
The Betting Machine

Thomas Rene Andresen
Damian Dubicki

Master of Science in Computer Science

Supervisor: Helge Langseth, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology



 



Thomas R. Andresen and Damian Dubicki

The Betting Machine

Master Thesis, Spring 2013

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering





Abstract

The popularity of football has increased excessively since it originated, and in
later years, systems to predict football results have become a popular area of
research. Based on information found during a specialization project, the most
common way of predicting future matches is based on making observations of pre-
vious match results. In this thesis we aim to develop and test a model that is able
to utilize more of the available data than what has been previously attempted.
In addition we also aim to develop a framework that is able to automate most of
the involved processes - from data mining to prediction to betting.
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Sammendrag

Fotball har hatt en stadig økning i populæritet siden spillet først oppstod og
i senere år har det å prøve å forutse kampresultater blitt en populær forskn-
ingsgren. Basert p̊a informasjon funnet i et fordypningsprosjekt, er den mest
vanlige m̊aten å sp̊a fremtidige resultater basert p̊a tidligere kampresultater. I
denne masteroppgaven har vi hatt som m̊al å utvikle og teste en modell som
er i stand til å utnytte mer tilgjengelig data enn det som tidligere har vært
forsøkt. I tillegg har vi ogs̊a som m̊al å utvikle et rammeverk som er i stand til
å automatisere de involverte prosessene - fra datainnsamling til resultatsp̊adom
til å satse pengebeløp.
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Preface

This paper is the master thesis of Thomas R. Andresen and Damian Dubicki and
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from the Norwegian University of Science and Technology (NTNU), Department
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this thesis we have developed a model for predicting results of football matches
in a closed league. We have also developed a framework that gathers data, sim-
ulate matches and suggests profitable bets. The framework supports publishing
of predictions and other internal data to a web page.
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Chapter 1

Introduction

The following chapter introduces our master thesis written in the spring of 2013
at NTNU. We present the background and motivation for the project. In section
1.2 we define our goal more formally and present the research questions to which
this thesis aims to answer. Section 1.3 explains the general structure of the thesis.
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SECTION 1.1. BACKGROUND AND MOTIVATION

1.1 Background and Motivation

Soccer or associated football (will be referred to as football for the rest of this
paper) is one of the world’s most popular sports - particularly in Europe, where
it is the most dominant spectator sport. Football is an excellent game for dif-
ferent types of betting. As a result, researchers have taken great interest in the
sport - in attempts of reliably predicting the outcome of matches. A variety of
models have been proposed, many of which look promising. Obtaining accurate
predictions, however, is still considered a difficult problem. This is due to the
sheer complexity of the game and the many factors that needs to be accounted
for. As with other modelling tasks concerned with the real world, abstraction is
key. Many attempts have been made in trying to identify the key aspects of the
game - home ground effect, player skill, form, injuries and different psychological
effects to mention some.

Models are based on statistical data alone, or include subjective knowledge
(usually supplied by domain experts) - commonly referred to as expert model-
s/systems. In order to keep complexity at a feasible level, each model is usually
concerned with a limited number of parameters only. The availability of data has
traditionally also been considered a constraint, limiting the scope and fullness of
many state-of-the-art statistical models. With advances being made in both data
availability and data processing ability, we may soon witness richer and more de-
scriptive models.

The focus in this thesis is mainly on developing a model for prediction of
matches in a round-robin tournament. Round-robin tournaments have a fixed
match schedule where all teams play against each other, in turn, a predefined
number of times. The resulting match structure presents a trivial modelling
task. Most European football leagues use this type of scheduling, and this thesis
looks at the English Premier League in particular.

Wrapping the model is a custom developed framework that aims to automate
all the processes associated with prediction and betting. A detailed view of how
the developed model and framework works and the key differences between this
system and other systems of similar research will be given. Before discussing
the models and implementations any further, a closer look at the mathematical
theories behind is needed. This will be given in chapter 2.

2



CHAPTER 1. INTRODUCTION

1.2 Goals and research questions

A preface to this thesis, was a specialization project in the fall of 2012. Research
on the topic of how to predict football results was conducted. Table 2.2 lists
the findings of the project - such as what (mathematical) types of models has
been attempted and what kind of data is consumed by them. A basic model and
the naked spine of a framework was presented. This thesis continues where the
specialization project left off and the goal is to develop a new model and a func-
tioning framework with the capability of automating the processes of prediction
and betting. The following concludes the goal of the thesis:

Goal Extend the previous model to utilize more statistical data and develop a
framework that can fully automate the processes of prediction and betting.

The previous model is described in section 4.1. A description of how it works
and what kind of data it consumes is given. It is a relatively simplistic model
whose only data dependency is the results (goals scored) of previous matches.
This is used to estimate attack- and defence strengths of each team. These
(hidden) parameters are learned and used to estimate future results. The goal is
to extend the model to utilize more statistical data and to investigate the impacts
of this. The research questions of this thesis are defined as follows:

Research question 1 What kind of statistical data would be wise to use in a
prediction model?

Research question 2 How will this data impact a model’s predicting ability

1.3 Thesis Structure

This thesis is divided into 6 chapters, with subsections. Chapter one is an in-
troduction if the thesis, including motivations for the thesis, goals and research
questions. Chapter two follows with an background theory about the mathe-
matical theory needed to grasp the concepts used by the model. In addition a
description of the money management used by the framework and a brief section
about previous work in the field. Chapter three introduces the framework de-
veloped during this thesis, and describing the different parts of the framework.
Chapter four introduces with a description of a model developed in the special-
ization project, which was a preface to this thesis. Followed by the description of
the model developed during this thesis. In chapter five, the experimental set-up
and the results are presented. Concluding this thesis with chapter six, an eval-
uation of the results a long with a conclusion answering the research questions
and comparing the goal to what have been achieved.
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SECTION 1.3. THESIS STRUCTURE
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Chapter 2

Background Theory

The following chapter describes a brief introduction to the mathematical theory
that is needed to get a grasp of how JAGS(Just Another Gibbs Sampler) works
and how one can apply this theory to predict a football match. A long with an
brief introduction to the strategy of the betting agent. Also as mentioned, some
previous work in the field is presented.

