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Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving non-
linear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state,
and then train the output connection weights to make the system output the target information. Because only the output weights
are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This
paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-error-
learning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate.
A novel training method which is less influenced by the noise in the training data is proposed and compared to the traditional ESN
training method.

1. Introduction

A recurrent neural network (RNN) is a neural network
with feedback connections. Mathematically RNNs imple-
ment dynamical systems, and in theory they can approximate
arbitrary dynamical systems with arbitrary precision [1].This
makes them “in principle promising” as solutions for difficult
temporal tasks, but in practice, supervised training of RNNs
is difficult and computationally expensive.

Echo state networks (ESNs) were proposed as a cheap
and fast architectural and supervised learning scheme and are
therefore suggested to be useful in solving real problems [2].
The basic idea is to transform the low dimensional temporal
input into a higher dimensional echo state, and then train
the output connection weights to make the system output the
desired information. The idea was independently developed
byMaass [3] and Jaeger [4] as liquid statemachine (LSM) and
echo state machine (ESM), respectively.

LSMs and ESMs, together with the more recently
explored Backpropagation Decorrelation learning rule for
RNNs [5], are given the generic term reservoir computing
[6]. Typically large, complex RNNs are used as reservoirs, and

their function resembles a tank of liquid. One can think of
the input as stones thrown into the liquid, creating unique
ripples that propagate, interact, and eventually fade away.
After learning how to read the water’s surface, one can extract
a lot of information about recent events, without having to
do the complex input integration. Real water has successfully
been used as a reservoir [7].

Because only the output weights are altered, training is
typically quick and computationally efficient compared to
training of other recurrent neural networks.

We are investigating how to use an ESN to learn internal
models of a robot’s motor apparatus. An internal model is
a system that mimics the behavior of a natural process. In
this paper we will talk about inversemodels, which transform
preplanned trajectories of desired perceptual consequences
into appropriate motor commands.

The inverse model is often divided into a kinematic and
a dynamic model. An inverse kinematic model transforms
a trajectory in task space (e.g., cartesian coordinates) to a
trajectory in actuator space (e.g., joint angles), and an inverse
dynamic model transforms the joint space trajectory into the
sequence of forces that will actually move the limbs. The
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robot simulator in our experiments is controlled by the joint
angle velocities directly, thus we are only concerned with
kinematics.

It is common to use analytical internal models, and
deriving such a model for our simulator would be easy.
Despite this, we want to explore using an ESN as an inverse
model, because as robots becomemore complex, with springy
joints, light limbs and many degrees of freedom, acquiring
analytical models will become more and more difficult [8].
Oubbati et al. also argue that substituting the analytical
models with a recurrent neural networks might be beneficial
in general, as it can make the inverse model more robust
against noise and sensor errors [9].

To acquire an accurate inverse model through learning is,
however, problematic, because the target motor commands
are generally unavailable. What is known is the target tra-
jectory in task space. Three schemas have been suggested for
training the inverse model: directly by observing the effect of
differentmotor commands on the controlled object [10], with
a forward model as a distal teacher [11], or with an approach
called feedback-error learning (FEL) [10]. Direct modeling
was excluded because it cannot handle redundancies in the
motor apparatus and therefore will not scale to real problems
[11]. FEL was chosen over distal teacher because it is a natural
extension of using an analytical model, and because it is
biologically motivated due to its inspiration from cerebellar
motor control [12]. Another advantage, which we will not
exploit here, is that FEL can be used for control during
learning.

The objective in this paper is to investigate how an ESN
can be trained within this FEL scheme. The traditional ESN
learning method falls short in this setup due to inaccu-
rate teacher forcing and target estimation. We propose a
novel training method, which is inspired by gradient decent
methods and shows promising results on this problem.
Preliminary studies of this training method can be found in a
related work [13]. The current paper includes further studies
of why this new method works so well.

2. Learning to Imitate YMCA

In this paper an ESN is trained to execute an arm movement
on a simple robot simulator by computing the inverse
kinematics of that movement. The ESN is only tested on
the movement it was trained on, which means that we do
not verify whether the ESN has actually learned the inverse
model ormerely to execute this particular trajectory.We have
earlier investigated the benefit of learning the inverse model
by training on one movement with certain properties [14].
Here we have a slightly more complex inverse problem and
encountered a problem when trying to learn the training
sequence itself.The solution to that problem is themain point
in this paper.

