_id = block_size * (blocks_in_sblocks*sid + bid);

end_id = block_size * (blocks_in_sblocks*sid + bid + 1);
cdot = 0.0;
for (i = start_id; i < end_id; i++)

cdot += x[il*y[il;
sdot += cdot;

}

dot += sdot;
¥
cdot = 0.0;
start_id = block_size * n_sblocks*blocks_in_sblocks;
end_id = n;
for (i = start_id; i < end_id; i++)

cdot += x[ilxy[il;
dot += cdot;

return dot;
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A.4 cs_dot_xx xy

This is the second vector multiplication function, working on three vector.

void cs_dot_xx_xy(cs_lnum_t n,
const cs_real_t *restrict X,
const cs_real_t *restrict Y,
double *XX,
double *xy)

const cs_lnum_t block_size = 60;
cs_lnum_t sid, bid, i;
cs_lnum_t start_id, end_id;
double sdot_xx, sdot_xy, cdot_xx, cdot_xy;
cs_lnum_t n_blocks = n / block_size;
cs_lnum_t n_sblocks = sqrt(n_blocks);
cs_lnum_t blocks_in_sblocks = (n_sblocks > 0) ? n_blocks / n_sblocks : 0;
double dot_xx = 0.0;
double dot_xy = 0.0;

#if defined(__xlc__)

#pragma disjoint(*x, *y, *xx, *xy)

#endif

# pragma omp parallel for private(bid, start_id, end_id, i, cdot_xx, cdot_xy, sdot_xx, sdot_xy) \
reduction(+:dot_xx, dot_xy) if (n > THR_MIN)
for (sid = 0; sid < n_sblocks; sid++) {
sdot_xx = 0.0;
sdot_xy = 0.0;
for (bid = 0; bid < blocks_in_sblocks; bid++) {
start_id = block_size * (blocks_in_sblocks*sid + bid);
end_id = block_size * (blocks_in_sblocks*sid + bid + 1);
cdot_xx = 0.0;
cdot_xy = 0.0;
for (i = start_id; i < end_id; i++) {
cdot_xx += x[il*x[il;
cdot_xy += x[il*y[il;
}
sdot_xx += cdot_xx;
sdot_xy += cdot_xy;
}
dot_xx += sdot_xx;
dot_xy += sdot_xy;
}
cdot_xx = 0.0;
cdot_xy = 0.0;
start_id = block_size * n_sblocks*blocks_in_sblocks;
end_id = n;
for (i = start_id; i < end_id; i++) {
cdot_xx += x[i]*x[il;
cdot_xy += x[il*yl[il;
}
dot_xx += cdot_xx;
dot_xy += cdot_xy;

*xx = dot_xX;
*Xy dot_xy;
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A.5 cs_dot_xy_yz
This is third and last vector multiplication function, also working on three vectors.

void cs_dot_xy_yz(cs_lnum_t n,
const cs_real_t *restrict X,
const cs_real_t *restrict Y,
const cs_real_t *restrict z,
double *Xy,
double *yz)

const cs_lnum_t block_size = 60;
cs_lnum_t sid, bid, i;
cs_lnum_t start_id, end_id;
double sdot_xy, sdot_yz, cdot_xy, cdot_yz;
cs_lnum_t n_blocks = n / block_size;
cs_lnum_t n_sblocks = sqrt(n_blocks);
cs_lnum_t blocks_in_sblocks = (n_sblocks > 0) ? n_blocks / n_sblocks : 0;
double dot_xy = 0.0;
double dot_yz = 0.0;

#if defined(__xlc__)

#pragma disjoint (*x, *y, *xy, *yz)

#endif

# pragma omp parallel for private(bid, start_id, end_id, i, cdot_xy, cdot_yz, sdot_xy, sdot_yz) \
reduction(+:dot_xy, dot_yz) if (n > THR_MIN)
for (sid = 0; sid < n_sblocks; sid++) {
sdot_xy = 0.0;
sdot_yz = 0.0;
for (bid = 0; bid < blocks_in_sblocks; bid++) {
start_id = block_size * (blocks_in_sblocks*sid + bid);
end_id = block_size * (blocks_in_sblocks*sid + bid + 1);
cdot_xy = 0.0;
cdot_yz = 0.0;
for (i = start_id; i < end_id; i++) {
cdot_xy += x[il*y[i];
cdot_yz += yl[il*z[il;
}
sdot_xy += cdot_xy;
sdot_yz += cdot_yz;
}
dot_xy += sdot_xy;
dot_yz += sdot_yz;

}
cdot_xy = 0.0;
cdot_yz = 0.0;

start_id = block_size * n_sblocks*blocks_in_sblocks;
end_id = n;
for (i = start_id; i < end_id; i++) {
cdot_xy += x[il*yl[il;
cdot_yz += y[il*z[il;
}
dot_xy += cdot_xy;
dot_yz += cdot_yz;
*xy = dot_xy;
*yz = dot_yz;
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