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“There’s so much possibility in their minds, but they are still, after all, individually

stupid and small minded and half-blind and half-mad”

-The Hive Queen.
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Incremental Genome Growth for the Evolution of Genotype

Representations of Artificial Cellular Organisms

by Andreas Giskeødeg̊ard

In this thesis, we explore the possibilities of evolving cellular automaton attractors of

different sizes with an algorithm which slowly expands the genotype of the individuals.

Attractors of different sizes are grown in cellular automatons with different settings,

to ensure that potential success is not strictly limited to the size and settings of the

automaton. The properties of the attractors which are produced by this novel algorithm

are compared to attractors evolved with static genotypes which provide similar and

vastly larger search spaces. Comparing and analysing the results show that a slow

expansion of search space during evolution produce results with compact and effective

representations, favouring small transients, and the behaviour is persistent with changing

cellular automata parameters. A large search space provided attractors with arbitrary

transient lengths, and an excessive and ineffective usage of available chromosomes in

the genotype. The attractors developed on a static genotype, but fixed to a size in

which the growing genotype evolution was able to find solutions, gave similar results as

the growing genotype. Both produced a small set of attractors, which repeated similar

patterns and often yielded identical solutions. The set of different solutions produced

by the fixed genotype is found to be slightly larger than that of a growing genotype,

because of the growing genotypes favouring of short transients. This type of automatic

generation of representation, is thought to be good alternative too a manual or bloated

representation, and the reduced search space exploration, and the incremental process

of improving fitness can be helpful both with runtimes, and with reducing the chances of

getting stuck at local optimise. This is simply a proof that a evolution with a expanding

search space is possible, and creates good results and representations, but needs further

testing to be better adjusted and integrated to useful problem solving.
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Chapter 1

Introduction

Within the field of complex systems, and cellular computation, the limitations of com-

putation is very different than in todays mainly sequential computation paradigm. The

sequential computation is pushing the boundaries of the physical capabilities of the ma-

terial it is produced in, while the theory of cellular computation is a untapped source,

and can be potentially used as a vastly parallel, and scalable computation tool[1]. Hu-

man beings normally process thoughts and problems in a sequential pattern, making

a vastly parallel structure difficult to program and utilise. To bridge the gap where

humans lack in ability to program for large parallel systems, we have taken to the use of

adaptive programming[2]. Adaptive programming is were algorithms are used to create

programs or systems which take advantage of and creates solutions in complex systems

like cellular computation. These adaptive programming techniques involve the usage of

methods like evolutionary algorithms. But evolutionary algorithms suffer from an inher-

ent scalability problem[3], which makes the construction of large and complex cellular

computation systems difficult. For instance is the representation of a problem and solu-

tion often designed in a 1 to 1 relationship, making the problem as large as the solution.

To increase the scalability of the evolutionary algorithms, researchers have for instance

gotten inspiration from nature, and started using development along side evolution[3],

so that the solutions which are created are much smaller than the problem, and thus

increasing the scalability.

There are still multiple difficulties with the usage of adaptive programming for prob-

lem solving, like the obstacle of finding a representation for a solution which is large

1



Chapter 1. Introduction 2

enough to contain a real solution. This is a difficult task and is done with large amounts

of heuristics[4]. Solutions which use development have many other emergent proper-

ties, which are not as obvious as a smaller representation. There are effects such as

scalability[5], and robustness[6]. Nature is a prime example on robust and scalable de-

velopment of organisms, so taking further inspiration from her(Mother nature) seems

wise.

By taking inspiration from complexification, growing representation, and nature, we

created an algorithm to see if this kind of function would translate to the evolution

development systems. Further exploring how this could automatically create a repre-

sentation size without the usage of difficult heuristics, and have the sizes be compact

and effective. The gradual increase in search space, could theoretically reduce the like-

lihood of a evolution getting stuck at a local optima, and would need to explore less

of the state space than a normal fixed representation does. Cellular automata are used

as a representation model of development from a genotype to a phenotype, which also

can be translated to cellular computation. A gradual growth in search space should re-

sult in smaller more compact solutions, and seeing how a smaller representation affects

behaviour in the resulting organism should be interesting.

A framework to run the algorithm was designed and implemented, and then configured.

The framework is designed for running three different kinds of evolution functions; Grow-

ing, Restricted, and Full. in the Growing, the representation, i.e. genotype, grows until

it is a size where a solution is found. The Full has a genotype size equal to the rule

space, which gives it a chromosome for every configuration the neighbourhood of a site

can achieve. As for the Restricted, it also has a fixed genotype size, but it is signifi-

cantly less than the genotype size for the Full. The framework uses attractors of different

lengths as measures of complexity and problems to evolve. To check if the algorithm

was able to create valid results, at a reasonable rate, and was able to create ”better”

representations than the Full, three experiments were designed and run. The experi-

ments would find attractors of different lengths, with the three types of evolution, and

further check to see if the results are persistent when changing the state space with an

expansion in geometry and state size for the cellular automaton.

The thesis is structured by having a background/introduction to the research field in

Chapter 2. This is followed by Chapter 3, where the main hypothesis is explained, and
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what parts of this we will try to explore in the experiments. In Chapter 4 there is

a thorough explanation of how the framework functions, as to give a context to how

the results were created, and the means to replicate a system which creates similar or

same results. Getting results without the ability to recreate or show where they came

from will essentially make the results hollow, and questionably imaginary. Chapter 5

explained the two main parts of the experimentation, which is first, the configuration

of the framework, needed to make it run and be able to produce results. Second, the 3

above explained experiments to see if the system is able to create solutions, and have

a persistent behaviour when changing parameters in the cellular automaton. Chapter 6

will present the results in two main section, being configuration and experimentation.

Then Chapter 7 will discuss findings and properties of the results, and suggestions on

how this can be further explored, and how the results may contribute to the field.

Chapter 9 will be a conclusive chapter with a summary of the thesis, results and final

thoughts.





Chapter 2

Background information and

theory

2.1 Cellular automata

2.1.1 History

In the early 1950’s John von Neumann explored the idea of creating a machine who could

create an exact copy of itself, a self-replicating machine[7]. Construction or simulation

of such a machine was very difficult back then, so instead von Neumann studied the

logical structure such a machine would need. In his study, von Neumann created a

framework which he called ”cellular spaces”. The framework is a dynamical system

with a discrete understanding of time and space[8]. Multiple sites are connected to other

sites, and each site has multiple states. The state for the next discrete time step would

be based of the states of all the connected sites. His design worked as a self-replicating

machine, and has in later years been simplified multiple times by the likes of Codd[9],

Banks[10], Conway[11][12] to name some. ”Cellular spaces” has also changed name,

and is now called Cellular automata(CA). The original purpose was to study and model

biological systems, but has later been reintroduced with a variety of purposes under

multiple names like; tessellation automata, homogeneous structures, cellular structures,

tessellation structures, and iterative arrays[13].

5
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There is a theory called the theory of everything, which is basically the idea that ev-

erything in the universe is built up of the same fundamental particle. The idea of a

fundamental particle has been around for a very long time, and could easily have been

an influence on the CA framework. CA sites can be seen as a fundamental particle,

and thus the rules for a CA can simulate the rules for the fundamental particles in the

theory of everything[14].

2.1.2 Characteristics

There are some terms which are needed when talking about CA:

Development step:

The movement from one discrete time step to the next within the geometry of the CA.

During this step each site checked for matching rules in the CA genotype. If a matching

rule is found, the site changes state to the next state determined by the matched rule.

Attractor:

A set of development steps which ends up with the geometry of the first step being equal

to the geometry of the last step. Essentially creating a loop in the geometry which will

continue as long as the development is run.

Point attractor:

An attractor whose set consists of a single development step which makes no change to

its geometry.

Transient:

A set of development steps which leads from the very first development step, to the first

development step of an attractor.

Trajectory:

A set of development steps consisting of the set of a transient and its belonging attractor.

As for describing the construction and functionality of the CA, it can be split into 4

parts[15].
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2.1.2.1 Geometry of the Cellular Automaton

The geometry of a CA describes the area containing all the sites, and describes their

placement in space. This can be defined in different ways, but the normal definition is

on a n-dimensional grid where n is the number of dimensions requested. An example of

a more unconventional way of definition can be done through group graphs[15], which

is just an example and will not be further used. When constructing the geometry of an

n-dimensional grid and the size of n has been determined, the functionality of the geom-

etry should be decided as either infinite or finite. An infinite geometry will grow with

the structure, no matter how large it gets, while a finite geometry will have a fixed size in

all n dimensions. When a growing structure reaches the boundary of a finite geometry,

it needs a boundary condition. Boundary conditions are how to apply local transition

rules to a site when parts of its neighbourhood is outside the geometry space[15][16].

Null boundary condition makes the CA believe that all sites outside geometry space is

in the null/quiescent state.

Fixed boundary condition makes the CA believe that all sites outside geometry space is

in a static predefined state.

Periodic boundary condition is when the geometry space is considered folded in its di-

mension. Meaning if a site has a neighbour outside of geometry space, the dimension

would fold and the neighbour would be the extreme site on the other side of the dimen-

sion, as seen in Figure 4.1. This can be represented with a piece of string (1-dimension)

which gets tied in a loop, i.e. folded.

Mixed boundary condition is when there can be different condition on different bound-

aries.

2.1.2.2 States of the sites

A site is an entity which can hold, and change state. The different kinds of states the

site can hold is a finite set of states which can be called a state set. Normally all sites

in a CA have the same state set to chose from, this is called a monogeneous CA[16].

If sites in a CA have different state sets, it is called a polygeneous CA [15]. One of

the states in a state set is defined as a null/quiescent state. This quiescent state is the

default off state for the CA, and the state all sites except the initial configuration has

at development step 0. For a state to turn from the quiescent state to another state
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Figure 2.1: Image displaying the von Neumann, and the Moore neighbourhoods for
cellular automata .

there should normally be a site with a different state than the quiescent state in its

neighbourhood.

2.1.2.3 Neighbourhood of sites

For an arbitrary site, there is a set of sites which it is connected to that is called a

neighbourhood. In some cases this neighbourhood is decided by the geometry of the CA

like in group graphs, but in n-dimensional CA the neighbourhood can be designed. The

size and relative placement of a neighbourhood is uniform across the geometry for CA,

changing from uniform to non uniform will change the classification to random boolean

networks, or neural networks. In a CA with 2-dimensional geography there are two

common neighbourhood structure, the von Neumann, and the Moore neighbourhood[17].

In Figure 2.1, we can observe that in a Moore neighbourhood the relative placement of

the neighbourhood is always the 8 sites closest to the current site in addition to the

current site, while in the von Neumann neighbourhood it is only the perpendicular sites

of the current site in addition to the current site.

The neighbourhood is defined with and input and an output neighbourhood. An input

neighbourhood is the sites on which the current sites next state is dependant. While an
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Figure 2.2: Showing how input and output neighbourhoods work.

output neighbourhood is the sites which need the state of the current site to calculate

their next state[16]. This is displayed in Figure 2.2. The current site does not need

to be part of neither its input or its output neighbourhood. If the input and output

neighbourhood is the exact same sites, it is called input output symmetric neighbour-

hood. While if they are not the exact same, but the same size, it is called input output

balanced neighbourhood[15][16].

2.1.2.4 Local transition rule for the sites

The local transition rule is a function or a table which a site uses to extract its state

for the next discrete time step. For CA there are a multitude of different permutations

of rules that can be used, and the number of possible rules depend on the number of

states and the size of the neighbourhood. The number of possible transition functions

for a CA is defined by equation 2.1, which grows at an exponential speed[18].

KKN
(2.1)

These functions are usually deterministic, but some non deterministic functions have

been studied in connection with language theory[15]. In the usage of transition functions

on a CA the application can differentiate:

Uniform CA is when all the sites have the exact same transition functions[19].

Non uniform CA is when cells can have different transition functions[19].

Hybrid CA is when all the cells in a CA has different transition functions[16].
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The above CA types define the spread and differentiation in transition functions in

sites. But there are also variations of these which are able to change the used transition

functions between discrete time steps, these are called Programmable CA[15].

2.1.3 Cellular automaton classification

Stephen Wolfram, who has dedicated many years of his life to the study of CA and

complex systems, has classified the behaviour of CA into different classes[20]. The

classes was firstly based on the different appearance and behaviour of the visualisation

of different rules for simple 1-dimensional CA[20]. Later it has be analysed and and

also shown as a good classification for higher dimension CA such as 2, 3, and possibly

further[21].

2.1.3.1 Class 1, Homogeneous state

In this class, almost all initial configurations develop into a unique homogeneous state.

This ensures the complete destruction of all information contained in the initial state

after few development steps. Class 1 CS have either multiple attractors which all lead

to a single point attractor, or one wide point attractor, making it impossible to induce

the initial configuration from the finished[20].

2.1.3.2 Class 2, Simple stable or periodic structures

In this class, after a few development steps the initial configuration develops into sep-

arate stable and/or periodic structures.[20] This class is made up of CA with different

attractors which do not necessarily act as transient structures and end up in one large

attractor. The attractors can be both point and cyclic, but the cyclic attractors have a

short cycle. These CA have been thought of as filters on the initial condition, where the

transition rules decide which of the initial conditions are allowed to propagate and live

and, and which will die/sent to the quiescent state[20]. In class 2, changes in the initial

condition have a finite range of influence since after reaching its attractors, a class 2 CA

loses all propagation of information.
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2.1.3.3 Class 3, Chaotic pattern

In this class, almost any initial condition will lead to an aperiodic/chaotic pattern. This

aperiodic chaos can create structures or patterns, which emerge with frequencies and

placements ranging from irregular to regular[20]. Within this chaos there is a trend in 1-

dimensional CA that the density of non quiescent state cells tend toward a fixed number.

This number is often 1
K where K is the size of the state set[20]. The average minimum

propagation speed for a class 3 CA is always above 0, so it will never disappear. Because

of this there will never be a cycle in an infinite class 3 CA, such as there is in both class

2 and 1. This means that every sites value is dependent on an ever increasing number of

initial states. In a finite CA there will always be a cycle, since there is a finite number

of possible formations of states that can be formed in the finite geometry. State space

defines the number of possible formations and is given by equation 2.2 For class 3 CA

the average cycle length normally grows quite slowly with increase in the neighbourhood

size. As for the transient, it is normally short for class 3 CA with regular patterns, while

irregular pattern class 3 CA seem to often create very long transients with a growth in

neighbourhood size.

2.1.3.4 Class 4, Long-lived complex structures

In class for there is a some elements from all the other classes. There are some initial

conditions which end up as class 2, with stable or periodic structures. Much of the initial

conditions act as class 1, in that it returns to the quiescent state. But some parts function

almost like a mix of class 2 and class 3, in that there is borderline chaotic and aperiodic

patterns, but holds some of the more structured elements of class 2. Approximately 93%

of the initial configurations comes to a halt (like class 1), while 7% generate persistent

structures (like the class 2/3)[20]. It is proven that many of the CA located in this class

is capable of universal computation, or at least computation[18]. The emergence of class

4 CA in 1-dimensional geometry has a minimum requirement of k > 2 orr > 1, where

k is the number of states and r is the number of neighbours on each side of the current

cell. This shows that the threshold to develop complexity is quite low[22]. Class 4 CA

are probably the most interesting CA, but also the rarest. In the possible CA for a state

and neighbourhood setup, the occurrence of class 4 CA is only a few percent, even with

high neighbourhoods and state size[22]. A fascinating statistical occurrence is that class
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class 4 CA with different rules seem to often yield qualitatively similar behaviour and

similar persistent structures[20]. With regards to the statistical properties of class 1-3,

they exhibit definite properties in the ”infinite volume”, this is because fluctuations gets

smaller as larger systems are inspected. This is not the case for class 4 CA[20], since

in larger cases there can arise structures which propagate over vast distances, or create

structures which produce ”signals”, like glider guns [23]. An arbitrary change in the

initial condition can create an arbitrary change in the development process which can

influence the entire CA.

2.1.4 Current usage of cellular automata

The CA is a completely different way of doing calculations than in computers. There is a

vast parallelism and scalability, with a decentralised control of the system. This makes

CA ideal for simulating complex biological and physical systems. Normal computers

can also do this simulation, but a CA would do better since the workings of CA are

closer to natural systems than a computer is. There are multiple areas where CA are

being used in todays society like: gas behaviour [24], ferromagnetism [24], forest fire

propagation [25], urban development [26], turbulence in fluids [24], economy [27], spread

of criminality [28], traffic flow [29], immunology and biological ageing [24], the flow of

electricity in a power grid [24], and crystallization [24].

Other than modelling and simulation, the chaotic and irrational nature of class 3 CA

make CA a good source of random numbers. Random numbers have applications in

multiple fields like statistical sampling, computer simulation, cryptography, gambling,

and more. Wolfram’s Mathematica uses the 1-dimensional CA with rule 30 as a source

for its random numbers[21].

2.1.5 Future possibilities

The way CA can represent complex systems makes it a good platform for potential new

computing paradigms. By using simple elements with small computational functionality,

the construction of the cells can be become easy. With a distributed control system, all

the cells need not be connected directly to a controller which scales much better than the

current central controller in respect to building difficulty. By scaling up the parallelism
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on a normal computing system with a central controller, not only is there an issue with

the central controllers capacity, but also with the geometry, design, and placement of

all the wires. A decentralised CA would be able to scale infinite without an increase in

construction complexity in comparison[1]. This can be a possible way to create vastly

parallel computers or computer components to help us handle the data deluge. If the

future holds machines using cellular computation and CA, they would require a whole

new way of looking at programming. But not only would one acquire vastly parallel

machines to handle huge data tasks, the programs would also be robust. They might

be able to perform self repair if parts of the system fails, or at least perform graceful

terminations[6]. Another idea would be in the aspect of artificial life. If our world

is constructed on the same principles as systemic computation[30], with fundamental

particles being the building blocks[14] [31], there is the possibility that using an artificial

fundamental particle(could be hypothetical or digital) with another or the same set of

rules could result in artificial life.

2.2 Computation

Computation is defined as the process of arriving at an output state, which happens

when applying a set of rules to an initial state[32]. Some simple examples would be

doing calculus with an abacus, or running a computer program. In a computer, the

hardware [14] is what makes computation possible, it is the logic circuits in which rules

can be made. The hardware has a set of rules that are valid rules, i.e. instruction sets.

When the valid rules are put together in combinations, we create programs. Giving these

programs an initial state, and then setting the computer to work, computation is being

done. In todays computer development we have reached some barriers, like the memory

and powerwall, and having CPUs which contain so many transistors that powering all

of them would make cooling impossible. To continue the growth in processing capabil-

ity, the road has lead to implementing more processing units which work together, i.e.

parallel processing. Within parallel processing the computation works the same way

as in sequential computers, only that some parts can be performed at the same time.

With cellular computation, we change the amount of computation a single processing

unit can do to a low amount compared to todays processing units but we let them work

together in vast parallel amounts. The main idea about computation does not change,
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but in cellular computation, the computation of a single processing unit is simple, but

when looking at a vast amount of them they will be able to compute arbitrary complex

computations. There have been built many universal computation machines within cel-

lular space, but they replicate sequential behaviour, which gives a low exploitation of

the potential in vast parallelism. For cellular computation to become effective, it must

be applied to areas where its strengths are exploited, or it must be a basis of a whole

new computer/computation paradigm[1].

