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Abstract

A substantial number of studies have proven that analysing the texture of DNA-
specific stained cancer cell nuclei can provide robust and reliable prognostic in-
formation. Such information is important to make a qualified selection of the
appropriate treatments for the patients.

A recent texture approach based on adaptive features extracted from the
class specific dual entropy matrix (CSDEM) has shown promising results. The
approach used relatively coarse quantification of the entropy values to reduce
overfitting. This quantification can easily reduce the performance of the ap-
proach, and will certainly require detailed domain knowledge in order to fully
utilise its potential.

We will in this study describe a method that uses the class specific entropy
values in their continuous nature. The method uses an adaptive continuous
discrimination function, based on density estimation, that is able to estimate
the discriminative value of the entropies on a continuous scale.

We have evaluated our method using statistical bootstrapping on a dataset
containing about 38 000 cell nucleus images collected from 134 patients with
early ovarian cancer. We achieve results that are consistently better than the
quantified approach based on CSDEM, and our results are more easily obtained
as domain knowledge requirements are reduced. Considering our method as a
generalisation to the continuous domain, this is a good result that reinforces
the promise of using the class specific entropies for prognostics of early ovarian
cancer.
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1. Introduction

A substantial number of studies have proven that analysing the texture of DNA-
specific stained cancer cell nuclei can provide robust and reliable prognostic
information [8]. Such information is important to make a qualified selection of
the appropriate treatments for the patients. A recent texture approach based on
a novel texture analysis concept, coined the class specific dual entropy matrix
(CSDEM), has shown promising results on a dataset containing about 38000
cell nucleus images collected from 134 patients with early ovarian cancer. The
approach used relatively coarse quantification of the entropy values to reduce
overfitting. However, such quantification can also easily reduce the performance
of the approach, and tweaking the quantification parameters to obtain the best
possible performance will typically require detailed knowledge about the dataset.
We will in this study improve and generalise the approach by using the entropy
values in their continuous nature to adaptively estimate their discriminative
value on a continuous scale. This generalisation is likely to improve performance
and significantly reduce the required domain knowledge.

We will begin this section with a short introduction of the dataset used in
this study. Then we introduce the study that presented the approach we are
generalising, and how we describe it in parallell to our concepts. Finally we
describe the main principles of the segmentation method that is applied to the
digital images of the dataset.

1.1 Dataset

In this thesis we will study a dataset of about 38000 cell nucleus images captured
from 134 patients treated for early ovarian cancer in the 1980s. As part of the
treatment, every patient had both ovaries and the uterus completely removed.
From the relevant ovary, a cancerous tissue sample was extracted and the nuclei
of its comprising cells were stained to highlight DNA. The nucleus images were
then produced by an optical microscopy imaging technique in which light travels
through the DNA-specific stained nucleus, is partially absorbed or reflected, thus
causing illuminance variation at the camera’s sensor chip. Shading correction
was later performed to remove undesirable regularities from the images. Each
cell nucleus was then segmented using a manually chosen global threshold while
requiring that the region of nucleus pixels contained no holes when using 8-
connectivity, and finally the non-epithelial, incomplete and connected nuclei
were discarded. We will subsequently refer to the images of the remaining,
segmented nuclei as cell nucleus images.

Figure 1.1.1 shows three representative cell nucleus images from each of the
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1.1.1: A selection of cell nucleus images (a-f) and below; their segmentations
after applying the watershed-based algorithm (g-l). The three leftmost cell nucleus
images (a-c) are from a patient with good prognosis, while the rightmost three (d-f)
are from a patient with poor prognosis. The segmentation parameters are w = 9,
kd = 0.3 and g) kb = 0.3, h) kb = 0.3, i) kb = 0.6, j) kb = 0.4, k) kb = 0.5, l) kb = 0.6

two prognosis groups of the dataset. Every cell nucleus image is a gray-level
image in which the pixel darkness is related to the density of DNA. Since this is
a projection of a three-dimensional structure onto the two-dimensional plane, we
lose information about the precise spatial configuration of DNA. Two disjunct
regions might e.g. appear as one as a result of the projection. In a sense, this
is a challenge when using this dataset for texture analysis.

The patients in the dataset are categorised either as being relapse-free or
having ovarian cancer relapse with respect to a ten year period following the
surgery. We will refer to these categories as good prognosis and poor prognosis,
respectively. Among the 134 patients, 97 are labelled good prognosis, while 37
poor prognosis. This partitioning into prognosis groups differs somewhat from
that in the study of Kleppe [5] where the numbers were 94 and 40, respectively.
The reason why the three patients have changed prognosis group is that the
clinical data leading to the prognoses used in the present study have been re-
visited after the study in [5]. A consequence of this discrepancy is that our
classification results are not directly comparable with the classification results
presented in [5]. We have therefore reimplemented the most promising approach
in [5], and re-evaluated the classifier with the updated prognosis groups. That
result will serve as a benchmark for our results and is available in section 6
where the results are presented.

1.2 Previous work

The texture analysis method which achieved the best results for this particular
dataset, is described in [5]. The study introduced a full classification system for
estimating the prognosis of unseen patients with early overian cancer, compris-
ing some novel and quite promising elements. In particular, a novel adaptive
segmentation method and novel texture features. These elements and ideas are
to a large extent carried into this work. Instead of describing the previous ap-
proach in detail here, it will be described alongside with the presentation of our
approach, while making sure to emphasize what we are doing differently and
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why. In short telling, the main difference is that we handle the entropies in
their continuous nature, with all the implications this entails. In contrast, the
entropies were quantified in [5], which can reduce the classification performance
compared to our continuous approach. In addition, it may also require param-
eters to be tuned for the specific dataset in order to achieve its best possible
performance.

1.3 Segmentation

A sequence of processing steps is performed on the cell nucleus images to produce
the segmented cell nucleus images. This segmentation pipeline and its rationale
will now be described briefly. Note that the segmentation method was first
introduced in [5] and the reader is hereby referred to that study for a more
detailed discussion of the method.

The basic aim of the segmentation method is to segment the cell nucleus
image into three primitives or classes, which corresponds to the bright, gray
and dark regions of the cell nucleus images. The role of the grey primitive
is merely to act as a margin between the dark and bright primitives, i.e. we
wish to separate the dark and bright regions from the grey regions, rather than
separating the dark and bright regions from eachother. Later, it is only from
the dark and bright primitives we will extract texture features.

The first step of the segmentation pipeline is to use an extended version of
Niblack’s adaptive segmentation algorithm with two thresholds, as proposed by
Nordby [9]. Given a window size w, uncertainty parameters kd and kb, the input
image A ∈ Nm,n0 and the segmentation image N ∈ {0, 1, 2}m,n, this extension is
defined as

N(i, j) =


0 if A(i, j) < td(i, j)

1 if td(i, j) ≤ A(i, j) ≤ tb(i, j)
2 if A(i, j) > tb(i, j)

(1.3.1)

where

td(i, j) = µw(i, j)− kdσw(i, j) (1.3.2)

tb(i, j) = µw(i, j) + kbσw(i, j) (1.3.3)

for all the pixels i = 1, ...,m and j = 1, ..., n, and where µw(i, j) and σw(i, j) is
the expectation and standard deviation of the grey level elements in the local
window w centered at (i, j) in A.

There are three parameters that needs to be specified, w, kb and kd. To
fit these parameters we will use the gradient magnitude of the input image to
describe the fitness of the segmentation, and the parameters that maximises the
fitness are selected. The set of possible values for the window size w is set to
{5, 7, 9}. The uncertainty parameters kb and kd can both take values from the
set {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Basically, we let the fitness measure how
well the edges of segmented primitives corresponds with the edge responses in
the gradient magnitude image, as suggested by Yanowitz and Bruckstein [13] in
connection with the validation step of their segmentation method. Specifically,
we compute the mean gradient magnitude of the objects boundary pixels for
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the dark and bright segmentation class, and let the fitness measure be the mean
of these two means.

While [9] used the L1-norm (also known as taxicab norm) of the estimated
first order derivatives to calculate the gradient magnitude, [5] argues to rather
use the L2-norm (euclidean norm) of the estimated first order derivatives. The
reason being that the L1-norm produces a gradient magnitude estimate that
emphasizes diagonal intensity changes significantly more than the gradient mag-
nitude estimate produced by the L2-norm [5, p.48]. The L2-norm is therefore
more appropriate for estimating the gradient magnitude and is used in our im-
plementation.

After the images are segmented using the parameters which are optimal
with respect to the fitness function, one important issue remains to be adressed.
When two or more bright or dark primitives become direct neighbours or over-
lap, they are likely to be segmented as a single dark or bright region, but this
is problematic as they should be treated as separate primitives. Concretely,
for every cell nucleus image we will later extract the size of a primitive and
the grey level values of the primitives in the corresponding input image. Such
merged primitives must thus be separated in order to obtain the correct number
of primitives and correct size of these primitives. For this purpose we use the
well-known watershed algorithm. It is very well suited to separate bright prim-
itives with multiple intensity peaks, and dark primitives with multiple intensity
valleys. A selection of cell nucleus images from a good prognosis patient and
a poor prognosis patient, and their segmentations after applying the watershed
transform, are available in figure 1.1.1. The reader is referred to [5, p.53] for a
detailed description of how the watershed algorithm is applied and implemented
in that and the present study.



2. Class specific dual
entropies

In this section we will introduce the concept of class specific dual entropies
(CSDE). We first give the definition, then we describe the CSDE-space and the
CSDEsum-space in terms of these dual entropies. Finally we describe how these
spaces were quantified in [5].

2.1 Definition

In the style of Mâıtre et al. [6, p.212-213] and Tupin et al. [11, p.725], let every
location in the cell nucleus image be described by the following three values:

• The gray level g ∈ {0, 1, ..., G− 1}, where G is the number of possible gray
levels. The images are uniformly requantified so that G = 64.

• The segmentation label l ∈ {1, 2, ..., L}, where L is number of segmenta-
tion classes. We will in this study use the segmentated cell nucleus images
from the previous section.

• The context value. We will in this study use the size of the object encap-
sulating the pixel in the segmentation image, s ∈ {1, 2, ..., S}, where S is
the largest possible pixel area of a segmented object.

