
Evolution of Cellular Automata using
Lindenmayer Systems and Fourier
Transforms

Sivert Berg

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Sammendrag

Cellulære automater (CAer) er en gruppe veldig parallelle datasystemer. De
best̊ar av mange sm̊a regneelementer som kalles celler. Cellene kan bare kom-
munisere med naboceller, noe som betyr at det ikke finnes noe global kommuni-
kasjon i systemet. Å programmere et slikt system slik at det kan løse komplekse
problemer kan være en vanskelig oppgave, derfor brukes ofte indirekte metoder.
I denne masteroppgaven bruker vi evolusjonære algoritmer til å utvikle cellulære
automater. Vi vil ogs̊a se p̊a bruk av L-systemer som en m̊ate å utvikle kom-
plekse CAer med et relativt lite genom. Inn- og utdata h̊andteres ved å streame
dem gjennom kantceller, og vi ser p̊a bruk av en diskret Fourier-transformasjon
(DFT) som en måte å tolke utdata p̊a. Eksperimentene viser at det er mulig
å utvikle uniforme og semi-uniforme CAer som løser ulike problemer. Semi-
uniforme CAer gjør det bedre enn uniform CAer p̊a vanskeligere problemer, og
bruk av L-systemer øker ytelsen ytterligere. P̊a lettere problemer derimot virker
det som den ekstra kompleksiteten til semi-uniform CAer bare hemmer utvik-
lingen. Eksperimentene viser ogs̊a at bruk av en DFT til å tolke utdata fungerer
bra, og utkonkurrerer en mer direkte tolkning.

Abstract

Cellular automata (CAs) are a class of highly parallel computing systems con-
sisting of many simple computing elements called cells. The cells can only
communicate with neighboring cells, meaning there is no global communication
in the system. Programming such a system to solve complex problems can be a
daunting task, and indirect methods are often applied to make it easier. In this
thesis we use evolutionary algorithms (EAs) to evolve CAs. We also look at the
possibility of employing L-systems to develop complex CAs while maintaining
a relatively small genome. Input and output are handled by streaming them
through the edge cells, and we look at the use of a discrete Fourier transform
(DFT) as a way to interpret the output. Experiments show that it is possible to
evolve uniform and semi-uniform CAs that solve various problems. On harder
problems semi-uniform CAs outperform uniform CAs, and using an L-system
further improves the performance. However, on simpler problems the extra com-
plexity of semi-uniform CAs seem to only hinder evolution. The experiments
also show that interpreting the output with a DFT works well, and outperforms
a more direct approach.

iv

Contents

1 Introduction 1

2 Background 5
2.1 Cellular Automata . 5
2.2 Evolutionary Algorithms . 7
2.3 Discrete Fourier Transforms . 9
2.4 L-Systems . 10

3 Description 13
3.1 CA . 14
3.2 Genome and Mapping . 15
3.3 EA . 19

4 Experiments 21
4.1 Uniform vs. Non-uniform . 21

4.1.1 Experiment 1: Input replication and inversion 22
4.1.2 Experiment 2: DFT replication and inversion 25
4.1.3 Experiment 3: Configuration values 29
4.1.4 Experiment 4: Dunn Index 31
4.1.5 Discussion . 34

4.2 Semi-uniform CAs . 34
4.2.1 Experiment 5: Constant mapping 35
4.2.2 Experiment 6: L-systems 36
4.2.3 Discussion . 36

4.3 Genetic Algorithm . 39
4.3.1 Experiment 7: GA with fit+ 39
4.3.2 Experiment 8: GA Testing 41

v

4.3.3 Experiment 9: Even or odd number of bits 45
4.3.4 Discussion . 47

4.4 The Majority Problem . 48
4.4.1 Experiment 10: DFT and Dunn Index 48
4.4.2 Experiment 11: Simple output mapping 51
4.4.3 Experiment 12: New clustering measure 53
4.4.4 Experiment 13: An extra class 55
4.4.5 Experiment 14: Combining Dunn Index and New Clus-

tering Measure . 57
4.4.6 Experiment 15: Without L-system 59
4.4.7 Discussion . 61

5 Conclusion 63
5.1 Future Work . 64

vi

Chapter 1

Introduction

Cellular computing is a computational philosophy consisting of three principles:
simplicity, vast parallelism and locality. It promises to provide new means of
doing computation more efficiently, while simultaneously offering the potential
of addressing much larger problem instances than previously possible [1].

The first example of cellular computing came in the form of cellular au-
tomata (CAs) conceived in the late 1940s by Stanislew Ulam and John von
Neumann [2]. Since then massive amounts of research have focused on these
seemingly simple machines, proving among other things that certain CAs are
Touring complete [3].

Although CAs are able to do general computation, it is not always obvious
how to program them [1]. This is partly because CAs rely on emergent comput-
ing [1]. Even though a single cell is deceivingly simple, the system as a whole
can display complex global processing capabilities that is not explicit in the
system definition [4, 5].

Because of this emergent property, CAs can be very hard to program di-
rectly. This is where so called adaptive programming comes into play. Instead
of specifying what every cell should do, the system is only partly specified. It
is then subjected to an adaptive process such as learning, evolution or self-
organization [1]. Evolutionary algorithms (EAs) are a class of heuristic search
algorithms used with success by other researchers [6] to program CAs, and the
experiments in this thesis use EAs to find CAs.

As non-uniform CAs grow, the information needed to describe them also
grows. If a simple 1-1 mapping between the genotype evolved by the EA and
the resulting CA is used, the size of the genotype will grow linearly with the

1

number of cells in the CA. However, looking to nature we see organisms made
up of trillion of cells developing from a single initial cell. This developmental
stage is a crucial part in the creation of multi-cellular organism, and allows a
relatively small genome to control the development of a vast organized struc-
ture. The genome contains the instruction for how to build the organism, while
development carries them out [7].

Some of the experiments in this thesis looks at the possibility of using Linden-
mayer systems, or L-systems, as a simple developmental-like mapping between
genotypes and phenotypes. L-systems are parallel rewriting systems used to,
among other things, model plant development. There are examples of simple
L-systems producing remarkably sophisticated plant-like structures [8]. Along
with their ease of mapping to CAs this will hopefully make them produce large
complex CAs faster and better than a large genome with a 1-1 mapping between
genotype and phenotype.

Various ways of passing input and extracting output from CAs have been
devised. A common method is to encode the input into the initial state of
the CA and decode the output from the final state after running the CA for
a while [1, 6]. However, one could argue that this breaks with the distributed
nature of the cellular computing paradigm. Having to touch all cells when
setting the input and gathering the output requires a global view of the system.
In addition there is no way to stream input to or extract output from the CA
while it runs. Another approach, and the one taken in this thesis, is to use cells
on the edges of a CA as the input and output. This keeps input and output
local to the edge cells, and allows continuous streaming of data while the CA
runs. The details are explained in Section 3.1.

Once an output stream is produced the question is how to interpret it. One
possibility is to throw away all but the last value and use that as the output
value. This will however throw away information about the behavior prior
to the last output. What we really want is a way to somehow condense the
output stream in a way that shows the CA’s behavior over time. The discrete
Fourier transform (DFT) can be used to convert a list of finite samples into
a frequency spectrum. This would allow more than one output value to be
taken into account. By using a DFT along with a loose output specification (for
example the output should have 4 frequency peaks, but their location does not
matter) we hope to give the EA enough freedom to find good solutions. A DFT
could also be used to create multiple output values, for example by using the
value of the two highest peaks as two output values. In this thesis we look at
the possibility of using a DFT as a way to interpret the output stream. There
have been some research done in this area earlier.

2

Aleksander Lunøe Waage looked at how different parameters for one di-
mensional CAs affected the DFT spectrum, and used EAs to evolve CAs with
specific output spectrums [9]. He found that he was able to evolve the desired
CAs in a binary rule-space, but not a ternary one.

Ole Henrik Jahren looked at boolean networks (BNs) instead of CAs, and
used EAs to evolve BNs capable of producing different numbers of peaks in
the DFT spectrum [10]. He was successful in evolving BNs that could produce
different number of peaks dependent on the initial state.