2.1. Training Data. The movement data is a recording of
the dance to the song YMCA by the Village People. It was
gathered with a Pro Reflex 3D motion tracking system by
Tidemann and Öztürk [15]. The system is able to track

the position of fluorescent balls within a certain volume
by using five infrared cameras. The sampling frequency of
the Pro Reflex is 200Hz. In the experiments we used every
fourth sample, meaning the position trajectory consisted of
50 samples/sec, resulting in a sequence with 313 steps.

The tracking of the balls yields cartesian coordinates
of the balls in three dimensions. The result was projected
down to two dimensions, and the position of each arm was
expressed as the 𝑥 and 𝑧 coordinates of the elbow relative
to the shoulder and the wrist relative to the elbow. The
coordinates were normalized to be in the interval ⟨−1, 1⟩.The
position in each time step was thus represented by 8 signals,
that is, (𝑥elbow, 𝑧elbow, 𝑥wirst , 𝑧wrist) for each arm.

2.2. Simulator. For the simulations we used a fairly simple
2D simulator with four degrees of freedom (DOFs), one in
each shoulder and one in each elbow. The simulated robot
was controlled by the joint angle velocities directly, which
means that the problem of translating the velocities into
torques was not considered. The ESN was trained to output
the joint angle velocities that would keep the elbows and
wrists on the desired trajectory. The velocities were scaled to
be in the interval ⟨−1, 1⟩ and will be referred to as the motor
commands.

The range of motion was constrained to be between 0∘
and 180∘ for all 4 DOFs, and if the motor command implied
moving the limb further, the limb stopped at the limit and the
overshooting motor command was ignored.

The maximum joint angle velocity for each DOF was set
to twice the maximum velocity registered in the recorded
movement, which meant that a joint angle velocity equal to
1moved the joint less than 180 degrees. Limited joint velocity
is realistic, and it also makes large errors in motor commands
lead to smaller position errors, making the movements look
smoother.

2.3. Control Architecture. The ESN is trained to compute
motor commands that will move the simulated arms from the
current position to the next position in the target trajectory.
The target motor commands needed for training are not
available; what is available is the target positions.

The FEL scheme, illustrated in Figure 1, includes a feed-
back controller that estimates the error in motor command
from the position error. The motor error computed by the
feedback controller is used both to train the ESN and to adjust
the motor command from the inverse model before it is sent
to the arm simulator. In the current setup the transformation
from position error to motor error is simple enough to be
done analytically, but using the result will still not be perfect
as the simulator is noisy and the calculation does not take
into consideration any excess motor commands that were
potentially ignored if the limbs were moved to their limits.

How much influence the feedback controller has on the
finalmotor command is regulated by the feedback gain,𝐾. To
facilitate learning and force the feedback controller to become
redundant, the feedback gain was linearly reduced from 1 to
0 during several rounds of training.
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Figure 1: The figure illustrates the feedback-error-learning (FEL)
architecture used to training the ESN. The input to the ESN is
the actual position at the current time step (𝑢actual(𝑡)) and the
next position in the target position trajectory (𝑢target(𝑡 + 1)). The
ESN learns to calculate the motor command which will move the
simulated arms from the current position to the next position in the
target trajectory. The motor command from the ESN is called 𝑦ESN
and is adjusted by themotor command from the feedback controller,
𝑦feedback, before it is used to move the simulated arms. The feedback
controller estimates the error of this total motor command (𝑦error)
by comparing the resulting position with the corresponding target
position. This error is used to train the ESN and to compute the
feedback motor command in the next time step. The feedback gain,
𝐾, determines how much the feedback controller can influence the
total motor command.
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Figure 2: The figure illustrates a basic ESN.