5



SECTION 2.1. BAYESIAN NETWORKS

2.1 Bayesian Networks

A Bayesian network is a graphical data structure used to represent dependencies
among variables and a knowledge in an uncertain domain. Such a network is
simply built up of nodes, which represent random variables with directed links
that connects them. These links or edges, represents a statistical dependence be-
tween the nodes or variables. Bayesian networks are graphic in nature, and thus
easier to read and understand than a mathematical formulated model. When a
node has an directed link from itself Xj to another node Xi, then the value taken
by Xi is dependent on the value of Xj . The node Xj is then often referred to
as the parent node. Parent nodes have an direct influence of it’s children nodes.
To quantify this effect, each node Xi have a conditional probability distribution
P (Xi|Parents(Xi)) of it parent node.

An example of two simple networks is shown in figure 2.1. This figure shows
that X does not have any links from or to it, and therefore it is completely inde-
pendent of the other variables. This means that it does not influence any of the
other variables directly nor is it directly influenced by the other variables in the
given example. Y and Z on the other hand, do have a directed link each from A.
This shows that they are conditionally independent given A. What this means,
is that Y and Z are independent of each other, but still both have a connection
to A, and they are both influenced by A. In this example, A is the parent node
of both Y and Z.

To define what a network means, the joint distribution over all the variables
needs to be specified. A joint distribution is a table that denotes the probabilities
of all the combinations of the values given, for example P (X,Y ) will give a table
with all the possible combinations of X and Y . The conditional probabilities
implied by the joint distribution are needed to define the network. To do this,
the following formula is presented:

P (x1, ..., xn) =

n∏
i=1

P (xi|parents(Xi)) (2.1)

Where P (xI |parents(Xi)) are the conditional probabilities implied by the
joint distribution.

2.2 Constructing a network

To correctly construct a Bayesian network, one needs to construct it in such a
way that the nodes and arcs give a good representation of the domain one want

6



CHAPTER 2. BACKGROUND THEORY

Figure 2.1: Example of two simple network. (Bottom figure is adapted from
Russel and Norvig [2010])

to describe. A good representation is an network that is as compact as possible
while being able to give as accurate representation of the domain as possible.
Equation 2.1, shows relations that helps in constructing a network. If the joint
distribution is rewritten using the product rule:

P (x1, ..., xn) = P (xn|xn−1, ..., x1)P (xn−1, ...x1) (2.2)

And then repeat the process, the following big product will be the result:

P (x1, ..., xn) =

n∏
i=1

P (xi|xi−1, ..., x1) (2.3)

Comparing this to equation 2.1 shows that the joint distribution is equivalent to
the general assertion that for every variable Xi

7



SECTION 2.3. MARKOV CHAINS

P (Xi|Xi−1, ..., X1) = P (Xi|Parents(Xi)) (2.4)

Given that ordering of the nudes is done in such a way that they are consistent
with the partial order given in the structure of the network. What equation 2.4
states, is that a network is representing the domain correctly only if each node
is conditionally independent of its other predecessors in the node ordering, given
its parents. To achieve this, the first step is to determine how many variables or
nodes are needed to model the domain. Then comes the ordering of the nodes,
preferably in such a way that causes precede effects, this will ensure that the
network will become more compact. The next step is to select links between
the nodes. To accomplish this, a minimal set of parents for Xi is chosen, to
satisfy equation 2.4, and a link is inserted between each parent and Xi. For the
optimal result, one want the parent node Xi to contain every node that directly
influence Xi. To finalize the network, adding a conditional probability table,
P (xi|Parents(Xi)) is advisable.

2.3 Markov Chains

To describe a Markov chain, a sequence of random variables is defined. The
collection of the variables is the state space and each variable is a given state.
The Markov chain is the sequence or chain of how the next sample is sampled
from this state space. In addition there is an assumption that the next state is
only dependent on a finite fixed number of previous states. The simplest Markov
chain is called first-order Markov chain. Here the current state is only dependent
on the previous state. This gives the formula:

P (Xt|X0:t−1) = P (Xt|Xt−1) (2.5)

Where Xt represent the unobservable variables. The notation X0:t−1 denotes
the set of variables from X0 to Xt−1. The transition model is P (Xt|Xt−1), while
a second order Markov process have P (Xt|Xt−2, Xt−1) as transition model. A
transition model represents how a domain evolves. It also specifies the proba-
bility distribution over the newest state variable, given the previous value. The
two transition models above correspond to figure 2.2, which shows the Bayesian
networks for the first and second order Markov chain. Instead of specifying a
new distribution for each time step, an assumption that changes in the domain
state are caused by stationary process is made.

Let us consider an example (figure 2.3): You want to calculate a teams
strength, based only on a match result, if the result is positive for the team,

8



CHAPTER 2. BACKGROUND THEORY

Figure 2.2: (a) Bayesian network of a first order Markov chain (b) Second order
Markov chain (adapted from [Russel and Norvig, 2010])

the strength is updated with a positive value, if the result is negative it is up-
dated with a negative value. Of course this is an very simplified example just
to show the concept. For the given example, the conditional probability of the
result is the same for all t, P (Rt|Rt−1), and therefore it is only needed to specify
a conditional probability table once.

After specifying the transition model, it is needed to specify how evidence
variables get their values. This is called the sensor model, and a sensor Markov
assumption is made:

P (Et|X0:t, E0:t−1) = P (Et|Xt) (2.6)

Where Et represents the observed variables and P (Et|Xt) is the sensor model.
Figure 2.3 shows the transition and sensor model for the example above. It
shows that the state of the world causes the sensor to take on values. Match
result causes the strength to get a new value, positive or negative. In addition to
the two models that are specified, the prior probability distribution, P (X0) also
needs to be specified.

P (X0:T , E1:T ) = P (X0)

T∏
t=1

P (Xt|Xt−1)P (Et|Xt) (2.7)

The right hand side is simply the initial state and the transition and sensor
model. Figure 2.3 easily shows that the example is an first order Markov chain.

