
SHMACsim
A Cycle-accurate Simulation Infrastructure

for the Heterogeneous SHMAC Multi-Core

Prototype

Yaman Umuroglu

Embedded Computing Systems

Supervisor: Magnus Jahre, IDI

Department of Computer and Information Science

Submission date: July 2013

Norwegian University of Science and Technology

Problem Description

A Cycle-accurate Simulation Infrastructure for the Heterogeneous
SHMAC Multi-Core Prototype

Current multi-core processors are constrained by energy. Consequently, it
is not possible to improve performance further without increasing energy
efficiency. A promising option for making increasingly energy efficient CMPs
is to include processors with different capabilities. This improvement in
energy efficiency can then be used to increase performance or lower energy
consumption.

Currently, it is unclear how system software should be developed for hetero-
geneous multi-core processors. A main challenge is that little heterogeneous
hardware exists. It is possible to use simulators, but their performance
overhead is a significant limitation. An alternative strategy that offers to
achieve the best of both worlds is to leverage reconfigurable logic to instanti-
ate various heterogeneous computer architectures. These architectures are
fast enough to be useful for investigating systems software implementation
strategies. At the same time, the reconfigurable logic offers the flexibility to
explore a large part of the heterogeneous processor design space.

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) project
aims to develop an infrastructure for instantiating diverse heterogeneous
architectures on FPGAs. A prototype has already been developed, but an
important remaining challenge is to design a flexible memory system while
retaining high performance. This and other architectural trade-offs are best
evaluated in a simulator. With simulation, it is possible to evaluate a large
number of policies without an excessive implementation effort.

The task in this assignment is to develop a simulator for the SHMAC proto-
type. In addition, the student should implement a set of micro-benchmarks
that stress important aspects of the architecture. If time permits, the student
should propose improvements and evaluate the performance impact of these
improvements.

Supervisor: Assoc. Prof. Magnus Jahre, IDI

i

Abstract

The fast-paced development trend in microprocessor performance charac-
terized by Moore’s Law can no longer continue unperturbed. Shrinking
semiconductor node size still translates into increasing transistor count but
not directly into performance, since thermal and power constraints are limit-
ing the amount of transistors that can be used simultaneously. One way of
exploiting this “dark silicon” is building heterogeneous systems containing
specialized accelerators and cores. The SHMAC project aims to provide a re-
search platform for heterogeneous systems research. An FPGA prototype has
been constructed for the SHMAC, but to have a rapid implement-evaluate
cycle for system policies, software simulation is needed.

This thesis covers the design and implementation of a cycle-accurate sim-
ulation infrastructure for the SHMAC. Additionally, the current state of
the architecture is evaluated with a set of micro-benchmarks and several
improvements are proposed. The constructed infrastructure offers a highly
configurable, cycle-accurate simulation of the SHMAC FPGA prototype.
A micro-benchmark-based analysis of the current state of the architecture
exposes the router hop latency and throughput as the greatest bottlenecks.
To address this a dual-port RAM slave with router bypass is implemented,
resulting in 3.5× instruction fetch speedup and contributing to overall system
performance. Improvements contributing traffic independent clock counting
and bootstrapping functionality, and a network packet lifetime instrumenta-
tion method are also described.

Preface

This thesis is submitted to the Norwegian University of Science and Tech-
nology in partial fulfilment of the requirements for the European Master in
Embedded Computer Systems (EMECS) degree.

This work has been performed at the Department of Computer and Infor-
mation Science, NTNU, Trondheim, with Assoc. Prof. Magnus Jahre as the
supervisor.

Acknowledgements

I would like to extend my gratitude to my supervisor Magnus Jahre for
his extensive support throughout the entire process and for enabling me
to start a research career on heterogeneous multi-core platforms, to H̊akon
Marthinsen for his extensive moral support as well as invaluable help on
LATEX and Inkscape, and to all my instructors and friends at the Erasmus
Mundus in Embedded Computing Systems programme for a fantastic two
years.

The “Virtual Heterogeneous Multicorn” logo is built upon the work of Dee
Dreslough with post-processing by Karl Johan Heimark and myself.

iv

Contents

Problem Description i

Preface iv

List of Figures viii

List of Tables ix

List of Abbreviations x

1. Introduction 1
1.1. Historical Trends in Computing Power 1
1.2. Era of Multi-Cores: Symmetric, Asymmetric and Heterogeneous 3
1.3. EECS and the SHMAC project 5
1.4. Assignment Interpretation . 5
1.5. Contributions . 7
1.6. Report Organization . 7

2. Background 9
2.1. The Motivation for Heterogeneous Multi-Cores 9
2.2. Hardware for Heterogeneous Multi-core Processors 11

2.2.1. Core Types and Accelerators 11
2.2.2. Interconnect . 12
2.2.3. Memory . 14

2.3. The SHMAC Architecture . 15
2.4. Computer Architecture Simulators 18

2.4.1. Categorization of Simulators 19
2.4.2. Multi-core Simulation 20

2.4.2.1. The gem5 Simulator 21
2.4.2.2. Graphite: Distributed Parallel Multi-core Sim-

ulation . 22
2.4.3. FPGA Accelerated Simulation 23

v

3. The SHMAC Simulator Infrastructure 25
3.1. Methodology . 25

3.1.1. Development Basis . 25
3.1.2. Choice of Abstraction Levels 26
3.1.3. Choice of External Tools and Modules 27

3.1.3.1. Simulation Framework 28
3.1.3.2. Processor Core Generation 29

3.2. Design . 29
3.2.1. Processor Cores . 30

3.2.1.1. Integration with SHMAC Memory Interface . 31
3.2.1.2. Implementation of LL/SC Instructions . . . 32

3.2.2. Memory Units . 33
3.2.2.1. Base Slave Unit 33
3.2.2.2. The LL/SC Slave Unit 34
3.2.2.3. Other Slave Units 35

3.2.3. Interconnect . 35
3.2.3.1. Network Packets and Memory Interface . . . 35
3.2.3.2. Router Interface 36
3.2.3.3. Cycle-Accurate Router Implementation . . . 36
3.2.3.4. Network Construction 38

3.3. Configuration System . 38
3.3.1. Tile Types . 38
3.3.2. Tile Layout . 39
3.3.3. Runtime Configuration 40

3.4. Toolchain and Utilities . 40
3.5. Testing and Verification . 41

4. Evaluating the SHMAC: Micro-benchmarks 43
4.1. Methodology, Metrics and Notation 43
4.2. Clock Tile Access Time . 46
4.3. Tile Start-Up Delays . 48
4.4. Pure Memory Access Performance 49

4.4.1. Single Master . 49
4.4.2. Multiple Masters . 53

4.5. Remote Impact on Local Fetch 54
4.6. Lock Acquisition Time . 56

5. Improving the SHMAC 60
5.1. Dual-Port RAM and Router Bypass 60

5.1.1. Description . 61

vi

5.1.2. Evaluation and Results 62
5.2. System Register File . 64

5.2.1. Description . 64
5.2.2. Evaluation and Results 66

5.3. Packet Tracking . 67
5.3.1. Description . 67
5.3.2. Results . 68

6. Conclusion and Future Work 70
6.1. Conclusion . 70
6.2. Future Work . 71

6.2.1. Power Modelling . 71
6.2.2. ELF Parsing . 72
6.2.3. GDB Support . 73
6.2.4. Dynamic Model Switching 73
6.2.5. Packet Tracking . 74
6.2.6. Improvements to the SHMAC Architecture 75

6.2.6.1. A Faster, Pipelined Router Implementation . 75
6.2.6.2. Integrating a System-Wide Bus 75
6.2.6.3. Core Diversity and Accelerators 76

Bibliography 78

A. Appendices 84
A.1. SHMACsim Utility Scripts . 84

A.1.1. shmacsim-archc-compile 84
A.1.2. shmacsim-archc-allcompile 85
A.1.3. shmacsim-run-benchmarks 86

A.2. Micro-benchmark Listings . 87
A.2.1. Clock Tile Access Time 87
A.2.2. Tile Start-Up Delays 89
A.2.3. Pure Memory R/W Performance - Single Master . . . 90
A.2.4. Pure Memory R/W Performance - Multiple Masters . 93
A.2.5. Remote Impact on Local Fetch 95
A.2.6. Lock Time Acquisition 97

vii

List of Figures

1.1. History of single-threaded integer performance 2

2.1. Comparison of multi-cores . 10
2.2. Bus versus Network-on-Chip 13
2.3. ARM big.LITTLE memory hierarchy 15
2.4. High-level SHMAC overview 16
2.5. SHMAC Memory Layout . 16
2.6. Modelling abstraction terminology 20
2.7. gem5 speed vs accuracy spectrum 21
2.8. Graphite high-level architecture 23

3.1. SHMACsim overview . 30
3.2. SHMACMaster components 31
3.3. Routing steps . 37
3.4. Configuration System . 39

4.1. Benchmark notation . 45
4.2. Clock tile access time benchmark configuration 46
4.3. Clock measurement skew . 47
4.4. Startup delays in 5×5 and 10×10 grids 48
4.5. Pure mem R-W performance benchmark 50
4.6. Instruction fetch breakdown 52
4.7. Multiple master read micro-benchmark 53
4.8. Multiple master write micro-benchmark 53
4.9. Multiple master read-write comparison 54
4.10. Remote Read Impact on Local Fetch 1-2-4 55
4.11. Remote Write Impact on Local Fetch 1-2-4 55
4.12. RILF slowdown . 56
4.13. LL/SC lock acquisition flow 57
4.14. Lock Acquisition Time Measurement Configuration 58
4.15. Heat map of LL/SC failures 59

5.1. Dual-Port RAM overview . 61

viii

5.2. Example router bypass implementation 62
5.3. Single Master Pure Memory Read-Write with dual-port RAM 63
5.4. Comparison of multiple master read-write with single and

dual-port RAM . 63
5.5. System Register File . 65
5.6. Packet tracking . 67
5.7. Example packet trace . 69

6.1. TileWattch concept . 72
6.2. Overview of a BENoC-based CMP system 76

ix

List of Tables

1.1. List of Contributions . 8

2.1. TI OMAP4470 cores . 12
2.2. SHMAC prototype tile types 17

3.1. Chosen abstraction levels . 27
3.2. Notation and symbols for Simulator Design 31
3.3. Implemented tile types . 40

4.1. Overview of implemented micro-benchmarks 44
4.2. micro-benchmark kernel descriptions 50
4.3. Pure memory R/W results . 51
4.4. Pure memory R/W CPI breakdown 51

5.1. System registers . 65

x

List of Abbreviations

AMP Asymmetric Multi-Core Processor

AT Approximately Timed

BFM Bus Functional Model

CA Cycle Accurate

CPI Cycles Per Instruction

CPU Central Processing Unit

DSP digital signal processor

EECS Energy Efficient Computing Systems

ELF Executable and Linkable Format

FPGA Field-Programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

GDB GNU Debugger

GPGPU General-Purpose Graphics Processing Unit

HDL Hardware Description Language

HMP Heterogeneous Multi-Core Processor

ILP instruction-level parallelism

ISA Instruction Set Architecture

LL Load Linked

LL/SC Load Linked/Store Conditional

LT Loosely Timed

NUMA Non-Uniform Memory Access

xi

OS Operating System

RILF Remote Impact on Local Fetch

RTL Register Transfer Level

SAM System Architectural Model

SC Store Conditional

SHMAC Single-ISA Heterogeneous Many-core Computer

SHMACsim SHMAC Simulator

SIMD Single Instruction Multiple Data

SMP Symmetric Multi-Core Processor

SoC System on a Chip

TLM Transaction-Level Modelling

TLP task-level parallelism

TSV Through-Silicon Via

U-core unconventional core

UT Untimed

xii

1. Introduction

Since the birth of computers, the electronics and computer industries have
strived forward to construct devices with more computing power. The capa-
bility to integrate an ever increasing number of transistors onto the same
area, commonly referred to as “Moore’s Law” [56], has led to dramatic
improvements in terms of computing power. However, taking advantage of
this increase in transistor count to deliver more performance is becoming
increasingly difficult. In order to understand the need for heterogeneous com-
puting, it is necessary to understand the historical trend in the development
of computing power, and why the same trend is unlikely to continue.

1.1. Historical Trends in Computing Power

Central Processing Units (CPUs) have come a long way since their invention.
As can be observed in Figure 1.1, the period 1995–2004 saw a doubling of
single-threaded integer operation performance every two years. The increase
in the number of transistors was utilized by processor designers to allow faster
execution in a single processor core. Transistors that could run faster and deep
pipelines with many stages, which could run at higher clock frequencies, were
the driving forces behind this trend [13]. More transistors in the core made
it possible to construct complicated hardware such as instruction reordering
engines to exploit instruction-level parallelism, and branch predictors to
avoid pipeline flushing penalties.

However, also visible in Figure 1.1 is a drop in the increase of performance
after 2004. Sutter [59] attributes this to problems arising from the physical
nature of shrinking transistor technology, namely power consumption and
high heat production. Indeed, the increase in transistor density (as predicted
by Moore’s Law) does not translate to performance gains if the transistors
cannot be powered. The lower power requirements of downscaled transistors
(also known as “Dennard scaling”) described by Dennard et al. [20] has made
it possible to power the increasing number of transistors while keeping the
energy and cooling budgets fixed. Unfortunately, the sub-130 nm transistor

1

Figure 1.1.: Historical trend of single-threaded integer operation performance.
Reproduced from [49]

2

dimensions have brought an end to Dennard scaling [35]. Further scaling
down of the transistor dimensions and threshold voltage causes increased leak
current, whose impact on power becomes even larger due to exponentially
increasing transistor count. This means it is no longer possible to power
more transistors without either increasing the power budget or leaving parts
of the chip unpowered (called the “dark silicon” [22] effect).

It is undesirable to increase the power budget seeing that data centers ac-
counted for 1.1–1.5 % of global power usage in 2010 [34] and the impact of
ICT on the environment is already significant [47]. Another reason would
be the energy sensitivity of the mobile computing devices such as smart-
phones and tablets, which are becoming more popular [24] – a mobile device
consuming several watts of power would suffer from overheating and have a
rather short battery life. Borkar and Chien [13] predict that energy will be
the key limiter of performance for the next 20 years, and point to large-scale
parallelism and heterogeneous computing for the solution.

1.2. Era of Multi-Cores: Symmetric, Asymmetric and
Heterogeneous

The limitations brought by power and heat ushered the trend of multi-core
processors. Intel Corporation [62] name heat production, power, memory
latency and RC delay to explain their move to multi-core architectures.
Another motivation for the move to multi-cores is the limited amount of
instruction-level parallelism (ILP) available in typical applications. Wall [65]
reports the median parallelism for a mix of real-life programs and benchmarks
that can be exploited with practical hardware as 5; investing further resources
into single-core CPUs capable of more ILP would have limited performance
benefits. Instead, integrating N processor cores onto the same die can
offer a theoretical N times increase in computing power, provided that the
applications are able to exploit task-level parallelism (TLP) by the way of
either using multiple threads, or running multiple applications simultaneously.
Replicating an existing core multiple times to form a more powerful processing
unit is also appealing in terms of reusing engineering resources. The name
Symmetric Multi-Core Processor (SMP) [23] reflects the identical nature of
each processing core on this type of processor.

The energy-sensitive nature of mobile computing devices such as smartphones
and tablets has given rise to another type of multi-core processor, the

3

Asymmetric Multi-Core Processor (AMP) [23]. These processors typically
include some simple cores for performing computationally non-intensive
tasks and some powerful cores for tasks with high performance requirements.
This mapping of tasks to cores has the potential to increase energy efficiency
without sacrificing performance.

However, while the move to symmetric multi-cores has helped to uphold
the performance growth demands and asymmetric multi-cores promise more
energy efficiency, the problem of dark silicon still lurks on the horizon.
Esmaeilzadeh et al. [22] argue that the failure of Dennard scaling will
continue to plague multi-core designs, forcing 21 % of the transistors in a
fixed-size 22 nm chip to be powered off, regardless of core asymmetry and
topology. Therefore, in order to keep utilizing the increase in transistor count
for higher computational power, it is of utmost importance to achieve better
energy efficiency.

This is where Heterogeneous Multi-Core Processors (HMPs) have the po-
tential to carry the flag further. Similar to an asymmetric multi-core, a
heterogeneous multi-core processor can contain regular cores of different
sizes, but it can also so-called unconventional cores (U-cores) [16]. These
U-cores can range from vector processors to application-specific accelerators,
General-Purpose Graphics Processing Units (GPGPUs) or programmable
logic such as Field-Programmable Gate Arrays (FPGAs). The primary ad-
vantages of such a mix of hardware in the face of dark silicon challenges are
twofold:

• Different cores and accelerators can be powered on or off according to
the processing requirements of the current task. This selective powering
can ameliorate the dark silicon limitations.

• Customized U-cores can perform specific types of computation with
higher energy efficiency than pure software solutions running on general
purpose cores [64] which can contribute significantly to the overall
energy efficiency of the system.

Chung et al. [16] conclude that U-cores are very likely to find their way into
future processors. Indeed, heterogeneous system-on-a-chip solutions in the
form of mobile application processors and microcontrollers are already quite
widespread in the embedded systems market and demonstrate the energy
efficiency potential [30, 37, 50].

4

1.3. EECS and the SHMAC project

Established with the goal of improving energy efficiency in computing at dif-
ferent levels of abstraction, the Energy Efficient Computing Systems (EECS)
strategic research area at the Norwegian University of Science and Technol-
ogy has heterogeneous computer architectures as one of its primary research
foci. Despite the rising popularity of the topic in the computer architecture
community, two primary research questions still remain unanswered:

Heterogeneous Hardware: How should a heterogeneous processor
architecture be designed in terms of core composition, accelerators,
interconnect and memory system?

Heterogeneous Software: Given a heterogeneous processor archi-
tecture, how should application and system software be designed to
obtain maximum energy efficiency?

The SHMAC project was initiated by the EECS to help discover the answers
to these questions. The goal of the project is to develop a heterogeneous
architecture which in turn will be utilized for heterogeneous software research.
Important aspects of the architecture are covered in Section 2.3. A prototype
for the SHMAC using reconfigurable logic has already been developed by
Rusten and Sortland [54]. However, while the FPGA prototype remains a
valuable tool for evaluation, the heterogeneous design space is too large to
be quickly explorable by such an approach, since it is necessary to model
each desired component in an Hardware Description Language (HDL). This
is why SHMAC Simulator (SHMACsim) is also necessary for the SHMAC
project; simulators are much more suitable for evaluating a large number of
coarse-grained policies, which then can be evaluated in detail by the FPGA
implementation.

1.4. Assignment Interpretation

Based on the assignment description text, the following main tasks were
identified:

Task 1: (mandatory) Create a cycle-accurate simulation infrastructure
that reflects the SHMAC architecture

Task 2: (mandatory) Implement a set of micro-benchmarks that stress
the important aspects of the architecture, and interpret the results

5

Task 3: (optional) Suggest and evaluate improvements to the SHMAC
architecture

Fulfilling these tasks will in turn help answer the following research questions:

RQ1 How should the SHMAC architecture be modelled in a software
simulator?