2.2.1 Universality

Universality is the idea of something being able to perform all tasks without any sort of

rebuilding or reconstruction, only change the programming[20], which for a CA would

be the initial condition. This idea does not consider time as an issue, so this universal

construction can be infinitely slower than a specialised construction at performing a

specified task. The term universality can be adopted into categories, for example the

the category of computation. In computation, universal computation is a term for a

construction that can do all computational tasks by simply editing the programming. A

computer is in most cases considered a universal computation machine[18], but in theory

a program can be infinite in size which is impossible with our current technology. The

specialised version of universality is normally what is used in research. Proving that

something is universal in its category, like computation, can be extremely difficult and

technical. There are systems which have been proven to exhibit universal computation.

So by proving that a new system can simulate systems which already have been proven

to exhibit universal computation, one would prove that the new system also exhibits

universal computation. If a system with different possibilities can be programmed to

act as a proven universal system, the system is universal[33].

2.2.1.1 Universality in Cellular automata

A universal cellular automata is a CA which can simulate all other CA with equal or

lower state size with only changing the initial condition. A CA capable of universal

computation is a CA which can do any computation with only changing the initial con-

dition. Both of these types have been found[34]. There are many CA capable of universal

computation, ranging from von Neumann’s huge complex construction to Wolframs one
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dimensional rule 110 [35]. The simplest way to prove a CA is capable of universal

computation is to do like Banks, Codd and many others[10][18], let the CA act as a

logical universe wherein the construction of a computer is possible. Create patterns and

structures which can perform three fundamental tasks[18]. First, Storage of informa-

tion over arbitrarily long times. Second, transmission of information over arbitrarily

long distances. Third, the interaction between information which has been stored and

transmitted, then potentially modified by the interaction. By defining these parts, they

were able to prove that their CA could do anything that a hardwired machine or a

turing machine could do[10]. A turing machine is capable of universal computation,

while hardwired computer is potentially capable of universal computation. Potentially

is here used because for it to be capable of universal computation, it needs infinite stor-

age space [36]. Because of the intricate behaviour and complexity needed for universal

computation, the CA which can be able to exhibit universal computation is likely in

class 4 CA[20]. This does not mean that all class 4 CA exhibit universal computation,

only that these kinds of CA are more likely to. Wolfram stated in [22] ”In general the

behaviour of a universal computer cannot be predicted and can be determined only by

a procedure equivalent to observing the universal computer itself.”, and for class 4 CA

a specific site state may depend on many initial site state, and may apparently only be

determined by an algorithm equivalent in complexity to explicit simulation of the CA

development.

2.3 Emergence

2.3.1 Emergent properties

Emergent properties is an old philosophical term, which George Henry Lewes wrote

about in 1879 in his book called ”Problems of Life and Mind”. The idea was based on

chemistry and biology. Roughly summarised the idea is that when fundamental entities

act or react together, there are entities which arise/emerge (such as patterns, substances,

properties). These emergent entities are considered novel or irreducible with respect to

the fundamental entities[37] [38]. For example it can be said that the consciousness is an

emergent property of our brain. The idea of emergence in our world can be brought to

universal scale, where one could claim that our universe and everything in it is only layers
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of emergent properties of simple fundamental entities. This school of thought is called

emergentism. Emergentism lies between reductionism and vitalism. While emergentism

is the idea that everything are emergent properties of fundamental particles which are

irreducible to its micro state, reductionism means that everything can be reduced to the

sum of its parts. Vitalism on the other hand is the idea that for all living things, there

must be something else which constructs the consciousness(or soul)[37]. According to

Yaneer Bar-Yam[39] there are two types of emergent properties which can appear:

Local emergence: When the emergent property is not uniquely connected to this system,

a tiny sub system of the entire system has the same emergent property as the whole.

An example of this would be the behaviour of gas, were pressure and temperature are

emergent properties. Temperature and pressure is equal for the entire gas, analyse a

small part of it and the properties are the same as the whole system[39].

Global emergence: When the emergent property is strictly related to the behaviour of

every single part of the entire system. Analyse only a small part of a system with global

emergence, and the emergent properties would not be the same as for the whole system.

Here each part of the whole system plays a specific role, and the role is tightly dependant

on the behaviour of all the other parts of the system to achieve the global emergence.

Yaneer Bar-Yam has an example using Hopfield networks[39].

2.3.2 Emergent properties in cellular automata

A CA has both local and global emergent properties. Local emergent properties can

easily be seen in class 1 CA, and can also be seen in class 3 CA (for instance as the

density of states). Class 4 CA hold the global emergence were single structures can

propagate and influence any part of the system, but viewed alone it would not give

any hint to the emergent property of the global state. For most research on emergent

properties in CA, there is a focus on computational properties, how to make the system

perform complex calculations [40]. For most of these calculations the usage of complex

systems are employed, and a CA is an excellent tool for simulating complex systems,

since it has been showed that CA have the possibility of emergent complexity[41][42][43].
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2.3.3 Complexity

Emergent properties can create complex systems. The defining factors of a complex

system is that the building blocks act together interdependently to create a system.

Taking a part of the system out of its context would remove all its functionality, and

render any study or statistics found useless in regards to the whole system. Removing a

part would also alter the functionality of the entire system[39][44]. As quoted from Bay-

Yam[39] ”It is because we cannot describe the whole without describing each part, and

because each part must be described in relation to other parts, that complex systems

are difficult to understand” The classification of a complex system makes it the same as

the global emergence of emergent properties. This means that global emergence is the

emergence of complexity. When visualising a complex system it is good to note that the

building blocks of the systems can be systems of their own. An example of this can be a

society, which is a complex system, were the building blocks are human beings, which can

be viewed as systems. This wrapping of systems within systems scale well from a micro

to a macro view, and is called systemic computation[30]. Here the building blocks of a

system do not have to be simple CA states, they can be systems ranging from complex

to simple. The concept of simple systems emerging from complex building blocks is

called emergent simplicity, while complex systems emerging from simple building blocks

is called emergent complexity[39].

2.3.3.1 Measuring complexity

Understanding what a complex system is, makes it harder to define how complex it is

with regards to other complex system. A procedure for extracting a number for this

complexity which is generally accepted is not yet available. To actually have such a

procedure would help to globally evaluate hypothesis. Without such a procedure any

hypothesis based on complexity would not be refutable, and thus proof it delivered

can not be a basis of anything[45]. Since it has been argued by Grassberger[46] that no

single quantity is sufficient to measure complexity, because it depends on how meaning is

assigned to the term, the logical way would be to create some generally accepted ways of

measuring complexity based of different ways of observing the complex system. Resulting

measures should be able to express complexity in multiple areas, like structure, genotype,

phenotype, function[45]. There already exists multiple ways of measuring complexity,
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but they are not generally accepted as the correct way to measure or on exactly what

kind of complexity they measure. Research on the subject has been done[45], but have

not resulted in any specific generally accepted measurements. Some of the different kinds

of measurements which exists are kolmogorov complexity, Shannon entropy, Functional

complexity, Bennet’s logical depth, and physical complexity. Taras Kowaliw studied

complexity measurement and found 3 types which he thought would be best suited

for artificial embryogeny, which is what development in a CA is. These measurement

types were phenotypic, genotypic and functional complexity, but he embroided them a

little[45].

For CA, Langton[18] defined a variable which indicated what class a CA was likely

to be. The lambda variable(λ) is used to find probabilities of a CA being in either

ordered (Class 1 and 2), chaotic(class 3), or in between(class 4). This parameter is also

a clear indication on average attractor and transient length. There are also other types

of parameter which can be used to analyse CA, were there are clear coherence of the

variable value and the attractor and transient length[44].

2.4 Representation

In nature, we can think of living organisms as complex systems. The construction

of living organisms is done with cells reacting to nearby proteins by either action or

further synthesis of proteins. The DNA which contains the genes is not a blueprint on

how an organism will turn out, there is a process were the genes develop, from genes

to a functional organism[47]. A Danish scientist called Wilhelm Johannsen came up

with the idea of genotype and phenotype[48], which is used to separate the building

rules and the distinct features of a fully grown organism. The genotype is the collection

of genes located in the DNA. While the phenotype is the observable attributes of the

organism when the growth has subsided / partially stabilised. Examples of a phenotype

could be eye colour, amount of hair on the head of a person, or the colour or smell

of flower. When trying to simulate natural systems, with the use of either evolution

or development, a representation of the item we want to evolve or develop is needed.

When using computers this representation is often done with binary strings, were an

example could be that the first four bits represent one gene, and the next four represent

another gene etc. But to be able to interpret the bit-genes to a phenotype, there needs
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to be some kind of mapping functionality. There are many different ways of doing this

mapping, but some common ones are described next.

2.4.1 Direct binary mapping

In binary mapping, a gene can be either on or off, and is represented by a single bit.

This is a one to one mapping, meaning that a single gene in the genotype maps directly

to a single trait in the phenotype [49][50]. For example having ”gene 1” of the genotype

represent the eye colour for the organism. Changing ”gene 1” would directly change the

eye colour of the organism. With this kind of mapping there is a 1 to 1 relationship

between geno- and phenotype, which represents a model without development but with

strict control that makes it good for manual design.

2.4.2 Voting mapping

This is a many to one mapping where multiple bits in a genotype represent one phe-

notypic trait. The phenotypical trait is dependant on the majority of the bits in the

genotype, like each of the bits in the genotype can cast a vote on what phenotype to

express[49][50]. Voting mappings resulting effect on evolutionary algorithms is that they

generally need bigger mutations on a genotype level for the result to show in the phe-

notype. This makes changes more gradually, and follows the idea that a small change

in genotype should result in a small change in phenotype, which both are beneficial for

evolution. A negative side of this kind of mapping is the scalability, were the develop-

ment of specific phenotypes would require much larger genotypes. There are another

type of voting mapping which using the same type of many to one mapping, lets single

bits in the genotype cast its ”vote” on multiple phenotypic traits. This reduces the

scaling problem, and helps the solution from getting stuck on false fitness optimise in

the fitness landscape[51]. Voting mapping is not a model that uses development.

2.4.3 Cursor based mapping

Cursor based mapping is a mapping which uses development. The idea is to have a

cursor which can move around the phenotype and change states/traits of it. For this

mapping the genotype is a sequence of commands which the cursor can perform, while
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the phenotype is the result after all the genotype commands have been executed. Here

a gene in a genotype is not directly mapped to a phenotypical trait, but mapped to

an arbitrary change in the phenotype[49][50]. Using this kind of mapping, one could

construct many different phenotypes with the same rules, but the genotype would grow

very large depending on the complexity of the phenotype.

2.4.4 Cellular automata mapping

A CA can be interpreted as an autonomous developmental geno- to phenotype mapping.

The way it behaves can be compared to natures way of growing organisms, where the

DNA would be storage of the genotype that can contain any permutation of the transition

functions allowed by the size of the neighbourhood and the number of states. For an

organism the genotype would be a specific permutation or set of rules, and the phenotype

would be the structure of the CA after it has stabilised in some attractor, or when an

acceptable number of iteration of rules have been applied[49][50]. Using this mapping

the size of the genotype can be smaller than the phenotype, which is good when scaling

to bigger organisms. But this construction is dependant on an initial condition, which is

not found in the genotype like some of the other mappings. There are issues with using

CA mapping in evolutionary algorithms, since the effect of small changes in genotype

can result in massive phenotype changes, it is computationally hard to program the

organisms.

2.5 Embryogeny or Development

In nature the growth from genotype to phenotype is not a direct mapping. There is no

single gene for eye colour, or for each strand of hair on your head. If there was a gene for

every cell in your body, the genotype would be much larger than it is. The way natures

uses the genotype to phenotype mapping is through Embryogeny, which is normally

called Development[47]. Natures genotype consists mainly of genes for proteins, and

the synthesis of proteins. Proteins concentration in the environment makes cells react

in different ways[47], and these reactions of the cells will over time grow, change, and

develop an organism. If visualising that the organism being developed is a table, the

genotype would be how to create the different materials, like metal and wood, and ways



Chapter 2. Background information and theory 21

of shaping these materials, like long planks, nails, screws etc. We see that the table

genotype could be used to construct many different tables, but the environment and

initial condition is what decides how it will end up. In our analogy a person deciding

how to shape the metal and wood, and how to put it together would be an example

of an initial condition. The concept of computational development, is the abstraction

of development as observed in nature, but within computational systems. To efficiently

use the idea of computational development, it is often combined with other ideas. Com-

putational development is very often used in relation to genotype-phenotype mappings,

and evolutionary algorithms. Genotype-phenotype mappings with regards to develop-

ment is quite self explanatory, while the connection to evolution might be somewhat

obscure. Evolution is used because the number of permutations of possible developed

structures are large, and the task of manually finding the optimal structure would be

insurmountable. So using evolution as a search algorithm works well. Computational

development can also be viewed as a process for CA. Here the development process can

be viewed as the transient. Which is the multiple time steps with applications of rules

to an initial condition resulting in a stable pattern or structure. Using development in

computational work has both great benefits and difficulties. In his article Kumar [47]

lists both the disadvantages;

• Difficult to evolve by computer, since small changes can result in big consequences

which is dissimilar to evolutions normal procedure.

• Difficult to analyse.

• Difficult to create by hand because of the vast amount of possibilities and the

complex structures which can emerge.

• Computationally expensive.

He also lists the potential advantages of using computational development techniques

for solutions to problems such as;

• Easier to simulate biological hypothesis and experiments without doing wet-experiments.

• Will reduce the genotype in respect to the developed phenotype.

• Phenotypes which can regenerate and repair or die gracefully.
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• Emergence of complexity will happen automatically instead of being programmed

into the genotype.

• The regulation of development which is how implicit embryogenies works, and

helps effects in development to develop gradually instead of instantly.

• Systems with great adaptability. Either to initial conditions, or to environment or

to changes etc.

• Anticipate that it will enhance the capabilities for evolutionary computation and

artificial life.

Kumar also categorises computational development into 3 types of embryogenies [52].

They are external, explicit, and implicit embryogenies.

2.5.1 External Embryogenies

External Embryogenies is a system where the meaning of the genes in a genotype is stored

in a separate external area, which is not mutated during evolution. As an example one

could have a genotype were gene-21 would always be the colour of the skin of an organism.

Any mutation occurring within gene-21 would result in a different skin colour, but no

amount of mutation outside of gene-21 would be able to change skin colour. External

embryogenies makes the development conform to stricter rules, which gives the user

more control but less diversity. This does not mean that the finished organism is worse

at performing its function compared to other embryogenies.

2.5.2 Explicit Embryogenies

Explicit Embryogenies is when each step of the development process is explicitly defined

and stored in the genotype along with other potential information. This entails that

evolution would be able to affect any single part of the development process. Hand

designing these processes are much more difficult than with the external embryogenies,

but it is possible. The normal approach is to use some evolutionary algorithm to optimise

the process.
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2.5.3 Explicit Embryogenies

Implicit Embryogenies is when the development process is not defined, but is a process

which emerges from elements reacting together according to rules defined in the geno-

type. The big difference between implicit and explicit embryogenies is; in explicit every

step of the development process is explicitly defined in the genotype, and the develop-

ment process rules and the functional rules are separate rules even if they might be in

the same genotype. While implicit embryogenies does not have a specific set of rules for

the development process. The rules for the development process is the same as for other

behaviour, and a phenotype-state at a time step determines which rules to apply for the

process to continue to the next state. Implicit embryogenies is the development process

closest to natural systems.

2.6 Evolution

2.6.1 What is evolution

Charles Darwin is knows as the inventor of our understanding of evolution, and did the

scientific work to back it up. He published a book called ”On the origin of species” in

1859 [53]. The main idea in behind natural selection, which leads to evolution, is that

the individuals who have the best abilities to survive, and/or to attract a mate (these are

not necessarily the same, just look at the peacock), are more probable to have multiple

offspring. Thus their genetic material will have a larger impact on the next generation

than an individual with less apt abilities for survival and mate attraction. This genetic

material will change slowly by mutation and crossover, which can make it better or

worse. The better will again have an advantage over the less apt genes. This leads to

slowly changing the genes in a population, toward the genetics of the fittest individuals.

Evolution is the process were accumulations of self-replicating systems change their

default genotype and phenotype over time by mutations in the genome, or by sexual

reproduction, or both. The changes happen gradually over long time periods(in regard

to the life of the reproducing elements), which involved multiple generation switches.

This random changing and mixing of genes produce multiple traits, some helpful and

others not. Traits that happen to be better adapted to the environment have better
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chances of survival and reproduction and their traits will be more likely to continue

to be propagated down the generations. Kumar says that[47]; evolution is like a river

flowing down a rugged landscape, it always finds the easiest path. And by saying this he

points out that evolution might be lazy, but i see evolution as thorough and pragmatic,

it checks most of the solutions and possibilities available within the start potential, and

uses the one which improves the organism best.

2.6.2 Using evolution for problem solving

Evolution, like many other biological systems have been adapted by technology, and

we have tried to simulate it to help us solve problems. The way evolution is adapted

to the digital world of computation is through Evolutionary Algorithms(EA). There

are different kinds of EA[47]; Genetic Algorithm, Genetic Programming, Evolutionary

Programming, Evolutionary Strategies. The main purpose for any EA is to find the

optimal solution to some kind of problem, but all possible outcomes are known and

located in the possible search space for this problem. By looking at multiple random

placed outcomes in the search space, and gently changing them over time to look at the

difference in regards to a best possible solution, the algorithms will ”search” its way to

a hopefully optimal solution. So EA are a crossing between a random generator, and a

search algorithm that is tuned so they work good together. They are used for instance to

optimise the design of systems, and solving of multi-dimensional problems better than

software produced by human designers[54]. For EA there is two precondition, one which

implies that there must be a goal, some functionality which is desirable. The other is

a way of measuring how close an outcome is to this goal, or how well it performs its

functionality. This vicinity to a goal, or performance is called fitness, and the procedure

which measures it is called a fitness function.

2.6.2.1 GA as an example

All EA have some kind of representation of the outcome and an interpretation of results.

Of the above mentioned EA, it was only Genetic Algorithm who originally made use of a

representation with a split genotype and phenotype. Which is why we will use GA as an

example on how EA work. For notations sake; it is completely possible to change other

EA to use a separate geno-phenotype representation. Figure 2.3 show the normal flow for
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a GA. The initial steps of configuring the GA, and initialising the population has been

left out, and Figure 2.3 shows only the basic parts of how a GA works. After initialisation

of the population, the main procedure to find an optimal individual starts. If an optimal

individual is found, the termination condition is reached. The loop which consists of

selection, crossover and mutation is used to iterate through the generations, and create

new generations based of the previous generations best individuals. In the selection

process, two or more individuals for the current generation are randomly selected with

weighting based on the fitness of the individuals. The selected individuals will be placed

into the next generation. But on its way to the next generation it can be changed in

different ways. The ways which can change selected individuals is crossover of genes

within the currently selected individuals, or random mutations. When the first selected

individuals have been placed in the next generation, with or without change, the new

generation is still almost empty. Filling the next generation is done by continuously

repeating the selection, crossover and mutation part of the algorithm. When this is

done, the individuals are checked to see if a optimal individual has been found, if yes

the GA is finished, if not the selection, crossover, and mutation will have to be repeated

again. This entire process continues until an optimal individual is found. This is the

workings of the basic GA.