Prior to this thesis, as part of TDT4501, I worked on a project concerned
with evolution of cellular automata, and in particular the use of DFTs to inter-
pret the output. Two-dimensional CAs were used, and the input was encoded
in the initial state. The DFT was run on all the states the CA visited. This
resulted in a large three-dimensional spectrum, and visualizing this spectrum
to see what was going on turned out to be a challenge. Calculating the spec-
trum was also time consuming, and no clear advantages compared to a simpler
mapping was found. The project also utilized a developmental model based on
CAs, but it was outperformed by a genome with a direct 1-1 mapping to the
CA. This thesis hopes to improve on both these areas. By only using the edge
cells for output, and converting the output vectors to scalar values, the DFT
spectrum will be one-dimensional. This should both make the spectrum easier
to visualize and cut down considerably on the computation time. Hopefully it
will also result in improved performance. Secondly, using L-systems instead of
CAs in the developmental model might improve upon the simpler 1-1 mapping.

The rest of this thesis is organized as follows: background about CAs, EAs,
discrete Fourier transforms and L-systems are presented in Chapter 2, Chapter 3
gives a detailed description of the experimental setup, Chapter 4 introduces the
experiments along with their results and finally Chapter 5 concludes the thesis
and gives some suggestions for future work.

3

4

Chapter 2

Background

2.1 Cellular Automata

A cellular automaton is a D-dimensional grid of cells. Each cell can be in one
out of a finite set Σ of possible cell states. For every cell a neighborhood is
defined. We let N denote the number of cells in the neighborhood. A transition
function ∆ : ΣN → Σ maps the neighborhood of a cell to the next state of
the cell. Figure 2.1 show two common neighborhoods for two-dimensional CAs.
In a Von Neumann neighborhood the cells are only connected to the cells to
the left and right, as well as above and below them, making N = 5. A Moore
neighborhood also connects the cells diagonally, resulting in N = 9. The CA is
updated synchronously, meaning every cell is set to its next state simultaneously.

Since CAs have to be simulated on computers with finite resources, we can
not be using infinite grids. This gives us edge-cases where we have to decide what
happens with cells that lie on the edge of the grid. This is called the boundary

C

N

S

EW

(a) Von Neumann

C

N

S

EW

NENW

SESW

(b) Moore

Figure 2.1: Common neighborhoods in two-dimensional CAs

5

C

N

S

E W

(a) Periodic (b) Constant

Figure 2.2: Boundary conditions

conditions of the CA. A common way of handling this is with periodic boundary
conditions, where cells on the edge are connected to cells on the opposite edge.
This is illustrated on a two-dimensional CA with a von Neumann neighborhood
in Figure 2.2a. Another way is with constant boundary conditions, where the
edge cells are connected to a constant value. An illustration of this can be seen
in Figure 2.2b, where the lower left corner of the CA is pictured. The CA cells
(white boxes) on the edges are connected to cells with constant values (gray
circles). The CAs studied in this thesis uses a combination of the two, and will
be described in more detail in Section 3.1.

The transition function ∆ can be the same for all cells, resulting in what is
called a uniform CA, or it could be specific to each cell, giving us a non-uniform
CA [3]. The number of possible cell states is another important parameter. Von
Neumanns’s self reproducing automaton used cells with 29 possible states [2].
We will only concern ourselves with two cell states, that is Σ = {0, 1}. The ∆
function can be represented by a lookup table (LUT). When we use two cell
states it becomes a 2N bit string, where N is the neighborhood size.

An example of computation in CAs is Melanie Mitchell’s use of CAs to solve
the majority problem [6]. The majority problem is the problem of determining
if the initial state has a majority of 0s or 1s. If the majority of initial cells are set
to 1 the end state should have all 1s, and if the majority of initial cells are 0 the
end state should be all 0s. Solving this problem with a conventional computer
that has a global view of the state is trivial. Just count the number of 1s and 0s
and compare. In a system without global communication it is non-trivial, and
with the CA type Mitchell used it is actually impossible to solve the problem
for all inputs [11].

6

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of search algorithms drawing inspira-
tion from biological evolution. We will look at two subgroups of EAs, evolution
strategy (ES) and genetic algorithms (GA).

An evolution strategy (ES) is an optimization technique inspired by evolu-
tion. One of the simplest ES models is called (1 + λ) [12] and follows these
steps:

1. Generate random parent.

2. Produce λ offsprings from parent with a mutation operator.

3. Calculate fitness of parent and offsprings, and select the fittest individual.
If there is an offspring with the same fitness as the parent, the offspring
is selected.

4. Go to 2

In this thesis we use the model with λ = 4, and will refer to it as (1 + 4).
The best individual in the (1 + λ) algorithm discussed above will only be

replaced if a better individual is found. This means an individual could survive
many generations. This is not biologically plausible, and could lead to the search
getting stuck at a local optimum. The standard genetic algorithm (GA) tries
to solve this by using a generational model where parents live for only a single
generation. The parent population is completely replaced by its offspring [13,
14]. A typical GA follow these steps:

1. Generate random population of size n

2. Map genotype to phenotype

3. Calculate fitness for every individual in the population

4. Produce n offsprings by selecting parents from the population

5. Replace the old population by the new offsprings

6. Go to 2

Producing the new population from the old population consists of two sub-
steps; selecting which parents to reproduce and creating new individuals from
these parents.

7

Crossover point

Parents

Children

(a) One-point crossover

Crossover points

Parents

Children

(b) Uniform crossover

Figure 2.3: Crossover operators

Many selection mechanisms have been devised. The one used in this thesis is
the tournament selection [15]. To select an individual, m individuals are pulled
randomly from the population. The fittest of those m individuals are then the
winner, and is selected. The parameter m is called the tournament size. When
m = 2 it is called binary tournament selection.

After selecting which parents to reproduce, one or more genetic operators are
used to produce those new offsprings. Common genetic operators are crossover
and mutation.

The crossover operator is a recombination operator, combining two parents
A and B into a new child. There are several variations on the crossover scheme.
The simplest one is the one-point crossover shown in Figure 2.3a, where a single
crossover-point is selected. Every gene before that point is taken from parent A
and everything after is taken from parent B. There is also the uniform crossover
illustrated in Figure 2.3b, where you can imagine a coin is flipped for every gene
in the genome. If it comes up heads the gene from A is selected, and if it is tails
the one from B.

The other genetic operator used in this thesis is mutation. This is the classic
one-parent reproductive mechanism [16]. For every gene in the genotype there
is a µ probability that the gene is mutated. The µ is called the mutation rate.
What constitutes a mutation depends on the genotype. E.g. if it is a binary
coded genotype it usually involves flipping a bit.

8

2.3 Discrete Fourier Transforms

We will be using discrete Fourier transforms (DFTs) to transform the output
values into frequency spectrums. The output values are one dimensional bit
vectors. We want to map these to a single scalar value. One way to do this
would be to interpret them as binary coded integers. We will instead count the
number of bits set in the vector, and use this number as the output value. If the
output has 8 bits, this maps 256 possible output vectors to 9 different output
values. By making it a many-to-one mapping we hope to give the system extra
freedom, allowing it to explore many different solutions.

The standard DFT is defined as

F (u) =

N−1∑
x=0

f(x)e
2πiux
N

where i is the imaginary unit, N is the number of output values, and f(x) is the
number of bits in the xth output vector [17]. Because we are mainly interested
in the strength of the spectrum we will be using the absolute value of F (u). On
real values |F (u)| = |F (N − u)|. This allows us to ignore the spectrum values
F (u) for u > N

2 .
To calculate the fitness some of the experiments use the weighted mean

frequency of the spectrum, defined as:

F =
1∑N

2
u=1 |F (u)|

N
2∑

u=1

u · |F (u)|

This condenses the one-dimensional spectrum into a single scalar value, making
it easy to use as an output value. Note that F (0) is not included. This is

because F (0) =
∑N−1

x=0 f(x), and it does not tell us anything about the dynamic
behavior of the output. To avoid it overshadowing the rest of the spectrum it

is not included in F . In the case where
∑N

2
u=1 |F (u)| = 0, F is defined as N+2

4 .
Figure 2.4 shows an example of a DFT applied to the function

f(x) = 2 sinx+ sin 4x

The function is sampled at 10 points with equal distance between the sam-
ples. We see that the absolute values of the spectrum are symmetrical along an
axis going through x = 5. As expected there are two peaks (if we ignore the
symmetrical values), one for each of the sines.