RQ2 What sort of benchmark programs can be utilized to identify major
bottlenecks in the SHMAC architecture?

RQ3 How can the shortcomings of the SHMAC architecture and the current
implementation be remedied?

As the infrastructure to be provided as part of Task 1 is intended to serve as
a research tool for continued investigations of the EECS into heterogeneous
multi-core architectures, requirements and design guidelines have been further
elaborated via discussions with the research group. These are summarized
below.

• Cycle Accuracy: SHMACsim must be able to accurately reflect the
complex interactions between multiple cores. The difference in cycle-
based performance statistics should be less than 10 % between the
simulator and the FPGA prototype. High simulation performance is
not a primary goal at this point and sacrificing simulated performance
for higher accuracy is deemed acceptable.

• Configurability: SHMACsim should be structured in a way that
allows easy creation and evaluation of desired heterogeneous models
via a flexible configuration system.

• Modelling capabilities on multiple abstraction levels: EECS
aims to improve the energy efficiency of computing systems at all
abstraction layers of a computing system. Therefore, flexible tools that
are not bound to a particular layer of abstraction are desirable.

• Maintainability and extensibility: As the beginnings of a research
tool, it is important that SHMACsim is easy to maintain and ex-
tend for future research. Clean interfaces, modular structure and well-
commented code are important towards this.

It is worth mentioning here that the SHMAC is a dynamic research project,
and development continued in parallel with SHMACsim. SHMACsim as
presented in this report is not intended to and does not reflect the state-of-
the-art SHMAC architecture, but rather the FPGA prototype. For instance,

6

the cores in SHMAC have been changed from MIPS to ARM Instruction
Set Architecture (ISA) while SHMACsim was still in development, which
could not be reflected in the simulator due to time constraints.

1.5. Contributions

This work makes contributions to the SHMAC project in three main areas,
in connection with the three tasks defined in the assignment text. A complete
list of contributions is provided in Table 1.1.

1.6. Report Organization

The organization of the report into individual chapters is briefly described
for the reader’s convenience:

• Chapter 1: Introduction gives a brief introduction to the trends in
processor design and describes the motivations behind the SHMAC
and SHMACsim.

• Chapter 2: Background describes the main concepts in heteroge-
neous processor and simulator design, as well as related work on these
subjects by other authors.

• Chapter 3: The SHMAC Simulator Infrastructure goes into
the details of SHMACsim’s design and the influencing factors on de-
sign decisions, and how it was tested and verified against the FPGA
prototype.

• Chapter 4: Evaluating the SHMAC: Micro-benchmarks in-
troduces a description of implemented benchmarks and the results
obtained from their execution.

• Chapter 5: Improving the SHMAC contains a set of proposed
improvements based on this discussion, and their performance impact.

• Chapter 6: Conclusion and Future Work provides the concluding
remarks and propositions for future work on carrying SHMACsim
further.

7

Task Section(s) Description

T1 3.2 A SystemC/C++ model of the SHMAC, cycle ac-
curate to within 5% of the FPGA prototype

T1 3.2.1 An ArchC-generated MIPS core model extended
with LL/SC instructions

T1 3.2.1.1 A TLM adapter for ArchC core integration into
SHMAC tiles

T1 3.4 A set of utilities to compile C applications for a
given tile coordinate for ArchC MIPS cores

T1 3.3.1 A centralized system for defining and constructing
tile types

T1 3.3 A configuration system for tile layout and runtime
parameters

T2 4.3 A micro-benchmark to measure start-up delays due
to the jump tile

T2 4.2 A micro-benchmark to measure effects of traffic on
clock tile-based timing

T2 4.4.2 A micro-benchmark to measure the effects of sharing
a RAM tile between multiple masters

T2 4.5 A micro-benchmark to measure performance impact
of remote memory accesses on local cores

T2 4.6 A micro-benchmark to test synchronization of large
grids with the LL/SC tile

T3 5.1 A dual-port RAM implementation in software to
increase local memory performance

T3 5.2 A system register file implementation to provide
per-tile bootstrapping and clock counting

T3 5.3 A packet tracker implementation to instrument
memory packet route information in time

Table 1.1.: A list of contributions provided by this work, in relation to the
corresponding tasks from 1.4.

8

2. Background

The design of HMPs is a broad field encompassing a number of different sub-
fields including the design of processing cores, interconnect and the memory
system. In order to have a better understanding of the heterogeneous nature
of the SHMAC, it is beneficial to examine these sub-fields to some extent.

In this chapter, the reader is provided with an overview of the background
concepts and related work surrounding HMP design. A summary of the
SHMAC architecture is also presented. This is followed by a section on
computer architecture simulators, introducing the simulation technology
background SHMACsim draws on.

2.1. The Motivation for Heterogeneous Multi-Cores

As explained in Chapter 1, the primary motivation for the move to HMPs
is their potential for higher energy efficiency in the face of dark silicon
challenges, while still offering improved performance. This section aims to
provide some insight into the analytical models and empirical examples
justifying these claims regarding heterogeneous multi-cores.

As HMPs can be thought of as asymmetric multi-cores with U-cores, one
can start by looking at the analytical foundations for AMPs. These can be
based on three so-called “laws”:

• Amdahl’s Law describes the maximum theoretical possible speed-up
limit obtainable for an application via parallel execution given its
parallelizable portion [3]. It draws the primary conclusion that mas-
sively parallel execution of applications is of limited benefit, since
inherent sequential portions in the application limit the performance
improvement.

• Gustafson’s Law is essentially a reinterpretation of the same relation-
ship Amdahl’s Law describes. However, Gustafson [27] pointed out
that despite the limitations imposed by serial portions, the speed-ups

9

Large-Core Homogeneous
Large-Core
Throughput
Small-Core
Throughput
Total
Throughput

1

6

Small-Core Homogeneous
Large-Core
Throughput
Small-Core
Throughput
Total
Throughput

Pollack's Rule
(5/25)0.5 = 0.45

13

Asymmetric Multi-Core
Large-Core
Throughput
Small-Core
Throughput
Total
Throughput

1

Pollack's Rule
(5/25)0.5 = 0.45

11

Figure 2.1.: Comparison of 150 million transistors integrated into three
different multi-core layouts. Adapted from [13]

brought by massively parallel execution can also be utilized to attack
larger problem sizes, which otherwise would be impractical due to long
execution times.

• Pollack’s Rule theorizes that there is a direct proportion between
performance improvements from a microprocessor and the square
root of the amount of transistors used for improving that processor’s
micro-architecture [48]. Thus, one can make a rough estimate the total
available computing power given a number of transistors and how they
are to be allocated into different cores.

Figure 2.1 presents an comparison of three possible multi-core configurations
given 150 million transistors, with the throughput of each core estimated
using Pollack’s Rule. Although the small-core homogeneous layout has greater
total throughput than the others, the limited degree of parallelism available
in most applications (as suggested by Amdahl) will limit the possible speedup.
The AMP is able to offer a better compromise thanks to its mix of core
types. Fedorova et al. [23] suggest that an AMP system can offer better
performance and minimize power usage by executing the sequential and
parallel phases of the application on large and small cores, respectively.

10

In addition to the benefits of AMPs, HMPs have the advantage of containing
specialized U-cores. These specialized cores and accelerators can have up
to two orders of magnitude higher energy efficiency [16, 57] and can be
selectively powered on or off depending on the task at hand. This selective
powering allows an HMP to trade dark silicon area for increased performance
and energy efficiency. Borkar and Chien [13] refer to this as the ”Rise of
10x10 Optimization”: operating the chip with 90 % of the transistors inactive,
and a different 10 % active at each point in time.

2.2. Hardware for Heterogeneous Multi-core
Processors

2.2.1. Core Types and Accelerators

The types and features of processor cores and accelerators to be included
on an HMP is a major determinant in the system’s final capabilities. Many
different processor cores and accelerators have been designed over the history
of computing, and an HMP’s ability to combine several of them into a
single system increases the size of the design space to vast proportions. The
question of which cores and accelerators to use is to some extent answerable
within a given application area, but is much tougher for general purpose
HMPs.

In terms of asymmetric general-purpose core mixes, both Kumar et al. [36]
and Van Craeynest & Eeckhout [63] argue that two core sizes provide most
benefits from heterogeneity. This mix of cores (usually referring to core types
as ”big/powerful” and ”small/simple”) can also be found in the industry;
both ARM’s big.LITTLE [26] (depicted in 2.3) and NVIDIA’s Kal-El [45]
are such examples.

Besides general-purpose cores, two rising trends in HMP design in the
industry are the inclusion of media processing elements and GPGPUs for
parallel processing. The Texas Instruments OMAP4470 System on a Chip
(SoC) whose the range of computing elements is displayed in Table 2.1 is such
an example. This range of core types can offer the benefits of asymmetric
multi-cores in terms of general purpose computing, as well as energy efficient
multimedia processing with the DSP and accelerator hardware. Similar HMPs
are widely used in power sensitive computing devices such as smartphones
and tablets [50, 55].

11

Name Core Type Core Count

ARM Cortex A9 general purpose (high performance) 2

ARM Cortex M3 general purpose (energy efficient) 2

PowerVR SGX544 graphics processing unit 4

IVA-HD still image and video accelerator 1

mini-C64x+ digital signal processor 1

Table 2.1.: List of cores in a Texas Instruments OMAP4470 SoC [30]

Beyond these core types, there has also been research on including less
conventional cores and hardware accelerators onto HMP dies. These include
energy-efficient conservation cores [64] auto-synthesized from application
source code, database indexing accelerators [32] and hardware web browsing
[7], among others. Last but not least, there is substantial work on reconfig-
urable computing where FPGAs or similar reconfigurable hardware is utilized
to dynamically create datapaths suited for the task at hand [28]. Chung et
al. [16] suggest that such hardware is broadly useful if energy efficiency is a
primary goal and is likely to be part of future HMP designs.

2.2.2. Interconnect

Interconnect has a critical role in HMP system design. For instance, many
modern personal computers also contain heterogeneous processing elements
such as GPUs, but the external nature of the GPU and the bus that connects
it to the rest of the system gives rise to large delays while copying data
from/to these units, creating bottlenecks. In contrast, an HMP contains the
computing units and the interconnect on the same chip, allowing higher-speed
communication between them.

The traditional bus is based around the idea of connecting multiple devices
to a global shared medium. However, semiconductor technology scaling has
brought severe limitations to this approach: global synchronization problems,
deep submicron effects and power/thermal management [6]. Additionally, the
increasingly larger number of devices connected to a global bus introduces
additional verification difficulties. The proposed solution to shared-medium
bus problems is one inspired from network engineering: a Network on Chip.
A traditional bus-based interconnect and a NoC are illustrated in Figure

12

sh
ar

ed
 b

us

Figure 2.2.: A shared bus based multi-core on the left, and one organized as
a mesh-based NoC on the right. Adapted from [67].

2.2, where processing elements (PE) in the NoC are connected by routers
and network links, and data is transferred in the form of network packets.
By exposing a common high-level interface to all connected units, the NoC
can offer a well-structured system with increased productivity and scalabil-
ity, while still being able to maintain a high-performance communication
infrastructure. The TILE64 processor [1] utilizes such networks to connect
modular tiles and scale up to 64 cores.

The design and implementation of such a network is an active research
area [5, 19] and a complex topic involving design decisions on many levels.
Bjerregaard and Shankar [10] investigate these issues with a layered approach
in their survey of NoC research and practices, which are briefly summarized
below:

• The Application Level is concerned with the decoupling of nodes
from the network, which allows a modular design approach by abstract-
ing away the details of communication.

• The Network Level covers issues dealing with the structure of the
network and the movement of data packets inside, such as:

– Topology, the layout of the network with routers and nodes. 2D
grid topologies are by far the most popular.

– Protocol, the strategy of moving data through the NoC. Store
and forward, virtual cut-through and wormhole routing are widely
known, with wormhole routing being the most popular [10].

13

– Flow control, the mechanism determining packet movement along
a network path. Virtual channels (VCs) are widely utilized to
avoid deadlock.

– Other features. Quality of Service (QoS) may be offered for real-
time guarantees, broadcast/multicast for mass communication, or
more complex operations such as test-and-set for synchronization.

• The Link Level regards to node-to-node links and covers a wide range
of issues including cross-clock-domain synchronization, pipelining long
channels, low-swing drivers to optimize power consumption, and reliable
encoding schemes.

2.2.3. Memory

The location of data with respect to a given processing unit that desires to
access this data is a major performance determinant – without sufficiently
fast data access, a set of heterogeneous computing elements will be of little
benefit. Two principal approaches to the design of a multi-core memory
system are shared memory (coupling all cores to a shared/central memory)
and distributed memory (coupling each core with its own memory unit),
although hybrid approaches are common as well. A body of research on
memory system designs for multiple computing units was produced in the
late 1980s – albeit for multi-chip (as opposed to multi-core on a single
chip) systems, some of the results also apply to multi-core designs since the
underlying ideas are similar.

Nitzberg and Lo [44] mention that the primary advantage of a shared memory
system is the relative straightforwardness of its design and programmability.
However, it has a serious scalability drawback due to the serialization point
brought by the common access bus. Distributed memory can offer much
higher total bandwidth and does not suffer from this bottleneck, which make
it better suited to multi-core systems. In turn, distributed memory is not as
straightforward to program as a shared memory architecture.

While using a NoC as described in Subsection 2.2.2 helps address the design
challenges for distributed memory, the programming difficulties require
additional undertakings. This is commonly addressed by building a shared
memory abstraction on top of distributed memory. Referred to as distributed
shared memory, it entails constructing a coherence mechanism in either

14

MemoryController Ports

CCI -400(CacheCoherentInterconnect)

L2

Cortex-A7
Core

L2

Cortex-A15
Core

L1I + L1D

Cortex-A15
Core

Cortex-A7
Core

L1I + L1D L1I + L1D L1I + L1D

Figure 2.3.: Memory hierarchy in ARM’s big.LITTLE AMP solution, with
per-cluster L2 cache and per-core L1 cache. Adapted from [26].

hardware or software, and exposing a consistency model to the programmer
[44].

Memory systems in many multi-cores today, both in the academy [25, 61]
and the industry [1, 26], utilize a hybrid model where distributed memory is
mostly found in the form of private caches. Such caches deliver bandwidth
with higher scalability to multiple cores, although their performance is bound
by memory reference locality. With the developments in 3D integration and
Through-Silicon Via (TSV) techniques, efficient and large on-chip distributed
memory implementations [38] are becoming possible. This may be important
for keeping up with the bandwidth and latency demands of memory-hungry
many-core chips.

2.3. The SHMAC Architecture

As the SHMAC architecture constitutes the base for the construction of
SHMACsim, it is important to give an overview of the architecture in order
to have a better understanding of SHMACsim. A one-sentence description of
the architecture would be heterogeneous computing elements and distributed
memory organized into tiles with a mesh NoC interconnect. This high-level
description has been elaborated by Rusten and Sortland [54] to create the
initial FPGA-based prototype, and the rest of this section will be a summary
of their work, on which SHMACsim is also based.

Tile internal organization: Each tile contains a router, and can contain
master and/or slave units, as illustrated in Figure 2.4. A master unit is

15

...

...

...

...

n+
1

row
s

m+1 columns
Mem

(0,0) (0,1) (0,1) (0,m)

(1,0) (1,1) (1,2) (1,m)

(n,0) (n,1) (n,2) (n,m)

(Slave)

(Master) Router

RouterMem
(Slave)

RAM Tile

Router
(Slave)

LL∕SC
mem

LL∕SC Tile

Mem
(Slave)

(Master) Router

Simple Processor Tile

in-
order
CPU

OoO
super-
scalar
CPU

Complex Processor Tile

Mem
(Slave)

(Master) Router
CPU

Accelerator Tile

accelerator

Figure 2.4.: An overview of a SHMAC mesh with a variety of tile types. Tile
types and placement are solely for purposes of illustration and
do not necessarily reflect a realistic scenario.

(n,m)

0xnm000000

(1,0)

0x10000000

(0,m)

0x0m000000

(0,1)

0x01000000

(0,0)

0x00000000

Figure 2.5.: The SHMAC global memory layout, showing the address space
partitions for each tile. The most significant 16 bits represent
the tile coordinate, whereas the remaining 24 bits act as the
local address. Reproduced from [54].

defined as a unit initiating memory requests, and a slave unit is similarly
defined as a unit handling memory requests. CPU cores and memory would
be typical examples for master and slave units, respectively. The router is
responsible for communication between the master and slave units, as well
as other tiles. An overview of implemented tile types for the prototype can
be found in Table 2.2.

Memory: The global address space is partitioned according to tile coor-
dinates, and each tile’s slave unit (if any) is mapped to one, as shown in
Figure 2.5. No memory protection is implemented and tiles have free access
to each other’s address spaces. For tiles containing processors, the program
to be executed is loaded into the local tile memory. The prototype does
not include any cache memory, making the performance highly sensitive to
access patterns.

16

Tile Type Master Slave Purpose

Integer Processor Tile mlite RAM general purpose, integer
computations

Floating Point Proces-
sor Tile

mlite
+FPU

RAM general purpose, float-
ing point computations

RAM Tile none RAM random access memory

LL/SC Tile none LL/SC
unit

synchronization

Jump Tile none jump
unit

bootstrapping proces-
sors

Clock Tile none clock
unit

measuring execution
times

LED Tile none LED
control
unit

LED output

UART Tile none UART
unit

communicating with
the external world

Table 2.2.: Tile types implemented in [54]

17

Interconnect: The interconnect is responsible for carrying memory requests
and responses across units and tiles. A packet-switched NoC is used, with
each memory response or request encapsulated into a network packet. The
packet format contains information about the nature of the memory operation
(request or response), read/write and interrupt/sync flags, the initiator and
target of the memory request, and any associated data. The utilized router
model is non-pipelined with per-output-port round robin arbitration, and
uses dimension order routing. The reader is referred to sections 4.1 and 4.2.3
of [54] for further details.

Processor cores and ISA: The SHMAC FPGA prototype used the mlite
core [52] configured with a two-stage pipeline, which uses the MIPS-I ISA.
In order to support synchronization, the ISA was extended with the Load
Linked (LL) and Store Conditional (SC) instructions. Additionally, a version
of the mlite core extended with a floating point unit was provided. The cores
were wrapped into a state machine for integration with the SHMAC network
interface. This state machine allows a single outstanding memory request;
the core is stalled for read requests or LL/SC instructions, but not for write
requests.

2.4. Computer Architecture Simulators

Having introduced some of the background concepts in heterogeneous multi-
core architectures, it is also interesting to examine the role simulators in
exploring HMP design. Computer architecture simulators allow the explo-
ration of the architectural design space and evaluation of design decisions
at a relatively low cost. Their primary advantage comes from the ability to
create abstract models of the desired architecture and execute this model
in a controlled environment. This modelling and execution environment
is usually completely in software, although FPGA-accelerated simulation
(discussed in 2.4.3) is also gaining momentum.