2.7 Scalability

2.7.1 Defining scalability

Scalability is the quality of being scalable, which is to be able to be changed in size or

scale. When discussing scalability with regards to systems, it is the measure of its ability

to retain functionality when changing the size of the problem which the system is applied

to. In this definition the term system can be applied to anything, from morphogenesis,

to communication infrastructure, to algorithms. As an example for a system lacking

in scalability, one can observe a bubble sort algorithm sorting a large data set. And

as an example of good scalability we can look at morphogenesis, where the system of

building organisms from a zygote using rules, better known as chromosomes, described

in a genome, is used by all known animals. Some have small genomes, some have small

bodies, but they use the same system, which gives it good scalability.
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Figure 2.3: Normal functionality of a default genetic algorithm.

2.7.2 Scalability within context

Scalability within the boundaries of EA and CA strongly relate to some definitions

of spaces. These spaces are interconnected, which makes the scalability aspects also

interconnected.

2.7.2.1 Spaces

When thinking of these spaces they are defined according to an EA which is used to

evolve an organism with the use of development in the form of a CA. This means that

the ordinary thought of search space and state space being the same is not correct, since

the solution is in the genotype, while the check to find fitness is in the phenotype.

State space:

This is a set containing the combinations of states the geometry, where an organism

develops, can obtain. The formula for calculating the state space is the equation 2.2.
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This also defines the theoretical limit for attractor a CA within a finite geometry.

kGs (2.2)

Where k is the number of states pr. site, and Gs is the number of sites in the geometry.

Rule space:

This is a set containing the permutation of the states of the sites in a neighbourhood,

and is calculated according to equation 2.3.

kn (2.3)

Where k is the number of states pr. site, and n is the number of sites in a neighbourhood.

Chromosome space:

This is a set containing the permutation of the rule space and a next state, and is

calculated according to equation 2.4. Every single mutation within a chromosome in a

CA will reside within this space.

kRs (2.4)

Where k is the number of states pr. site, and Rs is the rule space.

Search space:

This is a set containing the combinations of a set of size x and the chromosome space,

where x is the amount of chromosomes in a genotype. A set of all the genotypes that can

be created given a size x. The formula for calculating the search space is the equation

2.5. This is essentially a set of all the different CA that can be constructed with a

genotype of size x.
Cs!

x!(Cs− x)!
(2.5)

Where Cs is the chromosome space, and xis the number of chromosomes in a genotype.

The scalability of the EA and CA are bound to each other, and to the spaces above.

There are mainly 3 aspects which i call scaling in resources, scaling in effectiveness, and

scaling in geometry.
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2.7.2.2 Scaling in resources

This is a frameworks ability to create different scale solutions with a reasonable size

within a reasonable timeframe. Here, using EA to create CA which act as a solution

within reasonable time. EA are traditionally resource greedy and suffer in scalability

when increasing the search space[55][56]. One cause of the lacking scalability is that there

is a traditional 1 to 1 mapping[47] which can give too large to be practical solutions with

regards to the size of the genotype. To solve this it is possible to do like nature, and

choose to implement development into the EA to decrease the genotype size. It is shown

that development can increase the scalability of an EA[52]. By implementing a fitness

function which is reliant on the outcome of the development/growth of the CA is a way

of solving the 1 to 1 problem.

2.7.2.3 Scaling in effectiveness

Effectiveness with regards to an EA is the measure of the amount of chromosomes used

in an evolved solution compared to the minimum amount of chromosomes needed for

the solution to work. Also the amount of chromosomes used in an evolved solution

compared to the amount of chromosomes available for each individual in a population

during the EA progress. With regards to a CA the effectiveness is the measure of used

rules compared to the rule space created by the neighbourhood and the amount of states.

By having a EA be more thorough in its exploration of the search space, it is able to use

less chromosomes to have the same outcome as a more relaxed EA could. This is good

for the overall scalability since reducing the genotype size greatly decreases the search

space, and should in theory require less from the EA pr. generation.

2.7.2.4 Scaling in geometry

This scaling is the measure of how well an evolved solution will handle development in

smaller or larger geometry than it was evolved in. Increasing the geometry of a EA

developing CA makes the state space grow exponentially. On a finite automata the

state space is defined as ks where k is number of states and s is the amount of sites in

total. This means increasing a 2 state 2 dimensional CA from a 4x4 to a 5x5 geometry,

increases the state space from 216 to 225. Because of this exponential growth, it would
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be preferable to evolve a CA on smaller geometries, while having it perform the same or

similar functions when scaling the geometry up and down. This scalability in geometry

has been observed in Tufte’s article[5], and is a behaviour which would be interesting to

further understand and be able to recreate during the evolution of most organisms.

2.7.3 Why scaling

In todays society, many of the problems we use computers to solve are large. Very large

problems with a huge amount of variable parameters can be solved with an EA, but even

so it requires much computational power and often produces large solutions. Having

a good understanding of scalability can help both the usage of computational power,

the size of the solutions, and might even be able to improve the size of the problem.

To increase the EA scalability to large problems, development has been introduced,

which creates small solutions to problems which normally require large solutions. This

again makes the solutions manageable, making scaling a valuable tool. The evolution

development (EvoDevo) systems are easily applied in a world of cellular development,

for instance CA, which makes the CA already a system which scales well. Creating

a better understanding of what creates scalable solutions, and how to create scalable

systems within the confines of EvoDevo systems will be beneficial in the creation of

large and complex cellular systems. Some ways which scalability can be increased is by

reducing the state or search space for a wanted solution, which essentially reduces the

size of the fitness landscape, making systems scale to solve larger problems. Knowing

what makes algorithms create solutions which are scalable in geometry can reduce the

problem, making the resource consumption manageable. Having a good understanding

of scalability gives a better utilisation of resources, and makes it possible to create

solutions to problems which one normally do not have enough resources to solve, or

makes runtimes of currently solvable problems faster. More bang for the buck as it is

called. There are of course multiple other ways of reducing the real runtime of a EA, for

instance massive distributed or parallelised algorithms. But these will also benefit from

a smaller search space and state space which can be achieved by scaling in efficiency. By

understanding how solutions scale in geometry, it can become possible to evolve small

solutions which scale up to larger geometries with linearly increase, or without the loss

of functionality.





Chapter 3

Hypothesis

3.1 Main idea behind hypothesis.

The foundation of this thesis is based on the idea that when evolving cellular automata as

a EvoDevo-system[57] the size of the genotype, both available and used, has an impact on

the resulting evolved system and its emergent properties. Exactly what these properties

might be is hard to predict, but we are hoping to see some results towards improvement

in the scalability in geometry, or restrictions on the complexity based on efficiency of the

genome. There are experiments where only a handful of the available rules are activated

through the development process[55], but still achieving good results. Because a typical

EA works with a full combination set of chromosomes, the solutions usually have poor

effectiveness in the usage of chromosomes. By forcing a EA to make better usage of the

chromosomes at hand, the evolved solution would have a more compact and effective

genotype. This reduces the search space for an EA, which is helpful when considering

the evolving of large organisms. In large organisms, there is usually a wish for a large

amount of specific behaviour. For the organism to be able to perform all the requested

behaviours, it often needs high amount of states pr. cell, and large neighbourhoods.

When a EA evolves this organism, it needs to work on a set of chromosomes which is

both large enough to perform the task, and do exaptations[58] along the way. This size

is normally set to the size of the rule space, but with a high amount of neighbours and

state count this number is very large. When the genotype size grows, the search space

grows exponentially. It is difficult to predict exactly how large the genotype size needs to

31
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be for a specific organism, so having it grow until it is large enough would be beneficial

with regards to the search space.

As an example of the reduction in search space, a CA with 2 states pr. site, and a

neighbourhood of 3:

Rule space = Rs = 23 = 8

Chromosome space = Cs = 2Rs = 28 = 256

Normal search space = Cs!
Rs!(Cs−Rs)! = 409663695276000

While a slight reduction the genotype size available, for instance from 8 to 6, the Search

space would be:

Reduced search space = Cs!
6!(Cs−6)! = 368532802176

By reducing the genotype size by 25% we reduced the search space with about 99%.

This is a very small and simple CA, so the numbers are not astronomical. But when the

neighbourhood or states pr. site increases a little, the payoff for reducing the genotype

size, or let it grow until reaches a reasonable size, could be great.

With EA who are more conservative over the genotype size, there might be other benefits,

and there might be drawbacks regarding both the evolution process and the emergent

behaviour of the evolved organism. By further studying the usage of rules throughout

development, and comparing against organisms evolved without restraints, one would

be able to look for patterns or differences which can be useful for the design of future

solutions and EA.

3.2 What we would like to look at in this report

For this thesis we will look closer on the correlations between the results and evolutionary

methods. We will try to evolve structures using a large, small, or growing genotype. By

comparing the methods against each other, we can get an understanding of how restrains

affect the evolved organism. For results to have more weight, we will have to look at the

genome usage for evolved solutions on different complexities. If finding similar structures

or patterns while changing complexity but keeping restriction on genotype, it will mean
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that restrictions are most likely the cause of the findings. Further comparison and

examining of eventual results will be done to look for emergent properties or changes

in emergent properties within evolved organisms. Some of the properties which will

searched for is increased scalability with reduced genotype size. We will try to reach

some answers to questions like: Will we find that growing a genotype produces compact

and effective genotypes, or will the results be similar to those of an organism evolved with

a large genotype? How will this type of evolution scale for increased state space? Could

a EvoDevo-system which evolves organisms with a growing genotype exhibit emergent

or implicit behaviour not found in organisms evolved with a static large genotype? Will

this kind of evolution actually be able to produce results at all ?





Chapter 4

Framework

An explanation on the framework used during experimentation, so that results can be

regarded in respect to the rules and functionality of the framework. This explanation

will make results possible to recreate and further exploration on a similar setup possible.

4.1 Random function

For a EA to work, there has to be a random function so as to be able to create a

chance of events happening. In C, which this framework is written in, it is normal to

use the rand() function to obtain a random number. The default procedure to obtain

a random number in a range [0, n] where n is RAND MAX, is by the use of integer

division/modulo:

Random number = rand()%n

This procedure will return a random number within the correct range, but if the RAND

MAX does not evenly divide to the range, the distribution will be skewed and with it

the correctness of the random function. Since most of the random numbers for the ex-

periment framework operate in a range which does not evenly divide with RAND MAX,

an implementation of the Mersenne twister algorithm[59] has been added. This ensure

a better random generator with a larger cycle, and does not suffer from another of

rand()’s problems, which is short cyclical pattern in the low bits, or bit dependencies.

Using Mersenne twister and making all used ranges, range from 0 - 1 we are content
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with the uniform and randomness of our random function. The random seed is an array

of 4 unsigned long values. For the seed values to be distributed, they are read from the

/dev/random file. This will ensure a certain amount of randomness to them, which is

enough for a seed to function properly.

4.2 Cellular automata framework

4.2.1 Neighbourhood and geometry

The framework for the CA supports both 1 dimensional and 2 dimensional CA. For 2

dimensional there is only support for a square geometry. The limitations of the size is

bound to an integer, but using a 2 dimensional geometry larger than 4 greatly decreases

the speed of the framework. For the boundary conditions, we decided upon periodic

boundaries. Meaning a loop from north to south, and east to west on a 2 dimensional

geometry, which can be observed in Figure 4.1. There are no boundaries from one

corner to another corner. This is because the Moore neighbourhood is not a part of

the framework. For a 1 dimensional CA the neighbourhood is a default one, as defined

by Stephen Wolfram, but with a r = 2 [20], while the 2 dimensional CA uses a von

Neumann neighbourhood[17].

4.2.2 Representation

The genotype for the CA is an array of 32-bit fields, where n-bits of each field are reserved

for a neighbour site based on the amount of states pr. site. Example 2 states will require

1 bit, 3 states requires 2 bits, and 4 states also require 2 bits. This means that not all

of the bits in the field are used, and that sometime not all the permutations within the

n-bits are used either. The n-bits goes from least significant toward most significant

bit in the 32-bit field in the sequence: Next state, East state, Centre state, West state,

South state, North state. North and South are not part of the representation for a 1

dimensional CA. The phenotype for the CA is the organism which is developed according

to the genotype. This can be an organism after x number of development steps, or until a

specific shape or behaviour has emerged, or as in our case when we achieve an attractor.

Since the framework functions within a finite geometry, an attractor will always appear.
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Figure 4.1: Image displaying how periodic boundaries function in a 2-dimensional
space.

There is also a mechanism which stops the development after x-steps, since there might

be attractors which are very large (potentially up to the size of the state space), and

that would slow the framework to a halt.

4.2.3 Development and attractor locating

In the framework there is a partially realtime search for attractors, where after x de-

velopment steps the framework stops developing and checks if any attractors have been

developed. If no attractor is found, the development steps currently in memory are

stored to file, before continuing x development steps and initiating another check for

attractors. Each attractor check is performed against development steps on file, and

in memory. Because of the partially real time search, the runtime of the development

process becomes slower for more development steps, or longer attractors. The number of

checks needed to locate an attractor within a set of n elements increases in polynomial
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time, and is given by equation 4.1.

n(n+ 1)

2
(4.1)

A single development step requires for each site in the geometry that we find neighbour-

hood sites, then search the entire genotype for all the rules which are triggered. There is

a need to search the entire genotype because there is no restriction on duplicate chromo-

somes. Duplicates can appear through adding, mutation, or crossover since there is no

mechanism to explicitly prohibit it. As a regulation mechanism for similar chromosome,

or chromosomes which have the same state on its input neighbourhood, modulo is used.

The mechanism function so that for each chromosome which can be applied, the sites

next value is summed in a variable. When all the chromosomes in the genotype has

been tried, the summed next value is moduloed against the maximum number of states

pr. site, thus ensuring a deterministic outcome.

4.2.4 Testing

To make sure the frameworks CA behaviour is satisfactory to the requirements of a CA,

tests were constructed. Testing was done for both 1 and 2 dimensional geometry. For 1

dimensional testing Stephen Wolframs rules for different CA settings[13] were used, some

examples are rule 30, rule 110 etc. The framework was run for enough development steps

for the CA to make use of the border conditions and some interaction after the use of

border condition. When sufficient development steps had been performed, the develop-

ment process would be manually checked against the behaviour given by mathworld[60].

This testing confirmed that the basic behaviour of the CA worked. Further testing was

done on the 2 dimensional CA, here specific rule sets were devised which would test

border conditions in both dimensions, and also that rules were properly applied. These

rules would create blinking patterns, or snakes that moved in multiple directions but

across boundaries. The confirming of the testing was done manually for each develop-

ment step with the help of a visualization module on the framework. With the testing

of the CA done, we were sure that the framework would be able to develop according

default CA behaviour, with discrete time steps and synchronous application of rules on

the geometry.
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Figure 4.2: Displaying how mutations can cause states which are void.

4.3 Genetic algorithm framework

4.3.1 Mutation

4.3.1.1 Void mutation

Mutation is handled with a possibility of each bit in a chromosome (one of the ac-

tive/used bits in the 32-bit field) has a chance of mutating. This means that any combi-

nation of mutations are possible. All the mutation is done through the flipping of bits,

which makes problems if the number of states pr. site is not in within the set defined by

2n. If the states pr. site is outside this set, a random flip within active bits can make

the state mutate to a state which is void. Figure 4.2 shows how this can occur. The

solution to this problem is done by using modulo by the max number of states pr. site.

4.3.1.2 Mutation rate and type

The mutation rate for the framework had many configuration steps to gain a mutation

rate which was thought suitable to use. Early a mutation rate of 0.05 (5%) was used,

but when the genotype grew in size, the suitability of the mutation rate changes with the

growth. This lead to a mutation rate pr. individual vs static mutation rate. Mutation

rate pr. individual is calculated like this: Mg = mutations pr. generation.

Ps = population size.

mr = mutation rate.

bg = number of bits used to represent an individuals genotype.
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Mg = ps ∗ bg ∗mr.

Mi = Mg/ps

Using mutation rate pr. individual gives a better results for the growing genome, but it

also greatly reduced the chance of mutation as the genome grows. A way of patching this

problem was to greatly increase the mutation rate, but this lead to a poorly adjusted rate.

By implementing an adaptive mutation rate as Kitano did[61], we tried to create a rate

which would be large enough that it would work on larger genotypes, and would still hold

for smaller genotypes. Two versions of the adaptive mutation rate pr. individual were

implemented, one exponential, and one linear, which can be seen in Figure 4.3. Both

types would regulate the mutation rate from set mutation rate to 5% of set mutation

rate. Further experimentation made it clear that the adaptive linear mutation rate pr.

individual was suitable for use in the framework.

(a) Exponential adaptive mutation (b) Linear adaptive mutation

Figure 4.3: Graphs showing how the mutation rate shrinks when fitness increases for
two different adaptive mutation strategies. These graphs were created using data for
a mutation rate of 2.6 pr. individual, with a genotype size of 1. This gives a starting

mutation chance of almost 22%, which shrinks as the fitness increases from 0 to 1.

4.3.2 Fitness

The fitness is a real number between 0 and 1, and is found by calling a fitness function.

There were two main ideas for the fitness functions, linear and exponential. For the

exponential function the formula found in equation 4.2 was used.
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1

e
di
va

(4.2)

Here di is the difference in attractor against the requested attractor, and va is a hard

coded value to which changed based on the length of the requested attractor. For the

linear fitness function there would also be a need for a number to divide by, like val for

exponential. But this would give unwanted properties as soon as a longer attractor than

the requested attractor appeared. To use such a system would require a rework of the

fitness to be any real number equal and over 0, and the requested attractor would have

fitness of 1.0. To remedy this the linear fitness is regulated for each generation by using

the individual which an attractor with the biggest difference to the requested attractor

as a denominator, shown in equation 4.3.

max di− di
max di

(4.3)

Here max di is the biggest difference to the requested attractor in a generation and di

is an individual’s difference in attractor to requested attractor. This formula works but

has a flaw, which is when a big percentage of the population have the same attractor

length and this attractor length is the biggest difference, this part will have a fitness of 0.

In the framework a fitness of 0 is much worse than a very low fitness, for instance 0.0001.

The simple solution to this problem was adding a 1 to the max di value, ensuring that

no attractor could get a 0 fitness score. Further testing and comparing showed that the

linear function performed better than the exponential one.

4.3.3 Crossover, and crossover with different sizes.

Crossover is another functionality of the framework, it supports crossing of equal and dif-

ferent size genotypes. After a weighted selection of two individuals which will have their

genetic material transferred to the next generation, there is a probability of crossover.

When applying crossover, we first establish which of the individuals has the shortest

genotype. Then we get a random value in the range of the size of the shortest genotype,

which tells us how large the part to be crossed over will be. Now the size and position of

the crossover section is defined as from smallest genotype size - random value, to smallest
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Figure 4.4: This explains how crossover happens in the framework. A selection Cl
whole chromosomes from chromosome at position Cp. When different lengths genotypes
are selected, the shortest genotype is used to produce Cl and Cp making the crossover
happen without a change in the length of any of the selected genotypes, as displayed

in Nr.3.

genotype size. Figure 4.4 shows how this crossover works in this framework, and how it

does not interfere with the sizes of the different genotypes, but swaps chromosomes.