9

0
π
2 π 3π

2 2π

-3

-2

-1

1

2

3

x

f(x)

(a) Function

u

|F (u)|
symmetry axis

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

(b) DFT spectrum

Figure 2.4: DFT of f(x) = 2 sinx+ sin 4x with 10 samples

o1 o2 o3 o4

o1 o2 o3 o4

o1 o2 o3 o41st DFT

2nd DFT

3rd DFT

Figure 2.5: Sliding DFT with window size 2

Some of the experiments use a sliding DFT. A sliding DFT looks at the data
through a sliding window. At the start this window is placed over the first N
values, then the DFT is calculated on these values. N is called the window size.
Then the window slides one value over, and the DFT is calculated again. If
there are a total of M values and M ≥ N it will calculate M − N + 1 DFTs.
Figure 2.5 shows an example of a sliding DFT with a window size of 2 and
M = 4.

2.4 L-Systems

L-systems, or Lindenmayer systems, are parallel rewriting systems originally
developed as a mathematical tool to model plant development [8]. The L-
system rewrites strings by replacing all symbols in parallel according to some
rules. The rewriting from the start string, called the axiom, and into the final

10

string can be viewed as a developmental stage. Mapping the produced string
to a CA can be achieved in different ways. One method is to use a constant
mapping from string position to cell position, and have one symbol for every
cell type. Another more advanced method is using turtle graphics. This will
be described in more detail below and in Section 3.2. A formal definition of
L-systems is given below [8].

Let V denote an alphabet, V ∗ is the set of all words over V and V + is the
set of all non-empty words over V . An L-system can be defined by a tuple
G = (V, ω, P) where V denotes the alphabet of the system, ω ∈ V + is a non-
empty word called the axiom of the system and P is a set of productions.
Productions are functions from V + to V ∗ and are written as a → χ. a is
called the predecessor while χ is called the successor of the production. If no
production is defined for an a ∈ V , the identity production a → a is assumed.
A system where all productions have predecessors with only a single symbol
(a ∈ V) is called a context free system. This is also termed a 0L-system. A
0L-system is called deterministic if for all a ∈ V there exist only one production
in P with a as its predecessor. This is referred to as a D0L-system.

An example of a D0L-system

V ={F, [,],+,−}
ω =F

P ={F → F [+F]F [−F]}

We can write out the 2 first iterations of this systems:

0 :F

1 :F [+F]F [−F]

2 :F [+F]F [−F][+F [+F]F [−F]]F [+F]F [−F][−F [+F]F [−F]]

It might not be immediately obvious how one could use this system to model
plant growth. A common way is to interpret the string as instructions for a
turtle. F tells the turtle to move one step forward while drawing a straight line.
+ and − tells it to turn left and right δ degrees, [makes it push its current
heading and position onto a stack and] pops the most recently pushed position
and heading. Figure 2.4 shows the resulting figure when we run the system for
4 iterations, set δ = 25◦ and run the turtle on the resulting string. As we can
see it does indeed resemble a plant.

11

Figure 2.6: Turtle interpretation of an L-system

12

Chapter 3

Description

This chapter gives a detailed description of the experimental setup. The ex-
periments try to answer different questions, but use the same framework. Fig-
ure 3.1 shows an overview of the system. An evolutionary algorithm searches
the genome-space. To evaluate a genome it must first be mapped to a CA, then
a fitness function feeds this CA input and inspects the output. Finally the fit-
ness is returned to the EA. It is easy to replace parts of the system. This allows
easy experimentation with different EAs, genome to CA mappings and fitness
functions. The only constant block throughout all the experiments is the CA,
only one kind of CA is used. The rest of this chapter will discuss the individual
parts in detail.

Genome CA
Mapping

Fitness
function

InputOutput

EA

Figure 3.1: Overview of system

13

3.1 CA

The CA used in the experiments is a two-dimensional CA with periodic bound-
ary conditions on two of the edges, and constant boundary conditions on the
other two. It uses Von Neumann neighborhoods. Figure 3.2 shows an example
of a 4x4 CA of this kind. The darker gray boxes are CA-cells, while the lighter
circles are constant values.

i1 o1 c1

i2 o2 c2

i3 o3 c3

i4 o4 c4

Figure 3.2: CA

The constant values on the left, labeled i1 to i4 are used for inputs. It is
important to note that these values are constant only in the notion that they do
not belong to another cell. They could change value from iteration to iteration,
allowing streams of data to be fed to the CA. The constant values on the right
(c1 to c4) are constant throughout the entire run of the CA, and we will refer
to these bits as the configuration values. The initial value of the CA cells are 0.

The right-most row of cells, labeled o1 to o4 in the figure, are the output
values. As we can see even though the CA is 2D, the input and output are
one dimensional bit vectors. The hope is that by treating most of the CA as
a blackbox, evolution is allowed greater freedom when searching for possible
solutions. In addition having input and output on the edges allows streaming
input and output continuously without having to look at the entire CA.

Anm×n CA can be parameterized by a tuple (M,C), whereM : (N×N)→ L
is a function mapping cell position to elements in the set of lookup tables L and
C ∈ {0, 1}m is a bit string with m bits. C is used to set the configuration values.

14

0

10

20

30

40

50

-10 0 10 20 30 40 50 60 70

Iteration

Bits set in output
Bits set in input

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Example of CA input and output

Figure 3.3 shows an example of a CA run. The green line shows the number
of bits set in the input. The yellow and black lines just below the green line is
the actual input values. In Figure 3.2 this is the boxes labeled i1 to i4, except
the CA in Figure 3.3 is 8× 8, so there are 8 input bits. Yellow means the bit is
set to 1, while black means it is 0. The red line shows the number of bits set in
the output, and the yellow and black figure below is the actual output. Looking
at Figure 3.2 the output cells are marked o1 to o4. Unlike the input it is easy
to see that the output is made up of 8 bits, as the output does not have all the
bits set to the same value in an iteration. If we look at the number of bits set
in the output, which is what the DFT is run on, we see that the output has half
the frequency of the input.

3.2 Genome and Mapping

To be able to evolve a CA, a representation of the genotype along with mutation
and crossover operators have to be defined. In addition there have to be a
mapping from the genotype to the phenotype, an 8 × 8 CA. Three different
genotypes are defined.

The first genotype gen1,k is the simplest. It consists of a k-tuple l ∈ Lk with

15

k LUTs. The second genotype gen2,k builds on the first one. It can be written
as a tuple (l, i) where l is defined as above and i ∈ {0, 1}8 is a bit string used
to specify the configuration values for the CA. The third genotype gen3,k is a
further extension, and can be written as (l, i, P) where P is a set of productions
for a D0L-system. There are exactly k productions in P , with predecessors 1
through k.

Remember that a CA is parameterized by a tuple (M,C) where M is a
function mapping cell position to LUT and C is a bit string used to set the
configuration values of the CA. Mapping the genotypes to such a parameterized
CA is achieved with the following functions

f1(l) = (µ(l), 0)

f2(l, i) = (µ(l), i)

f3(l, i, P) = (ρ(l, P), i)

where µ is a function taking a set of LUTs and returns a function taking cell
position and returning a LUT and ρ is a function taking both a set of LUTs
and a set of productions, returning a function mapping cell position to LUT.

We define three different µ functions for use with uniform, non-uniform and
what we term semi-uniform CAs. A semi-uniform CA is a CA where some cells
have the same LUT, but not all. We will use the notation li to mean the ith
LUT in l, where l has been given a deterministic ordering. The first function

µuni(l) = (x, y) 7→ l0

maps all positions to the same LUT, essentially creating a uniform CA. This
function should be used together with a genome with k = 1. The second function

µnu(l) = (x, y) 7→ lx+y·8

maps each position to a different LUT. This creates a non-uniform CA. When
using this function the genome must have k = 8 · 8. The third function

µsu(l) = (x, y) 7→ lx mod k

creates a semi-uniform CA, where all cells with the same x value have the same
lookup table. If k = 1 the CA is uniform.

We also define four different ρ(l, P) functions for use with gen3,k. The first
three functions are very similar. They first evaluate the L-system (V, ω, P)
where V = {1, . . . , k}, ω = 1 and P is given by the genome. The L-system is

16

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

(a) Horizontal mapping

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) Vertical mapping

1 2

345

6

7 8 9 10

11

12

13141516

(c) Spiral mapping

Figure 3.4: Mappings from cell position to string position

evaluated for 64 iterations, or until the produced string is at least 64 symbols
long. If the produced string is shorter than 64 symbols it is padded with 1s. The
string is then mapped to the CA by using a mapping from cell position to string
position. The three different mappings used for this are shown in Figure 3.4.
Once the string position is found, the symbol at that position is mapped to a
LUT. This is done by assigning one of the k LUTs in l to each of the k symbols
in V . This gives us the three functions ρv, ρh and ρs which use the vertical
mapping, horizontal mapping and spiral mapping respectively.