A brief overview of the underlying concepts in computer architecture simula-
tion and related work will be presented here. Throughout the rest of this
section the term target refers to the machine being simulated, while host
refers to the machine running the simulation, which is common terminology
for computer architecture simulators [43, 60].

18

2.4.1. Categorization of Simulators

A number of simulators are used in computer architecture research and
related fields, and it can be useful to generalize some aspects of these
simulators into categories in order to have a better understanding.

Scope: The simulation targets can vary widely in scope, from the microar-
chitecture of a single core to multiple interconnected cores and memory units.
Full-system simulators capable of booting an Operating System (OS) also
exist [8, 39].

Workload type: Simulators can accept different types of input, the two
main types being trace-driven simulators which run on pre-recorded or
generated streams of events, and execution-driven simulators which allow
execution of software. Trace-driving has the advantage of offering a greater
degree of control but the inputs first have to be generated and may be very
large in size. Execution-driven simulation has a size advantage, and gener-
ating new workloads is faster since the target programs may already exist.
Additionally, execution-driven simulation can capture dynamic interactions
between instruction streams in multiple processors [18].

Level of detail: All simulators use a model of the simulation target. The
level of detail of this model is the most defining characteristic of a simulator,
with great impact on the performance and accuracy of the simulation. While
it is difficult to precisely specify the level of detail/abstraction for a model, the
degree to which elapsed simulation time is modelled is a helpful classification.
The IEEE 1666 standard [29] defines the following:

• Untimed (UT): The notion of simulation time is unused. UT models
are used for the construction of purely functional models.

• Loosely Timed (LT): Each transaction has two timing points; the
start and the end. Simulated processes may be temporally decoupled
from simulation time.

• Approximately Timed (AT): Each transaction has multiple timing
points, simulated processes typically run in lockstep with simulation
time.

• Cycle Accurate (CA), also called Pin and Cycle Accurate (PCA):
Simulation time is modelled with cycle-level accuracy.

Going down the list, these abstraction levels offer increasing level of detail
while sacrificing performance. This trade-off is inevitable since the amount

19

Figure 2.6.: A classification of abstraction terminology for system models.
Reproduced from [11].

of necessary computation increases significantly with increasing level of
detail. To find an appropriate fit for the simulation requirements, it may be
necessary to mix multiple abstraction levels.

For complex system-level designs with a substantial amount of data exchange
between components, it is beneficial to separate the communication domain
from the functionality domain. Different abstraction levels can be mixed and
matched for the two different domains, which is known as Transaction-Level
Modelling (TLM). Figure 2.6 presents an overview of abstraction terminology
including TLM, System Architectural Model (SAM), Bus Functional Model
(BFM) and Register Transfer Level (RTL) model. As the complexity of
processors increase, simulators created with a mix of well-defined levels of
abstraction will become important to productivity [11].

2.4.2. Multi-core Simulation

The processor development trends mentioned in Chapter 1 are reflected in
simulators. Before the advent of the multi-core era, most simulators were
focused on the microarchitecture of a single core to develop faster processors.
However, the move to multi-cores required tools to evaluate and validate
design decisions and implementations. Simulators today are required to have
a wider scope, covering multiple cores, complex memory hierarchies and
interconnects.

20

Processor Memory System

CPU Model System Mode Classic
Ruby

Simple Garnet

Atomic Simple
SE
FS

Timing Simple
SE
FS

In-Order
SE
FS
SE
FS

O3 (Out of
Order) High Accuracy

High Speed

Figure 2.7.: Various processor and memory system models in gem5 with the
speed versus accuracy spectrum. Reproduced from [8].

A wide range of computer architecture simulators, both from the industry and
the academia, exist today [9, 15, 39, 41, 46]. To give a better understanding
of the field in general, two multi-core simulators are briefly discussed below.

2.4.2.1. The gem5 Simulator

A merger of the M5 [9] and GEMS [41] simulators, the gem5 is a simulator
widely used for computer architecture research [8]. Since it is not bound to
a particular architecture and can instantiate simulations based on different
configurations, it is more appropriately called a simulation framework. The
unmodified Linux kernel can be booted on full-system mode using the ARM,
ALPHA and x86 ISAs.

gem5 has a flexible, modular system capable of combining different CPUs,
system modes and memory system models to create an appropriate config-
uration in terms of accuracy and speed, as illustrated in Figure 2.7. The
object-oriented nature of the system makes it easy to instantiate multiple
cores and there are no inherent limitations on the simulated core count
except simulation speed.

• CPU Model: Refers to the level of detail for the core model, which
can range from AtomicSimple always executing an instruction per cycle
to O3, a detailed out-of-order model.

• System Mode can be either System-call Emulation (SE), which
avoids the need for peripheral device models, or Full System (FS) to
model an entire system which can run an OS.

21

• Memory System: refers to the model of memory request-response
system, including the fast and easily configurable classic M5 model as
well as completely customizable models. For instance, the Garnet [2]
models a NoC including router microarchitecture.

• ISA: Most commercial ISAs (ARM, ALPHA, MIPS, Power, SPARC,
and x86) are supported.

Although gem5 does not inherently target HMPs, there are gem5-based
projects [42, 66] targeting heterogeneous systems. These projects make some
constraining assumptions regarding the target architecture and seem to be
mostly tailored towards CPU+GPGPU systems.

2.4.2.2. Graphite: Distributed Parallel Multi-core Simulation

The origin of the Graphite simulation infrastructure [43] lies in the multi-core
simulator scalability problem. The simulation of future processor architec-
tures containing hundreds or thousands of cores will require an enormous
amount of computational resources. However, most simulators today are
not capable of tackling this task since they have sequential implementations.
To address this issue, Graphite provides a parallel, distributed simulation
infrastructure that allows functional and performance modelling for cores,
on-chip networks and memory systems include coherent cache hierarchies.
It is not cycle accurate, but provides good estimates through the use of a
collection of models and techniques. A high-level overview of the simulator
architecture is presented in Figure 2.8.

As with any kind of parallel application, synchronization is a major prob-
lem in multi-core simulation. Even though simulating the multiple cores
themselves may appear trivial to parallelise, the need for synchronization
arises when these cores interact with each other or with shared resources.
Graphite addresses this problem by offering a lax synchronization scheme,
where synchronization between tiles happens only on explicit events such as
application-level locks/barriers, inter-tile message passing and thread spawn-
s/joins. Together with other techniques, this allows almost linear speedup as
more host resources are added.

Graphite uses a tile-based target architecture model, where a tile consists of
a compute core, a network switch and a part of the memory system (cache
and/or DRAM controller). This definition allows for heterogeneity in tiles.
Threads on the target application are mapped to tiles and distributed to

22

TargetArchitecture

Graphite

TCP/IP Sockets

Host Threads

Application Threads

Application

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Core

Host
Process

Host OSHost OS

Host
Process

Host
Process

Host
Machines

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Target
Tile

Figure 2.8.: High-level architecture of Graphite. Reproduced from [43].

host machine threads. The host threads themselves can be running on a
multi-core machine and/or distributed to several machines across a network.

2.4.3. FPGA Accelerated Simulation

Although software-based simulation has carried computer architecture re-
search a long way, their ability to quickly evaluate points in design space may
be deteriorating. Tan et al. [60] argue the move to multi-cores has hampered
the performance of pure software-based simulators, since multi-core simula-
tion targets exhibit complex timing-dependent non-deterministic behaviour.
Such behaviour needs detailed cycle-level simulation, which in turn requires
cycle-by-cycle synchronization. Unfortunately this is notoriously difficult to
parallelize (to take advantage of multi-core host machines), and as a result
simulator performance has suffered.

This “simulation gap” led to FPGA Accelerated Model Execution (FAME)
techniques, where the desired target architecture is mapped to an FPGA
for evaluation [60]. The FPGA’s highly parallel, programmable execution
substrate is suitable for the nature of multi-core simulation, and can provide
an average speedup of 263x over pure software simulators for detailed models.
It is important to note here that FAME techniques do not necessarily run the

23

target hardware RTL description on an FPGA directly; rather, the FPGA
executes a model of the target system, so it may take multiple FPGA clock
cycles to execute a single target clock cycle.

24

3. The SHMAC Simulator
Infrastructure

SHMACsim intends to provide a simulation infrastructure for the SHMAC
architecture described in Section 2.3, and reflect the FPGA prototype created
by Sorten and Rustland [54] with cycle-accuracy. Its construction is the
primary task in this assignment, and forms a basis for evaluating micro-
benchmarks in Chapter 4 and potential improvements in Chapter 5.

This chapter will provide information about the design of SHMACsim,
describing the methodology and reasoning behind development, followed by
the structural and behavioural details of the design.

3.1. Methodology

3.1.1. Development Basis

The first step in SHMACsim’s development was to decide whether it would
be built using an existing simulator as a basis or written from scratch.
Three alternatives were considered, summarized below with an overview of
advantages and disadvantages.

1. Customizing an existing simulator would involve taking an exist-
ing simulator or simulation framework, such as gem5 [8], and tailoring
it to meet SHMACsim’s requirements by modifications and additions.

+ A solid, proven basis for work immediately available

+ Reuse of features, modules

− Requires a good understanding of existing simulator structure

− Potentially large amount of unnecessary features/overheads

2. Creating a simulator from scratch implies designing SHMACsim
completely from the ground-up, without using any external modules.

25

+ Complete control over simulator structure and features

+ The entire development timeframe can be used on implementation
instead of studying existing modules and functionality

− Can take an extensive amount of time to get results

− “Reinventing the wheel”, existing components may be already
perfectly suitable for SHMACsim’s needs

3. Limited use of existing components is a “best-of-both-worlds”
approach, where some existing modules or libraries would be utilized,
and the remaining functionality implemented from scratch.

+ A reasonable degree of control over structure and features

+ The most time-consuming or difficult implementations can be
imported as pre-made modules

− Suitable modules must be found

− May need adapter logic to make everything work together

In light of the simulation infrastructure requirements and the advan-
tages/disadvantages of each approach, the third was deemed most suitable.
SHMACsim is built mostly from scratch to reflect the nature of the SHMAC
accurately, while making use of suitable existing components and libraries.

3.1.2. Choice of Abstraction Levels

As described in Chapter 2, an HMP consists of a number of interacting
subsystems, and SHMACsim aims to model these subsystems for the SHMAC
architecture. Each subsystem has a different inherent complexity and impact
on the overall system performance, which must be taken into account while
modelling.

Table 3.1 lists the level of abstraction each subsystem is modelled in, while
the rest of this section provides reasoning on the abstraction level choices.

The interconnect is a resource utilized by the entire system and
highly parallel in nature, which can give rise to complicated traffic
interleaving and resource contention situations. Without an extensive
and time-consuming mathematical analysis of the router, simplified
models are likely to miss potentially important details. Additionally,

26

Subsystem Abstraction level

Processor cores Loosely Timed

Memory Approximately Timed

Interconnect Cycle-Accurate

Table 3.1.: Chosen abstraction levels for individual SHMACsim subsystems.
Please refer to 2.4.1 details on each abstraction level.

Rusten and Sortland [54] mention the interconnect as the major bot-
tleneck in the SHMAC prototype design. Therefore, a cycle-accurate
model of the interconnect is used.

The memory units does not exhibit parallel access characteristics,
since each slave unit is only directly accessible by its router. However,
the wrapper state machines (which stall the processor cores and convert
between SHMAC network packets and memory operations) cause delays
that can influence the access patterns in the system. Thus, the memory
units are modelled on an approximately timed abstraction level.

Processor cores in SHMAC are relatively simple with only a single
outstanding memory request allowed, thus a loosely timed model is
used for them. This is also appropriate, since as stated in Section 1.4
future SHMAC cores will not be MIPS cores; creating complex models
can be a waste of resources.

Considering the cycle-accurate communication model and the loosely timed
computation model utilized, SHMACsim could be considered a TLM model
bordering on BFM according to the categorization presented in Section 2.4.1.

3.1.3. Choice of External Tools and Modules

Taking into account the decisions on development methodology and abstrac-
tion levels, the next step in the design of SHMACsim was to select the set
of external tools and modules to be utilized.

The following subsections will describe the selections with regard to their
properties and how they correspond to SHMACsim’s requirements.

27

3.1.3.1. Simulation Framework

A software-based simulation kernel or framework that provides the necessary
capabilities to model generic hardware is a powerful tool, and a prime
candidate for accelerating SHMACsim’s development. Indeed, Skadron et
al. [58] mention that the manual mapping from the concurrent, structural
nature of a computer architecture to the sequential, procedural nature of
a programming language such as C or C++ is a complex, ad-hoc and
error-prone process.

SystemC, the IEEE standard for system-level modelling [11], was chosen as
the SHMACsim simulation infrastructure for the following reasons:

Language of implementation: The Open SystemC Initiative provides an
open source reference implementation in C++, meaning that the regular
language constructs in C++ are readily available alongside those provided
by SystemC. This means that external C++ models can also be integrated
with ease. An example would be components from gem5 [8].

Concurrency and Time: Hardware is inherently concurrent and operates
at a well-defined rate, thus the ability to model concurrency and time
is important for cycle accurate hardware simulation. SystemC offers an
event-driven simulation kernel with explicit concepts of passage of time and
concurrency.

Abstraction Level of Modelling: SystemC and the associated TLM
standard do not enforce a particular level of abstraction for modelling
system components, allowing the modelling of different parts of the system
with varying levels of detail. The developer is then free to choose the level
of modelling for each component in accordance with speed or accuracy
requirements of the simulation. On the low-end of the modelling scale,
SystemC offers RTL-like language constructs inspired by hardware design
languages. One particular advantage of using this level of modelling is the
possibility to translate code back and forth between SystemC and HDLs
with minimal effort. On the other end of the modelling scale, it is possible to
use any abstraction C++ is capable of, thus an instruction decoder could be
implemented as a switch() statement, or random-access memory modelled
with an array. These capabilities correspond to the mixed abstraction level
decisions in Section 3.1.2.

28

3.1.3.2. Processor Core Generation

The construction and verification of processor core models is a potentially
lengthy process, which marks it as a strong candidate for utilizing an external
module instead of writing from scratch. Since the standard MIPS ISA is
utilized in the FPGA prototype, it is relatively easy to find an appropriate
pre-made model.

SHMACsim uses an ArchC-generated SystemC model for processor cores.
ArchC is a Processor Description Language which can generate SystemC
processor models from an ISA behavioural description. Mature models ca-
pable of running the SPEC2000 benchmark suite are provided for MIPS-I,
PowerPC, SPARC V8, ARMv5 and the Intel 8051 ISAs [4]. Other advan-
tages of using ArchC-generated models are syscall emulation support, TLM
memory port support for connecting external memory models, and GNU
bintools generation for the models.

This set of features, especially the SystemC model generation, the availability
of a mature loosely-timed MIPS-I model and an external memory port, were
the reasons for the choice of ArchC. The multiple ISAs supported is also
beneficial for future work where a different ISA is desired for the SHMAC.

3.2. Design

Having described the development basis, choice of abstraction levels and
external modules, the design details of SHMACsim will be provided in this
section. The constructed infrastructure is capable of instantiating desired
SHMAC grids and running applications on them. An illustration of the high-
level workflow in the system can be found in 3.1. The simulated SHMAC
system itself comprises three core subsystems: the processor cores, the
memory system, and the interconnect. These are organized into SHMACTiles
which form a SHMACGrid. There is an additional configuration subsystem
which is responsible for instantiating and configuring the desired grid, and a
toolchain for compiling applications for the architecture is also provided.

The following sections describe these subsystems in some detail. The notation
used to refer to design elements throughout the rest of the chapter is given
in Table 3.2.

29

configuration
system

(section 3.4)

C

(0,1)

P

(1,0)

R

(1,1)

P

(1,2)

P

(2,1)

J

(0,0)

R

(2,0)

R

(2,2)

P

(0,2)

SHMACGrid

SHMACMaster:
ArchC MIPS core

(section 3.3.1)

SHMACRouter:
interconnect

(section 3.3.3)

SHMACSlave
memory unit
(section 3.3.2)

SHMACTile

(1,2).bin(2,1).bin
(0,2).bin

(1,0).bin

per-tile
executables

toolchain
(section 3.5)

C source
code

Figure 3.1.: An overview of the simulator core subsystems and helper sub-
systems in SHMACsim

3.2.1. Processor Cores

SHMACsim utilizes loosely-timed MIPS-I core models generated by ArchC,
similar to the Plasma MIPS-I cores used in the FPGA prototype. The
model introduces a one clock cycle delay between instruction executions, and
although it lacks the two-stage pipeline found in the prototype, the overall
system performance was found to be very similar within SHMACsim’s scope
as indicated by the results in Section 3.5.

The generated cores are configured without any built-in cache or memory
except the register file. Instead, memory requests are sent to the on-tile
router via the TLM port as described in Subsection 3.2.1.1. Additionally,
two extra instructions are implemented from the MIPS-II ISA to support
multi-core synchronization, which is described in Subsection 3.2.1.2.

It is worth noting here that only one processor core model is supplied with
SHMACsim. The “complex core” enhanced with a Floating Point Unit (FPU)
in the FPGA prototype is not implemented since floating point computations
can be trivially performed by the host computer in simulation. If desired,
individual cores can be made faster or slower by changing the inter-instruction
delay in the current loosely timed model, thus providing core diversity. This
has not been explored in this report since the assignment does not focus

30

Type Notation Example(s)

Class names SHMACTLMAdapter, shmacsim::packet

Function names receiveMessage

Shell scripts shmacsim-archc-allcompile

Active objects1

Input-Output Ports1

Table 3.2.: Notation and symbols used in the simulator design description

ArchC MIPS
core

TLM
Adapter

to
router

from
router

SHMACMaster

Figure 3.2.: The internal structure of a SHMACMaster, showing the ArchC
MIPS core and the TLM adapter.

on effects of core diversity, but rather the construction of an infrastructure
capable of supporting this diversity.

3.2.1.1. Integration with SHMAC Memory Interface

ArchC-generated cores provide an optional TLM port for accessing memory
devices. This port is utilized in SHMACsim to integrate the ArchC-generated
cores with the network-based memory interface. An adapter is necessary
for this integration, since ArchC uses a bidirectional blocking interface
and SHMACsim uses double unidirectional blocking interfaces (described
in Section 3.2.2). The SHMACTLMAdapter class provides this adaptation by

1Active objects contain SC THREAD or SC METHODs, and all ports are implemented
as SystemC ports. Please refer to [29] or [11] for details on SystemC processes and
ports.