4.3.4 Adding

The idea about growing the genotype, or trying to diminish the amount of unused

genotype space is not new. Inspiration for a growing genotype comes from ideas and

articles like complexification[4] and selective genome growth[62]. Adding of chromosomes

to genotypes happen right after potential elitism, but before mutation, crossover, and

filling of the next generation. There are some limitations on the adding functionality,

which ensures that the genome growth does not get out of control. Essentially there

are 4 regulation mechanisms which control the growth of the genome. First, there is a

maximum limit of how many chromosomes can be added, which is the size of the rule

space. Second, there is only a percentage chance pr. individual that a growth in a

genotype will happen. Third, there is a counter and a threshold which specifies that a



Chapter 4. Framework 43

growth can only occur after x generations without an increase in an overall best fitness.

Meaning that as soon as an increase in fitness occurs, the counter resets and starts to

count toward x again, ensuring that growth does not happen every generation. Last,

there is the mechanism of elitism. Testing showed that using elitism of 1, achieved better

results towards end goals, but also helped controlling the growth of the genotype. This

added effect is because the elite will have a good fitness compared to the population, and

adding chromosomes have a tendency to decrease fitness until it is optimised. Continued

adding of chromosomes will further decrease fitness until it is optimised, meaning that

when filling new generations, the elite will have a larger chance of selection. For a added

chromosome to ”stick” it needs to not decrease the fitness to such an extent that a

selection for the next generation is improbable. The adding process has a number of

possibilities to add a chromosome equal to the size of the population. For each check,

there is a percentage change an add will occur. A hit on the chance will result in a

weighted selection from the population to get an individual who will have a growth

in its genotype. The growth takes a random chromosome from the current genotype,

and adds it at the end. A copy is used since this is partially based of occurrences

which happen in nature[4], and the appearance of a completely random gene is unlikely.

There is a single restriction on the adding process, which limits the amount of added

chromosomes for an individual to 1 pr. generation. As mentioned earlier there is a

gene regulation mechanism when chromosomes with the same preconditions (variation

of states for neighbours which results in a rule without an answer/next state) exist in the

same genotype. This mechanism is the modulo, where the next state is added together,

and the moduloed on the number of states pr. site. The gene regulation mechanism is in

place to solve problems that occur with functionality like the copying of a chromosome.

4.3.5 Weighting

In the process of selecting individuals for the next generation or for adding of chro-

mosomes, a weighted selection happens. The weighting is a value constructed from

three parts. First part is the fitness of the individual, which is calculated by the fitness

function. Second part is a weight based on the number of activated rules, which is

calculated:

Number of used chromosomes in the development process
Size of genotype
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This helps create a more efficient genotype by awarding an individual who uses a large

percentage of available rules. A side effect of this weighting is an additional regulation to

the adding of chromosomes. By calculating the weight based on the size of a genotype,

a individual who has added a chromosome which becomes inactive, will have a lower

chance to be picked, than if the added gene was not there. Third part of the weighting

is a weight based simply on the size of the genotype. This was implemented to help the

genome grow, because with the inherent regulation in the weighting on active rules, and

elitism, and the fact that adding a chromosome to a fit individual will likely decrease its

fitness[4], made it difficult to have the added chromosomes not disappear through natural

selection. The three different weights were normalised the same way, by summarising the

specific weight for all the individuals in the generation, then each individual’s weight was

divided by the sum. These weights can again be adjusted so they weight a percentage

compared to each other, for instance 60% for fitness, 20% for active rules and 20% for

genome weight.

4.4 Genotypes

There are three different ways of running the GA; Full, Restricted, or Growing. For a

Full run on the GA the initial population consists of CA with a full genotype (genotype

size is the size of rule space), and a chromosome set to each of the states in the rule

space. For all the chromosomes in a full CA the next value is set to 0, or the quiescent

state. A Restricted run is equal to the Full run, except when it comes to the size of

the genotype, and initial state of the chromosomes. In a Restricted run the size of the

genotype is defined as a value ∈ {1, 2, .. , rules pace size}. All chromosomes are initially

blank in the Restricted run, to make it a fair comparison to the growing genotype. By

blank, it is meant that all values are left in the quiescent state. The Growing run starts

with a single blank chromosome in its genotype. Every x generation without growth

in fitness, some individuals have a probability of adding a clone of one of its current

chromosomes. Other than this it works under the same rule and configurations as the

other runs.
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4.5 Growing genotype algorithm

The main difference between a normal GA and this growing algorithm is, that during the

evolution process the amount of available rules for each individual can grow. The size of

the available rules, i.e. the genotype, starts at 1 which is for most problems too small,

but during evolution grows to a size where a solution is able to be produced. When

the size of the genotype grows, the hope is that the solution found uses a much smaller

genotype than what a manually constructed genotype will use. Another difference is

the fitness function, which is based of the development of an organism, making this

system an EvoDevo-system. In Figure 4.5 one can see the general flow of how the

algorithm works. The initial configuration and initialisation of a population and such is

not included, since it is implicit. Starting at the development of all individuals, which

in theory is a loop, which develops each individual, calculates the fitness based on the

phenotype, finds the best fitness, and see if there has been a fitness growth compared

to the best recorded fitness so far. Most of these parts of the development is explained

earlier, but the checking to see if there has been a growth in fitness also iterates or

resets the add counter, which determines the theoretically minimum optimisation time

for each added rule to the growing genotype. Further in Figure 4.5 we come to the

”Should add chromosome” section, which is judges based on the add counter if the

individuals should have a chance of adding a chromosome. If should add flows to yes,

the ”add chromosome” section automatically resets the add counter, and there is a fixed

percent chance of adding a chromosome for each individual, as explained earlier. The

sections ”Perform Mutations” and ”Perform Crossover” is also only a chance of doing

this, most individuals or genes get through the sections without any noticeable effect.
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Figure 4.5: Flow chart showing how the main sequence of processes happen in the
constructed algorithm.



Chapter 5

Experiment

5.1 Areas to explore

The idea of copying or imitating nature to evolve solutions to problems has brought

forth the EvoDevo process. By using development EvoDevo systems achieve better

scalability in problem size. An aspect that is not used much in EvoDevo systems is the

growth of genotype size, which occurs in natural evolution[63][64][65]. There are devised

algorithms which take inspiration from the natural growth of genotype[62][4], which have

gotten encouraging results. The implemented algorithm is inspired by these, but unlike

Lee Altenberg’s implementation, the growth of genotype size is kept in the generations

by natural selection, instead of brute forcing an increase in fitness. Altenberg’s algorithm

the process of adding a chromosome is based of a repetitive structure which tries to add

a chromosome until it successfully increases the fitness of the individual, before the the

individuals are further evolved. In our algorithm we take advantage of evolutions natural

selection, which only allows added chromosomes which have positive or approximately

neutral impact on the fitness. We want to test if our implementation of a EvoDevo

system with growing genotype is able to evolve organism of different complexity, and

how these results compare to results for other representations, i.e. size of genotype.

These sizes will be what we call a Restricted and a Full size genotype, were the Full

has a genotype size equal to the rule space, ensuring that every possible neighbourhood

configuration for a site has a related chromosome to begin with. In the Restricted, the

genotype size is less than the rule space, but higher than 1, which means it is manually

configured to a size which most likely contains a solution, but will not have a chromosome

47
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for each possible neighbourhood configuration. The complexity will be measured as the

attractor length, which can be interpreted as a kolmogorov complexity[66] based on the

developed phenotype. The algorithm will further be tested by changing the number of

states pr. site, and the size of the geometry. By using multiple geometries and number of

states we will be able to see how the algorithm reacts, and be able to draw conclusions.

The results of the different experiments will be further examined to look for efficiency in

the usage of rule space, and for other emergent properties of the evolutionary method,

like scalability in geometry, or scaling in resources.

5.2 Configuration

The difference of formulating an algorithm and actually implementing a working example

is large. For this algorithm there are many variable parameters whose changes affect

the effectiveness of the GA from, working to unusable. To be able to perform our

experiments with expectations of a system able to achieve results, these parameters

needs to be configured. A large problem with the configuration of GA is that different

configurations for the combinations of the parameters needs to be compared. To be able

to compare them, runs of the GA needs to be performed, which takes time. And for

the runs to be somewhat measurable, there needs to be more than a single run for each

setting, so an average can be used. In our framework, the amount of parameters grew

as problems arose, and is currently at 8 variable parameters and 3 binary parameters.

If defining 3 values for each of the 8 variable parameters, there is a total of 52488 runs

to obtain the best configuration of the system. This number is accurate if we do not

create a finer granularity for the variable parameter than 3, and only run each setting

once, not thinking of average values. In the framework a single run can take from 30

seconds to multiple minutes, which would make the configuration run from 18 days, to

couple of months. This is too long for the time frame of this thesis, so to solve this issue

different values were fixed without configuration. Further cutting the configuration time

was done by incrementally finding ”optimal” values for parameters instead of checking

the permutations of combinations available. This was done by first finding the best of 3

values for one of the parameters, while the other parameters were hard coded to suitable

levels. The hard coded variables were swapped with the configured variables as soon
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as they were discovered through earlier runs, which essentially changes the amount of

configuration needed from permutations, to just number of parameters.

Early configuration yielded other results than later configurations, which is because the

framework got reworked quite often to achieve wanted behaviour. This rework is what

constructed many of the variable parameters, which in the earliest configurations were

only 5; mutation, elitism, crossover, add threshold and add chromosome. The other

parameters are; weighting of active rules, weighting of genotype size, linear/exponential

fitness function, adaptive/non-adaptive mutation, linear/exponential adaptation rate,

and adaptation rate. For all these parameters to function, multiple configuration runs

had to be run, and rerun, and reworked to only be rerun again. Frameworks that are

not identical, will need to be configured independently, which means that if someone

will try to imitate or copy this framework, they will essentially need to configure it

themselves. Elitism is the number of individuals which go unchanged to the next gen-

eration, untouched by mutations adding of chromosome and crossover. When filling the

next generation with individuals, there is a selection of two individuals from the current

generation, and they are transferred to the next generation. The crossover is during

the transfer from current to next generation, parts of the chromosomes are swapped

between the two selected individuals. This only happens some times, and how often

this happens is determined by the crossover rate, which is a percentage chance. The

selection two individuals to transfer to the next generation is not completely random, it

is based on how fit each individual is. A more fit individual has a higher chance of being

selected. The weighting of active rules is implemented in this part of the algorithm. A

high usage of the current genotype is seen as a positive attribute for an individual, and

because of this a weighting is applied based on how good utilisation of the genotype an

individual has. This weighting influences the selection chance, along with the fitness.

Calculation of fitness can be done in many ways, here we separate between linear and

exponential fitness, where a linear will give an increase in performance the same amount

of increase in fitness at all times. An exponential function will give the same increase

in performance different increase in fitness depending on how far away from the wanted

result the performance is. After elitism, but before filling the next generation, there is

a chance of adding chromosomes, as can be seen in Figure 4.5. Both the threshold and

the add chromosome rate affects this part. The threshold is the amount of generations

without an increase in best recorded fitness which has to pass before a chromosome can
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be added. Add chromosome rate is the percent chance of adding a chromosome to an

individual, with limitations of 1 added chromosome pr. individual pr. generation. When

the next generation is filled with individuals, there occurs mutations. The amount of

mutations is based on the mutation rate, which in this case is adaptive. An adaptive

mutation rate changes based on how fit an individual is, since when an individual is

far from perfect, there is a higher need for change than when the individual is close to

perfect. This adaptive rate can, similarly to the fitness, be linear or exponential (con-

verging). Which means the chance for a mutation drops either with a steady pace, or

fast to begin with, and slower the closer it gets to perfection.

5.3 Main experiment

5.3.1 Settings

The variable parameter settings which is used during the running of the main exper-

iments is found during the configuration of the framework. Most of the parameters

are overlapping settings for the three different evolutionary methods, full, restricted,

and growing. Exactly which parameters are used is found at the end of configuration

results. Some settings are not present in the configuration description, but still needs

to be described. When running the GA for a specific attractor, a single run can have

very different results which often depends on random mutations. For the result to be

comparable, there needs to be an average value based off multiple runs, so that random

cases which can get lucky, or unlucky only have a slight impact on the measurements.

The number of runs pr. attractor is decided to be 20, which with a big enough popu-

lation gives a margin of error which is seen as acceptable. Small population sizes are

faster, but are more likely to get stuck at local optima, so a larger one is preferable

[67]. Our population size is set at 100 individuals, giving an adequate genetic diversity

and fitness landscape exploration within a generation. For the smallest site space we

use, with a geometry of 4x4 and a states pr. site of 3, this still gives a large amount of

different states for the geometry(316). This gives a theoretical maximum trajectory of

316, which is very unlikely. But there is the potential of trajectories longer than 1000

or 10 000 emerging from random mutations, which can contain reasonable attractors.

Because of the cumulative resource usage of real time attractor checking, the emergence
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of long trajectories causes a large uncertainty in the runtime of the experiments. To

avoid excessive time usage on the development of randomly large trajectories, there was

added a limit to the maximum amount of development steps. Since there are some lim-

itations on the attractor length the framework is able to grow in a time frame suitable

for the thesis, because of the reduction in growth speed in the genotype, the maximum

attractor length to be evolved was set to 400, while maximum development steps was

set to 2000. Having a maximum development step gave the framework an approximate

maximum runtime which was reasonable, and the possible minimum transient of 1600,

which was thought of as long enough since the wanted results are attractors and not

transients. The settings for the main experiments are the variable parameter settings

found in the configuration, located in configuration results, and;

• Population of 100.

• Maximum development step of 2000.

• Number of reruns pr. wanted attractor of 20.

5.3.2 Comparison of methods

Is imitating nature and growing and evolving a genetic representation and an organism a

viable function for different complexities in EvoDevo-systems? This experiment done to

compare how the growing evolution function compares to the full or restricted evolution

function. Comparing the results will show if the growing evolution is better or equal to

the full evolution function with regards to genotype exploitation, or emergent properties

of successful solution. The usage of a full genotype of 243 rules, which is the rule space

for a von Neumann neighbourhood with 3 states pr. site, is a trivial size compared to

todays computational power. But with vastly complex problems, this full genotype size

becomes so large it is unreasonable to define the entire rule space, and to find a fixed

size for this problem becomes a major obstacle[4]. In these cases a function where the

representation changes and grows until the size is large enough to contain a solution will

be highly helpful. First there will be multiple different attractors which will be evolved

using the full and the growing evolution function. When the results for these runs have

completed, we are able to use the genotype usage of the growing function to determine

plausible genotype sizes for the restricted mutation function. The restricted will be ran



Chapter 5. Experiment 52

for 3 different genotype sizes for each of the wanted attractors, which are larger, smaller,

and the same as the average genotype usage for the successful runs on the growing

function. As for the amount of larger and smaller than average, is determined on the

size of the genotype form the growing, giving a larger genotype a greater difference in

genotype size.

The attractors which will be evolved are: 7, 10, 20, 40, 80, 160, 200, and 400. It is clear

that evolving an attractor of 40 will be done faster than evolving an attractor of 200,

so for each attractor there was a decision on the maximum amount of generations the

evolution would be allowed to use. Looking at Figure 6.11 we can get a rough view on the

amount of generations needed to achieve the different attractor lengths with the default

settings. Using these values as a reference the number of generations were decided and

ca be viewed in Table 5.1.

Table 5.1: Attractor lengths and number of generations available to achieve said
attractor

Attractors 7 10 20 40 80 160 200 400

Generations 4000 4000 4000 6000 6000 8000 8000 10000

5.3.3 Functionality where states increase

This experiment is to evolve multiple attractors with a growing evolution function with

different amount of states pr. site. For systems that should evolve large solutions, there

is a need for variable and intricate behaviour, which is unable to be achieved by a simple

5 neighbourhood 3 states CA. A simple way of making CA capable of very complex

behaviour is to increase the amount of states pr. site, which in turn increases the rule

space, the search space, and the state space exponentially. If the framework is able

to achieve results with the same setting while changing the number of states pr. site,

it would mean that the framework could support a growing evolution in both search

and state space, which means it would in theory be able to evolve arbitrary complex

solutions. That being said, this framework is only designed for a growth in genotype

size, so to be able to have a good growth in state space as well it would probably mean

the implementation of new regulation- and conditional regulation-mechanisms. These

experiments are mainly to see if the growth evolution function is able to create solutions
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with more states pr. site, and if any of the properties from the comparison experiment

are found in these experiments as well. For these runs the attractors to evolve is: 7,

10, 20, and 40. The evolutionary function will only include growing evolution, because

with more states pr. site the possibility of random very long trajectories increases, which

would lead to very long runtimes. A growing evolution will hopefully avoid this by being

an incremental process which builds a solution from a single chromosome. For each of

the attractors there will be runs with 5, 6, and 7 states pr. site, and we already have

the results for 3 states pr. site from the above experiment. The number of generations

is the same as for the above experiment as well, with 4000 generations for 7, 10, and 20

in attractor length and 6000 generations for 40 in attractor length.

5.3.4 Functionality where geometry increase

This experiment is to evolve attractors with the growing evolution function with dif-

ferent size geometries, which will see if the geometry regulates the process, and how

changing the geometry affects the solutions. Does behaviour of organism of a specific

complexity change if it is evolved in a different size geometry ? We will study the usage

of rules, and types of attractors to see if any obvious emergent behaviour changes. Fur-

ther, the solutions will be redeveloped in geometries other than the geometry used for

its evolution, to see if there is any inherent scalability when evolving in smaller or larger

sized geometries. Here we will look for both scaling and equal complexity of the evolved

solution. By increasing the geometry, the state space expands enormously and the prob-

ability of very long trajectories increase dramatically. Simple rule combinations which

achieve short attractors for small geometries, can end up giving very long trajectories

when an increase in geometry is done. This is why only very small attractors will be run

in this test. The attractors to be evolved are 5, 7, and 10, where all of them will be able

to use 8000 generations. These attractors will be evolved on 2 dimensional geometries

of 4x4, 6x6, 8x8, and 16x16, and the redevelopment will be done in these geometries

excluding the geometry where it was originally developed. Most of the settings for this

experiment was equal to the default configuration, but there were some differences, three

to be exact. First, the weighting for genome size was set to 0.05 instead of 0.2. Second,

the weighting for active rules were set to 0.15 instead of 0.00. Both of these were to

encourage a more efficient genotype usage. Thirdly, a new weighting was implemented

which was a weighting on how much usage the development of the organism depended
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on the border condition. The weighting on border condition is a negative weight, since

we wanted to see if the framework would be able to create organisms that used the

condition as little as possible, since using a border condition creates collisions. This

weighting was able to deduct up to 25% of the compound weight for the selection of

individual process.
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Result

6.1 Configuration results

Some of the earliest configuration was done to both the framework and the parameters

was the adding of a weight for active rules, and the separation of an exponential and

linear fitness function. This was followed by runs on multiple different settings, trying

to find what would be a good mutation-rate, weighting, threshold, and if one should

use exponential or linear fitness function. An early configuration run was done where

multiple settings for weighing of active rules, mutation rate, and thresholds were done

for both linear and exponential fitness function.