3. Training an Echo State Network

A basic echo state network is illustrated in Figure 2. The
activation of the internal nodes is updated according to

x (𝑡) = 𝑓 (Winu (𝑡)+Wx (𝑡 − 1)+Wbacky (𝑡 − 1)) + V (𝑡 − 1) ,
(1)

where 𝑓 is the node’s activation function, and V are white
Gaussian noise. The output of the network is computed
according to

y (𝑡) = 𝑓out (Wout
(u (𝑡) , x (𝑡))) . (2)

A general task is described by a set of input and desired
output pairs, [⟨u(1), ytarget(1)⟩, ⟨u(2), ytarget(2)⟩, . . . , ⟨u(𝑇),
ytarget(𝑇)⟩], and the solution is a trained ESN whose output
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Figure 3: The plot shows the difference between the true target and
the used target in each training cycle for different values of 𝛽 when
target estimation and teacher forcing are perfect. The result is used
to deduce howmany extra cycles of training are needed for different
values of 𝛽. Note that with 𝛽 = 1, the used target and the true target
will be equal from the start, and only one cycle of training is needed.
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Figure 4: To determine the optimal reservoir size, ESNs with
different numbers of internal nodes were trained with the original
trainingmethod within the FEL scheme.TheYMCAmovement was
repeated 5 times in the training sequence, and the internal noise level
was 0.02. The figure shows the mean position errors during testing
for 10 repetitions of each experiment.

y(𝑡) approximates the teacher output ytarget(𝑡), when the ESN
is driven by the training input u(𝑡).

3.1. Original Training Method. Training the ESN using the
original training methods is done in three steps. First, a
random RNN with the echo state property is generated [4].
Second, the training sequence is run through the network
once. If there are feedback connections, teacher forcing is
used, meaning y(𝑡) is replaced by ytarget(𝑡) when computing
x(𝑡 + 1) and y(𝑡 + 1). After the first 𝑇

0
time steps, which are

used to wash out the initial transient dynamics, the states of
each input and internal node in each time step are stored in a
state collection matrix, M. Assuming tanh is used as output
activation function, tanh−1(ytarget(𝑡)) is collected row-wise
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Figure 5: The optimal choice for the level of internal noise in the
reservoir was significantly different for the two training methods.
The figures show themean position error during testing for different
noise levels. (a)The networks were trained with the original method
with the training sequence consisting of 5 repetitions of the YMCA
movement. (b) The corresponding results when the networks were
trained with the new method with 𝛽 = 0.1 and the movement
sequence repeated once. All experiments were run 10 times, and the
number of internal nodes was 200 in all the networks. Based on the
results we chose noise level 0.03 for the original method and 0.2 for
the new method.

into a target collection matrix S. Equation (2) can then be
written as

S = M(Wout
)

𝑇

. (3)

Third, the output weights are computed by using the
Moore-Penrose pseudoinverse to solve (3) with regard to
Wout:

(Wout
)

𝑇

= M+S. (4)

3.2. New Proposed Training Method. In the original training
method the training sequence is run through the network
once, and the output weights are updated based on the target
collection matrix and the state collection matrix as shown in
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Figure 6: The figures show a box and whisker plots for 20 runs
of each of the 6 experiments. Plot (a) illustrates the position error
during testing and plot (b) the motor error during testing. On each
box, the central mark is themedian, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually.

(4). This does not work well with our training architecture,
because teacher forcing and target estimation are far from
perfect. We therefore suggest running the training sequence
through several times for each value of the feedback gain. For
each of these cycles the output weights are calculated based
on the state collection matrix and something in between the
estimated target and the actual output from the ESN model.
One has

y𝑖used target (𝑡) = 𝛽yestimated target (𝑡) + (1 − 𝛽) yESN (𝑡) . (5)

The vector y𝑖used target(𝑡) is the target used to generate
the target matrix S for computing Wout in cycle 𝑖, and
yestimated target(𝑡) is an estimate of the target, as the true target
is not available. Note that 𝛽 = 1 corresponds to the original
training method.
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Figure 7:The plots illustrate why the original method without repetitions (experiment 1) fails. Compared to the true target (a), the estimated
target in the first epoch (c) is very noisy. It has the general shape of the true target, but when training the initial, random ESN (b) with this
noisy estimate, the result is a network which outputs mostly noise (d). This only gets worse in the succeeding epochs. Plotted are motor
commands (joint angle velocities) for the 4 DOFs at each time step in the training sequence.