31

translating back and forth between ArchC TLM transport calls and SHMAC
network packets. This process works as follows:

1. The ArchC-generated core calls the transport function on the
SHMACTLMAdapter with a memory request

2. The adapter creates a SHMAC network packet corresponding to the
ArchC memory request, and sends out this packet to the local router
port

3. The core is stalled by a SystemC wait call by the adapter while the
adapter waits for the reply

4. Upon receiving the corresponding reply packet for this request, the
adapter converts the reply into the response format expected by ArchC
and returns from the transport function call

5. The core’s memory request has been served and it can continue execu-
tion

It can be observed that SHMACTLMAdapter has a similar purpose to the state
machine wrapper for the processor cores in the SHMAC prototype - both stall
the processor core while waiting on memory requests. The delays introduced
by the state machine wrapper are also annotated on SHMACTLMAdapter to
have a more accurate model of the prototype. Finally, the adapter is also a
key part of SHMACsim’s LL/SC instruction implementation, as described
in 3.2.1.2.

Reflecting the master-slave terminology in the SHMAC architecture, the
ArchC-generated cores and the TLM adapter are packed into a SHMACMaster
class with inbound and outbound memory ports as shown in Figure 3.2.

3.2.1.2. Implementation of LL/SC Instructions

As mentioned in Section 2.3, the SHMAC prototype uses MIPS-I cores
enhanced with the capability to execute LL/SC instructions from the MIPS-
II instruction set. Together with the LL/SC Tile, these instructions provide
a way of lock-free atomic read-modify-write operation. An overview of
the process from a LL/SC tile perspective is presented in Section 3.2.2.2.
This section focuses on the extension of the MIPS-I ISA with the LL/SC
instructions for the ArchC cores.

32

In the SHMAC network packet format, the LL/SC instructions are required
to generate special memory requests (with the SYNC flag set) in order to
separate them from regular load and store operations. However, the ArchC
TLM port does not support sending out memory requests with attached
extra information. One way of addressing this issue would have been to
extend the ArchC TLM interface to support sync bits in requests, but a
workaround was preferred in order not to make further changes to the ArchC
libraries.

The workaround makes use of the explicit LOCK and UNLOCK opera-
tions defined by the ArchC TLM interface, which are normally unused in
the MIPS ISA implementation. The presence of these operations causes
SHMACTLMAdapter to behave differently as follows:

The LL instruction causes a sequence of LOCK, READ, UNLOCK
memory operations. The SHMACTLMAdapter generates a SHMAC read
request packet with the SYNC flag set when it detects this sequence.

The SC instruction causes a sequence of LOCK, WRITE, READ,
UNLOCK memory operations. The WRITE after LOCK causes the
adapter to generate a SC network packet, whose reply will contain the
success of the SC operation. The subsequent READ does not generate
a new network packet, but rather returns the SC success value.

Although the workaround involves apparent multiple memory accesses per
LL/SC instruction, only a single network packet is generated and no addi-
tional delays are introduced.

3.2.2. Memory Units

The SHMAC model of request-response based memory operations defines
any device capable of responding to memory requests as a slave unit. These
units may implement general-purpose memory or different types of memory-
mapped devices.

More details on slave units modelled as part of SHMACsim are given below.

3.2.2.1. Base Slave Unit

The SHMACSlave class provides a foundation for SHMAC slave units, as well
as modelling a general-purpose RAM. This base implementation provides

33

the capability to generate response packets for requests and customizable
getter-setter functions for accessing memory contents. The general-purpose
RAM functionality is modelled as an array being accessed by the getter-setter
functions.

In the SHMAC FPGA prototype, the actual memory accesses are invoked
via a state machine driven by the network interface signals. To reflect this,
SHMACsim uses an approximately timed model where delays are annotated
in appropriate locations while memory requests are being served.

It is also desirable to import or export the contents of storage devices as
files for examination, implemented by the importContents and exportCon-
tents functions. By utilizing the runtime configuration system described in
Section 3.3, the memory array can be loaded with the contents of a binary
file before runtime, thus customizing the program to be run on the local tile.

3.2.2.2. The LL/SC Slave Unit

The Load Linked/Store Conditional instructions utilized for synchronization
in SHMAC require support from hardware. The hardware constitutes the
single point of synchronization by determining the success of SC operations.
This is provided by the special slave unit on the LL/SC Tile in the SHMAC
prototype, and SHMACsim follows suit by modelling the same slave unit in
software. The SHMACLockSlave class extends the functionality of SHMACSlave
with support for LL/SC instructions. This slave unit implements the LL/SC
scheme in the following manner:

1. An entry is kept for each processor core in the system, consisting of
an address entry and a validity bit.

2. Upon receiving a LL request1 for an address, the entry for the processor
which sent the request is updated with this address, and the validity
bit is set.

3. The success of a following SC request1 from a processor is determined
by the validity flag:

• If the flag is not set, no store operation happens and a response
indicating failure is returned to the requester.

1The processor cores are responsible for generating messages with LL/SC requests upon
LL/SC instruction execution. This is described in Section 3.2.1.2.

34

• If the flag is set, the store operation succeeds, and all entries
containing this address are invalidated.

3.2.2.3. Other Slave Units

The jump and clock tiles in the SHMAC provide bootstrapping and tick
counting functionality, which are important for benchmarking purposes.
Although their implementation was not necessary in SHMACsim since the
functionality can be easily implemented in simulation, simplified versions were
implemented in order to evaluate their efficiency and alternative approaches.

The UART slave tile was not implemented since program loading and
examining memory contents can be simply done via functions calls on the
slave units.

3.2.3. Interconnect

The modelling of the SHMAC NoC is central to SHMACsim. As explained
in Section 3.1.2, a cycle-accurate interconnect model is vital due to the
complex interactions of multiple cores and distributed memory. Meanwhile,
it is also desirable to be able to easily replace the current router model
with alternative implementations, thus clear interfaces and abstractions are
important. This section describes the design of SHMACsim’s network-based
memory interface and interconnect model.

3.2.3.1. Network Packets and Memory Interface

Each memory operation in SHMAC is represented as a network packet.
The network packets in SHMACsim are represented as C structures of type
shmacsim::packet and are identical to the packets in the FPGA prototype.
Function and operator implementations that operate on this packet type are
provided for convenience in debugging and packet tracing.

The concept of memory access is represented by the SHMACMemoryInterface
interface class, which defines a single pure virtual method receiveMessage
taking a single shmacsim::packet as an argument. Any class that needs to
handle network traffic (including masters, slaves and routers) must implement
this interface. The interface can be viewed as a TLM unidirectional blocking
interface; the object receiving the message is expected to delay returning from

35

the receiveMessage call until the packet has been processed. The semantics of
“processed” here are intentionally left vague to allow flexible implementations,
for instance buffering locally or simply stalling until the packet reaches its
final destination.

3.2.3.2. Router Interface

The routers form the backbone of the SHMAC NoC. The SHMACRouter class,
intended to serve as a basis for SHMAC router models, contains functions
to achieve functionality common to any router model. These were identified
as the following three points:

• Given another router, establish appropriate neighbour router port
connections.

• Given a SHMAC master or slave unit, establish connections to appro-
priate router ports

• Given a SHMAC network message, route the message to appropriate
destination

Each router model can override these functions to replace them with their
own specific implementations while keeping the same interface to other
components. For instance, for a functional model, the concept of connecting
router ports is simply be binding SystemC ports to an object implementing
SHMACMemoryInterface. The cycle-accurate model port connections, on the
other hand, require connecting three ports (request, data and acknowledge)
with appropriate signal types.

In the base SHMACRouter implementation, a simple message routing scheme
with zero delays/infinite bandwidth is modelled to verify the functional
system model. The message routing here consists of calling the receiveMessage
function on the next router along the message path.

3.2.3.3. Cycle-Accurate Router Implementation

The SHMAC prototype routers are composed of six input and output ports
(four cardinal directions plus two for on-tile master and slave), a round-robin
arbiter per output port, and a crossbar switch. Figure 3.3 illustrates the
interplay between these components during routing. The strict handshakes
between router components and lack of pipelining are notable in this design.

36

- set data
- set IREQ

 - store message internally
 - set RACK
 - compute route
 - set AREQ

- remove IREQ

 - remove RACK

 - remove AREQ
 - input is free

- wait until output free
- arbitrate & let output
 know the winner

 - set crossbar according
 to winner

- connect appropriate input
 and output ports
- data passes from input to
 output - get input data via crossbar

- set OACK to crossbar
- set OREQ

- OACK passes to input

- remove OACK
- remove OREQ
- output is free

- get data
- set RACK

external actor
input port
arbiter
output port
crossbar switch

Figure 3.3.: An overview of the routing process in the cycle-accurate router
model, showing the actions taken by different router components.
Arrows indicate causality, while the colors indicate the actor
executing each action.

Since the cycle-accurate model is a replica of the router model from the
FPGA prototype, the reader is referred to [54] for further design details on
the router.

The approach for creating the cycle-accurate interconnect for SHMACsim was
direct, manual translation of all router components from the original VHDL
descriptions into SystemC. Thanks to the HDL-like language constructs in
SystemC, this process is relatively straightforward and less prone to errors
compared to creating a model from scratch. Each router component (namely
input port, arbiter, output port and crossbar switch) was verified with a
testbench as described in Section 3.5.

37

After the CA model was constructed, adapters were introduced to bridge
the signal-level router interface and the high-level SHMACMemoryInterface
definitions. These adapters do not introduce any delay of their own and thus
do not impact the model accuracy.

3.2.3.4. Network Construction

Each tile is responsible for connecting its master and slave units to the on-
tile router, performed by the constructors in the SHMACTile-derived classes.
Connecting the tiles into a mesh network is performed by the SHMACGrid class,
which calls the router connection methods for neighbouring routers. Since all
actual connections are established by function calls on the router, the nature
of the connections is abstracted away from the upper-level organizational
units such as tile and grid.

3.3. Configuration System

In order to constitute a practical tool for design space exploration, it is neces-
sary to be able to configure SHMACsim with different HMP configurations.
The SHMAC architecture is structured around the idea of forming a grid
from available heterogeneous tiles, and the SHMACsim configuration system
reflects the same paradigm: the types of available tiles are specified, the grid
layout is composed from the available types, and tile-specific configuration is
applied on each tile. To easily create different experiment setups and avoid
re-compilation, the major part of configuration takes place at runtime via
passed command line arguments to the SHMACsim executable.

Figure 3.4 presents a graphical overview of how the configuration system
works, with more details on the aspects of configuration in the following
subsections.

3.3.1. Tile Types

The singleton SHMACLibrary class is responsible for tile type configuration. It
contains set of “recipes” for building each tile type. Each recipe is described as
a callback function and registered with SHMACLibrary, with a single character
identifying this tile type. This recipe describes the creation of appropriate
tile, master and slave subclasses, and can also contain a custom-defined

38

CJ P

RP P

PR R

JCP
PRP
RPR

task 1

task 2

task 3

P = tile with core +
RAM

R = tile with RAM
J = jump tile

SHMACLibrary

configuration system

runtime
configuration file SHMACGrid

hardware
configuration file

Figure 3.4.: A graphical overview of the SHMACsim configuration process.

initialization step which will be executed right before runtime, which allows
the configuration of per-tile runtime behaviour. Tile type configuration is
done in code and recompilation is necessary for new tile types or modifications
to existing ones.

A list of tile types implemented in SHMACsim and the corresponding iden-
tifiers are presented in Table 3.3.

3.3.2. Tile Layout

A hardware configuration file is passed to SHMACsim via the -t command
line option. Formatted as a grid of characters, it describes the desired tile
layout for a simulation instance. Each character in the grid must correspond
to a registered tile type in SHMACLibrary. At startup, SHMACsim parses
this file and uses SHMACLibrary to instantiate each tile, which are contained
in a SHMACGrid. Since the hardware configuration file is a command line
parameter, no recompilation is necessary to change the tile layout.

39

ID Master Unit Slave Unit Description

R none RAM slave (16 MB) general purpose memory
tile

C none clock slave Clock tile for timing
benchmarks

J none jump slave Jump tile for bootstrap-
ping

L none LL/SC slave For multi-core synchro-
nization

P ArchC MIPS core RAM slave (16 MB) ArchC MIPS core and
memory

Table 3.3.: An overview of tile types implemented in SHMACsim. A list of
tile types in the FPGA prototype is provided in Table 2.2 for
comparison.

3.3.3. Runtime Configuration

The runtime configuration file contains zero or more key-value pairs for
each tile coordinate. Each tile instance contains a metadata storage, into
which these key-value pairs are parsed and loaded. The tile recipe can then
make use of the tile instance metadata to configure the tile as desired. The
most obvious use of runtime configuration is the association of executable
files with each tile. Another usage is the adjustment of heap pointers for
the ArchC MIPS cores utilized in SHMACsim. This metadata storage can
be used to implement any scheme that requires per-tile configuration data
before the simulation starts.

3.4. Toolchain and Utilities

SHMACsim is an execution-driven simulator, which takes compiled programs
as input. The ArchC processor cores utilized in the current version support
Executable and Linkable Format (ELF) executables, which can be produced
from C code using the ArchC-provided MIPS toolchain. SHMACsim intro-

40

duces some changes to and some extra utilities on top of this toolchain,
which will be described here.

The ArchC MIPS toolchain is a standard mips-elf-gcc toolchain with a
custom linker script, some assembly code for runtime initialization and a
statically linked library mapping the C runtime functions to ArchC syscalls.
Using this toolchain as a basis, SHMACsim provides its modified toolchain,
utilized by calling the shmacsim-archc-compile shell script. Compilation
via this script is identical to compilation via gcc, except the tile coordinates
for which the program is desired to be compiled must be specified. This is
mostly necessary due to the cache-free nature of the current SHMACsim;
performance is highly sensitive to data location. To maximize performance,
the stack, heap and code sections for each program should be placed in the
local memory of the tile executing that program, which is ensured by the
linker script generated by the shmacsim-archc-compile script. Finally,
the script also calls mips-elf-objcopy to generate raw binary files from the
produced executables, since SHMACsim does not currently support ELF
parsing.

Two more utilities delivered with SHMACsim are worth noting here. The first
one, shmacsim-archc-allcompile, is a simple iterator script which calls
shmacsim-archc-compile with the same gcc arguments for each tile in a
given interval. This is useful to compile the same application for a large mesh.
The other notable script is shmacsim-run-benchmarks, which executes a
given set of SHMACsim benchmark configurations in parallel, allowing higher
simulation performance and faster design space exploration on multi-core
host systems.

Code listings for the utility scripts are provided in Section A.1 in the
Appendices.

3.5. Testing and Verification

As for any complex system, it is necessary to ensure that SHMACsim operates
as desired by employing a number of testing and verification strategies. Due
to time constraints, only the processor cores and the interconnect could be
independently verified; the behaviour of the remaining components is tested
as part of system-wide testing. More details on the tested/verified aspects of
the system are provided below.

41

Processor cores: The utilized ArchC-generated MIPS cores are already
verified using SPEC2000, Mediabench and MiBench [4]. However, since
the cores have been extended with LL/SC instruction implementations,
selected benchmarks from Mediabench were re-run as regression testing.
The LL/SC instruction implementations themselves were tested using the
micro-benchmark in Section 4.6.

Routers and Interconnect: The VHDL to SystemC translation approach
taken for the CA router model should make it correct by construction,
but additional verification was also performed to ensure proper cycle level
behaviour. Towards this, each router component testbench was also translated
from VHDL to SystemC and the behaviour verified by comparing VHDL
and SystemC signal traces. Finally, the assembled router model was tested
with a translated testbench and verified to reflect the routers in the FPGA
prototype with cycle accuracy.

Assembled system: Exhaustively verifying a configurable simulator sys-
tem like SHMACsim is very difficult given the size of the state space, and
quite infeasible within the time-frame of a Master’s Thesis. Therefore, a
pragmatic testing strategy is applied, where correctness is determined by
correct end results from execution. This strategy is applied in the form of
micro-benchmarks and is covered in Chapter 4. The correctness is asserted
by comparison the benchmark results against the expected end results, as
well as by comparing against the micro-benchmark results from the SHMAC
prototype for the micro-benchmarks in Section 4.4.1.

Toolchain: The ArchC-provided MIPS toolchain is based on GNU Com-
piler Collection (GCC) and does not require extra verification. However,
SHMACsim makes modifications to the initialization assembly code and the
linker script to place programs’ heap, stack and code sections on the local
tile memory. To verify that all instruction fetches are read from the local
memory range, assertions have been placed inside the ArchC MIPS cores.
It should be noted that these checks are only to verify the expected linker
script behaviour and cores are able to perform instruction fetches from any
location if desired.

42

4. Evaluating the SHMAC:
Micro-benchmarks

Benchmarking is a powerful tool for evaluating a computer architecture.
Owing to the mature ArchC core model and syscall emulation, SHMACsim
is already able to execute larger benchmark suites and complex programs
[4]. However, given the relatively early stage the SHMAC architecture is in,
micro-benchmarks 1 and detailed analysis of their results can be considered
more helpful for assessment of architectural features and identifying possible
improvements.

In order to carry out an evaluation of the current state of SHMAC architec-
ture and highlight its strengths and weaknesses, a set of micro-benchmarks
were implemented and executed using SHMACsim, and the results were
analyzed. Some of these benchmarks serve the additional purpose of compar-
ing SHMACsim’s accuracy to the prototype, thus validating the simulator
implementation.

Section 4.1 contains a description of the methodology for benchmark im-
plementation and measurements. The rest of the chapter describes each
implemented micro-benchmark, the results obtained from execution, and a
discussion of the results. An overview of implemented benchmarks can be
found in Table 4.1.

4.1. Methodology, Metrics and Notation

The benchmarks described in this chapter consist of one or more tasks
executing on a SHMAC grid, which can consist of different tile types. Each
benchmark was implemented in C, compiled using the utilities described
in Section 3.4, the hardware and runtime parameters configured via the
SHMACsim configuration system described in Section 3.3 and executed.

1A micro-benchmark here is defined as measuring the performance of a very small, specific
piece of code

43

Benchmark Name Section Primary Assessment

Clock Tile Access Time 4.2 Impact of traffic on execu-
tion time measurements

Tile Startup Delays 4.3 Impact on grid size on tile
boot latency

Single Master Memory Access 4.4.1 Performance of local and
neighbour memory accesses
by one master

Multi-master Memory Access 4.4.2 Performance of remote ac-
cesses by multiple masters

Remote Impact on Local Fetch 4.5 Impact of remote accesses on
local instruction fetch perfor-
mance

Lock Acquisition Time 4.6 Performance of LL/SC tile
for synchronization in large
grids

Table 4.1.: An overview of implemented micro-benchmarks

44

101

(0,1)

101

(1,0)

51

(1,1)

101

(1,2)

101

(2,1)

Task 1

Task 2

non-processor tile

J

(0,0)

R

(2,0)

R

(2,2)

R

(0,2)

Figure 4.1.: Benchmark notation

The implementations consist of a common part which performs setup and
reporting functions, and a kernel part which contains the actual code desired
to be benchmarked. The kernels mostly consist of a single repeated MIPS
instruction, with sufficiently high number of repeats to obtain stable results.
Appendix A.2 contains code listings for each benchmark.

