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Abstract

The goal of the research presented here is to build a natural language process-
ing system for our future natural language applications. We believe that real
applications will move our research in Computational Linguistics and Artificial
Intelligence forward, and we prefer applications that are attractive to a large
number of users. The engine in this system is the wide-coverage grammar Nor-
Source, and the research topic is to build a prototype of the natural language
processing system.

The first part of our research topic is to build a pipeline for our grammar.
We present two versions of the pipeline. The first pipeline has unmapped pred-
icates that contain object and event references at the discourse level. Each
object and event has an unique identifier in the discourse, and the pipeline
performs a simple pronoun resolution. The second pipeline is a pipeline with
predicates mapped to a selected domain, and the discourse contains object and
event references at the world domain level. The world references are the re-
sult of an interpretation with a logic model or a selection of a previous stored
situation. The domain ontology predicates are mapped from the underspec-
ified predicates. Both pipelines have a demonstrator and the specified world
pipeline’s domain is the classical Box World from Artificial Intelligence.

The second part of our research topic is to fill the gap between under-
specified predicates and domain specific predicates. The meaning representa-
tion produced by NorSource is Minimal Recursion Semantics (MRS), and this
representation has underspecified quantifier scope and word senses. We have
algorithms for solving the underspecified quantifier scope, but we don’t have
algorithms for mapping underspecified predicates to domain specific predicates.
The starting point is Vendler’s Aktionsart types. The types have a structure
and Moen and Steedman showed that a verb argument can coerce the verb from
one Aktionsart type to another. Some verbs have culminating states that are
not a part of the surface structure of the sentence. Some verbs have additional
structure like sub events and causal relations between sub events. Structure of
a verb and coercion of Aktionsart types are outside the scope of an MRS, so
we want to incorporate some of these notions into our mapping between under-
specified and specified predicates. We use a domain ontology and a mapping
algorithm. The ontology contains a collection of concepts with a “is-a” hierar-
chy, “has” relations, and “use” relation. The ontology also contains templates
that use the hierarchy and the relations in order to implement constraints on
a predicate and its arguments. The ontology contains complex domain objects
that generate possible structures, time points, roles and states. We use the
Change Location domain to demonstrate how the mapping algorithm works.
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We have created a natural language processing system prototype and we
have filled the gap between underspecified predicates and domain specific pred-
icates. We can transform our MRSs into expressions in First-Order Logic and
reason with them. The tools from the DELPH-IN consortium creates “deep”
grammars that offers the meaning representation MRS, and this means that
our work can be used by other grammars and languages.
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Chapter 1

Introduction

The goal of the research presented here is to build a natural language process-
ing (NLP) system for our future natural language applications. We believe
that real applications will move our research in Computational Linguistics and
Artificial Intelligence forward, and that they will be a good measure for the
coverage of our grammar and the quality of our reasoning abilities. We prefer
applications that are attractive to a large number of users, because attractive
applications generate a large amount of data that can be very useful for our
NLP system. In order to build applications like dialogue systems or question-
answering systems, we need to create a natural language processing system
that can connect the linguistic representations to a domain ontology and then
reason with the domain ontology elements. The engine in this system is a
wide-coverage grammar, and we need a pipeline to connect our linguistic in-
formation, domain specific information and reasoning information. The NLP
system will contain tools for semi-automatic and perhaps automatic acquisition
of information for use in Computational Linguistics and Artificial Intelligence.
The acquisition process will extract relevant information from texts.

Our wide-coverage grammar is NorSource1 [8; 49; 50; 53; 9; 51]. The goal of
the NorSource grammar is to be complete in an underspecified way for written
Norwegian. NorSource is a Head-Driven Phrase Structure Grammar (HPSG)
[84; 86], developed and maintained with the Linguistic Knowledge Builder
(LKB) tool [27], and based on the HPSG Grammar Matrix, which is a starter
kit for developing HPSG grammars [10; 11]. The consortium sustaining this
architecture is the DELPH-IN Consortium2.

Our goal is to build a pipeline for our natural language processing system.

1http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource
2http://www.delph-in.net

http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource
http://www.delph-in.net


4 My Own Background of Research

The first step in our pipeline is the parsing step, where we use NorSource, but
we need to build the remaining steps of the pipeline. The meaning representa-
tion produced by NorSource is Minimal Recursion Semantics (MRS) [29], and
this representation has underspecified quantifier scope and word senses3. We
have algorithms for solving the underspecified quantifier scope, but we don’t
have algorithms for the underspecified senses.

For example, in the sentence “the king of pop met the king of Norway”, the
PPs can be expressed in an underspecified way with the relation king of(arg1,arg2),
but if we want a more detailed description closer to the world we want to use two
senses of “king”: the relations male monarch(x1,x2) and best in field(x3,x4),
where x1 and x3 are persons, x2 is a country, and x4 is a field.

We need to fill the gap between the underspecified representation and the
description with more world knowledge. The Linguistic Representation is the
underspecified meaning representation MRS, and the World Event Represen-
tation is a collection of concepts describing a selected part of the world. This
is also reflected in the title of this work (“Building World Event Representa-
tions From Linguistic Representations”). The selected parts of the world are
the domain of “Change Location” (movement of objects in the world) and the
domain “Box World” (a small world from Artificial Intelligence where boxes
can be moved around).

1.1 My Own Background of Research

My involvement in the field leading up to the present project can be divided
into three phases.

1.1.1 The Brage Project

The Brage project, financed by The Research Council of Norway (Norsk forskn-
ingsr̊ad), was a collaboration between the Norwegian University of Science
and Technology (Department of Electronics and Telecommunications, Depart-
ment of Computer and Information Science, and Department of Language and
Communication Studies), Telenor Research and Development, and Sintef In-
formation and Communication Technology. The research topic was Speech
Technology, and the main goal of the project was to improve the speech recog-
nition technology for Norwegian. Brage produced a number of publications4,

3all senses that are relevant in a linguistic way are not underspecified
4http://www.iet.ntnu.no/projects/brage/archive.php?file=Publikasjoner.html

http://www.iet.ntnu.no/projects/brage/archive.php?file=Publikasjoner.html
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an improved speech recognizer, a Wizard-of-Oz experiment, and a demonstra-
tor [55]. My role in the project was to create a dialogue manager for Norwegian
spontaneous speech. The development of the spontaneous speech grammar was
assigned to a fellow PhD student. The Buster dialogue system [104], based on
BusTUC [19; 5], was used to limit the scope of the speech recognizer. Buster
answers questions about bus departures in Trondheim and questions about
persons from the telephone book at NTNU.

My first research topic was therefore dialogue management of spontaneous
Norwegian speech. However, there do not exist many resources for this purpose
for Norwegian, and we had no grammar for spontaneous speech. Unfortunately,
it takes a long time to develop a usable grammar; a fair estimate is from 5 to
10 years. The wizard-of-Oz data was analyzed by the student in charge of the
grammar [20]. Together, we left the research topic of spontaneous speech. My
research status so far was therefore a literature study in the field of dialogue
systems and dialogue management [70; 69; 97; 41; 2].

1.1.2 A Dialogue Manager Using BusTUC

My research focus moved from spontaneous speech to written text. I decided
to start with the dialogue system Buster that is built over the BusTuc system.
The Buster system is already a dialogue system for bus questions, so my domain
focus was set to sentences about movement in general.

The BusTUC system5 answers questions about bus departures in the city
of Trondheim. The system performs a deep semantic analysis and contains
references to a bus domain ontology. The system is a commercial system and
it has been in production since 1998. In 2007, BusTUC had 800.000 requests
from its web service and 100.000 requests from its SMS-service. Trondheim is
a city with about 175.000 people.

BusTUC’s parse strategy is to use the first valid occurrence of the input
sentence. This is obtained by ordering the grammar rules with the longest
sentences first and by placing a few strategic cuts. This way of operating is
no problem within the two domains (time table questions and telephone book
questions), but we need to choose among ambiguities if we want more coverage
for the grammar.

My last attempt with this research topic was to move the BusTUC grammar
to a chart parser. The BusTUC grammar has been developed from the prin-
ciples of ExtraPosition Grammars [83], and combined with ideas from Combi-
natory Categorial Grammars [95]. The grammar is implemented with Prolog’s

5https://www.atb.no/?lang=en_GB

https://www.atb.no/?lang=en_GB


6 My Own Background of Research

Definite Clause Grammar framework. The transformation to a chart grammar
failed due too many technical obstacles. I couldn’t spend more time preparing
for parsing of text.

My research status so far was therefore an Event Calculus approach and an
analysis of a sample of input sentences from BusTUC. Lambalgen and Hamm
[62] created an Event Calculus program for the Aktionsart type accomplish-
ment. I used the same idea and I created “The Extended Event Nucleus Model”
based on Moens’ and Steedman’s Event nucleus model [72]. The details are
found in the Appendix. BusTUC received 2.517.047 sentences between 31 Oc-
tober 2010 and 1 March 2013. The sentences were analyzed and the goal was
to establish a typology of the sentences BusTUC receives.

1.1.3 Use the Wide-Coverage Grammar NorSource

The focus moved from BusTUC to the wide-coverage grammar NorSource,
where I participated in connection with a grammar tutoring application6 de-
velopment project [53]. The focus also moved from dialogue management to
mapping from an underspecified representation to a description of the world.
The grammar needed some adaption before it could be used in a pipeline. Such
as creating workable and valid MRSs, compiling the grammar for faster perfor-
mance, creating a parse ranker, and fine tuning of the grammar. The latter in
cooperation with the NorSource grammar maintainers. The software created
in the grammar tutoring application is also used in our pipeline. I have also
participated in a project for creating a multilingual Database of Verb Valence
[52]. My contribution was to create the database and a web application demo.7

A brief summary of the results from my current research phase:

• The publication “Pre-Processing MRSes” [21] in The 10th International
Conference on Computational Semantics (IWSC 2013).

• A pipeline for underspecified MRSs with Pronoun Resolution is devel-
oped. A batch demonstrator is available.

• A pipeline for specified (world domain) MRSs is developed. A demon-
strator with the Box World domain is available on the web.

• A mapping algorithm from underspecified predicates to domain specific
predicates is developed.

• A domain ontology for the Change Location domain is developed.
6http://regdili.idi.ntnu.no:8080/studentAce/parse
7http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multivalence

http://regdili.idi.ntnu.no:8080/studentAce/parse
http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multivalence
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A brief summary of the results from our previous research phase:

• A number of sentences from BusTUC is generalized and a table of the
most frequent types is presented

• A model of the Aktonsart type accomplishment called the Expanded
Nucleus Model is developed. The model has sub events for the process
and sub states for the state.

1.2 Research Method, Questions and Thesis Outline

Computer Science has strong bonds to Mathematics and Electrical Engineer-
ing, and there is a new bond between the physical sciences and computer
science in massive high-speed computations [33]. A computer scientist should
master several paradigms [103]:

• the empirical tradition where we collect a large amount of data about a
phenomena, analyze the data, develop models (theory), and then classify
the data

• the mathematical tradition where we study algorithms and information
structures

• the engineering tradition where we manage the creation of complex soft-
ware systems

In this thesis we use the mathematical and the engineering tradition. At this
point we don’t have empirical results, but in our future research we will be
able to compare different algorithms in our NLP system.

Our research topic consists of two parts. Part one is to map the gap between
underspecified MRS predicates and elements of a domain ontology. Part two
is building a pipeline for our grammar and our mapping process.

In part one, we know that the world has more details than our linguistic
representation. The linguistic representation has elements from the morpholog-
ical rules, the syntax and the lexical semantics. We start with the Aktionsart
types. Some of these types change with verb arguments and some verbs have
an inner structure with different arguments.

In part two, we want the grammar to perform well with as few resources
as possible, and the grammar should have an interface with other software
components. This means we leave the development tool (LKB) and compile
our grammar into an environment with fast algorithms. We have two options,
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PET8 tool [24] and ACE9. In order to collect performance measures for the
grammar, the competence and performance laboratory or [incr tsdb()] [80; 63]
is used. The tool is created by CSLI Stanford and the German Research
Center for Artificial Intelligence (DFKI), Saarbrücken. After the parsing of a
sentence, we want to read the most relevant MRSs into data structures and
process them. The process has two main tasks: the underspecified quantifier
scoping and the predicate gap. The first task is solved by the Swiss Army
Knife of Underspesification (Utool) [60]. The second task is the other part
of our research focus. We also want to see if we can convert an MRS into
a First-Order Logic expression, and reason with the expression with existing
First-Order Logic tools [12].

To summarize our research topic, our purpose is to build a natural language
processing system where the first component is the wide-coverage10 grammar
NorSource. NorSource produces MRSs with underspecified scope and under-
specified senses. We want to connect the undespecified senses from an MRS to
a domain ontology from a selected domain, and then reason with the ontology
elements. The reasoning process can be a question-answering system or a dia-
logue system. We split the research topic into two parts. Part one is to map
the underspecified predicates in the MRS to a domain ontology. In part one,
we have the following research questions:

1 What are suitable formal representations of linguistic events and world
events?

2 How can linguistic events be transformed into world events for later rea-
soning and analysis?

In part two, we place the mapping procedure in a pipeline where we reason
with the domain ontology elements.

8http://pet.opendfki.de/
9http://moin.delph-in.net/AceTop

10open domain

http://pet.opendfki.de/
http://moin.delph-in.net/AceTop
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In the remaining part of Part I, we define the term Ontology and Knowledge
representation, then we present a chapter for State-Of-the-Art.

Part II contains the design of the NLP system. In this part, we present a
chapter on Minimal Recursion Semantics, a chapter with algorithms for two
pipeline versions, and a chapter with an algorithm for mapping underspecified
predicates to world domain predicates.

Part III contains a description of the results. First, two pipeline imple-
mentations are presented, one with underspesified predicates and one from the
BoxWorld domain. Second, we present the design of the Change Location do-
main ontology, and we show how the mapping algorithm works together with
the domain ontology.

Part IV contains a chapter with a section for discussion, research questions,
conclusion and future work.
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Chapter 2

Definitions

We define the terms Ontology and Knowledge Representation. The definition
of Ontology is taken from Computer Science. The authors of the definition
of Knowledge Representation point out that knowledge representation is more
than just a data structure.

2.1 Ontology

The term ontology can at least be found in Philosophy and in Computer Science
(Information Science). We use the term from Computer Science and Tom
Gruber’s ontology definition [48] is:

A body of formally represented knowledge is based on a concep-
tualization: the objects, concepts, and other entities that are pre-
sumed to exist in some area of interest and the relationships that
hold them [46]. A conceptualization is an abstract, simplified view
of the world that we wish to represent for some purpose. . . . An
ontology is an explicit specification of a conceptualization.

Sowa’s definition [94, Page 492] is:

The subject of ontology is the study of the categories of things
that exists or may exist in some domain. The product of such a
study, called an ontology, is a catalog of the types of things that are
assumed to exist in a domain of interest D from the perspective of a
person who uses a language L for the purpose of talking about D .
The types in the ontology represents the predicates, word senses,
or concepts and relations types of the language L when used to
discuss topics in the domain D .
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2.2 Knowledge Representation

Davis, Shrobe and Szolovits defined Knowledge Representation (KR) through
five basic principles [31].

A knowledge representation is a surrogate. All our definitions are only a
surrogate for things in the real world. We need a model of the world with focus
on the important parts. Such a model is often an expert’s point of view. The
part of the world that is to be modeled can sometimes be crowded by details
and sometimes be unknown. Either way, the relevant parts in the real world
are modeled.

A knowledge representation is a set of ontological commitments. We want
to find the relevant terms that are used in our subset of the world. Our model
needs precise definitions of things that exist in the world and how these things
are connected; things like objects, relations, features, events, etc..

A knowledge representation is the fragmentary theory of intelligent reason-
ing. The theory is expressed by three parts:

• the representations fundamental conception of intelligent reasoning. Dif-
ferent reasoning techniques for intelligent reasoning exist. These are
mathematic logic (formal calculation), psychology (human behavior),
biology (stimulus-response), probability theory (casual networks), and
economics (rational agents). Each technique has different strengths in
different areas of reasoning, but no technique covers all areas.

• The set of inferences that the representation sanctions. We need to know
which inferences we can do.

• The set of inferences that the representation recommends. We need a
guidance to find the most intelligent inference.

A knowledge representation is a medium for efficient computing. The algo-
rithm that uses the shortest amount of time and the minimum set of resources
is the most suitable algorithm to solve the problem. The algorithm is a result
of knowing how to reason as an expert in the domain.

A knowledge representation is a medium of human expression. The rep-
resentation is the result of the collaboration between the knowledge engineers
that implements the representation and the domain experts. Both are users of
the representation.
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2.3 Summary

If we use the definition of Knowledge Representation in our research, we have
a representation used by the designers and the users of the linguistic applica-
tion. The MRS predicates are linked to a domain ontology, and the domain
contains reasoning rules. If we want to create a gold standard for the linguistic
application, we need a representation for every definition and decision in our
application. The inference in the application can be expressed with a chain
of explanations. This way the maintainers of the grammar, the maintainers
of the knowledge representation, and the users of the application can commu-
nicate about the selected domain. We have seen golden standards for words
connected to a domain, but not for the entire application.
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Chapter 3

State-Of-The-Art

We have an example from Artificial Intelligence and we searched for meaning
representation from linguistic frameworks.

3.1 Watson

Watson [37] is a computer system that was developed at IBM research and
it was designed to compete against humans in the American TV quiz show
Jeopardy. Jeopardy is rendered to be an extraordinary demanding task. Wat-
son is based on the DeepQa architecture and it was developed over three years
with about 20 researchers. The motivation for the system was the need for
computer systems that deeply analyze the breadth of relevant content to more
precisely answer and justify answers to user’s natural language questions. It is
an AI challenge; a synthesis of information retrieval, natural language process-
ing, knowledge representation and reasoning, machine learning and computer-
human interfaces. Jeopardy is a competition where confidence, precision and
answering speed are critical important (about 3 seconds). The aim of the
project was to reach the level of human champions. This means that the sys-
tem must answer 70% of the questions with 80% precision in 3 seconds or
less. The challenge was expected to advance the research in QA technologies
(parsing, question classification, question decomposition, automatic source ac-
quisition and evaluation, entity and relation detection, logic form generation,
KR and reasoning). With a large number of components in the system, the
researchers needed to compute a confidence for each component. A method
that was useful was Factoid questions – questions whose answers are based
on factual information about one or more individual entities. Some complex
clues contain multiple facts (decompose and find the common answer). The
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researchers analyzed 20000 questions and extracted the Lexical answer type
(LAT). They created a general-purpose, reusable NLP and KR and reasoning
technology that can exploit as-is natural language resources as-is structured
knowledge rather than to construct task-specific knowledge resources.

Before they started the work on Watson, the QA system Piquant was de-
veloped. This was a four person team that worked for six years. The system
was placed top three and top five in the Text Retrieval Conference (TREC).
Piquant allows use of web and the contenders prepare for the question before
the event. However, the system performed only with 13% precision in Jeop-
ardy. The team needed a better approach. A solution was drafted together
with Carnegie Mellon University [38]. Together, the Open Advancement of
Question answering initiative was started. The goal was to replicate and reuse
research results and to rapidly advance the state-of-the-art in QA. DeepQA
is a massively parallel probabilistic evidence-based architecture that use 100
different techniques for analyzing natural language, identifying sources, find-
ing and generating hypothesis, finding and scoring evidence, and merging and
ranking hypothesis.

At the end of 2008 the performance was about 70% precision at 70% at-
tempted over 12,000 questions, but it took over two hours to answer one ques-
tion. The system was moved to a massively parallel high-performance platform.
In fall of 2010, Watson answered more than 85% of the questions in 5 seconds
or less. 70% of the questions was attempted.

3.2 Step 2008

The aim of the shared task Step 2008 [14] was primarily to compare semantic
representations. The representations where generated by state-of-the-art NLP
systems parsing text. All participants had the same goal: computing semantic
representations for text. Each participant of Step 2008 parsed the same text,
and each group presented a paper describing their NLP system’s performance
on this text. A brief description of the systems components and resources
follows:

• the BLUE system by Clark and Harrison [25]

• the Boxer system by Bos [15]

• the GETARUNS system by Delmonte [32]

• the LXGram system by Branco and Costa [17]
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• the OntoSem system by Nierenburg et al. [78]

• the TextCap system by Callaway [23]

• the Trips system by Allen et al. [3]

BLUE, Boeing Language Understanding Engine, uses the broad coverage
and domain general parser SAPIR. SAPIR’s meaning representation is called
Logical Form (LF). LF is transformed into first-order syntax with a module
called the logic form generator. Subsequent processing modules are word sense
disambiguation, semantic role labeling, co-reference resolution, metonymy res-
olution, and structural transformation. BLUE can use one of the two Ontolo-
gies: WordNet [36] and University of Texas at Austin’s Component Library
(CLib) [6]. WordNet was used in Step 2008.

BOXER is an open domain software component for semantic analysis of
text. The text is parsed with the C&C tools and it generates syntax trees.
The Boxer system has created lambda-DRSs for almost all categories from the
C&C parser. The Boxer system creates the meaning representation Discourse
Representation Structure (DRS). The DRS can be transformed into First-Order
Logic. The logic can be processed with off-the-shelf provers and model builders.
The system uses the roles from VerbNet [57].

GETARUNS is a closed domain system. The meaning representation
is called Situation Semantics. The system is divided into three parts: the
lower module, the middle module and the higher module. The lower module
uses the LFG theoretical framework for parsing. The middle module is used for
semantic interpretation and discourse model construction. The higher model is
used for reasoning and generation. The system uses COMLEX [47], WordNet,
EuroWordNet [101] and CoreLex[22].

LXGram is a general purpose HPSG grammar developed with the LKB
tool. The meaning representation is Minimal Recursion Semantics. The parser
is designed for Portuguese and the text was translated into Portuguese before
parsing. The system stores the parsing results in the [incr tsdb()] tool. The
preferred analysis was selected by members of the group.

OntoSem, Ontological Semantics theory, use a meaning representation
called Text Meaning Representation (TMR). The representation uses elements
from the OntoSem ontology (multiple inheritance hierarchical collection of
frames that contains richly interconnected descriptions of types of OBJECTs,
EVENTs and PROPERTies). The system uses the Stanford parser (the pro-
cess of incorporating the parser was almost complete). The TMR can be in a
basic mode or in a extended mode. The semantic analysis (word-sense disam-
biguation, semantic dependency determination, aspect, time) produces basic
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TMRs. The discourse analysis (speaker attitude, reference resolution, seman-
tic ellipsis, discourse relations, metonymy, etc) produces extended TMRs. The
semantic analysis was used in Step 2008. The system uses the OntoSem lexicon
(written in a Lexical-Functional Grammar formalism using a Lisp-compatible
format), Onomasticon (proper names), fact repository and micro theories. A
gold standard was created with the tool DEKADE (Development, Evaluation,
Knowledge Acquisition and Demonstration Environment).

TextCap produces a meaning representation called semantic triplets (Con-
cept, Relation, Concept). The system uses the Charniak parser that outputs
syntactic parses. The system applies syntax-based discourse rules to the syntac-
tic parses. Then grammatical roles and syntactic features are added. A simple
anaphora resolution algorithm is used and senses are grounded in WordNet.

TRIPS is a broad coverage system that creates a meaning representation
called Logic Form. The system use statistical methods to guide the deep parser.
The chart is filled with data form a part-of-speech tagger and named entity rec-
ognizer. The Trips grammar is a lexicalized context-free grammar augmented
with feature structures and feature unification (X-bar theory). The system
uses the Trips ontology. The system uses VerbNet, the Extended version of
EuroWordNet and Comlex. The group created a gold standard for the text
with a graphical editor.

3.3 Other Related Work

Frank et al. [42] describe a question answering system. They use the Heart
of Gold (HoG) NLP architecture1 [90; 89]. Their domains are the Nobel prize
domain and the Language Technology World information portal LT World.2

They use Robust Minimal Recursion Semantics (RMRS) [28], a version of
MRS, and they transform their RMRSs into frames3 using rewriting rules. The
questions are answered from domain-specific concepts and properties stored in
a relational database.

Other examples of world event models for the Change Location domain are:
the Motion frame in FrameNet,4 the VerbNet class run-51.3.2, and the “Travel
by train” plan, from [1, page 481].

Schäfer et. al. [88] are extracting factual relations from the ACL Anthol-

1A middleware architecture for language processing components. Located at http://

heartofgold.dfki.de/
2http://www.lt-world.org
3theory of Frame Semantics, as pursued in the FrameNet project
4https://framenet.icsi.berkeley.edu/fndrupal/home

http://heartofgold.dfki.de/
http://heartofgold.dfki.de/
http://www.lt-world.org
https://framenet.icsi.berkeley.edu/fndrupal/home
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ogy5. They are using the HoG NLP architecture with the tools: the generic
named entity recognizer SProUT [35], part-of-speech tagger TNT [18], the ERG
grammar and OntoNERdIE [87] (a tool that can map ontologies to resources
for named entity recognition and resources for information extraction). They
are using the ontology LT World web portal.

Schlangen describes a dialogue system that uses fragments [91]. They ex-
plain how they implement fragments in ERG for their solution.

3.4 Summary

WATSON is a system with a large number of theories in a massively parallel
probabilistic evidence-based architecture. It is difficult for a PhD student to
compare his research to the work of a experienced research group with large
resources. However, the PhD student can seek a collaboration with the group.

In Step 2008, we have a description of several linguistic frameworks, but
not a comparison of the representations. The systems use different parsing
technologies and representation formats and this makes it difficult to compare
the representations and reach a consensus on what linguistic theory to use and
how to implement it. Bos [16] advocates to use the NLP systems as black-
box units as a solution to this problem. If we want to create a linguistic
application for a selected domain we also experience that there is no consensus
on describing and reasoning in a domain of the world either. This makes it
difficult to create linguistic applications independent of a linguistic framework.