We hypothesize that this new proposed training method
will improve learning.However, the training time increases as
𝛽 decreases because additional cycles of training are needed.
To test how many cycles are needed to converge for each
value of 𝛽, the network was trained with the true target
and perfect teacher forcing for 400 cycles. The true target
was found by using an analytical inverse model. Figure 3
illustrates the difference between the true target, ytarget, and
the used target, yused target, in each cycle, 𝑖. To compensate for
this extra computation time, we will try reducing the length
of the training sequence when applying this trainingmethod.

4. Experiments

The performance of the new proposed method is compared
to the performance of the original method through different
experiments. Our main hypothesis is that the new method

will provide the same or better performance as the original at
a smaller computational cost.

In all the experiments the ESN was trained to execute
the YMCA movement. It was trained with feedback-error
learning with the feedback gain linearly being decreased
from 1 to 0 during 10 epochs of training. During testing
the ESN was run without the feedback controller and the
performance was measured as how accurately the ESN was
able to reproduce the training sequence.

The original training method was used on training
sequences with varying number of repetitions of the
YMCA movement. We hypothesize that training on longer
sequences, where the movement is repeated several times,
will increase the performance. However, a longer training
sequence leads to longer training time.

The new training method was investigated by conducting
experiments for three different values of 𝛽. All trained
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Table 1:The table summarizes the experiment details, including the
value of 𝛽 (𝛽 = 1means the original method), the number of cycles
per epoch, and the number of repetitions of the YMCA movement
constituting the training sequence. In all the experiments the ESN
was trained for 10 epochs with decreasing feedback gain.

Experiment number 𝛽 # cycles per epoch # rep. movement
Exp. 1 1 1 1
Exp. 2 1 1 5
Exp. 3 1 1 10
Exp. 4 0.3 2 1
Exp. 5 0.1 3 1
Exp. 6 0.05 10 1

on just one repetition of the YMCA movement, but the
sequence had to be presented several times for each epoch
to make it possible for the used target to converge during
the 10 training epochs. The number of cycles used for each
epoch was the approximate number of cycles needed for
convergence according to Figure 3, divided by the number of
epochs.

Table 1 holds the details of the different experiments.

4.1. Parameters. The ESN had 8 input nodes, corresponding
to the x and z coordinates of the shoulders and elbows, and
4 output nodes, one for each DOF of the simulator. We used
200 nodes in the internal network, which was optimized for
the original training method as illustrated in Figure 4.

When implementing the ESN, we used the simple matlab
toolbox provided by Jaeger et al. [16]. The spectral radius
was 0.5 and tanh was used as output function. The reservoir
noise level was set to 0.03 when using the original method
and 0.2 when using the new method. These noise levels are
justified in Figure 5. All other network parameters used were
the default in the toolbox. Gaussian noise with mean 0 and
standard deviation 0.01 was added to the output from the arm
simulator.

4.2. Training and Testing. The feedback controller was only
used during training, and the feedback gainwas reduced from
1 to 0 during 10 epochs. Before each epoch the ESN was
reinitialized by setting the internal states to 0 and running
the training sequence through once without learning. The
epoch continued with one cycle of training when using the
original training method and several cycles of training when
𝛽 < 1. One last circle without training (but with use of the
feedback controller) was run in each epoch to evaluate the
performance at that stage.

After training the network was again reinitialized and
tested on the training sequence by running it through once
without the feedback controller.

To evaluate the performance we use the Root Mean
Square Error (RMSE) of the resulting position sequence
normalized over the range of the output values:

MSE (y, ytrue target) =
√MSE
𝑦max − 𝑦min

=

√MSE
2

. (6)
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Figure 8: Adding more repetitions of the movement in the training
sequence makes the output of the ESN seem less noisy. Plot (a)
shows the output of the ESN after training with one repetition and
plot (b) the ESN output after training on 5 repetition of the YMCA
movement.

TheNRMSE for each run was averaged over all time steps
andDOFs. ANRMSE = 0means no error, a random solution
would have NRMSE ≈ 0.5, and NRMSE = 1means opposite
solution.

5. Results

Each of the six experiments were repeated 20 times, and
the results are summarized in Table 2 and illustrated in
Figure 6.