The fourth ρ function uses turtle graphics to lay out the CA. We will call
this function ρt. It uses a D0L-system (V, ω, P) with V = {1, . . . , k,+,−, [,]}
and ω = 1. The set of productions P is taken from the genome. The system is
run for 4 iterations, or until the string is at least 16384 characters long. This
string is used as instructions for a turtle. The +, −, [and] symbols have the
same meaning as in Section 2.4, and the turning angle δ is set to 90◦. The
symbols 1 to k make the turtle set the LUT of the cell it is currently on to the
LUT corresponding to the symbol, and move one step forward.

Let us look at an example of the ρt mapping. We use a 4x4 CA with the
productions

P = {a→ a+ b, b→ b}
where we use a and b to represent cell type 1 and 2 respectively. If we run this
system for three iterations we get

0 :a

1 :a+ b

2 :a+ b+ b

3 :a+ b+ b+ b

The final string is a+b+b+b. Figure 3.5 shows the three first steps in the turtle
interpretation of this string. The black circle with the line marks the turtle’s

17

(a) a+ b+ b+ b (b) a+b+ b+ b (c) a+ b+ b+ b (d) Final CA

Figure 3.5: Turtle interpretation of a+ b+ b+ b

abc[+b]− a

aba[b− c][+b]− a

(a) Mutating a single symbol

abc[+b]− a

abca[b− c]− a

(b) Mutating a branch

Figure 3.6: Mutation of productions

position and heading. It starts with a, resulting in the start cell being set to
cell type 1 (blue), and the turtle taking one step forward. Next it encounter +,
which makes it turn 90◦ left. After that it finds b, so it sets the current cell to
cell type 2 (red) and moves on step forward. Figure 3.5d shows the result after
interpreting the entire string. Cells that have not received a cell type when the
run is over are automatically given cell type 1.

Finally we have to define the mutation and crossover operators. The muta-
tion operator randomly selects one of the elements in the genotype. For gen1
this will always be l, for gen2 its either l or i and for gen3 it is l, i or P . Once
one of those is selected, they are mutated. After carrying out the mutation
there is a 50% chance it will run the mutation operator again. This gives us
a 50% chance of a single mutation happening, 25% chance of two mutations,
12.5% chance of three mutations and so on. l is mutated by picking a random
bit in a random LUT and flipping it. i is mutated by picking a random bit and
flipping it. P is mutated by picking a random production in P , then picking a
random symbol in the successor of this production. If the symbol is +, − or one
of the symbol 1 through k, it is replaced by a random string that is one to five
symbols long. However, if it is [or] the whole branch is replaced by a random
string that is one to five symbols long. Figure 3.6 shows an example of these two

18

operations. This mutation operator is similar to the mutation operator used by
Gabriela Ochoa [18].

The crossover operator is similar to a one-point crossover operator, except it
uses two one-point crossovers. One for the i part and one for the l and P parts
of the genotype. The i part of the genotype is crossed by selecting a crossover
point p ∈ {1, . . . , 8} and taking the first p bits from the first parent and the last
8 − p bits from the second parent. The l and P parts are crossed by selecting
a crossover point q ∈ {1, . . . , k} and taking the first q LUTs and productions
from the first parent and then taking the last k− q LUTs and productions from
the second parent.

3.3 EA

Two different evolutionary algorithms are used. One is the 1+4 ES described in
Section 2.2. The other is a standard genetic algorithm with binary tournament
selection. Population size, mutation rate and crossover rate are specified in the
experiments chapter.

19

20

Chapter 4

Experiments

This chapter presents a series of experiments that tries to answer questions re-
lated to the evolvability and general behavior of the system described in Chap-
ter 3. To enhance readability the chapter is divided into four sections. The
first section contains experiments concerned with the evolvability of uniform
and non-uniform CAs. The second section looks at semi-uniform CAs and their
evolvability compared to uniform and non-uniform CAs. Of special interest is
the performance when we use L-systems as a developmental step. While the first
two sections use the 1+4 ES to evolve CAs, the third section experiments with a
genetic algorithm. Finally the fourth section applies the system to the majority
problem, and compares how various fitness functions and output interpretations
affect the system’s performance.

4.1 Uniform vs. Non-uniform

One of the most obvious ways to partition the set of CAs are into uniform
and non-uniform CAs. In uniform CAs all cell have the same function. In our
case these functions are encoded by lookup-tables. Non-uniform CAs on the
other hand do not have the same function in all cells. Both classes have their
benefits and drawbacks. Uniform CAs are easy to represent, to define the entire
CA only a single LUT is needed. To define a non-uniform CA you need one
LUT for every cell. This leads to a representation that grows linearly with the
number of CA cells. The simplified representation of uniform CAs does however
come at a price. Only a minuscule fraction of all CAs are uniform CAs, while

21

the non-uniform representation can actually be used to represent any CA, even
uniform ones. In this experiment we look at the evolvability of these two classes
of CAs and compare them.

4.1.1 Experiment 1: Input replication and inversion

Input replication is a very simple problem, requiring only the cells to copy
the value of the cell to the left of them. This could easily be solved by both
uniform and non-uniform CAs. Inversion of the input is more complicated, and
it is not immediately obvious how a uniform CA could do this, or even if it is
at all possible. A non-uniform CA on the other hand requires only that the
last column of cells invert the value of the cell to the left of them, while the
other columns simple pass them through like before. We will try to evolve both
uniform and non-uniform CAs that solve the two problems and compare their
performance.

The CAs are represented by the gen1 genome representation. gen1,k consists
of a tuple with k LUTs. To represent uniform CAs we use gen1,1 and the
mapping µuni which maps every cell position to the only LUT in the genome.
Non-uniform CAs are represented with gen1,64 and µnu, where µnu maps a cell
position to a distinct LUT,

Fitness functions

This experiment uses two different fitness functions, fthru and finv.
fthru is calculated by running the CA for 128 iterations. The first 16 output

values are discarded to allow the CA time to settle. This leaves 112 output
values, making it possible to see if the CA has a steady output once it has
settled. The fitness is calculated by counting the number of bits equal to the
input in those 112 output values. This is repeated for 16 different input values,
making the maximum fitness 16 · 112 · 8 = 14336.

finv is defined similarly to fthru, except we count the number of bits in the
output not equal to the input. It could also be defined as finv = 14336− fthru.

Results

Figure 4.1 shows how well the uniform and non-uniform CAs evolve using 1+4
when fthru is used as the fitness function. We see that the search finds an
optimal rule for the uniform CA in less than 50 generations. The non-uniform
CA is however unable to make much progress.

22

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

Uniform 1+4
Non-uniform 1+4

Max

Figure 4.1: Evolution with fitness function fthru

Figure 4.2 shows the results with finv. We see that the uniform CA has
a much harder time compared to earlier. The non-uniform seems to have a
slightly slower start too, but ends up at around the same value as for fthru.

23

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

Uniform 1+4
Non-uniform 1+4

Max

Figure 4.2: Evolution with fitness function finv

24

4.1.2 Experiment 2: DFT replication and inversion

This experiment tries to determine evolvability of CAs when using a DFT to
interpret the output instead of a literal interpretation as in the previous ex-
periment. Square waves with four different frequencies are used as input. The
frequencies used are 1, 2, 4 and 8. The fitness will be calculated by comparing
the main frequency in the DFT of the output to the main frequency of the
input square wave. The spectrum value F (0) is simply a sum of f(x) and will
be ignored when finding the main frequency. Figure 4.3 shows the square waves
with the highest and lowest frequency as well as their DFT spectrums. We see
that the square wave with frequency of 1 has main frequency of 1, and with
f = 8 the main frequency is also 8. We will define two different fitness func-
tions, one where the goal is to have the same main frequency as the input, and
one where the frequency relation is inverted, i.e. input with frequency 1 should
have output with main frequency 8, input with frequency 2 should have output
with main frequency 4 and so on.

Producing the same main frequency on the output as on the input can be
achieved by simply replicating the input. As we saw in the previous experiment
input replication is a trivial problem, and a uniform CA solving it was found in
less than 50 generations. Frequency inversion on the other hand is likely harder,
and it is not obvious how a CA would solve it.