The Markov assumption in combination with the Ergodic theorem ensures
that the chain gradually converges to a unique stationary distribution indepen-
dent of its initial state. In simple words the Ergodic theorem in use with a Markov
chain states that the chain has the possibility to go from any state to any other
state, also the chain does not repeat an identical cycle. This ensures non repeat-
ing samples. This stationary distribution is denoted by φ(.) The period before

9



SECTION 2.4. MARKOV CHAIN MONTE CARLO

Figure 2.3: Bayesian network structure from simple strength example above, with
transition and sensor model as described in the text

the chain converges is usually referred to as burn-in. The samples drawn during
this period is seldom of any use, because they are still dependent (correlated) on
the chains initial state. The preferred samples are the ones that are correlated
with the stationary distribution only. An estimator for the expectation E[f(X)]
is given by:

f =
1

n−m

n∑
t=m+1

(2.8)

Where m denotes the number of burn-in samples to be discarded and n de-
notes the number of samples to calculate the expectation over.

2.4 Markov Chain Monte Carlo

Calculating the conditional probabilities and more importantly, the posterior dis-
tribution of the Bayesian model in figure 2.1 of the previous section is not very
complicated, compared to calculating it for a model consisting of hundreds and
even thousands of such connected nodes - with some of them even describing
multivariate probability densities (depending on multiple variables and spanning
multiple dimensions).

Markov Chain Monte Carlo (often abbreviated MCMC, as it will be done
in this paper) is a methodology and a family of algorithms developed in order
to estimate and analyse otherwise computationally infeasible problems. Having

10



CHAPTER 2. BACKGROUND THEORY

such a broad range of applications and a simplistic nature, it acts as a framework
- offering generic solutions to complex problems.

2.4.1 Use in Bayesian inference

Bayesian statistics revolves around a probability model, as section 2.1 visualized
as an Bayesian network, containing variables that are all considered random
quantities and are either observed (known) or unobserved (unknown). The figure
2.4 shows an example of this, were two teams with the observed variables attack
and defence strengths and the unobserved variable for the goal probability is
presented. Let D denote the set of observed data (evidence) and θ denote the
set of unobserved variables of the network. P (θ) is then called the priors of the
model and P (D|θ) the likelihood. P (D) is called the marginal likelihood or model
evidence. The full probability model is given by equation 2.9.

Figure 2.4: Bayesian network with observed and unobserved variables

P (D, θ) = P (D|θ)P (θ) (2.9)

The variable D have been observed, so by applying Bayes theorem the conditional
probability is shown:

11



SECTION 2.4. MARKOV CHAIN MONTE CARLO

P (θ,D) =
P (θ)P (D|θ)

P (D)
=

P (θ)P (D|θ)∫
P (θ)P (D|θ)dθ

∝ P (θ)P (D|θ) (2.10)

This conditional probability is known as the posterior distribution of θ, and
is the key to all Bayesian inference (probability of θ observing D). P (θ)P (D|θ) is
proportional to P (θ|D), but the sum of probabilities of mutually exclusive events
in this proportional distribution will not add up to one. Thus calculating the
normalizing constant is needed.

In Bayesian inference, important properties of a distribution can be obtained
by taking posterior expectations over functions of the priors θ. This can be
expressed as

E[f(θ)|D] =

∫
f(θ)P (θ)P (D|θ)dθ∫
P (θ)P (D|θ)dθ

(2.11)

2.4.2 Monte Carlo integration

Monte Carlo integration is a special case of Monte Carlo simulation being applied
to the task of obtaining expectations over functions of probability densities. This
task usually involve the solving of integrals as the previous section shows. The
expectation of a function f(X) where X = {Xt, ..., Xt+n} is a set of samples
drawn from an arbitrary distribution π(.) can be denoted:

E[f(X)] ≈ 1

n

n∑
t=1

f(Xt) (2.12)

The population mean of f(x) is the preferred, but an estimation from the
sample mean is an good approximation given that the samples are independent
and identically distributed(IDD) and the sample size n is large enough.

More effective methods for solving integrals numerically exists and they should
generally be considered as a first choice. The problem however arises when the
number of dimensions get big. It is no longer feasible to draw independent sam-
ples from the distribution.

This problem is easily solved by instead of sampling directly from the target
distribution π(.), samples are drawn from a distribution that is proportional to
it. One way of doing this is to construct a Markov chain having π(.) as its
equilibrium or stationary distribution.

12



CHAPTER 2. BACKGROUND THEORY

2.5 Metropolis-hastings Algorithm

Section 2.3 shows how easily a Markov chain is constructed and that it eventually
will converge to a stationary distribution as long as it is ergodic. The problem
was constructing a chain with a stationary distribution φ(.) equal to that of the
distribution of interest π(.). To justify the introductory comment on the simplis-
tic nature of MCMC, the pseudo code for the Metropolis algorithm is provided
in algorithm 1, which is used in Bayesian statistics to estimate posterior densities.

X0 ← 0
for t in 0:N do

Y ← Sample[q(.|Xt)]
U ← Sample[uniform(0, 1)]
if U <= a(Xt, Y ) then

Xt+1 ← Y
else

Xt+1 = Xt

end

end
Algorithm 1: Metropolis-Hastings pseudo code

Here q(.|.) refers to an arbitrary distribution called the proposal (or jump)
distribution and uniform(x, y) refers to the uniform distribution. Let a(X,Y )
denote the probability of accepting a move from Xt to a new candidate point Y .
A popular choice for the proposal is a Gaussian with q(.|.) ∼ N(Xt, .). The target
distribution is denoted by π(.). The acceptance probability a(X|Y ) is then given
by

a(X,Y ) = min(1,
π(Y )q(X|Y )

π(X)q(Y |X)
) (2.13)

Evaluating the expression contained in a(X,Y ), some of the symbols are rec-
ognized from the section about constructing Markov chains. Recall that (with
the move being accepted (2.14))

Y = Xt+1 and X = Xt (2.14)

Figure 2.5 illustrates the moves in the direction of a coordinate axis if the candi-
date is accepted.

It can be shown, due to detailed balancing, that a(X,Y ) (equation 2.13) will
actually converge to the target density π(.).