The clock counter value (elaborated in Section 4.2) is read right before
and right after the benchmark’s kernel is executed. The number of clock
cycles elapsed (referred further on simply as cycles) and cycles divided per
instruction count (referred to as Cycles Per Instruction (CPI)) are used as
the primary metrics for benchmark results.

In Section 4.4.1, cycle count is used as a basis for accuracy comparison
against the SHMAC FPGA prototype. The metric for accuracy comparison
is the relative error of simulated cycles with respect to FPGA cycles, whose
calculation is shown in Equation 4.1.

∆% = Cyclessim − CyclesFPGA
CyclesFPGA

· 100 (4.1)

The notation used to express the benchmark configurations and results
is as specified in Figure 4.1. All processor tiles are uniform in terms of
hardware and execute a single task indicated by their background colour.
Non-processor tiles have a white background and can contain different slave
units. The performance of each task to be benchmarked is specified on each
tile in terms of CPI.

45

C

(0,1)

P

(1,0)

P

(1,1)

P

(1,2)

P

(9,1)

Local Memory Read

Read from (1,1)

non-processor tile

J

(0,0)

P

(9,0)

P

(9,2)

P

(0,2)

P

(1,9)

P

(0,9)

P

(9,9)

....

....

....

........

....

....

....

Figure 4.2.: Configuration for the clock tile access time benchmark. CPI
values are omitted, see text and Figure 4.3 for results.

4.2. Clock Tile Access Time

A reliable measurement methodology is vital to the process of benchmarking.
Ideally, the observed benchmark should not alter the correctness of the
measurement, and neither should the measurement process alter the results.
This micro-benchmark intends to test the clock tile-based measurement
approach in this context, where the clock tile is read before and after a
micro-benchmark kernel and subtracted to get the cycle count.

Like all tiles, the clock tile is subject the Non-Uniform Memory Access
(NUMA). Reading its clock counters takes a varying amount of time propor-
tional to reader-clock distance, and the traffic along the path. Delay due to
distance is constant, and does not influence start-to-end cycle count mea-
surements. However, traffic delay is a dynamic parameter with a potentially
different impact on the start and end readings, which this benchmark aims
to model.

Figure 4.2 illustrates the benchmark setup. In the 10×10 grid, the clock tile
is located at (0,1) and all tiles located “right below” (j = 1) execute the
Local Memory Read kernel. All other tiles are processor tiles and read from
the memory of the tile at (1,1). This creates a dense traffic throughout the
mesh. Finally, a clock counting system register is built into each processor,
as described in Section 5.2. The tiles performing Local Memory Read use
two different methods to get clock count values: reading from the clock tile
at (0,1) and reading from the system register.

46

2 4 6 8
20

40

60

80

100

120

140

Distance to clock tile

R
ep

or
te

d
C

PI

measured by system reg
measured by clock tile

Figure 4.3.: Plot of CPI measurement skew versus distance to clock tile,
under heavy traffic.

Figure 4.3 presents a comparison of CPI measurements from the clock
tile versus those from the internal clock count register. The register-based
measurements remain constant at 28 CPI, consistent with the findings in
Section 4.3. As the distance to the clock tile increases, the measurements
from the clock tile are skewed dramatically. This is due to the heavy traffic
on and around the (1,1) tile, which the clock tile read requests have to pass
through.

Although the situation created here is extreme and rather unlikely to happen
in real life-scenarios, skewed cycle measurements under traffic in a large mesh
remains a possibility. This does not constitute a problem in simulation where
cycle counts from the simulation kernel are readily available, but hardware
implementations using the clock tile do not have this advantage. To avoid
false time measurements in hardware, the system register file-based clock
counter implementation described in Section 5.2 is proposed.

The benchmarks in this chapter are timed using the system register method.
Section 4.4.1 is an exception and uses a clock tile, since it is desirable to
have a thorough comparison with the SHMAC FPGA prototype and since
this benchmark does not have dynamic traffic.

47

 0

 1

 2

 3

 4

 0 1 2 3 4
 0

 200

 400

 600

 800

 1000

 1200

St
ar

tu
p

D
el

ay
 (

cy
cl

es
) 0

 2

 4

 6

 8

 0 2 4 6 8
 0

 1000

 2000

 3000

 4000

 5000

St
ar

tu
p

D
el

ay
 (

cy
cl

es
)

Figure 4.4.: Startup delays due to jump tile at (0,0) in 5×5 and 10×10 grids.
Cycles given relative to earliest starting processor.

4.3. Tile Start-Up Delays

The current bootstrapping method in SHMAC is the so-called jump tile
approach. The jump tile is placed at (0,0) corresponding to global memory
address 0, where all cores start loading instructions from. The jump tile
generates a series of MIPS instructions which causes a core to start reading
from the beginning of its own local memory. While this method enables
booting multiple cores without any changes to the cores themselves, it can
generate a lot of memory accesses targeting a single address at boot. This
benchmark aims to measure the behaviour of large SHMAC grids booting
in this manner.

The benchmark configuration is very simple. It includes a single jump tile at
(0,0) and processor tiles everywhere else in the grid. The processors run a
kernel which simply reports the cycle count at which it starts running and
exits.

Figure 4.4 contains heat-map representations of the results from 5×5 and
10×10 grids. A general trend can be observed where processors located
further away from the jump tile take longer time to boot, up to 5780 cycles
for (9,9) compared to the earliest booting processor at (0,1). The delay
pattern, however, is not completely dependent on Manhattan distance of
the processor tiles – for instance, the processors under the diagonal have
lower boot times. This is likely due to an interaction of the timing of serving
memory requests and dimension order routing. It should be kept in mind
that this pattern is not specific to the jump tile, but applies to all cases
where multiple cores do simultaneous memory access on a single tile.

48

To conclude, the complications are manageable in terms of boot delay. Some
start-up delay is always expected in large systems, and processors can be
made to wait until the whole system is up and running. Placing the jump
tile in the middle of the grid can give better load balancing and results.
Alternatively, the per-tile system register approach described in Section 5.2
can provide integrated, constant-time bootstrapping.

The benchmarks in this chapter use the integrated bootstrapping method.
Section 4.4.1 is an exception and uses a clock tile, since it is desirable to
have a thorough comparison with the SHMAC FPGA prototype.

4.4. Pure Memory Access Performance

Multi-core processors are often limited by the memory bandwidth visible
to the cores, which was discussed in Section 2.2.3. An evaluation of basic
memory read-write performance can thus yield useful insights into a multi-
core architecture. The following subsections will cover the evaluation of
memory access performance first for a single master, and then for multiple
masters sharing a memory unit.

4.4.1. Single Master

In the SHMAC prototype report, three micro-benchmarks, namely Local
Memory Read, Neigbouring Tile Read and Neighbouring Tile Write, were
introduced [54]. They measure the performance of a single master performing
memory operations on local and neighbour memory units. The extracted
benchmark kernels have been executed on SHMACsim, both as a basis for
comparison in terms of accurately reflecting the prototype’s performance,
and for performing a more in-depth analysis of the results.

The types of kernels used are also used as building blocks for other bench-
marks. The descriptions of these kernels and the corresponding MIPS assem-
bly code can be found in Table 4.2.

The benchmark configuration is as depicted in Figure 4.5. The three micro-
benchmarks have no interaction with each other, and are executed on the
same grid only for convenience. Each kernel is run two thousand iterations
to be consistent with the methodology in the FPGA prototype’s evaluation
[54].

49

Kernel Name MIPS Assembly Description

Local Memory Read addiu $4, $4,1 A register-to-register
instruction, essentially
measuring local instruc-
tion fetch performance

Neighbour Read lw $5,neighbour addr Reads a word from
a neighbouring tile’s
memory

Neighbour Write sw $5,neighbour addr Writes a word to a
neighbouring tile’s
memory

Table 4.2.: Descriptions and the repeated MIPS assembly instruction for the
micro-benchmark kernels utilized in this chapter

C

(0,1)

75

(1,0)

R

(1,1)

R

(1,2)

37

(2,1)

Local Memory Read

Neighbour Read from (1,1)

Neighbour Write to (2,0)

J

(0,0)

R

(2,0)

R

(2,2)

28

(0,2)

non-processor tile

Figure 4.5.: The Pure Memory Read-Write Performance benchmark

50

Benchmark
Cycles CPI

SHMAC SHMACsim ∆% SHMAC SHMACsim

Local Mem Read 58038 56270 -3.0 29 28

Neighbour Read 156038 150270 -3.7 78 75

Neighbour Write 80038 76270 -4.7 40 38

Table 4.3.: Comparison of pure memory read-write benchmarks between
SHMACsim and the SHMAC FPGA prototype.

Benchmark
CPI

Instruction Fetch Neighbour Operation

Local Memory Read 27 0

Neighbour Read 27 47

Neighbour Write 31 22

Table 4.4.: Breakdown of memory packet lifetime for pure memory read-write
micro-benchmarks. Time spent inside the processor core itself (1
cycle) is not included.

The results can be found in Table 4.3. Presented alongside are the reported
results from the FPGA prototype. It can be observed that the simulation
results are within 5 % of the prototype.

As can be expected, both neighbour read and neighbour write operations
take significantly longer than local memory reads. This is due to the packets
in neighbour read/write operations travelling a longer distance (in terms of
router hops) compared to the local memory. The neighbour write operation
is much faster than the neighbour read, since the write operations do not
cause the processor core to be stalled.

It is also interesting to see a breakdown of the overall CPI for these bench-
marks. Using the packet tracking capabilities introduced in Section 5.3,
memory packets corresponding to instruction fetches (both requests and
responses) and neighbouring tile memory operations in the micro-benchmark
were tracked. The results are presented in Table 4.4.

The neighbour operation for writing takes approximately half as long as
reading, since write requests continue without waiting for a reply packet.

51

3
3

21
3

3

21
3

5

21

memory
core wrapper
routers

Local Read Neighbour Read Neighbour
Write

Figure 4.6.: Breakdown of instruction fetch time for single-master memory
performance

One might expect that the instruction fetches always take the same amount
of cycles in Local Memory Read, but this is not the case. While equal for
Local Memory Read and Neighbour Read, instruction fetches for Neighbour
Write are actually slower.

A deeper breakdown of instruction fetch packet lifetime, presented in Figure
4.6, reveals a longer stalling time in the processor-network interface. This can
be explained by the non-stalling nature of the write operations. The processor
immediately issues another instruction fetch after the write operation, but
the router input port is not yet ready for receiving a new message due to
the lengthy handshakes in the router.

The results from this benchmark are in line with those from Rusten and
Sortland [54], and the breakdown of packet lifetime clearly reveals the router
as the single greatest bottleneck. For the simple memory access operations
tested here, up to 75 % of the time is spent in the router, which marks the
router an obvious candidate for further optimization. The introduction of a
faster, pipelined router is very likely have a great impact on performance.

Another conclusion that can be drawn here is that the memory bandwidth
usable by a single master is much lower than the memory’s own saturation
bandwidth. The 3-4 cycle delay per memory operation is far exceeded by
the 20+ cycle router delays. Adding several masters using the same memory
could improve resource utilization for the slave units. The dual-port slave
and router bypass improvement proposed in Section 5.1 aims to solve this
problem by introducing low-latency local memory access.

52

R

(0,2)

75

(1,0)

R

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

Read from (1,1) non-processor tile

R

(2,1)

75

(1,2)

75

(0,1)

139

(0,2)

102

(1,0)

R

(1,1)

139

(0,0)

139

(2,0)

139

(2,2)

102

(1,2)

131

(2,1)

131

(0,1)

R

(0,2)

76

(1,0)

R

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

76

(2,1)

76

(1,2)

76

(0,1)

Figure 4.7.: Configurations and results for three, four and eight masters
reading from the central RAM tile.

R

(0,2)

38

(1,0)

R

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

Write to (1,1) non-processor tile

R

(2,1)

38

(1,2)

38

(0,1)

95

(0,2)

48

(1,0)

R

(1,1)

95

(0,0)

95

(2,0)

95

(2,2)

48

(1,2)

95

(2,1)

95

(0,1)

R

(0,2)

47

(1,0)

R

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

47

(2,1)

47

(1,2)

47

(0,1)

Figure 4.8.: Configurations and results for three, four and eight masters
writing to the central RAM tile.

4.4.2. Multiple Masters

Following the conclusion in Section 4.4.1 that a single master cannot utilize
the full bandwidth available from a memory unit, it is desirable how sharing
by multiple masters affects memory performance under the current conditions.
In order to observe this, configurations where multiple masters are reading
or writing to the same tile were created. The kernels used are identical to
Neighbour Read and Neighbour Write from Section 4.4.1. The configurations
and results for three, four and eight masters are shown in Figure 4.7 for
reads and Figure 4.8 for writes.

Figure 4.9 presents a plot of average read and write CPI performance for an
increasing number of masters. It can be observed that the performance for
both reading and writing remains constant, for up to and including three

53

2 4 6 8

40

60

80

100

120

Number of masters

Av
er

ag
e

C
PI

read
write

Figure 4.9.: Plot of average read and write CPI with an increasing number
of masters accessing the same RAM tile.

masters. Significant deterioration in performance is apparent for four masters
and more, which may be an indication of resource contention on the memory
unit.

The results indicate that a memory tile can be shared by at most three
masters under sustained load, without any performance penalties. Lower
load and different timing characteristics for the memory requests are likely
to allow even more masters. However, care must be taken not to assign too
many masters to operate on a single RAM tile, since significant slowdowns
will occur when the memory unit is saturated.

4.5. Remote Impact on Local Fetch

The current SHMAC architecture has a memory system where all tiles
are able to directly access memory units from all other tiles, without any
restrictions or memory protection. This can be convenient for accessing and
sharing data, and the results from Section 4.4.2 encourage sharing a memory
unit between multiple masters. However, sharing the on-tile scratchpad RAM
for a processor tile may have additional consequences on the performance of
the local core, which the Remote Impact on Local Fetch (RILF) benchmark
attempts to measure.

54

R

(0,2)

78

(1,0)

37

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

Local Memory Read Read from (1,1) non-processor tile

R

(2,1)

R

(1,2)

R

(0,1)

R

(0,2)

101

(1,0)

51

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

101

(1,2)

101

(2,1)

101

(0,1)

R

(0,2)

81

(1,0)

42

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

R

(2,1)

81

(1,2)

R

(0,1)

Figure 4.10.: Remote Impact on Local Fetch with one, two and four remote
reading tiles

R

(0,2)

38

(1,0)

37

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

Local Memory Read Write to (1,1) non-processor tile

R

(2,1)

R

(1,2)

R

(0,1)

R

(0,2)

64

(1,0)

63

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

64

(1,2)

64

(2,1)

64

(0,1)

R

(0,2)

41

(1,0)

40

(1,1)

R

(0,0)

R

(2,0)

R

(2,2)

R

(2,1)

41

(1,2)

R

(0,1)

Figure 4.11.: Remote Impact on Local Fetch with one, two and four remote
writing tiles

This benchmark combines the Local Memory Read and Neighbour Read-
/Write kernels from Section 4.4.1. While the center tile is running the Local
Memory Read kernel, one or more neighbouring tiles simultaneously read
from or write to the central tile’s memory. It is thus possible to observe the
impact of remote processor accesses on local instruction fetch performance.

Figures 4.10 and 4.11 depict three RILF configurations with an increasing
number of neighbours accessing the central tile. The negative impact of
remote memory accesses on local instruction fetch performance is evident.
The performance of remote accesses also suffers, though to a lesser degree
and in a similar pattern to findings in Section 4.4.2.

Figure 4.12 contains a plot comparing the base instruction fetch performance
of 28 CPI (from Section 4.4.1) with the instruction fetch performance of tile

55

0 2 4 6 8

1

1.5

2

2.5

Number of Remote Accessors

In
st

ru
ct

io
n

Fe
tc

h
Sl

ow
do

w
n

remote read
remote write

Figure 4.12.: Plot of instruction fetch slowdown in central core with an
increasing number of masters accessing its on-tile memory.
Baseline instruction fetch performance taken as 28 CPI, from
the results in Section 4.4.1.

(1,1) in different RILF scenarios. The slowdown is almost linearly related to
the number of remote accessors for up to 4 writers or 6 readers, after which
it reaches a plateau. Also notable is the sharp spike with three remote read
accessors, causing a dramatic drop in instruction fetch performance. This is
assumed to be due to a combination of arbitration and ordering of requests
resulting in the instruction fetches always being served last, though deeper
analysis was not possible due to time constraints.

To conclude, sustained data reads or writes to on-tile memory have a sig-
nificant effect on the local instruction fetch performance and should be
avoided for tiles running performance-sensitive applications. The impact
should be remediable by giving higher priority to on-tile master requests
during arbitration, or by introducing instruction caches.

4.6. Lock Acquisition Time

The LL/SC tile provides multi-core synchronization for SHMAC systems as
described in Section 3.2.2.2. The current hardware implementation uses a
single LL/SC tile as the point of synchronization. On the software side, the
SHMAC utilizes a locking function whose behaviour is illustrated in Figure

56

LL returned zero?

Load Linked on lock address

Store Conditional on
lock address

no
(lock held by other)

yes
(lock free)

SC successful?

lock acquired

yes
(no other SC after

successful LL)

no
(lock acquired by another)

Figure 4.13.: Flowchart illustrating the current SHMAC lock acquisition
routine in software

4.13. While the current approach has been verified to provide the desired
synchronization capabilities both by Rusten and Sortland in [54] and in this
work, it is interesting to see how this approach scales for larger grids. This
benchmark aims to observe how long it takes for processor tiles to acquire
an LL/SC-based lock while the rest of the grid is also doing the same.

The benchmark configuration is described on a 3×3 grid 2 in Figure 4.14.
An LL/SC tile is located in the center of the grid, all other tiles execute a
kernel which attempts to lock a memory location on the LL/SC tile using
the scheme in Figure 4.13. The lock is released once successfully acquired,
and the benchmark kernel terminates.

2The scenario is also applicable to larger grids where the entire grid is attempting to lock
a central LL/SC tile

57

P

(0,1)

P

(1,0)

L

(1,1)

P

(1,2)

P

(2,1)

Acquire lock on central L tile

non-processor tile

P

(0,0)

P

(2,0)

P

(2,2)

P

(0,2)

Figure 4.14.: Configuration for a 3×3 grid evaluating the lock acquisition
time. CPI values are omitted since another metric is utilized.

The CPI values are not utilized in this benchmark; instead, the number of
total LL operations plus the number of failed SC operations from each tile
is used as a metric. This allows comparison of lock acquisition times in a
more coordinate-independent way, since memory access delays themselves
are not included. The looping nature of the lock acquisition scheme should
be kept in mind here; a tile does not stop trying to acquire the lock after a
number of retries. Instead, it restarts the lock acquisition operations, and
thus keeps generating memory traffic.

Figure 4.15 illustrates the distribution of lock acquisition failures for relatively
large SHMAC grids. The lock acquisition times observed are not proportional
to the tile distance to the center, but instead seem somewhat random. This
suggests that the lock acquisition times are dependent on the dynamic traffic
generated in the process. It is also visible that increasing the grid size by
a factor of 81/49 ≈ 1.6 increases the worst-case lock acquisition delay by
122/82 ≈ 1.5 for these two cases. The total time for all processors to have
acquired the lock once, in turn, goes up by 5068/1798 ≈ 2.8.