Fitness functions

Two fitness functions are defined. The first one is ffft−thru which is calculated
by running the CA for 127 iterations, throwing away the first 16 output values
and then running a sliding DFT with window size 16 on the rest of the output.
This produces 96 DFT spectrums, which should tell us if the CA behaves the
same over time. All those spectrums are then inspected to see if the main
frequency is the same as in the input. The number of spectrums with the
correct main frequency is the fitness value. With 4 different input waves this
gives us a maximum fitness of 4 · 96 = 384.

The second fitness function ffft−inv is largely the same, except it counts the
number of spectrums with opposite main frequencies.

25

0

2

4

6

8

0 2 4 6 8 10 12 14

f(
x
)

x

(a) f = 8

0

2

4

6

8

0 2 4 6 8 10 12 14

f(
x
)

x

(b) f = 1

0

20

40

60

0 1 2 3 4 5 6 7 8 9

F
(u

)

u

(c) DFT spectrum for f = 8

0

20

40

60

0 1 2 3 4 5 6 7 8 9

F
(u

)

u

(d) DFT spectrum for f = 1

Figure 4.3: Input square waves and DFT spectrums

26

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

Non-uniform 1+4
Uniform 1+4

Max

Figure 4.4: Evolution with ffft−thru

Results

Figure 4.4 shows the performance of a uniform and non-uniform CA using
ffft−thru. We see that the uniform CA is able to find a perfect solution quickly.
The non-uniform CA however is unable to find a good solution.

Figure 4.5 shows the performance when ffft−inv is used. We see that the
non-uniform CA evolves pretty much the same, but the uniform CA gets a much
lower fitness.

27

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

Non-uniform 1+4
Uniform 1+4

Max

Figure 4.5: Evolution with ffft−inv

28

4.1.3 Experiment 3: Configuration values

In experiment 1 and 2 the configuration values of the CA are all set to 0s. If
we look at Figure 3.2 this means all the cells on the right side of the CA have
the same inputs when the CA is started, because the cells all have their initial
state set to 0. The cells in the middle of the CA will also have the same inputs
because they are only connected to other cells which are set to 0. If in addition
the input values are the same, for example oscillating between all 1s and 0s,
the cells on the left also have the same inputs. This makes it impossible for the
cells in a uniform CA to have different behavior in a column, because all the
cells in a column have the same inputs. This experiment looks at what happens
when the top most configuration value is set to 1, while leaving the rest set to
0. This will allow the top-most cell on the right to behave differently, and this
could ripple throughout the CA, creating more complex behavior.

Fitness function

ffft−inv from experiment 2 will be used as the fitness function.

Results

Figure 4.6 shows the difference between the two different configuration values
when using ffft−inv and a uniform CA. We see that using configuration values
with not all 0s results in a much improved fitness.

29

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

F
it

n
es

s

Generation

Not all 0s
All 0s

Max

Figure 4.6: Behavior with different configuration values

30

4.1.4 Experiment 4: Dunn Index

This experiment introduces three new fitness functions. They are all based on
the Dunn Index (DI), which is used to evaluate how good a data-set is clustered.
Tighter clusters with larger distance between them have a higher Dunn Index.
It is defined as

DI = min
1≤i≤m

{
min

1≤j≤m,j 6=i

{
δ(Ci, Cj)

max1≤k≤m ∆k

}}
where m is the number or clusters, δ(Ci, Cj) is the distance between the centers
of the clusters i and j and ∆k is the maximum distance between two points in
cluster k. The cluster center is defined as the average of its values. The clusters
consists of the weighted average frequency of the output with one cluster for
each of the four input frequencies. If the output has a consistent frequency the
cluster will have a small size.

Encouraged by the results in experiment 3 this experiment tries the gen2
genome representation in addition to the gen1 representation used in the earlier
experiments. Remember that the gen2,k representation consists of a k-tuple of
LUTs just like gen1,k in addition to an 8-bit string containing the configuration
values for the CA.

Fitness functions

The Dunn Index can be used as a fitness function directly. fitDI will be used as
the name for this fitness function. However, if the Dunn Index were to be used
alone it could result in a non-linear ordering of the output frequencies when
ordered by their input frequencies. Therefore two other fitness functions are
defined that use linear regression along with the Dunn Index. Linear regression
calculates the α and β that makes y = α + βx best fit a set of points. In our
case the y is the cluster center and the x is the input number. The highest
frequency square wave is defined as input 1, the second highest as input 2 and
so on. We are mainly interested in the β. The two fitness functions can be
defined as fit+ = βDI and fit− = −βDI.

A CA that pass through the input unmodified will have a β < 0. Since the
outputs will also be well clustered (the input is already clustered) this will result
in a good fitness if we used fit−. In this regard fit− is similar to fitthru in
that a good solution is trivial. It is harder to find a CA that has a good fitness
with fit+ since a frequency inversion is necessary. As we saw in experiment 2
this is a significantly harder problem.

31

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000

F
it

n
es

s

Generation

Uniform, gen1
Non-uniform, gen1

Uniform, gen2
Non-uniform, gen2

Figure 4.7: Fitness with fit−

Results

Figure 4.7, Figure 4.8 and Figure 4.9 shows the fitness of the different fitness
functions, as well as the difference between evolving the configuration values
and setting them to 0. We see that evolving the configuration values results
in a better fitness in all cases, for uniform CAs using fit+ the improvement is
staggering. We also see that uniform CAs performs better than non-uniform
CAs.

32

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 20000 40000 60000 80000 100000

F
it

n
es

s

Generation

Uniform, gen1
Non-uniform, gen1

Uniform, gen2
Non-uniform, gen2

Figure 4.8: Fitness with fit+

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 20000 40000 60000 80000 100000

F
it

n
es

s

Generation

Uniform, gen1
Non-uniform, gen1

Uniform, gen2
Non-uniform, gen2

Figure 4.9: Fitness with fitDI

33

4.1.5 Discussion

The experiments show that uniform CAs are much easier to evolve than non-
uniform CAs. An 8×8 non-uniform CA has a genome containing 64 32bit LUTs.
This results in a genome space that contains (232)64 = 22048 genomes. This is
enormous, and it makes sense that such a vast space is harder to search than
the smaller genome space for uniform CAs that contains only 232 genomes.

With our representation the set of uniform CAs is a proper subset of the set
of non-uniform CAs. That means that when we use non-uniform CAs we can
find at least as good a solution as when using uniform CAs, but since the set
of non-uniform CAs is so much larger than the set of uniform CAs there is a
good possibility an even better solution exists. We saw that a uniform CA just
passing through the input was easy to evolve, however the EA was unable to find
a uniform CA inverting the input. If we look at the fitness for the non-uniform
CAs evolved they are almost the same for the two problems, suggesting that
with non-uniform CAs the two problems have similar difficulty.

The experiments also showed that evolving the configuration values along
with the LUTs resulted in a better fitness in all cases. This seems to be especially
beneficial for uniform CAs. This could be because the non-uniform cell inputs
allows it to somehow differentiate the cell behavior based on position, allowing
a uniform CA to be somewhat non-uniform.

4.2 Semi-uniform CAs

Earlier experiments failed to find a good uniform CA with fitness function fit+.
One reason for this could be that no uniform CA able to solve it exists. Non-
uniform CAs come with a much larger number of possible CAs, making it more
likely there exists a CA that solves a certain problem, but as we saw the genome
space is harder to search. Instead of using a different LUT in every cell like a non-
uniform CA, the LUT could be shared by more than one cell, but not all. E.g.
we could use two different LUTs where half the cells use the first and the other
half the second. This would change the size of the genome space from 232 to
264, significantly increasing the number of possible CAs, while hopefully keeping
the genome space small enough to easily search. Being a blend of uniform and
non-uniform CAs we will call them semi-uniform CAs. This section contains
experiments that look at the evolvability of such semi-uniform CAs. Cells with
the same LUT will be said to have the same cell type, and the k in the genome
representation will be the number of different cell types in the CA.

34

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.10: Fitness with fit+ and gen2,k, 10 runs for every k

4.2.1 Experiment 5: Constant mapping

The first experiment uses gen2,k with k ∈ {2, 3, 4} and the µsu mapping func-
tion. The µsu is a constant mapping where all cells with the same x value have
the same cell type.

Fitness function

The fitness function used is fit+ from experiment 4.

Results

Figure 4.10 shows the results from 10 different runs of a 1+4 ES with 2 to 4 cell
types. We see that with 3 and 4 cell types we get a maximum fitness around
20. One of the solutions for 2 cell types manage to a fitness over 50, more than
twice that of any other solution. We also observe that there is a large spread in
how far a 1+4 ES has come in 50000 generations.