13



SECTION 2.6. GIBBS SAMPLING IN BAYESIAN NETWORKS

Figure 2.5: Single-component Metropolis-Hastings applied to a bivariate target
distribution (adapted from Gilks and Richardson [2000])

π(Xt)P (Xt+1|Xt) = π(Xt+1P (Xt|Xt+1)) (2.15)

Obtaining equation 2.15, which represents the detailed balancing from equa-
tion 2.13 it can be integrate (equation 2.16) and proving that if Xt is from π(.)
then Xt+1 will also be.∫

π(Xt)P (Xt+1|Xt)dXt = π(Xt+1) (2.16)

Then drawing samples will still be possible even with highly complex target
distribution.

2.6 Gibbs sampling in Bayesian networks

Gibbs sampling is a special case of the Metropolis Hastings algorithm. Gener-
ating the next state with Gibbs sampling is done by randomly selecting a value
for one of the non evidence variables Xi. The current values of the variables in
the Markov blanket of Xi are used for sampling Xi (a Markov blanket consists of

14



CHAPTER 2. BACKGROUND THEORY

parents, children and children’s parents of a variable.). The algorithm will there-
fore randomly flip one variable at a time, keeping the evidence variables fixed.

Figure 2.6: Example network with conditional probability tables

Figure 2.6 provides an example to explain this. For simplicity let Home field
team a be denoted to homefielda, advantage by team a to advantagea, advan-
tage by team b to advantageb and win team a to wina. Further the assumption
that the team on the home field have a greater chance to have an advantage over
the other team, due to a psychological effect that they are playing at their home
field. Then considering the problem of estimating P (advantagea|advantageb =
true, wina = true). The Gibbs sampler will then initialize advantagea = true
and homefielda = true randomly, giving the initial state:

[homefielda = true, advantageb = true, advantagea = true, wina = true].

At the next step a variable is selected randomly from [advantagea, homefielda],
since these two are the non evidence variables. If homefielda is sampled from
P (homefielda|advantageb = true, advantagea = true) and we suppose that the
result is false, the new current state will be: [false, true, true, true]
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Further on, if advantagea is sampled, from P (advantagea|homefielda =
false, advantageb = true, wina = true) and the result will be false, the new
state will be: [false, true, false, true]. As described, we see that the current
values in the Markov blanket, are used for sampling a new value.

2.7 Money managment

Making money in the betting market is about more than just making good pre-
dictions. Determining what games to bet on and how much to bet is just as
important. This section presents some of the theories behind making profitable
bets.

2.7.1 The basics

When mixing money and uncertain events, such as the outcome of a football
match or a stock’s movement on the exchange, a new kind of currency is often
needed to determine the real value of a potential investment. Investors are always
interested in knowing the expected return of their investments - how much money
they are expected to make. This value is usually taken as a probability-weighted
expectancy over the different possible scenarios of the investment. An investment
in the realm of sports betting refers to the action of placing a bet and the same
principles apply.

Let Ph denote the probability of a home win in a given match. Let Oh denote
the odds provided by a bookmaker on that outcome (home win). For simplicity we
restrict ourselves to unit sized bets. Provided that we win the bet, our winnings
are Oh and the return simply Rhw = Oh − 1. If we lose the bet, however, the
return is Rhl = −1. We see that a bet is an investment over exactly two scenarios
- win or lose. Given the probability of the different outcomes or scenarios of the
match, we can calculate the expected return on the bet. Let E[Rh] denote the
expected return on a home win bet.

E[Rh] = Ph ∗Rhw + (1− Ph)Rhl (2.17)

Bets with a positive expected return are called profitable bets, because they
are expected to make a profit. However, with uncertainty comes also risk. A
method for measuring the uncertainty of a bet is by calculating it’s variance.
Variance is defined as the sum of the probability weighted squared deviations
from the expected returns and is measured over the different scenarios of the bet
(win/lose).

σ2
h = Ph ∗ (Rhw − E[Rh])2 + (1− Ph)(Rhl − E[Rh])2 (2.18)
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The expected return and variance of bets are the basic building blocks of
many betting strategies. The following subsections explain how these measures
can be used in practice.

2.7.2 Maximize return - minimize variance

With the theory from the previous section, a concrete implementation of a betting
strategy can be built. This exact strategy is implemented in the framework under
the name MinV ariance. The goal is obvious - place bets so to obtain the highest
possible expected return while keeping the variance low. Define βi,j where j
denote the outcome of match i as:

βi,j = max(0,
E[Ri,j ]

2 ∗ σ2
i,j

) (2.19)

Then select the outcome j from match i with maximal βi,j . This ensures
that only one bet is placed on each match i. Define a new set O containing the
optimal bets. If the utility is to bet a fixed fraction of the current bankroll at a
time, the bet amount of each bet can be found by dividing each optimal bet beta
by the sum of all optimal bet betas and multiplying it with a total amount A.

bi =
βi,j∑
βi,j
∗A, βi,j ∈ O (2.20)

2.7.3 Portfolio pricing - Modern Portfolio Theory

Portfolio pricing is a method that stems from the financial theory of Modern
Portfolio Theory. It is mainly used in finance to minimize the overall variance
of a stock portfolio. This is done by analysing how the stocks move in relation
to each other - how they are correlated. The concept is that a collection of
investments have a lower combined variance than a single asset. This effect is
called diversification. The goal is to find the best possible risk-expected return
profile, which simply is the best trade off alternative between risk and return.
The expected return and variance of a portfolio is given by:

E(Rp) =
∑
i

wiE(Ri) (2.21)

σ2
p =

∑
i

∑
j

wiwjσi,j (2.22)

Here Rp is the return on the portfolio while Ri is the return on asset i. wi and
wj are weights, determining the amount of each asset in the portfolio. σi,j is the
covariance between asset i and j. The covariance measures the degree in which
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σ2
i σi,j σi,k

σi,j σ2
j σj,k

σi,k σi,k σ2
k

Table 2.1: An example of a variance-covariance matrix

assets move together through scenarios and is defined as the probability-weighted
sum of the cross-product of deviations from the expected returns. When assets
move in different directions given an event, we say that the assets are negatively
correlated. Negative correlation between assets mean a negative covariance and
this is responsible for the diversification effect.