During the evolution, the best fitness is found and recorded, creating a variable with

the all-time best fitness. The threshold which tells how often an individual can add a

chromosome to its genotype is based off how many generations pass without an increase

in the all-time best fitness. A value of 20 for the threshold gave results which would

have a growth rate in the genotype that would not be too fast, but still slow enough to

be able to do some optimisation on the added chromosomes before further chromosomes

are added. A quick look at the graph in Figure 6.1 makes it clear that it made sense to

stop using the exponential fitness function, which was the original one, and start using

the linear function. All of the runs in for the graphs in Figure 6.1 were made without

elitism and with a mutation-rate pr. individual instead of a global one. A mutation-

rate pr. individual makes the chance for mutations in the chromosomes of individuals

shrink as the genotype grows, and not using elitism ensures that all individuals can be

55
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Figure 6.1: This graph shows the result of evolving an attractor of length 40 with
multiple different setting. The colour separates the runs with an exponential fitness

function(red), from the runs with a linear fitness(green) function.

grown, mutated, and crossed over. Not using elitism was supported by early testing

where elitism had a very negative effect on the evolution process which can be observed

in the graph in Figure 6.2 a, but this effect changed as the framework got reworked and

elitism became a viable parameter seen in the graph in Figure 6.2 b. Elitism ended up

being a major genotype size regulation mechanism in the latest framework builds. This

can be observed in the graph in Figure 6.3. In the graph the blue line is the gradual

evolution of the attractor, while the fat green line is the span of genotype size within

the generation, where the lowest point in the green line is the minimum genotype size,

while the highest point is the maximum genotype size in the generation. Looking at the

figure, we see that it has a flat minimum line, while the maximum is growing on top of

it. The growing of the genotype stagnates when the spread from the minimum genotype

size grows too far. There are of course both negative, like increased possibility of getting

stuck at local fitness optima, and positive effects of using elitism, like a faster runtime

of a GA and not losing the best individual due to a randomly bad natural selection.

After reading about Kitano[61] and his use of an adaptive mutation function which

increased his performance, this was implemented in two types, exponential and linear.

Configuration runs were used to decide which would be used within the framework.

Runs were done for evolving attractors of length 40 with the adaptation ranging from

5 - 100 % of the mutation rate, where they had similar results that can be observed in
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(a) Elitism is bad

(b) Elitism is good

Figure 6.2: These are graphs from runs at different times during the construction and
improvement of the framework. On graph a, which is the oldest, we see that disabling
elitism(red) outperforms elitism enabled(green). While on graph b, which was later,
elitism became better with no elitism (red), elitism of 1 individual (blue), and elitism

of 10 individuals (green).

the graph in Figure 6.4. Both exponential adaptive and linear adaptive mutation rate

performs better than non-adaptive mutation rate, and they both perform similarly good.

Even if they have similar results, the linear rate gives on average a quicker growth in

attractor than the exponential, and achieves a slightly better success rate as well. The

choice is not as clear as when deciding whether or not to use the linear or exponential

fitness function, but it is clear enough to choose the linear adaptive mutation rate.

This framework should run multiple types of evolutionary methods, i.e. growing, re-

stricted, and full. For comparisons sake it was decided that all these should use the
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Figure 6.3: This graph shows results for the evolution of a growing genotype with
elitism 1 in the later versions of the framework. The blue line is growth in attractor, and
the green line is growth in genotype size. The change in width for the green line is the
difference in minimum to maximum genotype size for the individuals in the generation.
The periodically flat bottom structure for the genotype growth, keeps the genotype

from growing too much, making the elitism help regulate the growth in genotype

Figure 6.4: Each of the plots in this graph the average data of 20 evolutions. Each plot
was evolved with a growing evolution to achieve an attractor of length 40, but varied
in mutation rate, and in type of adaptive mutation function. Green plots represents

adaptive linear mutation, while red represent adaptive exponential mutation.
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same settings for overlapping parameters. When configuring the adaptive linear muta-

tion rate the values 1.6, 2.6, and 3.6 was used on attractors of 40 and 100 which can

be viewed in the graphs in Figure 6.5 a and b respectively. This mutation rate was pr.

individual, which basically means that after the transfer of individuals from the current

generation to the next generation, each individual will on average have 1.6 , 2.6 or 3.6

mutations. The number of mutations pr. individual is unaffected by the size of the geno-

type, making the chance for a mutation in a chromosome lower as the genotype grows.

Studying the graph for attractor length 40 and simply taking the growing evolution in

mind, a mutation rate of 1.6 is the fastest to achieve an average attractor close to the

wanted attractor, but fails to when going from close to perfect. 2.6 and 3.6 as mutation

rate is a little different, while they use a longer time to achieve an average attractor

close to the wanted attractor, they both get 20 successful attractors out of 20 runs. But

when taking the restricted evolution into account, both 2.6 and 3.6 fall in performance,

while 1.6 performs close to the growing evolution. This should have made 1.6 the best

fit for mutation rate configuration, but configuration runs with a wanted attractor of

100 gave results which made the overall performance for 1.6 decrease. In the results for

attractor 100 the 3.6 rate for restricted evolution gives the best results, while 2.6 and

1.6 achieve similar results. For the growing evolution 3.6 gives the worst result, while

2.6 achieves the best, with 1.6 being in between. 2.6 was selected because it had the

best result for the growing evolution with both attractor lengths, and decent result for

the restricted evolution. There was also a higher weighting on the performance of the

growing than the restricted, since we are trying to achieve a growing evolution.

An issue appeared where the amount of chromosomes in a growing genotype stagnated,

which was believed to be caused by a low mutation rate as the genome grew, and the

adaptive mutation rate further shrank the mutation rate. As a remedy to this problem a

return to a static but adaptive mutation rate was tried, a mutation rate pr. chromosome

instead of pr. individual. The basic idea was mutation pr. individual tells how many

mutations there will on average be in an individual, no matter how big the genotype

is. Making a large genotype which is represented by for instance 1200 bits, have a

actual mutation chance of 0.21% pr. bit with the current 2.6 mutations pr. individual.

A mutation pr. chromosome will have a 21% chance pr. bit since there are 12 bits

pr. chromosome in this example. Some configuration runs were made to see if this

configuration had any merit. These runs gave results which encouraged and discouraged
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(a) Attractor length of 40 (b) Attractor length of 100

Figure 6.5: Graphs comparing results for attractor of length 40 and 100, evolved with
a Growing and a Restricted evolution function. Each line shows the average value of
20 runs with the same setting, and each setting is a different adaptive linear mutation
rate. Growing evolution with mutation rate 1.6 is Red, 2.6 is Green, and 3.6 is Blue.
While for the Restricted evolution, mutation rate 1.6 is purple, 2.6 is cyan, and 3.6 is

brown.

Figure 6.6: Graph showing the evolution of attractors with the Growing evolution
method without elitism. The Cyan plot is a pr. individual mutation rate, while the

others are pr. chromosome mutation rates.

the usage of this mutation model, and discovered a flaw in the system.

When viewing the graphs in Figure 6.6 and 6.7 it can be observed that the growth

process is not very stable, but when enabling elites the growth calms down and gives

good results on the wanted attractor, but not superior to the mutation pr. individual

method. At this point the discouraging factor of mutation pr. chromosome is seen in
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Figure 6.7: Graph showing the evolution of attractors with the Growing evolution
method with elitism of 1 individual. The Cyan plot is a pr. individual mutation rate,
while the others are pr. chromosome mutation rates. Having 1 elite greatly increased

the success rate.

the graphs in Figure 6.8 a and b, where the growth of rules are very high, which fits

poorly to the idea of effective genotype usage.

Another thing which was discovered with these runs was a flaw in the elitism design.

When observing Figure 6.7, the graphs have multiple fall in attractor length, which

converts to fall in fitness, which again should have been eliminated by the usage of

elitism (this is an average of 20 runs, so it could appear but should not be frequent).

This frequent drop in fitness, was caused by the function which increases genotype size,

since the function was exempted from the elitism and could affect the elites, eventually

ending up reducing the fitness of the elite. Changing this so the GA behaviour for elitism

followed the main idea of elitism, that the best individual is transferred unchanged to

the next generation, had a dramatic impact on the mutation pr. chromosome. Growth

in genotype became slow, and it achieved zero to few satisfactory results, observable in

the graph in Figure 6.9, which discouraged the idea of further usage of mutation pr.

chromosome.

One of the problems of continued reworking of the framework, is reconfiguring parame-

ters which have already configured, based on the newly added framework elements. The

weighting of rule activation was redone when the above changes and calibrations had

been done, running for attractors of 40 and 100 with the active rule weighting of 0.15,

0.25, 0.35, and 0.45. This weighting is taken into account when selecting individuals
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(a) Mutation pr. chromosome (b) Mutation pr. individual

Figure 6.8: Graphs showing the different results for mutation pr. individual and
mutation pr. chromosome with an elitism of 1 individual. The blue line is growth in
attractor, and the green line is growth in genotype size. The change in width for the
green line is the difference in minimum to maximum genotype size for the individuals
in the generation. There is a very high growth in genotype size which discouraged the

continued usage of pr. chromosome mutation.

Figure 6.9: Graphs showing the evolution of different attractor lengths for the Grow-
ing evolution function, after a feature in the elitism functionality was changed. Com-
pares the mutation pr. individual vs mutation pr. chromosome. This shows that
mutation pr. chromosome achieves horrible results, while mutation pr. individual gets
good results for each of the different attractors. The plots are based on the mean value

of 20 runs.

for either adding of chromosomes or for parents for individuals for the next generation.

Having a 0.15 in active rule weighting means that the value for active rule weighting is

scaled down to 15% of its value, while the fitness value is scaled down to the remaining

percentage out of 100%, i.e. 1 minus 0.15 which is 0.85. These runs lead to graphs which

did not evenly reflect the results. On the graphs in Figure 6.10 a, b, c, and d it seems
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like a weight of 0.15 is the best choice when thinking of both growing and restricted

mutation function, since it has similar average values which are quite high for both the

attractors.

(a) Weight 0.15 (b) Weight 0.25

(c) Weight 0.35 (d) Weight 0.45

Figure 6.10: Multiple runs to configure the weighting of active rules, for both the
Growing and the Restricted evolution function. The plots are based on the mean value
of 20 runs. Restricted evolution of attractor 40(Purple), attractor 100(Blue). Growing

evolution of attractor 40(Green), attractor 100(Red).

But when looking at Table 6.1 and 6.2, and taking the different attributes into account,

the 0.15 weight is no longer the best. 0.25 is equal or better in all but 1 attribute, which

is total rules for attractor 40, making a weighting of 0.25 for the active rules the selected

value.

Originally this would have concluded the configuration of the framework, but some dry

runs for experiments of attractors longer than 100, showed a significant decrease in

success rate and growth in genotype. The main reason for this was thought of as the

weighting of active rules, since this was implemented with the prospect of keeping an
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Table 6.1: Attractor length 40.

Weight Restricted Success Growing Success Used Rules Total Rules

0.15 13/20 20/20 8.3 13.35

0.25 13/20 20/20 8.2 13.45

0.35 12/20 20/20 8.8 13.85

0.45 18/20 20/20 9.45 14.75

Table 6.2: Attractor length 100

Weight Restricted Success Growing Success Used Rules Total Rules

0.15 11/20 14/20 12.21 18.64

0.25 14/20 16/20 11.37 17.25

0.35 15/20 15/20 11.46 17.27

0.45 9/20 18/20 11.45 17.95

effective and small genotype size. Some simple configuration runs were made which used

a high active rule weight, and one with no active rule weight, which resulted in a better

attractor growth and surprisingly not an significant increase in genotype size because

the elitism held the growth back. This is the discovery of the regulatory mechanism of

the elitism, which lead to the removal of active rule weight, a decrease in the threshold

for adding chromosomes, and the implementation of a weight which favoured a larger

genotype. The new weight was simply added to encourage further growth in genotype

to achieve larger attractors, and did not cause an overly large growth in genotype size.

As seen in the graphs if Figure 6.11 a, the weighting did hold down the growth in

attractor, and by encouraging the growth of genotype, the growth in attractor was

further increased. Looking at graphs in Figure 6.11 b-d shows that this growth came at

a reasonable cost in genotype size.

After configuration of the EvoDevo framework to an extent were it was possible to

perform some experiments, we ended up with these settings:

• An adaptive linear mutation rate of 2.6 mutations pr. individual, where the adap-

tation ranges from 100 - 5 % of the original rate, seen in Figure ?? b

• A linear fitness function, as in equation 4.3.

• Elitism of 1 pr. generation.
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Figure 6.11: This represents Graph 6.11 a. b-d contains the growth of genotype for
each of the represented lines, and is located in Appendix B. In this graph the lines
represent different weighting strategies for the Growing evolution function. The plots

are based on the mean value of 3 runs.

• Threshold of 10 for adding of chromosomes.

• Active rules weighting of 0.0 when selecting individuals to a next generation.

• Genome size weighting of 0.2 when selection individuals to a next generation.

• Add chromosome chance of 2%.

• Crossover chance of 2%.

• Quiescent state initiation for Restricted genotype and Full’s next state.

Configuring a GA to work as a EvoDevo-system which uses a representation that changes

during the process of evolution is a non-trivial task, compared with the configuration of

a evolution full evolution method. During the configuration almost all of the settings

worked well for a full evolution method, while being highly variable when used on the

growing evolution. Having a growing evolutionary method configured properly will take

time and a willingness to rethink the framework and adapt when difficulties arise, for

instance a lack of growth in genotype, or a failure to achieve successful results. In this

case the configuration is achieved by taking some shortcuts, and does not encompass all

ways of achieving, regulating, or adjusting a growing genotype evolution function. The

configuration and framework which is achieved and used for this thesis is by no means

optimal, but adequate for the purpose of proving a point.
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6.2 Main experiment results

6.2.1 Result for Comparison experiment

One of the main reasons for trying to grow a genotype representation, is because trying

to decide upon a static size which is big enough to contain a solution is difficult when the

problem becomes large. So the aspect of getting results which have a good utilisation of

the genome compared to a full representation is important. Having a good utilisation

shows that the growing function is able to produce solutions of arbitrary complexities

but use a reduced search space compared to a full function, which can help by making

the process of deciding on a representation size unnecessary. Looking at the graph in

Figure 6.12 which shows the average usage and genome size for the successful runs of

different attractors for the growing and the full function, it is clearly observable that

growing the genotype gives both a smaller genotype size, and a higher utilisation of the

genotype than using a full evolution function. For each attractor developed, 20 runs was

done with a setting of 3 states pr. site, a von Neumann neighbourhood, and a geometry

of 4x4. This tells us that the full rule space is 35 = 243, making a Full evolution function

have a genotype size of 243, while a growing starts at a genotype size of 1. The sizes for

the Restricted evolution function is found based of the results of the Growing evolution

function.

Another usage of Figure 6.12 was to find appropriate values for the restrictions for the

restricted evolution experiments. As earlier mentioned there are 3 different restricted

runs pr. attractor, one with a lower genotype size, one with and equal genotype size,

and one with a bigger genotype size than the growing function achieved. The values that

were decided upon for the restricted runs is located in Table 6.3, where the difference

from the medium restriction to the low and high restriction is relative to the size.

Having run the restricted, full, and growing experiments it is possible to compare success

rates, generation usage, and rule usage for the results. The number of successes were

predicted to be higher for the full than for the growing and the restricted, since a full

genotype does not need to simultaneously grow both the genome and the fitness, and

there is lots of room of exaptation[58] from the start, giving the possibilities for large

jumps or changes in fitness or structure for the development. Exaptations is thought to

be an important part of evolution[58][4], where the phenotypic response to a mutation is
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Figure 6.12: This graph compares the genotype size to the chromosomes activated
during the development process, for the results created by the Full evolution function
with the Growing evolution function. The plots are based on the mean value of the

successful evolutions of 20 runs.

Table 6.3: Chosen genotype size for restricted evolution runs.

Low Restriction Med Restriction High Restriction

Attractor 7 12 16 20

Attractor 10 11 13 15

Attractor 20 8 10 12

Attractor 40 10 13 16

Attractor 80 12 15 18

Attractor 160 20 24 28

Attractor 200 21 25 29

Attractor 400 30 35 40

not obvious, and does not decrease the fitness, but will after some generations make a big

impact on the phenotype of the individual and further increase or decrease the fitness.

It is the ability to let evolution tinker with a part of the development process which

is not yet connected to the organism, so that when it finally gets connected, it makes

larger changes than a single gene could do. When looking at the comparison graphs

in Figure 6.13 a-h we see that the prediction was mostly accurate. In the graphs we

clearly see that the full evolution function reaches the close to the appropriate attractor

length in 500 generations or less, while most of the time the growing uses all available
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Figure 6.13: This is Graph 6.13 a, which shows a comparison of the different evo-
lutions of attractor with length 7. Full evolution function(Brown), Growing evo-
lution function(Green), Restricted evolution function low(Blue), mid(Purple), and
high(Cyan). Graphs b - h which have the same colour coding shows the comparisons

for the remaining attractors, and is located in Appendix A.

generations to get close to the wanted attractor. We also see that the growing function

climbs slowly towards the wanted attractor over the space of many generations, while the

full has most of its attractor growth within a handful of generations, which is because

the growing evolution function needs to build up the genotype iteratively. The restricted

evolution function, which initiates with a fixed size of its genotype we see a growth in

attractor which is similar to the full evolution function, with a sharp growth in the early

generations, and a convergence and optimisation after this. But the attractor growth for

the restricted is shallower than for the full, which is because to the genome size being

larger for the full. For most of the graphs the convergence of the restricted evolution

ends up around the same area as the growing evolution ended, and looking at the graph

in Figure 6.14 we see that the usage of the genome is roughly the same, especially when

the restrictions on genome size were the same as the growth, i.e. restricted mid.

Further, looking at Table 6.4 we can see the success rates for the different experiments.

Here we see that the full evolution function has an almost perfect success rate, except

for attractor length 7. While the growing and restricted evolution functions have a

success rate which varies from perfect to bad. For the attractors of 10, 20 and 40 there

is a very good success rate for all the evolution function, and looking on graphs in

Figure 6.12 and 6.14 we see the genotype size and usage of genotype is the lowest at
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Figure 6.14: This graph compares the genotype size to the chromosomes activated
during the development process, for the results created by the Restricted evolution
function using high, mid, and low restrictions with the Growing evolution function.

The plots are based on the mean value of the successful evolutions of 20 runs.

these attractors as well. So these attractors are most likely easy to produce within the

current state and geometry setup for the CA. For higher attractors, we see a drop in the

success rate for the growing and restricted evolution function, which is related to the

increase in complexity. An increase in complexity will either need a larger search space

or more generations to optimise a solution. In our case we supplied a fixed amount of

generations, and a growing search space. The growth of rules seemed to slow down,

or converge after growing to a size with a relative large search space for the wanted

attractor. The convergence of the rule growth can be observed in graphs in Figure 6.15

a-h. Since these graphs are averages of 20 runs, it is natural that there is a slowing and

stop in the growth as more and more runs reach a solution which stabilises the genotype

size. But it is likely that getting closer to an attractor also has something to do with

the decreasing growth speed, since the lower attractors grow to a smaller genotype size.