We did not find any system that used MRS to reason within a domain.6

The LOGON project used MRS in machine translation, but they did not solve
the MRS or connect it to a domain.

5The ACL Anthology is a collection of scientific articles from international conferences,
workshops and journals on computational linguistics and language technology

6Schlangen uses MRSs, but he does not describe how
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Part II

Design





Chapter 4

Minimal Recursion Semantics

We start with a brief introduction to Minimal Recursion Semantics (MRS) [29]
and then we explain how we use an MRS.

4.1 A Brief Introduction

The DELPH-IN1 collaboration is a consortium that jointly works with deep lin-
guistic processing of natural language based on the grammar formalism HPSG
and the meaning representation MRS. MRS is a meaning representation that
can be used for parsing (text to MRS) and generating (MRS to text). An MRS
underspecifies the quantifier scopes and the word senses. The MRS contains
elements that can be put together in different ways to form a logic expression.
An MRS can be the source of many logic expressions, one for each scope. In-
stead of returning all the possible logic expressions, the compiling process is
delayed or as we say the quantifier scope is underspecified. All the word senses
that are relevant in a linguistic way are not underspecified, the rest are delayed
or underspecified. We name an MRS with underspecified scope an unresolved
MRS, and each logic expression an MRS can form for a resolved MRS. The
parsing process gives one or more unresolved MRSs. An unresolved MRS can
be the source of logical form equality ambiguities, while a resolved cannot.

The elements of an MRS are defined by the structure mrs(T,R,C), where
T is the top handle, R is a bag of elementary predictions (EP), and C is a bag
of constraints. An EP can be written as:

handle:relation(arg1. . . argn, sc arg1. . . sc argm)

1http://www.delph-in.net/

http://www.delph-in.net/
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The arguments (arg) are a list of zero or more ordinary variable arguments
of the relation. The arguments (sc arg) are a list of zero or more scope argu-
ments of the relation. A handle that is placed before the relation is called a
label (root), and a handle that is in the list of the scope arguments is called a
hole. A hole is a placeholder for a label. In this way, all the EPs in the MRS
form a tree.

A variable for an event starts with the character e; a variable for an object
starts with the character x. A variable can be augmented with extra informa-
tion with the format: variable, type and value. The variable e can have the
type TENSE with the value PRES, and the variable x can have the type NUM
with the value SING.

Every dog chases some white cat (4.1)

The MRS from (4.1) has the following structure:

T h0

C h10 =q h7

R { h1:every(x1,h3,h8), h3:dog(x1), h7:white(x2), h7:cat(x2),
h5:some(x2,h10,h9), h4:chase(e1,x1,x2) }

The top handle is the highest node in the tree (h0 in our example). In the
EP h1:every(x1,h3,h8), h1 is a label and both h3 and h8 are holes. If there is
more than one EP with the same label, they form an EP conjunction. The
label h7 (“white” and “cat”) thus creates an EP conjunction. We say that
the quantifier every outscopes the quantifier some when the label h5 (some)
is placed in one of the holes of label h1 (every). In other words, the EP with
every is higher in the tree than the EP with some. The handle constraint used
is called “equality modulo quantifier”, qeq constraint or just “=q”. These
constraints always relate a hole to a label. The hole is either directly filled-in
by the label or it is floated-in (another EP is between the hole and the label).
The only constraint in our example states that the hole in h10 (some) must be
directly connected or filled-in by label h7. An unresolved MRS has holes that
are not filled with an existing label (unplugged holes).

The resolved MRS has additional constraints, definition 4 [29, page 293].
It must not introduce free variables (all variables must be bound by a quan-
tifier). The resolved MRS must be constructible as a tree and the immediate
outscoped constraint and the qeq constraints must be true. In our example,
the EPs can be compiled together in four ways:
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(a) l1

h3 l5

h10 h9

(b) l1

l5

h10 h9

h8

(c) l5

l1

h3 h8

h9

(d) l5

h10 l1

h3 h8

Since the hole h3 immediately outscopes the label h3 (dog) in tree (b), the
tree is pruned away. The (c) tree is pruned away because it introduces a free
x-type variable in h4 (constraint causes h7 = h8). The (a) and (d) trees re-
main. The possible assignments between the labels and holes are (hole 3 in l1
is bound):

• h0 = l1, h8 = l5, and h9 = l4

• h0 = l5, h9 = l1, and h8 = l4

Figure 4.1: Unresolved MRS in Utool

The current MRS is read and displayed by the Swiss Army Knife of Underspe-
sification (Utool) [60], and the unresolved MRS is shown in Figure 4.1. The
resolved MRSs are shown in Figure 4.2 and Figure 4.3. The same resolved
MRSs can be displayed as First-Order Logic expressions:

• ∃(y)[white(y) ∧ cat(y) ∧ ∀(x)[dog(x)→ chase(x, y)]]

• ∀(x)[dog(x)→ ∃(y)[white(y) ∧ cat(y) ∧ chase(x, y)]]

Both expressions can be expressed in plain text. The first:

There exist a white cat and every dog chases that cat

The second:

For every dog there exist a white cat which this dog chases
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Figure 4.2: First Resolved MRS Figure 4.3: Second Resolved MRS

4.2 Resolved MRSs

We need an algorithm to transform an MRS from the unresolved state to the
resolved state. The Linguistic Knowledge Builder (LKB) tool [27] contains one
such algorithm and Utool contains another. The main differences between the
two are that Utool implements stricter constraints and can perform redundancy
elimination for logically equal readings. A resolved MRS has its holes filled
with another EP’s handle and the EPs form a tree according to the definition
4 by Copestake [29]. The algorithm’s goal is to compile a valid resolved MRS
in the shortest amount of time. A brute force approach will start to collapse
when the number of EPs passes somewhere around eight. Niehren and Thater’s
approach was to translate the MRS into a normal dominance constraint [77].
The dominance constraints have existing algorithms that solve the problem2

efficiently [4; 13]. After an MRS is translated, only a subset of the possible
graphs are preferred. One solution to this problem is to add extra graph
constraints. Koller classifies graphs as hypernormally connected [59] if his
set of constraints are true. Even when a resolved MRS is found, it can be
the source of a large number of logically equal ambiguities. The problem can
be illustrated by an example from the Rondane Treebank [81], parsed by the
English Resource Grammar [40]. About 2.4 trillion readings were reported
from (4.2).

Myrdal is the mountain terminus of the Fl̊am rail line which makes
its way down the lovely Fl̊am valley to its sea-level terminus at
Fl̊am. (Rondane 650).

(4.2)

2transform an unresolved MRS to one or more resolved MRSs
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Koller solved the logically equal ambiguity problem by transforming the dom-
inance graph into a chart [58]. Koller and Thater presented an algorithm that
removes logically equal resolved MRSs from this chart [59]. The algorithm
reduced the ambiguities in (4.2) from 2.4 trillion readings to 1. The transfor-
mation algorithm from unresolved MRSs to resolved MRSs and the algorithm
for elimination of logically equal readings are implemented in Utool.

4.3 Types of EPs

An MRS can contain different types of EPs. Some EPs denote an individ-
ual, others denote an event. These EPs can be classified with a part-of-
speech type. In some MRSs, we can find extra EPs. For example “that car”
can result in: h10: commsg deict rel(x9) and h10: bil n rel(x9). The relation
“ commsg deict rel” can be used in our pragmatic processing. An other exam-
ple is the predicate “first position prominent” that indicates that an adverb is
placed first in the sentence. Other predicates can be part of a larger structure.

The boy, the girl and the dog smiled (4.3)

The sentence (4.3) is parsed with the English Resource Grammar (ERG) and

key pos pred sense EP
x10 n boy 1 h11: boy n 1 rel(x10)
x6 x implicit conj h16:implicit conj rel(x6,x10,x14)
x20 n girl 1 h21: girl n 1 rel(x20)
x14 x and c h22: and c rel(x14,x20,x23)
x23 n dog 1 h27: dog n 1 rel(x23)
e2 v smile 1 h28: smile v 1 rel(e2,x6,p29)

Table 4.1: The EPs of Example 2

it gives the EPs in Table 4.1 and the logical form is displayed in Figure 4.4. The
“dog” and the “girl” are paired together in the predicate “ and c rel”. This
predicate and the “boy” are paired together in the predicate “implicit conj rel”.
The “implicit conj rel” structure (predicate) has the key x6 and this key is used
as a verb argument in e2.
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Figure 4.5: The IF Structure
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If the dog barks then the cat bolts (4.4)

The sentence (4.4) is also parsed with ERG and it gives the EPs in Table 4.2

key pos pred sense EP
e5 x if x then h3: if x then rel(e5,h4,h6)

q the h7: the q rel(x10,h9,h8)
x10 n dog 1 h11: dog n 1 rel(x10)
e13 v bark 1 h12: bark v 1 rel(e13,x10)
e15 a then 1 h14: then a 1 rel(e15,h16)

q the h17: the q rel(x20,h19,h18)
x20 n cat 1 h21: cat n 1 rel(x20)
e2 v bolt 1 h22: bolt v 1 rel(e2,x20,p23)

Table 4.2: The EPs of Example 3

and the logical form as displayed in Figure 4.5. The event e5 is a structure
holding two other events, one for the “if” condition node and one for the then
conclusion node.

4.4 Quantifiers

There are a large number of quantifiers that can appear in an MRS compared
to First-Order Predicate Logic. A small collection from NorSource:

• pronoun q rel

• def q rel

• udef q rel

• some q rel

• univ q rel

We can think of quantifiers as sets and we can use the First-Order Predicate
Logic quantifiers ∃ (one member) and ∀ (every member). The quantifiers used
in an MRS can be defined as one of these types. For example, the quantifier
“ def q rel(x1)” can be defined as “ exist q rel(x1)” and an additional feature
on the variable x1 can be created “feature(x1,quantifier, def q rel)”. In this
way, the MRS can be converted into an expression in First-Order Logic and
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we can at the same time preserve the information given by the quantifier.
Quantifiers like “ some q rel” can be solved with an extra cardinality function
on the set following the theory of Generalized Quantifiers [44, page 230, table
7.1].

4.5 Interpretation

A resolved MRS with First-Order Logic quantifiers is an expression that can
be true or false in a model of the world. An example of an interpretation in
First-Order Predicate Logic is given in Appendix B.3. In natural language pro-
cessing, statements can have an interpretation, but questions and commands
do not, they only have a subset of the interpretation often called presuppo-
sition, and finding the presuppositions for a question or a command is not
straight forward. When we have found our presuppositions, we have to find
the members of our quantifier sets. For example, in the ACME Computer
Company, 2 boys and 4 girls work in the first floor, and 6 boys and 8 girls work
in second floor. If we say: “All the girls that work on the second floor wear
pink overalls”, the ∀ set must be filled with the 8 girls from the second floor
and not the 12 girls from the Company. Another complicating factor is the
model of the world. In natural language processing, we don’t know the entire
model. We actually use natural language to collect information. A possible
approach to this problem is to classify predicates as “known” or “unknown”,
and we can only interpret predicates that are marked as “known”. Anyway,
this is outside the scope of our research focus.

4.6 Summary

An MRS contains predicates that we can connect to a domain, and an MRS
can be solved with Utool. We found several types of predicates: predicates
with part-of-speech, reasoning predicates like “ if x then rel” from ERG, and
predicates introduced by the linguist like “first position prominent” from Nor-
Source. The predicates used in an MRS must be defined in order to be used. If
we transform the quantifiers to the quantifiers in First-Order Predicate Logic,
we can use the notion of truth from First-Order Predicate Logic. The alterna-
tive is to define an interpretation for every quantifier. However, the challenge is
to fill the sets of the quantifiers with members from the selected domain. With
an expression in First-Order Predicate Logic, we can use Theorem Provers and
Model Finders as described by Bos and Blackburn [12].
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Pipelines

We called an MRS that underspecifies the quantifier scope for unresolved. An
unresolved MRS is the source of one or more resolved MRSs, one for each set
of quantifier scopes. We call an MRS that underspecifies the word senses for
unmapped and when the word senses are specified for mapped. We can also
distinguish three levels for the object and event references in an MRS: the local
level, the discourse level, and the world level.

The local level contains MRSs with local object and event references. The
MRSs that come from the parser have local object and event references. This
level is used when we look at an MRS in isolation.

The discourse level contains MRSs with discourse object and event refer-
ences. This level is used when we look at a series of MRSs. The numbering of
objects and events start at 1 and continues to the end of the discourse. The
objects are in the interval [x1d, x2d, . . . , xnd] and the events are in the inter-
val [e1d, e2d, . . . , emd]. Each object and event has a unique identifier in the
discourse, and anaphora resolution is possible at this level.

The world level contains world references. The objects are in the interval
[x1w, x2w, . . . , xnw] and the events are in the interval [e1w, e2w, . . . , emw].
Each object and event has a unique identifier in our model of the world. For
example, if we read a document about the assassination of Kennedy, we want
a unique identifier for the event and a unique identifier for the person. We can
store the situation and reuse it later on if we are looking for similar situations.
If we don’t have a world model we can use the series from the underspecified
discourse level. This is the case when we are collecting and storing information
about a domain. The assigning of world references is a manual process.

The underspecified scopes and word senses together with the three levels
of object and event references can be used together in different combinations.
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The MRSs that come from the parser is unresolved, unmapped and the object
and event references are at the local level. If we work with a discourse, we want
to use object and event references at the discourse level, and we can use Utool
to find one or more resolved MRSs. If we work with a selected domain and
a discourse, we find the word senses and we use object and event references
at the discourse level. For each resolved MRS we find the object and event
references at the world level.

A linguistic application at the specified world level can be divided into a
series of steps. The steps for a dialogue system can be: read a sentence from
the speaker, parse the sentence, select an MRS, validate the MRS, calculate
discourse references, execute anaphora resolution, map predicates, find world
references, infer dialogue act, analyze dialogue act, execute the act, analyze
the result, and send message back to speaker.

5.1 Initial Steps

Parsing a sentence with an HPSG grammar that is developed in the LKB
framework, can produce a series of meaning representations. Each member
in this series can be classified as wanted or unwanted. A wanted MRS is the
MRS the linguist intended to create, while an unwanted MRS is an MRS that is
the result of too few restrictions in some part of the grammar. Unfortunately,
these types of MRSs come in a random order and they are not formally marked
as wanted or unwanted. The wanted MRSs should further be placed at a
point in the range: most probable to least probable. One solution to this
classification problem is to create a parse ranker for our grammar. Our parse
ranker is created with the LOGON tree tools ([tsdb++], Velldal’s training and
experimenting software [98], and Malulf’s statistical software TADM1 [67]).
Before we can create the ranker, we need to collect a series of sentences that is
typical for the domains we use in our pipeline. We store these in a [tsdb++]
profile and then we parse and store the result in the same profile. Then we
annotate the data. The grammar rules, syntax tree, and the parts of the MRS
are annotated as wanted or unwanted. This culminates in the most wanted
MRSs and we save these choices in our profile. This profile and other annotated
profiles can be described as our treebank. Next, we run an experiment in order
to find the best parameters for the training of our Maximum Entropy model.
The experiment starts with a range of parameters and the process measures
the effect of each combination. Finally, we select the best combination and
train our Maximum Entropy model.

1Toolkit for Advanced Discriminative Modeling
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We also create an equivalence file for the quantifiers (Utool). Utool uses
this file to eliminate logically equivalent readings.

5.2 The Pipeline with Unmapped Predicates

Our goal at this point is to produce unmapped MRSs with object and event ref-
erences at the discourse level. We assume that the grammar is loaded together
with the Maximum Entropy model. In line 1 to 3 in Algorithm 1, shown
below, the equivalence file is loaded, the discourse and the pronoun model are
initiated. In line 4, a sentence is read from the input. In line 5, we continue
the loop until the input sentence is empty. The sentence is parsed in line 6
and the result is placed in the table MrsTab. In line 7 the top ranked MRS
is placed in the variable theMrs. In line 8, Utool’s solvable function is used

Algorithm 1 Unmapped Discourse Pipeline
1: ef ← NorSource.equivalence file . Utool data
2: ds ← Ø . discourse
3: pm ← Ø . pronoun model
4: sentence ← NorSource.readSentence
5: while ( sentence.isNotEmpty ) do
6: MrsTab[] ← NorSource.parse(sentence)
7: theMrs ← MrsTab[1] . top ranked MRS
8: if ( Utool.isSolvable(theMrs) ) then
9: plugTab[] ← Utool.solve(theMrs, ef) . data to solve MRS

10: theMrs.add( plugTab ) . update MRS
11: vMrs ← NorSource.validate(theMrs) . validate MRS
12: if ( vMrs.accepted() ) then
13: vMrs.discource references() . change references
14: vMrs ← pm.processMrs( vMrs ) . solve and collect
15: ds.add(vMrs) . discourse element
16: end if
17: end if
18: sentence ← NorSource.readSentence
19: end while
20: NorSource.process(ds) . discourse

to check if the MRS is well-formed according to the MRS definitions2 [29]. If
the condition doesn’t hold the algorithm jumps to line 18, else the algorithm

2Utool is stricter than the LKB software, see [43].
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continues at line 9. The plugTab is filled (line 9) with plugging data from
Utool that takes the MRS and the equivalence file as arguments. The plugging
data are assignments between holes and labels in the MRS; there are a set of
plugging data for each relevant scope. We don’t solve the MRS at this point;
we postpone that until we have a world model. The plugging data are stored in
the MRS in line 10. In line 11 we validate the MRS. Here we want to search
our MRS for properties that can lead to problems. Our validating procedure
contains a set of functions. The functions have names and they are true or false
for an argument. We create variables or list of variables for each function that
is positive. The functions are: empty index, empty feature, empty reference,
key conjunction, and argument EP conjunction. An empty index exist when
the index value refers to a variable that is not an EP’s arg0. An empty feature
exist when a feature value refers to a variable that is not found in the EP’s
arguments. An empty reference exist when an argument refers to a variable
that is not an EP’s arg0 and the variable is not in the set of feature values.
A key conjunction exist when more than one EP in an MRS have the same
arg0 and they are not quantifiers. An argument EP conjunction exists when
an argument contains a label that is an EP conjunction. In Table 5.1, the

EPs Features
h3:pred1(arg0(e1),arg1(h9)) e1,feature1,value1

h9:pred2(arg0(u1),arg1(x1),arg2(u10)) u12,feature2,value2

h9:pred3(arg0(u1),arg1(x1),arg2(x2),arg3(u15)) u15,feature3,value3

h2:pred4(arg0(x1)) u16,feature4,value4

h4:pred5(arg0(x2))

Table 5.1: Validating EPs and Features

variable u12 is an empty feature. The variable u10 is an empty reference. The
arg0 of pred2 and pred3 form a key conjunction. The argument h9 in arg1 of
pred1 is an argument EP conjunction.

If the MRS isn’t accepted the algorithm continues at line 18, else we con-
tinue at line 13. In line 13, we replace all local object and event references
with the series from the discourse. Now, the objects and events have a unique
reference. The “processMrs” function in line 14 performs pronoun resolutions
and it collect objects. The “processMrs” function takes an MRS as an argu-
ment. We perform a resolution when we find a pronoun. The algorithm is very
simple: we search for candidates from the last element in the candidate table
and a candidate is found when the pronoun and the candidate unify on the
object properties gender, number, and person. We collect all objects that are
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not pronouns and we select their predicate name, reference, CARG, together
with the object properties gender, number, and person. The selected data are
inserted last in the candidate table. In line 15, the MRS is added to the
discourse. In line 18, a sentence is read from the input. In line 20, all the
sentences are added to the discourse and we can process our discourse.

Algorithm 2 Mapped Discourse Pipeline
1: ef ← NorSource.equivalence file . Utool data
2: ds ← Ø . discourse
3: dm ← Ø . pronoun model
4: on ← NorSource.ontology . domain ontology
5: mo ← NorSource.worldModel . logic model
6: dk ← NorSource.domainKnowledge . detailed domain
7: sentence ← NorSource.readSentence
8: while ( sentence.isNotEmpty ) do
9: MrsTab[] ← NorSource.parse(sentence)

10: theMrs ← MrsTab[1] . top ranked MRS
11: if ( Utool.isSolvable(theMrs) ) then
12: plugTab[] ← Utool.solve(theMrs, ef) . data to solve MRS
13: theMrs.add( plugTab ) . update MRS
14: vMrs ← NorSource.validate(theMrs) . validate MRS
15: if ( vMrs.accepted() ) then
16: vMrs.discource references() . change references
17: vMrs ← pm.processMrs( vMrs ) . solve and collect
18: mapMrs[] ← NorSource.map(vMrs, on)
19: worldMrs[] ← NorSource.interpretation(mapMrs, mo)
20: actMrs ← NorSource.dialogueManagement(worldMrs,dk)
21: answer ← NorSource.execute(actMrs,dk,ds,mo)
22: NorSource.writeAnswer(answer)
23: end if
24: end if
25: sentence ← NorSource.readSentence
26: end while

5.3 The Pipeline with Mapped Predicates

In this algorithm we want to produce resolved and mapped MRSs with object
and event references at the world domain level. We assume that the grammar
is loaded together with the Maximum Entropy model. In line 1 to 6 in
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Algorithm 2, the equivalence file is loaded, the discourse and the pronoun
model are initiated, the domain ontology is loaded, the world model is loaded,
and the detailed domain knowledge is loaded. Line 7 to 17 are the same as
described in Algorithm 1. In line 18, we map the underspecified predicates to
domain ontology predicates and the result is placed in the table mapMrs. The
algorithm is presented in Chapter 6. In line 19, we transform the unsolved
MRS to one or more solved MRS with the plugging data, then we interpret the
MRS. Statements are completely interpreted, but commands and questions are
interpreted by their presuppositions. The MRSs that are true First-Order Logic
expressions are placed in the worldMRS table with world predicates and world
references. In line 20, the simple dialogue manager finds the most probable
dialogue act and places it in the variable actMrs. The dialogue manager uses
the worldMrs table together with the detailed domain knowledge. The dialogue
act is executed in line 21. The function uses the dialogue act, the detailed
domain knowledge, the discourse and the world model. The world model can
be changed in line 21. The result of the dialogue act is sent back to the user.

5.4 Summary

We solve the problem with wanted and unwanted MRSs with a parse ranker.
We must build our ranker from statements that is typical from our selected
domain. We check the quality of the MRS with Utool and our validating
procedure. Utool checks if the MRS can be put together as logic expression (one
set of pluggings for each scope), and our validating procedure checks if the MRS
is in a format we can handle. If we transform the object and event references to
a sequence of unique references, we can create a discourse. We have presented
two algorithms for processing an MRS; one for the underspecified discourse
level, and one the specified world level.

We want to implement a more suitable anaphora resolution algorithm in
our pipeline, for example Hobbs’s naive approach [71, chaper 4.5]. At this
point we receive a syntax tree and an MRS from the parser, but the nodes of
the syntax tree is not connected to the predicates (EPs) of the MRS. Words
are showed as tokens in the syntax tree and words are showed as predicates
in the MRS. Anaphora resolution within an MRS is already implemented in
NorSource, so we have to adjust an extern algorithm to work on the resolutions
that are outside the scope of NorSource.

In the pipeline with unmapped predicates we delayed the solving of an
MRS, because we did not have a model. However, we can find a minimal
model with a Model finder as shown by Blackburn and Bos [12]. This way we
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can check if our discourse is satisfiable.
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Chapter 6

Mapping From Linguistic
Representations To World
Events

Vendler [99; 100] grouped verbs into classes based on their temporal properties,
according to duration and presence of a terminal point; For instance a verb
with a terminal point is called telic (the verb culminates). Vendler’s classes
are also known by other terms such as: eventualities, situations, lexical aspect
or Aktionsart1. We prefer the term Aktionsart. The defined verb classes are:

• state

• point

• process

• achievement

• accomplishment

Comrie [26] added the semelfactive or the point to the list. The state class
describes an object with a property or an object in a state. The example in
(6.1) states that Mary is in a pregnant state. The state has a time point for
the beginning and one for the end. The tn is within the duration of the state.

Mary is pregnant (6.1)

1German for ‘kind of action’
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The point class describes an event that happens at a singular time point (no
duration). An example is shown in (6.2).

John blinked (6.2)

The verb class process, shown in (6.3), describes an event with duration.

Fred is watching the news (6.3)

The achievement class is an event that happens at a time point, and it culmi-
nates in a state. An example is (6.4). The culminated state is that Mary has
a book.

Mary bought a book about Artificial Intelligence (6.4)

The accomplishment2 class describes a process that culminates in a state. After
the drinking process in (6.5), the orange juice is consumed and the glass is
empty.

John drank a glass of orange juice (6.5)

Some basic regularities about the Aktionsart types and prepositions can be
stated. For instance in English, if an event is modified with the preposition
for, then the event is not telic (6.6). If an event is modified with the preposition
in, then the event is telic (6.7).

John drank wine for an hour (6.6)

John drank a glass of orange juice in an hour (6.7)

The verb’s connection to a class is not fixed, because a verb argument
can move an event from one class into another. This phenomenon is called
aspectual composition or coercion. Moens and Steedman [72; 73] introduced a
state diagram for coercion, and a system of rules for carrying out such aspectual
composition is called aspect calculus.

Some verbs that are telic can culminate in a state that is not that obvious.
In (6.8), the poem is translated from one thing into another, but the state is
hidden in knowledge about the world.