σi,j =
∑
n

πn(Rn,i − E[Ri])(Rn,j − E[Rj ]) (2.23)

A more approachable solution to calculating the portfolio variance is to con-
struct a variance-covariance matrix. An example is shown in table 2.1. By sum-
ming over all rows and columns of the matrix, we obtain the portfolio variance.
Van der Wijst [2012]

The wanted risk-return profile is then found by adjusting each asset’s corre-
sponding weight wi in accordance to some predefined utility. This non-trivial
task can be solved by using an optimization algorithm. The implementation of
the framework uses a SteepestAscentOptimizer together with a fitness function
to find it’s optimal risk-return profile.

The motivation behind introducing Modern Portfolio Theory to sports betting
is that both markets share certain similarities. It is easy to picture matches and
outcomes as assets in a portfolio. By allowing bets to be placed on more than
one outcome per match, the experiment was to see if the diversification effect
could improve the risk-aversive abilities of the betting agent. We know that
the outcomes of a match are mutually exclusive and hence negatively correlated.
However, it is still considered unwise to adapt a betting strategy like this. It is
a known fact to the average better that the bookies claim a cut of all bets by
”shorting” the odds. The results of this experiment is presented in chapter 5.

2.8 Previous work in the field

As mentioned, the preface to this thesis was an specialization project, where an
structural literature review (SLR) was done, to try to establish what other work
have been done in this field. In the SLR, 11 papers were selected and studied
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further. And among other things, information about what kind of methods and
what kind of data that were used was extracted. Table 2.2 shows what methods
and what kind of data were used by each of the selected studies to predict match
results. While table 2.3 shows the overview of the papers.
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Qualified Study Methods used Data used
QS1 Bayesian dynamic gen-

eralized linear model
and Markov chain Monte
Carlo. Temporal model.

Result of previous games with a
cap of 5 goals and a magnitude
of the psychological effect of win-
ning/losing ”big”. Uses first half
of season as training set and the
second half as test set.

QS2 Bivariate Poisson and Or-
dered probit

Win-draw-loose and score results
from a 25 years old English
league football data set.

QS3 Bayesian hierarchical
Poisson-log normal dis-
tributed model.

Predefined vector of attack and
defense abilities. Takes home ad-
vantage in to account.

QS4 Ordered logit regression Match results of 14 seasons from
1993/94 2007/08 from Premier-
ship, championship, league one
and League two.

QS5 Dynamic generalized lin-
ear model with indepen-
dent Poisson variables.
MCMC for inference.

Previous match results with an
evolution parameter.

QS6 Poisson log-linear Greek First division of season
1997-98. Where data is cat-
egorized Goals scored by team
A against team B, playing on
ground C(Home advantage)

QS7 Bayesian Network Home, draw and away results
of all English Premier League
matches from seasons 1993/94-
2009/10. And subjective infor-
mation about form, psychology
and fatigue of a team.

QS8 Bivariate Poisson All premier league match results
from the past 9 seasons and home
advantage.
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QS9 Ordered probit and Monte
Carlo

Results of two previous seasons
of English league matches and
William Hill bookmarker prices
(for comparison). Also home
advantage and distance between
clubs is used.

QS10 Poisson Match results from English Pre-
mier division and Italian Serie A
of the season 1997-98.

QS11 Stochastic dynamic
paired comparison model.
Simulated maximum
likelihood. Metropololis-
Hastings.

Results from the 2008-2009 sea-
son of Italian Serie A are used
to estimate team strengths (us-
ing two different models).

Table 2.2: Methods and data used by each of the Qualified studies
from the SLR.

As table 2.2 shows, most of the data used to predict matches in previous stud-
ies that the SLR found, have only been based on match results. Some exceptions
as subjective data about form, psychology and team fatigue and an home field
advantage have also been used. Therefore the main goal with this thesis is to
include more statistical data to predict results.

21
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Qualified Study Title Author
QS1 Prediction and retrospective

analysis of soccer matches in a
league

Rue & Salvesen

QS2 Regression models for forecast-
ing goals and match results in as-
sociation football

Goddard

QS3 Bayesian hierarchical model for
the prediction of football results

Baio & Blangiardo

QS4 Using ELO ratings for match
result prediction in association
football

Hvattum & Arntzen

QS5 Dynamic Bayesian forecasting
models of football match out-
comes with estimation of the evo-
lution variance parameter

Owen

QS6 Statistical modeling for soccer
games: The Greek league

Karlis & Ntzoufras

QS7 Pi-football: A Bayesian network
model for forecasting Association
Football match outcomes

Constantinou, Fenton & Neil

QS8 A dynamic bivariate Poisson
model for analyzing and forecast-
ing match results in the English
Premier League

Koopman & Lit

QS9 Predicting bookmaker odds and
efficiency for UK football

Grahm & Stott

QS10 On modeling Association Foot-
ball data

Karlis & Ntzoufras

QS11 Stochastic dynamic Thurstone-
Mosteller models for sports tour-
naments

Cattelan, Varin & Firth

Table 2.3: Papers selected for study in SLR
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Chapter 3

Framework

This chapter presents the framework that have been extended and improved from
the specialization project. A brief overview of the framework is given, followed
by a more detailed description of the framework’s major components. Section 3.2
describes how the system gathers the data necessary to supply the new model. In
Section 3.3 the season simulator is presented. The automated betting abilities are
described in section 3.5. Section 3.4 is concerned with presenting the workings
of the betting agent places its bets. Finally, an explanation of how to effectively
use the framework is given.
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3.1 Framework: Overview

The framework is built on the .NET platform using the C# language. It is
mostly comprised of injectable dependencies and plugins written in Java- and
CoffeeScript. This was an early design choice made to simplify the process of up-
dating components in case of sudden changes to the web-pages needed for data
collection. The framework is supplied with a very thin console application that
enables interaction with the underlying code library. The framework relies heav-
ily on the open exchange format JSON for communication with the outside world.