One can also observe that even though they run for different amount of generation they

have a similar growth speed before it slows down, which is easily seen by comparing the

early genotype growth in the graphs with the same amount of generations. Observing

Table 6.4, it is also worth noting the growing and restricted evolution functions have

a higher success rate on an attractor of 7. This attractor was selected as an attractor
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Figure 6.15: This is Graph 6.15 a, graphs 6.15 b - h is located in Appendix C. Graphs
6.15 a-h show the evolution of the attractor compared to the growth in genotype size
for the different runs in the comparison experiment which used the Growing evolution
function. The blue line is growth in attractor, and the green line is growth in genotype
size. The change in width for the green line is the difference in minimum to maximum
genotype size for the individuals in the generation. The plots are based on the mean

value of 20 runs.

which would be difficult to develop within the CA settings, and not because it was large.

Having a geometry of 4x4 with cyclic boundaries creates a good environment to create

attractors which evenly divides by 4. The number of states also affect what attractors

area suitable for the CA and not, but exactly which attractor lengths are suitable and

which are unsuitable for our CA is difficult to find out. Using 7, which does not evenly

divide with either the geometry, the amount of states, or the amount of states minus

the quiescent state, we aimed for one which was difficult. The results for the attractor

7 indicate that our idea was correct, since it has a worse success rate than the similar

attractor of 10, and also a higher genotype usage, which can be seen in the graphs in

Figure 6.15.

Another thing which is found when looking at the results is the usage of rules throughout

the development of the attractor. When looking at the development of attractors there

are some obvious points which separates the full from the growing which can all be

observed by studying the detailed rule activation graphs in the Appendix E. First, there

is an overall higher usage of transient for the attractors evolved with a full genotype

than the attractors evolved with a growing or restricted genotype. Second there seems
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Table 6.4: Success rate for comparison experiments

Growing Full Restricted low Restricted Mid Restricted High

Attractor 7 18/20 15/20 18/20 19/20 18/20

Attractor 10 20/20 20/20 19/20 20/20 20/20

Attractor 20 20/20 20/20 20/20 20/20 20/20

Attractor 40 20/20 20/20 19/20 20/20 20/20

Attractor 80 15/20 20/20 10/20 14/20 14/20

Attractor 160 14/20 20/20 9/20 9/20 14/20

Attractor 200 16/20 20/20 13/20 10/20 12/20

Attractor 400 1/20 20/20 1/20 4/20 3/20

to be an overall lower usage of rules for the growing and restricted, compared to the

full. One rule can be used multiple times pr. development step, so simply having room

for more rules in the genotype should not be the only factor which makes growing and

restricted have a higher average no change value. Third, the results for the growing

and restricted seem to be made up of a small set of valid solutions, with small or no

alterations, while the solutions for the full have vastly different structures. This can

be observed by simply looking at the pattern of ”No change” in the graphs in Figure

6.16, which is the lines at the top of the graphs. Last, for the attractors longer than 7,

there are distinct patterns in the development which repeat multiple times within the

same attractor. These patterns occur in quads within an attractor, which points to the

probability that this is because of the cyclic boundaries in the geometry of size 4x4.

The growing evolution function was able to outperform the full evolution function in

the aspect of genotype efficiency, which was one of the main reasons to perform the

experiment. For attractors of simple complexity growing was able to keep a success rate

within the set generations which could compete with the full function. This success

rate for the growing got worse when the length of the attractor got high, which tells

us it might need more generations, or maybe a better way of adding chromosomes to

the genotype. It is also clear that for longer attractors the need for longer periods of

optimisation or exaptations might be needed. Another point to mention is that the

growing evolution function performed better than the full both on success rate and on

genotype efficiency for the attractor of length 7.
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(a) Attractor 7 Growing evolution (b) Attractor 7 Restricted evolution

(c) Attractor 7 Full evolution

Figure 6.16: .Overlapping graphs of the rule usage during the development of at-
tractors of size 7. The total rule usage is the amount of sites in the geometry which
change in some way pr. development step, while no change shows the number of sites
which do not change. Each line is a different run, and the reasons for missing lines
or missing parts of lines are overlapping or similar structures. Higher resolution and

higher attractors are found in Appendix D

6.2.2 Result for state increase experiment

The results of this experiment did not achieve as good results as the 4 state experiments.

As seen in Table 6.5, when the number of states grew the success rate dropped, 3 of

the 12 runs had a success rate of 0 of 20 runs, and only 3 experiments achieved over

50% success rate. The genotype efficiency of the successful results are also worse than

for the original 3 states CA, which can be seen in the graph in Figure 6.17. Only the

single successful run for the attractor of 7 achieved a smaller genotype, and less active

rules than the original 3 state. On average the growth in genotype size is larger, but the

amount of active rules stay low, meaning that most of the chromosomes added have no

effect on the development process. This is contrary to what the purpose of growing a
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Figure 6.17: This graph compares the genotype size to the chromosomes activated
during the development process, for the results created by the Growing evolution func-
tion when the number of states pr. site increase. The plots are based on the mean

value of the successful evolutions of 20 runs.

genotype wants to achieve, which is to add a chromosome or two, and make the increase

in genotype potential create more suited individuals. But having a continued low usage

of rules is an indication that growing a genotype would give efficient genotypes when

state space increase, which is the one of the main reasons for running an increased state

experiment.

Table 6.5: Success rate for increase in state space

Attractor 7 Attractor 10 Attractor 20 Attractor 40

5 States 1/20 4/20 16/20 16/20

6 States 0/20 1/20 13/20 5/20

7 States 0/20 0/20 4/20 5/20

Observing the graphs in Figure 6.18 a and b we see that increasing the amount of states

increases the amount of generations needed to achieve the wanted complexity. This can

be seen in that the graph lines for a higher state count grows slower towards the wanted

complexity than a lower state amount does. This might be that the sheer amount

of rules which needs to be mutated to get one rule which interacts with the current

development for an individual, gets larger as the number of states grow. Because there
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is a large miss to hit ratio on the mutation, a higher restriction on adding of genes

could be a good way of achieving better results. In the graphs showing the genotype

growth for these experiments, graphs in Figures 6.19, 6.20, 6.21, and 6.22 a-c, there is an

excessive amount of growth compared to the same attractors in the graph in Figure 6.15

a-d. This growth with the large amount of unused genotype space, indicated that the

GA needs reconfiguration or some dynamic parameters which adjust the configuration

dependant on different variables. Further studying of the graphs tells us that even if

they do not reach the wanted attractor within the fixed amount of generations given,

there is still a growth, or closing to the wanted attractor, meaning the evolution is not

stuck, it just needs more generations. The need of more generations is natural because

increasing the number of states, will automatically increase the search space, even for

the growing evolution function, meaning that it should have more time to optimise each

added chromosome.

(a) Attractor 7; 7states(Brown), 6states(Cyan),

5states(Purple) Attractor 10; 7states(Blue),
6states(Green), 5states(Red)

(b) Attractor 20; 7states(Blue), 6states(Green),

5states(Red) Attractor 40; 7states(Brown),
6states(Cyan), 5states(Purple)

Figure 6.18: This is Graph shows a comparison of the evolutions of various attractor
lengths when increasing the number of states pr. site. The plots are based on the mean

value of 20 runs. For better resolution, see Appendix F.

Because of the easier growth in the increased state experiments, they were run again,

but this time the weighting with for genotype size was tuned down, and the weighting for

number of active rules was added again. In these runs the genotype size weight was 0.05

and the weight for active rules were 0.15. As for the results of this extra experiment, the

success rate fell on every point. having such a low success rate means using the values

of the successful runs as a average value will be flawed, and therefore not usable. The
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Figure 6.19: This is Graph 6.19 a.
Graph a, b, and c, represent 5, 6, and
7 states respectively, and is available
with higher resolution in Appendix G.
The graph shows the growth of attrac-
tor and the genotype growth for the

wanted attractor 7.

Figure 6.20: This is Graph 6.20 a.
Graph a, b, and c, represent 5, 6, and
7 states respectively, and is available
with higher resolution in Appendix G.
The graph shows the growth of attrac-
tor and the genotype growth for the

wanted attractor 10.

Figure 6.21: This is Graph 6.21 a.
Graph a, b, and c, represent 5, 6, and
7 states respectively, and is available
with higher resolution in Appendix G.
The graph shows the growth of attrac-
tor the genotype growth for the wanted

attractor 20.

Figure 6.22: This is Graph 6.22 a.
Graph a, b, and c, represent 5, 6, and
7 states respectively, and is available
with higher resolution in Appendix G.
The graph shows the growth of attrac-
tor and the genotype growth for the

wanted attractor 40.

successful results did not achieve genotypes which were significantly more efficient than

when this weighting was not included.

6.2.3 Result for geometry increase experiment

The average attractor values for the different runs is represented in graphs in Figure

6.23 a-c. One can see that most of the runs achieved good to acceptable results, while

the odd one out would be the geometry of 16, which is a double of geometry size with

regards to the second largest geometry size. Having a large geometry size gave a higher
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offset for the average attractor length from the wanted attractor, and scored lowest on

the success rate in Table 6.6.

Table 6.6: Success rate for increase in geometry size

Grid 4 Grid 6 Grid 8 Grid 16

Attractor 5 20/20 20/20 14/20 5/20

Attractor 7 20/20 20/20 20/20 8/20

Attractor 10 20/20 20/20 19/20 9/20

(a) Wanted attractor 5 (b) Wanted attractor 7

(c) Wanted attractor 10

Figure 6.23: Graphs show a comparison of the evolution of various attractors when
changing the geometry size. The plots are based on the mean value of 20 runs. Coloring:
Geometry size 16(Red), 8(Purple), 6(Blue), and 4(Green). For better resolution, see

Appendix H

A valid point for the 16 geometries mediocre success rate is that each of the attractors

developed were of a length which relatively shorter than the geometry length in one di-

mension, making an attractor which simply uses boundary conditions difficult to evolve,

it would also need some structural setup in the form of a transient. Almost like building
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a geometry in which an attractor of wanted size can be obtained. This dependance of a

structure is also needed in the smaller grids, the size of the structure is smaller and thus

faster to evolve, giving a higher success rate. Table 6.7 shows the average transients for

these experiments. When looking at the effectiveness of the solutions created here, seen

in Figure 6.24 , we see that these experiments are performing similar to the default setup

for growing and restricted evolution in a 4x4 geometry, seen in the graph in Figure 6.14.

These experiments should in theory be performing slightly better on the effectivity for

the 4x4 geometry, since there is a weighting for the active rules in these runs, but this

is not visible in Figure 6.24 so the margins are too small to notice. On the other hand

there are some of the experiments which stick out, by having a very low genotype size

and a very high efficiency of said genotype, this is the attractors for the 16x16 geometry,

and the attractor of 5 on the 8x8 geometry.

Table 6.7: Average transients of different attractors when the geometry size grows

Grid 4 Grid 6 Grid 8 Grid 16

Attractor 5 3.4 5.75 8.571 24.00

Attractor 7 3.3 4.45 6.55 27.00

Attractor 10 0.85 9.2 14.737 32.11

Looking at the genotype graphs for these attractors, Figure 6.25, 6.26, 6.27 d, and 6.25

c, there is a distinct difference in the growth of genotype compared to all the other

runs. There seems to be difficult for the growth of genotype to hold on through natural

selection. Had a solution not been present within the low number of rules in which

the genotype was able to grow to, the evolution process might not have been able to

increase the number of rules enough to achieve a reasonable result, i. e. get stuck at

a local maxima. The fact that the grid size of 8 is able to achieve higher genotype

sizes in runs for other attractors, and that the grid size of 16 with an attractor of 10

achieves slightly higher genotype than the other attractors for grid 16, can indicate that

the growth of genotype stabilises, or slows down when reaching a genotype size which

is capable, of a correct, or a close to correct solution. There is also reason to think that

because of longer transients, which entails larger structures, the number of sites in the

geometry which contain different rule conditions increases, making the addition of a rule

to the genotype have a higher probability of interfering with the current structure, which

according to Kenneth O. Stanley[4] normally reduces the fitness for the individual.
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Figure 6.24: This graph compares the genotype size to the chromosomes activated
during the development process, for the results created by the Growing evolution func-
tion when the size of the geometry increased. The plots are based on the mean value

of the successful evolutions of 20 runs.

The growing evolution function is able to produce successful result when the geometry

changes, the results achieve similar efficiency as earlier experiments except for some

results which are superior. Whether or not these superior results are because of a

slightly different weighting scheme, or because of more thorough optimisation of the

genotype, or simply lucky with the selection of geometry, states and attractor is difficult

to say. But for a growing evolution to produce good results on different geometries, it

should be designed and configured for this ability. Looking for scalability behaviour in

the different geometries there was first check to see if the results for different geometries

were somewhat equal in the development phase as the earlier experiments. This meaning

that they had an overall low active site count in the geometry pr. development step,

and that many of the same type of attractors were found, which showed similar patterns

in rule usage. Looking at the graphs in Figure 6.28 a-d we see that many of the same

ideas hold. Also in larger geometries are some attractors more likely than other, while

some of the attractor on different geometries have a larger set of available attractors.

While the geometry of 16 with an attractor of 7 only had 8 successful runs, there were

only 5 different attractors developed, where 3 were duplicates and 2 were unique. For

the geometry of 8 with an attractor of 7 there were 20 successful runs, out of these 8
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Figure 6.25: This is Graph 6.25 d.
Graph a, b, c, and d, representing ge-
ometry 4, 6, 8, and 16 respectively, is
available with higher resolution in Ap-
pendix I. The graph shows the growth
of attractor and the genotype growth

for the wanted attractor 5.

Figure 6.26: This is Graph 6.26 d.
Graph a, b, c, and d, representing ge-
ometry 4, 6, 8, and 16 respectively, is
available with higher resolution in Ap-
pendix I. The graph shows the growth
of attractor and the genotype growth

for the wanted attractor 7.

Figure 6.27: This is Graph 6.27 d.
Graph a, b, c, and d, representing ge-
ometry 4, 6, 8, and 16 respectively, is
available with higher resolution in Ap-
pendix I. The graph shows the growth
of attractor and the genotype growth

for the wanted attractor 10.

had the same, or related pattern in the rules used pr development step. Looking at

the graphs in Figure 6.28 a and b for the geometries of 4 and 6 we see that they have

similar behaviour, since the number of colours shown in the graph is not equal to the

number of lines drawn, meaning that some completely overlap with another one. Even

if they do not completely overlap, they can still be closely related since the lines are

the total amount of rules used, and this line can be changed while still keeping the

same development by using the mod functionality for duplicates of same chromosome.

All of the geometries keep a low rule usage in for all of the attractors, even the ones

with long attractors. Low is here relative since the maximum amount of rules active

is the number of sites in a geometry, which growths with the power of two in a two
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dimensional space. As mentioned earlier, there is a higher usage of transients in the

larger geometries, but this is not like the full evolution functions usage of transients,

since here it is necessary to be able to create small enough attractors. The last point,

where there were repeating structures for attractors which are much larger than the

geometry, does not have attractors of sufficient length to be considered.

(a) Evolved on geometry of 4 (b) Evolved on geometry of 6

(c) Evolved on geometry of 8 (d) Evolved on geometry of 16

Figure 6.28: Overlapping graphs of the rule usage during the development of attrac-
tors of size 7 for different geometries. The total rule usage is the amount of sites in the
geometry which change in some way pr. development step, while no change shows the
number of sites which do not change. Each line is a different run, and the reasons for
missing lines or missing parts of lines are overlapping or similar structures.. For better

resolution, see Appendix J

Looking for signs of inherent or emergent scalability or stability during redevelopment

of successful solution in new geometries yielded mostly bad results. Scalability in rede-

velopment was defined as an attractor which regulated its length based on the geometry

size it was developed in, but which also regulated the size in what could be observed

as a clearly functional pattern. For instance an attractor of length 5 developed in a

geometry of 4x4, which when redeveloped gave attractors of length 5, 10, 15, and 35 on

geometries of 4, 6, 8, and 16 respectively. Looking for these signs of scalability means
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we were looking for attractors which show signs of scalability for all the different geom-

etry sizes, and disregard the ones which might scale for specific increase or decrease in

geometry. Looking for different kinds of scalability signs could be possible, for instance

visual patterns created as part of the transient which can make the solutions scalable

to specific increases or decreases in geometry. This was not done. Signs of stability was

defined as an attractor keeping its size when redeveloped in another geometry. When

looking for stability there was no need for the stability to show in all the redevelopments,

in this case we looked at each redevelopment, and compared it to the original, not like

in scalability, where we looked on all the redevelopments of a result together. The rede-

velopment was done in geometries of size 4, 6, 8, and 16, which should in theory make

6 the difficult number, seeing that it is not in the sequence of the power of 2 like the 3

other values. Most of the developments resulted in did not show any apparent signs to

why they achieved or did not achieve any either scalability or stable result. The lack of

coherence between the stability and scalability for different attractors, seen in Table 6.8,

6.9, 6.10, and 6.11, means that the settings and wanted result, not the evolution func-

tion, have more impact on inherent scalability or stability when redeveloping in other

geometries. Redevelopments where there were many either stable, or signs of scalability

in the redevelopment, was mainly because a growing evolution function creates multiple

similar structures, and in some cases the most likely ones show signs of either scalability

or stability. There does not seem to be any emergent behaviour which occurs by growing

the genotype that encourages scalability or stability within geometry changes based on

this experiment. But some of the attractors were using patterns with fractal qualities to

achieve wanted attractors, and fractals do hint at scalability. These did not scale well

as attractors, but could mean that looking for structures in the development instead of

attractors could shed another light on the prospect of geometry scalability in growing

genotypes.
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Table 6.8: Stable and scaling attractors when redeveloping successful results in ge-
ometry of 4.

original 4

attractor 5 attractor 7 attractor 10

stable in 4x4 N/A N/A N/A

stable in 6x6 2 of 20 17 of 20 0 of 20

stable in 8x8 3 of 20 16 of 20 0 of 20

stable in 16x16 2 of 20 16 of 20 0 of 20

shows signs of scaling 1 of 20 0 of 20 16 of 20

Table 6.9: Stable and scaling attractors when redeveloping successful results in ge-
ometry of 6.

original 6

attractor 5 attractor 7 attractor 10

stable in 4x4 1 of 20 1 of 20 0 of 20

stable in 6x6 N/A N/A N/A

stable in 8x8 4 of 20 2 of 20 1 of 20

stable in 16x16 4 of 20 2 of 20 0 of 20

shows signs of scaling 0 of 20 0 of 20 1 of 20

Table 6.10: Stable and scaling attractors when redeveloping successful results in
geometry of 8.

original 8

attractor 5 attractor 7 attractor 10

stable in 4x4 0 of 14 1 of 20 0 of 19

stable in 6x6 1 of 14 3 of 20 4 of 19

stable in 8x8 N/A N/A N/A

stable in 16x16 1 of 14 6 of 20 6 of 19

shows signs of scaling 4 of 14 2 of 20 3 of 19

Table 6.11: Stable and scaling attractors when redeveloping successful results in
geometry of 16.

original 16

attractor 5 attractor 7 attractor 10

stable in 4x4 4 of 5 2 of 8 0 of 9

stable in 6x6 3 of 5 3 of 8 0 of 9

stable in 8x8 4 of 5 4 of 8 0 of 9

stable in 16x16 N/A N/A N/A

shows signs of scaling 0 of 5 2 of 8 3 of 9
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Analysis/Discussion

7.1 Configuration

During the configuration there were done some shortcuts to be able to find suitable pa-

rameters in reasonable time. The configuration reached was used as a setup for multiple

experiments, ranging from different evolutionary functions, to change in geometry and

change in the number of states. Getting a growing genotype evolution function to work

was much harder than getting the full genotype evolution function to work. For the full

evolution, the results were good with almost all configurations, while the result varied

when using a growing evolution. This tells us that changing some parameters can have

big effects on results when using a growing evolution, and since we did change parameter

for the different experiments, the framework should have had different configurations.