John translated the poem (6.8)

2An achievement is also called a culmination and an accomplishment is called a culminated
process [72]
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Sometimes it is not the case that a simple set of rules determines the Aktionsart
type and the state. In (6.9), the type is state. In (6.10) the type is achievement,
and in (6.11), the type is accomplishment.

The soup was cool (6.9)

The soup cooled (6.10)

John cooled the soup (6.11)

An event can be described as a structure. One such structure is the previously
presented Aktionsart types. According to Levin and Hovav, the components
of an event structure are the root (initial verb class), aspectual notions and
causal notions [65]. A verb argument can change the root. Verbs and their
arguments can be divided into a number of classes with different features [64].

An event can be split into a chain of sub-events where the sub-events have
different arguments. In (6.12), the first sub-event is kick(John,Ball) and the
second sub-event is move(Ball, Over fence). The first sub-event causes the
second sub-event to happen. John is not involved in the second sub-event.

John kicked the ball over the fence (6.12)

So far, we have illustrated that the Aktionsart types and some verbs have
structure and that a culminating state can be located in the context and not
in the sentence. We now present features of the domain “Change Location” ,
where we model the verbs and the verb arguments for objects that are moving
from one location to another. In this domain we have concepts like vehicle, lo-
cation, path, sub-path, driver, cargo, traveler, directions, etc.. These concepts
are part of the language describing events in the domain.

mannen kjørte bil til Trondheim
the man drove a car to Trondheim

(6.13)

The event in (6.13) can be described by event=change location, driver=man,
vehicle=car, path.end=Trondheim.
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mannen kjørte E6 til Trondheim
the man drove E6 to Trondheim

(6.14)

The event in (6.14) can be described by event=change location, driver=man,
vehicle=unknown, path.name=E63, path.end=Trondheim.

mannen kjørte til Trondheim
the man drove to Trondheim

(6.15)

The event in (6.15) can be described by event=change location, driver=man,
vehicle=unknown, path.end=Trondheim.

veien g̊ar til Trondheim
the road goes to Trondheim

(6.16)

The event in (6.16) can be described by event=path description, path.name=road,
path.end=Trondheim.

We want to incorporate structure and the domain language in our mapping
algorithm. The concepts and the relations in this language is our domain on-
tology. Elements from the ontology are used to create restrictions between a
verb and its arguments. Our claim is that the predicates in the MRS to some
extent reflect the syntax tree. Our starting point is the principle of composi-
tionality, and a definition from Partee [82] is:

The meaning of an expression is a function of the meanings of its parts and of
the way they are syntactically combined.

There are more than one way to combine two constituents into a third. Cruse
[30, chap. 4] has analyzed the problem and refers to the additive mode and the
interactive mode. The additive mode is when the meanings are simply added
together. The interactive mode is when the meaning of at least one constituent
is radically modified. The interactive mode can be divided into endocentric and
exocentric. The endocentric mode is when the resulting meaning is of the same
type as one of the constituents. The exocentric mode is when the resulting
meaning is of a different basic type from either of the constituents. Examples
of endocentric combinations are:

• Boolean combination. An example is ‘round table’ where the class of
round is intersected with the class of tables.

3The UN organ United Nations Economic Commission of Europe (UNECE) has named
the road from Trelleborg in Sweden to Kirkenes in Norway as E6 (3120 km)
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• Relative descriptors. An example is ‘a small elephant’ and the intersec-
tion here is more complex. The smallness is measured with an elephant
scale.

• Negational descriptor. An example is ‘a fake Ming vase’. The head is
negated, but the referent is not given. The expression gives an indication
of where to find the referent.

An example of an exocentric combination from [30, page 67] is the preposition
in which denotes a relation, and a noun phrase such as the box, which denotes
a thing, producing a prepositional phrase in the box, which denotes a location.

l3

l7 l11

l8 l14

c3

c11

c14c8

c7

Figure 6.1: Tree Semantics
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c7

c11

c8

c14

Figure 6.2: Node Relations

The predicates in an MRS can be constructed to form a tree. A simple
example is an intransitive verb with a modifying preposition phrase. The verb
is the root of the tree, the verb argument is a leaf, and the preposition phrase
is a sub tree. This tree can be used to compile deeper semantics together.
We use a simple depth-first search to compile the meaning of a node and its
constituents. In Figure 6.1, the search starts at the top node and continue
down to node l7 ; up to the root and down to node l8 ; up to node l11 and
down to node l14 ; then up to node l11 and the root. At each node, a semantic
representation is compiled with a template. The template applies constraints
to the nodes and it defines a returning type for the parent node. The boxes
represent the EPs and the circles represent the elements from the ontology. The
question is: what happens when we compile the meaning of two words together?



44 Prepare The MRS

We claim that the meaning can create a higher meaning structure where the
words’ meaning representations are parts, but not necessarily prominent units.
Two nodes can be arguments of a third (verb), or the nodes are connected with
a relation (preposition phrase). When all nodes are compiled together as shown
in Figure 6.1, possible tests are performed between nodes. This is expressed
as solid lines in Figure 6.2. A dotted line represents a possible relation that is
not yet checked. These relations must be checked with a reasoning mechanism
after all nodes are compiled together.

In the next three sections, we prepare the MRS, create a predicate tree and
present the mapping algorithm.

6.1 Prepare The MRS

Before we create the predicate tree, we prepare our MRS. The predicates from
the EPs are split into the fields predicate, part-of-speech and sense. The argu-

Row EP
1a h15: property rel(arg0(e2),arg1(h16))
1b h16: svart a rel(arg0(u17),arg1(x4))
2a h3: buss n rel(x4)
2b h3: fra p rel(u10,x4,x8,u9)
2c h11:named rel(x8,dragvoll)
3a h8: kjøre v rel(e2,x4)
3b h8: fra p rel(u9,x4,x11,u10)
3c h8: til p rel(u16,x4,x17,u18)
4a h8: g̊a v rel(e2,x4)
4b h8: ut adv rel(u10,x4,u11,u9)
4c h8: av p rel(u10,x4,x12)

Table 6.1: Parts of MRS, Pseudo Code

ments are divided into keys, predicate arguments and holes. The quantifiers are
removed and the predicates called named are replaced by their CARG values4.

4When we create our Named Entity Recognition program, we will attach a type to every
name and use that type instead of the CARG
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Algorithm 3 Create Predicate Tree Table Algorithm
1: procedure create-predicate-tree(theMrs)
2: pTree ← NorSource.replaceLabelWithKey(theMrs)
3: pTree ← NorSource.fillModTab(pTree)
4: return pTree
5: end procedure

The algorithm for creating the Predicate Tree Table is described in Algo-
rithm 3. At line 2 in the algorithm, the table is filled with the elements from
the prepared MRS. In line 3, if an EP has an argument containing a label,
the label of the argument is replaced with the key from the predicate that
the labels refer to. An example is from the sentence “bussen fra Dragvoll er
svart”/“the bus from Dragvoll is black”. Here the predicate “ property rel”
has the argument ARG1(h16) (shown in row 1a in Table 6.1). The label of
the argument is replaced by the key of EP with label h16 (shown in row 1a
in Table 6.2). In line 4, the modTab is filled with modifying EPs like PPs,
adverbs, and adjectives. The sentence “bussen fra Dragvoll er svart”/“the bus
from Dragvoll is black” has an MRS where a noun is modified by a PP (shown
in row 2a,2b and 2c in Table 6.1). In NorSource, the preposition for a move-
ment is expressed with the subject of the verb, and the difference between a
modification of a noun and a modification of a verb is the label of the EPs.
A modification of a noun is expressed by an EP conjunction with the noun
and the preposition, while a modification of a verb is expressed with an EP
conjunction between the verb and the preposition. In our example, the noun’s

Row label key predicate pos sense argTab modTab
1a h15 e2 property v u17

1b h16 u17 svart a x4

2a h3 x4 buss n u10

2b h3 u10 fra p x4,x8

2c h11 x8 dragvoll na
3a h8 e2 kjøre v x4 u9,u16

3b h8 u9 fra p x4,x11

3c h8 u16 til p x4,x17

4a h8 e2 g̊a v x4 u10

4b h8 u10 ut av adv p x4,x12

Table 6.2: Parts of Predicate Tree Table, Pseudo Code

modTab is filled with the key from the PP (shown in row 2a in Table 6.2). The
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sentence “bilen kjører fra Trondheim til Bergen”/“the car drives from Trond-
heim to Bergen” has an MRS where a VP is modified by two PPs. The EPs
are shown in row 3a, 3b and 3c in Table 6.1. The verb’s modTab is filled with
the keys from the two PPs (shown in row 3a in Table 6.2). A movement with
a direction is expressed with a verb, preposition and an adverb. An example
is “Frank gikk ut av bilen”/“Frank went out of the car”. The example has
an MRS that contains the EPs in row 4a,4b and 4c in Table 6.1. Since the
preposition and the adverb have the same key, the EPs are merged together
into a adv p type. The merged EP is modifying the verb (shown in row 4a in
Table 6.2).

6.2 The Predicate Tree

After the Predicate Tree Table is created, the root of the tree must be found,
and sometimes an MRS can contain more than one tree that share a com-
mon node. An example is “Gutten gikk til min bror”/“the boy went to my
brother”. The Predicate Tree Table for a selected MRS is shown in Ta-

label key predicate pos sense argTab modTab
h3 x4 gutt n
h8 e2 g̊a v x4 u11

h8 u11 til p x4,x10

h12 x13 pron pr
h17 x10 bror n
h17 e18 poss c v x13,x10

Table 6.3: Search for Roots Example

     mod       poss_c

    __|_        __|_

   /    \      /    \

  gå    til  pron  bror

   |     |

   |     |

 gutt  bror

Figure 6.3: Search for Roots Example
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ble 6.3 and the corresponding trees are shown in Figure 6.3. The rows in the
Predicate Tree Table are used to create edges. A predicate without arguments
and modifications does not create an edge. A predicate with arguments cre-
ates an edge between its key and each of its arguments5. A predicate with
modifications creates an edge between the key and each modification. Our

Algorithm 4 Get Predicate Tree Algorithm
1: procedure get-predicate-trees(topTab, ptt)
2: treeTab[] ← Ø
3: for ( i=1 to topTab.length ) do
4: treeTab[i] ← GET-TREE-NODE( topTab[i], ptt )
5: end for
6: return treeTab
7: end procedure

example creates the following edges: edge(e2,x4), edge(e2,u11), edge(u11,x10),
edge(e18,x13), and edge(e18,x10). If we use these edges and search for roots we
get the following paths: (e2,x4), (e2,u11), (e2,u11,x10), (e18,x10), and (e18,x13).
The unique roots in the paths are e2 and e18. With a Predicate Tree Table and

Algorithm 5 Get Tree Node Algorithm
1: procedure get-tree-node( key, ptt)
2: ep ← ptt.get( key )
3: node.pred ← ep.pred
4: if ( ep.argSize > 0 ) then
5: for ( i=1 to ep.argSize ) do
6: node.arg[i] ← GET-TREE-NODE( ep.arg[i], ptt )
7: end for
8: end if
9: if ( ep.modSize > 0 ) then

10: for ( i=1 to ep.modSize ) do
11: node.mod[i] ← GET-TREE-NODE( ep.mod[i], ptt )
12: end for
13: end if
14: return node
15: end procedure

a list of roots, we can create one or more trees as shown in Figure 6.3. The

5the first argument of a PP is referring to the subject in NorSource and no edge is created
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algorithm for for creating a tree is shown in Algorithm 4 and Algorithm 5. The
GET-PREDICATE-TREE algorithm is a simplified version of the MAP-PREDICATE-

TO-ONTOLOGY algorithm that is presented in the next section. For each root we
call the GET-TREE-NODE algorithm and places the result in the “treeTab” vari-
able. The variable is returned when all roots are processed. In Algorithm 5, we
receive a key and a Predicate Tree Table as arguments. We find the EP with
the key in line 2. The algorithm fills the structure “node” with arguments and
modifications. If the EP has arguments we execute a recursive call6 for each
argument (line 4 to line 8). The algorithm also executes a recursive call for
each modification in the EP (line 9 to line 13). The algorithm returns the
“node” variable. For our Predicate Tree Table in Table 6.3 and the roots e2
and e18, we get the trees: “mod(g̊a(gutt),til(bror))” and “poss c(pron,bror)”,
shown as Prolog terms.

6.3 The Mapping Algorithm

The basic idea is to search the predicate tree depth first and to find the corre-
sponding domain ontology elements for each EP predicate in the tree, like the
trees in Figure 6.4. The predicate tree is to the left and the tree with domain
ontology elements is to the right. The mapping process uses a table with top

      kjøre

    ____|___

   /        \

 frank      mod

          ___|__

         /      \

        vei     til

                 |

                 |

             dragvoll

frank_na1

vei_n1

dragvoll_na11
til_p

subpath

path

movement

Figure 6.4: Predicate Tree And Domain Element Tree

nodes and a Predicate Tree Table. The algorithm is shown in Algorithm 6.

6A recursive call is a programming technique where a procedure calls itself. The recursive
calling stops when we reach some stop criteria. A leaf node is such a creteria in our case.



Mapping From Linguistic Representations To World Events 49

The algorithm returns all the valid mappings. All the top nodes found in the
MRS will be mapped (line 3). In line 4 a variable for failed mappings is
initiated and in line 5 a closed list is initiated. The algorithm calls the MAP-EP

procedure for each top node (line 7). The MAP-EP algorithm, Algorithm 7

Algorithm 6 Map Underspecified Predicates to Domain Ontology Algorithm
1: procedure map-predicate-to-ontology(topLst[], mrs)
2: result ← Ø
3: for ( i=1 to topLst.length ) do
4: fa ← Ø . failed mappings
5: cl ← Ø . prevent loop
6: mapping.top ← topLst[i]
7: mapping.item ← MAP-EP(mrs, cl, 1, topLst[i], fa)
8: mapping.failed ← fa
9: result.add(mapping)

10: end for
11: return result
12: end procedure

shown below, takes an MRS, a closed list, a level counter, a key, and a failed
list as parameters.

Algorithm 7 Map EP Algorithm

1: procedure map-ep(mrs, cl, level, key, fa)
2: if ( cl.contains(key) ) then
3: return with error “loop in tree at node =” + key
4: end if
5: cl.add(key)
6: matrix ← Ø
7: result ← Ø
8: ep ← mrs.find(key) . Ep with ARG0=key
9: level = level+1

10: sTab[] ← Util.ontology(key, ep.pred, pos)
11: if ( ep.pos=‘v’ and ep.size=2 ) then
12: arg1Tab[] = MAP-EP(mrs, cl, level, ep.arg[1], fa) . recursive call
13: arg2Tab[] = MAP-EP(mrs, cl, level, ep.arg[2], fa) . recursive call
14: for ( i=1 to sTab.length ) do
15: for ( j=1 to arg1Tab.length ) do
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16: for ( k=1 to arg2Tab.length ) do
17: subMatrix ← CHECK TV(sTab[i], arg1Tab[j], arg2Tab[k])
18: matrix.add(subMatrix)
19: end for
20: end for
21: end for
22: if ( matrix.length=0 ) then
23: fa.add(arg1Tab, arg2Tab, sTab) . no semantics for key
24: end if
25: else
26: if ( ep.pos=‘n’ and ep.size=0 ) then
27: for ( i=1 to sTab.length ) do
28: tmp ← Parse0(ep.key, sTab[i].sense, ‘n’))
29: matrix.add(tmp) ;
30: end for
31: end if
32: end if
33: if ( matrix.length > 0 ) then
34: headLst ← matrix
35: mIdx ← 1
36: while ( ep.modSize >= mIdx ) do
37: modMatrix ← Ø
38: arg[] = MAP-EP(mrs, cl, level, ep.modTab[mIdx], fa)
39: for ( k=1 to headLst.length ) do
40: for ( j=1 to arg.length ) do
41: theSubMatrix = CHECK-MOD(headLst[k],arg[j])
42: modMatrix.add(theSubMatrix)
43: end for
44: end for
45: if ( modMatrix.length=0 ) then
46: fa.add( findEp(ep.modTab[i]) ) . no semantics for key
47: else
48: headLst ← modMatrix
49: end if
50: mIdx ← mIdx + 1
51: end while
52: result.add(headLst)
53: else
54: result.add(matrix)
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55: end if
56: return result
57: end procedure

In line 8, the MRS is searched for an EP with ARG0 = key. In line 10, the
predicate of the EP and the part-of-speech of the EP is used to search the
domain ontology for concepts. The key variable is used as a reference back to
the EP. The result is stored in sTab. In order to make the algorithm more
readable we only show the code for transitive verbs and nouns. In line 12 and
line 13, every concept is found for the two verb arguments with recursive calls
to the MAP-EP procedure. Between line 14 and line 21, we call the algorithm
CHECK-TV for the permutations of the concepts from the predicate and the two
arguments. In line 28, we create a variable for a noun (leaf node). In line
33, if we found any mappings then we process the possible modifications. In
line 38, we find all the mappings for ep.modTab[mIdx] and place the result in
the arg table. Between line 39 and line 44, we call the procedure CHECK-MOD

for all the permutations between headLst and arg. If we found any mappings
then we move these to the variable headLst (line 48). The variable headLst
contains the latest mappings and the next modification is checked against the
latest mappings. After the processing of the modifications, the variable headLst
is copied to the variable result. If the EP doesn’t have any modification, the
matrix is stored in the variable result. The procedure returns the variable
result.

The CHECK-TV procedure is shown in Algorithm 8. The procedure takes a
predikate, arg1, and arg2 as arguments. Between line 3 and line 13, the Prolog
term pStr is built up with the types and senses from the arguments. The term
is executed in Prolog and the result is stored in the table pTab (line 14). The
pTab table contains all the templates found in the domain ontology. Between
line 22 and line 31, the algorithm tests if the checks from the templates are
valid in the domain ontology. If all the checks are valid then the template is
valid, and if the return function is “new” we call the class factory with the
arguments. The class factory creates our complex domain object. We only
show the return function “new” in order to make the algorithm more readable.
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Algorithm 8 Check-Tv Algorithm
1: procedure check-tv(pred, arg1, arg2)
2: resultTab[] ← Ø
3: pStr.name ← “tv tmpl”
4: pStr.id ← “Id”
5: pStr.pred-type ← pred.type
6: pStr.pred-sense ← pred.sense
7: pStr.arg1-type ← arg1.type
8: pStr.arg1-sense ← arg1.sense
9: pStr.arg2-type ← arg2.type

10: pStr.arg2-sense ← arg2.sense
11: pStr.lst ← “Lst”
12: pStr.rf ← “Rf”
13: pStr.rc ← “Rc”
14: pTab[] ← Prolog.query(pStr) . Call Prolog
15: for ( i = 1 to pTab.length ) do
16: checkTab ← pTab[i].Lst
17: templateId ← pTab[i].Id
18: returFunc ← pTab[i].Rf
19: returClass ← pTab[i].Rc
20: theChecksTab[] ← Ø
21: checkOK ← true
22: for ( j = 1 to checkTab.length ) do
23: cStr.name ← “check”
24: cStr.check ← checkTab[j]
25: queryCheck ← Prolog.query(cStr) . Call Prolog
26: if ( queryCheck.hasSolution ) then
27: theChecksTab.add(checkTab[j])
28: else
29: checkOK ← false
30: end if
31: end for
32: if ( checkOK ) then
33: if ( returFunc = “new” ) then
34: theClass ← ClassFactory.create(returClass,arg1,arg2)
35: theClass.add(theChecksTab,templateId)
36: resultTab.add(theClass)
37: end if
38: end if
39: end for
40: return resultTab
41: end procedure
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6.4 Templates And Return Functions

Arg 2

Arg 1

Class(arg 1, arg 2)

template(id,...,new,class)

Figure 6.5: Function New

Arg 2

Arg 1

Arg 1

template(id,...,call,_)

call(Arg 2)

hasFunction

Figure 6.6: Function Call

Arg 2

Arg 1

Arg 1

template(id,...,fork,class)

class(arg1.key, Arg 2)

hasExtraList

Figure 6.7: Function Fork

Arg 2

Arg 1

Arg 2

template(id,...,fork_arg1,class)

class(Arg 1, arg2.key)

hasExtraList

Figure 6.8: Function Fork Arg1

We have seen the function “new” used in the CHECK-TV algorithm. Before
we introduce more functions, we present the format for a template:

tmpl(id, node1, node2, check list, return function, return class)

A template has one node for the predicate and one for each argument. The id
identifies the template. The checklist contains ontology checks that must be
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true in order for the template to be valid. The return function and the return
class denote the action for the nodes. A template can contain the return func-
tions: new, fork, fork arg1, and call. The return function and the return class
determine how two nodes are compiled together. With the function new, a new
class is created with the arg1 and arg2 node as arguments (Figure 6.5). The
fork function returns the arg1 node and creates a new class with a reference
to the arg1 node and the arg2 node (Figure 6.7). The new class is added to
a list called ExtraList in the arg1 node. An example is the black bus; the bus
node is returned and a feature class with a reference to bus and the color is
created and added to the list. The fork arg1 function is like the fork function.
The difference is that arg1 and arg2 have switched places (Figure 6.8). The call
function denotes that arg2 is consumed by arg1. The arg1 node has a function
with the name call, and this function is called with arg2 as argument. For ex-
ample if the first class is Movement and the second is Subpath, the Movement
class’s function call is called with the argument Subpath.

6.5 Summary

Algorithm 6 maps underspecified predicates to domain specific predicates and
it can be used in line 18 in Algorithm 2. With our approach we can implement
a structure for an event and for a verb argument. For example “depart” is
a sub-event of “move”, and if a car moves to a location, the ongoing state of
movement is followed by an arrival event. A car can have a number of location
connected to it. We are now ready to model some parts of the Change Location
domain.
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Result
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In the next chapter we presents two versions of the pipeline. One for the
undespecified discourse level and one for the specified world level. Then we
present a chapter that contains a detailed model of the Change Location do-
main. The domain shows how the domain ontology and the mapping algorithm
works together. The chapter contains a number of examples of how the map-
ping works and how the complex domain elements can be used to generate
roles and states.
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Chapter 7

The Pipelines

7.1 The Pipeline with Unmapped Predicates

The unmapped pipeline is an implementation of Algorithm 1 with object and
event references at the discourse level. The pipeline reads well-formed sentences
in Norwegian. The sentences are parsed with the NorSource grammar together
with a Maximum Entropy ranker. The highest ranked MRS is selected. The
pipeline performs a simple pronoun resolution. The resolution algorithm works
as follows: for each selected MRS we collect candidates for a pronoun and we
store them in a table, and when we find a pronoun we search the table from
the back for a candidate that has the same type, gender, and number as the
pronoun. We process a small discourse to show how the pipeline works.

mannen smiler
the man smiles

(7.1)

The first sentence from our discourse is (7.1). The selected MRS is shown in
Table 7.1 and the features for the MRS are shown in Table 7.2. The object x1d

is stored as an pronoun candidate.



60 The Pipeline with Unmapped Predicates

MRS
h3: mann n rel(x1d)
h4: def q rel(x1d,h5,h6)
h7: smile v-intr rel(e1d,x1d)

Table 7.1: MRS for (7.1)

Key Feature Value
e1d mood indicative
e1d tense pres
e1d sf prop
x1d gen m
x1d num sing
x1d pers thirdpers

Table 7.2: Features for (7.1)

Gro liker ham
Gro likes him

(7.2)

The second well-formed sentence from our discourse is (7.2). The selected MRS
is shown in Table 7.3 and the features for the MRS are shown in Table 7.4.
We can see that the object and event references are unique. Here, the object
x2d is a pronoun and we search our candidate table and we found the discourse
referent x1d. The object x3d is stored as an pronoun candidate.

MRS
h10:han pron rel(x2d)
h11: pronoun q rel(x2d,h12,h13)
h3:named rel(x3d,Gro)
h5: def q rel(x3d,h6,h7)
h8: like v-tr rel(e2d,x3d,x2d)
pronoun ref=x2d, map ref=x1d

Table 7.3: MRS for (7.2)

Key Feature Value
e2d mood indicative
e2d tense pres
e2d sf prop
x3d gen f
x3d num sing
x3d pers thirdpers
x2d gen m
x2d num sing
x2d pers thirdpers

Table 7.4: Features for (7.2)
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han elsker henne
he loves her

(7.3)

The third sentence from our discourse is (7.3). The selected MRS is shown in

MRS
h10: pronoun q rel(x4d,h11,h12)
h3:han pron rel(x5d)
h4: pronoun q rel(x5d,h5,h6)
h7: elske v-tr rel(e3d,x5d,x4d)
h9:hun pron rel(x4d)
pronoun ref=x5d, map ref=x1d

pronoun ref=x4d, map ref=x3d

Table 7.5: MRS for (7.3)

Key Feature Value
e3d mood indicative
e3d tense pres
e3d sf prop
x5d gen m
x5d num sing
x5d pers thirdpers
x4d gen f
x4d num sing
x4d pers thirdpers

Table 7.6: Features for (7.3)

Table 7.5 and the features for the MRS are shown in Table 7.6. Here, we found
two pronouns. The first pronoun x5d is connected to the discourse referent x1d,
and the second pronoun x4d is connected to the discourse referent x3d.

After we have processed the discourse, the pronoun resolution algorithm
stored two pronoun candidates, which are shown in Table 7.7.

seqNr predicate ref carg num gen pers
1 mann n rel x1d null sing m thirdpers
2 named rel x3d Gro sing f thirdpers

Table 7.7: Pronoun Candidates
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7.2 The Pipeline with Mapped Predicates

This is an implementation of Algorithm 2. The domain is the classic Box World
from Artificial Intelligence. The simple First-Order Logic model is shown as
an image, and the initial model is shown in Figure 7.1 on page 64. The idea is
that we can command an invisible robot to move the boxes around, and that
the effects of the commands are reflected in a new image. The simple dialogue
system is implemented as a web application at:

http://regdili.idi.ntnu.no:8080/boxworldweb/boxworlddemo.