Let q(g, s, l) denote the probability that the combination of grey level g, prim-
itive size s and segmentation label l occurs at a particular location. We will
now go through a series of distribution marginalisations and finally compute the
Shannon entropy of each of two marginals. These entropies are the class specific
dual entropies.

The class (or label) marginal distribution is

q(g, s|l) =
q(g, s, l)∑G−1

g′=0

∑S
s′=0 q(g

′, s′, l)
(2.1.1)

If we perform another level of marginalisation, we arrive at the class specific
grey level histogram q(g|l) and the class specific primitive size histogram q(s|l);

q(g|l) =

S∑
s=1

q(g, s|l) (2.1.2)
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q(s|l) =

G−1∑
g=0

q(g, s|l) (2.1.3)

and now we can define the class specific grey level entropy εl and the class
specific spatial entropy ζl, which is simply the Shannon entropy of each of the
two previous marginals

εl = −
G−1∑
g=0

q(g|l) log q(g|l) (2.1.4)

ζl = −
S∑
s=1

q(s|l) log q(s|l) (2.1.5)

These two entropies constitute a specific instantiation of class specific dual en-
tropies.

2.2 CSDE-space and CSDEsum-space

Define CSDE-space as the Euclidean space [0,∞)× [0,∞) by associating spatial
entropy values with the horizontal axis and grey level entropy values with the
vertical axis. Given a segmenation class, a cell nucleus image then corresponds
to a single point in this space.

To get a feeling for how populated this space is going to be, recall that
our dataset includes about 38000 cell nucleus images from 134 patients. These
patients are partitioned into two prognosis groups; 97 patients of good prognosis
and 37 patients of poor prognosis. This means there are about 10 000 cell
nucleus images associated with poor prognosis. The rest are associated with
good prognosis. Furthermore, in the bootstrap procedure (described in section
5.1) the prognosis groups are each further split into a 70% training set and a
30% test set, leaving only about 7000 points in the training set for the case
of poor prognosis. In the case of good prognosis, the number of points in the
training set is about 19000. In other words, because the prognosis group sizes
are skewed, the number of relevant points in CSDE-space can be about as low
as 7000.

Our approach to discriminating between these two prognosis groups is pre-
sented in section 3. In short, it relies on some distance measure between the
probability density at arbitrary locations in CSDE-space when populated by
good prognosis patients and poor prognosis patients separately. Reliability and
accuracy of the density estimates of CSDE-space must thus be given special
attention, and especially so considering the estimates are calculated from as few
as 7000 samples. How the tradeoff between reliability and accuracy is controlled
is covered in section 4 about non-parametric density estimation.

We will also be interested in the projection of CSDE-space onto the identity
line to significantly increase the density of samples. This projection is achieved
by simply summing the two entropies corresponding to the axes in the CSDE-
space. We will refer to the projected space as the CSDEsum-space.
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2.3 Quantifiation

Another approach for dealing with reliability, different from ours, is to coarsely
quantify the entropies. This approach was taken in [5, p.41], giving the class
specific dual entropy matrix (CSDEM), which is a quantification of CSDE-space.
This introduces two additional parameters qG and qS denoting the number of
quantification levels per integer entropy for the class specific grey level and
spatial entropy, respectively. Given a segmentation class, a cell nucleus image
corresponds to a single point in this matrix, and the quantification parameters
and a rounding function specify the exact location in the matrix at which the
dual entropies contribute:

δ(x− r(qGεl), y − r(qSζl)) (2.3.1)

where δ is the Kronecker delta and r : [0,∞) 7→ N0 is any rounding function.
The CSDEM is thus a matrix of zeros, except from position (r(qGεl), r(qSζl))
where the value is one. Intuitively, the quantification parameters imposes a grid
on CSDE-space, and the rounding function dictates which of the four surround-
ing corners the dual entropies “snaps into”.
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3. Adaptive texture
features

In this section we will describe a technique for adaptively extracting features
from the training set1. The ideas originate from Walker et al. [12], and was
later developed by Albregtsen et al. [2, 7, 8, 1]. We will not give a general de-
scription, but rather give a description specific to our study. First we describe
the basic principes, then we describe our approach for handling continous prop-
erties (section 3.1) and finally we describe how discrete or quantified properties
were handled in [5] (section 3.2).

The basic principle of adaptive features is to let the samples of the training
set design one weight function for each class of the classification problem. Each
of these weight functions estimates the discriminative value of each point in
property space with respect to the true class. If there are any regions in property
space that consistently yields high values in the weight funciton of a given class,
or a proper subset of classes, then this is a region of high discriminative value.

In our case we have only two classes; the two prognosis groups, and this
allows us to simplify and use a function of the form f : R2 7→ R in which
positive values represents the relative evidence for the good prognosis group,
and similarly for the negative values; they represent the relative evidence for
the poor prognosis group. We will refer to this function as the discrimination
function. The purpose of the discrimination function is to adaptively extract
features of high discriminatory value from the training set.

Given that our properties are the continuous dual entropies, f is a mapping
from locations in CSDE-space to a real-valued discrimination value. If we quan-
tify we will instead have a discrimination matrix which can be written as the
the function D : N2

0 7→ R, assuming the matrix is zero-indexed.

3.1 Continuous discrimination function

Here we define the discrimination function used in this study. To aid our defi-
nition, we first define

• Λ = {λ0, λ1, λ2} as the set of segmentation classes

• Ω = {ω0, ω1} as the set of prognosis groups.

1Note that one must prior to this step specify the properties to use. In this study the
properties are the dual entropies (given a segmentation class)
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In the following, because the grey class is ignored, we will use the convention of
denoting the bright and dark segmentation classes as λ0 and λ1, respectively,
while the good and poor prognosis groups are denoted by ω0 and ω1, respectively.

Denote the probability density function (pdf) of the training samples ~x with
segmentation class λl and prognosis group ωc by f ~X|Ω=ωc,Λ=λl

(~x). Using these

pdfs we specify one discrimination function for each of our two relevant segmen-
tation classes,

fb(~x|c) = log
f ~X|Ω=ω0,Λ=λ0

(~x) + c

f ~X|Ω=ω1,Λ=λ0
(~x) + c

(3.1.1)

and

fd(~x|c) = log
f ~X|Ω=ω0,Λ=λ1

(~x) + c

f ~X|Ω=ω1,Λ=λ1
(~x) + c

(3.1.2)

where c is some constant used to mitigate the problem of low reliability of the
density estimates in sparsely populated regions, which often will result in a very
high discrimination value if c is excluded or set to zero. Unreliable density
estimates close to zero is especially unfortunate because the logarithm is so
sensitive close to zero, as are unreliable estimates where the denominator is
close to zero, even after applying the logarithm. The letters b and d are used
as subscripts to denote the bright and dark segmentation classes, respectively,
and we will refer to these two transformation functions as the bright and dark
discrimination functions, respectively. This naming reflects our use of these
functions, which is to transform a pair of entropy values into a single feature of
high discriminative value.

After a discrimination function has been computed using the training set,
we can extract the dual entropies ~x from a cell nucleus image belonging to a
patient whose prognosis is unknown and evaluate the discriminative value of
of~x using this function.

3.2 Discrete discrimination matrix

The entropies was quantified in [5]. As mentioned earlier, in section 2.3, quan-
tification was achieved by specifying a fixed number of values per integer for
each of the two entropies, and a rounding function.

Instead of continuous probability density functions, we are now dealing with
discrete probability functions, and in practice, the discrimination function be-
comes a finite I × J discrimination matrix D. In our context, the sizes of the
dimensions of D can be determined from the number of grey level values and the
maximum object size in the segmented cell nucleus images. In our definitions,
we will be reserving subscripts for the specification of prognosis group ω and
segmentation class λ, so our matrices are always index using parantheses, like
this: D(i, j).

To give a precise description of how the elements of D are calculated we need
some additional definitions. Define the matrices µΩ=ωc,Λ=λl

and σΩ=ωc,Λ=λl
for

prognosis group ωc and segmentation class λl, both having dimensions I × J .
These are the parameters of IJ normal distributions, reflecting the assumption
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that each element of the quantified CSDE-space is normally distributed. Let us
formalise this assumption by defining the matrix Q of random variables:

QΩ=ωc,Λ=λl
(i, j) ∼ N (µΩ=ωc,Λ=λl

(i, j), σ2
Ω=ωc,Λ=λl

(i, j)) (3.2.1)

and let us also assume that

σΩ=ω0,Λ=λl
(i, j) = σΩ=ω1,Λ=λl

(i, j) = σΛ=λl
(i, j) (3.2.2)

for i = 1, ..., I and j = 1, ..., J .
We should note that each observation of QΩ=ωc,Λ=λl

(i, j) is the normalised
contribution of all the cell nucleus images belonging to a I×J patient with prog-
nosis class ωc. We then compute the arithmetic mean and estimated standard
deviation of those observations to estimate the parameters of QΩ=ωc,Λ=λl

(i, j).
This ensures that each patient contributes equally to the estimation of Q, no
matter how many cell nucleus images the different patients have.

To calculate the elements of the discrimination matrix, we estimate the Ma-
halanobis distance for measuring the distance between two distributions repre-
senting good and poor prognosis. In the univariate case this is simply

m(µ1, µ2) =
|µ1 − µ2|

σ
. (3.2.3)

where σ is the common standard deviation of the two distributions. By omitting
the absolute value, we let the sign specify which of the two prognosis groups the
elements in D is evidence for. Let us now specify one discrimination matrix for
each of our segmentation classes

Db(i, j) =
µΩ=ω0,Λ=λ0

(i, j)− µΩ=ω1,Λ=λ0
(i, j)

σΛ=λ0(i, j)
(3.2.4)

and

Dd(i, j) =
µΩ=ω0,Λ=λ1

(i, j)− µΩ=ω1,Λ=λ1
(i, j)

σΛ=λ1
(i, j)

(3.2.5)

for i = 1, ..., I and j = 1, ..., J .
Note that, as in [5, p.34], we have just made the assumption that each ele-

ment of the quantified CSDE-space is normally distributed. If the cells of each
patient were independent, we could use the central limit theorem to justify this
assumption, but Schulerud et al. [10] points out that the cells of a patient are
not and should not be treated as independent. We may therefore not apply the
central limit theorem to justify this assumption, but we can still suspect that the
normal approximation is good enough to use the estimate of the Mahalanobis
distance as a distance measure between the classes, as the Mahalanobis dis-
tance is a relatively robust measurement, at least if the distributions are fairly
symmetric.