35

4.2.2 Experiment 6: L-systems

Unlike the previous experiment which used a constant, implicit mapping from
cell position to cell type, this experiment will look at a way to make this mapping
a part of the genome without scaling with the CA size.

We use the gen3,k genome representation with k ∈ {2, 3, 4}. gen3,k, like
gen2,k, contains a k-tuple of LUTs and configuration values, but also contains a
set of productions P for an L-system. This allows the cell position to cell type
mapping to be evolved along with the LUTs and configuration values. We will
try four mapping functions, ρv, ρh, ρs and ρt. These are explained in detail in
Section 3.2 and Figure 3.4.

Fitness function

We use the same fitness function as the previous experiment, fit+.

Results

Figure 4.11 shows the results when using a vertical mapping ρv, Figure 4.12
shows the same for the horizontal mapping ρh, Figure 4.13 shows the results
when using a spiral mapping ρs and Figure 4.14 shows the results when using
the turtle mapping ρt. We see that the horizontal mapping has more results in
the 10-20 bracket, but the vertical mapping has a better maximum fitness. The
spiral mapping does poorly, with only a few solutions getting a fitness above 0.
The turtle mapping gets the best results, finding 5 solutions with fitness 25 or
better.

4.2.3 Discussion

The experiments show that semi-uniform CAs perform very well. They are
easily evolvable and in some cases the 1+4 ES is able to find much better semi-
uniform CAs than uniform CAs. Especially interesting are the good results
when using an L-system and turtle graphics to lay out the CA. Compared to
non-uniform CAs they are much more evolvable, and a great way to get some
of their power while maintaining the evolvability of uniform CAs.

36

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k2
k3
k4

Figure 4.11: Fitness with fit+, gen3,k and ρv, 10 runs for every k

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.12: Fitness with fit+, gen3,k and ρh, 10 runs for every k

37

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.13: Fitness with fit+, gen3,k and ρs, 10 runs for every k

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.14: Fitness with fit+, gen3,k and ρt, 10 runs for every k

38

4.3 Genetic Algorithm

The 1+4 ES used in earlier experiments has a performance that is very depen-
dent on the randomly selected start genome. As experiment 5 and 6 showed, 10
runs with different start genomes result in big differences in the fitness values.
Using a genetic algorithm instead of 1+4 could help decrease the variance be-
tween different runs. When random populations are used there will always be
some differences, but the larger population of the GA makes it more likely the
start populations have similar characteristics compared to 1+4. A GA also adds
the possibility of two-parent genetic operators such as crossover in addition to
the single-parent mutation operator used in 1+4.

4.3.1 Experiment 7: GA with fit+

This experiment looks at the performance of a GA compared to 1+4. The GA
uses binary tournament selection, a population size of 64, a mutation rate of
0.2 and a crossover rate of 0.5. It uses the gen3,k genome representation along
with the ρt mapping function as this had the best results in experiment 6.

Fitness function

This experiment uses the fit+ fitness function from experiment 4.

Results

Figure 4.15 shows the maximum fitness from the GA run. If we compare it to
Figure 4.14 we see that the GA has a much worse fitness.

39

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.15: Fitness with GA using fit+, gen3,k and ρt

40

0
1
2
3
4
5
6
7
8
9

-1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Figure 4.16: The desired smiley

4.3.2 Experiment 8: GA Testing

Experiment 7 showed that just plugging in a GA along with the fit+ did not
work. The reason for this could be one of many. It could be a bug in the GA
implementation, a bad fitness function that does not play well with the GA or
a search space that is hard to traverse, just to mention a few. This experiment
tries several simpler fitness functions to determine if the fitness function is to
blame. We use the gen3,k genome representation with k ∈ {2, 3, 4} along with
the ρt mapping.

Fitness functions

The first fitness function is very simple: fitgl = gl, where gl is the genome
length. The genome will have four cell types, and therefore also four produc-
tions. Each production can grow up to 128 symbols. This means the maximum
genome size is 512 characters.

The second fitness function, which we will call fitls−img, counts the number
of correct cells in the CA the L-system produces compared to a goal image.
Two different goal images are used, one is a checkerboard pattern and another
is the smiley in Figure 4.16.

The third fitness function, dubbed fitca−img, is similar to the second one.
The difference is this time we run the CA for 8 iterations and compare the 8×8
output bit array to a goal image and count the number of correct pixels. The
same goal images are used.

41

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

Maximum fitness
Average fitness

Figure 4.17: Maximum and average fitness with fitgl

Results

Figure 4.17 shows the maximum and average fitness for the first 1000 generations
using fitgl. We see that we are able to reach the maximum genome size in less
than 300 generations. This shows that the GA is able to search a simple fitness
space effectively. We also see that the average fitness in the population is very
close to the maximum fitness.

Figure 4.18 shows the maximum fitness with fitls−img. The experiment was
run using gen3,k and k ∈ {2, 3, 4}, however for clarity the figure shows only
the best for each goal. For the checkerboard this was k = 3 and for the smiley
k = 4. We see that the GA is able to find a perfect genome for the checkerboard
goal. In the smiley case the GA is not that successful. It ends up at a maximum
fitness of 58. Figure 4.21a shows the resulting image.

Figure 4.19 shows the maximum fitness with fitca−img when using the smiley
as the goal image. We see it never reaches the optimal fitness of 64. The best
genome ends up with a fitness of 62. Figure 4.21b shows the image this genome
produces. We see that with the exception of the monobrow this is equal to the
goal image in Figure 4.16.

Figure 4.20 shows the maximum fitness with the checkerboard goal. As we
can see a maximum fitness is reached in less than 200 generations with both 2,
3 and 4 cell types.

42

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

Maximum fitness checkboard
Maximum fitness smiley

Figure 4.18: Maximum fitness with fitls−img

40

45

50

55

60

65

70

75

80

0 10000 20000 30000 40000 50000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.19: Maximum fitness with smiley goal using fitca−img

43

40

45

50

55

60

65

70

75

80

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.20: Maximum fitness with checkerboard goal using fitca−img

0
1
2
3
4
5
6
7
8
9

-1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(a) fitls−img

0
1
2
3
4
5
6
7
8
9

-1 0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(b) fitca−img

Figure 4.21: Best smileys evolved

44

4.3.3 Experiment 9: Even or odd number of bits

Experiment 8 showed that the GA works great on simpler fitness function.
The problem thus seems to be the fitness function used in experiment 7, fit+.
To calculate fit+ the CA is run with four different square waves. Because of
only four possible input values the genome-space will naturally be divided into
plateaus where the genomes on the plateaus gives the correct value for 0, 1, 2,
3 or 4 of the inputs. To move between plateaus the GA has to randomly search
until it finds the edge and it can move to the other plateau. This experiment
will try a different problem, where a more gradual evolution is possible. The GA
will try to evolve a CA that is able to differentiate between inputs depending
on whether they have an even or odd number of bits set. The experiment uses
gen3,k, k ∈ {2, 3, 4} and ρt.

Fitness function

The fitness function fiteo is calculated by running the CA with a constant input
for 32 iterations. This gives the CA 16 iterations to settle, before running the
last 16 output values through a DFT. Then the average frequency F of the
spectrum is found. The input either has an even or an odd number of bits set,
and F is added to the even or odd cluster. Lastly the Dunn Index is used to
determine how well clustered the values are. To make the fitness function faster
to calculate it will only test every 11th input from 0 to 255. This comes out to a
total of 24 inputs, 12 with an even number of bits and 12 with an odd number.

Results

Figure 4.22 shows the maximum fitness of the population and Figure 4.23 shows
the frequency averages on all 256 inputs when using the best solution found.
The inputs in Figure 4.23 are numbered by converting the 8-bit input vector to
a number by simply interpreting it as an 8-bit unsigned integer. As we can see
the GA is unable to find a good solution. The best solution is able to cluster the
even inputs slightly tighter than the odd inputs, but it is still very scattered.

45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.22: Maximum fitness with fiteo

4

5

6

7

8

9

0 50 100 150 200 250

F
re

q
u

en
cy

sp
ec

tr
u

m
m

ea
n

Input

Odd
Even

Figure 4.23: Average output frequency of all input values for the best genome
found with fiteo

46

4.3.4 Discussion

Unlike the 1+4 ES, the GA seems to demand a “nice” fitness function. It was
unable to find good solutions with fit+, while 1+4 found several. This could be,
as hypothesized above, because of the lack of resolution in fit+. We saw that
the GA performed very well with more well behaved fitness functions where it
was possible to improve the fitness in small increments. This is worth having in
mind when we define the fitness functions for the remaining experiments.