The application starts with the initial model where a red, blue, green and
yellow box are laying on a table.

flytt den gule boksen p̊a den røde boksen
move the yellow box to the red box

(7.4)

The first command in our discourse is (7.4), and it gives the Predicate Tree
Table in Table 7.8.

label key predicate pos sense argTab modTab
h10 x1d boks-1 n u2d

h10 u2d gul a x1d

h18 x2d boks-1 n u4d

h18 u4d rød a x2d

h3 e1d flytte trScpr v x3d,x1d,u5d

h5 u5d p̊a dirtel p x2d

h6 x3d addressee-rel n

Table 7.8: Box World Predicate Tree, Example 1

http://regdili.idi.ntnu.no:8080/boxworldweb/boxworlddemo
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According to step 18, in Algorithm 2, the MRS is mapped to domain elements.
For our MRS we get the following elements:

Flytt
event(e1d:flytte trScpr v1)
subject(x3d:addressee rel n1)
object(x1d:boks n1)
path

end-point(x2d:boks n1)
Noun feature

color(u2d:gul a1)
noun(x1d:boks n1)

Noun feature
color(u4d:rød a1)
noun(x2d:boks n1)

In step 19, the MRS is interpreted in a world model. Our model is shown
in Figure 7.1, and since the MRS is a command, we can only find the presup-
positions to the command and interpret them in the world model. We find the
predicates in the MRS that are leaf nodes (they have no arguments): x1d, x2d,
and x3d (the two boxes and the addressee). The leaf nodes are also modified as

key modified by world reference
x1d [u2d] [x2w]
x2d [u4d] [x3w]
x3d [] [x5w]

Table 7.9: Reference Mapping, Example 1

shown in Table 7.9. We have stored the model with predicates from an MRS
and changed the references to the series from the world . If we interpret the
sentence “flytt boksen/(move the box)”, we find four boxes in our model, and
since the sentence has a quantifier that takes singular objects, we can return an
error message to the user stating that the definite quantifier is inappropriate.
If we interpret the sentence “flytt de gule boksene/(move the yellow boxes)”,
we have another mismatch between the model and the quantifier.
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In step 20, in Algorithm 2, we find the dialogue act. The dialogue acts in
our Box World application are simple; they are just the commands with valid
arguments. We use the complex domain element to export the MRS to Prolog
format, and we use Prolog to reason with the dialogue act. In our example the
act is:

folEp(e1d, flytte trScpr v1, arg1(x3d), arg2(x1d), from(nil), to(x2d)).

In step 21 in our algorithm, we execute the dialogue act. First, we check
if the dialogue manager accepts the command and its arguments. Second, we
also check if the move is legal. For example, only boxes that are free1 can
be moved. If the dialogue act pass these checks, we execute the dialogue act.
The result is loaded into the logic model and we generate a new image that

Figure 7.1: Step init Figure 7.2: Step 1

shows the current logic model, see Figure 7.2. Each user of the application has
their own state of the logic model. The model is selected before we execute the
dialogue act and the model is stored in the database with the updated result.

1a free box has no box on top of itself
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Legg den grønne boksen opp p̊a den gule boksen
put the green box on the yellow box

(7.5)

The second command in our discourse is (7.5) and the Predicate Tree Table is
shown in Table 7.10. The complex elements mapped from the Predicate Tree

label key predicate pos sense argTab modTab
h19 x5d boks-1 n u7d

h19 u7d gul a x5d

h3 e2d legge tr v x6d,x4d u8d

h5 x6d addressee-rel n
h9 x4d boks-1 n u12d

h9 u12d grønn a x4d

h3 u8d opp dirtel p̊a dirtel adv p x4d,x5d

Table 7.10: Box World Predicate Tree, Example 2

Table are:

Legg
event(e2d:legge tr v1)
subject(x6d:addressee rel n1)
object(x4d:boks n1)
path

end-point(x5d:boks n1)
Noun feature

color(u12d:grønn a1)
noun(x4d:boks n1)

Noun feature
color(u7d:gul a1)
noun(x5d:boks n1)
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The discourse variables for the leaf nodes are interpreted in the logic model
and the result is shown in Table 7.11. The dialogue act for our MRS is:

key modified by world reference
x5d [u7d] [x2w]
x6d [] [x5w]
x4d [u12d] [x4w]

Table 7.11: Reference Mapping, Example 2

folEp(e2d, legge tr v1, arg1(x6d), arg2(x4d), to(x5d)).

The result from the dialogue act is shown in Figure 7.4.

Figure 7.3: Step 1 Figure 7.4: Step 2
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flytt boksene ned p̊a bordet
move the boxes down on the table

(7.6)

The next command in our discourse is (7.6) and the MRS generates the Pred-
icate Tree Table shown in Table 7.12. The complex element mapped from the

label key predicate pos sense argTab modTab
h10 x7d boks-1 n
h16 x8d bord-1 n
h3 e3d flytte trScpr v x9d,x7d,u13d

h6 x9d addressee-rel n
h5 u13d ned dirtel p̊a dirtel adv p x7d,x8d

Table 7.12: Box World Predicate Tree, Example 3

Predicate Tree Table is:

Flytt
event(e3d:flytte trScpr v1)
subject(x9d:addressee rel n1)
object(x7d:boks n1)
path

end-point(x8d:bord n1)

Since we have a quantifier with a set that is plural, the set is filled with all the
boxes in our world model. The interpretation of the presuppositions are shown
in Table 7.13.

key modified by world reference
x7d [] [x1w, x2w, x3w, x4w]
x8d [] [x6w]
x9d [] [x5w]

Table 7.13: Reference Mapping, Example 3



68 The Pipeline with Mapped Predicates

The dialogue act generated is:

folEp(e3d, flytte trScpr v1, arg1(x9d), arg2(x7d), from(nil), to(x8d)).

The logic model after the dialogue act was executed is shown in Figure 7.6.

Figure 7.5: Step 2 Figure 7.6: Step 3

flytt den røde boksen
move the red box

(7.7)

The next command in our discourse is (7.7) and the Predicate Tree Table is

label key predicate pos sense argTab modTab
h3 e4d flytte intr v x11d,x10d

h5 x11d addressee-rel n
h9 x10d boks-1 n u15d

h9 u15d rød a x10d

Table 7.14: Box World Predicate Tree, Example 3

shown in Table 7.14.
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The Predicate Tree Table is mapped to the following complex elements:

Flytt
event(e4d:flytte tr v1)
subject(x11d:addressee rel n1)
object(x10d:boks n1)

Noun feature
color(u15d:rød a1)
noun(x10d:boks n1)

The interpretation of the presuppositions are shown in Table 7.15. The di-

key modified by world reference
x11d [] [x5w]
x10d [u15d] [x3w]

Table 7.15: Reference Mapping, Example 4

alogue act for the complex element is:

folEp(e4d, flytte tr v1, arg1(x11d), arg2(x10d), from(nil), to(nil)).

The logic model is updated, Figure 7.8, after the dialogue act is executed.
As we can see, the dialogue act is executed, but the move operation is not

Figure 7.7: Step 3 Figure 7.8: Step 4

finished. The robot shows his hand and he is keeping the box until a location
is provided.
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The Box World application returns errors when the sentence from the user is
not according to the interpretation of the presuppositions or the dialogue man-
ager’s accepted commands. For example, “mannen smiler / the man smiles”,
results in an error from the dialogue manager. The manager accepts only
commands.2 When try the sentence “flytt den gr̊ae boksen opp p̊a den gule
boksen / move the grey box on the yellow box”, the interpretation process of
the presuppositions is not able to find the color grey on any box in our model.
Another example is “flytt bordet / move the table”. The dialogue manager
is not allowed to move the table, and we get the error message: command is
rejected.

7.3 Summary

We presented the pipeline with unmapped predicates, where we had unmapped
predicates and references from the discourse level. We also presented a simple
algorithm for pronoun resolution. This pipeline can be used on text if we have
coverage in the lexicon and a ranker that places the most relevant MRS on top.

We can map an MRS to a complex element in a domain, where we can
generate roles and express event structure. We can use the connected MRS to
infer a reaction with our linguistic application. This is shown with the pipeline
for mapped predicates (we can ask the robot to move boxes around). Here,
we used the “Box World” domain together with a model. We interpreted the
robot’s commands in the model, and we checked if the robot was allowed to
execute the commands. The model changed after the command was executed.

2This will change in the future. At this stage the application is only a prototype



Chapter 8

Mapping Predicates To A
Domain Ontology

In Section 6, we prepared an MRS and we created a predicate tree, then we
used Algorithm 6 with the predicate tree. Now, we proceed with examples from
the Change Location domain and with a Change Location domain ontology.
We have analyzed over 2 million sentences that was collected from BusTUC,
and we use types that where discovered there in our design. The analysis of
the BusTUC sentences is placed in Appendix A.2.

8.1 The Change Location Language

The domain ontology contains a set of concepts, a type hierarchy, a set of has
and use relations, the templates, and the complex domain types. Parts of the
ontology are shown in Figure D.1 on page 156, Figure D.2 on page 157. Fig-
ure D.3 on page 158, Figure D.4 on page 159, and Figure D.5 on page 160. The
complex domain elements from the Change Location domain are: Movement,
SubPath and Path.
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Movement
event: ParseElem
subject: ParseElem
object: ParseElem
path: Path
cargo: ParseElem
vehicle: ParseElem
companion: ParseElem

ParseElem
type: String
key: Integer
sense: String
ep-ref: String

SubPath
type: String
key: Integer
sense: String
ep-ref: String
argument: ParseElem
time-point: String

Path
object: ParseElem
fra: SubPath
til: SubPath
onPathList: 〈 SubPath 〉
direction: ParseElem

We present a number of examples from the Change Location domain, and
they show how the mapping algorithm works together with the templates and
the complex domain elements. The examples also show how we can generate
time points, roles and states with the complex domain elements. Sometimes a
word can be treated as a symbol, but not always. We show that objects can
have structure and that part of one structure is connected to a part of another
structure.

A summary of the roles we use are shown in Table 8.1. The roles work and
cargo are used together with example sentence “NP1 g̊ar med NP2” (“NP1 goes
with NP2”). The arguments positions (subject and PP.NP) are not enough to
decide the roles. The verb go expresses movement in the example. The domain
knowledge created for a verb argument is: the thing’s ability to move on its
own and the thing’s ability to be moved by others. The volume and weight are
also important; for example, an adult can carry an infant. The medium for the
movement is also important; a ferry use the water and an airplane use the air.
How people talk is another factor that comes into the consideration. Some of
the examples were odd in Norwegian.
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subject pp.np cargo,cargo cargo,work work,cargo work,work
person person x x x
person vehicle x x
person item x
vehicle person x x
vehicle vehicle x x x
vehicle item x
item person x
item vehicle x
item item x

Table 8.1: Roles, Summary

Figure 8.1: Containers with Orientation

We look into some examples where the combinations of adverbs, preposi-
tions and objects can indicate the orientation of a container. The orientation
and the containers are shown in Figure 8.1. The orientation of the container
depends on world knowledge and the relation within the world. Some odd
examples were found with the idiosyncratic preposition p̊a. The grammar is
the obvious place for defining idiosyncratic use of language. Our framework
can sort out the domain relevant information in such cases and extend it into
the domain.

1
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Figure 8.3: Predicate Tree

8.2 The Change Location Examples

These examples to follow illustrate the basic use of the Path and the Movement
class. The Path contains sub events with an internal time variable. The first
basic sentence is used to show the details of the inner workings of the mapping
algorithm. The next sentences focus on valid templates and senses.

The sentence in (8.1) is parsed and it returns one reading. The MRS details
are listed in Listing E.1 on page 163 and a simplified version of the MRS is
presented in Table 8.2.

Gutten g̊ar til byen
The boy goes to the town

(8.1)

The MRS is valid and Utool returns the resolved MRS as the prolog pred-

key pos pred sense EP
x4 n gutt h3: gutt n rel(x4)

q def h5: def q rel(x4,h7,h6)
e2 v g̊a h8: g̊a v rel(e2,x4)
u11 p til h8: til p rel(u11,x4,x10,u9)
x10 n by h12: by n rel(x10)

q def h13: def q rel(x10,h15,h14)

Table 8.2: Domain Example 1, MRS

icate: def(gutt, def(by, g̊a & til)), and this predicate is shown in Figure 8.2.
The predicates in the MRS are prepared and the result (the Predicate Tree
Table) is presented in Table 8.3. The variables e2 and u11 denote events. The
variables x4 and x10 denote individuals. The predicate table is used to create
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the predicate tree, see Figure 8.3. The Predicate Tree Table and the root nodes
from the predicate tree are input to Algorithm 6. The algorithm starts with

label key predicate pos sense argTab modTab
h3 x4 gutt n
h8 e2 g̊a v x4 u11

h8 u11 til p x4,x10

h12 x10 by n

Table 8.3: Predicate Tree Table, Example 1

the event (e2), the main event (top handle) in the predicate tree. The key is
used to look up its entry in the predicate tree table. The entry is a modified
predicate node. The semantics for the predicate g̊a returns two senses: v(1,
g̊a v1, e2), v(2, g̊a v2, e2). The first sense is for animates that move along
a path (John goes to Oslo), and the second sense is for static objects that
denote a path (The road goes to Oslo). The completion step starts with the
completion of the nodes argument. The key x4 is a leaf node and it returns
one sense n(4, gutt n1, x4). The predicate step for key=e2 can be finished.
The algorithm searches for templates with the arguments arg1(v,g̊a v1) and
arg2(n,gutt n1). Three templates are found (Table 8.4). The template with

key nodes check list return class
itv1 arg1(v,g̊a v1) isa(g̊a v1,mannerType v1) new movement

arg2(n,gutt n1) has(gutt n1,moveable)
itv2 arg1(v,g̊a v1) isa(g̊a v1,underSpecSubj v1) new movement

arg2(n,gutt n1) has(gutt n1,moveable)
itv6 arg1(v,g̊a v1) isa(g̊a v1,beg end v1) new movement

arg2(n,gutt n1) has(gutt n1,moveable)

Table 8.4: Example 1, template set 1

key itv2 has valid checks. The others do not, because g̊a v1 is neither a hy-
ponym of the senses mannerType v1 nor beg end v1. The verb g̊a v2 is not valid
in any of the templates, so a Movement class is created with the arguments
g̊a v1 and n(4, gutt n1, x4). The next step for key x4 is the modification step.
There is a modification with the key u11. The table entry is a predicate node.
The ontology returns the sense: p(6, til p1,u11). The argument with key=x10

returns the sense n(7, by n1, x10). A template search is performed with the
search arguments arg1(p, til p1) and arg2(n, by n1). The search returns two
templates (Table 8.5). Template pp13 has an invalid check list. The template



76 The Change Location Examples

key nodes check list return class
pp2 arg1(p,til p1) has(by n1,location) new subpath

arg2(n,by n1)
pp13 arg1(p,til p1) isa(til p1,direction creation r1) new subdirection

arg2(n,by n1) isa(by n1,path n1)

Table 8.5: Example 1, template set 2

pp2 is valid, and a SubPath class is created with the arguments p(6, til p1,u11)
and n(7, by n1, x10). The modification step for key e2 searches for templates
with the arguments arg1(movement,g̊a v1) and arg2(subpath,til p1). One tem-
plate is found (Table 8.6). The template is valid and the return function is call.

key nodes check list return class
mod1 arg1(movement,g̊a v1) isa(til p1,subpath p1) call

arg2(subpath,til p1) isa(g̊a v1,movement v1)

Table 8.6: Example 1, template set 3

This means that the Movement class is called with argument number two. All
nodes are now completed and the following complex element is returned:

movement
event(e2:g̊a v1)
subject(x4:gutt n1)
path

end-point(x10:by n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(gutt n1,movable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

templates
[itv2,mod1,pp2 ]

Only variables with assigned values are displayed. The checks are the ele-
ments of the check lists for all valid templates for this element. There are
three is-a relations, two for the verb and one for the preposition.
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Figure 8.5: Predicate Tree 2

The second example is (8.2). The sentence is like the first, but with more
information about the beginning of the change location event. The NorSource
grammar returns four readings. The readings are caused by the usual prepo-
sition ambiguity and two variants of the preposition til (to). The first variant
is the sense that denote possession ( possessed by rel) and the second is un-
derspecified. The reading with the underspecified preposition is ranked at the
top.

Gutten g̊ar fra universitetet til byen
The boy goes from the university to the town

(8.2)

The parsed sentence’s selected MRS is shown in Table 8.7. The Predicate

key pos pred sense EP
x4 n gutt h3: gutt n rel(x4)

q def h5: def q rel(x4,h7,h6)
e2 v g̊a h8: g̊a v rel(e2,x4)
u11 p fra h8: fra p rel(u11,x4,x9,u10)
x9 n universitet h12: universitet n rel(x9)

q def h13: def q rel(x9,h15,h14)
u18 p til h8: til p rel(u18,x4,x17,u16)
x17 n by h19: by n rel(x17)

q def h20: def q rel(x17,h22,h21)

Table 8.7: Domain Example 2, MRS

Tree Table is shown in Table 8.8. One way to express a PP modification in
NorSource is to use the subject from the verb and place the EP for the PP
with the same handle as the verb. In Table 8.8 the event e2 is modified by
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u11 and u18. This information is used when the predicate table is created.
The current sentence has the same valid templates as the previous sentence,

label key predicate pos sense argTab modTab
h3 x4 gutt n
h8 e2 g̊a v x4 u11,u18

h8 u11 fra p x4,x9

h12 x9 universitet n
h8 u18 til p x4,x17

h19 x17 by n

Table 8.8: Predicate Tree Table, Example 2

plus templates for the extra PP: one template for the preposition and one
for the modification. The templates are shown in Table 8.9. The preposition
template returns a SubPath class, while the modification template indicate
that Movement class is called with the the SubPath class as argument. When

key nodes check list return class
pp1 arg1(p,fra p1) has(universitet n1,location) new subpath

arg2(n,universitet n1)
mod1 arg1(movement,g̊a v1) isa(fra p1,subpath p1) call

arg2(subpath,fra p1) isa(g̊a v1,movement v1)

Table 8.9: Example 2, template set 1

all the nodes in the predicate tree are completed, time points are added to the
sub events. The first time point is added to the first sub event. The second is
the ongoing activity denoted by the change location verb. The last time point
is added to the last sub event.

movement
event(e2:g̊a v1)
subject(x4:gutt n1)
path

begin-point(x9:universitet n1,t1)
end-point(x17:by n1,t3)

checks
isa(g̊a v1,underSpecSubj v1)
has(gutt n1,movable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)
isa(til p1,subpath p1)

templates
[itv2,mod1,pp1,pp2 ]
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Figure 8.7: Predicate Tree

The next sentence (8.3) is like the previous sentence, but with extra infor-
mation about the ongoing activity. The logical form from Utool is shown in
Figure 8.6 and the predicate tree is shown in Figure 8.7.

Gutten g̊ar fra universitetet gjennom skogen til byen
The boy goes from the university through the woods to the
town

(8.3)

The event, the prepositions fra and the preposition til are as described in the

label key predicate pos sense argTab modTab
h3 x4 gutt n
h8 e2 g̊a v x4 u9,u16,u25

h8 u9 fra p x4,x11

h12 x11 universitet n
h8 u16 gjennom p x4,x17

h19 x17 skog n
h8 u25 til p x4,x24

h26 x24 by n

Table 8.10: Example 3, predicate

previous examples. The preposition gjennom (through) expects the PP.NP
to have the penetrable feature. The template for this preposition is shown in
Table 8.11. The feature is set on towns, woods, hedges, etc. The PP.NP is
an area with objects. It is possible to move between these objects. The mov-
ing object’s height is compared to the objects in the area (not present in the
template checks). An ant can for example move through a lawn. The gjennom
preposition creates a SubPath class and the Movement class receives the Sub-
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key nodes check list return class
pp 6 arg1(p,gjennom p1) has(skog n1,penetrable) new subpath

arg2(n,skog n1)

Table 8.11: Example 3, template set 1

Path through the call function. The SubPath preposition describes the path
the ongoing movement is following, and it is placed in the Path feature inside
the Movement class. One complex element is returned.

movement
event(e2:g̊a v1)
subject(x4:gutt n1)
path

begin-point(x11:universitet n1,t1)
subpath

Rel(u16:gjennom p1)
Point(x17:skog n1)
Time(t2)

end-point(x24:by n1,t3)
checks

isa(g̊a v1,underSpecSubj v1)
has(gutt n1,movable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)
isa(gjennom p1,subpath p1)
isa(til p1,subpath p1)

templates
[itv2,mod1,pp1,pp6,pp2 ]

The first timepoint is at the beginning of the path, the second is at the el-
ement in the sub path list, and the third is at the end point of the path.
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The next sentence is the same as (8.3), but with template mod1 removed
from the ontology. With this change, the final complex element is:

movement
event(e2:g̊a v1)
subject(x4:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(gutt n1,moveable)

templates
[itv2 ]

failed
p(u9:fra)
p(u16:gjennom)
p(u25:til)

The EPs that are not according to the Change Location domain or others
domains are listed in the failed list. This is an easy way to show incomplete
parts of the ontology, instead of rejecting the completion and giving an error
message. In “My uncle went to London”, the fact that the speaker has an
uncle can be part of the family relation domain and not the Change Location
domain. These elements are used together with the return function “fork” and
the family relation ends up in the extra list
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Veien g̊ar til byen
The road goes to the town

(8.4)

The example (8.4) is parsed and the MRS in Table 8.12 is selected. The MRS
is prepared and the Predicate Tree Table is created (Table 8.13). The previ-

key pos pred sense EP
x4 n vei h3: vei n rel(x4)

q def h5: def q rel(x4,h7,h6)
e2 v g̊a h8: g̊a v rel(e2,x4)
u11 p til h8: til p rel(u11,x4,x10,u9)
x10 n by h12: by n rel(x10)

q def h13: def q rel(x10,h15,h14)

Table 8.12: Domain Example 4, MRS

label key predicate pos sense argTab modTab
h3 x4 vei n
h8 e2 g̊a v x4 u11

h8 u11 til p x4,x10

h12 x10 by n

Table 8.13: Predicate Tree Table, Example 4

key nodes check list return class
itv5 arg1(v,g̊a v2) isa(vei n1, new pathdescription

arg2(n,vei n1) path n1)
mod6 arg1(pathdescription, call

vei n1)
arg2(subpath,til p1)

pp2 arg1(p,til p1) has(by n1, new subpath
arg2(n,by n1) location)

Table 8.14: Templates for Example 4

ous examples showed an object in motion along a path. The templates used
are shown in Table 8.14. According to the predicate table and the template
table, the e2 event is transformed into the class PathDescription. The pp is
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transformed into a SubPath class and it is consumed by the PathDescription
class. The current example shows a description of the path itself and there is
not any movement involved. One complex element is returned.

PathDescription
event(e2:g̊a v2)
path

object(x4:vei n 1)
end-point(x10:by n1)

checks
has(by n1,location)

templates
[itv5, mod6, pp2]

Frank g̊ar oppover veien
Frank goes up the road

(8.5)

The example (8.5) is parsed and an MRS is selected (Table 8.15). The MRS
is prepared and the Predicate Tree Table is created (Table 8.16). The ex-

key pos pred sense EP
x4 na named h3:named rel(x4,frank)

q def h5: def q rel(x4,h7,h6)
e2 v g̊a h8: g̊a v rel(e2,x4)
u9 p oppover h8: oppover p rel(u9,x4,x10)
x10 n vei h11: vei n rel(x10)

q def h12: def q rel(x10,h14,h13)

Table 8.15: Domain Example 5, MRS

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u9

h8 u9 oppover p x4,x10

h11 x10 vei n

Table 8.16: Predicate Tree Table, Example 5

ample uses the templates in Table 8.17. The preposition denotes a direction
and SubDir class is created for the PP. The SubDir class is consumed by the



84 The Roles

key nodes check list return class
pp13 arg1(p,oppover p1) isa(oppover p1,dir creation r1) new subdir

arg2(n,vei n1) isa(vei n1,path n1)
mod11 arg1(movement, ) call

arg2(subdir, )
itv2 arg1(v,g̊a v1) isa(g̊a v1,underSpecSubj v1) new movement

arg2(n,frank na1) has(frank na1,movable)

Table 8.17: Domain Example 5, templates

Movement class. The Path class has a path object and a path direction. One
complex element is returned.

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

direction(u9:oppover p1)
object(x10:vei n1)

checks
isa(g̊a v1,underSpecSubj v1)
has(frank na1,movable)
isa(oppover p1,direction creation r1)
isa(vei n1,path n1)

templates
[itv2,mod11,pp13 ]

So far, we have used the mapping algorithm together with examples from the
Change Location domain. The Movement element has the inner event struc-
ture: “departure”, “ongoing movement” and “arrival”. “Ongoing movement”
is expressed with the Path element that has a beginning, a middle and an end.
We have also seen that Movement calculates time points for its inner structure.
Now, we proceed our Change Location design with the generation of roles.

8.3 The Roles

The next topic in the ontology design is about roles. Instead of general roles
that fit an unspecified range of events, we will design roles with more domain
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focus. Only a small part of the domain is designed. Our focus is on the prepo-
sition med and on how the verb arguments are related to the change location
event. According to Kunnskapsforlaget’s dictionary [54] the preposition med
has 17 senses and a number of idioms. Three of these senses are used in our
design.