3.3 Discussion

We have described the continuous discrimination function used in this work,
and the discrete discrimination matrix used in [5]. Let us now discuss some of
their similarities and differences.
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For every cell nucleus image, both discrimination functions provide an esti-
mate of its discriminative value with respect to our two prognosis groups. If we
let each cell contribute to the feature value of its patient by its discriminative
value, we are in effect letting each cell contribute with its own weighted and
signed vote. The weighting is highly desirable, because as described in section
5, the cells have are not homogeneous in terms of cancer.

The trade-off between reliability and accuracy of the density estimates is of
major importance, as this tradeoff is directly transfered to our discrimination
functions, which in turn is used to create the features for classification. We
will now discuss how the quantified and the continuous approach differs in this
respect.

Let us first consider the method of quantification. Here, the reliability is
increased by imposing a coarse grid on CSDE-space, resulting in a collection of
equally sized bins B. Some of these bins will be highly populated by entropies,
while other sparsely populated. The reliability in each bin will therefore vary in
general. If we now present a query point ~x, and use the discrimination estimate
of the bin containing ~x, then we will have an accurate estimate if ~x is located
exactly at the center of the bin, while the reliability of the estimate depends on
how many entropies were in that bin. If ~x were located near the edge of a bin,
we would still use the estimate for the center of that bin, thus the accuracy is
reduced, but the reliability could be said to be equal.

Now consider using the Parzen window estimator (section 4.2) with a rect-
angular, possibly square, window function equal to the bin sizes in the previous
example. If we estimated the densities at the center of all bins b ∈ B, we would
get the same estimates as in the quantified method. However, if we computed
the estimate of a query point ~x close to the edge of a bin, the Parzen window
may use entropies across the grid lines in the quantification approach, , and may
also not use some entropies within the encapsulating bin. The Parzen window
estimates thus have higher overall accuracy than the quantification method,
because each discrimination estimate is computed specificly for the location of
~x.

We can make a similar argument for the kNN density estimator (section
4.4). Here, we fix the number of samples k used to estimate the density in any
given point, thus giving direct control of the reliability. This allows the kNN
density estimator to achieve high accuracy where possible, while still respecting
the reliability requirement, as specified through k. The equivalent quantification
approach would have variable bin sizes in order to fix the number of entropies
within each bin, but these estimates would still only be accurate at the center of
each bin, thus the accuracy is inferior to that of the non-parametric kNN density
estimator. Our continuous approach therefore has clear benefits in terms of
accuracy.

Regardless of using fixed bin sizes or variable bin sizes; the optimal bin sizes
and their locations depends on the nature of the classes in the dataset and the
chosen property space. To make the most out of the quantification approach,
the bins must reliably and accurately estimate the important regions of the true
unknown discrimination function. This includes distinguishing between regions
with different discriminatory ability. In practice, we can therefore argue the op-
timal specification of the quantification parameters requires domain knowledge,
which in this context means quite detailed information about the dataset at
hand, as it seems difficult to devise a general approach for choosing the optimal
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quantification parameters without simply testing many combinations or by first
estimating the discrimination function in the continuous domain and then fit
the parameters based on the continuous estimate.

To summarise, in both the continuous and the quantification approach, we
have to consider the trade-off between accuracy and reliability, but in the quan-
tification approach we also have to consider how the bins resulting from quantifi-
cation align with the regions of different discriminative value in property space.
In practice, when using the quantification approach we would also have to tol-
erate some deviation from the true discriminatory ability, because the estimates
are most suitable for the center of the bin. Such considerations should prefer-
ably be unnecessary in order to extract the best possible features adaptively,
and the loss of accuracy is also undesirable.
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4. Non-parametric density
estimation

A natural generalisation of the approach in [5] is to use the entropy values in
their continuous nature. In doing so, their discriminative value can be estimated
continuously, thus enabling higher accuracy of the adaptive features. However,
we have to give special attention to the reliability of the estimates. If not,
performance is likely to suffer.

In this section we will investigate various ways of generalising to using the
continuous values directly. We will first introduce the basic idea for nonpara-
metric estimation of probability density functions (pdfs), then we will look at
three specific methods following from this idea. In particular, we will be pre-
senting the Parzen window, the k-nearest neighbour and finally a combination of
these two which we refer to as simply Parzen-kNN. The following introduction
is inspired by Duda et al. [3].

4.1 Theory

We will now describe a way to estimate the probability density function of a
random variable. Let the probability density function of interest be called f .
The probability P of the vector ~x falling within a region R of the sample space
can be expressed as

P =

∫
R

f(~x) d~x (4.1.1)

Suppose now that n samples, ~x1, ..., ~xn are drawn independently from a random
variable with the probability density function f . Since f(~x) gives the relative
likelihood of taking on the given value ~x, we can attempt to use our samples
~x1, ..., ~xn to estimate f . Now, either a sample falls into the region R with
probability P or else it does not with probability 1 − P . It is clear that k of
these n samples falls into R with probability following the binomial distribution

Pk =

(
n

k

)
P k(1− P )n−k (4.1.2)

with an expected value of

E [Pk] = nP (4.1.3)
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Note that any binomial distribution, Bin(n, p), is the sum of n independent
Bernoulli trials, Bern(p), each having the same probability p. Given X ∼
Bin(n, p), then if n is large, X/n becomes a reasonable estimator of p. For our
case, this means that Pk/n becomes a reasonable estimator of P , that is, if we
denote the estimator of P as P̂ , then

P̂ =
Pk
n

(4.1.4)

By conveniently naming our observation of Pk as k, we are assuming that
for large n

P =
k

n
(4.1.5)

Furthermore, if we assume the region R is small enough for p not to vary much
within it, we can write ∫

R

f(~x) d~x ' f(~x)V (4.1.6)

where V is the volume of this region R. From this equation and equation 4.1.1
when using the estimator of P in equation 4.1.4, we then arrive at the following
estimator for the density function f

f̂(~x) =
Pk/n

V
(4.1.7)

Because we want to estimate the density at an input vector ~x, a practical thing
to do is letting the region adapt to that input. Let the adapted region be
denoted by R~x. Typically, R~x is centered at ~x. There exists [3] three well-

known necessary conditions for f̂(~x) to converge to f(~x). These conditions says
the following; as n approaches infinity, the volume of the region should approach
zero while the number of samples falling into the region approaching infinity,
however, it must do so at a rate such that the number of samples k falling into
R~x is negligible compared to the total number of samples n. Since we have a
limited number of samples n, there are additional considerations to be made,
apart from the these conditions of convergence. In particular, if we let V become
too small we run the risk of getting no samples inside a region even though the
samples are relatively dense in that location. In practice we need to find a
good balance between small V and large k in order to produce both relatively
accurate and relativley reliable density estimates for the intended use. In the
following two sections we will look at two approaches, which are commonly used
for estimaton of class conditional density, and then a combination of these two.

4.2 Parzen window density estimation

In the Parzen window density estimator, we are essentially fixing the volume
and structure of the region. The density estimates as computed by the Parzen
window is

f̂(~x) =
1

nV

n∑
i=1

ϕ

(
~x− ~xi
h

)
(4.2.1)
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where ϕ is the so-called window function, and h the window width or bandwidth.
The window function makes it so that each sample contributes according to its
distance from the point of interest, ~x. In this thesis we will be using a Gaussian
window function, and thus we let V = 1 since the window is already normalised.
In the d-dimensional case we then have

f̂(~x) =
1

n
√

(2π)d|H|

n∑
i=1

exp

(
−1

2
(~x− ~xi)TH−1(~x− ~xi)

)
(4.2.2)

where H is the non-singular bandwidth matrix, and ~x a d-dimensional vector.
As we can see, the role of matrix H corresponds to that of the covariance matrix
Σ. In the one-dimensional case this equation reduces to

f̂(x) =
1

nh
√

2π

n∑
i=1

exp

(
−1

2

(
x− xi
h

)2
)

(4.2.3)

giving a bandwidth matrix with only a single element, h.
Note the computational consequence of using a Gaussian window function is

that we have to consider all the samples ~x1, ..., ~xn when calculating the estimate
for a given query location ~x.

4.3 Bandwidth selection

One way to select the bandwidth is to look at and assess density estimate
plots for different bandwidths. This interactive approach requires some intu-
ition about what the true distribution looks like, but in one or two dimensions
visualization is relatively easy. Another approach is to use rule-of-thumb band-
width selection, which gives a formula arising from the optimal bandwidth for
a reference distribution [4, p.73]. Such a formula is useful when the true dis-
tribution resembles some known distribution. However, if the true distribution
is sufficiently similar to a known distribution whose parametrization is known,
then we might be better off with parametric estimation.

Suppose the reference distribution is the d-variate normal distributionNd(µ, Σ)
with Σ = diag(σ2

1 , ..., σ
2
d). We can then use the following rule-of-thumb for the

bandwidth matrix H = diag(h2
1, ..., h

2
d),

ĥj = n−1/(d+4)σ̂j (4.3.1)

This rule-of-thumb is known as Scott’s rule [4, p.73].

4.4 kNN density estimation

In the kNN density estimator we are fixing the number of samples k that falls
into the region. The volume of the region must therefore adapt to the location
~x of interest. This gives rise to some interesting properties. Concretely, at
locations densely populated by samples, the volume can be relatively small.
While at sparsely populated locations the volume must be relatively large. The
accuracy of the estimates are therefore high where possible, while the reliability
of the estimates is the same everywhere. In contrast, the Parzen window has
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a fixed volume and thus fixed accuracy while its reliability depends on how
densely populated the region is.

To calculate the actual kNN density estimate we will use the estimator from
equation 4.1.7, that is;

f̂(~x) =
Pk/n

V

and take the region to be a hypersphere centered at ~x with radius r. Its volume
is thus 2r in the one-dimensional case, and πr2 in the two-dimensional case.
All points whose Euclidean distance to ~x is larger than r is outside the region.
Such a crisp region boundary typically creates estimates that fluctuates more,
so they are not as smoothed as the estimates produced by the Parzen density
estimator with a Gaussian window function.