The primary conclusion from the micro-benchmark results is that the cur-
rent approach is not very suitable for barrier-style synchronization of large
SHMAC grids. While the current results are likely to improve with a better
router model, the LL/SC tile will still be the single point of synchronization,
which will limit the scalability. One solution to this would be utilizing multi-
ple, distributed LL/SC tiles and implementing a nested scheme for barrier
synchronization.

58

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120
LL

 +
 fa

ile
d

SC

0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Figure 4.15.: Heat map plot showing total number of failures in acquiring
an LL/SC lock relative to coordinate in 9×9 and 7×7 grids.

59

5. Improving the SHMAC

From the micro-benchmark results in Chapter 4, some conclusions regarding
the current state of the SHMAC architecture have been drawn. In light of
these results and their analysis, three proposals will be made in this chapter,
and their impact measured by the same benchmarks where possible.

The first two of these proposals cover improvements to the SHMAC archi-
tecture. The dual-port RAM and router bypass implementation aims to
provide lower latency access to on-tile memories, which increases instruction
fetch performance. The system register file proposes integrating per-tile clock
counting and bootstrapping capabilities to make these features independent
of grid traffic. The final proposal, packet tracking, is not an architectural
improvement but rather a new feature to give better instrumentation capa-
bilities to the SHMAC.

5.1. Dual-Port RAM and Router Bypass

A common result from almost all the micro-benchmarks described in Chapter
4 is that the current model constitutes a large bottleneck for SHMAC’s
performance. This is perhaps most visible for the 28 CPI base instruction
fetch performance observed in Section 4.4.1. Even though the current core
model has single-cycle instruction execution and the memory takes around
three cycles to respond to the request, the round-trip through the router
introduces a 20+ cycle delay. This results in unacceptable performance
levels for the entire system, since instruction fetches contribute significant
delay to each operation. While a fast router model would be the most
obvious improvement, this was unfortunately not possible in the assignment
timeframe. Instead, a simpler solution that was also suggested by Rusten
and Sortland [54] was implemented and evaluated: the dual-port RAM with
router bypass.

60

master

router

dual-port
memory

router bypass

on-tile traffic
(instruction fetches,

local program execution)

off-tile traffic
(reads/writes on remote memory,
synchronization)

mixed traffic

off-tile traffic
(reads/writes from

remote masters)

Figure 5.1.: Overview of on-tile memory system with dual-port RAM and
router bypass unit integrated

5.1.1. Description

A dual-port RAM unit exposes two memory access ports, each capable of
executing read or write operations independent of the other. The second
memory port can be exploited to achieve higher on-tile memory access
bandwidth for SHMAC’s case. In the current implementation, this is done
by introducing a router bypass unit between the master unit and the router,
as illustrated in Figure 5.1.

The router bypass unit redirects the memory requests corresponding to
on-tile addresses directly to one of the memory ports on the dual-port slave
units. All other traffic passes through unmodified to the router, and the other
memory port is connected to the router as usual. Assuming a low-latency
router bypass unit, this allows a much shorter path between the on-tile slave
and master units.

Two SHMACMemoryInterface ports on the dual-port slave and a zero-delay
router bypass are utilized in the current implementation. While the zero-delay
is unrealistic for hardware, a minimal implementation need only introduce a
minimal delay on the critical path. Additionally, local memory accesses are
still subject to network adapter delays in the current implementation. These
delays can be removed by making a direct memory interface connection.
Figure 5.2 exemplifies such a hardware implementation scenario with a direct
interface between the master and the slave unit.

61

Address

Master
(packet + direct interface)

Data

Router
(packet interface)

Slave
(packet + direct interface)

Figure 5.2.: A sample implementation for the router bypass unit using a
direct memory interface and a multiplexer in conjunction with
a dual-port slave tile. Reproduced from [54].

5.1.2. Evaluation and Results

As can be expected, the most evident effect of introducing dual-port slaves
with router bypasses is on instruction fetch performance. Figure 5.3 shows
the results from the Single Master Memory Access benchmark with the dual-
port RAM and router bypass enhancements. Comparing with the results
from Section 4.4.1, the instruction fetch performance has a significant 3.5×
speedup, taking 8 CPI instead of 28. The Neighbour Read and Neighbour
Write performance also increases to a lesser degree, with respective speedups
of 1.36× and 2.71×.

The Multi-master Memory Access benchmark was also tested to measure
the impact of improved instruction fetch latency. Although the latency to
access the remote tile remains the same, each master is now able to send
out requests faster. The results plotted in Figure 5.4 reveal some interesting
changes compared to those in Section 4.4.2. The write performance goes
down almost linearly with an increasing number of masters, although there
is still a general improvement for four masters or less. The read performance
is also improved but exhibits a similar behaviour to the single port slave
case; up to three masters can read from the same tile without impacting each
other’s read performance. This suggests that reducing the instruction fetch
latency allows a single master to saturate a memory unit’s bandwidth with
write operations, while multi-master read operations are still router-bound.

62

C

(0,1)

55

(1,0)

R

(1,1)

R

(1,2)

14

(2,1)

Local Memory Read

Neighbour Read from (1,1)

Neighbour Write to (2,0)

J

(0,0)

R

(2,0)

R

(2,2)

8

(0,2)

non-processor tile

Figure 5.3.: The single master Pure Memory Read-Write benchmark, with
all processor tiles utilizing dual-port slaves.

2 4 6 8

20

40

60

80

100

120

Number of masters

Av
er

ag
e

C
PI

read
write

dual-port read
dual-port write

Figure 5.4.: Comparison of an increasing number of processors with single
and dual-port slaves accessing the same RAM tile.

63

Separating the on-tile memory accesses from the remote requests also has
important consequences for the RILF benchmark. Re-running the tests
described in Section 4.5 after replacing all standard processor tiles dual-port
slave versions, it was observed that remote accesses no longer hamper local
instruction fetch performance.

To conclude, introducing a dual-port RAM slave unit with a router bypass
primarily results in large instruction fetch performance improvements. This
has the indirect consequence of greater bandwidth demand since each core
can now quickly execute instructions and generate more memory requests
per unit time. As memory unit bandwidth was found to be under-utilized
in Section 4.4.1, the expected result is improved performance for the entire
system, which is verified by the results here.

5.2. System Register File

In sections 4.2 and 4.3, the downsides of using the clock and jump tiles
were discussed. To remedy the deterioration in timing measurements and
start-up time, as well as to introduce useful new features, a system register
file addition is proposed. This register file will provide on-tile bootstrapping
and clock counting functionality, and can be enhanced with other per-tile
information.

5.2.1. Description

The system register file is intended to be tightly coupled to the core, but in
order to remain portable with future core models it was modelled separately
and composed as part of the master unit. Figure 5.5 illustrates how an ArchC
MIPS core, the TLM adapter and the system register file are combined into
a master unit.

In this implementation, the system register file unit implements the standard
SHMAC memory interface, and sits between the master unit (i.e. processor
core) and the router. One or more regions of the global address space are
reserved for the system registers. Any memory requests corresponding to
addresses in the reserved regions are trapped by the system register file unit
and responded to directly. All other traffic passes through untouched.

Table 5.1 describes a list of the registers implemented inside the current
system register file implementation. This is only a small subset of possible

64

ArchC MIPS
core

TLM
Adapter

system
register file

to
router

from
router

SHMACMaster

Figure 5.5.: The system register file shown in a SHMACMaster context.

Register Address Description

Bootstrap
0x00000000 to Core-specific instructions to jump to

beginning of local tile memory0x0000000C

Clock counter 0xFFFFFDFF Elapsed clock count since system start

Tile identifier 0xFFFFFE03 The local tile coordinate

Table 5.1.: A list of registers in the current system register file implementa-
tion.

65

system registers; any type of per-tile data, metadata or configuration could
be stored here. For instance, configuration for a hardware packet tracking
implementation could be placed in its own system register.

5.2.2. Evaluation and Results

The system register file was developed and evaluated in response to the
jump tile delay and clock skew problems, and the Clock Tile Access Time
benchmark (Section 4.2) already uses it to provide the baseline local in-
struction fetch values and demonstrate the skewing in clock tile readings.
Coordinate-independent boot delay has been verified by re-running the Tile
Startup Delays (Section 4.3) benchmark, and the processor ID register has
been used across all benchmarks to customize program flow.

A summary of benefits from the system register file approach are listed
below.

• The part of the memory map used by jump and clock tiles are freed

• Hardware resources used for the jump and clock tiles (e.g routers) are
freed

• Time measurement skews described in 4.2 are no longer an issue

• Tiles boot-up in constant time, independent of grid coordinates and
traffic

• The local tile coordinate can be exposed to the processor at runtime
to customize program behaviour

As a downside, extra hardware resources will be required per processor tile;
but taking the results and the big picture into account, it is the author’s
belief that a system register file implementation would be of significant
benefit to the SHMAC.

It is worthy to note here that the current implementation is not a realistic
one for hardware. There are no delays introduced by the system register file
itself, neither for register accesses nor for messages passing through to the
router and back to the core. A realistic implementation of the current scheme
would introduce additional delays on the core-to-memory path for every
memory access. This could be remedied by removing the system register
from the critical path and accessing it in a different manner. Accessing both
the router and the register file in parallel, connecting it to a dedicated router

66

TLM adapter router 1 router 2 memory

registerLocation:
TLMAdapter

@5 ns

registerLocation:
router 1
@13 ns

registerLocation:
router 2
@29 ns

registerLocation:
memory
@35 ns

SHMAC packet
packet tracker

registerLocation:
TLMAdapter

@71 ns

registerLocation:
router 1
@59 ns

registerLocation:
router 2
@45 ns

registerLocation:
memory
@38 ns

SHMAC packet
packet tracker

Figure 5.6.: Illustration of tracking a request packet and its reply across
network hops.

port or integrating it into the processor core’s register file are three of the
possible options for better performance, though further evaluation was not
possible due to time constraints.

5.3. Packet Tracking

5.3.1. Description

While analysing benchmark results on an architecture, it is useful to know
the sources and lengths of delays that influence performance. Due to its
packet and NoC-based memory system, packets are a good candidate for
instrumentation in SHMAC, and a packet tracking system is proposed for the
SHMAC. Inspired by the traceroute command used for Internet Protocol
(IP) diagnostics, this system allows tracking the path of SHMAC network
packets with timestamps.

Figure 5.6 illustrates how a packet could be tracked across hops in the
SHMAC network. This system has been implemented with the following
workflow in SHMACsim:

67

1. The characteristics 1 of packets desired to be tracked is configured.

2. A SHMACPacketTracker is attached to the packets matching the con-
figured characteristics just before entering the network

3. If a packet has an attached tracker, each hop on the network annotates
its name and the current simulation time by calling the registerLoca-
tion function on the tracker

4. The annotated hop names and simulation times are printed when the
packet reaches its terminus and the SHMACPacketTracker object is
destroyed

5.3.2. Results

While not an architectural improvement on its own, the packet tracking
system can be a useful tool for debugging and instrumentation by identifying
how much time the packets spend in different parts of the memory system. For
instance, the analysis of packet tracking data in Section 4.4.1 helps identify
the reason behind the lower instruction fetch performance in the Neighbour
Write micro-benchmark. An example packet trace showing the lifetime of a
local instruction fetch request and response is shown in Figure 5.7.

The current implementation was made on a rather high abstraction level
due to time constraints, though it should be possible to implement such a
structure in hardware. A brief literature search on the subject yielded no
previous implementations, although Quality of Service capabilities for NoCs
may be of some relevance in terms of a packet tracking implementation.

1The current way of selecting packets to be tracked is done directly inside SHMACsim
source code. While this approach is not practical, it is very flexible since C++ code
can be used to specify the packet characteristics.

68

Tracking entries for SHMAC packet:
 req = 1 addr = 11000000, data = 0,
 r/w = 0, flags = 0, sender = (1, 1)

**
@TLMAdapter 1 ns(20901 ns...20902 ns)
@MemToRTL (at 20902 ns)
@routerIn 5 ns(20902 ns...20907 ns)
@routerOut 5 ns(20907 ns...20912 ns)
@RTLToMem 1 ns(20912 ns...20913 ns)
@memory 3 ns(20913 ns...20916 ns)
@MemToRTL (at 20916 ns)
@routerIn 5 ns(20916 ns...20921 ns)
@routerOut 5 ns(20921 ns...20926 ns)
@RTLToMem (at 20926 ns)
@TLMAdapter 2 ns(20926 ns...20928 ns)
**

End-to-end: 27 ns (20901 ns...20928 ns)

Figure 5.7.: A packet trace obtained from tracking a local instruction fetch
request and response on tile (1,1).

69

6. Conclusion and Future Work

In this thesis, the topics of the construction of a cycle-accurate simulation
framework for the SHMAC prototype, how it was used to evaluate the
current state of the architecture via micro-benchmarks, and how the SHMAC
can be improved have been covered. The following sections will relate the
obtained results to the initial goals for the assignment, and provide a list of
further improvements on both the simulation infrastructure and the SHMAC
architecture via future work.

6.1. Conclusion

Three research questions were presented in Section 1.4 which this assignment
aims to answer. The results from the report are related to each research
question as presented below:

RQ1. How should the SHMAC architecture be modelled in a soft-
ware simulator?

A mixed-level modelling approach using SystemC was deemed appropriate
in SHMACsim, as explained in Section 3.1.2. The simulation infrastructure
uses the object-oriented paradigm to provide a modular, extensible structure
with clean interfaces and includes a configuration system to instantiate and
configure desired heterogeneous tile grids. Most of the tiles provided in
the SHMAC prototype have been implemented using this infrastructure, as
indicated by a comparison of Tables 2.2 and 3.3. The simulator-constructed
SHMAC grids have been verified to reflect the performance of the prototype
with less than 5 % relative error.

RQ2. What sort of benchmark programs can be utilized to identify
major bottlenecks in the SHMAC architecture?

As the SHMAC is at a relatively early architectural stage, micro-benchmarks
instead of large benchmark suites were applied to evaluate the current state.

70

These micro-benchmarks mostly target the memory system, a vital com-
ponent for high performance. The results obtained suggest that the NoC
routers, which are depended on for every single memory access, cause the
single largest performance hit in the system. It was demonstrated that the
router latencies cause an under-utilization of bandwidth from memory units,
which can be remedied by sharing a memory tile between several masters,
though sustained access to on-tile scratchpad memories of other masters was
shown to cause deteriorated performance. Additionally, the traffic-dependent
behaviour of the clock tiles and its potential impact on benchmark mea-
surements were demonstrated. Finally, system-wide synchronization of large
SHMAC grids using a single LL/SC tile was shown to exhibit low scalability.

RQ3. How can the shortcomings of the SHMAC architecture and
the current implementation be remedied?

In the light of the micro-benchmark results and analysis, the greatest short-
coming of the current SHMAC was identified as the slow router, which in
turn causes low memory access performance. To improve on-tile memory
access latency for processor tiles, a dual-port RAM slave connected to the
processor core via a router bypass unit was proposed and implemented. The
resulting 3.5x speedup in instruction fetch performance has positive effects
for all types of workloads. Another proposed enhancement is upgrading pro-
cessor tiles with a system register file. This provides integrated clock counting
and bootstrapping functionality, independent of the mesh traffic. Finally, a
packet tracking system for instrumentation of network packet lifetime was
also proposed, allowing easier analysis of architectural bottlenecks.

6.2. Future Work

While the work on done in this assignment provides the foundations of a
software-based evaluation tool for the SHMAC architecture, there is room
for many improvements and useful new features. These are described in the
following sections.

6.2.1. Power Modelling

SHMACsim currently does not provide any information on power consump-
tion of the simulated models. Since power consumption and efficiency is the

71

Figure 6.1.: Power modelling overview in TileWattch. Reproduced from [33].

primary reason for the shift to HMP systems, these can be greatly useful
metrics for an HMP simulation infrastructure to provide.

The power model is usually provided by a framework, which maps fine-
or coarse-grained operations to their respective power costs depending on
technology parameters. Frameworks Wattch [14] and Cacti [51] are two such
examples, and Konstantakopoulos et al. [33] mention a Wattch-based model
for tiled processors called TileWattch. While it is possible to add a power
model manually to relevant subsystems in SHMACsim, another approach
that is potentially easier is to use a solution that integrates with SystemC. A
body of existing work [12, 21, 31] covers the construction of SystemC-based
power estimation frameworks.

Once such a framework has been constructed, additional schemes such
as power and clock gating are relatively easy to implement in SystemC.
Especially power gating is expected to be particularly useful to create a
realistic “heterogeneous dark silicon” environment.

6.2.2. ELF Parsing

The slave units in SHMACsim only accept raw binary executable code as
input in the current version, and the shmacsim-archc-compile script has
the responsibility to convert from the ELF-executables generated by the
toolchain into raw binaries as described in Section 3.4. However, the objcopy
command called by the script only copies the code and data segments of the
executable, which results in the stripping of all other segments, including
debug information. ELF parsing can also be implemented as part of an

72

operating system running on the SHMAC, though this requires significant
development effort.

Implementing a simulation infrastructure-level ELF parser, for instance with
the help of libelf [53], would allow a more flexible approach without the
extra objcopy step or segment stripping. This would enable debugging and
the usage of dynamic libraries. Additionally, the flexible structure of the
ELF format could be then utilized to add SHMAC-specific features such as
per-tile segment relocation specifications or code segment characteristics for
deciding on which tile is best suited to execute that segment of code.

6.2.3. GDB Support

Even with verified processor core models, software debugging remains a
powerful tool to make deeper observations into a program’s behaviour. While
ArchC itself supports the popular GNU Debugger (GDB), the processor cores
shipped with the current SHMACsim lack the necessary protocol wrapper
that allows GDB to connect to the program running on the core.

The initial problem with enabling the protocol wrappers is assigning them
to different TCP ports to allow individual GDB connections to the cores,
which is not particularly difficult. In order for GDB to be able to access
memory contents, a wrapper for the SHMAC memory system will also have
to be added.

Finally, the debug segments are currently stripped from executables before
loading them on the cores. To enable source code line matching, ELF parsing
will have to be implemented, as discussed in Section 6.2.2.

6.2.4. Dynamic Model Switching

The initialization phase for the micro-benchmarks tested within the scope
of this work is very small. Combined with the small micro-benchmark
kernels, running to completion takes a reasonably short time, typically
ending within minutes. However, if SHMACsim is to be used for evaluating
larger applications with heavy initialization procedures or running on top of
an operating system, the current simulation performance will be prohibitively
low.

The current simulation performance is low due to the cycle-accurate inter-
connect model. While optimization can increase performance to some degree,

73

cycle-accurate models in software will always suffer from low performance
due to cycle-by-cycle synchronization. A way to get around the performance
problem for booting operating systems or performing heavy initialization is
dynamic model switching. In this scheme, a fast non-CA model is utilized
to quickly boot the operating system or perform the initialization phase.
Afterwards, the system switches to an accurate model to perform the desired
evaluation.