1. The NP in the PP is transported by the subject. The man goes with the
suitcase. Mannen g̊ar med kofferten.

2. The NP in the PP transports the subject. The man goes by the train.
Mannen g̊ar med toget.

3. The NP in the PP is traveling together with the subject. The man travels
with the boy. Mannen g̊ar med gutten.

A verb in the change location domain can be one of the following types (in-
complete list):

• mannerType v1, indicates that the subject is doing the work of moving

• beg end v1, an event that denotes the beginning or end of a path. An
example is: The train arrived

• path v1, an object between locations. The road to Trondheim

• underSpecSubj v1, an event where it is unclear which verb argument that
is doing the work

We focus on the subject and the noun in the preposition phrase and we try
to classify which one is doing the work in the movement. The options are:
applied, work, and cargo. The applied role reflects that an external force caused
the movement. The work role reflects that the noun is moving by its own
propulsion. The cargo role reflects that the noun is transported. The ball
has the applied role in the sentence: “John kicked the ball over the fence”.
The sentence has two sub-events: one for the kicking event and one for the
movement-over-the-fence event. If the verb type is mannerType v1, then the
subject has the work role. In the remaining text of this section we will focus
on the roles work and cargo together with the underSpecSubj v1 verb g̊a (go).
A noun is classified according to the following list:

• person, the subject is a hyponym to person n1

• vehicle, the subject is a hyponym to transportmiddel n1 (vehicle)
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• item, a movable object without propulsion

The example sentence is: “NP1 g̊ar med NP2” (“NP1 goes with NP2”). We
will look at all the combinations where NP1 and NP2 are selected from the
types: person, vehicle, and item.

Mannen g̊ar med gutten
The man goes with the boy

(8.6)

The first sentence is (8.6) and the MRS is shown in Table 8.18. Both NPs are
of the type person. The MRS’s Predicate Tree Table is shown in Table 8.19.
The templates used for the verb and the PPs are shown in Table 8.20. The
template itv2 is used for the verb g̊a and the template mod2 is used for the
preposition phrase. The preposition med has three senses in this example.

key pos pred sense EP
x4 n mann h3: mann n rel(x4)

q def h5: def q rel(x4,h6,h7)
e2 v g̊a h8: g̊a v rel(e2,x4)
u9 p med h8: med p rel(u9,e2,x10)
x10 n gutt h11: gutt n rel(x10)

q def h12: def q rel(x10,h13,h14)

Table 8.18: Movement Role Example 1, MRS

label key predicate pos sense argTab modTab
h3 x4 mann n
h8 e2 g̊a v x4 u9

h8 u9 med p e2,x10

h11 x10 gutt n

Table 8.19: Predicate Tree Table, Role Example 1

The first sense implies that the NP in the PP is transported by the subject.
The constraint in the template is that the NP must have the movable feature.
The second sense implies that the NP in the PP transports the subject. The
constraint is that the NP must have the propulsion feature. The third sense
implies that the NP and the subject are moving together. The NP must have
the movable feature. Sense one and three are similar, but they have different
constraints on the subject. The sec1 template applies constraints on the PP
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key arguments check list return class
itv2 arg1(v,g̊a v1) isa(g̊a v1,underSpecSubj v1) new movement

arg2(n,mann n1) has(mann n1,moveable)
pp7 arg1(p,med p1) has(gutt n1,movable) new pp

arg2(n,gutt n1)
pp8 arg1(p,med p2) has(gutt n1,propulsion) new pp

arg2(n,gutt n1)
pp9 arg1(p,med p3) has(gutt n1,movable) new pp

arg2(n,gutt n1)
mod2 arg1(movement, isa(med p3,work role p1) call

g̊a v1)
arg2(pp,med p3) isa(g̊a v1,movement v1)

sec1 arg1(movement, has(Arg1,propulsion)
subject,Arg1)
arg2(prep,med p1)

sec2 arg1(movement, has(Arg1,movable)
subject,Arg1)
arg2(prep,med p2)

Table 8.20: Movement Role Example 1, template set

with med p1 and the subject. The sec2 template does the same for med p2.
The preposition med p3 have a constraint implemented in code of the complex
element Movement: the subject and the NP’s type must be equal and in the
set: person, vehicle, and item. After the completion of the predicate tree,
the Movement class is returned. The roles are inferred with the Movement’s
function generateRoles().
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After the above selection, three complex elements are returned for (8.6).
The first element is with the predicate med p1. This is not the most valid
element, but with a context where the boy is an infant, the element is valid.

movement
event(e2:g̊a v1)
subject(x4:mann n1)
med p1(x10:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(mann n1,movable)
isa(med p1,work role p1)

isa(g̊a v1,movement v1)
has(mann n1,propulsion)
has(gutt n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(gutt n1)
work(mann n1)

The second element is with the predicate med p2 (see left column below). It
is less valid than the first element. Since we use general constraints for the
roles, the system overgenerates valid senses. One way to prevent this effect is
to bring in a discourse and more detailed world and domain knowledge. If we
switched NP and subject (see right column below), then the complex element
becomes more valid. The third element is the most valid one.

movement
event(e2:g̊a v1)
subject(x4:mann n1)
med p2(x10:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(mann n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(mann n1,movable)
has(gutt n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(gutt n1)
cargo(mann n1)

movement
event(e2:g̊a v1)
subject(x4:mann n1)
med p3(x10:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(mann n1,movable)
isa(med p3,work role p1)
isa(g̊a v1,movement v1)
has(gutt n1,movable)

templates
[itv2,mod2,pp9 ]

roles
work(gutt n1)
work(mann n1)
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Gutten g̊ar med pakken
The boy goes with the package

(8.7)

The second example (8.7) has a person class as subject and an item class as
PP.NP. The verb has the valid templates itv2, mod2, pp7, and sec1, as described
in the previous example. The package is transported by the boy. The following
complex element is returned: movement

event(e2:g̊a v1)
subject(x4:gutt n1)
med p1(x10:pakke n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(gutt n1,movable)
isa(med p1,work role p1)
isa(g̊a v1,movement v1)
has(gutt n1,propulsion)
has(pakke n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(pakke n1)
work(gutt n1)
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Mannen g̊ar med flyet
The man goes by airplane

(8.8)

The next example (8.8) has a person as subject and a vehicle as PP.NP. The
templates are described in the first example. The pp7 and pp8 template are
valid for the preposition phrases. The roles are inferred as described in the
previous example. Two complex elements are returned:

movement
event(e2:g̊a v1)
subject(x4:mann n1)
med p1(x10:fly n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(mann n1,movable)
isa(med p1,work role p1)
isa(g̊a v1,movement v1)
has(mann n1,propulsion)
has(fly n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(fly n1)
work(mann n1)

movement
event(e2:g̊a v1)
subject(x4:mann n1)
med p2(x10:fly n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(mann n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(mann n1,movable)
has(fly n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(fly n1)
cargo(mann n1)

The first element is valid if the man can carry the airplane, and that is true
only in a context where the airplane is a toy. The second element is the most
valid: the airplane moves with the man inside.
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Pakken g̊ar med flyet
The package goes with the airplane

(8.9)

The (8.9) example has an item as subject and a vehicle as PP.NP. The valid
template for the preposition is pp8. The following complex object is returned:

movement
event(e2:g̊a v1)
subject(x4:pakke n1)
med p2(x10:fly n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(pakke n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(fly n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(fly n1)
cargo(pakke n1)

In this complex element, the airplane transports the package.
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Flyet g̊ar med pakken
The airplane goes with the package

(8.10)

The (8.10) example has a vehicle as subject and an item as PP.NP. The valid
template for the preposition is pp7. The following complex element is returned:

movement
event(e2:g̊a v1)
subject(x4:fly n1)
med p1(x10:pakke n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(fly n1,movable)
isa(med p1,work role p1)
isa(g̊a v1,movement v1)
has(fly n1,propulsion)
has(pakke n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(pakke n1)
work(fly n1)

The airplane is transporting the package.
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Flyet g̊ar med gutten
The airplane goes with the boy

(8.11)

The (8.11) example has a vehicle as subject and a person as PP.NP. The
sentence has pp7 and pp8 as valid templates for the preposition. Two complex
elements are returned:

movement
event(e2:g̊a v1)
subject(x4:fly n1)
med p1(x10:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(fly n1,movable)
isa(med p1,work role p1)
isa(g̊a v1,movement v1)
has(fly n1,propulsion)
has(gutt n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(gutt n1)
work(fly n1)

movement
event(e2:g̊a v1)
subject(x4:fly n1)
med p2(x10:gutt n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(fly n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(fly n1,movable)
has(gutt n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(gutt n1)
cargo(fly n1)

The first element is the most valid: the boy is transported by the airplane.
The second element requires a context with a toy airplane, but the meaning is
odd in Norwegian.
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Bilen g̊ar med fergen
The car goes by ferry

(8.12)

The (8.12) example has a vehicle as subject and a vehicle as PP.NP. The
sentence results in the valid templates: pp7, pp8, and pp9. Three complex
elements are returned:

movement
event(e2:g̊a v1)
subject(x4:bil n1)
med p1(x10:ferge n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(bil n1,movable)
isa(med p1,work role p1)
isa(g̊a v1,movement v1)
has(bil n1,propulsion)
has(ferge n1,movable)

templates
[itv2,mod2,pp7,sec1 ]

roles
cargo(ferge n1)
work(bil n1)

movement
event(e2:g̊a v1)
subject(x4:bil n1)
med p2(x10:ferge n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(bil n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(bil n1,movable)
has(ferge n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(ferge n1)
cargo(bil n1)

movement
event(e2:g̊a v1)
subject(x4:bil n1)
med p3(x10:ferge n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(bil n1,movable)
isa(med p3,work role p1)
isa(g̊a v1,movement v1)
has(ferge n1,movable)

templates
[itv2,mod2,pp9 ]

roles
work(ferge n1)
work(bil n1)
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The first element implies that the car is transporting the ferry. If the ferry
is small and the ferry fits in the car, the element is valid. The second element
is the most valid. The car is transported by the ferry. The third element is
less valid with the two nouns, because the ferry goes on water and the car on
land. If we replace ferry with lorry the element becomes more valid.

Pakken g̊ar med mannen
The package goes with the man

(8.13)

The (8.13) example has an item as subject and a person as PP.NP. The sen-
tence has the valid template pp8, and one complex element is returned.

movement
event(e2:g̊a v1)
subject(x4:pakke n1)
med p2(x10:mann n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(pakke n1,movable)
isa(med p2,work role p1)
isa(g̊a v1,movement v1)
has(pakke n1,movable)
has(mann n1,propulsion)

templates
[itv2,mod2,pp8,sec2 ]

roles
work(mann n1)
cargo(pakke n1)

The man is transporting the package.
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Pakken g̊ar med brevet
The package goes with the letter

(8.14)

The last example is (8.14). The example has an item as subject and an item
as PP.NP. It has the valid template pp9, and one complex element is returned.

movement
event(e2:g̊a v1)
subject(x4:pakke n1)
med p3(x10:brev n1)
checks

isa(g̊a v1,underSpecSubj v1)
has(pakke n1,movable)
isa(med p3,work role p1)
isa(g̊a v1,movement v1)
has(brev n1,movable)

templates
[itv2,mod2,pp9 ]

roles
cargo(brev n1)
cargo(pakke n1)

The element implies a context where the package and the letter are trans-
ported together.

8.4 Adverbs, Prepositions and Object Structures

So far, we have used a simple symbol for each sense of a word, but sometimes
a more detailed structure is required in order to express meaning. In the
examples, “the cat sits in the car”, “the cat sits on the car”, and “the cat sits
under the car”, there are three different locations related to the car. We have
a container in the car, an area on top of the car, and a space under the car.
The goal of the examples is to show that some senses of the words have an
internal structure and parts of this structure can be connected to other senses
or parts of senses. Our focus are still on the Change Location domain. An
object can contain a location and this location together with an adverb and
a preposition can form a path with a direction. The adverbs have a direction
that is horizontal or vertical. The prepositions have a beginning of a path or
an end of a path. The nouns in this example have the object types:
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• container, a container is typically inside another object (x has container)
or the container is the object (x is-a container)

• surface, an area that can be a part of an object or independent

• line, a long and thin object; can be determined with two locations

We consider some examples.

Frank g̊ar ut av b̊aten
Frank goes out of the boat

(8.15)

We use the MRS in Table 8.21 for (8.15). The adverb is placed in the same
label as the verb and the preposition. The first verb argument (x4) is equal to
the first adverb argument and the first preposition argument. The preposition
and the adverb have the same key. All these characteristics are used to find
the adverb phrases in our examples. The Predicate Tree Table in Table 8.22

key pos pred sense EP
x4 na named h3:named rel(x4,frank)

q def h5: def q rel(x4,h6,h7)
e2 v g̊a h8: g̊a v rel(e2,x4)
u10 adv ut h8: ut adv rel(u10,x4,u11,u9)
u10 p av h8: av p rel(u10,x4,x12)
x12 n b̊at h13: b̊at n rel(x12)

q def h14: def q rel(x12,h16,h15)

Table 8.21: Direction Example 1, MRS

is created from the Table 8.21. Before the Change Location event happens,
Frank is inside the boat. The boat has a container where there is a location

       def 

    ____|___ 

   /        \ 

 named      def 

          ___|__ 

         /      \ 

        båt  gå&ut&av 

Figure 8.8: FOL

       mod 

    ____|___ 

   /        \ 

  gå       ut_av 

   |       __|_ 

   |      /    \ 

 frank  frank  båt 

Figure 8.9: Predicate Tree
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inside. The orientation of the entrance of the container is either horizontal or
vertical. A large boat (ship) has the entrance on the side, and a small, open
boat has the entrance at the top. To confuse the matter even more, a long
ship (a Viking ship) is a ship and an open boat. The templates used for the

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u10

h13 x12 b̊at n
h8 u10 ut av adv p x4,x12

Table 8.22: Directional Example 1, Predicate

key nodes check list return class
itv2 arg1(v,g̊a v1) isa(g̊a v1,underSpecSubj v1) new movement

arg2(n,frank n1) has(frank n1,movable)
mod1 arg1(movement,g̊a v1) isa(fra p1,subpath p1) call

arg2(subpath,fra p1) isa(g̊a v1,movement v1)

Table 8.23: Directional Example 1, template set

Movement class is listed in Table 8.23. The tree for the logical form of the MRS
is shown in Figure 8.8. The predicate tree is shown in Figure 8.9. The adverb
phrase with its deeper structures has its own templates and prolog code:

aPart(ut_r1,horizontal).
aPart(ut_r1,vertical).
pPart(av_p1,beg).
oPart(bil_n1,container).
oPart(bil_n1,surface).
pTemplate(ut_r1,av_p1,container).

partCombo(A,P,O,Dir,Subpath,Obj):-
aPart(A,Dir),
pPart(P,Subpath),
oPart(O,Obj),
pTemplate(A,P,Obj).

Since the adverb and the preposition have the same key, we compile them
together to one predicate. In our current example, the adverb ut and the
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preposition av becomes the ut av predicate (see predicate with key = u10 in
Table 8.22). A search in the ontology is done with the adverb ut, the preposition
av, and the noun b̊at. The result is: ut r1, av p1, and (b̊at n1, b̊at n2). The
program searches for templates with the three arguments. The partCombo
predicate is used to find templates, and the parameters for the search are:

• ut r1, av p1, b̊at n1 (List 1)

• ut r1, av p1, b̊at n2 (List 2)

List 2 is empty, but List 1 contains the elements: AdvCombo(horizontal, beg,
container), and AdvCombo(vertical, beg, container). The first element has an
adverb with a horizontal orientation, a preposition with the beginning of path
feature, and the object has a container. The returned information is used to
create a Subpath class and an Objectpart class. The Subpath class is either
beginning, ending, or ongoing. The Objectpart class is added to the extra list.
List 1 causes two complex elements to be returned.

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id1:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x12:b̊at n1)
p(k2:av p1)
adv(k1:ut r1)

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id3:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:vertical
location:id3

location(id3:lokasjon n1)
n(x12:b̊at n1)
p(k2:av p1)
adv(k1:ut r1)

The difference between the complex elements is the orientation in the Object-
part class. The location in the Objectpart class is used in the Movement class.
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Frank gikk opp i b̊aten
Frank went into the boat

(8.16)

(8.16) is parsed and the second of the two readings is shown in Table 8.24.
The predicate table (Table 8.25) is created. Frank is standing beside the boat

key pos pred sense EP
x4 na named h3:named rel(x4,frank)

q def h5: def q rel(x4,h6,h7)
e2 v g̊a h8: g̊a v rel(e2,x4)
u10 adv opp h8: opp adv rel(u10,x4,u11,u9)
u10 p i h8: i p rel(u10,x4,x12)
x12 n b̊at h13: b̊at n rel(x12)

q def h14: def q rel(x12,h16,h15)

Table 8.24: Direction Example 2, MRS

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u10

h13 x12 b̊at n
h8 u10 opp i adv p x4,x12

Table 8.25: Direction Example 2, Predicate

before the event. The ontology contains the following Prolog predicates:

• pTemplate(opp r1,i p1,container).

• oPart(b̊at n1,container).

• pPart(i p1,end).

• aPart(opp r1,vertical).

From the predicate tree the predicate opp i and b̊at are used as parameters to
search the ontology for relevant senses. The search found these senses:

• opp r1, i p1, b̊at n1 (List 1)

• opp r1, i p1, b̊at n2 (List 2)
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The partCombo predicate is used to find templates. List 2 is empty, but List
1 returns the element AdvCombo(vertical, end, container). A SubPath class
is created with the location from the container and the end point of a path.
An extra object is also created for the boat. The predicate tree returns one
complex element. movement

event(e2:g̊a v1)
subject(x4:frank na1)
path

end-point(id1:lokasjon n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:vertical
location:id1

location(id1:lokasjon n1)
n(x12:b̊at n1)
p(k2:i p1)
adv(k1:opp r1) The path ends inside the container of the boat and the orien-
tation of the movement is vertical.
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Frank gikk inn i bilen
Frank went into the car

(8.17)

(8.17) is parsed and an MRS is selected. The following predicate table is
created: Table 8.26. Frank is outside the car before the event happens. The

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u9

h11 x10 bil n
h8 u9 inn i adv p x4,x10

Table 8.26: Direction Example 3, Predicate

templates for the adverb phrase are:

• aPart(inn r1,horizontal).

• pPart(i p1,end).

• oPart(bil n1,container).

• oPart(bil n1,surface).

• pTemplate(inn r1,i p1,container).

The template search algorithm has the arguments inn r1, i p1, bil n1, and
it return the element AdvCombo(horizontal, end, container). One complex
element is returned. Frank is moving along a horizontal path that ends in the
location id1 inside the container of the car.

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

end-point(id1:lokasjon n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x10

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x10:bil n1)
p(k2:i p1)
adv(k1:inn r1)
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Frank gikk ut av bilen
Frank went out of the car

(8.18)

(8.18) is parsed and an MRS is selected. The predicate table (Table 8.27) is
created. Frank is inside the car before the event happens. The words in the

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u10

h13 x12 bil n
h8 u10 ut av adv p x4,x12

Table 8.27: Direction Example 4, Predicate

adverb phrase node have the following senses: ut r1, av p1, and bil n1. These
senses have the following templates in the ontology:

• aPart(ut r1,horizontal).

• aPart(ut r1,vertical).

• pPart(av p1,beg).

• oPart(bil n1,container).

• oPart(bil n1,surface).

• pTemplate(ut r1,av p1,container).

The predicate tree returns two complex elements. One element with a hori-
zontal movement and one element with a vertical.

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id1:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x12:bil n1)
p(k2:av p1)
adv(k1:ut r1)
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movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id3:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:vertical
location:id3

location(id3:lokasjon n1)
n(x12:bil n1)
p(k2:av p1)
adv(k1:ut r1)

Frank started his movement inside the car. The most valid element is the one
with horizontal direction.

Frank gikk inn p̊a kjøkkenet
Frank went into the kitchen

(8.19)

The grammar returns four readings and the third is selected. The predicate
table is shown in Table 8.28. Frank is outside the kitchen before the event
happens. The senses from the ontology for the words in the adverb phrase are

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u9

h11 x10 kjøkken n
h8 u9 inn p̊a adv p x4,x10

Table 8.28: Direction Example 5, Predicate

inn r1, p̊a p1, and kjøkken n1. These senses have the following templates for
the adverb phrase:

• aPart(inn r1,horizontal).

• pPart(p̊a p1,end).

• oPart(kjøkken n1,surface).

• pTemplate(inn r1,p̊a p1,surface).

One complex element is returned.
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movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

end-point(id1:lokasjon n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:surface
object:x10

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x10:kjøkken n1)
p(k2:p̊a p1)
adv(k1:inn r1)

Frank gikk ut p̊a kjøkkenet
Frank went into the kitchen

(8.20)

Four readings are returned from the parsing of (8.20). Number three is selected.
The predicate table is shown in Table 8.30. The words in the adverb phrase are

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u10

h13 x12 kjøkken n
h8 u10 ut p̊a adv p x4,x12

Table 8.29: Direction Example 6, Predicate

used to find the following senses in the ontology: ut r1, p̊a p1, and kjøkken n1.
The following templates are found for the senses:

• aPart(ut r1,horizontal).

• aPart(ut r1,vertical).

• pPart(p̊a p1,end).

• oPart(kjøkken n1,surface).

• pTemplate(ut r1,p̊a p1,surface).

The predicate tree returns two complex elements.
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movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

end-point(id1:lokasjon n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:surface
object:x12

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x12:kjøkken n1)
p(k2:p̊a p1)
adv(k1:ut r1)

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

end-point(id3:lokasjon n1,t2)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,moveable)
isa(til p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:surface
object:x12

orientation:vertical
location:id3

location(id3:lokasjon n1)
n(x12:kjøkken n1)
p(k2:p̊a p1)
adv(k1:ut r1)

Frank gikk ut fra kjøkkenet
Frank went out of the kitchen

(8.21)

(8.21) is parsed and an MRS is selected. The predicate table is shown in
Table 8.30. Frank is in the kitchen before the event. The senses of the words

label key predicate pos sense argTab modTab
h3 x4 frank na
h8 e2 g̊a v x4 u10

h13 x12 kjøkken n
h8 u10 ut fra adv p x4,x12

Table 8.30: Direction Example 7, Predicate

in the adverb phrase are: ut r1, fra p1, fra p2, and kjøkken n1. The search for
templates uses these senses as arguments and returns the following information:

• ut r1, fra p1, kjøkken n1, List 1
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• ut r1, fra p2, kjøkken n1, List 2

Two complex elements are returned. One element for a vertical movement and
one for a horizontal.

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id1:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,movable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:horizontal
location:id1

location(id1:lokasjon n1)
n(x12:kjøkken n1)
p(k2:fra p1)
adv(k1:ut r1)

movement
event(e2:g̊a v1)
subject(x4:frank na1)
path

begin-point(id3:lokasjon n1,t1)
checks

isa(g̊a v1,underSpecSubj v1)
has(frank na1,movable)
isa(fra p1,subpath p1)
isa(g̊a v1,movement v1)

objectpart
objectType:container
object:x12

orientation:vertical
location:id3

location(id3:lokasjon n1)
n(x12:kjøkken n1)
p(k2:fra p1)
adv(k1:ut r1)

8.5 Summary

We have presented a detailed example for the mapping algorithm and a design
of the Change Location domain. We selected an MRS and then we prepared
the MRS and we created a predicate tree. We used the predicate tree with our
mapping algorithm together with a design from the Change Location domain.
The domain ontology contains a set of concepts, a type hierarchy, a set of has
and use relations, the templates, and the complex domain types. Parts of the
ontology are shown in Figure D.1, Figure D.2. Figure D.3, Figure D.4, and
Figure D.5. The complex domain elements from the Change Location domain
are: Movement, SubPath and Path. The Change Location elements expresses
some event structure from statements about objects moving from one place to
another. The complex elements are used to generate time points for our event
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structure and to generate roles for our verb arguments. We also presented
objects with structures. The objects were described with examples that had
adverbs and prepositions.



Part IV

Conclusion





Chapter 9

Conclusion

9.1 Discussion

Our approach to select the top of the list of MRSs from our ranker is a simple
strategy. This approach works with few domains and a good parse ranker. The
alternative is to select the n-best from the list or select the MRSs that have
a probability in the same range. Then we have to compute the most suitable
MRS. If we scale up our system with more domains, previous stored situations
and a dialogue state from a dialogue system, we create a lot of ambiguities that
we need to choose from. We use the stratified pipeline architecture according to
Nirenburg and Raskin [79]. This architecture is modularized and each module
computes its input and deliver its output to the next module. There is no other
communication between the modules. The problem with this architecture is
to have a precise definition of the knowledge needed for each module and not
apply too few or too much constraints. Nirenburg and Raskin [79] advocates a
flat architecture that is more like a Constraint-Satisfaction architecture. The
flat architecture can communicate through a blackboard architecture.1 We
cannot change the internals of the HPSG grammar parser, but we could apply
this architecture to our pipeline (future research).

An MRS can be a source to a number of scope ambiguities. Some of these
can be eliminated by Utool if we resolve an MRS with a file for elimination of
logically equal readings. If we have a mapping of the quantifiers in the grammar
to the two First-Order Logic quantifiers and some generalized quantifiers, the
creation of the file for elimination of logically equal readings is easier. However,
the remaining scope ambiguities can be solved with the architecture discussed
above.

1Each module have access to the same data structure
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The question-answering system WATSON [37] uses about 100 different
techniques for analyzing natural language. This approach is also used by
Nirenburg and Raskin [79] with their microtheories. Our approach is just
one technique, so we have to look into using more overlapping techniques in
our future research.