As a comment on computational complexity, to calculate the estimate for a
given query location ~x we now only have to consider a subset K ⊆ {~x1, ..., ~xn}
where |K| = k. The crisp region of the kNN density estimator is thus better
in terms of computation, provided that we pre-organise all n samples in a data
structure which is suitable for fast lookup of these k samples.

4.5 Combining two principles: Parzen-kNN den-
sity estimation

Here we will present a hybrid between the two density estimators discussed so
far. We will refer to the hybrid as the Parzen-kNN density estimator. The idea
is to fix the number of samples k that falls into the region, and then use the
radius r of this region as the bandwidth of the Parzen window with a Gaussian
window. Note that the bandwidth is then locally dependent, i.e. varies between
different locations of ~x. If we take the region to be a hypershere, we get a band-
width matrix of the form H = diag(r2, ..., r2). In the one-dimensional case we
see this as the bell-shaped Gaussian centered at x, with a standard deviation r.
No assumptions are being made. However, in the n-dimensional case, we are in
fact making the assumption of independent features with equal variances. The
reason for this assumption is not belief of it being true, but rather that it seems
questionable that a full covariance matrix estimated locally should be used to
evaluate the contribution of a sample at a more distant location, e.g. far outside
the local region used to estimate the covariance matrix. When assuming inde-
pendent features we omit the directional component of the covariance matrix
and thus it only represents the idea of local population density, i.e. is used to
dictate the tradeoff between accuracy and reliably by using the local density of
samples.

In terms of computation, this approach is the most costly of the presented
non-parametric density estimators. We have to do the same amount of work as
the regular Parzen method with a Gaussian window, and in addition, we must
perform a lookup of the k nearest neighbours of the query point ~x in order to
compute the radius r.



5. Classification and
evaluation

In this thesis we are studying a dataset of 134 patients, each of which are
associated with good or poor prognosis, see section 1.1. In other words; our
data is labelled and we will use it to train and test a classifier. Specifically,
given a patient whose prognosis group is unknown, we want to reliably estimate
whether the patient has good or poor prognosis. This is the classifier task, and
it conforms to the well known setting of supervised learning.

We will now describe how the feature values of the patient is computed from
its associated cell nucleus images using the discrimination functions defined in
section 3.1. Recall that these two functions estimate the discriminative value of
a single cell nucleus image with respect to the bright and the dark segmentation
class. Given some patient whose cell positions in CSDE-space are ~x1, ..., ~xm in
a segmentation class, we let the patient be represented by the arithmetic mean
of the feature values of its cells. Thus, a patient is represented by the point
(b′, d′) in the feature space, where

b′ =
1

m

m∑
i=1

fb(~xi|c) (5.0.1)

d′ =
1

m

m∑
i=1

fd(~xi|c) (5.0.2)

and where the functions fb and fd are the discrimination functions. Note that
each cell may now contribute differently to the feature values of its patient, and
it does so in accordance with our idea of discriminative value. This is desirable
because cells are not homogenous in terms of cancer [5, p.14-16]. In other words;
all the cell nucleus images of a patient could include non-cancerous cells along
with cells associated with the cancer itself, and if the classifier considers these
cells equal, performance is likely to suffer.

Representing a patient using these features, we then train a linear discrimi-
nant classifer (LDC) to find an optimal decision boundary for our classification
task. We could therefore say that the choice of analytical unit is the patient.

Consider the alternative choice in which we choose the analytical unit to be
the cell. Then we would have to allow ourselves to assume that a single cell
can have cancer, which is not normal to claim [5, p.14-16]. Another problem of
classifying on the cell level, is that the cells can not be considered as independent
[10].
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Figure 5.0.1: A linear discriminant classifier trained using all 134 patients and the
Parzen-kNN density estimates of CSDE-space. The parameters are c = 0.1 and k =
2000. Results are deferred to section 6.

When training the classifier, we will use equal a priori probabilities. This
is because we are equally interested in classifying each prognosis groups cor-
rectly, regardless of the sizes of the groups, as opposed to equally interested in
classifying each patient correctly.

An example of how the feature space and decision boundary may look is
given in figure 5.0.1. This is a resubstitution plot in which all patients are used
for training and testing. The classification may therefore be too optimistic and
“unfair”, since the performance is estimated using samples which the classifier
has seen during training. We will refer to this particular way of estimating the
classifier’s performance as resubstitution. While inappropriate in most situa-
tion, it can aid us in choosing parameters for computationally expensive density
estimators.

5.1 Bootstrapping

Estimating classifier performance using resubstitution is not appropriate be-
cause it doesn’t measure generalisation ability to novel patients, which is what
we wish to estimate. To estimate the classification performance of unseen pat-
terns, we will use a type of statistical bootstrapping.

In our bootstrapping method, the patients are randomly partitioned into a
training set and a test set. We will use the fairly common ratio that puts 70% of
the patients into the training set and the remaining 30% into the test set. The
discrimination functions fb and fd will be computed using the density estimates
acquired by only using the patients in the training set. Then all patients are
represented by the arithmetic mean of their cells feature values, and the LDC
classifier is fitted using only the patients in the training set. Now we use this
trained decision boundary to classify the patients from the test set. This counts
as a single bootstrap. However, we require many such bootstraps to give a more
reliable and complete estimate of classifier performance. This is discussed in
the following section.
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Quantity Definition Format

CCReq Specificity+Sensitivity
2 ? % [? %, ? %]

CCR TP+TN
TP+FP+TN+FN ? % [? %, ? %]

Specificity TN
TN+FP ? % [? %, ? %]

Sensitivity TP
TP+FN ? % [? %, ? %]

Table 5.2.1: The definition of the four quantities used in this study to describe a clas-
sifier’s performance. The abbreviations are as following; correct classification rate
(CCR), correct classification rate assuming equal a priori probabilities (CCReq), true
positive (TP), false positive (FP), true negative (TN) and false negative (FN). Pos-
itive indicates classified as poor prognosis, while negative indicates classified as good
prognosis. In the format column, the leftmost numbers are the estimated expected per-
formances, while the numbers contained in square brackets gives the estimated 95 %
two-sided PI.

5.2 Reporting classification results

In this section we will present how the results are reported. For every boot-
strap result we calculate four performance quantities from the confusion matrix;
CCReq, CCR, specificity and sensitivity. The definitions of these quantities and
the format in which they are presented are listed in table 5.2.1. When com-
paring the performance of different classifiers, we will use the expected CCReq
as the primary measurement, as we consider it the best single descriptor of
performance in this context. The reason for this is the same as why we use
equal a priori probabilities, i.e. that we are equally interested in classifying
each prognosis groups correctly.

In this thesis the bootstrap is run five-hundred times, from which the ex-
pected value and the 95% prediction interval (PI) of each performance quantity
is reported. The 95 % prediction interval is an estimate of an interval in which
the performance quantity of 95% of all future classifiers will fall, given that the
classifier is based on the same features and classification method, and trained
using 97 ∗ 0.7 ≈ 68 patients with good prognosis and 37 ∗ 0.7 ≈ 26 patients with
poor prognosis.
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6. Results and discussion

We will in this section present the classification results for a variety of scenar-
ios. We present the results of our non-parametric density estimators introduced
in section 4 as well as some parametric density estimators, both operating in
CSDE-space and CSDEsum-space. In addition, we discuss how our results com-
pare to a benchmark result, which is the best texture analysis result achieved
prior to this work. These benchmark results are presented in table 6.0.1 and
6.0.2, and they quantify CSDEsum-space and CSDE-space, respectively, using
five levels per integer value. As mentioned in section 1.1, the benchmark is the
result of our reimplementation of the most promising approach in [5] and has
been re-evaluated using the updated prognosis groups.

One issue we are facing with all our methods is the choice of the parameter
c in the discrimination functions. Some of the methods also have an additional
parameter k. Ideally we would perform a search over the parameter space,
run five-hundred bootstraps for each parameter combination and record the
expected performance quantities. Then we would represent this information
in a plot, call it the bootstrap performance plot, and try to spot any appearing
trends about which regions of this parameter space are the most promising. The
trend reveals whether a bootstrap result is good simply because of bootstrap
variation, or if there is a real reason for it. Then, if necessary, we would refine
our search in the most promising region in order to more precisely locate the
optimal parameter set. Unfortunately this approach is only practical in some
scenarios, because the computational burden is too extensive for some of the
methods. For all the parametric methods and the non-parametric kNN method,
such a search only takes a reasonable amount of time. However, for the Parzen
window and Parzen-kNN methods, every single bootstrap takes a significant
amount of time, making fine parameter search too slow. In these cases, what we
will do is manually assess whether parameters c and k are reasonable by looking
at the resulting resubstitution density estimates and discrimination functions.

Now follows a brief description of considerations we have taken when choos-
ing parameters manually. We have chosen c such that the noise due to unreliable
estimates in sparsely populated regions is supressed. This is the effect of choos-
ing a relatively large value for c, as was discussed in section 3.1. The most
important aspect of choosing k is its significant influence on the discrimination
function. In particular, an increase of k increases the reliability of the estimates
and decreases their accuracy. Thus we wish k to be the smallest possible value
where the discrimination function seems to be reliably estimated. Another ob-
servation aiding the manual choice of k is that the kNN density estimator is
highly sensitive to its value, while Parzen-kNN is somewhat less sensitive due
to its smooth Gaussian region. Additional effects of the parameters c and k
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CCReq 71.8 % [59.4 %, 85.1 %]
CCR 72.2 % [60.0 %, 82.5 %]
Specificity 72.7 % [55.2 %, 86.2 %]
Sensitivity 70.9 % [45.5 %, 100.0 %]

Table 6.0.1: The benchmark classification results achieved when using the updated
prognosis groups and the CSDEMsum features in [5] which use five levels per integer
value.

CCReq 69.1 % [53.3 %, 82.3 %]
CCR 70.9 % [57.5 %, 82.5 %]
Specificity 73.1 % [58.6 %, 86.2 %]
Sensitivity 65.1 % [36.4 %, 90.9 %]

Table 6.0.2: The benchmark classification results achieved when using the updated
prognosis groups and the CSDEM features in [5] which use five levels per integer value.

on the discrimination function, and their interpretations, are interleaved in the
following sections.