Both functional and cycle-accurate models already exist in SHMACsim, so
it would be sufficient to add the necessary functionality to change the router
models in a configurable manner. This could be done by including a simulator
configuration register in the system register file.

6.2.5. Packet Tracking

Packet tracking can be a powerful tool for identifying bottlenecks and
debugging, though more development is needed to unleash its full potential.
Several proposals to make the packet tracking system more useful are listed
below.

Configuring the Packet Tracker: The amount of traffic created on the
SHMAC network by even the simplest of micro-benchmarks is very large.
Because of this, it is undesirable to track every single packet, but rather a
specific configurable subset that would yield the most interesting information.
Currently, identifying the packets to be tracked is done via a C++ function
call examining the packet and returning true or false accordingly. While this is
a powerful and flexible method, it is desirable to be able to change the tracking
configuration without recompilation. To provide this, a simpler method
involving setting desired packet characteristics in the runtime configuration
file could also be implemented.

Aggregating Statistics: The current packet tracking implementation
prints every single trace to the standard error stream. If a large amount of
packets are to be tracked, it is desirable to see a statistical summary instead
of sifting through large volumes of data. Towards this end, a module aggre-
gating packet traces into statistics is can be implemented. Average lifetime
of a packet type for each hop and histograms are examples of potentially
useful packet trace statistics.

Automatic Location Registration: In Section 5.3 it was described how
location information is annotated onto the packet as it moves through

74

the network. Currently, this is done by manually adding function calls to
registerLocation at each step to be monitored. Since all packet traffic passes
through SystemC ports, a better solution would be creating a subclass of
sc port which automatically adds the tracking information as the packet
goes through the port.

6.2.6. Improvements to the SHMAC Architecture

Considering that the goal of the SHMAC is to provide an infrastructure
for heterogeneous software as well as evaluating heterogeneous hardware,
the continuous evolution of the architecture is actually part of the goal
itself. Beyond the improvements discussed in Chapter 5, many potential
architectural enhancements and new features remain unexplored. In light of
the body of knowledge acquired while preparing this thesis, a brief discussion
of some of these is provided below.

6.2.6.1. A Faster, Pipelined Router Implementation

A number of proposals were covered by Rusten and Sortland [54] in their
Future Work section, including router improvements. While these will not
be repeated here, the results from this thesis strongly support the need
for a faster router, which remains the greatest bottleneck for the current
SHMAC. NoC router implementations are well-studied in existing literature,
and an implementation based on those surveyed in [10] could provide a useful
starting point.

6.2.6.2. Integrating a System-Wide Bus

Despite the difficulties discussed in Section 2.2.2 about using a global shared
bus in a multi-core environment, there may still be use-cases where a global
bus is useful. Namely, while a bus has worse throughput and scalability
characteristics, it does not suffer from the multi-hop latencies introduced by
a NoC. By introducing a global bus into the system, low-latency multicast
and broadcast operations are made possible. To get most benefits from
such a bus, it becomes important to keep the traffic volume low. Multi-core
synchronization messages, which are small in size and sensitive to latency,
become likely candidates to be carried over the bus. Manevich et al. [40]

75

Figure 6.2.: Overview of a BENoC-based CMP system with 16 processors
and 4x4 L2 caches. Reproduced from [40].

discuss such a Bus Enhanced NoC (BENoC) scheme and report promising
results for carrying cache coherence messages using the bus.

Instead of being coupled only a specific piece of hardware such as the cache,
the bus can also be exposed to software via memory-mapped access to
allow a wider range of architectural experiments. Support for this could
be implemented in the SHMAC by expanding the routers to add one more
input/output port connected to the global bus.

6.2.6.3. Core Diversity and Accelerators

As the SHMAC architecture matures, it will be interesting to experiment
with heterogeneous layouts containing different cores and diverse accelerators.
The topics of core and accelerator diversity, and how accelerators should
be integrated into an HMP system remain open research questions. A brief
discussion on these is provided below.

Core Types: Different cores can be created by customizing various micro-
architectural features, including but not limited to pipeline stages, instruction
reordering, additional datapaths and cache. A framework which allows easy
customization of these micro-architectural features would be very useful
for evaluating different cores within the SHMAC, similar to how ArchC
is used in SHMACsim. Even though existing work [36, 63] suggests most
heterogeneity benefits are achieved by as little as two core types, these two

76

core types will still need to be identified, and such a framework will help in
the process.

Accelerator Integration: The accelerators may be exposed to the system
directly as individual tiles, but the single-ISA nature of the system will
require a mapping from the ISA to the accelerator functionality. Towards
this, the work from Clark et al. [17] describing a way of expressing the
computation to be accelerated using a baseline ISA can be useful. Another
approach is to control the accelerators by a tightly-coupled general-purpose
core on the same tile.

Accelerator Types: Accelerator access and control aside, the types of
accelerators to be included is another important HMP aspect. Several were
mentioned in Section 2.2.1, but the possibilities are many more. Single
Instruction Multiple Data (SIMD) and digital signal processor (DSP)-style
accelerators which are common in industry should be evaluated in a SHMAC
context to identify their usefulness in a variety of target scenarios. More
unconventional heterogeneity by adding dataflow execution or artificial neural
network accelerators may also be worth exploring.

77

Bibliography

[1] Anant Agarwal. “The tile processor: A 64-core multicore for embedded
processing”. In: Proceedings of HPEC Workshop. 2007.

[2] Niket Agarwal et al. “GARNET: A detailed on-chip network model
inside a full-system simulator”. In: Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on.
IEEE. 2009, pp. 33–42.

[3] Gene M Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20,
1967, spring joint computer conference. ACM. 1967, pp. 483–485.

[4] Rodolfo Azevedo and Sandro Rigo. “ArchC Model Design Handbook”.
In: Electronic System Level Design. Springer, 2011, pp. 39–70.

[5] James Balfour and William J Dally. “Design tradeoffs for tiled CMP
on-chip networks”. In: Proceedings of the 20th annual international
conference on Supercomputing. ACM. 2006, pp. 187–198.

[6] Luca Benini and Giovanni De Micheli. “Networks on chips: A new SoC
paradigm”. In: Computer 35.1 (2002), pp. 70–78.

[7] V Bhatt et al. “Sichrome: Mobile web browsing in hardware to save
energy”. In: Dark Silicon Workshop, ISCA. 2012.

[8] Nathan Binkert et al. “The gem5 simulator”. In: SIGARCH Comput.
Archit. News 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi: 10.1145/
2024716.2024718. url: http://doi.acm.org/10.1145/2024716.
2024718.

[9] Nathan L Binkert et al. “The M5 simulator: Modeling networked
systems”. In: Micro, IEEE 26.4 (2006), pp. 52–60.

[10] Tobias Bjerregaard and Shankar Mahadevan. “A survey of research and
practices of network-on-chip”. In: ACM Computing Surveys (CSUR)
38.1 (2006), p. 1.

[11] David C Black and Jack Donovan. SystemC: From the ground up.
Vol. 71. Springer, 2010.

[12] A. Bona, V. Zaccaria, and R. Zafalon. “System level power modeling
and simulation of high-end industrial network-on-chip”. In: Design,
Automation and Test in Europe Conference and Exhibition, 2004.

78

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718

Proceedings. Vol. 3. 2004, 318–323 Vol.3. doi: 10.1109/DATE.2004.
1269258.

[13] Shekhar Borkar and Andrew A Chien. “The future of microprocessors”.
In: Communications of the ACM 54.5 (2011), pp. 67–77.

[14] David Brooks, Vivek Tiwari, and Margaret Martonosi. “Wattch: a
framework for architectural-level power analysis and optimizations”. In:
Proceedings of the 27th annual international symposium on Computer
architecture. ISCA ’00. Vancouver, British Columbia, Canada: ACM,
2000, pp. 83–94. isbn: 1-58113-232-8. doi: 10.1145/339647.339657.
url: http://doi.acm.org/10.1145/339647.339657.

[15] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper:
exploring the level of abstraction for scalable and accurate parallel
multi-core simulation”. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. SC ’11. Seattle, Washington: ACM, 2011, 52:1–52:12. isbn:
978-1-4503-0771-0. doi: 10.1145/2063384.2063454. url: http://
doi.acm.org/10.1145/2063384.2063454.

[16] Eric S Chung et al. “Single-chip heterogeneous computing: Does the
future include custom logic, fpgas, and gpgpus?” In: Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE Computer Society. 2010, pp. 225–236.

[17] N. Clark, A. Hormati, and S. Mahlke. “VEAL: Virtualized Execution
Accelerator for Loops”. In: Computer Architecture, 2008. ISCA ’08.
35th International Symposium on. 2008, pp. 389–400. doi: 10.1109/
ISCA.2008.33.

[18] R. C. Covington et al. “The rice parallel processing testbed”. In:
SIGMETRICS Perform. Eval. Rev. 16.1 (May 1988), pp. 4–11. issn:
0163-5999. doi: 10.1145/1007771.55596. url: http://doi.acm.
org/10.1145/1007771.55596.

[19] William J Dally and Brian Towles. “Route packets, not wires: On-chip
interconnection networks”. In: Design Automation Conference, 2001.
Proceedings. IEEE. 2001, pp. 684–689.

[20] Robert H Dennard et al. “Design of ion-implanted MOSFET’s with
very small physical dimensions”. In: Solid-State Circuits, IEEE Journal
of 9.5 (1974), pp. 256–268.

[21] Nagu Dhanwada, Ing-Chao Lin, and Vijay Narayanan. “A power
estimation methodology for systemC transaction level models”. In:
Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. CODES+ISSS ’05.
Jersey City, NJ, USA: ACM, 2005, pp. 142–147. isbn: 1-59593-161-9.

79

http://dx.doi.org/10.1109/DATE.2004.1269258
http://dx.doi.org/10.1109/DATE.2004.1269258
http://dx.doi.org/10.1145/339647.339657
http://doi.acm.org/10.1145/339647.339657
http://dx.doi.org/10.1145/2063384.2063454
http://doi.acm.org/10.1145/2063384.2063454
http://doi.acm.org/10.1145/2063384.2063454
http://dx.doi.org/10.1109/ISCA.2008.33
http://dx.doi.org/10.1109/ISCA.2008.33
http://dx.doi.org/10.1145/1007771.55596
http://doi.acm.org/10.1145/1007771.55596
http://doi.acm.org/10.1145/1007771.55596

doi: 10.1145/1084834.1084874. url: http://doi.acm.org/10.
1145/1084834.1084874.

[22] Hadi Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”.
In: Computer Architecture (ISCA), 2011 38th Annual International
Symposium on. IEEE. 2011, pp. 365–376.

[23] Alexandra Fedorova et al. “Maximizing power efficiency with asymmet-
ric multicore systems”. In: Communications of the ACM 52.12 (2009),
pp. 48–57.

[24] D Frommer. “Smartphone sales to beat PC sales by 2011”. In: Business
Insider (2009).

[25] Nathan Goulding-Hotta et al. “The GreenDroid mobile application
processor: An architecture for silicon’s dark future”. In: Micro, IEEE
31.2 (2011), pp. 86–95.

[26] Peter Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. 2011. url: "http://www.arm.com/files/downloads/
big.LITTLE_Final.pdf".

[27] John L Gustafson. “Reevaluating Amdahl’s law”. In: Communications
of the ACM 31.5 (1988), pp. 532–533.

[28] Scott Hauck and Andre DeHon. Reconfigurable computing: the theory
and practice of FPGA-based computation. Morgan Kaufmann, 2010.

[29] “IEEE Standard for Standard SystemC Language Reference Manual”.
In: IEEE Standard 1666-2011 (2011).

[30] Texas Instruments. OMAP Applications Processors. 2013. url: "http:
//www.ti.com/product/OMAP4470".

[31] Felipe Klein et al. PowerSC: A SystemC-based framework for power es-
timation. Tech. rep. Technical Report IC-07-02, Institute of Computing,
UNICAMP, 2007.

[32] Onur Koçberber et al. “Dark Silicon Accelerators for Database Index-
ing”. In: Dark Silicon Workshop, ISCA. 2012.

[33] T Konstantakopoulos et al. Power Performance of Tiled Processor Ar-
chitectures. url: "http://publications.csail.mit.edu/abstracts/
abstracts05/tkonsta/tkonsta.html".

[34] Jonathan G Koomey. “Worldwide electricity used in data centers”. In:
Environmental Research Letters 3.3 (2008), p. 034008.

[35] Kelin J Kuhn. “Moore’s Law Past 32nm: Future Challenges in De-
vice Scaling”. In: Computational Electronics, 2009. IWCE’09. 13th
International Workshop on. IEEE. 2009, pp. 1–6.

[36] Rakesh Kumar et al. “Single-ISA heterogeneous multi-core architec-
tures: The potential for processor power reduction”. In: Microarchitec-

80

http://dx.doi.org/10.1145/1084834.1084874
http://doi.acm.org/10.1145/1084834.1084874
http://doi.acm.org/10.1145/1084834.1084874
"http://www.arm.com/files/downloads/big.LITTLE_Final.pdf"
"http://www.arm.com/files/downloads/big.LITTLE_Final.pdf"
"http://www.ti.com/product/OMAP4470"
"http://www.ti.com/product/OMAP4470"
"http://publications.csail.mit.edu/abstracts/abstracts05/tkonsta/tkonsta.html"
"http://publications.csail.mit.edu/abstracts/abstracts05/tkonsta/tkonsta.html"

ture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM Inter-
national Symposium on. IEEE. 2003, pp. 81–92.

[37] Rasmus Christian Larsen and Oyvind Janbu. Introduction to EFM32
Microcontrollers. url: http : / / cdn . energymicro . com / dl / pdf /
efm32_introduction_white_paper.pdf.

[38] Igor Loi and Luca Benini. “An efficient distributed memory interface
for many-core platform with 3D stacked DRAM”. In: Proceedings of
the Conference on Design, Automation and Test in Europe. European
Design and Automation Association. 2010, pp. 99–104.

[39] Peter S Magnusson et al. “Simics: A full system simulation platform”.
In: Computer 35.2 (2002), pp. 50–58.

[40] R. Manevich et al. “Best of both worlds: A bus enhanced NoC (BENoC)”.
In: Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International
Symposium on. 2009, pp. 173–182. doi: 10.1109/NOCS.2009.5071465.

[41] Milo MK Martin et al. “Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset”. In: ACM SIGARCH Computer
Architecture News 33.4 (2005), pp. 92–99.

[42] Jiayuan Meng and Kevin Skadron. “A reconfigurable simulator for
large-scale heterogeneous multicore architectures”. In: Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on. IEEE. 2011, pp. 119–120.

[43] Jason E Miller et al. “Graphite: A distributed parallel simulator for
multicores”. In: High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on. IEEE. 2010, pp. 1–12.

[44] Bill Nitzberg and Virginia Lo. “Distributed shared memory: A survey
of issues and algorithms”. In: Computer 24.8 (1991), pp. 52–60.

[45] nvidia. Variable SMP - A multi-core CPU architecture for low power
and high performance. 2011. url: http://www.nvidia.com/content/
PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf.

[46] Pablo Montesinos Ortego and Paul Sack. “SESC: SuperESCalar simula-
tor”. In: 17 th Euro micro conference on real time systems (ECRTS’05).
2004, pp. 1–4.

[47] Mario Pickavet et al. “Worldwide energy needs for ICT: The rise of
power-aware networking”. In: Advanced Networks and Telecommunica-
tion Systems, 2008. ANTS’08. 2nd International Symposium on. IEEE.
2008, pp. 1–3.

[48] Fred J Pollack. “New microarchitecture challenges in the coming gen-
erations of CMOS process technologies (keynote address)”. In: Pro-
ceedings of the 32nd annual ACM/IEEE international symposium on
Microarchitecture. IEEE Computer Society. 1999, p. 2.

81

http://cdn.energymicro.com/dl/pdf/efm32_introduction_white_paper.pdf
http://cdn.energymicro.com/dl/pdf/efm32_introduction_white_paper.pdf
http://dx.doi.org/10.1109/NOCS.2009.5071465
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-whitepaper-0911b.pdf

[49] Jeff Preshing. A Look Back at Single-Threaded CPU Performance. Feb.
2012. url: "http://preshing.com/20120208/a-look-back-at-
single-threaded-cpu-performance".

[50] Qualcomm. Qualcomm Snapdragon Processors. 2013. url: "http :
//www.qualcomm.com/snapdragon".

[51] Glen Reinman and Norman P Jouppi. “CACTI 2.0: An integrated
cache timing and power model”. In: Western Research Lab Research
Report 7 (2000).

[52] Steve Rhoads. Plasma - most MIPS-I opcodes. Apr. 2012. url: "http:
//opencores.org/project,plasma".

[53] Michael Riepe. libelf. url: "http://directory.fsf.org/wiki/
Libelf".

[54] Leif Tore Rusten and Gunnar Inge Sortland. “Implementing a Hetero-
geneous Multi-Core Prototype in an FPGA”. MA thesis. Norwegian
University of Science and Technology, 2012.

[55] Samsung. Samsung Exynos Processors. 2013. url: "http : / / www .
samsung.com/global/business/semiconductor/minisite/Exynos/
index.html".

[56] Robert R Schaller. “Moore’s law: past, present and future”. In: Spec-
trum, IEEE 34.6 (1997), pp. 52–59.

[57] David E Shaw et al. “Anton, a special-purpose machine for molecular
dynamics simulation”. In: ACM SIGARCH Computer Architecture
News. Vol. 35. 2. ACM. 2007, pp. 1–12.

[58] Kevin Skadron et al. “Challenges in computer architecture evaluation”.
In: Computer 36.8 (2003), pp. 30–36.

[59] Herb Sutter. “The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software”. In: Dr. Dobb’s Journal 30.3 (2005). url:
"http://www.gotw.ca/publications/concurrency-ddj.htm".

[60] Zhangxi Tan et al. “A case for FAME: FPGA architecture model
execution”. In: ACM SIGARCH Computer Architecture News. Vol. 38.
3. ACM. 2010, pp. 290–301.

[61] Michael Bedford Taylor et al. “The Raw microprocessor: A computa-
tional fabric for software circuits and general-purpose programs”. In:
Micro, IEEE 22.2 (2002), pp. 25–35.

[62] The Move to Multi-Core Architecture Explained. Intel Corporation.
url: http://software.intel.com/en-us/articles/frequently-
asked-questions-intel-multi-core-processor-architecture#
_The_move_to_dual/multi-coreexplain.

[63] Kenzo Van Craeynest and Lieven Eeckhout. “Understanding fundamen-
tal design choices in single-ISA heterogeneous multicore architectures”.