The framework use extensive data mining to fetch all the statistical data
needed to perform predictions and betting. The data is mined from web-pages
such as www.whoscored.com and www.oddsportal.com and include data about
fixtures, match statistics and odds for both historic and future matches. The
framework has the ability to do predictions and betting in real-time, with fetch-
ing of new data and scheduling automatically maintaned. The framework also
features a multi-threaded wrapper around the JAGS software that enables a fast
and intuitive interface for generating and parsing samples from models written
in the JAGS language. The betting strategies described in 2.7 are also fully im-
plemented. An extension to allow fully automated betting was also developed,
but is currently broken due to changes made on the bookmaker’s website.

3.2 Framework: Data mining

The framework relies heavily on data mining to gather all the data needed by
the model. Direct data feeds exists, but are very expensive. The framework
taps into publicly available data by using a wrapper to communicate with a
web testing framework called PhantomJS. PhantomJS is a scriptable, headless
web browser that enables DOM-manipulation and script injection on websites
(only local changes). Small interchangeable scripts, called manuscripts, are used
to control the behaviour of the browser and enables the betting framework to
extract data from virtually any website. Figure 3.1 shows some of the data that
is available via www.whoscored.com.
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CHAPTER 3. FRAMEWORK

Figure 3.1: Match statistics from www.whoscored.com

Data
Team ID
Blocked Scoring Attempts
Post Scoring attempts
Total Passes
Accurate Passes
Total Tackles
Total Offsides
Won Contests
Shots Off Target
On Target Scoring Attempts
Total Scoring Attempts
Aerials Won
Aerials Lost
Fouls
Throws
Corners
Ball Possession

Table 3.1: Data fetched from www.whoscored.com

25

www.whoscored.com
www.whoscored.com
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3.3 Framework: Season simulator

One of the most important components of the framework is the season simulator.
Provided with a match schedule (list of fixtures) it handles clustering of matches,
predictions and delegates tasks to other components of the system at the right
times. Clustering in this context refers to the task of determining what matches
should be predicted next. This operation is essential because the JAGS software
is very sensitive with regards to the ordering and structure of data. Logic imple-
mented in the simulator aims to make this scheduling as effective as possible. The
simulator also has support for real-time simulation of ongoing seasons. Internal
scheduling is responsible for fetching new data and running predictions at times
calculated from the match schedule.

3.4 Framework: Betting Agent

The betting agent use the predictions of the model combined with odds from a
bookmaker to suggest profitable bets from a set of matches. This is done by using
the betting strategies described in 2.7. The betting agent is assigned a specific
betting style that effects how much the agent is willing to bet. Three different
styles are implemented - conservative, moderate and aggressive.

3.5 Framework: Automated betting

Using the same mechanisms involved in data mining, the framework aims to
implement fully automated betting. Provided with an account on a betting site,
the agent is able to automatically log in and bet on the user’s behalf. Sadly this
functionality is now broken as the bookmaker of choice decided to completely
change the structure of their website.

3.6 Framework: Reporting

The framework also has a component for generating reports from simulations.
The reports are in JSON-format and enables instant posting of results to e.g. a
website.
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Chapter 4

Description of the Model

This chapter consists of a description of the JAGS model developed during this
thesis. Section 4.1 includes a description of the model developed during the
specialization project. Which is the base of the version 2.1, which is described in
section 4.2.
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4.1 Model v1.0

This model is was developed during our specialization project fall 2012. The full
model is found in appendix A. The model is based on the Rue and Salvesen model
from their paper [Rue and Salvesen, 2000]. This version is however simplified,
it does not include freak results (matches that have goals equal or higher to
5 goals for each team) or the mixture model adapted from [Dixon and Coles,
1997] that gives higher probabilities for 0-0 and 1-1 results on the cost of 1-0
and 0-1. The most important variables in the model are the attack and defence
strengths of each team. These are represented by random variables a(attack) and
b(defence). High values of these mean good attack and defence strengths. The
variable eA = (a, d)A denotes the properties of team A and similarly for team
B. Further on the prior mean µa,A and variance σ2

a,A for aA and similarly for
defence strengths and for team B is found. The model is used to predict match
results in the future.

4.1.1 The goal model

A result is denoted as (XA,B , YA,B). And it is needed to specify how it depends
on the properties of home team A and away team B. The assumption that the
number of goals scored (XA,B) by team A is dependent on the teams attack
strength and team B’s defence strength. And similarly the other way around

with goals scored (YA,B) by team B. Let ∆AB = (aA+dA−aB−dB)
2 denote to the

difference in strength between the teams. In addition the following assumption
is made (equation 4.1):

xA,B |(eA, eB) = XA,B |aA − dB − γ∆AB

yA,B |(eA, eB) = XA,B |aB − dA + γ∆AB

(4.1)

Where γ represents the psychological effect that team A may underestimate
team B if the are a weaker team. Since both teams play in the same league the
reasonable expectation of the effect is that γ > 0. The opposite effect(γ < 0)
is not expected, because that would mean that team A would be much more
superior than team B, an that is not likely to occur in the same league. Further
one Rue and Salvesen [Rue and Salvesen, 2000] found that previous results in over
900 matches a long with the nature of the game, suggests to a first approximation
of a Poisson law for xA,B and yA,B . And therefore they assume that the number

of goals conditioned on teams properties is Poisson distributed with mean λ
(x)
A,B

and λ
(y)
A,B where
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log(λ
(x)
A,B) = c(x)aA − dB − γ∆AB

log(λ
(y)
A,B) = c(y)aB − dA − γ∆AB

(4.2)

Where λ
(x)
A,B) and λ

(y)
A,B) is the mean, followed by the constraints c(x) and c(y)

that roughly describe the logarithm of the empirical mean of the home and away
goals.