Every scenario we present is accompanied by its best achieved classifica-
tion result in a table along with the parameters that achieved that result. In
the scenarios where many parameters were tested we also present the boot-
strap performance plot as mentioned above. It is also interesting to investigate
the resubstitution density estimates and the resubstitution discrimination func-
tions. However, in CSDEsum-space there are four resubstituion plots for every
parameter combination, while in CSDE-space there are six.

For the convenience of reading, these plots are gathered in appendix A, even
though we sometimes refer to them frequently.

6.1 CSDEsum-space

In this section we look at the results when our density estimates are in CSDEsum-
space. As earlier mentioned this is a projection of CSDE-space onto the identity
line yielding a space much more densely populated by samples. In projecting,
we lose information if a change in the spatial entropy is not identical as the same
change in the grey level entropy, but on the other hand we also make it easier
for our non-parametric density estimators to provide both reliable and accurate
estimates. The results in this section should be compared to the CSDEMsum
benchmark result in table 6.0.1.

6.1.1 Parzen

The Parzen density estimator was run for a limited number of values for c, and,
as mentioned in section 4.3, the chosen bandwidth is the optimal bandwidth un-
der the assumption of normally distributed samples, with a diagonal covariance
matrix. The results are summarized in figure 6.1.1. We can see the classifier
performance is peaking, although not significantly, at c = 0.1. At the peak
we have an expected CCReq of 72.9%, which is a small improvement over the
benchmark result of 71.8%. However, the difference is so small that we should
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Figure 6.1.1: Bootstrap performance when using the Parzen density estimator in
CSDEsum-space. It was run for c ∈ {10−10, 0.001, 0.1, 1, 10, 100, 1000}. The best
expected CCReq is achieved for c = 0.1.

Parzen (c = 0.1)
CCReq 72.9 % [58.9 %, 86.8 %]
CCR 73.9 % [62.5 %, 85.0 %]
Specificity 75.0 % [62.0 %, 89.7 %]
Sensitivity 70.8 % [45.5 %, 90.9 %]

Table 6.1.1: The classification results when using the CSDEsum density estimates from
Parzen, and using the parameter c which achieved the best expected CCReq.

not rule out that it is caused by bootstrap variations. All of the expected means
and prediction intervals for c = 0.1 can be found in table 6.1.1.

Looking at the Parzen density estimates in figure A.1.1, we can see they are
rather smooth. This quality is partly caused by our choice of window function;
the Gaussian. Notice also how the density estimates for the good prognosis
group, ω0, strongly resembles a narrow normal distribution, while in the case
of the poor prognosis group, ω1, one may suspect that there is two normally
distributed components which are close together. This is much more pronounced
for the bright feature, λ0, but it is also noticable for the dark feature, λ1. In the
discrimination functions (figure A.1.1) this causes the negative valleys to become
even deeper at the locations where this additional component contributes.

The density estimates does reinforce the assumption of normality for ω0, but
much less so for ω1, where there could be two components.

6.1.2 kNN

We tested the kNN density estimator for a large number of parameters c and k
in the bootstrap method. First we performed a coarse search (see figure 6.1.2)
in which we identified c = 0.1 as the best value for c, then we fixed c at this
value, and increased the granularity of k. The outcome of the finer search is
presented in the bootstrap plot in figure 6.1.3, and the best result of these are
presented in table 6.1.2. We have also included a plot showing the reubstitution
plot of a trained LDC decision boundary when using the paramteres that gave
the best results, see figure 6.1.3. Notice how the majority of good prognosis
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Figure 6.1.2: Coarse parameter search showing the bootstrap’s expected CCReq when
using the kNN density estimator in CSDEsum-space. The greyscale display range is
specified as [50, 80]. The acutal values are in the range [58.4, 73.8].

kNN (c = 0.1, k = 1350)
CCReq 74.7 % [61.8 %, 87.5 %]
CCR 75.4 % [65.0 %, 87.5 %]
Specificity 76.3 % [62.1 %, 89.7 %]
Sensitivity 73.1 % [45.5 %, 90.9 %]

Table 6.1.2: The classification results when using the CSDEsum density estimates from
kNN, and using the parameters c and k which achieved the best expected CCReq.

patients are clustered in the upper right area of the figure.

The bootstrap plot shows that all its runs produced an expected CCReq
above 73%. We can therefore be confident that we have improved upon the
CSDEMsum benchmark result in table 6.0.1.

If we momentarily disregard the noise of the density curves produced by the
kNN density estimator (figure A.1.2) and only consider the domain of those two
curves in which f ≥ 2, the curves are actually strikingly similar to those of
the Parzen density estimator. For the remaining part of the domain, in which
f < 2, there is however a significant difference. In particular, the tails of the
kNN density estimates are much longer, meaning the estimates for f < 2 are
much higher than those produced by the Parzen density estimator.

To understand why this happens, notice that as the hypersphere moves away
from a more densely populated region, the radius r must increase to keep the
number of samples within the hypersphere constant. In doing so, the hyper-
sphere expands into the more dense region from which it is leaving, thus in-
creasing the value of the density estimate of the location it is currently in. In
short; as the window becomes wider, new samples are encountered at a rate
faster than the window width increases.
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Figure 6.1.3: Bootstrap performance when using the kNN density estimator in
CSDEsum-space. It was run for k ∈ {400, 450, 500, ..., 1950, 2000}, while c was fixed
at 0.1. The best expected CCReq is achieved for k = 1350.

Table 6.1.3: A resubstitution plot showing a linear discriminant classifier trained using
the density estimates from kNN with the parameters c = 0.1 and k = 1350 which
achieved the best expected CCReq.
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Parzen-kNN (c = 0.1, k = 1000)
CCReq 73.7 % [59.6 %, 86.2 %]
CCR 74.9 % [62.5 %, 85.0 %]
Specificity 76.4 % [62.1 %, 89.7 %]
Sensitivity 71.1 % [45.5 %, 90.9 %]

Table 6.1.4: The classification results when using the CSDEsum density estimates
from Parzen-kNN, and using the parameters c and k which achieved the best expected
CCReq.

6.1.3 Parzen-kNN

The Parzen-kNN density estimator was tested for a much smaller set of param-
eters than the kNN density estimator, due to its relatively high computational
cost. In both the kNN and the Parzen density estimators, the value c = 0.1
was identified as reasonable, and considering that Parzen-kNN is a combination
of those two methods, we found it reasonable to expect this value of c to work
well, also in this case. The value was therefore fixed at c = 0.1, while we tried
a wide range of values for k, see figure 6.1.4.

We observe that the density estimates produced by the Parzen-kNN density
estimator shares characteristics with both the Parzen and the kNN density
estimators. Conceretely, only a narrow Gaussian window function is needed
to include k samples in densely populated regions. This makes local variation
more pronounced in these regions (if there is any), and the effect is observable in
both the estimated densities for the good prognosis group, ω0, in figure A.1.3 in
that the curves are more “wiggly”. In contrast, the estimated densities for the
poor prognosis group, ω1, are much more smooth (same figure). We know there
are far less samples associated with poor prognosis than with good prognosis
in our dataset, and a reasonable interpretation is thus that the Parzen-kNN
density estimator behaves more like the kNN density estimator in dense regions,
and more like the Parzen density estimator in sparse regions. A high number
of samples is required for the Gaussian window to become so narrow, that it
starts to behave somewhat similarly to the crisp region of the kNN density
estimator. Whether this is an advantage or not depends on the situation. In
this study, however, we find that the kNN density estimator performs better
than the Parzen-kNN density estimator.

We also observe that the resubstitution density estimates in sparse regions
have numeric higher value than in the case of the kNN and the Parzen density
estimator, even though Parzen-kNN used k = 1000 and kNN used k = 1350.
Recall that the Parzen-kNN window function is a Gaussian that requires k
samples to lie within a radius of one standard deviation. Its window is therefore
much wider than the kNN hypersphere, even though k is the same, and we think
this is the explanation of this observation.

The best expected mean of the Parzen-kNN density estimator’s CCReq is
73.7%, see table 6.1.4. This is almost exactly the average of the expected
CCReq’s for the Parzen and the kNN density estimators.
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Figure 6.1.4: Bootstrap performance when using the Parzen-kNN density estimator in
CSDEsum-space. It was run for k ∈ {5, 50, 200, 400, 1000, 5000}, while c was fixed at
0.1. The best expected CCReq is achieved for k = 1000.

6.1.4 Normal distribution

The bootstrap plot of the normal distribution density esimates (figure 6.1.5)
shows our first encounter with sensitivity becoming higher than specificity. From
the definition of sensitivity and the convention of letting “positive” denote poor
prognosis, we can see that the sensitivity measures the fraction of correctly
classified patients with poor prognosis. Conversely, specificity measures the
fraction of correctly classified patients with good prognosis. Given the skew in
our dataset towards good prognosis, this is why observe the expected CCReq
is larger than the expected CCR; the classifier got better at classifying poor
prognosis patients, but at the cost of the other prognosis group which has a
significantly larger number of patients in it.

The best expected CCReq of 73.1% was achieved for c = 10, and the detailed
results are shown in table 6.1.5. It is interesting to note that the performance of
the normal density estimates is highly dependent on c, considering we introduced
c to compensate for low reliability in sparse regions when using non-parametric
density estimates. What we observe as we increase c is that the positive region
and the negative region of the discrimination function approaches each other,
but only up to a certain point, and which point this is depends on how large
the values of the density estimates are to begin with. A side effect is that
the transition between the prognosis groups becomes steeper or more abrupt.
It also reduces the total range of entropies that has significant discriminative
value, and thus the more extreme values are supressed. These effects can be
seen by plotting the discrimination curve for increasing values of c, and judging
from the bootstrap plot, the classifier has exploited this effect for the benefit of
increasing the sensitivity.

6.1.5 Gaussian mixture model

When looking at the resubstitution density plots when using either of our non-
parametric estimation methods, we observe a slight tendency of bimodality for
the poor prognosis densities. We tried to model this using a Gaussian mixture
model (GMM) in which the model assumed a single component for good progno-
sis estimates, but two components for poor prognosis estimates. We also tested
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Figure 6.1.5: Bootstrap performance when using the parametric nor-
mal density estimator in CSDEsum-space. It was run for c ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 10.