Our analysis of over two million BusTUC sentences from our previous re-
search focus is in Appendix A.2. A large number of these sentences contain
fragments with PPs and NPs. Fragments were recently implemented in Nor-
Source, so we haven’t tried to parse the BusTUC sentences. Before we try, we
have to implement a preprocessing functionality that recognize time expres-
sions, addresses, companies, bus stops, etc., because all the relevant BusTUC
sentences contains at least one of these elements. As we see from the tables in
Appendix A.2, the most frequent sentences are not very complex. We therefore
claim that NorSource is able to parse the sentences if we add the preprocess-
ing functionality, and if we want to reason with the BusTUC sentences we
can transform an MRS into a FOREL (BusTUC’s meaning representation)
expression and reason with the BusTUC system.

One way to document our domain ontology is to create an OWL model,
and then we could have performed a consistency check on the domain ontology
and the model could have been accessed by other research groups through a
known format, but we had already implemented a Prolog implementation when
we used WordNet in our previous research phase. We will consider using OWL
in our future research.

9.2 The Research Questions Revisited

The first research question from Section 1.2 on page 7 is “What are suitable
formal representations of linguistic events and world events?”

The Linguistic Representation’s interface is the MRS. Unfortu-
nately, MRSs come in the varieties of wanted or unwanted. A
wanted MRS is an MRS that the linguist intended to create, but
an unwanted MRS is an MRS that is the result of too few restric-
tions in parts of the grammar. So, it is important that we have a
way of avoiding the unwanted MRSs, and a solution to this problem
is to use a parse ranker.

With a wanted MRS, our starting point for Linguistic Represen-
tation types is the Aktionsart types with verb arguments. This
information is not coded in the MRS, so we need to add this infor-
mation together with coercion information. Another feature of the
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Aktionsart types is that they can have structure, for example sub-
events. The event Movement from the Change Location domain
can have the sub-events Arrival and Departure. This information
is not coded in the MRS. Objects can introduce context (structure).
For example, in “the cat ran into the car”, the cat is located inside
the container (location) that is a part of the car. Other locations
connected to the car are: under the car, on top of the car, behind
and in front of the car, etc. These factors are also not part of the
MRS. Together these types of information call for a representation
on the domain side that has structure. This is our main motivation
for creating complex domain elements. In these complex domain
elements we can implement algorithms for creating structure, time
points, roles and states.

An MRS has different types of EPs: normal part-of-speech types,
quantifiers, special predicates from the grammar2, larger structures
as lists, and predicates designed for reasoning purposes3.

The domain ontology contains a collection of concepts for each part-
of-speech type. It also contains a “is-a” hierarchy with the relations
“has” and “use”. The other parts of the domain ontology are tem-
plates and complex domain elements. The part-of-speech predicates
are mapped to one or more senses in the domain ontology. Predi-
cates outside the part-of-speech type must also be recognized and
their function must be documented.

The second research question is: “How can linguistic events be transformed
into world events for later reasoning and analysis?”

We use the template approach, where a template is a structure with
constraints on the senses used for the arguments. The constrains
must be true before we accept the set of senses. The constraints
use the concepts in the domain ontology and the “is-a” hierarchy
together with the relations “has” and “use”.

We also use complex domain elements that instantiate a predicate
and its arguments. As mentioned in the previous question, we can
implement algorithms for creating roles and states in the complex
domain elements.

Before we map underspecified predicates to specified domain pred-
icates, we prepare the MRS. The predicates in the MRS’s EPs

2Such as “ commsg deict rel”, “first position prominent”
3Such as “if” and “then”
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are split into predicate, sense, and part-of-speech. The prepared
MRS is then transformed into a Predicate Tree Table; a structure
that holds information about the connected graphs that the pred-
icates can form. This tree is different from the scoped tree of the
MRS. The Predicate Tree Table is searched for the top nodes of the
graphs. The top nodes and the Predicate Tree Table are arguments
in the mapping algorithm. The mapping algorithm is described in
Algorithm 6.

The mapping algorithm is used in our Box World application to-
gether with Algorithm 2 which shows how we can reason with the
complex domain elements. The Box World application is a simple
dialogue system that uses a logic model of the Box World domain.
An MRS can be transformed into a First-Order Logic formula which
can be interpreted with the logic model. Dialogue acts are inferred
from the complex domain elements and they are executed by the
dialogue manager.

9.3 Contribution

Two pipelines have been presented, one at the underspecified discourse level
and one at the specified world level.

The pipeline at the underspecified discourse level contains MRSs with dis-
course object and event references and underspecified predicates. This level is
used when we look at a series of MRSs representing a discourse. The number-
ing of objects and events start at 1 and continue to the end of the discourse.
Each object and event has a unique identifier in the discourse, and a simple
pronoun resolution is performed.

The pipeline at the specified world level contains world references and do-
main ontology predicates. This means that the predicates are mapped from
underspecified predicates to domain ontology predicates. The world references
are obtained by an interpretation with a world model, if we have one, or by
finding a similar previously stored situation. Each object and event has a
unique identifier in our model of the world. For example, if we read a docu-
ment about the assassination of Kennedy, we want to have unique identifiers
for the event and the person. We can store the situation and reuse it later if
we are looking for similar situations. If we don’t have a world model we can
use the series from the underspecified discourse level. This is the case when we
are collecting and storing information about a domain. The assigning of world
references is a manual process.
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A mapping algorithm from underspecified predicates to domain specific
predicates has been developed. The algorithm is used in the pipeline at the
specified world level.

A domain ontology for the Change Location domain is developed. The
ontology is used together with the mapping algorithm.

The tools from the DELPH-IN consortium creates “deep” grammars that
offers the meaning representation MRS. This means that our work can be used
by other grammars and languages.

9.4 Future Research

We want to continue our work on the natural language processing system. The
grammar we are using needs improvement with longer and medium complex
sentences (ten to twenty words). This is possible if we select a large amount
of text from a source that writes correct Norwegian about a relevant topic.
There are several options here. Some texts can be accessed from the web.
Some of them are available from Really Simple Syndication (RSS) at the URL
http://www.nrk.no/rss/, and other texts are Norwegian Wikipedia articles.
Another option is text that is not online; text from books, newspapers etc.

Either way, we need to find relevant tools in the research field to process
Norwegian Wikipedia files, and adopt them to our needs. A relevant candidate
for mapping our concepts to is Norsk ordvev4.

With an improved grammar that can parse semi-complex sentences (about
10-13 words), we can create a parse ranker that list the most relevant MRSs on
top. This can be used to create underspecified discourses that can be used for
information retrieval purposes. This means that the tool for extracting names
and compound words must be able to work at least at a semi-automatic level.
We hope to find a possible future solution to complex sentences, and we assume
that the solution requires more software and hardware resources. We do not
expect the task of compound words to be completely solved. The tool for
creating a Gold standard and storing situations depends on a well functional
grammar. At first, the Gold standard will be manually annotated, but we
expect that this can be done semi-automatically. The tool for extracting semi-
structured data from the MRSs also depends on a well functional grammar.
This process is automatic. The linguistic applications depends on the previous
parts and is expected to be a workbench for trying out different theories. We

4http://www.nb.no/Tilbud/Forske/Spraakbanken/Tilgjengelege-ressursar/

Leksikalske-ressursar

http://www.nrk.no/rss/
http://www.nb.no/Tilbud/Forske/Spraakbanken/Tilgjengelege-ressursar/Leksikalske-ressursar
http://www.nb.no/Tilbud/Forske/Spraakbanken/Tilgjengelege-ressursar/Leksikalske-ressursar
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expect the system to be functional in a few domains, but we do not expect to
solve all problems with question-answering.

We need to augment out mapping algorithm to take stored situations into
consideration. We also want to use more domains. The process first and select
afterwards approach is not an option. A preprocessing step where we remove
possible senses and domains is possible way to reduce the ambiguity problem.
Another option is to keep the Predicate Tree Table and use a similarity measure
to find domain elements and previous stored situations. The found elements
and situations can be ranked with different dimensions, like “close as an answer
to a question”, “in current domain”, “in domain that dialogue system accepts”,
etc. Then the dialogue state and the dimensions can indicate the most relevant
elements.
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Appendix A

Results From Previous Phase

We have two contributions from the previous research phase. A number of
sentences from BusTUC was generalized and we present a couple of tables with
the most frequently used types. A model of the Aktonsart type accomplishment
called the Expanded Nucleus Model was developed. The model has sub events
for the process and sub states for the state.

A.1 The Expanded Nucleus Model

The Expanded Nucleus Model is based on the Aktionsart type accomplishment.
The process has sub events for a beginning, a normal ongoing activity, a process
break, and an end. Each sub event has a time point. The verb “depart” is

Figure A.1: Expanded Nucleus Model

an example of a begin sub event from the Change Location domain. The
verb “arrive” is an example of an end sub event . The sub event for normal
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ongoing activity represent many events. An example is the sentence “John
walks”. Here the process is ongoing and normal, but as times goes by, John
is at several unmentioned locations. The p-break sub event is an abnormal
termination of the process. The state has sub states for a beginning, a normal
ongoing state, a state break, and an end. Each sub state has a time point. The
s-break sub state is an abnormal termination of the state.

John almost reached the top (A.1)

(A.1) is a p-break example. The process of moving to the top is stopped and
the culmination “atLocation(john,top)” is not activated. (A.2) is an s-break
example. Here the jailing state is terminated after two years instead of four.

John was jailed for four years, but he escaped after two (A.2)

The Expanded Nucleus Model contains a structure that can be used as a
guide when we design events in a domain.

A.2 Analysis Of Sentences From BusTUC

BusTUC received 2.517.047 sentences between 31 October 2010 and 1 March
2013 from its web application and SMS service. We wanted to analyze the
data in order to look at the semantic structure of the incoming sentences. We
parsed the sentences with BusTUC and we stored the meaning representations.
BusTUC’s meaning representation is called First Order Reified Event Logic
(FOREL). Our strategy was to make the meaning representation more general.
If we can remove the details from the representations, we can look for patterns
in the remaining general representations. FOREL has the format dialogue
act:expression list.

N̊ar g̊ar bussen fra Romolslia til Dalen?
When does the bus go from Romolslia to Dalen?

(A.3)

The question in (A.3) produces the following FOREL:

which(A): (
romolslia isa station,
dalen isa neighbourhood,
B isa bus,
A isa time,
do/go/B/e1,
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event/real/e1,
mod_vp/in/time/A/e1,
mod_np/from/vehicle/place/B/romolslia,
mod_np/to/vehicle/place/B/dalen

)

We use the “isa”-relation to generalize the expressions. The detailed part of the
relation is replaced with the general part. For example, the FOREL elements

romolslia isa station,
B isa bus,
mod_np/from/vehicle/place/B/romolslia,

are transformed into “mod np/from/vehicle/place/bus/station”. After the re-
placements of the four “isa”-relations we have the following expression:

which(time): (
do/go/bus/e1,
event/real/e1,
mod_vp/in/time/time/e1,
mod_np/from/vehicle/place/bus/station,
mod_np/to/vehicle/place/bus/neighbourhood

)

The 2.517.047 sentences were transformed into 38.657 generalized sentences.
The groups with the most members are presented in Table A.2, Table A.3,
Table A.4, and Table A.5. The generalized FOREL expressions were stored
in a database. The numbers were selected with a GROUP BY clause and
the FOREL expression were used to find the first occurrence of the sentence
text. This text was augmented with generalized types like <neighbourhood>,
<station>, <street>, and <clock>. (A.3) is augmented to:

“N̊ar g̊ar bussen fra <station> til <neighbourhood>?”

6.14 % (154.568) of the sentences did not parse. The main part of these are
misspelled words, unknown abbreviations, or sentences completely out of con-
text. The forth row in Table A.2 is “N̊ar g̊ar bussen...”, which is the test
sentence (fragment) from web application for the bus oracle. The answer to
this “question” is: “Du m̊a oppgi et sted i slike spørsm̊al” (“You must state a
place in these kind of questions”). 191 groups out of total 38.657 contain more
than a thousand sentences. The 191 groups have 71,83 % (1807915) of the
total members. That leaves 38466 groups with less that 1000 members. These
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have 28,17 % of the total members. We created a statistic for the number of
FOREL elements, Table A.1.

Number of elements Count
1 157435
2 110476
3 866900
4 385261
5 506963
6 306177
7 46936
8 14723
9 113476
10 8943
11 679
12 91
13 23
14 3
16 2

Table A.1: Number of FOREL elements
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Count Sentence Pattern
160633 <station> til <station>
143073 <station> <station>
107315 n̊ar g̊ar bussen fra <station> til <station>?
103128 N̊ar g̊ar bussen . . .
96318 <station> <neighbourhood>
93011 N̊ar g̊ar bussen fra <station> til <neighbourhood>?
87032 <station> til <neighbourhood>
51473 fra <neighbourhood> til <station>
49785 <neighbourhood> til <station>
46589 n̊ar g̊ar neste buss fra <station> til <neighbourhood>?
44703 n̊ar g̊ar neste buss fra <station> til <station>?
35928 n̊ar g̊ar bussen fra <neighbourhood> til <station>?
33886 <station>
31130 n̊ar må jeg ta bussen fra <station> for å være p̊a <station> <time>?
28037 neste buss til <station> fra <station>?
25897 n̊ar g̊ar buss <route> from <station>
25056 n̊ar g̊ar bussen fra <station> til <station> etter <time>?
22643 fra <neighbourhood> til <neighbourhood>
20760 <neighbourhood> til <neighbourhood>
20507 neste buss fra <station> til <neighbourhood>?
19136 n̊ar g̊ar neste buss fra <neighbourhood> til <station>
19033 n̊ar g̊ar bussen fra <neighbourhood> til <neighbourhood>
18598 fra <station> til <station> etter kl <clock>
17087 fra <station> til <station> kl <clock>
16615 n̊ar g̊ar bussen fra <station> til <neighbourhood> etter kl <clock>?
15478 n̊ar må jeg ta bussen fra <station> for å være i <neighbourhood> <clock>?
15256 Buss fra <station> til <station>
14765 <route>
14135 <station> til <station> <clock>
14014 fra <station> til <station> før <clock>
13982 <neighbourhood>
13979 <station> to <street>
13568 <street> til <station>
12989 <station> til <station> etter kl <clock>
11697 <station> <street>
11346 fra <station> til <neighbourhood> etter kl <clock>
11309 n̊ar g̊ar bussen fra <station> til <street>
10717 n̊ar har neste buss fra <neighbourhood> til <station>?
10466 fra <street> til <station>
10369 <station> til <station> senest <clock>?
10280 n̊ar g̊ar neste buss fra <station>

Table A.2: Sentence Patterns For The Highest Count, Portion I
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Count Sentence Pattern
9707 n̊ar g̊ar bussen fra <station> til <station> <clock>
9415 n̊ar g̊ar neste buss fra <neighbourhood> til <neighbourhood>?
9116 n̊ar g̊ar bussen fra <street> til <station>.
9031 <vehicle> fra <station> til <neighbourhood>.
8850 Fra <station>
8745 <station> <station> <clock>.
8640 n̊ar g̊ar bussen fra <neighbourhood> til <station> etter kl. <clock>.
8139 <station> <neighbourhood> klokken <clock>
7927 <station> til <neighbourhood> etter <clock>
7380 <station> te <neighbourhood> kl. <clock>
7279 <street>.
6754 fra <neighbourhood> til <station> etter <clock>.
6445 n̊ar g̊ar bussen fra <station> til <station> før <time>.
6422 fra <station> til <neighbourhood> før <clock>.
6371 <route> fra <station>.
6080 <vehicle> fra <neighbourhood> til <station>.
5886 neste fra <station> til <station>.
5859 <station> - <neighbourhood> <clock>
5606 n̊ar g̊ar bussen til <station>.
5590 n̊ar må jeg ta bussen fra <neighbourhood> for å være p̊a <station> <clock>?
5352 buss fra <station>.
5218 <route> fra <station> til <station>.
4958 neste buss fra <neighbourhood> til <neighbourhood>
4901 n̊ar g̊ar <route> fra <station> til <station>?
4796 n̊ar g̊ar <vehicle> fra <neighbourhood>.
4719 n̊ar g̊ar buss fra <street> til <neighbourhood>?
4718 <station> til <neighbourhood> før <clock>
4700 n̊ar g̊ar bussen fra <station> til <neighbourhood> <clock>?
4608 <street> til <neighbourhood>.
4598 n̊ar har neste buss fra <station> til <station> etter <clock>
4442 <company>.
4391 <vehicle>.
4274 fra <neighbourhood> til <station>.
4271 n̊ar g̊ar <route> fra <station>?
4241 n̊ar må jeg ta bussen fra <station> for å være p̊a <neighbourhood> kl <clock>?
4191 <neighbourhood> til <station> etter <clock>.
4101 <street> <neighbourhood>.
4048 <route> fra <station> p̊a vei mot <neighbourhood>.

Table A.3: Sentence Patterns For The Highest Count, Portion II
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Count Sentence Pattern
3963 <neighbourhood> til <station> kl <clock>.
3936 fra <neighbourhood> til <station> <clock>.
3931 N̊ar g̊ar <vehicle> fra <station> etter klokka <time>?
3786 N̊ar g̊ar neste buss til <station> fra <street>?
3776 n̊ar g̊ar det buss fra <neighbourhood> til <neighbourhood> etter <clock>?
3592 buss fra <station> til <station> kl <clock>.
3560 n̊ar g̊ar neste buss fra <station> til <street>?
3375 neste fra <station> til <neighbourhood>.
3279 <neighbourhood> til <street>.
3261 n̊ar må jeg ta bussen fra <station> for å være ved <station> <time>?
3256 til <station>.
3235 <vehicle> til <station>.
3174 N̊ar g̊ar bussen fra <neighbourhood> til <street>.
3170 n̊ar må jeg ta buss nr 5 fra <station> for å være i <station> kl <time>.
3134 neste buss fra <station>.
3078 fra <neighbourhood> til <station> ankomst før <clock>.
3051 n̊ar g̊ar <vehicle> fra <station> til <neighbourhood> før <time>.
3034 n̊ar g̊ar <route> fra <station> til <neighbourhood>?
3017 buss fra <station> til <station> etter <clock>.
2897 n̊ar g̊ar bussen til <neighbourhood>.
2782 n̊ar g̊ar neste buss til <station>.
2769 hvilke busser g̊ar til <station>.
2754 n̊ar g̊ar siste buss ifra <station> til <station>?
2632 N̊ar m̊a jeg ta buss fra <station> for å være p̊a <station> før <clock>.
2614 <vehicle> f <neighbourhood> til <neighbourhood>.
2561 neste buss fra <street> til <station>.
2435 neste buss fra <station> til <street>.
2392 neste buss fra <station> til <neighbourhood> etter kl <clock>.
2368 <route> fra <neighbourhood> til <station>.
2327 N̊ar m̊a jeg ta buss fra <station> for å være p̊a <station> til <clock>?
2252 n̊ar g̊ar siste buss fra <neighbourhood> til <station>?
2250 n̊ar g̊ar bussen fra <station> til <street> etter <clock>?
2167 n̊ar g̊ar bussen fra <street> til <station> etter klokken <clock>?
2158 fra <neighbourhood> til <neighbourhood> etter <clock>.
2068 N̊ar g̊ar neste buss etter <clock> fra <station> til <neighbourhood>.
2027 n̊ar g̊ar neste buss fra <station> til <station> etter kl.
2014 n̊ar g̊ar <vehicle> fra <neighbourhood> til <station> <clock>.

Table A.4: Sentence Patterns For The Highest Count, Portion III
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Count Sentence Pattern
2013 n̊ar g̊ar siste buss fra <station> til <neighbourhood>?
2012 Neste buss fra <station> til <station> for å være der til <clock>.
2009 n̊ar g̊ar neste buss fra <street> til <neighbourhood>?
1982 <neighbourhood> til <station> ankomst før <clock>.
1928 buss fra <station> til <neighbourhood> etter klokka <clock>.
1859 <item>
1817 fra <station> til <station> til kl. <clock>.
1802 n̊ar g̊ar neste <route> fra <station> til <station>.
1800 n̊ar må jeg ta bussen fra <station> for å være i <street> kl <clock>?
1766 buss fra <station> som er p̊a <station> før klokken <clock>?
1762 <route> f <neighbourhood>
1745 neste <neighbourhood> <station>.
1744 fra <neighbourhood>.
1715 n̊ar g̊ar <vehicle> fra <station> til <station> i <day> etter <clock>.
1696 n̊ar g̊ar det buss fra <station> og til <station> ca <clock>.
1689 <route>.
1685 n̊ar g̊ar <vehicle> fra <station> for å være p̊a <station> <clock>?
1663 N̊ar g̊ar neste <route> fra <station> til <neighbourhood>?
1649 n̊ar må jeg ta buss fra <neighbourhood> for å være i <neighbourhood> <clock>?
1646 n̊ar g̊ar <vehicle> fra <street>.
1644 fra <station> til <street> kl <clock>.
1631 <station> til <station> til <clock>.
1607 buss til <neighbourhood> fra <station> klokken <clock>.
1594 <vehicle> til <neighbourhood>.
1573 n̊ar g̊ar bussen fra <station> til <station> i <day> <clock>.
1566 <neighbourhood> til <neighbourhood> etter <clock>.
1518 til <neighbourhood>.
1489 neste buss tl <station> fra <neighbourhood> etter <clock>.
1479 n̊ar g̊ar <route> fra <neighbourhood> til <station>?
1475 fra <neighbourhood> til <neighbourhood> kl <clock>.

Table A.5: Sentence Patterns For The Highest Count, Portion IV



Appendix B

Reasoning with First-Order
Logic

First-Order Logic (FOL) is a representation language for commonsense knowl-
edge and natural language semantics. Most of the expressiveness in natural
language can be handled by First-Ordered Logic. Intensional Logic is an ex-
tension of First-Ordered Logic and it can be used for natural language [44].

Formula → AtomicFormula
| (Formula Connective Formula )
| Quantifier Variable,... Formula
| ¬Formula
| (Formula)

AtomicFormula → Predicate(Term,...)
Term → Function(Term,...)

| Constant
| Variable

Connective → ∧ | ∨ | ⇒ | ⇔
Quantifier → ∀ | ∃
Constant → A | B | ...
Variable → x | y | ...

Predicate → Person | Loves | ...
Function → MotherTo | LocationOf | ...

Table B.1: FOL syntax
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B.1 Syntax

A context-free grammar that denotes the syntax is shown in Table B.1. The
syntax, in Backus-Naur form from [56], is adapted from [85]. The grammar
produces formulas that are well-formed. Only well-formed formulas are for-
mulas. A term is represents an object by representing it or pointing to it. A
constant refers to a particular object. A function is returns an object. The
variable is a mechanism to refer to objects (with predicates and quantifiers).

B.2 Example

The example is from [45, Example 2, Page 92]. The example shows a number
of points and the connections between them. The graph is one possible state
of the world and is shown in Figure B.1. The example is used to explain the

P1
P2

P3

Figure B.1: Points

notion of truth (the next sections) for formulas with the quantifiers: ∀ and ∃.
The objects are the points: P1, P2, and P3. There are three constants: a1, a2,
and a3. There are two variables: x and y. There is one 2-ary predicate R. The
example contains three formulas. One atomic formula and two formulas with
two quantifiers each. The formulas are shown in Table B.2.

R(a1, a2) there is a relation between point one and point two
∀x∃yR(x, y) every point has an arrow pointing away from it
∃x∀yR(x, y) there is a point from which arrows go to all other points

Table B.2: FOL formulas
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(i) VM,gA(t1, ..., tn) = 1 iff < Jt1KM,g, ..., JtnKM,g >∈ I(A)
(ii) VM,g(¬φ) = 1 iff VM,g(φ) = 0
(iii) VM,g(φ ∧ ψ) = 1 iff VM,g(φ) = 1 and VM,g(ψ) = 1
(iv) VM,g(φ ∨ ψ) = 1 iff VM,g(φ) = 1 or VM,g(ψ) = 1
(v) VM,g(φ⇒ ψ) = 1 iff VM,g(φ) = 0 or VM,g(ψ) = 1
(vi) VM,g(φ⇔ ψ) = 1 iff VM,g(φ) = VM,g(ψ)
(vii) VM,g(∀xφ) = 1 iff for all d ∈ D,VM,g[x/d](φ) = 1
(viii) VM,g(∃xφ) = 1 iff there is at least one d ∈ D,

VM,g[x/d](φ) = 1

Figure B.2: The Valuation functions from [45]

x VM,g(∃yR(x, y))
P1 VM,g(∃yR(P1, y)) VM,g(R(P1, P1)) = 〈P1, P1〉 ∈ I(R) = 1

VM,g(R(P1, P2)) = 〈P1, P2〉 ∈ I(R) = 1 ←
VM,g(R(P1, P3)) = 〈P1, P3〉 ∈ I(R) = 0

P2 VM,g(∃yR(P2, y)) VM,g(R(P2, P1)) = 〈P2, P1〉 ∈ I(R) = 0
VM,g(R(P2, P2)) = 〈P2, P2〉 ∈ I(R) = 0
VM,g(R(P2, P3)) = 〈P2, P3〉 ∈ I(R) = 1 ←

P3 VM,g(∃yR(P3, y)) VM,g(R(P3, P1)) = 〈P3, P1〉 ∈ I(R) = 1 ←
VM,g(R(P3, P2)) = 〈P3, P2〉 ∈ I(R) = 0
VM,g(R(P3, P3)) = 〈P3, P3〉 ∈ I(R) = 0

Figure B.3: Valuation of Formula 2

B.3 Interpretation and Model

A model (M) is a description of a state in the world, and it is dependent on
a interpretation (I). An interpretation is the non-empty set DI of objects, the
collection of constants on DI , the collection of functions on DI , the collection
of relations on DI . The interpretation for the example above, consist of the
objects and the collections of constants, functions and relations. The objects
are: DI = {P1, P2, P3}. The constants are: I(a1) = P1, I(a2) = P2, I(a3) = P3,
The relations are: I(R) = {〈P1, P1〉, 〈P1, P2〉, 〈P2, P3〉, 〈P3, P1〉}.