4.1.2 The time model

The model is dynamic in regards of the attack and defence strengths. Which is
maintained by a time constant. An assumption that t′ and t′′ > t′ are two time
points within a common reference point where team A plays a match. The attack
strength of team A at the time t′′, at

′′

A is then dependent on the previous strength

at
′

A. To specify these dependencies, Rue and Salvesen [Rue and Salvesen, 2000]
used a Brownian motion to tie the attack strength with the two time points t′

and t′′ as equation 4.3 shows.

at
′′

A = Eat
′

A + {Ba,A(
t′′

τ
)−Ba,A(

t′

τ
)} σa,A√

{1− γ(1− γ/2)}
(4.3)

The parameter γ is the same for all teams and represents the inverse loss of
memory rate for atA, var(a

t′′

A −a t′) ∝ σ2
a,A/τ . Although the process will give and

variance that increases towards∞ with increased time, the conditioning on match
results will ensure smooth posterior realizations of the properties and reasonable
assumptions into the near future.

4.1.3 The full model

After elaborating the two components, the full model can be build. If we look at
an example of four teams that play 3x2 matches at three different times, and the
fourth match is the one to be predicted. To predict the match, one does look at
the previous results, which are given as et0A , e

t0
B , e

t0
C , e

t0
D at time t0 and similarly for

t1 and so on. Then θ is written for all the variables in the model, and equation
4.4 is presented to predict the results at t3.

π(θ) =π(et0A )π(et0B )π(et0C )π(et0D)

× π(xt0A,B , y
t0
A,B |e

t0
A , e

t0
B )π(xt0C,D, y

t0
C,D|e

t0
C , e

t0
D)

× π(et1A |e
t0
A )π(et1B |e

t0
B )π(et1C |e

t0
C )π(et1D |e

t0
D)

× π(xt1A,C , y
t1
A,C |e

t1
A , e

t1
C )π(xt1B,D, y

t1
B,D|e

t1
B , e

t1
D)

× ...

(4.4)
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To elaborate equation 4.4, one can look at figure 4.1, that represents the basic
structure of the model. The first line of the equation, represents the prior density
for each team. The next line represents the goal model, were the calculations of
each teams parameters are set up against each other to predict the scores. The
next line uses the Brownian motion to adjust the prior parameter with the next
time slice and so on for the rest of the model.

Figure 4.1: The structure of the full model with four teams and eight matches
(adapted from Rue and Salvesen [2000])

4.2 Model v2.1

The model developed during this master thesis is found in its full in appendix B.
And this section describes it. The major changes from the previous model lay
in the usage of more statistical data. As section 2.8 shows, our founding did not
indicate that it was common to use additional statistical data to predict results,
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Figure 4.2: Correlation between aerial success and goals scored

which was the main reason to include these. After the decision to include more
data, some research to find out what kind of data to would include was done.
Figures 4.2 through 4.7 shows an correlation between the statistical data that
was tested with number of goals scored in a match. And these correlations are
the reason for the particular data chosen. Table 4.1 shows what variables the
model use.

Figure 4.3: Correlation between attempts and goals scored

As we can se, each of the figures that represent the correlation between the
different parameters and goals scored, does impact on goals scored in different
levels. The table 4.1 show us an overview of the variables used in the model.
More detailed description of these variables are found in the table 4.1 through
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Observable vari-
ables

Description Calculations of
variables

goalsScored How many goals a
team have scored

Direct data from
source

passSuccess The success rate of
a teams passes

Accurate passes
divided with total
passes

aerialSuccess The success rate of
a teams aerial duels

Aerial duels won
divided with duels
lost and won

contestSuccess The success rate of
a teams contest

Contests won for
home team divided
with contests won
for home team with
contests won for
away team

possession The teams posses-
sion

Direct data from
source

attempts The teams number
of attempts

Direct data from
source

Table 4.1: Data used in the model

4.2.3 below.

4.2.1 The goal model

Similarly to version 1.0 a result is denoted as (XA,B , YA,B). And it is needed
to specify how it depends on the properties of home team A and away team
B. An the assumption that the number of goals scored (XA,B) by team A is
dependent of teams attack strength and team B′s defence strength, and simi-
larly the other way around. The difference from the previous model, is that the
attack and defence strengths consist of more data. Let SkillAtt,A denote the
attach strength of team A, and SkillDef,A denote the defence strength of team

A. Let ∆AB =
(SkillAtt,A+SkillDef,A−SkillAtt,B−SkillDef,B)

2 denote the difference in
strength between the teams. Given the Poisson fits shown in figures 4.8 and 4.9,
an assumption is made that the number of goals made by each team is Poisson
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Figure 4.4: Correlation between pass success and goals scored

distributed with mean λ
(x)
A,B and λ

(y)
A,B where

log(λ
(x)
A,B) = SkillAtt,A − SkillDef,A − γ∆AB

log(λ
(y)
A,B) = SkillAtt,B − SkillDef,A − γ∆AB

(4.5)

Further on an elaboration of the parameters SkillAtt,A and SkillDef,A is needed,
since it is here were the additional data lays. Within the parameter SkillAtt,A

we find the following:

(passSuccesA − passSuccessB)+

(aerialSuccessA − aerialSuccessB)+

(contestSuccessA − contestSuccessB)+

(possessionA − possesionB)+

(attemptsA − savesB)

(4.6)

While the parameter SkillDefA include:

(passSuccesA − passSuccessB)+

(aerialSuccessA − aerialSuccessB)+

(contestSuccessA − contestSuccessB)+

(possessionA − possesionB)+

(savesA − attemptsB)

(4.7)

33



SECTION 4.2. MODEL V2.1

Figure 4.5: Correlation between contest success and goals scored

4.2.2 The time model

The time model is similar to the one found in the previous model, described in
section 4.1.2. But due to usage of the beta distribution, we implemented a scaler
to mimic the behaviour of Brownian motion in a beta distribution. This scaler
is defined as following:

Scaler = 10− (Bt −Bt−1) (4.8)

Were Bt denotes days since last match
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Figure 4.6: Correlation between possession and goals scored

Figure 4.7: Correlation between shots and goals scored
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Figure 4.8: Poisson fit on attempts
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Figure 4.9: Poisson fit on shots
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4.2.3 The full model

The implementation of the full model is similar to the implementation found in
the previous version of the model, found in section 4.1.3
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Chapter 5

Experimental set-up and
Results

This chapter explains the experimental set-up of the presented model, in addition
the results of the model running with the presented system to predict match
results and bet on matches is presented.
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5.1 Experimental set-up

To se how well the presented model is performing, the choice of profitability of the
model while betting on matches was an natural selection. The model is using the
first half of the Premier League season 2011/2012 to train, and then predicts the
second half of the season. Using odds provided from www.oddsportal.com the
system uses either MPT or Min variance (both described in 2.7). The following
settings are used for the model:

• Burn-in: 1000

• Chains: 3

• Samples: 1000

The data above, is backed up by the trace samples shown in figure 5.1. Were it
shows that the parameters in the model are independent of each other.