Normal distribution (c = 10)
CCReq 73.1 % [59.4 %, 85.1 %]
CCR 72.5 % [60.0 %, 85.0 %]
Specificity 71.8 % [58.6 %, 86.2 %]
Sensitivity 74.5 % [54.5 %, 90.9 %]

Table 6.1.5: The classification results when using the CSDEsum density estimates from
a fitted normal distribution, and using the parameter c which achieved the best expected
CCReq.
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Figure 6.1.6: Bootstrap performance when using the parametric GMM density es-
timator in CSDEsum-space and assuming a shared Σ. It was run for c ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 10.

GMM (shared Σ, c = 100)
CCReq 73.3 % [60.7 %, 85.7 %]
CCR 72.4 % [60.0 %, 85.0 %]
Specificity 71.3 % [55.2 %, 86.2 %]
Sensitivity 75.3 % [54.5 %, 100.0 %]

Table 6.1.6: The classification results when using the CSDEsum density estimates from
a fitted GMM, and using the parameter c which achieved the best expected CCReq.

two different assumptions on the covariance matrix in the GMM. The results of
these two assumptions are presented together in this section.

The first assumption was that the two components of poor prognosis had the
same covariance matrix, the last assumption was they needed not have the same
covariance matrix. The best expected CCReq’s (see figures 6.1.6 and 6.1.7) were
73.3% and 73.2%, respectively, and their full results are available in table 6.1.6
and 6.1.7 respectively.

If we look at the parameters of the density curves for good prognosis, ω0,
we can see they are all the same for the normal density estimator and both
our GMM density estimators. This is completely as expected as they are all
fitted using the same model. However, for the poor prognosis group, ω1, the
GMM gives two normal curves whose means are very close to each side of the
mean that we got when fitting a single normal component. Overall, the density
curves are very similar to those of the parametric normal denstity estimator,
and instead of getting a curve with two visible components, as was the case
when using a non-parametric density estimator, we got something looking like
a single curve, only a little wider.
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Figure 6.1.7: Bootstrap performance when using the parametric GMM density
estimator in CSDEsum-space and not restricting Σ. It was run for c ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 10.

GMM (non-shared Σ, c = 10)
CCReq 73.2 % [59.4 %, 85.7 %]
CCR 72.5 % [60.0 %, 85.0 %]
Specificity 71.7 % [58.6 %, 86.2 %]
Sensitivity 74.7 % [54.5 %, 100.0 %]

Table 6.1.7: The classification results when using the CSDEsum density estimates from
a fitted GMM, and using the parameter c which achieved the best expected CCReq.
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6.2 CSDE-space

Here we present the results for discrimination functions based on density esti-
mation in CSDE-space. The results in this section should be compared to the
benchmark result in table 6.0.2. This is because our continuous approach can
be seen as a generalisation of the quantification approach, and our hypothesis is
that our continuous approach may obtain more reliable and accurate estimates
of the discrimination value (see section 3.3) which may result in better classi-
fication performance. To test this, we should compare the approaches in the
same domain, i.e. in the continuous CSDE-space and the quantification of this
space into a CSDEM.

When looking at the discrimination functions produced in this section we
notice that most of them are similar to each other (there are some exceptions).
In particular, for both functions fb(~x|c) and fd(~x|c) we observe a separating
margin between the positive region (red) and negative region (blue). If we
simplify and think of the margin as a straight line, it would often times be
oriented roughly orthogonally onto the identity line, and its width is dependent
on the parameters c and k. This observation tells us that the identity line is
reasonable line to project onto. However, whether this is the optimal projection
is not known.

Concretely, by increasing k the two density estimates, from which the sicrim-
ination function is calculated, are smoothed more strongly, which increases the
size of the region where the estimated probabilities are approximately equal.
This results in the peaks of the positive and the negative regions in the discrim-
ination function to become more separated. This is immediately appearant if
we rewrite the discrimination function using the quotient rule for logarithms

log
x

y
= log x− log y

The result of increasing k is thus a longer and less abrupt transition between
the positive and negative peak, or in other words; a wider margin.

On the other hand, if we increase c, the positve and negative regions slowly
approach each to a certain point depending on the maximum values of the den-
sity estimates. To see this, notice that c affects the density estimates of sparse
regions (low numerical value) relatively more than it affects density estimates of
dense regions (high numerical value). This yields a somewhat sharper transition
or a thinner margin. Note that in our case the parameter c is unable to equalize
the effect that k has on the margin. The reason is that as we increase k, we
lower the maximum values of the density estimates, thus reducing the ability of
c to affect the margin.

The concept of a margin is interesting because in other known classification
methods, such as the support vector machine (SVM), the concept of margin
width can be used to provide an upper bound for generalization error. However,
this is not directly applicable in our case, as our margin affects the discrimination
function and not the decision boundary, but we simply notice that the margin
decreases the significance or contributing ability of points in CSDE-space that
are close to the boundary between the positive and negative region. Having
some control of this margin and its smoothness is beneficial because the best
transition between strong evidence for poor prognosis and strong evidence for
good prognosis is unknown.
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Parzen (c = 0.3)
CCReq 70.0 % [57.2 %, 84.5 %]
CCR 71.0 % [60.0 %, 82.5 %]
Specificity 72.3 % [58.6 %, 89.7 %]
Sensitivity 67.6 % [36.4 %, 90.9 %]

Table 6.2.1: The classification results when using the CSDE density estimates from
Parzen with a diagonal bandwidth matrix.

6.2.1 Parzen

Due to the high computational cost of the Parzen density estimator when used in
a two-dimensional space like CSDE, the parameter c was only selected manually.
To select the parameter we looked at which values for c produced reasonable
density estimates, and we also used our experience of which values of c had
worked well for other methods or settings. The choice was c = 0.3, for which an
expected CCReq of 70.0% was achieved. The full results are available in table
6.2.1. The resubstitution density estimates and discrimination functions are
shown in figure A.2.1. Notice that the positive region of the dark discrimination
function is significantly larger than the three other regions in the discrimination
plots.

We also observe that the separating margin between the positive and neg-
ative region in the discrimination plot is aligned roughly orthogonally on the
identity line. If we look closely, we do notice a small difference in margin orien-
tation for the bright and dark discrimination functions. Concretely, in the dark
discrimination function, the “separating margin” is somewhat less orthogonal
than in the bright case.

6.2.2 kNN

For the kNN density estimator we fixed c = 0.1 after assessing the resulting
resubstitution plots from a range of values. We do note that the performance
of the kNN density estimator drops significantly in CSDE-space compared to
CSDEsum-space. The bootstrap perfomance plot (figure 6.2.1) shows that the
decline in performance is consistent and not coincidental. When looking at
the resubstitution density plots in figure A.2.2 we can see they have the most
complex shapes among our density plots in CSDE-space, and the discrimination
functions are thus also complex (same figure). If we try increasing k to produce
more smooth density estimates, we observe in the bootstrap plot, a further
drastic performance drop. After looking at the produced plots for k from 1000
through 5000, we realised that as we increase k, the estimated densities in the
sparse regions rises at a higher rate in the case of poor prognosis than in the case
of good prognosis. The result is that for high values of k, there is no longer a close
to linear separating margin, but rather the negative region begins to surround
the positive region, and for k = 5000 it is completely surrounded. Note that
we did observe a corresponding effect in CSDEsum-space, in the discrimination
curves of the kNN density estimator (figure A.1.2) and the Parzen-kNN density
estimator (figure A.1.3), yet the performance of those two density estimators
were consistently better than the Parzen density estimator (also in CSDEsum-
space) for which this surrounding of the positve region was not observed. If
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Figure 6.2.1: Bootstrap performance when using the kNN density estimator in CSDE-
space. It was run for k ∈ {5, 50, 200, 400, 1000, 2000, 3000, 4000, 5000}, while c was
fixed at 0.1. The best expected CCReq is achieved for k = 1000.

kNN (c = 0.1, k = 1000)
CCReq 68.8 % [53.8 %, 80.6 %]
CCR 69.8 % [57.5 %, 80.0 %]
Specificity 70.9 % [55.2 %, 86.2 %]
Sensitivity 66.7 % [36.4 %, 90.9 %]

Table 6.2.2: The classification results when using the CSDE density estimates from
kNN, and using the parameters c and k which achieved the best expected CCReq.

the performance drop of the kNN density estimator in CSDE-space is caused
by the surrounding of the positive region, then it must be due to the change in
discriminative value for the entropy values not in surrounded positive region,
but whose sum is the same as entropies in the positive region.

6.2.3 Parzen-kNN

The Parzen-kNN density estimator was tested using a diagonal bandwidth ma-
trix with elements equal to the square of the minimal hypersphere radius con-
taining k samples. The parameters k and c where chosen manually, in the
same way as c was chosen for Parzen denisty estimation in CSDE-space and
an expected CCReq of 67.3% was achieved. The full results are presented in
table 6.2.3. The density plots and discrimination functions are shown in figure
A.2.3. We will now look closer at this figure. Notice, in the discrimination func-
tions, that the negative valley is relatively shallow compared to the height of the
positve peak. We can understand why this is the case by looking the the density
plots, from which the discrimination functions are computed. In particular, the
good prognosis density plots have much larger values than the poor prognosis
plots. We have identified two causes that contributes to this effect. First, the
poor prognosis samples are somewhat more dispersed in the CSDE-space and
the Gaussian window is therefore often times larger than if the samples were
more focused in CSDE-space. This claim is supported by e.g. the correspond-
ing kNN density plots for CSDE-space, see figure A.2.2. Secondly, as there are
fewer samples associated with poor prognosis than with good prognosis, the



42 Results and discussion

Parzen-kNN (c = 0.1, k = 2000)
CCReq 67.3 % [52.0 %, 79.9 %]
CCR 69.3 % [57.5 %, 80.0 %]
Specificity 71.7 % [55.2 %, 86.2 %]
Sensitivity 63.0 % [36.4 %, 90.9 %]

Table 6.2.3: The classification results when using the CSDE-space density estimates
from Parzen-kNN, and using the parameters c and k which achieved the best expected
CCReq.

minimal Gaussian windows containing k samples will often differ for poor and
good prognosis due to this simple reason. On to basis of these observations,
one could argue that k should be a function of the number of samples from the
density it tries to estimate.