82

"http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance"
"http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance"
"http://www.qualcomm.com/snapdragon"
"http://www.qualcomm.com/snapdragon"
"http://opencores.org/project,plasma"
"http://opencores.org/project,plasma"
"http://directory.fsf.org/wiki/Libelf"
"http://directory.fsf.org/wiki/Libelf"
"http://www.samsung.com/global/business/semiconductor/minisite/Exynos/index.html"
"http://www.samsung.com/global/business/semiconductor/minisite/Exynos/index.html"
"http://www.samsung.com/global/business/semiconductor/minisite/Exynos/index.html"
"http://www.gotw.ca/publications/concurrency-ddj.htm"
http://software.intel.com/en-us/articles/frequently-asked-questions-intel-multi-core-processor-architecture#_The_move_to_dual/multi-core explain
http://software.intel.com/en-us/articles/frequently-asked-questions-intel-multi-core-processor-architecture#_The_move_to_dual/multi-core explain
http://software.intel.com/en-us/articles/frequently-asked-questions-intel-multi-core-processor-architecture#_The_move_to_dual/multi-core explain

In: ACM Transactions on Architecture and Code Optimization (TACO)
9.4 (2013), p. 32.

[64] Ganesh Venkatesh et al. “Conservation cores: reducing the energy of
mature computations”. In: ACM SIGARCH Computer Architecture
News. Vol. 38. 1. ACM. 2010, pp. 205–218.

[65] David W Wall. Limits of instruction-level parallelism. Vol. 19. 2. ACM,
1991.

[66] Hao Wang et al. “Workload and power budget partitioning for single-
chip heterogeneous processors”. In: Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. PACT
’12. Minneapolis, Minnesota, USA: ACM, 2012, pp. 401–410. isbn:
978-1-4503-1182-3. doi: 10.1145/2370816.2370873. url: http://
doi.acm.org/10.1145/2370816.2370873.

[67] Thomas Canhao Xu et al. “Hardware/Software Co-design for Multicore
Architectures”. PhD thesis. University of Turku, 2012.

83

http://dx.doi.org/10.1145/2370816.2370873
http://doi.acm.org/10.1145/2370816.2370873
http://doi.acm.org/10.1145/2370816.2370873

A. Appendices

A.1. SHMACsim Utility Scripts

A.1.1. shmacsim-archc-compile

#!/ bin/sh

if ["$#" -lt "3"]; then
echo "mips -elf -gcc wrapper script for SHMACsim "
echo "Usage: shmacsim -archc - compile tile_i_coord

tile_j_coord gcc_args "
echo " Outputs will be named (tile_i , tile_j) in .x (ELF

executable) and .bin (raw binary) formats "
exit 0

fi

SHMACSIM_TOOLS_DIR = $SHMACSIM_ROOT /tools
ARCHC_LDSCRIPT_GEN_NAME = create_archc_linkerscript .sh
SHMACSIM_SPEC_NAME = shmacsim_specs

MEM_LENGTH =0 x1000000
MEM_ORIGIN =0x"$1$2" 000000
CMDLINE_ARGS_RESERVE =1024
PROG_NAME ="($1","$2)"

remove any old linker scripts , suppress errors
rm $SHMACSIM_TOOLS_DIR /temp.ld 2> /dev/null

echo " Compiling for tile :\t($1 ,$2)"
echo "Tile RAM start :\t\ t$MEM_ORIGIN "
echo "Tile RAM size :\t\ t$MEM_LENGTH "
echo " Cmdline args resv :\ t$CMDLINE_ARGS_RESERVE "

create ArchC linker script for given configuration
this linker script will place sections into the local tile

RAM
$SHMACSIM_TOOLS_DIR / $ARCHC_LDSCRIPT_GEN_NAME $MEM_ORIGIN

$MEM_LENGTH $CMDLINE_ARGS_RESERVE > $SHMACSIM_TOOLS_DIR /
temp.ld

84

shift out the first 3 arguments , we ’ll past the rest to
gcc

shift 2

call GCC with the rest of the arguments
mips -elf -gcc -specs= $SHMACSIM_TOOLS_DIR / $SHMACSIM_SPEC_NAME

-T$SHMACSIM_TOOLS_DIR /temp.ld $@ -o $PROG_NAME .x

call objcopy to generate binary output
keep the .bss section in generated output
mips -elf - objcopy -K .bss --set -section -flags .bss=alloc ,load

, contents -I elf32 - bigmips -O binary $PROG_NAME .x
$PROG_NAME .bin

remove any old linker scripts , suppress errors
rm $SHMACSIM_TOOLS_DIR /temp.ld 2> /dev/null

A.1.2. shmacsim-archc-allcompile

#!/ bin/sh

if ["$#" -lt "3"]; then
echo " Compiles a given source file for all tiles in

SHMACsim "
echo "Usage: shmacsim -archc - allcompile i_dim j_dim

gcc_args "
exit 0

fi

SHMACSIM_TOOLS_DIR = $SHMACSIM_ROOT /tools
SHMACSIM_COMPILE_SCRIPT_NAME =shmacsim -archc - compile .sh
SHMACSIM_COMPILE_SCRIPT = $SHMACSIM_TOOLS_DIR /

$SHMACSIM_COMPILE_SCRIPT_NAME

since tile indices start from 0, subtract 1 from max vals
I_DIM=‘expr $1 - 1‘
J_DIM=‘expr $2 - 1‘

shift out first two parameters , rest will be passed to gcc
shift 2

call SHMACsim compile script for each tile
for i in ‘seq 0 $I_DIM ‘
do

for j in ‘seq 0 $J_DIM ‘
do

$SHMACSIM_COMPILE_SCRIPT $i $j $@
done

85

done

echo "\n\nshmacsim - allcompile finished . Runtime config file
suggestion :\n"

print out runtime config file mapping tiles to produced
executables

for i in ‘seq 0 $I_DIM ‘
do

for j in ‘seq 0 $J_DIM ‘
do

echo "($i ,$j)\ tsLoadBinary \t$PWD /($i ,$j).bin"
done

done

A.1.3. shmacsim-run-benchmarks

#!/ bin/sh

Location of SHMACsim executable
SHMACSIM_PATH =" $SHMACSIM_ROOT / shmacsim /Debug/ shmacsim "

Benchmark folder configration , each benchmark
$BENCHMARK is assumed to be structured as:
hardware config file at $BENCHMARKS_ROOT / $BENCHMARK /

$HARDWARECFG_FILENAME
runtime config file at $BENCHMARKS_ROOT / $BENCHMARK /

$RUNTIMECFG_FILENAME
BENCHMARKS_ROOT =" $SHMACSIM_ROOT / microbenchmarks "
HARDWARECFG_FILENAME =" hardwarecfg .txt"
RUNTIMECFG_FILENAME =" runtimecfg .txt"

The stdout and stderr from each benchmark will be
placed in the BENCHMARK_LOGDIIR , whose name is
generated using the current date -time
DATE=$(date +"%Y%m%d%H%M%S")
BENCHMARK_LOGDIR =" $SHMACSIM_ROOT / benchmark_logs /$DATE"

BENCHMARKS =$@

echo "The following SHMACsim benchmarks will be run: "
echo $BENCHMARKS
mkdir -p $BENCHMARK_LOGDIR
echo " Benchmark results will be placed in $BENCHMARK_LOGDIR "

export LD_LIBRARY_PATH = $LD_LIBRARY_PATH : $SYSTEMC /lib - linux64
: $SYSTEMC /lib -linux

86

PROCESS_LIST ="$$"

for benchmark in $BENCHMARKS ;
do

echo "Now launching benchmark : $benchmark "
BENCHMARK_SUBDIR =$(dirname $BENCHMARK_LOGDIR / $benchmark)
mkdir -p $BENCHMARK_SUBDIR
$SHMACSIM_PATH -h $BENCHMARKS_ROOT / $benchmark /

$HARDWARECFG_FILENAME -r $BENCHMARKS_ROOT / $benchmark /
$RUNTIMECFG_FILENAME 1>" $BENCHMARK_LOGDIR / $benchmark "
_out.log 2>" $BENCHMARK_LOGDIR / $benchmark "_err.log &

PROCESS_LIST =" $PROCESS_LIST ,$!"
done

echo "Use the following command to monitor benchmark process
status :"

echo "top -p $PROCESS_LIST "

A.2. Micro-benchmark Listings

A.2.1. Clock Tile Access Time

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define REPEAT_COUNT 2000
define REPEAT_COUNT_ASM ".rept 2000"

volatile unsigned int * clockTile = (volatile unsigned int
*) 0 x01000000 ;

define SHMAC_CLKCNT_TILE (* clockTile)

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

// task function definitions
void localInstrFetch ();
void readFrom11 ();
void writeTo20 ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();

87

// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

void localInstrFetch ()
{

// variables for time measurement
unsigned int clkStartTile = 0, clkEndTile = 0;
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Local memory read , %d repeats ...\n

", __processorID , REPEAT_COUNT);

clkStartTile = SHMAC_CLKCNT_TILE ;
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark code -----
__asm__ ("li $4 ,0");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("addiu $4 ,$4 ,1");
__asm__ (".endr");
// ----- end of microbenchmark code -----
clkEnd = SHMAC_CLKCNT ;
clkEndTile = SHMAC_CLKCNT_TILE ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);

printf (" Processor %d: Elapsed clock cycles (CT): %d\n",
__processorID , clkEndTile - clkStartTile);

printf (" Processor %d: CPI (CT): %d \n", __processorID , (
clkEndTile - clkStartTile) / REPEAT_COUNT);

}

void readFrom11 ()
{

printf (" Processor %d: Reading from (1 ,1) %d repeats ...\n
", __processorID , REPEAT_COUNT);

// ----- start of microbenchmark kernel -----

88

__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("lw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----

}

void SHMAC_assignTasksToProcessors ()
{

int i;
// set all processor tasks to localInstrFetch
for(i = 0; i < 16*16; i++)
{

if(i % 16 != 1)
__processorTasks [i] = & readFrom11 ;

else
__processorTasks [i] = & localInstrFetch ;

}
}

A.2.2. Tile Start-Up Delays

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define REPEAT_COUNT 2000
define REPEAT_COUNT_ASM ".rept 2000"

// override clock count retrieval def using clock tile
// remove these two lines to use the system register instead
// volatile unsigned int * clockTile = (volatile unsigned int

*) 0 x02000000 ;
//# define SHMAC_CLKCNT (* clockTile)

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

// task function definitions
void printStartTime ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();
// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

89

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

void printStartTime ()
{

// variables for time measurement
unsigned int clkStart = 0;
clkStart = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Start at: %d\n", __processorID ,

clkStart);
}

void SHMAC_assignTasksToProcessors ()
{

int i;
// set all processor tasks to printStartTime
for(i = 0; i < 16*16; i++)

__processorTasks [i] = & printStartTime ;
}

A.2.3. Pure Memory R/W Performance - Single Master

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define REPEAT_COUNT 2000
define REPEAT_COUNT_ASM ".rept 2000"

// override clock count retrieval def using clock tile
// remove these two lines to use the system register instead
volatile unsigned int * clockTile = (volatile unsigned int

*) 0 x01000000 ;
define SHMAC_CLKCNT (* clockTile)

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

90

// task function definitions
void localInstrFetch ();
void readFrom11 ();
void writeTo20 ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();
// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

void localInstrFetch ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Local memory read , %d repeats ...\n

", __processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark code -----
__asm__ ("li $4 ,0");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("addiu $4 ,$4 ,1");
__asm__ (".endr");
// ----- end of microbenchmark code -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void readFrom11 ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;

91

printf (" Processor %d: Reading from (1 ,1) %d repeats ...\n
", __processorID , REPEAT_COUNT);

clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("lw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void writeTo20 ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Writing to (2 ,0) %d repeats ...\n",

__processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x20000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("sw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void SHMAC_assignTasksToProcessors ()
{

int i;
// reset all processor tasks
for(i = 0; i < 16*16; i++)

__processorTasks [i] = 0;
// assign tasks
__processorTasks [2] = & localInstrFetch ;
__processorTasks [16] = & readFrom11 ;

92

__processorTasks [33] = & writeTo20 ;
}

A.2.4. Pure Memory R/W Performance - Multiple Masters

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define REPEAT_COUNT 2000
define REPEAT_COUNT_ASM ".rept 2000"

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

// perform write on neighbour if 1, perform read otherwise
int writeNeighbour ;

// task function definitions
void access11 ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();
// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

// benchmark - specific cmdline setup
writeNeighbour = 0;
if(argc > 0 && argv [0][0] == ’w’)

writeNeighbour = 1;

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

void writeTo11 ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;

93

printf (" Processor %d: Writing to (1 ,1) %d repeats ...\n",
__processorID , REPEAT_COUNT);

clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("sw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void readFrom11 ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Reading from (1 ,1) %d repeats ...\n

", __processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("lw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void access11 ()
{

// perform read or write depending on cmdline arg
if(writeNeighbour)

writeTo11 ();
else

readFrom11 ();
}

94

void SHMAC_assignTasksToProcessors ()
{

int i;
// set all processor tasks
for(i = 0; i < 16*16; i++)

__processorTasks [i] = & access11 ;
}

A.2.5. Remote Impact on Local Fetch

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define REPEAT_COUNT 2000
define REPEAT_COUNT_ASM ".rept 2000"

// perform write on neighbour if 1, perform read otherwise
int writeNeighbour ;

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

// task function definitions
void localInstrFetch ();
void acess11 ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();
// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

// benchmark - specific cmdline setup
writeNeighbour = 0;
if(argc > 0 && argv [0][0] == ’w’)

writeNeighbour = 1;

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

95

void localInstrFetch ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Local memory read , %d repeats ...\n

", __processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("addiu $4 ,$4 ,1");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void writeTo11 ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Writing to (1 ,1) %d repeats ...\n",

__processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("sw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

__asm__ ("lw $5 ,0($4)");

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void readFrom11 ()
{

96

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Reading from (1 ,1) %d repeats ...\n

", __processorID , REPEAT_COUNT);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
__asm__ ("li $4 ,0 x11000000 ");
__asm__ (REPEAT_COUNT_ASM);
__asm__ ("lw $5 ,0($4)");
__asm__ (".endr");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
printf (" Processor %d: CPI: %d \n", __processorID , (clkEnd -

clkStart) / REPEAT_COUNT);
}

void access11 ()
{

// perform read or write depending on cmdline arg
if(writeNeighbour)

writeTo11 ();
else

readFrom11 ();
}

void SHMAC_assignTasksToProcessors ()
{

int i;
// set all processor tasks to access11
for(i = 0; i < 16*16; i++)

__processorTasks [i] = & access11 ;
// ... except (1 ,1) itself , do local instr fetch there
__processorTasks [17] = & localInstrFetch ;

}

A.2.6. Lock Time Acquisition

include <stdio.h>
include "../ shmacsim_microbenchmark .h"

define LOCK_ADDR 0 x44000000
define xStringify (s) stringify (s)
define stringify (s) #s

97

ProcessorTask __processorTasks [SHMAC_MAX_GRIDDIM *
SHMAC_MAX_GRIDDIM];

unsigned int __processorID ;

// task function definitions
void testLockTime ();

int main(int argc , char *argv [])
{

// initialization
__processorID = SHMAC_PROCID ;
SHMAC_assignTasksToProcessors ();
// retrieve task for this processor
ProcessorTask myTask = __processorTasks [__processorID];

if(! myTask)
printf (" Processor %d was not assigned any tasks ,

exiting ...\n", __processorID);
else

myTask ();

return 0;
}

void testLockTime ()
{

// variables for time measurement
unsigned int clkStart = 0, clkEnd = 0;
printf (" Processor %d: Test lock time ...\n",

__processorID);
clkStart = SHMAC_CLKCNT ;
// ----- start of microbenchmark kernel -----
// address of variable to lock
__asm__ ("li $4 ," xStringify (LOCK_ADDR));
// acquire lock
__asm__ (" initmutex :");
__asm__ ("li $1 , 1");
__asm__ (" getmutex :");
__asm__ ("ll $2 , ($4)");
__asm__ ("bne $zero , $2 , getmutex ");
__asm__ ("sc $1 , ($4)");
__asm__ ("beq $zero , $1 , initmutex ");
// ----- end of microbenchmark kernel -----
clkEnd = SHMAC_CLKCNT ;

// release lock
volatile unsigned int * lockVar = (volatile unsigned int

*) LOCK_ADDR ;
* lockVar = 0;

98

// print statistics
printf (" Processor %d: Elapsed clock cycles : %d\n",

__processorID , clkEnd - clkStart);
}

void SHMAC_assignTasksToProcessors ()
{

int i;
// set all processor tasks
for(i = 0; i < 16*16; i++)

__processorTasks [i] = & testLockTime ;
}

99

	Problem Description
	Preface
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Historical Trends in Computing Power
	Era of Multi-Cores: Symmetric, Asymmetric and Heterogeneous
	EECS and the SHMAC project
	Assignment Interpretation
	Contributions
	Report Organization

	Background
	The Motivation for Heterogeneous Multi-Cores
	Hardware for Heterogeneous Multi-core Processors
	Core Types and Accelerators
	Interconnect
	Memory

	The SHMAC Architecture
	Computer Architecture Simulators
	Categorization of Simulators
	Multi-core Simulation
	The gem5 Simulator
	Graphite: Distributed Parallel Multi-core Simulation

	FPGA Accelerated Simulation

	The SHMAC Simulator Infrastructure
	Methodology
	Development Basis
	Choice of Abstraction Levels
	Choice of External Tools and Modules
	Simulation Framework
	Processor Core Generation

	Design
	Processor Cores
	Integration with SHMAC Memory Interface
	Implementation of LL/SC Instructions

	Memory Units
	Base Slave Unit
	The LL/SC Slave Unit
	Other Slave Units

	Interconnect
	Network Packets and Memory Interface
	Router Interface
	Cycle-Accurate Router Implementation
	Network Construction

	Configuration System
	Tile Types
	Tile Layout
	Runtime Configuration

	Toolchain and Utilities
	Testing and Verification

	Evaluating the SHMAC: Micro-benchmarks
	Methodology, Metrics and Notation
	Clock Tile Access Time
	Tile Start-Up Delays
	Pure Memory Access Performance
	Single Master
	Multiple Masters

	Remote Impact on Local Fetch
	Lock Acquisition Time

	Improving the SHMAC
	Dual-Port RAM and Router Bypass
	Description
	Evaluation and Results

	System Register File
	Description
	Evaluation and Results

	Packet Tracking
	Description
	Results

	Conclusion and Future Work
	Conclusion
	Future Work
	Power Modelling
	ELF Parsing
	GDB Support
	Dynamic Model Switching
	Packet Tracking
	Improvements to the SHMAC Architecture
	A Faster, Pipelined Router Implementation
	Integrating a System-Wide Bus
	Core Diversity and Accelerators

	Bibliography
	Appendices
	SHMACsim Utility Scripts
	shmacsim-archc-compile
	shmacsim-archc-allcompile
	shmacsim-run-benchmarks

	Micro-benchmark Listings
	Clock Tile Access Time
	Tile Start-Up Delays
	Pure Memory R/W Performance - Single Master
	Pure Memory R/W Performance - Multiple Masters
	Remote Impact on Local Fetch
	Lock Time Acquisition