47

4.4 The Majority Problem

The GA was not able to find a perfect solution in experiment 9. This section
contains experiment that tries to use the GA to find a CA able to solve a simpler
problem; the majority problem. We would like the CA to be able to decide if the
input consists of mostly 1s or 0s. We will try two different ways of interpreting
the output, one based on DFT and another simpler mapping. The GA will have
a crossover rate of 0.5 and mutation rate of 0.5. Because our CA is 8 × 8, the
input has 8 bits. This means inputs with 4 bits set have neither the minority
or majority of bits set, therefore 70 of the 256 possible inputs have undefined
output values. All the experiments in this section, with the exception of the
last one, use the gen3,k genome representation with k ∈ {2, 3, 4} along with the
ρt turtle graphics mapping.

4.4.1 Experiment 10: DFT and Dunn Index

In this experiment we will use a DFT to interpret the output and a fitness
function based on the Dunn Index.

Fitness function

The fitness function is very similar to the fiteo function used in experiment 9,
we just redefine the two input groups to inputs with minority of bits set and
majority of bits set. The CA is run for 32 iterations, the 16 last output values
are run through a DFT and the average frequency F is added to the correct
cluster. The clusters are then evaluated with the Dunn Index to find how well
they are clustered. We will call this fitness function fitm−di.

Results

Figure 4.24 shows the maximum fitness. As we can see a good result is only
obtained when 2 cell types are used. We also see that the evolution seems to
jump from a bad to a good fitness in one generation, suggesting that few, if
any, solutions are able to partially solve the problem. However, this might not
necessarily be true and highlights one of the problems with the Dunn index.
Remember that it is defined as

DI = min
1≤i≤m

{
min

1≤j≤m,j 6=i

{
δ(Ci, Cj)

max1≤k≤m ∆k

}}

48

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.24: Maximum fitness with fitm−di

When ∆k, the maximum distance between two points in a cluster, goes towards
0, DI goes towards infinity. This gives an artificially high fitness to solutions
with very tight clusters, and could result in huge differences in fitness between
solutions with similar performance. Note that the actual implementation adds
0.001 to ∆k to avoid division by 0. This explains the fitness peaking at around
3500 (division by 0.001 is the same as multiplication by 1000).

Figure 4.25 shows the average frequency of the output on all the possible
inputs for the best genome found. As we can see this CA is able to solve the
problem perfectly.

49

3

4

5

6

7

8

9

0 50 100 150 200 250

A
ve

ra
ge

fr
eq

u
en

cy

Input value

Minority
Majority

Figure 4.25: Average output frequency of all input values for the best genome
found with fitm−di

50

4.4.2 Experiment 11: Simple output mapping

Instead of using an DFT to map the output to an average frequency, it is possible
to interpret the output directly. For this experiment only the last output value
from the CA is inspected. If the input has a majority of bits set the output
should be all 1s, and for minority inputs the output should be all 0s.

Fitness function

The fitness will be calculated by running the CA for 32 iterations on each input,
and then counting the number of inputs where the last output value of CA is
correct. As before the CA is 8 cells wide, meaning 70 of the 256 inputs are
neither in the minority or majority. This gives us 186 valid inputs, and an
optimal fitness of 186. This fitness function is named fitsimple.

Results

Figure 4.26 shows how the population evolves over time. We see it starts out
with a maximum fitness at 93, which is most likely a CA that always returns
just 0s or 1s. After about 1400 generations we see progress with 2 cell types.
Around the 5000 generation mark 3 cell types are also able to make progress.
However, the GA is not able to find a solution with an optimal fitness.

The long delay before any progress is achieved suggests that the GA has to
do a random search before finding a genome able to give a better solution than
always returning 0s or 1s. However, once such a genome is found, the evolution
progresses quickly. Figure 4.27 shows the outputs of the best genome found.

51

80

100

120

140

160

180

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.26: Maximum fitness with fitsimple

0

50

100

150

200

250

300

0 50 100 150 200 250

O
u

tp
u

t
va

lu
e

Input value

Minority
Majority

Figure 4.27: Output values for the best genome found with fitsimple

52

4.4.3 Experiment 12: New clustering measure

Inspired by fitsimple’s performance once the random search part is done, we
define a simpler clustering measure. Instead of using the Dunn Index to measure
how clustered the spectrum averages are, we instead look at how many values
are in the wrong cluster. This should give us a fitness function with a good
resolution, and unlike the Dunn Index the fitness will not get artificially high
as the clusters tighten.

Fitness function

Let cmaj be the cluster of values for majority inputs and cmin the cluster for
minority inputs. These clusters are obtained the same as in experiment 10: the
CA is run for 32 iterations, a DFT is run on the last 16 output values and the
average frequency F is added to the correct cluster. We then find the boundaries
of the two clusters and count the number of values in the opposite cluster that
are outside these boundaries. More formally it could be written as

fitcc =
∑

i∈C, j∈C, a∈j
outsidei(a)

where

outsidei(a) =

{
1 if a is outside cluster i

0 otherwise

and C is the set of clusters. In our case C = {cmaj , cmin}.

Results

Figure 4.28 shows the maximum fitness for 1000 generations. As we can see the
maximum fitness is reached in less than 100 generations with 2 cell types and
less than 400 generations with 3 cell types. We also see that the progress is
fairly smooth, with the exception of the jump from a fitness of around 150 to
the maximum of 186. If we compare it to the experiment with the Dunn Index
based fitness function evolution is both faster and with less random searches.
Figure 4.29 shows the output values of the best genome. If we compare it to
Figure 4.25 we see one of the drawbacks of this new fitness function. Once
the two clusters are completely separated the fitness can not be improved by
increasing the separation, and we end up with clusters that almost touch.

53

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.28: Maximum fitness with fitcc

3

4

5

6

7

8

9

10

0 50 100 150 200 250

A
ve

ra
g
e

fr
eq

u
en

cy

Input value

Minority
Majority

Figure 4.29: Average output frequency of all input values for best genome found
with fitcc

54

4.4.4 Experiment 13: An extra class

As mentioned earlier the input has 8 bits, meaning input with 4 bits set does
not fall in either the majority or minority class. In this experiment we will try
to evolve a CA that is able to differentiate between majority and minority as
above, but also between the inputs with an equal number of bits set and not
set.

Fitness function

The simple DFT fitness function discussed in the previous section, fitcc, is used.
The only difference is that a cluster for the middle values are added to set of
clusters C. When a new cluster is added the maximum fitness change. We now
have 256 possible input values, and they can all be outside two clusters that are
not their own. That gives us an optimal fitness of 256 · 2 = 512.

Results

Figure 4.30 shows the maximum fitness. We see that with 2 cell types it is
almost a linear increase in fitness until it hits a roof at around 470. The cause
of the roof is unknown. It could be some computational limit of this kind of
CA, or the search room could suddenly have changed characteristics around
that point, making the GA unable to improve further.

Figure 4.31 shows the output values for the best genome. We see that the
three clusters are mostly separated.

55

0

100

200

300

400

500

600

0 200 400 600 800 1000

F
it

n
es

s

Generation

k = 2
k = 3
k = 4

Figure 4.30: Maximum fitness found with fitcc and an extra class

3

4

5

6

7

8

9

10

0 50 100 150 200 250

A
ve

ra
g
e

fr
eq

u
en

cy

Input value

Minority
Majority

Middle

Figure 4.31: Average output frequency of all input values for best genome found
with fitcc and an extra class

56

4.4.5 Experiment 14: Combining Dunn Index and New
Clustering Measure

As we saw in experiment 12 the new clustering measure had good evolvability,
but was unable to further refine the solutions once the clusters were completely
separated. An idea is to combine this clustering measure with the Dunn Index.
The evolvability of the new clustering measure would allow a separation to be
found, and then the Dunn Index could help refine this clustering.

Fitness function

The fitness function is defined as fitcc−di = fitm−di + fitcc.

Results

Figure 4.32 shows the maximum fitness with 2 and 3 cell types zoomed in at
the 180-200 interval (4 cell types are ignored, since it did not get a high enough
fitness). With fitcc 186 was the highest possible fitness. Here we see that GA
is able to improve this further. The result of this increased separation can be
seen in Figure 4.33. Compared to Figure 4.29 we see that the clusters are much
better separated.