Most of the experiments performed reasonably well, which tells us that the setup was

most likely not very bad. But for some of the experiments, the results could have had

improvements from reconfiguration. Another point to review is the usage of elitism. In

the configuration tests, elitism did well, and was chosen because of it. There is also the

added benefit of genotype regulation in the elitism. But the negative effects of elitism

were not seen until the analysis of the result started. In a growing evolution the negative

effects of elitism is much higher than for a full, or a restricted evolution. Elitism works

like an anchor, fastening a generation to the currently ”best” individual, which for grow-

ing evolution not only anchors the fitness, but also the amount of chromosomes. Makes

the fitness landscape exploration have a limit on how far from the current fitness, and

genotype size it can go. This basically sets a limit of how far forwards and backwards

83



Chapter 7. Analysis/Discussion 84

the algorithm can explore. For a full or a restricted evolution, the anchoring in genotype

size means nothing since they are unable to grow, and they will normally have enough

room to perform exaptations so that larger jumps in the fitness landscape can happen.

This is the large limitation elitism poses on a growing evolution, the hindrance of moving

away from local optima if stuck. For this to make sense, just think that 2 evolution-

ary processes have gotten stuck at the same local maxima, one is a full evolution, the

other is a growing. For the processes to get away from this local maxima, each needs

to create a individual in their population which have similar fitness to the elite, but is

at another point in the fitness landscape. To create such an individual, there is a need

for 10 mutations within the set of active chromosomes, but for each generation, only 3

mutations happens pr. individual. For the full evolution, to achieve this, it can simply

do part of these mutations in chromosomes which are not used, which can work like a

buffer, so when these finally gets mutated to become part of the development, it would

be as if 10 mutations happened in a single generation. While for the growing evolution,

it does not have the room for these mutations to happen in a ”buffer”, so it has to add

chromosomes, but the anchoring prevents the adding of enough chromosomes to achieve

the same functionality as the full evolution. Further, if the growing evolution tries to

use the active chromosomes, and not do the mutations in a ”buffered area”, the fitness

will drop such an amount that natural selection will remove it. In this way is elitism

bad for a growing evolution. So it could be beneficial to remove elitism, and rather

implement another genotype size regulation. Stanley and Miikkulainen [4] created a

type of gene regulation, which made added chromosomes have a better ability to stay

in generations and not get rooted out by natural selection. By doing this they could

ensure that added chromosomes got optimised for a while and not being eliminated.

Using a similar function it could be possible to have a much higher threshold for adding

chromosomes, giving the evolution time to optimise. The way Stanley and Miikkulainen

achieved this behaviour in the algorithm was inspired by nature, in that creatures evolve

into different species. Different species are unable to reproduce if they are very different.

In our case very different would be have a large difference in genotype size. This kind

of regulation could be interesting to add to the current framework to achieve a better

exploration of the potential which is added for each chromosome.
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7.2 Main experiments

7.2.1 Plan

The main idea was that a growing genotype evolution function would essentially create

genotypes which did not explore an unnecessary amount of the state space. Doing this

can be used as an alternative to the process of deciding upon a static representation which

is large enough to contain a solution to the desired problem. A static representation

is often bloated compared to the needed representation, because finding a size which is

large enough to contain a solution, but small enough to not feel bloated is difficult. Since

deciding upon a solution/fitness function makes large parts of the search space implicitly

redundant, the idea of growing an effective genotype seems plausible. Another point

we were hoping the growing evolution would handle well was local optima. Since the

process consists of optimising a genotype size, and increase the search space by adding

a chromosome to the genotype if the optimisation fails, creates an iterative process for

the evolution of a solution. For each iteration the fitness landscape increases since new

possible combination of rule emerge, making previous generations local optima, no longer

an optima but somewhere in between. This continued change in fitness landscape would

grow new optima which would hopefully be close to a generations fittest individuals.

7.2.2 Effective

The solutions found are mostly successful in the effective usage of the genotype, which

is good based on growing a non bloated representation. This tells us that growing

a genotype is a valid opinion to defining a static representation. Since comparing the

results to the restricted results tells us they perform approximately identical, we see that

the solutions found in the growing evolution is reasonably optimised. How this approach

works on larger attractors is difficult to know since our experimenting did not include

them. There was some test runs on longer attractors, and they have a similar problem

which can be seen in the experiments with longer attractors. The growth in genotype

size slows and almost converges, creating a need for extremely many generations to be

able to achieve close to reasonable results. Having an increasing amount of generations

to optimise solutions before added genes become integrated in generations is good for
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effectiveness, could in our framework use some polish, so it would scale to encompass

attractors of with the length of thousands.

7.2.3 Inherent effects of growing genotype

7.2.3.1 Low transients

The results from the experiments show very short average transient values. This can

be thought of as an inherent behaviour of the growing evolution, since it is a result of

the iterative optimisation. Growing a genotype is achieved by adding chromosomes, and

optimising them, for so to repeat the process. This means that each added chromosome

should in theory maximise its potential for the individual it is developing. In the process

of growing attractors, the transient is of great importance to achieve every type of

wanted attractor, but of little use when simply counting the size of the attractor. So

for a framework which does not intentionally specify the importance of a transient while

evolving attractors, will have a system where attractors mean nothing for end result.

When evolving a growing genotype the importance is in achieving a best possible result

with the fewest amount of rules, giving the transient very little value compared to coming

closer to the actual wanted result. This gives most of the results achieved through the

experiments a very low transient, but also gives lower success rates to results which are

dependant on transients to be successful.

7.2.3.2 Focused evolution

Because of the focus on improvement with every step, the different starting patterns for

the first few rules have an implicit weighting. The number of rules which give immediate

improvement in fitness are mostly non transient rules. Because of natural selection, and

elitism, these rules will spread in the generations, and be represented in most of the

individuals when an increase in genotype happens. This makes the starting rules not

uniformly chosen, but weighted towards these structures. The implicit weighting in the

evolution will be part of each fitness increase, until this path is as close to the wanted

solution as it can get, making the evolution focused on improving taken choice for each

fitness increase. Focusing on the path taken, and forcing it to be the correct path is a

good way of solving the problem, as long as there is a solution with the start choices
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taken. Having elitism further strengthens evolutions choice of path, by making it harder

for evolution to backtrack and try again, which it sometimes might have to do. This is

simply can be thought of by having a solution which is impossible to achieve without

a transient and 15 chromosomes, but it is easy to achieve a very close solution with no

transient by using only 8 chromosomes. For the growing, close solution will be reached

first, but going from the close to the correct solution might need many mutations, more

than is likely to occur in an individual in a few generations. So to get from close to

correct, there needs to be multiple rounds of mutation, but every round decreases the

fitness to such a point it will get removed by natural selection. This amounts to how

much the evolution process can decrease the fitness of an individual, and make the

individual still be part of future generations. Elitism decreases the amount of change

possible, since a future generation will always have an individual which stabilises the

fitness, and in turn makes local optima be a problem also for the growing evolution.

The focus of the evolution within the growing evolution makes the production of early

transients unlikely, which again strengthens the need for a generation to have the ability

to backtrack a little. This means elitism might be the wrong way to go for the growing

genotype evolution, since it strengthens progress, but hinders backtracking. The thought

of growth reducing the amount of evolutionary paths which get stuck at local optima,

might be flawed because it depends on a solution being reachable with the currently

evolved structure as a starting point. This being said, this is also a problem for restricted

and for full genotype evolutions, but they have larger chances of exaptations, or starts

which includes transients making giving a better exploration of the whole search space.

The problem will most likely be part of the growing evolution function, but there are

things like removal of elitism and weighting which can help make this problem smaller.

For instance, removal of elitism will help the growing evolution with this problem, since

it can in theory allow whole generations to shrink in fitness and by doing that rework

early configured chromosomes.

7.2.3.3 Similar structures

The solutions for both growing and restricted on the same attractor lengths share mul-

tiple solutions. They often find the same solution patterns, which is part of a small

repertoire of patterns. For the restricted, the repertoire is usually a little larger than for
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Figure 7.1: Displaying how a growing evolution function ends up with a low amount
of different solutions, and essentially gives similar structures.

the growing evolution. Compared to the full genotype representation which is very var-

ied in the results, this seems like an inherent behaviour of the growing evolution. There

are multiple reasons for this behaviour. First, being strict on the size of the representa-

tion immediately removes many solutions possible in larger genotypes. This decrease in

search space makes the set of possible solutions shrink, making each of the now possible

solutions more likely. Second, if looking at the solution space as a spectre of solutions,

ranging in the amount of rules used, from 0 to x, the focus on using few rules which is

inherent in a growing evolution makes the the high range of the spectre more difficult

to create, which further shrink the number of results which are likely. Third, the bla-

tant focus on growth after optimisation which creates a focused evolution, gives many

solutions which are outside the focus area a low to zero probability of being evolved,

which further decreases the set of structures which get evolved, illustrated in Figure 7.1.

These three behaviours shrink the set of reachable solutions, as well as makes some of

the reachable solutions more likely than others. When evolving multiple solutions, this

will make the same solutions, or solution structures appear over and over.

We can see, in graphs in Figure 6.16b and in Appendix D the graph for restricted

with attractor length 20, that this true also when using restricted evolution. Since
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the restricted evolution is based of the genotype size which a growing evolution finds,

the structures found are similar to the ones found in a growing evolution. But there

are normally some other solutions mixed in with the solutions found with restricted

evolution, which are not found in growing evolution. The reason for this is that a growing

evolution has a focused evolution, as explained above, which skews the found solutions

to the low attractor, low amount of rules used side of the above explained spectre. A

Restricted evolution is able to have a different focus while evolving a solutions, because

it has a fixed amount of chromosomes to begin with, and knows a solution is within

the fixed rules. This growing and restricted comparison becomes more interesting when

looking at the comparison graphs for attractors of length 200 and 400 in the graph in

Figure ??g-h. Here one can see the growing achieve better results than the restricted

for length 200, and for length 400 a higher and lower size genotype achieves worse than

growing, while the same amount of genotype preforms about equal. For the attractor of

200, this most likely means that the majority of the attractors close to a wanted attractor

in the search space, is easily reachable through focused evolution, and low transients.

While the usage of longer transients only lead to the minority of the solutions, making

them harder to evolve. This gives the growing evolution an edge for finding attractors

of this complexity. For the attractor of 400, we see that reducing and increasing the

genotype by 5 compared to the size which the growing evolution found, both reduces the

average attractor value for the restricted runs, while keeping it even to the size found

keeps the average value also even. Here we have a genotype size which is very effective

in regards to usage and size, but the size still gives a large search space, which makes

the amount of solutions in the search space probably quite small. When decreasing this

search space with a lower genotype many of the solutions can have gotten cut out. And

increasing the genotype can lead to an increase in almost solutions, which are close to the

wanted solution within the current representation, to get the almost solution to become

a wanted solution one needs a slightly larger representation. This means that there

might be ”sweet spots” in the genotype size, or at least ”sweeter spots” than others,

where the idea of ”all roads lead to Rome” would work for the wanted attractor. What

we mean by this is that, with a genotype size close to a ”sweet spot” most of possible

ways of increasing the fitness has the ability to lead the the wanted attractor.
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7.2.3.4 Usage of geometry regulation

On all the experiments run on this framework the resulting solutions have been taking

advantage of geometry regulation. By geometry regulation we mean actively using the

geometry to make structures which achieve attractors. These structures have directional

movement, but because of periodic boundary conditions, they cycle around and returns

to sites which have previously been handled by the rules in the genotype. In this way the

structures can either move in at a speed which combined with the geometry results in

an appropriate attractor. Or it can move but leave behind structures with which it can

interact when cycling around the periodic boundary, essentially creating an environment

for itself to evolve within. These types of moving structures often resemble a game of

life glider, which moves in a single direction, but each site it moves, takes x development

steps. This makes the repeating structural patterns within an attractor understandable.

In graph in Appendix D for the attractor of size 20 we see that for the different solutions

there is a pattern repeating 4 times within the length of an attractor. The pattern repeats

4 times because the geometry is of size 4x4, which makes a movement of 4 sites in any

direction result in coming back to the starting point. For a larger geometry there will

be another number of repeats. This is not the case for the experiments we ran on larger

geometries, since this behaviour occurs when the attractor length is much larger than

the geometry size, and the attractor length divides evenly on the geometry size, which

was not the case for those experiments. The large geometry experiments was done on

small attractors, resulting in attractors which did not obtain a pattern repeating within

an attractor. But these results were also dependant on geometry regulation, but the

kind which creates an environment which it comes back to after a round trip. This

usage of the geometry boundaries has two main reasons. First, creating attractors that

stay still, and do not use the geometry conditions, requires a larger set of rules than

an attractor which walks around and stops by crashing into itself. the construction

of stopping mechanism needs ”extra” rules which make them less effective, and thus

solutions which are unable to be found until sufficient amount of rules are added. But

because after adding a sufficient amount of rules, the now best solution is most likely

much closer to a wanted solution than one which is finally able to try to take form, this

new kind of solution will simply be passed by. Second, is the restrictions of the CA

on the amount of location fixed attractors available when using zygote development.

A location fixed attractor means, an attractor which stays within a fixed geometric
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space even if the total geometry is limitless. Zygote development means developing

from a single site with a non quiescent state, in a surrounding field of quiescent state

sites. To be able to achieve an attractor there needs to be, for every set of rules which

causes the propagation of a state in any direction, a similar set of rules which stop the

propagation, since in a limitless geometry, having an eternally propagation state makes

it impossible to create an attractor. The problem is how far can a state get propagated

away before it is impossible to stop it, within the boundaries of the CA? For a 3 state

CA with a von Neumann neighbourhood, this seems like a short distance. Creating a

structure which slowly propagates in a direction, which would be caught by a faster

moving propagating structure which destroys each others propagation when the tips

of the propagating pattern collides could work. But the actual process of catching up

and stopping a propagating pattern is difficult. Using a von Neumann neighbourhood

gives limited possibilities to interact with the edges of patterns which is what stopping a

propagating pattern needs. This means that to create location fixed attractor the easiest

way is for the rules to build a structure, which does not propagate over distances, wherein

the attractor is located. Such a structure is very limited in size, at least when the smaller

number of states pr. site is concerned, and being very limited in size makes it limited in

possible attractors. So both because the rule usage is less, and because of the restrictions

the CA settings apply to the development, the solutions created take advantage of the

geometry regulation.

7.2.4 For increased state

All the experiments which were ran with an increased number of states pr. site, showed

a usage of rules for successful results which was promising. The genotype size was larger

than for the experiments with a low number of states pr. site, but the number of rules

used to develop the attractor was on the same size range. This suggests that this growing

evolution is capable of producing effective and compact solutions for both high and low

number of states pr. site. When increasing the number of states, the dynamic of the

evolution process changes, which the framework should be wary of. Since there is a

very high increase in the rule space, and automatically a much larger increase in search

space for each added chromosome, the potential for each chromosome in the genotype is

higher. This means that a CA with more states should require less or an equal amount

of chromosomes to create equal size attractor to a CA with less states. But this does
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not mean that we should have results for the growing evolution with an on average

much larger genotype. The large genotype is mostly because of the configuration being

specialised for a lower number of states. It seems the main reason for the drop in success

rate when increasing the number of states is the optimisation time, i.e. the number of

development steps in which an generation can improve before adding further genes.

There is a need for a larger optimisation time with the increase of states, because of

the increased miss to hit rate in the development process. Being a zygote development,

there are some chromosomes which achieve interaction with the development process,

and some which do not. Both of these types of rules are important, but for a growing

evolution the importance is at different parts of the evolution process. Early in the

process a zygote needs to be able to have chromosomes which interact with the single

site, and with the simple patterns which emerge from the first interactions. These rules

make up a small percentage of the total rule space, and this percentage grows smaller

the larger the number of states get. So the higher the number of states grow, the lower

the chance of a chromosome hitting one of the rules which gives an impact gets. By

hitting and missing it is meant mutation, crossover, and selection giving new individuals

whose chromosomes contain these abilities. These hit and miss chances tells us that

we should give evolutions with a higher number of states a longer optimisation time,

which essentially means slower addition of chromosomes. There are two main reasons

for the need of a slower addition of chromosomes. First, if one is continuously adding

chromosomes without an adequate amount of time to process the added chromosome, the

solution found will have a larger amount of chromosomes, and effective solutions might

be passed. Second, since the growing evolution uses a mutation scheme which implies

a number of mutations pr. individual instead of some kind of global mutation, the

amount of mutations pr. chromosome will shrink with a growth in genotype. Having

a high miss, low hit rate we do not want low mutation chance for our chromosomes,

since the GA have to sift through many chromosomes to get a hit so we want changes

to happen. Increasing the amount of chromosomes simply shrinks the mutation chance

pr. chromosome, and ensures that not every chromosome can get a mutation, which in

the early phases is bad since the GA is simply looking for a few chromosomes within a

large set. Also spreading the search over multiple chromosomes is a bad thing for this

algorithm, since one of the main purposes for the growing evolution is to create a small

genotype with an effective usage of chromosomes. Speculating further in the hit/miss

rate for chromosomes which impact the development, and the time for optimising these,
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this rate is dynamic depending on the size of the attractor being evolved, the usage of

the geometry, and how far in the process the evolution has gotten. This means that

in the early stages, of evolution, there is difficulty mutating chromosomes to affect the

development process, bus as the attractor length for the individuals grow, number of

rules can possibly be activated during the development process increases. When the

number of possibly activated rules go up, the miss rate for mutation of chromosomes

goes down, making it easier to affect the development process. But as earlier stated,

by adding chromosomes it is highly likely that fitness will initially drop[4]. So in later

stages of evolution, the number of hits which positively affect the development grows

smaller, while the number of hits which affect the development in any other way grows

larger. But when the evolution has gotten to this point, a single hit might not be

enough to increase the fitness, there might be a need for 3, or 4 hits at the same time.

For the evolution process to add multiple chromosomes, each adde chromosome needs

to not get dropped due to the fitness drop, This could happen due to the miss rate, for

instance having three add chromosome cycles which all add chromosomes which miss

the development process, and thus do not decrease the fitness enough to be removed

by natural selection. So in early evolution stages, it is important to be able to get hits

in the hit rate, while in the later stages, it might be important to get hits in the miss

rate, so that the genotype size can grow to a size which is able to increase fitness. This

can explain some of the problems the GA has had on adding chromosomes for long

attractors.