B.4 Semantics

A formula has the truth values: true (1), or false (0). The truth value can
be found with a valuation function for a formula with an interpretation. A
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function g1 is called assignments and it contains all the variables in the domain
with all its objects. JtKM,g is the interpretation of a term t in a model M under
assignment g. JtKM,g = I(t) if t is a constant and JtKM,g = g(t) if t is a variable.
The valuation function V, shown in Table B.2, is described in [45, Page 97].
The truth value for R(a1, a2) is found by a valuation of the formula:

VM,g(R(a1, a2)) = 1 iff 〈Ja1KM,g, Ja2KM,g〉 = 〈P1, P2〉 ∈ I(R) = 1

and the formula is true. The truth value for ∀x∃yR(x, y) is found by a valuation
of the formula, see Table B.3. The table column x shows the valuation of the
∀x and next column shows the valuation of ∃yR(x, y) where x is constant. The
formula is true if for each value of x there exist at least one formula that is
true. The table shows (the arrows) that this is the case, so the formula is true.

The truth value for ∃x∀yR(x, y) is found by a valuation of the formula, see
Table B.3. The table column x shows the valuation of the ∃x and next column

x VM,g(∀yR(x, y))
P1 VM,g(∀yR(P1, y)) VM,g(R(P1, P1)) = 〈P1, P1〉 ∈ I(R) = 1

VM,g(R(P1, P2)) = 〈P1, P2〉 ∈ I(R) = 1
VM,g(R(P1, P3)) = 〈P1, P3〉 ∈ I(R) = 0

P2 VM,g(∀yR(P2, y)) VM,g(R(P2, P1)) = 〈P2, P1〉 ∈ I(R) = 0
VM,g(R(P2, P2)) = 〈P2, P2〉 ∈ I(R) = 0
VM,g(R(P2, P3)) = 〈P2, P3〉 ∈ I(R) = 1

P3 VM,g(∀yR(P3, y)) VM,g(R(P3, P1)) = 〈P3, P1〉 ∈ I(R) = 1
VM,g(R(P3, P2)) = 〈P3, P2〉 ∈ I(R) = 0
VM,g(R(P3, P3)) = 〈P3, P3〉 ∈ I(R) = 0

Table B.3: Valuation of Formula 3

shows the valuation of ∀yR(x, y) where x is constant. The formula is true if
for at least one x among all the formulas is true. The table show that this is
not the case, so the formula is false.

B.5 Logic Topics

A knowledge base (KB) is a number of formulas thus: f1 ∧ ... ∧ fn. A KB is
satisfiable if there exists at least one model for it.

1A tool to handle free variables.
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An example is three boxes where Box0 is on Box1, and Box1 is on Box2, and
Box2 is on the floor. The boxes are shown in Figure B.4. The Mace4 program2

is used to find models. Each box can only be on one box at the time and the
model from this example is shown in Figure B.5.

¬blue

bluebox0

box1

box2

Figure B.4: Three Boxes

Box: 0 1 2
1 1 1

On: 0 1 2
0 0 1 0
1 0 0 1
2 0 0 0

Figure B.5: Three Boxes, part 1

Blue: 0 1 2
1 0 0

Box: 0 1 2
1 1 1

On: 0 1 2
0 0 1 0
1 0 0 1
2 0 0 0

Figure B.6: Three Boxes Example, part 2a

Blue: 0 1 2
1 1 0

Box: 0 1 2
1 1 1

On: 0 1 2
0 0 1 0
1 0 0 1
2 0 0 0

Figure B.7: Three Boxes Example, part 2b

Now we introduce the predicate Blue that shows if the color of a box is
blue or not. We know that Box0 is blue, the colour of Box1 is unknown, and
that Box2 is not blue. There are now two models, see Table B.6 and Table B.7.

Another example is from Table B.2. The KB here is not satisfiable, because
of formula ∃x∀yR(x, y) that has the truth value false.

The next topic is reasoning and we want to know if a formula follows
logically from another. This is written as KB � p. This is called entailment.
Entailment is connected to the notion of truth and satisfiable. A proof is used
to find if a formula p entails KB and is written as KB

ì
p. This means that

p is derived from KB by the inference algorithm i. The connection between

2Mace4 (model finder) and Prover9 (theorem prover) can be downloaded from the http:

//www.cs.unm.edu/~mccune/mace4/

http://www.cs.unm.edu/~mccune/mace4/
http://www.cs.unm.edu/~mccune/mace4/
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proof and entailment is:

if KB
ì
p then KB � p

A method for implementing i (resolution) is demonstrated in [85, Chap 7.].
In this example the Prover9 theorem prover is used. Given the box example
from above, we want to determine if Blue(1) logically follows from KB. Since
KB 0

Prover9
Blue(1), then KB 2 Blue(1). We try if ¬Blue(1) logically follows

from KB. Since KB 0
Prover9

¬Blue(1), then KB 2 ¬Blue(1). This can be seen

in Table B.6 and Table B.7. Given the formula: ∃x∃y(Blue(x) ∧ On(x, y) ∧
¬Blue(y)) (there exist a blue box that is on a box that is not blue). Does
this formula logically follows from KB? The answer is yes, since KB `

prover9

(∃x∃y(Blue(x)∧On(x, y)∧¬Blue(y))), then KB � (∃x∃y(Blue(x)∧On(x, y)∧
¬Blue(y))).
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Event Calculus

Event Calculus was used in our previous research process. In retrospect, we
can say that the event in Event Calculus is too simple for our natural language
purpose. We found that an event can have structure like sub-events, causal
relations and that the structure can be coerced from one type into another.
Our complex domain elements can handle these issues together with allowing
algorithms that generated roles, states and time points. Mueller uses the Event
Calculus reasoner described below to understand storytelling [74].

C.1 A Brief Introduction To Event Calculus

In Artificial Intelligence, commonsense reasoning is a research topic that has
been concerned with the question: what changes and what remains unchanged
when an event happens in the real world? It is called “the frame problem” [68]
and the core of the problem is to represent all the things that stay the same and
all the things that change when an event happens. In fact, only a small part
of the world changes when an event happens. A thorough introduction to the
Frame problem is given by Murray P. Shanahan [93]. One solution to the frame
problem was to use a successor axiom that gives the changes after the axioms
are executed. This approach is used in Situation Calculus [68] (successor state).
The successor state can be implemented with the planning system STRIPS [39].
However, this creates a problem when more than one events happen in parallel
and when the events are somehow connected. Murray P. Shanahan [93] solved
the Frame Problem with Event Calculus [61] using circumscription and discrete
time points. Another solution to the Frame problem was Thielscher’s Fluent
Calculus [96].

Eric Mueller [75] introduced the Event Calculus (EC) syntax and the com-
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puter system for reasoning with EC that is used in this text. The reasoning
types in his framework are deduction, abduction, postdiction, and model find-
ing.

• Deduction, or temporal projection, detects the result after performing
a series of events. An example with one event: John lights the candle.
After this event happens the following states hold: The candle is burning
and the candle is emitting light.

• Abduction and planning is the determination of a series of events that
are possible given an initial state and a final state. We have the initial
state: John is in Trondheim and the final state is: John is in Bergen.
One possible series of events is: John goes to the airport in Trondheim.
John goes on a plane. The plane goes to Bergen Airport. John takes the
bus from Bergen Airport to the city centre.

• Postdiction is when an event leads to a state and we reason with the
state prior to the event. An example is: If we are told that Lisa picked
up a newspaper and she was holding the newspaper, we may reason that
Lisa was not previously holding the newspaper.

• Model finding is the process of finding models from the given states and
events. An example from Logic is in Appendix B.5.

An Event Calculus program contains the types: event, fluent, timepoint,
and object. The core of Event Calculus is a collection of axioms. An event is
something that happens at a discrete time point and events can take arguments
such as subjects and objects. A fluent is an outcome of the event and can take
arguments as well. In commonsense reasoning, things stay the same unless they
are affected by an event. The term “Commonsense Law of Inertia” was initiated
by John McCarthy and Lifschitz [66], according to Mueller [76, Chapter 5]. The
“Commonsense Law of Inertia” is a fundamental principle in Event Calculus.
The principle states that only an event causes a fluent to change, and this is
expressed with the axioms Initiates and Terminates. The principle is either
on or off for a fluent, and in an Event Calculus program, including the axioms,
this is expressed with the predicate ReleasedAt. A fluent is released from
the “Commonsense Law of Inertia” when the fluent is involved in continuous
change. Otherwise the fluent is not released from the “Commonsense Law of
Inertia”. Fluents can also change when they are expressed directly.1

1Often used in Initially, the starting state of an Event Calculus program.
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HoldsAt(f,t) states that fluent f is true at timepoint t
¬HoldsAt(f,t) indicates that fluent f is false at timepoint t

Happens(e,t) states that event e happens at timepoint t

Initiates(e,f,t) states that when event e happens the fluent f
becomes true and t is not released from the “Commonsense Law of Inertia”

Terminates(e,f,t) states that when event e happens the fluent f is set false
and f is not released from the “Commonsense Law of Inertia”

Figure C.1: Domain Dependent axioms

An Event Calculus program is divided into the parts: initially, initiates &
terminates, event history, triggers, rules, and preconditions. In the initially
part, fluents can be set before the program starts. If the fluents are not set,
then they can be true or false, which leads to more models. The initiates &
terminates part contains the definitions of events causing fluents to become
true or false. The event history part lists the events that are happening at a
given timepoint. The trigger part and precondition part are explained later.

PersistBetween(t1, f, t2)
def
≡ ¬∃(t)[ReleasedAt(f, t) ∧ t1 < t ≤ t2]

Clipped(t1, f, t2)
def
≡ ∃(e, t)[Happens(e, t) ∧ t1 ≤ t < t2∧Terminates(e, f, t)]

Declipped(t1, f, t2)
def
≡ ∃(e, t)[Happens(e, t) ∧ t1 ≤ t < t2∧Initiates(e, f, t)]

HoldsAt(f, t1) ∧ t1 < t2∧PersistBetween(t1, f, t2)∧
¬Clipped(t1, f, t2)⇒HoldsAt(f, t2)

¬HoldsAt(f, t1) ∧ t1 < t2∧PersistBetween(t1, f, t2)∧
¬Declipped(t1, f, t2)⇒ ¬HoldsAt(f, t2)

Figure C.2: Dependent and independent axioms

The EC program can contain rules such as: a person can be at only one place
at the time.

The Event Calculus axioms can be divided into domain dependent and
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name formula
Fluent precondition 1 γ → Initiates(e,f,t)
Fluent precondition 2 γ → Terminates(e,f,t)
Event precondition Happens(e,t)→ γ
State constraints if γ1 and γ2 are conditions then

γ1 → γ2 is a state constraint
Trigger axiom γ → Happens(e,t)
Trigger fluents 1 γ → Happens(e,t)

Initiates(e,f,t)
Trigger fluents 2 γ → Happens(e,t)

Terminates(e,f,t)

Table C.1: Expressing context in Event Calculus

domain independent axioms. The domain dependent axioms are shown in
Figure C.1. The Initiates and Terminates axioms are bringing the fluent back
into the “Commonsense Law of Inertia”. The domain independent axioms
are the building blocks for the domain dependent axioms. For example, the
axiom HoldsAt(f,t) contains the domain independent axioms PersistBetween,
ReleasedAt, Clipped, and Declipped. The connections between the axioms are
shown in Figure C.2. Further details about the axioms are described in [75,
Section 2.3].

Event Calculus has the ability to express context with: fluent preconditions,
event preconditions, state constraints, trigger axioms, and trigger fluents. The
formulas are given in Table C.1. Fluent precondition 1 is a positive fluent
precondition: γ is a condition, e is an event, f is a fluent, and t is a timepoint.
The axiom Initiates is performed if the condition is true. Fluent precondition
2 is a negative fluent precondition and γ, e, f, and t are the same as in Fluent
precondition 1. The axiom Terminates is performed if the condition is true.
An event precondition is a requirement that must be satisfied before an event
can happen. The state constraint expresses conditions that must hold between
states. An example is to express that a person can only drive one car at a time.
The trigger axiom is using a condition to make an event occur. An example is
an alarm clock. If AlarmTime and AlarmOn are true, the StartsBeeping event
occurs. The trigger fluents are represented with two formulas. Trigger fluent 1
states that if condition γ is true when event e happens at t, then f will be true
after t. Trigger fluent 2 states that if condition γ is true when event e happens
at t, then f will be false after t.

Commonsense reasoning can imply reasoning with:
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• Indirect effects. An indirect effect is when one object changes because
another object changed. An example is the location of a book when it is
carried by a person. The location of the book depends on the location of
the person.

• Delayed effects. A delayed effect is when a process starts and after a
while some state occurs or the process ends in a state. An example is
when somebody drops an object, the object falls and the object hits the
ground. The delayed effect is the moment the object hits the ground.

• Continuous change. The continuous change can be explained with a
falling object. The fluent for the object can be Height(o,h). The fluent
can be set to true when a drop event happens. When the object hits
the ground, an event trigger fires. The event can be HitGround(o). The
Height fluent is released from the “Commonsense Law of Inertia” when
the object is falling. The fluent is no longer determined by an event, but
by the function H − 1

2G(t − t1)2, where H is the starting height and G
is the acceleration due to gravity (9.8 m/s2). The Height fluent is only
released during the continuous change.

formula
1 Initiates(Drop(a,o),Falling(o),t)
2 Releases(Drop(a,o),Height(o,h),t)
3 HoldsAt(Height(o,h),t1) ∧

Happens(Drop(a,o),t1) ∧0 > t2∧
¬ StoppedIn(t1,Falling(o),t1+t2) →
HoldsAt(Height(o,h-1

2G(t2)2), t1 + t2)
4 Terminates(HitGround(o),Falling(o),t)
5 HoldsAt(Falling(o),t) ∧

HoldsAt(Height(o,0),t) →
Happens(HitGround(o),t)

6 HoldsAt(Height(o,h),t) →
Initiates(HitGround(o),Height(o,h),t)

7 HoldsAt(Height(o,h),t1) →
Trajectory(Falling(o),t1,Height(o, h− 1

2G(t2)2), t2)

Table C.2: Falling Object with Events

In order to express some of the notions described above the following pred-
icates are introduced:
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• Release(e,f,t) indicates that when event e happens, the fluent f is released
from the “Commonsense Law of Inertia” after timepoint t.

• ReleasedAt(f,t) indicates that fluent f is released from the “Commonsense
Law of Inertia” at timepoint t. ¬ReleasedAt(f,t) indicates that fluent f
is not released from the “Commonsense Law of Inertia” at timepoint t.

• Trajectory(f1, t1, f2, t2) indicates that if fluent f1 is initiated by an event
at timepoint t1 and if t2 > 0, then the fluent f2 is set to true at timepoint
t1 + t2.

• AntiTrajectory(f1, t1, f2, t2) indicates that if fluent f1 is terminated by
an event that happens at timepoint t1, and t2 > 0, then the fluent f2 is
set to true at timepoint t1 + t2.

The falling object example is from [76, chap. 7]. The formulas are given
in Table C.2. Formula number 3 can be replaced by formula number 7 in the
table. The trajectory predicate shows that the object hits the ground and is
at zero height at t2. Formula number 6 turns on2 the “Commonsense law of
inertia” for the fluent Height(o,h).

C.2 Similarities And Differences

In Event Calculus, an event causes a fluent to change. Some Aktionsart types
culminate in a state that is mentioned in the sentence. The terms fluent and
state are equivalent. When they occur is different. A culminating state is
something that starts after an event happens. This is shown in Moens’ and
Steedman’s nucleus model. Event Calculus can also express a culminating
state, but in addition, EC can have a fluent terminated when an event happens
and a fluent initiated after an event starts.

John runs from the fence to the tree (C.1)

In (C.1) and expressed with Aktionsart types, the event is coerced into an
accomplishment that culminates in the state atLocation(john,tree). The same
sentence expressed in Event Calculus can terminate the previous fluent atLo-
cation(john,fence) when the process starts in addition to initiating the fluent
isMoving(john). When the process ends, the fluent isMoving(john) is termi-
nated and the fluent atLocation(john,tree) is initiated. The similarities between

2Initiates and Terminates do this.
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the Aktionsart types and Event Calculus are that both can express the culmi-
nating state, and the difference is that EC can express more fluents than the
Aktionsart types. Both can express a distinct culminating state. However, a
fuzzy culminating state is problematic in both cases. One explanation can be
that a state or a fluent is expressed in a logical form. A logical form does not
express fuzziness very well. A fuzzy example is in (C.2).

John cooled the soup in two minutes (C.2)

This is an accomplishment that lasts for two minutes and it culminates in a
state. The temperatures from the beginning and at the end of the process are
from some temperature scale, but their values are not known. The best we can
do is to guess. The notion of a cool soup can vary among different people.

Symbol Meaning Symbol Meaning
+ addition != not equal to
- subtraction, negation | disjunction (OR, ∨)
* multiplication & conjunction (AND, ∧)
/ division ! logical negation
% modulus -> implication
< less than <-> bi-implication
<= less than or equal to { } existential quantification (∃)
= equal to [ ] universal quantification (∀)
>= greater than or equal to ( ) grouping
> greater than , separator

Table C.3: Syntax for the Event Calculus Reasoner

C.3 The Event Calculus Reasoner

The Discrete Event Calculus reasoner (DEC) [76, Chapter 13] [75] is used to
show the syntax and is used to run the Event Calculus code. DEC3 converts
the Event Calculus expressions into a satisfiability problem (SAT) using the
DIMACS format [34] and the result is used by a model finder and then DEC
decodes the model finder’s result. In our implementation, DEC uses a combi-
nation of the Relsat Sat solver [7] and the Walksat solver [92]. If the Relsat
solver does not find any models, then the Walksat solver computes a near-miss
model.

3The reasoner can be downloaded from: http://decreasoner.sourceforge.net/

http://decreasoner.sourceforge.net/
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The syntax of the reasoner is according to [75], quote: “Sentences are
expressed in the language of many-sorted first-order predicate calculus with
sub-sort orders [102]”. This means that:

1. Sorts can be sub-sorts of other sorts.

2. Every variable, constant, and function symbol has an associated sort.

3. Every argument position of every function and predicate symbol has an
associated sort.

4. For a term to fill an argument position of a function or predicate symbol,
the sort associated with the term must be a sub-sort of the sort associated
with the argument position.

The syntax for the reasoner is shown in Table C.3.

C.4 Event Calculus, Source Code

In the program, Mary is of type person. The statement:

[person,time] Initiates(BeginProcess(person), Processing(person), time)

expressed in natural language is: For all persons and for all time points: the
event BeginProcess(person) at time results in the state Processing(person) at
time + 1

C.4.1 Our Aktionsart Program

1 ; *** declarations ***

2 load foundations/Root.e

3 load foundations/EC.e

4
5 sort person

6 person Mary

7
8 fluent State(person)

9 fluent Processing(person)

10
11 event BeginProcess(person)

12 event EndProcess(person)

13 event BreakProcess(person)

14 event EndState(person)

15 event BreakState(person)

16
17 ; *** Init & Term ***
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18 [person ,time]

19 Initiates(BeginProcess(person),

20 Processing(person), time).

21 [person ,time]

22 Terminates(EndProcess(person),

23 Processing(person), time).

24 [person ,time]

25 Initiates(EndProcess(person),

26 State(person), time).

27 [person ,time]

28 Terminates(BreakProcess(person),

29 Processing(person), time).

30 [person ,time]

31 Terminates(EndState(person),

32 State(person), time).

33 [person ,time]

34 Terminates(BreakState(person),

35 State(person), time).

36
37 ; *** Event history ***

38 Happens( BeginProcess(Mary), 0).

39 ;Happens( BreakProcess(Mary), 1).

40 ;Happens( BreakState(Mary), 5).

41
42 ; *** Event triggers ***

43 HoldsAt(Processing(Mary) ,3) ->

44 Happens(EndProcess(Mary) ,3).

45
46 HoldsAt(State(Mary) ,6) ->

47 Happens(EndState(Mary) ,6).

48
49 ; *** Preconditions ***

50 [person , time]

51 Happens( BeginProcess(person), time) ->

52 !HoldsAt(Processing(person),time).

53 [person , time]

54 Happens( EndProcess(person), time) ->

55 HoldsAt(Processing(person),time).

56
57 ; *** Initially ***

58 !HoldsAt( State(Mary), 0).

59 !HoldsAt( Processing(Mary), 0).

60
61 ; *** Additional stuff ***

62 completion Happens

63 range time 0 7

64 range offset 1 1

Listing C.1: Our Aktionsart Program

C.4.2 Lambalgen and Hamm’s Building Program

1 ; *** declarations ***

2 load foundations/Root.e

3 load foundations/EC.e

4
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5 sort agent

6 sort prog: integer

7
8 agent Hamm

9
10 fluent Build(agent)

11 fluent House(prog)

12
13 event Start(agent)

14 event Finish(agent)

15
16 ; *** Init & Term **

17 [agent ,time]

18 Initiates(Start(agent),Build(agent),time).

19 [agent ,prog ,time]

20 Releases(Start(agent),House(prog),time).

21 [agent ,time]

22 Terminates(Finish(agent),Build(agent),time).

23 [agent ,prog ,time]

24 HoldsAt(House(prog),time) ->

25 Initiates(Finish(agent),House(prog),time).

26
27 ; *** Event history ***

28 Happens(Start(Hamm) ,0).

29
30 ; *** Event triggers ***

31 [agent ,time]

32 HoldsAt(Build(agent),time) &

33 HoldsAt(House (3),time) ->

34 Happens(Finish(agent),time).

35
36 ; *** Rules ***

37 ; House can not be at different prog at the same time

38 [prog1 ,prog2 ,time]

39 HoldsAt(House(prog1),time) &

40 HoldsAt(House(prog2),time) ->

41 prog1=prog2.

42 ; algorithm for House fluent

43 [agent ,prog1 ,prog2 ,offset ,time]

44 HoldsAt(House(prog1),time) &

45 prog2 = (prog1 + offset) ->

46 Trajectory(Build(agent),time ,House(prog2),offset).

47
48 ; *** Initially ***

49 !HoldsAt(Build(Hamm) ,0).

50 HoldsAt(House (0) ,0).

51
52 ; *** Additional stuff ***

53 completion Happens

54 range time 0 5

55 range prog 0 3

56 range offset 1 3

57 ; End of file.

Listing C.2: Lambalgen and Hamm’s Building Program
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C.5 Event Calculus, Program Trace

C.5.1 Trace, Lambalgen and Hamm’s Building Program

1 Copyright (c) 2005 IBM Corporation and others.

2 All rights reserved. This program and the accompanying materials

3 are made available under the terms of the Common Public License v1.0

4 which accompanies this distribution , and is available at

5 http: //www.eclipse.org/legal/cpl -v10.html

6
7 Contributors:

8 IBM - Initial implementation

9
10 Discrete Event Calculus Reasoner 1.0

11 loading EC_bruland/build.e

12 loading foundations/Root.e

13 loading foundations/EC.e

14 72 variables and 347 clauses

15 relsat solver

16 the cmd:solvers\relsat -#10 ./tmp/solver.input_3540_6 > ./tmp/solver.

output_3540_7

17 1 model

18 ---

19 model 1:

20 0

21 House (0).

22 Happens(Start(Hamm), 0).

23 1

24 -House (0).

25 +Build(Hamm).

26 +House (1).

27 2

28 -House (1).

29 +House (2).

30 3

31 -House (2).

32 +House (3).

33 Happens(Finish(Hamm), 3).

34 4

35 -Build(Hamm).

36 5

37 P

38 ReleasedAt(House (0), 1).

39 ReleasedAt(House (0), 2).

40 ReleasedAt(House (0), 3).

41 ReleasedAt(House (0), 4).

42 ReleasedAt(House (0), 5).

43 ReleasedAt(House (1), 1).

44 ReleasedAt(House (1), 2).

45 ReleasedAt(House (1), 3).

46 ReleasedAt(House (1), 4).

47 ReleasedAt(House (1), 5).

48 ReleasedAt(House (2), 1).

49 ReleasedAt(House (2), 2).

50 ReleasedAt(House (2), 3).
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51 ReleasedAt(House (2), 4).

52 ReleasedAt(House (2), 5).

53 ReleasedAt(House (3), 1).

54 ReleasedAt(House (3), 2).

55 ReleasedAt(House (3), 3).

56 !Happens(Finish(Hamm), 0).

57 !Happens(Finish(Hamm), 1).

58 !Happens(Finish(Hamm), 2).

59 !Happens(Finish(Hamm), 4).

60 !Happens(Finish(Hamm), 5).

61 !Happens(Start(Hamm), 1).

62 !Happens(Start(Hamm), 2).

63 !Happens(Start(Hamm), 3).

64 !Happens(Start(Hamm), 4).

65 !Happens(Start(Hamm), 5).

66 !ReleasedAt(Build(Hamm), 0).

67 !ReleasedAt(Build(Hamm), 1).

68 !ReleasedAt(Build(Hamm), 2).

69 !ReleasedAt(Build(Hamm), 3).

70 !ReleasedAt(Build(Hamm), 4).

71 !ReleasedAt(Build(Hamm), 5).

72 !ReleasedAt(House (0), 0).

73 !ReleasedAt(House (1), 0).