6.2.4 Normal distribution

In CSDE-space, we tested two assumptions for the covariance matrix of the para-
metric normal density estimator; unrestricted and diagonal. The unrestricted
covariance matrix produced the best results, with an expected CCReq of 72.1%,
while the diagonal covariance matrix produced a best expected CCReq of 71.6%.
These detailed results are listed in table 6.2.4 and 6.2.5, respectively. Judging
from the bootstrap plot in figure 6.2.2 when not restricting the covariance ma-
trix, it is possible that the peak is due to bootstrap variation, but otherwise the
expected CCReq’s are stable just below 72%. We can therefore be confident
that we have improved upon the CSDEM benchmark result of 69.1% in table
6.0.1. It is interesting to note that the parametric methods are outperform-
ing non-parametric methods in CSDE-space, while the opposite is the case in
CSDEsum-space.

The resubstitution density estimates and discrimination functions are shown
in figure A.2.4. When comparing these discrimination functions with those from
the non-parametric methods, we can see that these are simpler. In particular,
the positive and the negative regions are smaller and has a shorter transition to
the surrounding region of low discriminative value, which is also more uniform.

In section 6.1.4 we observed and discussed how the sensitivity increased
drastically with c, meaning the classifier got better at classifying poor prognosis
patients as c increased. When we look at both the bootstrap plots when using an
unrestricted covariance matrix (figure 6.2.2) and a diagonal covariance matrix
(figure 6.2.3), we observe a similar trend. By animating an image sequence
of density plots for increasing c, we can also see that the same observation
made in the CSDEsum-space holds for CSDE-space. In particular; the positive
and negative region of the discrimination functions move towards each other and
shrink as c increases. It is difficult to know precisely why this benefits sensitivity,
while specificity suffers. Our hypothesis would be that some of the entropies
from the poor prognosis patients contribute positively towards a good prognosis
labelling only when c is small, but as c increases they no longer contribute
significantly to any of the prognosis groups. These would be entropies located
at the “edges” of the positive region for small c, but not at the “edge” that
represents the margin between the positive and the negative region, as these
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Figure 6.2.2: Bootstrap performance when using the parametric normal den-
sity estimator in CSDE-space and not restricting Σ. It was run for c ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 100.

Normal distribution (arbitrary Σ, c = 100)
CCReq 72.1 % [58.9 %, 85.1 %]
CCR 71.8 % [60.0 %, 82.5 %]
Specificity 71.5 % [55.2 %, 86.2 %]
Sensitivity 72.6 % [45.5 %, 90.9 %]

Table 6.2.4: The classification results when using the CSDE-space density estimates
from a fitted bivariate normal distribution with no covariance matrix restrictions, and
using the parameter c which achieved the best expected CCReq.

entropies would only contribute even more towards a good prognosis labelling
because the regions move towards each other as c increases. If we assume that
there are many such entropies from the good prognosis patients as well, then we
can understand why the increase in c affects sensitivity positively, but specificity
negatively.

6.2.5 Gaussian mixture model

In the case of the Gaussian mixture model we assume two components for the
poor prognosis distribution and a single component for the good prognosis dis-
tribution. This is the same choice that we made for GMM in CSDEsum-space.

Normal distribution (diagonal Σ, c = 100)
CCReq 71.6 % [59.4 %, 84.0 %]
CCR 71.4 % [60.0 %, 82.5 %]
Specificity 71.1 % [55.2 %, 86.2 %]
Sensitivity 72.1 % [45.5 %, 90.9 %]

Table 6.2.5: The classification results when using the CSDE-space density estimates
from a fitted bivariate normal distribution with a diagonal covariance matrix restric-
tion, and using the parameter c which achieved the best expected CCReq.



44 Results and discussion

Figure 6.2.3: Bootstrap performance when using the parametric normal density
estimator in CSDE-space and diagonal covariance matrix. It was run for c ∈
{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved forc = 100.

To limit the number of possible discrimination functions, we will say that when-
ever we assume diagonal or unrestricted covariance matrices, this assumption
applies to two both components in the poor prognosis group and also to the
single component in the good prognosis group. For the two components of the
poor prognosis we will either use individual covariance matrices or assume a
shared covariance matrices. Whenever we specify that the covariance matrices
are non-shared or shared, it applies only to the two components for poor progno-
sis, i.e. the component for good prognosis will always use a separate covariance
matrix. This gives four possible discrimination functions in total, and we will
now summarise the results.

In all cases, we observe that the sensitivity increases as c increases, but the
preference for very high values of c, as was the case when assuming normal dis-
tributions in CSDE-space in section 6.2.4, is not present here. This is evident
when inspecting the bootstrap plots for all cases; non-shared and diagonal co-
variance matrices (figure 6.2.4), shared and diagonal covariance matrices (figure
6.2.5), shared and unrestricted covariance matrices (figure 6.2.7) and finally the
non-shared and unrestricted covariance matrices (figure 6.2.6).

The case that achieved the best result was for the most degrees of freedom;
the individual and unrestricted covariance matrices, and with c = 0.3. Here
we achieved an CCReq of 70.5% and a CCR of 69.0%. The full results when
using the best c of each case are listed in tables 6.2.6 through 6.2.9. We observe
that the introduction of a second component in the poor prognosis group results
in relatively complex discrimination functions, see figures A.2.6 through A.2.9.
We observe discrimination functions with multiple positive regions and multiple
negative regions, and thus there is no longer a simple separating margin between
the two prognosis groups, although the tendency of two large main regions, as
was the case in the parametric normal case is still there. If we compare the
density estimates of the poor prognosis groups in all four cases, we see that the
two components are roughly located in the same location regardless of which
case we are in. In particular, for the poor prognosis and bright segmentation
class, there is always a small component located roughly to the north west
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Figure 6.2.4: Bootstrap performance when using the parametric GMM density esti-
mator in CSDE-space and a non-shared, diagonal covariance matrix. It was run for
c ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 1.

GMM (non-shared, diagonal Σ, c = 1)
CCReq 70.5 % [56.0 %, 82.8 %]
CCR 68.0 % [55.0 %, 80.0 %]
Specificity 64.8 % [48.3 %, 79.3 %]
Sensitivity 76.3 % [45.5 %, 100.0 %]

Table 6.2.6: The classification results when using the CSDE density estimates from a
fitted GMM, and using the parameter c which achieved the best expected CCReq. The
mixture model assumed two components for cells belonging to poor prognosis patients
and a single component for cells from good prognosis patients. The two components
for poor prognosis are assumed to have non-shared, diagonal covariance matrices.

of the center of a larger component. While for the poor prognosis and dark
semgentation class, there is a small component located roughly to the south west
of the center of a larger component. This is interesting as it indicates that our
assumption that there are two different clusters of cells within the poor prognosis
group may be reasonable. However the discrimination functions resulting from
these density plots does not improve classifier performance significantly over
the CSDEM benchmark, in table 6.0.2. In the case where we assume the two
components to have a shared, diagonal covariance matrix, the performance is
at best equal to the CSDEM benchmark.
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Figure 6.2.5: Bootstrap performance when using the parametric GMM density es-
timator in CSDE-space and a shared, diagonal covariance matrix. It was run for
c ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 1.

GMM (shared, diagonal Σ, c = 1)
CCReq 69.0 % [56.1 %, 81.7 %]
CCR 68.7 % [57.5 %, 80.0 %]
Specificity 68.3 % [51.7 %, 86.2 %]
Sensitivity 69.6 % [36.4 %, 90.9 %]

Table 6.2.7: The classification results when using the CSDE density estimates from a
fitted GMM, and using the parameter c which achieved the best expected CCReq. The
mixture model assumed two components for cells belonging to poor prognosis patients
and a single component for cells from good prognosis patients. The two components
for poor prognosis are assumed to have a shared, diagonal covariance matrix.

Figure 6.2.6: Bootstrap performance when using the parametric GMM density esti-
mator in CSDE-space and a non-shared, arbitrary covariance matrix. It was run for
c ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 0.3.
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GMM (non-shared, arbitrary Σ, c = 0.3)
CCReq 70.5 % [56.6 %, 82.8 %]
CCR 69.0 % [57.5 %, 80.0 %]
Specificity 67.3 % [48.3 %, 82.8 %]
Sensitivity 73.7 % [45.5 %, 100.0 %]

Table 6.2.8: The classification results when using the CSDE density estimates from a
fitted GMM, and using the parameter c which achieved the best expected CCReq. The
mixture model assumed two components for cells belonging to poor prognosis patients
and a single component for cells from good prognosis patients. The two components
for poor prognosis are assumed to have non-shared and arbitrary covariance matrices.

Figure 6.2.7: Bootstrap performance when using the parametric GMM density es-
timator in CSDE-space and a shared, arbitrary covariance matrix. It was run for
c ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000}. The best expected
CCReq is achieved for c = 0.1.

GMM (shared, arbitraryΣ, c = 0.1)
CCReq 70.4 % [57.2 %, 82.9 %]
CCR 71.2 % [57.5 %, 82.5 %]
Specificity 72.2 % [55.2 %, 86.2 %]
Sensitivity 68.7 % [45.5 %, 90.9 %]

Table 6.2.9: The classification results when using the CSDE density estimates from a
fitted GMM, and using the parameter c which achieved the best expected CCReq. The
mixture model assumed two components for cells belonging to poor prognosis patients
and a single component for cells from good prognosis patients. The two components
for poor prognosis are assumed to have a shared and arbitrary covariance matrix.
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7. Conclusion

The main aim of this study was to improve and generalise a recent method for
reliably estimating the prognosis of patients with early ovarian cancer. That
approach was based on a novel texture analysis concept coined the class specific
dual entropy matrix (CSDEM); a quantification of class specific dual entropy
space (CSDE-space). In the present study, we defined CSDE-space as the Eu-
clidean space comprising all possible combinations of spatial entropy and grey
level entropy values for a specific segmentation class. Then we described how to
extract adaptive features using a discrimination function that can exploit the
entropy values in their continuous nature, and we discussed how this continu-
ous approach relates to the quantification approach, which is the approach we
wanted to improve and generalise.

We pointed out that the quantification approach is more difficult than our
continuous approach to apply in an optimal way. This is because setting the
quantification parameters may require domain knowledge. In particular, we
argued that optimal sizes and locations of the bins depends on the nature of
the discrimination function and that such considerations should preferably be
unnecessary to extract the best features adaptively.