57

180

185

190

195

200

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

k = 2
k = 3

Figure 4.32: Maximum fitness with fitcc−di

3

4

5

6

7

8

9

10

0 50 100 150 200 250

A
ve

ra
ge

fr
eq

u
en

cy

Input value

Minority
Majority

Figure 4.33: Average output frequency of all input values for best genome found
with fitcc−di

58

4.4.6 Experiment 15: Without L-system

The earlier experiments used an L-system to transform the genotype into the
phenotype. In this experiment we will instead try the constant mapping used
in experiment 5. We use the gen2,k genome representation with k ∈ {1, 2, 3, 4}
along with the µsu mapping.

Fitness function

fitcc is used as the fitness function.

Results

Figure 4.34 shows the maximum fitness. Compared to Figure 4.28 we see that
they behave similarly, except for the slower evolution of 2 cell types. This could
just be random behavior though, as the GA seems to be sensitive to the initial
population. The final fitness with 4 cell types also end up at a lower value than
when we used an L-system, and the progress seems to be rougher, containing
longer stretches of no progress followed by jumps. We also see that a uniform
CA (k = 1) is able to solve the problem perfectly.

Figure 4.35 shows one of the perfect solutions found.

59

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

Generation

k = 1
k = 2
k = 3
k = 4

Figure 4.34: Maximum fitness with fitcc and without L-systems

3

4

5

6

7

8

9

10

0 50 100 150 200 250

A
ve

ra
g
e

fr
eq

u
en

cy

Input value

Minority
Majority

Figure 4.35: Average output frequency of all input values for best genome found
with fitcc and without L-systems

60

4.4.7 Discussion

We have seen that the system can evolve CAs able to solve the majority problem
perfectly, and when the problem was extended to include another class of inputs
it found a near perfect solution. In addition the performance seem to depend
heavily on the fitness function. The best results are achieved when using fitness
functions that allow a gradual increase in fitness.

We also see that performance seem to fall as the number of cell types in-
creases. This is unlike experiment 5 and 6 where we compared uniform and
semi-uniform CAs. In those experiments some of the best solutions had 3 or 4
cell types. If we look at the last experiment in this section we see that the system
is able to evolve a uniform CA that solves the problem perfectly. In experiment
5 and 6 no such uniform CA could be found. It is possible that the majority
problem is too simple. Since it can be solved by a uniform CA, increasing the
genome size by adding more cell types will only result in an unnecessarily large
genome space, making searching harder.

61

62

Chapter 5

Conclusion

The experiments show that using an L-system as a developmental stage between
the genotype and the phenotype sometimes result in improved fitness, but it
seems it could also slow down evolution. An example of improved fitness can be
seen in the results for experiment 6. If we compare Figure 4.10 with Figure 4.14
there seems to be a clear advantage to a developmental mapping based on L-
systems compared to a constant mapping. There also seems to be a positive
correlation between the number of cell types and the performance. If we compare
the figures to Figure 4.8 we also see that semi-uniform CAs outperform uniform
CAs on that particular problem. However, when applied to a different problem
the findings change. If we look at Figure 4.28 from experiment 12, the correlation
between the number of cell type and the performance seems to be negative.
Comparing Figure 4.28 from experiment 12 with Figure 4.34 from experiment
15 the differences between a constant mapping and one based on L-systems also
seem to be minimal. We also see that the system finds a uniform CA that is
able to solve the problem perfectly. The reason for this apparent contradictory
behavior could be that experiment 6 uses the 1+4 ES while experiment 12 and
15 uses a GA. A GA has more parameters, and it could be it is not tweaked
properly. However, a more likely explanation for the divergent results is that
the experiment showing positive results try to solve a harder problem. This is
supported by the fact that no uniform CA able to solve the problem used in
experiment 6 is found. This is in contrast to the problem used in experiment
12 and 15. The extra power of a semi-uniform CA is therefore not needed, and
as more cell types are added to the genome it only slows down evolution by
expanding the search space.

63

As for the CA itself, the input/output scheme worked very well. The evo-
lutionary algorithms were able to find CAs that worked on both static (same
input for the entire simulation) and dynamic input (square waves). Experiments
3 and 4 showed that evolving the configuration values was very beneficial for the
performance. This was true for both uniform, semi-uniform and non-uniform
CAs. Interpreting the output stream with a DFT also showed good results. If
we look at Figure 4.28 and Figure 4.26 we see that a DFT outperforms a simpler
output interpretation that only looks at the last value. The results also show
that using a clustering algorithm to determine the quality of the output works
very well. This removes the need for the designer to specify exactly what the
output should look like and gives the system freedom to search for solutions the
designer might not have thought about. The ease of this approach is especially
evident in experiment 13 where an extra output value was added with almost
no change to the fitness function.

5.1 Future Work

It should be noted that this thesis is not focused on GA optimization, but rather
with looking at a special class of CAs and ways to evolve them to solve problems.
It is very likely that the GA and the genetic operators used are suboptimal, and
looking into ways to improve the GA performance would be a good starting
point for future work. The crossover operator is particularly raw, and testing
other crossover operators would be an interesting endeavor. Here one could
draw inspiration from the one used by Gabriela Ochoa [18].

The experiments showed that the number of cell types affected performance
in different ways for different problems. That means we can not conclude that
a certain number of cell types are best, instead it has to be tweaked for every
problem. Another approach would be to make the number of cell types part
of the genome. That way the EA can adjust the genome size to the difficulty
of the problem, creating uniform CAs for simple problems, and more complex
semi-uniform CAs as the problems get harder.

Finally it would be interesting to try the system on harder problems. The
majority problem turned out to be quite simple, being solvable by a uniform CA.
It could also be worth trying to evolve feedback systems where the input stream
is somehow affected by the output stream. This would really put the system to
the test, and show if it is able to respond to input that change characteristics
as it runs.

64

Bibliography

[1] M. Sipper, “The emergence of cellular computing,” 1999.

[2] A. W. Burks, Essays On Cellular Automata. University of Illinois Press,
1970.

[3] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Program-
ming Approach. Springer-Verlag, Heiderlberg, 1997.

[4] C. G. Langton, “Computation at the edge of chaos: Phase transitions and
emergent computation,” Physica D: Nonlinear Phenomena, vol. 42, 1990.

[5] S. Wolfram, “Universality and complexity in cellular automata,” Physica
D, vol. 10, no. 1-2, pp. 1–35, 1984.

[6] M. Mitchell, “Life and evolution in computers,” History and Philosophy of
the Life Sciences, vol. 23, 2001.

[7] S. Kumar and P. J. Bentley, eds., On Growth, Form and Computers. Else-
vier Limited Oxford UK, 2003.

[8] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
New York, 1990.

[9] A. L. Waage, “Discrete transformation of output in cellular automata,”
Master’s thesis, Norwegian University of Science and Technology, 2012.

[10] O. H. Jahren, “Emergent behaviour in the frequency-power spectrum of
discrete dynamic networks,” Master’s thesis, Norwegian University of Sci-
ence and Technology, 2012.

65

[11] M. Land and R. K. Belew, “No Perfect Two-State Cellular Automata for
Density Classification Exists,” Physical Review Letters, vol. 74, pp. 5148–
5150, June 1995.

[12] H.-P. Schwefel, Evolutionsstrategie und numerische Optimierung. PhD the-
sis, Technische Universität Berlin, 1975.

[13] J. H. Holland, Adaption in Natural and Artificial Systems. Ann Arbor:
The University of Michigan Press, 1975.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Artificial Intelligence, Addison-Wesley, 1989.

[15] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes
used in genetic algorithms,” in Foundations of Genetic Algorithms, pp. 69–
93, Morgan Kaufmann, 1991.

[16] K. A. D. Jong, Evolutionary Computation: A Unified Approach. MIT Press,
2006.

[17] E. Kreyszig, Advanced Engineering Mathematics. John Wiley & Sons, Inc.,
9th ed., 2006.

[18] G. Ochoa, “On genetic algorithms and lindenmayer systems,” in Parallel
Problem Solving from Nature — PPSN V (A. Eiben, T. Bäck, M. Schoe-
nauer, and H.-P. Schwefel, eds.), vol. 1498 of Lecture Notes in Computer
Science, pp. 335–344, Springer Berlin Heidelberg, 1998.

66