74 !ReleasedAt(House (2), 0).

75 !ReleasedAt(House (3), 0).

76 !ReleasedAt(House (3), 4).

77 !ReleasedAt(House (3), 5).

78 EC: 7 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

79 Root: 0 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

80 build: 0 predicates , 0 functions , 2 fluents , 2 events , 10 axioms

81 encoding 0.4s

82 solution 0.0s

83 total 0.6s

Listing C.3: Trace, Lambalgen and Hamm’s Building Program

C.5.2 Normal Trace, Our Aktionsart Program

1 Copyright (c) 2005 IBM Corporation and others.

2 All rights reserved. This program and the accompanying materials

3 are made available under the terms of the Common Public License v1.0

4 which accompanies this distribution , and is available at

5 http: //www.eclipse.org/legal/cpl -v10.html

6
7 Contributors:

8 IBM - Initial implementation

9
10 Discrete Event Calculus Reasoner 1.0

11 loading EC_bruland/aspect.e

12 loading foundations/Root.e

13 loading foundations/EC.e

14 72 variables and 200 clauses

15 relsat solver

16 the cmd:solvers\relsat -#10 ./tmp/solver.input_3584_6 > ./tmp/solver.

output_3584_7

17 1 model
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18 ---

19 model 1:

20 0

21 Happens(BeginProcess(Mary), 0).

22 1

23 +Processing(Mary).

24 2

25 3

26 Happens(EndProcess(Mary), 3).

27 4

28 -Processing(Mary).

29 +Culmination(Mary).

30 5

31 6

32 Happens(EndState(Mary), 6).

33 7

34 -Culmination(Mary).

35 P

36 !Happens(BeginProcess(Mary), 1).

37 !Happens(BeginProcess(Mary), 2).

38 !Happens(BeginProcess(Mary), 3).

39 !Happens(BeginProcess(Mary), 4).

40 !Happens(BeginProcess(Mary), 5).

41 !Happens(BeginProcess(Mary), 6).

42 !Happens(BeginProcess(Mary), 7).

43 !Happens(BreakProcess(Mary), 0).

44 !Happens(BreakProcess(Mary), 1).

45 !Happens(BreakProcess(Mary), 2).

46 !Happens(BreakProcess(Mary), 3).

47 !Happens(BreakProcess(Mary), 4).

48 !Happens(BreakProcess(Mary), 5).

49 !Happens(BreakProcess(Mary), 6).

50 !Happens(BreakProcess(Mary), 7).

51 !Happens(BreakState(Mary), 0).

52 !Happens(BreakState(Mary), 1).

53 !Happens(BreakState(Mary), 2).

54 !Happens(BreakState(Mary), 3).

55 !Happens(BreakState(Mary), 4).

56 !Happens(BreakState(Mary), 5).

57 !Happens(BreakState(Mary), 6).

58 !Happens(BreakState(Mary), 7).

59 !Happens(EndProcess(Mary), 0).

60 !Happens(EndProcess(Mary), 1).

61 !Happens(EndProcess(Mary), 2).

62 !Happens(EndProcess(Mary), 4).

63 !Happens(EndProcess(Mary), 5).

64 !Happens(EndProcess(Mary), 6).

65 !Happens(EndProcess(Mary), 7).

66 !Happens(EndState(Mary), 0).

67 !Happens(EndState(Mary), 1).

68 !Happens(EndState(Mary), 2).

69 !Happens(EndState(Mary), 3).

70 !Happens(EndState(Mary), 4).

71 !Happens(EndState(Mary), 5).

72 !Happens(EndState(Mary), 7).

73 !ReleasedAt(Culmination(Mary), 0).
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74 !ReleasedAt(Culmination(Mary), 1).

75 !ReleasedAt(Culmination(Mary), 2).

76 !ReleasedAt(Culmination(Mary), 3).

77 !ReleasedAt(Culmination(Mary), 4).

78 !ReleasedAt(Culmination(Mary), 5).

79 !ReleasedAt(Culmination(Mary), 6).

80 !ReleasedAt(Culmination(Mary), 7).

81 !ReleasedAt(Processing(Mary), 0).

82 !ReleasedAt(Processing(Mary), 1).

83 !ReleasedAt(Processing(Mary), 2).

84 !ReleasedAt(Processing(Mary), 3).

85 !ReleasedAt(Processing(Mary), 4).

86 !ReleasedAt(Processing(Mary), 5).

87 !ReleasedAt(Processing(Mary), 6).

88 !ReleasedAt(Processing(Mary), 7).

89 EC: 7 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

90 Root: 0 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

91 aspect: 0 predicates , 0 functions , 2 fluents , 5 events , 13 axioms

92 encoding 0.1s

93 solution 0.0s

94 total 0.3s

Listing C.4: Normal Trace, Our Aktionsart Program

C.5.3 P-break Trace, Our Aktionsart Program

1 Copyright (c) 2005 IBM Corporation and others.

2 All rights reserved. This program and the accompanying materials

3 are made available under the terms of the Common Public License v1.0

4 which accompanies this distribution , and is available at

5 http: //www.eclipse.org/legal/cpl -v10.html

6
7 Contributors:

8 IBM - Initial implementation

9
10 Discrete Event Calculus Reasoner 1.0

11 loading EC_bruland/aspect.e

12 loading foundations/Root.e

13 loading foundations/EC.e

14 72 variables and 200 clauses

15 relsat solver

16 the cmd:solvers\relsat -#10 ./tmp/solver.input_3840_6 > ./tmp/solver.

output_3840_7

17 1 model

18 ---

19 model 1:

20 0

21 Happens(BeginProcess(Mary), 0).

22 1

23 +Processing(Mary).

24 Happens(BreakProcess(Mary), 1).

25 2

26 -Processing(Mary).

27 3

28 4

29 5
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30 6

31 7

32 P

33 !Happens(BeginProcess(Mary), 1).

34 !Happens(BeginProcess(Mary), 2).

35 !Happens(BeginProcess(Mary), 3).

36 !Happens(BeginProcess(Mary), 4).

37 !Happens(BeginProcess(Mary), 5).

38 !Happens(BeginProcess(Mary), 6).

39 !Happens(BeginProcess(Mary), 7).

40 !Happens(BreakProcess(Mary), 0).

41 !Happens(BreakProcess(Mary), 2).

42 !Happens(BreakProcess(Mary), 3).

43 !Happens(BreakProcess(Mary), 4).

44 !Happens(BreakProcess(Mary), 5).

45 !Happens(BreakProcess(Mary), 6).

46 !Happens(BreakProcess(Mary), 7).

47 !Happens(BreakState(Mary), 0).

48 !Happens(BreakState(Mary), 1).

49 !Happens(BreakState(Mary), 2).

50 !Happens(BreakState(Mary), 3).

51 !Happens(BreakState(Mary), 4).

52 !Happens(BreakState(Mary), 5).

53 !Happens(BreakState(Mary), 6).

54 !Happens(BreakState(Mary), 7).

55 !Happens(EndProcess(Mary), 0).

56 !Happens(EndProcess(Mary), 1).

57 !Happens(EndProcess(Mary), 2).

58 !Happens(EndProcess(Mary), 3).

59 !Happens(EndProcess(Mary), 4).

60 !Happens(EndProcess(Mary), 5).

61 !Happens(EndProcess(Mary), 6).

62 !Happens(EndProcess(Mary), 7).

63 !Happens(EndState(Mary), 0).

64 !Happens(EndState(Mary), 1).

65 !Happens(EndState(Mary), 2).

66 !Happens(EndState(Mary), 3).

67 !Happens(EndState(Mary), 4).

68 !Happens(EndState(Mary), 5).

69 !Happens(EndState(Mary), 6).

70 !Happens(EndState(Mary), 7).

71 !ReleasedAt(Culmination(Mary), 0).

72 !ReleasedAt(Culmination(Mary), 1).

73 !ReleasedAt(Culmination(Mary), 2).

74 !ReleasedAt(Culmination(Mary), 3).

75 !ReleasedAt(Culmination(Mary), 4).

76 !ReleasedAt(Culmination(Mary), 5).

77 !ReleasedAt(Culmination(Mary), 6).

78 !ReleasedAt(Culmination(Mary), 7).

79 !ReleasedAt(Processing(Mary), 0).

80 !ReleasedAt(Processing(Mary), 1).

81 !ReleasedAt(Processing(Mary), 2).

82 !ReleasedAt(Processing(Mary), 3).

83 !ReleasedAt(Processing(Mary), 4).

84 !ReleasedAt(Processing(Mary), 5).

85 !ReleasedAt(Processing(Mary), 6).
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86 !ReleasedAt(Processing(Mary), 7).

87 EC: 7 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

88 Root: 0 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

89 aspect: 0 predicates , 0 functions , 2 fluents , 5 events , 14 axioms

90 encoding 0.1s

91 solution 0.0s

92 total 0.4s

Listing C.5: P-break Trace, Our Aktionsart Program

C.5.4 S-break Trace, Our Aktionsart Program

1 Copyright (c) 2005 IBM Corporation and others.

2 All rights reserved. This program and the accompanying materials

3 are made available under the terms of the Common Public License v1.0

4 which accompanies this distribution , and is available at

5 http: //www.eclipse.org/legal/cpl -v10.html

6
7 Contributors:

8 IBM - Initial implementation

9
10 Discrete Event Calculus Reasoner 1.0

11 loading EC_bruland/aspect.e

12 loading foundations/Root.e

13 loading foundations/EC.e

14 72 variables and 200 clauses

15 relsat solver

16 the cmd:solvers\relsat -#10 ./tmp/solver.input_3948_6 > ./tmp/solver.

output_3948_7

17 1 model

18 ---

19 model 1:

20 0

21 Happens(BeginProcess(Mary), 0).

22 1

23 +Processing(Mary).

24 2

25 3

26 Happens(EndProcess(Mary), 3).

27 4

28 -Processing(Mary).

29 +State(Mary).

30 5

31 Happens(BreakState(Mary), 5).

32 6

33 -State(Mary).

34 7

35 P

36 !Happens(BeginProcess(Mary), 1).

37 !Happens(BeginProcess(Mary), 2).

38 !Happens(BeginProcess(Mary), 3).

39 !Happens(BeginProcess(Mary), 4).

40 !Happens(BeginProcess(Mary), 5).

41 !Happens(BeginProcess(Mary), 6).

42 !Happens(BeginProcess(Mary), 7).

43 !Happens(BreakProcess(Mary), 0).
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44 !Happens(BreakProcess(Mary), 1).

45 !Happens(BreakProcess(Mary), 2).

46 !Happens(BreakProcess(Mary), 3).

47 !Happens(BreakProcess(Mary), 4).

48 !Happens(BreakProcess(Mary), 5).

49 !Happens(BreakProcess(Mary), 6).

50 !Happens(BreakProcess(Mary), 7).

51 !Happens(BreakState(Mary), 0).

52 !Happens(BreakState(Mary), 1).

53 !Happens(BreakState(Mary), 2).

54 !Happens(BreakState(Mary), 3).

55 !Happens(BreakState(Mary), 4).

56 !Happens(BreakState(Mary), 6).

57 !Happens(BreakState(Mary), 7).

58 !Happens(EndProcess(Mary), 0).

59 !Happens(EndProcess(Mary), 1).

60 !Happens(EndProcess(Mary), 2).

61 !Happens(EndProcess(Mary), 4).

62 !Happens(EndProcess(Mary), 5).

63 !Happens(EndProcess(Mary), 6).

64 !Happens(EndProcess(Mary), 7).

65 !Happens(EndState(Mary), 0).

66 !Happens(EndState(Mary), 1).

67 !Happens(EndState(Mary), 2).

68 !Happens(EndState(Mary), 3).

69 !Happens(EndState(Mary), 4).

70 !Happens(EndState(Mary), 5).

71 !Happens(EndState(Mary), 6).

72 !Happens(EndState(Mary), 7).

73 !ReleasedAt(State(Mary), 0).

74 !ReleasedAt(State(Mary), 1).

75 !ReleasedAt(State(Mary), 2).

76 !ReleasedAt(State(Mary), 3).

77 !ReleasedAt(State(Mary), 4).

78 !ReleasedAt(State(Mary), 5).

79 !ReleasedAt(State(Mary), 6).

80 !ReleasedAt(State(Mary), 7).

81 !ReleasedAt(Processing(Mary), 0).

82 !ReleasedAt(Processing(Mary), 1).

83 !ReleasedAt(Processing(Mary), 2).

84 !ReleasedAt(Processing(Mary), 3).

85 !ReleasedAt(Processing(Mary), 4).

86 !ReleasedAt(Processing(Mary), 5).

87 !ReleasedAt(Processing(Mary), 6).

88 !ReleasedAt(Processing(Mary), 7).

89 EC: 7 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

90 Root: 0 predicates , 0 functions , 0 fluents , 0 events , 0 axioms

91 aspect: 0 predicates , 0 functions , 2 fluents , 5 events , 14 axioms

92 encoding 0.1s

93 solution 0.0s

94 total 0.4s

Listing C.6: S-break Trace, Our Aktionsart Program
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Appendix D

Change Location Domain
Ontology

The domain ontology contains a type hierarchy, a set of has and use relations,
the templates, and the complex types (objet-oriented types). The complex
domain elements from the change location domain are: Movement, SubPath
and Path.

Movement
event: ParseElem
subject: ParseElem
object: ParseElem
path: Path
cargo: Parse1
vehicle: Parse1
companion: Parse1

ParseElem
type: String
key: Integer
sense: String
ep-ref: String

SubPath
type: String
key: Integer

sense: String
ep-ref: String
argument: ParseElem
time-point: String

Path
object: ParseElem
fra: SubPath
til: SubPath
onPathList: 〈 SubPath 〉

Parse1
arg: ParseElem

Parse2
arg1: ParseElem
arg2: ParseElem

We list template definitions used in our mapping algorithm. The templates
are coded in Prolog:
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1 %

2 % adverb

3 %

4 adv_tmpl(adv_1 ,

5 adv , at_which_time_r1 , movement ,_,

6 [],

7 fork , question ).

8 %

9 % adjective

10 %

11 adj_tmpl(adj_1 ,

12 a,Head , n, _Arg ,

13 [isa(Head ,farge_a1)],

14 new , adj_feature ).

15 %

16 % intransitive verb

17 %

18 itv_tmpl(itv_1 ,

19 v, Head , n, Arg1 ,

20 [isa(Head ,mannerType_v1),has(Arg1 ,movable)],

21 new , movement ).

22 itv_tmpl(itv_2 ,

23 v, Head , n, Arg1 ,

24 [isa(Head ,underSpecSubj_v1),has(Arg1 ,movable)],

25 new , movement ).

26 itv_tmpl(itv_3 ,

27 v, er_property_v1 , adj_feature , _,

28 [],

29 new , feature ).

30 itv_tmpl(itv_4 ,

31 v, gå_v2 , path ,_Arg ,

32 [],

33 new , pathdescription ).

34 itv_tmpl(itv_5 ,

35 v, gå_v2 , n,Arg ,

36 [isa(Arg ,path_n1)],

37 new , pathdescription ).

38 itv_tmpl(itv_6 ,

39 v, Head , n,Arg1 ,

40 [isa(Head ,beg_end_v1),has(Arg1 ,movable)],

41 new , movement ).

42 %

43 % transitive verb

44 %

45 tv_tmpl(tv_1 ,

46 v,time_sit_at_v1 , movement ,_Arg1 , n,Arg2 ,

47 [isa(Arg2 ,tidspunkt_n1)],

48 fork_arg1 , time ).

49 tv_tmpl(tv_2 ,

50 v,kjøre_v1 , n,_Arg1 , path ,_Arg2 ,

51 [],

52 new , movement ).

53 tv_tmpl(tv_3 ,

54 v,kjøre_v1 , n,_Arg1 , n,Arg2 ,

55 [isa(Arg2 ,transportmiddel_n1)],

56 new , movement ).
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57 tv_tmpl(tv_4 ,

58 v,gå_v1 , n,Arg1 , path ,_Arg2 ,

59 [has(Arg1 ,movable)],

60 new , movement ).

61 tv_tmpl(tv_5 ,

62 v,gå_v1 , n,Arg1 , direction ,_Arg2 ,

63 [has(Arg1 ,movable)],

64 new , movement ).

65 tv_tmpl(tv_6 ,

66 v,gå_v1 , n,Arg1 , n,Arg2 ,

67 [has(Arg1 ,movable),isa(Arg2 ,path_n1)],

68 new , movement ).

69 %

70 % PP

71 %%

72 pp_tmpl(pp_1 ,

73 p,fra_p1 , n,Arg1 ,

74 [has(Arg1 ,location)],

75 new , subpath).

76 pp_tmpl(pp_2 ,

77 p,til_p1 , n,Arg1 ,

78 [has(Arg1 ,location)],

79 new , subpath).

80 pp_tmpl(pp_3 ,

81 p,via_p1 , n,Arg1 ,

82 [has(Arg1 ,location)],

83 new , subpath).

84 pp_tmpl(pp_4 ,

85 p,langs_p1 , n,Arg1 ,

86 [has(Arg1 ,longThin)],

87 new , subpath).

88 pp_tmpl(pp_5 ,

89 p,over_p2 , n,Arg1 ,

90 [has(Arg1 ,longThin)],

91 new , subpath).

92 pp_tmpl(pp_6 ,

93 p,gjennom_p1 , n,Arg1 ,

94 [has(Arg1 ,penetrable)],

95 new , subpath).

96 pp_tmpl(pp_7 ,

97 p,med_p1 , n,Arg1 ,

98 [has(Arg1 ,movable)],

99 new , pp).

100 pp_tmpl(pp_8 ,

101 p,med_p2 , n,Arg1 ,

102 [has(Arg1 ,propulsion)],

103 new , pp).

104 pp_tmpl(pp_9 ,

105 p,med_p3 , n,Arg1 ,

106 [has(Arg1 ,movable)],

107 new , pp).

108 pp_tmpl(pp_10 ,

109 p,på_p1 , n,Arg1 ,

110 [has(Arg1 ,location)],

111 new , location).

112 pp_tmpl(pp_11 ,
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113 p,over_p2 , n,Arg1 ,

114 [isa(Arg1 ,plass_n1)],

115 new , subpath).

116 pp_tmpl(pp_12 ,

117 p,langs_p1 , path ,Arg1 ,

118 [],

119 new , subpath).

120 pp_tmpl(pp_13 ,

121 p,Head , n,Arg1 ,

122 [isa(Head ,direction_creation_r1),isa(Arg1 ,path_n1)],

123 new , subdirection).

124 pp_tmpl(pp_14 ,

125 p,Head , path ,_Arg1 ,

126 [isa(Head ,direction_creation_r1)],

127 new , subdirection).

128 pp_tmpl(pp_15 ,

129 p,forbi_p1 , n,Arg1 ,

130 [has(Arg1 ,location)],

131 new , subpath).

132 %

133 % modification

134 %

135 mod_tmpl(mod_1 ,

136 movement ,Arg1 ,subpath ,Prep ,

137 [isa(Prep ,subpath_p1),isa(Arg1 ,movement_v1)],

138 call ,_).

139 mod_tmpl(mod_2 ,

140 movement ,Arg1 ,pp,Prep ,

141 [isa(Prep ,work_role_p1),isa(Arg1 ,movement_v1)],

142 call ,_).

143 mod_tmpl(mod_5 ,

144 n,Arg1 ,subpath ,_Prep ,

145 [isa(Arg1 ,path_n1)],

146 new ,path).

147 mod_tmpl(mod_6 ,

148 pathdescription ,_Arg1 ,subpath ,_Prep ,

149 [],call ,_).

150 mod_tmpl(mod_7 ,

151 n,Arg1 ,subpath ,Prep ,

152 [isa(Prep ,fra_p1),has(Arg1 ,movable)],

153 fork ,movement).

154 mod_tmpl(mod_8 ,

155 adv ,Arg1 ,subpath ,Prep ,

156 [isa(Prep ,til_p1),isa(Arg1 ,path_creation_r1)],

157 new ,path).

158 mod_tmpl(mod_9 ,

159 movement ,_Arg1 ,path ,_Arg2 ,

160 [],

161 call ,_).

162 mod_tmpl(mod_10 ,

163 n,Arg1 ,path ,Arg2 ,

164 [isa(Arg1 ,path_n1)],

165 new ,path).

166 mod_tmpl(mod_11 ,

167 movement ,Arg1 ,subdirection ,Prep ,

168 [],
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169 call ,_).

170 mod_tmpl(mod_12 ,

171 adv ,Arg1 ,subpath ,Prep ,

172 [isa(Arg1 ,direction_creation_r1)],

173 new ,direction).

174 mod_tmpl(mod_13 ,

175 movement ,_Arg1 ,direction ,_Arg2 ,

176 [],

177 call ,_).

178 mod_tmpl(mod_14 ,

179 movement ,_Arg1 ,subpathdeep ,_Arg2 ,

180 [],

181 call ,_).

182 %

183 second_event_two_tmpl(sec_1 ,

184 movement , subject ,Arg1 , prep ,med_p1 ,

185 [has(Arg1 ,propulsion)]).

186 second_event_two_tmpl(sec_2 ,

187 movement , subject ,Arg1 , prep ,med_p2 ,

188 [has(Arg1 ,movable)]).

Listing D.1: Templates

We divide our “is-a” hierarchy into smaller parts so that the hierarchy parts
can be displayed on a page. The hierarchy is divided into four parts and we
have one part for “has” and “use” relations.
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Figure D.2: Type Hierarchy, Part B
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Appendix E

Parser Details

E.1 Prolog Code for Templates

We list the Prolog code used for finding templates and for checking the va-
lidity of the “is-a”, “has” and “use” relations. The relations are coded in the
templates, and the templates are used in the mapping algorithm.

check(isa(A,B)):-
synset(SynId1,_,_,_,A),
synset(SynId2,_,_,_,B),
isa_crawl_up(SynId1,SynId2).

check(has(A,B)):-
synset(SynId1,_,_,_,A),
has_crawl_up(SynId1,B).

check(use(A,B)):-
synset(SynId1,_,_,_,A),
use_crawl_up(SynId1,B).

check(neg(Check)):-
\+check(Check).

check(and(A,B)):-
check(A),
check(B).

%%% crawl_up ontologi
isa_crawl_up(Denne,Kilde):-

Denne=Kilde,
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!
;

isa_rel(Denne,Kilde),
!

;
isa_rel(Denne,Foreldre),
isa_crawl_up(Foreldre,Kilde).

%%% crawl_up ontologi looking for has info
has_crawl_up(Denne,Kilde):-

has_rel(Denne,Kilde),
!

;
isa_rel(Denne,Foreldre),
has_crawl_up(Foreldre,Kilde).

%%% crawl_up ontologi looking for use info
use_crawl_up(Denne,Kilde):-

use_rel(Denne,Kilde),
!

;
isa_rel(Denne,Foreldre),
use_crawl_up(Foreldre,Kilde).

find_template(Key,Head,Arg,Result):-
( itv_tmpl(Key,A,Head,B,Arg,C,D,E),

Result=itv_tmpl(Key,A,Head,B,Arg,C,D,E)
)
;
( pp_tmpl(Key,A,Head,B,Arg,C,D,E),

Result=pp_tmpl(Key,A,Head,B,Arg,C,D,E)
)
;
( mod_tmpl(Key,A,Head,B,Arg,C,D,E),

Result=mod_tmpl(Key,A,Head,B,Arg,C,D,E)
)
;
( adj_tmpl(Key,A,Head,B,Arg,C,D,E),

Result=adj_tmpl(Key,A,Head,B,Arg,C,D,E)
)
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;
( adv_tmpl(Key,A,Head,B,Arg,C,D,E),

Result=adv_tmpl(Key,A,Head,B,Arg,C,D,E)
).

find_template(Key,Head,Arg1,Arg2,Result):-
tv_tmpl(Key,A,Head,B,Arg1,Arg2,C,D,E),
Result=itv_tmpl(Key,A,Head,B,Arg1,Arg2,C,D,E).

E.2 MRS files

We use an example in Chapter 8 that refers to this detailed MRS.

E.2.1 Basic Example 1

1 Reading =1

2 Statement=Gutten går til byen

3 ltop=h1

4 Index =2

5 Ep

6 h3:_gutt_n_rel ([ARG0(x4)], [])

7 h5:_def_q_rel ([ARG0(x4)], [RSTR(h7), BODY(h6)])

8 h8:_gå_v_rel ([ARG0(e2), ARG1(x4)], [])

9 h8:_til_p_rel ([ARG0(u11), ARG1(x4), ARG2(x10), IARG(u9)], [])

10 h12:_by_n_rel ([ARG0(x10)], [])

11 h13:_def_q_rel ([ARG0(x10)], [RSTR(h15), BODY(h14)])

12 Var

13 x4 , BOUNDED , +

14 x4 , PNG.NG.GEN , M

15 x4 , PNG.NG.NUM , SING

16 x4 , PNG.PERS , THIRDPERS

17 x4 , ROLE , MILEAGE -OBJ

18 x4 , WH , -

19 e2 , SF , PROP

20 e2 , E.ASPECT , SEMSORT

21 e2 , E.MOOD , INDICATIVE

22 e2 , E.TENSE , PRES

23 e2 , SORT , VERB -ACT -SPECIFICATION

24 u11 , SORT , VERB -ACT -SPECIFICATION

25 x10 , BOUNDED , +

26 x10 , PNG.NG.GEN , M

27 x10 , PNG.NG.NUM , SING

28 x10 , PNG.PERS , THIRDPERS

29 x10 , ROLE , ENDPNT

30 x10 , WH , -

31 Hcons

32 h7 , qeq , h3

33 h15 , qeq , h12

Listing E.1: Basic Example 1
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