The motor error of experiment 1 is close to 0.5, which
means that using the original training method on one
repetition of the YMCA sequence results in a network that
does not perform better than a random network. Repeating
the movement in the training sequence (experiments 2 and
3) helps, but note that the variance is pretty large.
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Using the new training method makes a larger improve-
ment with a lower additional computational cost. From
the box and whisker plot in Figure 6(b) we see that the
worst ESN obtained by using the new method with 𝛽 =
0.1 (experiment 5) performed better than the best ESN
obtained with the original method trained on 5 repetitions
of the YMCA (experiment 2). Due to the computation time
of the pseudo-inverse calculations, the training time of a
sequence of length𝑚∗𝑛 is longer than training a sequence of
length 𝑚 𝑛 times [17]. This implies that the running time of
experiment 5 (sequence of 313 steps run 3 ∗ 10 times) is also
shorter than the running time of experiment 2 (sequence of
5 ∗ 313 steps run 10 times).

5.1. Why the New Method Outperforms the Original. To
understand the effects of the different experimental setups
we trained the same initial network with the setups in
experiments 1 (original, 1 rep.), 2 (original, 5 rep.), and 5 (new,
𝛽 = 0.1) and studied how the ESN output, the actual position
sequence, the estimated target, and the target used for weight
calculation evolved during the training epochs.

Figure 7 shows why experiment 1 fails. The estimated
target sequence is too noisy, and with the short training
sequence without any repetitions, the output from the ESN
becomes even noisier.

The output from the ESN after training becomes signif-
icantly less noisy when the movement is repeated several
times in the training sequence, as illustrated in Figure 8.
In this setup the target sequence does have a repeating
pattern, and since the error in each repetition will differ, the
weight calculation will average over these slightly different
representations.

When using the new training method, the approach for
making a smoother target is different. The new method is
apparently able to keep the smoothness of the output of the
first, random network and just gradually drives that solution
toward the target. As illustrated in Figure 9 the used target,
that is, the best target estimate combined with the previous
ESN output, appears much less noisy than the target estimate
alone.

The new method also results in better teacher forcing.
Figure 10 illustrates the quality of the teacher forcing for the
three selected experiments.

6. Discussion and Conclusion

This paper investigates using feedback-error learning to train
an ESN to learn the inverse kinematics of an arm movement.
When applying feedback-error learning, teacher forcing is
not perfect, and joint constraints on the simulator make
the feedback error inaccurate. A novel training method is
suggested, which uses a combination of the previous ESN
output and the estimated target to train the network. This
presumably keeps much of the smoothness of the output
from the initial, random network and avoids the unstable
output obtained when training with the estimated target
directly.
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Figure 9: In experiment 5 the network is trained on one repetition of
the YMCAmovement with𝛽 = 0.1.The plots show (a) the estimated
target, (b) the used target, and (c) the ESN output after training with
(b). All the plots are from epoch 5, where the used target is starting
to look like the true target. Notice that the used target appears less
noisy than the estimated target.
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Table 2:The mean NRMSE and variance for 20 repetitions of each experiment. All the networks were tested on one repetition of the YMCA
movement.

Experiment Position error Var Motor error Var
1 Orig. method, 1 rep. 0.4000 0.0024 0.4737 1.4𝐸 − 04

2 Orig. method, 5 rep. 0.1088 0.0125 0.2435 0.0071
3 Orig. method, 10 rep. 0.1193 0.0081 0.2500 0.0066
4 New method, 𝛽 = 0.3 0.0494 0.0018 0.1100 6.9𝐸 − 04

5 New method, 𝛽 = 0.1 0.0245 7.0𝐸 − 05 0.0717 1.4𝐸 − 04

6 New method, 𝛽 = 0.05 0.0385 0.0020 0.0669 9.2𝐸 − 04
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Figure 10: The figure illustrates the quality of the teacher forcing in experiments 1, 2, and 5. For each of these experiments the position
sequences in epoch 5 are plotted as the 8 coordinate values at each time step for one repetition of the YMCAmovement.

The new method requires extra training cycles to con-
verge, but we showed that this can be compensated by using
a shorter training sequence.

For benchmark sequences like generation of the figure-
eight [18] or a chaotic attractor like the Mackey-Glass system
[19], it will be interesting to see whether this new method

could be faster than the original method, as it can get the
same performance by training on a shorter training sequence.
Preliminary results on the generation of the figure-eight
verify that a shorter training sequence is needed with the new
method, but the potential computational benefits are not yet
extensively tested.
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