7.2.5 For increased geometry

When growing attractors on a larger geometry than the default experiments there was

a significant drop in success rate. Larger geometries gave worse results, seen as a geom-

etry of 16 had the worst result while the geometry of 4 and 6 had quite equal results

where both were good. All the reached solutions had a good and effective usage of the

genotype which they were able to grow, and they showed the same signs as the earlier

experiments by having similar structures. This tells us that the growing of genotype

will provide equally effective solutions on larger geometries. Had this behaviour not

been persistent, and for instance shown worse effectiveness for larger geometries, the

growing genotype evolution would not be a good way of evolving solutions for systems
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on larger scales. The reduced success rate is troubling, since it gets very low on a geom-

etry size of 16, which might not be very large if used for highly intricate and complex

systems. Increasing a geometry increases the state space, and changes the fitness land-

scape, making the development of a sets of chromosomes be different than for smaller

geometries. Because of the inherent usage of geometry regulations in a growing evolu-

tion function, there is a higher need for transients when the geometries gets larger. The

growing genotype evolution is not very good using transients, because transients is seen

as waste of genotype space before it is know whether or not it is needed to achieve the

wanted attractor, and this knowledge is not known or taken advantage of in the GA.

As the geometry grows, there becomes a need for both more, and longer transients to

achieve solutions. By looking at Table 6.7 one can see that this is true, and it makes

sense. There are limitations on how large attractors can be developed from a zygote in

a limitless geometry, based on the settings for the CA. These limitations in a 3 state

ca make for very small attractors, which are most likely lower than 5 (since not one

of the solutions on attractors of size 5 have a fixed location attractor which does not

use the geometry boundaries.). The creation of an attractor shorter than the geometry

but larger than this CA limitation there needs to be a transient. But as soon as the

length of the wanted attractor gets past the size of the geometry the possibilities for low

transients increase. Attractors whose length divide evenly by the size of the geometry is

the simplest to achieve with low transient, i.e. simpler for the growing evolution, while

the attractors with an odd division by the geometry size will have a harder time since

they are more dependant on the transient. This even and odd division is not final, since

the movement of a glider structure do not have to move at a CA max propagation speed,

the speed can be reduced by many different factors, depending on the number of states

and neighbourhood of the CA. In the experiments which produced attractors of length

10 for a geometry of size 4, there were some examples of this, where glider structures

which moved 2 sites every 5th development step occurred, giving transients of 0, even

if the attractor length is outside the length for possible fixed location attractors, and

does not evenly divide by the geometry. There were also examples where the attractors

of length 5 in a geometry of size 4 achieved wanted results without transients. These

solutions are fixed location attractors which take advantage of the small geometry, using

the boundary conditions to stop the propagation of a state, which means that this is not

some special behaviour, just a coincident which occurred because of attractor length,

geometry size, and number of states. As for emergent scalability within the growing
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evolution function, there does not seem to be any special effect towards it. The ideas to

point out is a result with an attractor of length 1 which uses the geometry boundaries is

more likely to achieve scaling when size of geometry grows, than being stable. This scal-

ability is most likely destroyed on some increases in geometry, like going from an even to

an odd sized geometry and vice versa, because the development of when it impacts itself

would be skewed. Attractors which are stable are most likely to either have a transient,

most likely a transient which is longer or of equal size to geometry, or be a fixed location

attractor. Longer or of equal size is because a transient which circles the geometry and

comes back to the starting point before the attractor starts, is an attractor that uses

the first round around the geometry to build an environment where the attractor can be

created, and as long as this structure is intact the size of the geometry does not matter,

the attractor will stay the same. From our redevelopment experiments, we see that the

growing genotype evolution function does not have any special emergent behaviour or

properties which enable these kinds of scalability, but neither does it have anything to

discourage them either, since both scaling and stable results were found.

7.3 Future work

The performed experiments does not conclude the research in a growing genotype evo-

lution, since there are still problem to solve, and further experiments to run. Further

work on the idea includes, see if a longer optimisation time is what is needed to drop the

genotype size for small attractors when the number of states increase. If that does not

work, find what does, since most areas where the real world application of EvoDevo sys-

tems are thinkable, need more complexity than given with a 3 state automata. Finding

and fixing the root to the problem of growing genotypes for large attractors. At some

point in the growth process, it becomes too difficult to add chromosomes, which makes

long attractors very difficult and luck dependant. If the growing evolution function only

supports low complexity solutions, because of a convergence in the rules, this is highly

problematic. So to create some better regulation of when to add genes, and how to make

them stick through generations needs to be done, so that the growing evolution is able to

have multiple unused/unimportant chromosomes to perform exaptations, without cre-

ating a bloated solution. It would be interesting to see if growing a genotype is able to

still achieve effective solutions in a reasonable timeframe when using higher number of



Chapter 7. Analysis/Discussion 96

states on a larger geometry, so that the function does its job in arbitrary settings. All of

the experiments for the growing genotype evolution have been performed with the usage

of attractors as a measurement of complexity. This proves points with regards to effec-

tivity of results, and ability to achieve results, but for many real world applications this

type of complexity is not suited. Another convenient type of result is fixed structures,

either after a set amount of development steps, or as the remains after transients for

point attractors. These kinds of results is easier to compare to, for instance, evolution of

circuits. Another idea would be to let the growth not only change the search space, but

the state space, essentially let the growth happen in both genotype and in the number

of states pr. site. This would achieve true complexification, in that the boundaries of

how complex a problem the system could solve would not be based on the CA settings.

When using a growing genotype we are basically adjusting how much of a fixed amount

is needed for a solution, while we still have to create the fixed amount, i.e. search space.

By having a growth in both genotype and number of states pr. site the solution is no

longer bound by the fixed state space. This would of course require an entire new type of

regulation within the framework, where the regulation parameters were dynamic based

on parameters like attractor length, geometry size, number of states, genotype size, add

rate, and optimisation time etc. These kinds of dynamic regulation parameters could

also be of good use in growing genotype evolution, when handling the changing hit/miss

rate, or could be used for add rate, to create some kind of adaptable add rate, there are

many ways to improve the idea. All in all, the experiments run in this thesis indicated

that this kind of evolution works, and that it produces genotype representations which

have a highly effective usage compared to what a large manual representation would

achieve. The effectiveness of the solutions are persistent through changes in geometry,

and with some tweaking for changes in number of states pr. site.

7.4 Afterthought

The area of complexification is currently not deeply explored, making most contributions

count. For this thesis the contribution is given by achieving an EvoDevo-system which

creates non bloated solutions for different complexities, and tries to find behaviours

caused by this EvoDevo-system. Using such a system lets a designer skip a major

obstacle for fixed length representation, which is figuring out how large the representation
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needs to be[4]. This will also remove the chance of designing too small representations

based off wrong heuristics, which would make it a safe approach to evolving systems

where it is difficult to find an appropriate size for the representation. Further expanding

the system to include a growth in the number of states will achieve a system which can

evolve solutions to arbitrary complex problems. This can further reduce the difficulty

of designing a representation. Since these kinds of solutions are very effective in regards

to rulespace, and genotype size, it could be that for complex solutions, the creation of

a manual representation gets bloated to the point where it will use longer computation

time to find solutions. Having a system which explores an expanding area within an

search space and state space can have better runtime than starting off on a extremely

large but fixed search and state space. Since this kind of evolution is highly inspired

by natures[47] way of evolution and development, the limitations to what this kind of

evolutionary process can achieve is very low. This is only a start which shows that this

kind of growing genotype evolution is possible within EvoDevo-systems, and could be

a good alternative to static representations. Further inspiration by nature could also

be an option, for instance within the development process were the addition of cleavage

divisions[47] or pattern formation[47] could be an idea, so the restrictions on location

fixed attractors would not be so strictly bound to the fact that development happens

from a zygote.





Chapter 8

Conclusion

8.1 Process and content

To create this thesis there has been a long literature study, which in the early parts of

the thesis is used to give the reader an overview of the field of study. This contains

the workings of complex systems, through the world of a CA. Further are examples and

overviews of how the development of the CA can be seen as the morphogenesis of an

organism, and how different representations of a genotype and phenotype functions. How

these kinds of systems can be created by the use of evolution through natural selection,

and that this lead to the creation of an algorithm, inspired by complexification and

natural evolution. This algorithm is used to look at how growth in genotype instead of

a fixed genotype affects the evolution, and development of organisms which is created

by the algorithm. Using this evolution process, there was a hypothesis of this creating

smaller and more effective genotypes, and that there might be other emergent abilities

resulting of this kind of evolution. To check if this was the case, and this algorithm could

exhibit some of the proposed attributes, a framework was built with a basis in a default

GA. This framework supports both restricted, full and growing genotype evolution,

meaning the genotype size is either static at a set size, static at the size of the rule

space, or growing from a size of 1. Simply configuring the framework took a long

while, since improvements needed to be implemented when discovered. This ended in a

having a single configuration for all different evolution settings. When the configuration

was finished, experiments were designed so that we could create a comparison between

the results of the growing, and the full and restricted. These experiments were also
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designed to see if results persisted through different settings of the CA. The experiments

contain the evolution of solutions to different complexity problems, with the complexity

measured in the attractor length of the attractor which would be the evolved organism.

These results were then studied, and analysed to try to see identifiable behaviour or

patterns, and changes in patterns and behaviour when using different complexities, and

evolution types.

8.2 Reason

Designing a good representation for EvoDevo-systems is a large obstacle which requires

lots of heuristics[4]. To have an alternative which automatically creates this represen-

tation through the evolution process would be able to save much time, and also help to

make sure that the representation is not too small, or bloated. This and the the fact that

an EvoDevo-system already is highly influenced by natural evolution and development,

so creating a genotype which grows when needed is just a furthering of this influence,

were the main reasons for trying to look for possibilities of smaller genotypes. And fur-

ther looking at the effects of evolution and development with a smaller genotype. There

is also the point that a very large state and search spaces, can create a too large fitness

landscape, which makes it difficult to find solutions. By only exploring a limited part

of the landscape and then expand the exploration area, could achieve better and faster

results.

8.3 Result

The results of the experiments shows that this growing genotype algorithm creates small

and effective solutions compared to the full evolution function. It also shows that this

behaviour is persistent throughout changes in complexity, geometry size, and states pr.

site, indicating that this type of evolution would be able to achieve effective solutions

with automatically created representations. The comparison between the growing and

the restricted evolution show that they perform very similarly, which indicates that a the

growing will be able to perform similarly well to a manually constructed representation,

given enough generations. But the growing will not have the need of creating a valid and

good representation, since it is done automatically. Studying the results tells that the
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attractors created by a growing evolution have a tendency to have low attractors, and

depend on the geometry regulation to create solutions which have effective and compact

genotypes. There is also some problems with local optima, where it is difficult to create

enough added rules to perform exaptations to escape the optima. This problem can not

simply be solved by adding more rules, since that would entail adding more rules all the

time, creating less compact and effective solutions when not getting stuck.

8.4 Remaining

There is still much work to be done before one can safely say that this algorithm will

be able to function as a system for creating a representation and a solution in most

EvoDevo-systems. The algorithm needs to have a solution on how to solve the addition

of chromosomes for longer attractors and how much optimisation time is given, based

on how far in the evolution process the algorithm has gotten. For the complexification

reached through the experiments in this thesis, it is not true complexification, since the

number of states pr. site is set before the algorithm is run. In setting a fixed amount of

states pr. site the maximum complexity is implicitly set, making the growing genotype

simply select how much of the state space is to be included in the search space. By

improving the system to include not only a growing genotype size, but also a growing

number of states pr. site, closer to true complexification would be achieved. This would

let the system be tested for arbitrary complex problems, which would tell us if it really

is a valid option to a manually created representation. Further, there is a need to stop

using attractors as a way of measuring complexity, and try to create stable patterns,

which can easier be compared to solutions to real world problems created by EvoDevo-

systems. There are possibilities that the creation of structures will not yield similar

results to attractors, because structures are often reached after long transients, which

were found to be more difficult for the growing evolution than short attractors.

8.5 Final conclusions

This thesis does not have any definite conclusion in a way like, the hypothesis was cor-

rect, or that a growing genotype evolution is the best way to create solutions with a

EvoDevo-system. But it does bring to light that this type of evolution could become a
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valid option to manually created representations. The thesis gives the growing genotype

evolution a good starting potential, by showing that it is able to evolve solutions with

different complexities, and the solutions are on average of a low genotype size with an

effective usage of said genotype. This genotype creation is persistent when changing the

geometry size, and will most likely persistent with a change in the number of states pr.

site. On average the growing evolution does use more generations than a restricted or a

full evaluation function, but it does not need to use heuristics to create a representation

large enough to contain a solution, and it does not create bloated solutions which search

unnecessary amounts of the state space. With further experimentation and improve-

ment of the method, it might go from indications of being an alternative, to become a

good alternative for solving problems with a EvoDevo-system in real world applications.

And the automatic creation of a representation, will help with problems regarding the

heuristics and selection of a large enough representation which is a large obstacle todays

GA. In society, the EvoDevo systems and CA are still in an early phase, and not utilised

to a large degree, they are mostly used in research and experimental projects. This can

be said for most of cellular computations modules. A creation of a model which can

create solutions for arbitrary complex problems(which is theoretically possible if letting

the growth also happen in the state space), could be able to help a tiny step toward a

higher utilisation and integration in society, or at least make research or experiments

within the field easier.



Appendix A

Comparisons of attractor growth

For Full, Growing and Restricted low, mid and high, for different wanted attractors.

Graph 6.13 b showing attractor length 10.
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Graph 6.13 c showing attractor length 20.

Graph 6.13 d showing attractor length 40.



Appendix A. Comparisons of attractor growth 105

Graph 6.13 e showing attractor length 80.

Graph 6.13 f showing attractor length 160.
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Graph 6.13 g showing attractor length 200.

Graph 6.13 h showing attractor length 400.



Appendix B

Genotype growth for weighting

strategies

Graph 6.11 b with weighting for active rules..
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Graph 6.11 c with weighting for active rules turned off.

Graph 6.11 d with weighting for active rules turned off, and added a weight to add

more rules..



Appendix C

Genotype growth for default

settings

Graph 6.15 b. Attractor length 10.
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Graph 6.15 c. Attractor length 20.

Graph 6.15 d. Attractor length 40.
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Graph 6.15 e. Attractor length 80.

Graph 6.15 f. Attractor length 160.
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Graph 6.15 g. Attractor length 200.

Graph 6.15 h. Attractor length 400.



Appendix D

Overlapping development steps

Here we leave out the larger attractors since these show similar results, but will take up

much room, and have too many plots to be able to discern any valuable information.

D.1 Attractor 7

Related to Graph 6.16. Attractor 7, Growing evolution.
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Related to Graph 6.16. Attractor 7, Restricted evolution.

Related to Graph 6.16. Attractor 7, Full evolution.
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D.2 Attractor 20

Related to Graph 6.16. Attractor 20, Growing evolution.

Related to Graph 6.16. Attractor 20, Restricted evolution.
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Related to Graph 6.16. Attractor 20, Full evolution.



Appendix E

Single development step

Because of a high amount of graphs. there will only be included 5 graphs from Full,

5 from Restricted mid, and 5 from Growth for the attractors with length 7 and 20. If

not there would be approximately 300 graphs, which would take up almost 150 pages.

Only include from 7 and 20 since they are one easy, and one difficult attractor, and they

are both in a range where it is possible to observe what is going on. 5 of the 20 were

included since the idea is to look at many of them, to see patterns, and similar structure,

so more than a few are needed, but including 20 would be too much.
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E.1 Attractor 7

E.1.1 Full evolution
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E.1.2 Growing evolution
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E.1.3 Restricted mid. evolution
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E.2 Attractor 20

E.2.1 Full evolution
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E.2.2 Growing evolution
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E.2.3 Restricted mid. evolution
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Appendix F

Attractor growth for increased

state

Better resolution images for Figure 6.18.

Figure 6.18 a. Showing wanted attractor 7 and 10.
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Figure 6.18 b. Showing wanted attractor 20 and 40.



Appendix G

Genotype growth for various

states

G.1 Attractor 7

Figure 6.19 a. Showing growth of genotype and attractor for wanted attractor 7 and 5

states.
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Figure 6.19 b. Showing growth of genotype and attractor for wanted attractor 7 and 6

states.

Figure 6.19 c. Showing growth of genotype and attractor for wanted attractor 7 and 7

states.
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G.2 Attractor 10

Figure 6.20 a. Showing growth of genotype and attractor for wanted attractor 10 and 5

states.

Figure 6.20 b. Showing growth of genotype and attractor for wanted attractor 10 and

6 states.
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Figure 6.20 c. Showing growth of genotype and attractor for wanted attractor 10 and 7

states.

G.3 Attractor 20

Figure 6.21 a. Showing growth of genotype and attractor for wanted attractor 20 and 5

states.
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Figure 6.21 b. Showing growth of genotype and attractor for wanted attractor 20 and

6 states.

Figure 6.21 c. Showing growth of genotype and attractor for wanted attractor 20 and 7

states.
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G.4 Attractor 40

Figure 6.22 a. Showing growth of genotype and attractor for wanted attractor 40 and 5

states.

Figure 6.22 b. Showing growth of genotype and attractor for wanted attractor 40 and

6 states.
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Figure 6.22 c. Showing growth of genotype and attractor for wanted attractor 40 and 7

states.





Appendix H

Attractor growth for various

geometries

Figure 6.23 a. Showing growth of attractor for wanted attractor 5 for various

geometries.
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Figure 6.23 b. Showing growth of attractor for wanted attractor 7 for various

geometries.

Figure 6.23 c. Showing growth of attractor for wanted attractor 10 for various

geometries.



Appendix I

Genotype growth on different

attractors and geometries

I.1 Attractor 5

Figure 6.25 a. Showing growth of attractor and genotype for wanted attractor 5 on a

geometry of 4.
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Figure 6.25 b. Showing growth of attractor and genotype for wanted attractor 5 on a

geometry of 6.

Figure 6.25 c. Showing growth of attractor and genotype for wanted attractor 5 on a

geometry of 8.
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Figure 6.25 d. Showing growth of attractor and genotype for wanted attractor 5 on a

geometry of 16.

I.2 Attractor 7

Figure 6.26 a. Showing growth of attractor and genotype for wanted attractor 7 on a

geometry of 4.
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Figure 6.26 b. Showing growth of attractor and genotype for wanted attractor 7 on a

geometry of 6.

Figure 6.26 c. Showing growth of attractor and genotype for wanted attractor 7 on a

geometry of 8.
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Figure 6.26 d. Showing growth of attractor and genotype for wanted attractor 7 on a

geometry of 16.

I.3 Attractor 10

Figure 6.27 a. Showing growth of attractor and genotype for wanted attractor 10 on a

geometry of 4.
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Figure 6.27 b. Showing growth of attractor and genotype for wanted attractor 10 on a

geometry of 6.

Figure 6.27 c. Showing growth of attractor and genotype for wanted attractor 10 on a

geometry of 8.
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Figure 6.27 d. Showing growth of attractor and genotype for wanted attractor 10 on a

geometry of 16.





Appendix J

Overlapping development steps

for different geometries

J.1 Attractor 5

Figure 6.28 a. Showing the overlapping rule usage for each development step for the

attractors of length 7 which was evolved on a geometry of 4.
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Figure 6.28 b. Showing the overlapping rule usage for each development step for the

attractors of length 7 which was evolved on a geometry of 6.

Figure 6.28 c. Showing the overlapping rule usage for each development step for the

attractors of length 7 which was evolved on a geometry of 8.



Appendix J. Overlapping development steps for different geometries 157

Figure 6.28 d. Showing the overlapping rule usage for each development step for the

attractors of length 7 which was evolved on a geometry of 16.
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