The best adaptive features were achieved using our continuous discrimination
functions and density estimates from the non-parametric kNN density estimator
in CSDEsum-space. Using these features we achieved an average of specificity
and sensitivity of 74.7 % and a correct classification rate of 75.4%. These results
are an improvement of nearly 3% over the best texture analysis results achieved
prior to this study.

We also see a consistent improvement by using our continuous approach
in CSDE-space rather than the quantified approach based on the CSDEM. In
this space, our best result was achieved using the parametric normal density
estimator with no restrictions on the covariance matrix. Using these features
we achieved an average of specificity and sensitivity of 72.1% and a correct
classification rate of 71.8%.

When we look at our results overall, one of the interesting trends we observe
is that the non-parametric methods are outperforming parametric methods in
CSDEsum-space, and conversely, parametric methods are outperforming non-
parametric methods in CSDE-space. The achievable accuracy and reliability
of the non-parametric density estimates is highly dependent on the number of
samples available from the distribution they are estimating. If we then consider
how much more densely populated the CSDEsum-space is compared to CSDE-
space, while also keeping in mind that the projection of CSDE to CSDEsum
maintains much of the available discriminative information, we can understand
why we observe this trend. In particular, it is evident from the classification
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results in CSDE-space that the performance loss due to discrepancies between
the unknown true distribution and the assumed multivariate normal distribution
is less than the loss caused by making no assumptions and therefore obtaining
poor estimates using a non-parametric method.

To evaluate the performance of our adaptive texture features, we applied
a proper evaluation method based on statistical bootstrapping. We can there-
fore expect our approach to generalise well, but this should be formalized by
evaluating our approach on an independent test set.

Our continuous approach is consistently better in both CSDE-space and
CSDEsum-space than its quantified counterpart. This strongly suggests that
our continuous approach can achieve more reliable and accurate estimates than
the quantification approach. Considering that our method is a generalisation
of the CSDE and CSDEsum quantification approach, this is a good result that
reinforces the promise of using the class specific grey level and spatial entropies
for prognostics. This study therefore represents one step towards more reliable
estimation of prognosis. Such information is important to make a qualified
selection of the appropriate treatments for the patients.



8. Further work

• Evaluate the performance of the features obtained in CSDEsum-space
when using an independent test set.

• The projection of CSDE-space onto the identity line might not be optimal,
especially if we change the contextual measurement different from using
the object size. The projection might also be suboptimal for datasets from
other types of cancer. These relationships should be investigated.

• Investigate the possibility of estimating a pdf for each patient and then
compare it to the pdfs of good prognosis and poor prognosis patients in
the training set.

• The cell nucleus images are not homogeneous in terms of cancer, thus
one could try to apply unsupervised learning to test whether there exists
clusters of cells, with respect to a property space of interest. If distinctive
clusters can be identified, then we can study if there is any connection
between cluster assignment and prognostic value.

• Investigate the possibility of estimating the continuous discrimination
functions directly, i.e. not through the estimation of densities as we have
done is this study
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A.1 CSDEsum-space

A.1.1 Parzen

(a) (b)

(c) (d)

Figure A.1.1: Parzen resubstitution plots. Density estimates uses the optimal band-
width when assuming normal distribution. Green curves are the estimates from patients
with good prognosis, while the red curves are for poor prognosis. The discrimination
functions use c = 0.1. a) Bright segmentation class. b) Dark segmentation class. c)
Bright discrimination function. d) Dark discrimination function.
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A.1.2 kNN

(a) (b)

(c) (d)

Figure A.1.2: kNN resubstitution plots. Density estimates use k = 1350. The green
curve represents good prognosis, while red curve poor prognosis. The discrimination
functions use c = 0.1. a) Bright segmentation class. b) Dark segmentation class. c)
Bright discrimination function. d) Dark discrimination function.
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A.1.3 Parzen-kNN

(a) (b)

(c) (d)

Figure A.1.3: Parzen-kNN resubstitution plots. Density estimates use k = 1000. The
green curve represents good prognosis, while red curve poor prognosis. The discrimina-
tion functions use c = 0.1. a) Bright segmentation class. b) Dark segmentation class.
c) Bright discrimination function. d) Dark discrimination function.
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A.1.4 Normal distribution

(a) (b)

(c) (d)

Figure A.1.4: Parametric normal resubstitution plots. The green curve represents good
prognosis, while red curve poor prognosis. The discrimination functions use c = 10.
a) Bright segmentation class. Good prognosis parameters: µ = 8.40, σ2 = 0.355.
Poor prognosis parameters: µ = 8.66, σ2 = 0.371. b) Dark segmentation class. Good
prognosis parameters: µ = 8.39, σ2 = 0.509. Poor prognosis parameters: µ = 8.64,
σ2 = 0.521. c) Bright discrimination function. d) Dark discrimination function.
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A.1.5 Gaussian mixture model

(a) (b)

(c) (d)

Figure A.1.5: Parametric GMM resubstitution plots. Density estimates assume shared
variance. The green curve represents good prognosis, while red curve poor prognosis.
The discrimination functions use c = 100. a) Bright segmentation class. Good prog-
nosis parameters: µ = 8.40, σ2 = 0.355. Poor prognosis parameters: µ1 = 8.71,
µ2 = 7.12 σ2 = 0.289. b) Dark segmentation class. Good prognosis parameters:
µ = 8.39, σ2 = 0.509. Poor prognosis parameters: µ1 = 8.49, µ2 = 8.80, σ2 = 0.497.
c) Bright discrimination function. d) Dark discrimination function.
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(a) (b)

(c) (d)

Figure A.1.6: Parametric GMM resubstitution plots. Density estimates use individual
variance estimates. The green curve rep resents good prognosis, while red curve poor
prognosis. The discrimination functions use c = 10. a) Bright segmentation class.
Good prognosis parameters: µ = 8.40, σ2 = 0.355. Poor prognosis parameters: µ1 =
8.21, µ2 = 8.73 σ2

1 = 0.842, σ2
2 = 0.255 b) Dark segmentation class. Good prognosis

parameters: µ = 8.39, σ2 = 0.509. Poor prognosis parameters: µ1 = 8.98, µ2 = 8.36
σ2
1 = 0.280, σ2

2 = 0.543. c) Bright discrimination function. d) Dark discrimination
function.
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A.2 CSDE-space

A.2.1 Parzen

(a) (b)

(c) (d)

(e) (f)

Figure A.2.1: Parzen resubstitution plots. Density estimates use the optimal band-
width when assuming normal distribution with diagonal bandwidth matrix, while the
discrimination functions use c = 0.3. a) Bright segmentation class, good prognosis.
b) Dark segmentation class, good prognosis. c) Bright segmentation class, poor prog-
nosis. d) Dark segmentation class, poor prognosis. e) Bright discrimination function.
f) Dark discrimination function.
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A.2.2 kNN

(a) (b)

(c) (d)

(e) (f)

Figure A.2.2: kNN resubstitution plots. Density estimates use k = 1000, while the
discrimination functions use c = 0.1. a) Bright segmentation class, good prognosis. b)
Dark segmentation class, good prognosis. c) Bright segmentation class, poor prognosis.
d) Dark segmentation class, poor prognosis. e) Bright discrimination function. f)
Dark discrimination function.
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A.2.3 Parzen-kNN

(a) (b)

(c) (d)

(e) (f)

Figure A.2.3: Parzen-kNN resubstitution plots. Density estimates assumes diagonal
bandwidth matrices and k = 2000. The discrimination functions use c = 0.1. a) Bright
segmentation class, good prognosis. b) Dark segmentation class, good prognosis. c)
Bright segmentation class, poor prognosis. d) Dark segmentation class, poor prognosis.
e) Bright discrimination function. f) Dark discrimination function.
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A.2.4 Normal distribution

(a) (b)

(c) (d)

(e) (f)

Figure A.2.4: Parametric normal resubstitution plots. Density estimates use arbitrary
covariance matrices. The discrimination functions use c = 100. a) Bright segmen-
tation class, good prognosis. b) Dark segmentation class, good prognosis. c) Bright
segmentation class, poor prognosis. d) Dark segmentation class, poor prognosis. e)
Bright discrimination function. f) Dark discrimination function.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2.5: Parametric normal resubstitution plots. Density estimates assume di-
agonal covariance matrices. The discrimination functions use c = 100. a) Bright
segmentation class, good prognosis. b) Dark segmentation class, good prognosis. c)
Bright segmentation class, poor prognosis. d) Dark segmentation class, poor prognosis.
e) Bright discrimination function. f) Dark discrimination function.
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A.2.5 Gaussian mixture model

(a) (b)

(c) (d)

(e) (f)

Figure A.2.6: Parametric GMM resubstitution plots. Density estimates use individual
covariance matrices which are assumed to be diagonal. The discrimination functions
use c = 1. a) Bright segmentation class, good prognosis. b) Dark segmentation class,
good prognosis. c) Bright segmentation class, poor prognosis. d) Dark segmenta-
tion class, poor prognosis. e) Bright discrimination function. f) Dark discrimination
function.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2.7: Parametric GMM resubstitution plots. Density estimates assume a
shared covariance matrix, but this matrix may be arbitrary. The discrimination func-
tions use c = 0.1. a) Bright segmentation class, good prognosis. b) Dark segmentation
class, good prognosis. c) Bright segmentation class, poor prognosis. d) Dark segmenta-
tion class, poor prognosis. e) Bright discrimination function. f) Dark discrimination
function.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2.8: Parametric GMM resubstitution plots. Density estimates assume a
shared and diagonal covariance matrix. The discrimination functions use c = 1. a)
Bright segmentation class, good prognosis. b) Dark segmentation class, good progno-
sis. c) Bright segmentation class, poor prognosis. d) Dark segmentation class, poor
prognosis. e) Bright discrimination function. f) Dark discrimination function.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2.9: Parametric GMM resubstitution plots. Density estimates use individual
and arbitrary covariance matrix. The discrimination functions use c = 0.3. a) Bright
segmentation class, good prognosis. b) Dark segmentation class, good prognosis. c)
Bright segmentation class, poor prognosis. d) Dark segmentation class, poor prognosis.
e) Bright discrimination function. f) Dark discrimination function.
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