Figure 5.1: Trace of variables used in the model
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5.2 Results

Figure 5.2: Profitability with the conservative betting agent

Figures 5.2, 5.3 and 5.4 shows the results the described system outputs. Each
figure shows four different plots. Two for each model and two for each betting
strategy. One of them (PP in graphs) based on the MPT described in section
2.7.3. The other strategy is Min variance (MV in graphs), which is based on the
strategy used in [Rue and Salvesen, 2000] and described in section 2.7.2. The
three figures represent how aggressive the betting agent is with its bets, the three
different styles are conservative, moderate and aggressive. Each of the different
betting styles, does simply place higher bets based on how aggressive it is.

Looking at the figures, the best combination is the moderate better of model
version 1.0 with the MPT strategy (—). Which is the one that gives the best
profitability if the actual bets were placed on the odds provided from www.

oddsportal.com, with the total profit being close to 500 percent at the end
of the season, and peeking at over 1100 percent. On the other end of the scale,
the worst combination is found using model version 2.0 combined with the ag-
gressive style and the Min variance strategy(—). This combination gives a loss
of about 50 percent.
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Figure 5.3: Profitability with the moderate betting agent

Analysing each of the figures in more details, shows that model version 1.0 (—
and —) is the most profitable model overall. Looking into more details, figure 5.2
shows that of the four combinations, (model version 1.0 and 2.0, with MPT or
Min variance) with the conservative style, the most profitable outcome is model
version 1.0 with Min variance strategy (—). While the least profitable is model
version 2.0 combined with MPT (—). While the moderate style, in figure 5.3
shows that MPT and model version 1.0 (—) gives the best profitability. Where
Min variance with model version 2.0 (—) is the least profitable. The aggressive
better shown in figure 5.4, shows that the best outcome, is again MPT combined
with model 1.0 (—). While the worst is Min variance combined with model 2.0
(—). Surprisingly though, model version 1.0 combined with the Min variance
(—), is very close to being the worst case in this scenario.

Further analysing shows that the all over, the conservative style is, not sur-
prisingly, the safest style. Where non of the combinations ever become negative
in terms of profit. And all over, the model version 1.0 combined with MPT (—)
have the most stable progress. With very few high losses or gains over all three
betting styles. While model version 1.0 combined with Min variance (—) and the
aggressive style has the most unstable progress, leaping from over 1000 percent
profit to a loss of 25 percent.
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Figure 5.4: Profitability with the aggressive betting agent

In addition to profitability, figures 5.5 and 5.6 shows how the two models,
version 1.0 and 2.0 respectively, compares their predicted outcome to the odds.
The plots only shows for 40 games, to make them readable, compared to 190
matches. The optimal model would of course be one where the probability of
the actual outcome would be as close to 100 percent as possible. This is of
course an task that is nearly impossible, but an model that at average has better
probability of the outcome, or as close as possible compared to the odds would
do very good. Comparing figure 5.5 and 5.6, both models perform similarly in
terms of how close they were compared to the odds. But a closer look reveals
that model version 1.0 performs slightly better than model version 2.0 for that
given span of game numbers.
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Figure 5.5: Predictions versus odds in model version 1.0, game 80 through 120

Figure 5.6: Predictions versus odds in model version 2.0, game 80 through 120
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Chapter 6

Evaluation and Conclusion

In this chapter, a discussion is presented about the result of the previous chapter.
In addition a conclusion and final words about this thesis.
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6.1 Evaluation

Looking back at section 5.2, it shows that overall the first version of the model
performs better than the model developed during this thesis. The results may
be somewhat surprising, considering the figures presented in chapter 4. Were an
correlation between the added parameters in the new model and goals scored are
shown. Considering the added parameters should have an impact to the accuracy
of the model, it may have been other factors than just the fact that adding more
data does not help improve the accuracy of an model to predict results. One
of the different factors that may have caused the presented results may be over-
fitting. Over fitting is a term used in machine learning and statistic, and occurs
when one does have to many parameters or when a model is to complex. And this
leads to random errors and noise instead of the actual relationship with data. As
described in chapter 4, model version 2.0 is fairly more complex than version 1.0.
Thus having a greater chance of over-fitting the data. Another consideration to
take into account is that the new statistical data used in the model version 2.0,
may have been used in a wrong way. Comparing the statistical data within the
JAGS model may have been done differently, also different settings of the same
model would give different results. For example weighting the statistical data in
another way could have improved the model. As mentioned, model version 2.0
is fairly more complex than the first version, increasing the chance for having an
mathematical error or an misinterpretation while reading the JAGS manual. In
addition, i may be possible that the data are simply reflected good enough by the
outcome of the match, and that the singular data on its own do not impact as
much as one should imagine. Last but not least, the possibility that the imple-
mentation of the framework may have an error, can impact largely on the output
of the model. Thus, extensive debugging have been done to ensure this is not the
case, one can never be absolutely sure when a system reaches such an extent as
the described system.

The presented goal in this thesis was as mentioned to utilize more statistical
data in a model, and to develop a framework that can fully automate the process
of prediction and betting. As presented in section 4.2, the model does utilize
more data than were used in the previous version of the model. In addition, one
of the research questions was about what kind of statistical data that would be
wise to use in a prediction model. The answer to this, is described in section 4.2,
were correlation figures of the impact of data compared to goals are presented.
These findings present that some data does impact more than others on the final
result of a match. The second reaserch question was about how these data would
impact on the models prediction ability. The results in section 5.2, speak for
them self, but as mentioned above, other factors may have interfered and given
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false results, thus we believe that this the results are representable and give an
accurate description for the two models. The second part of this thesis goal, was
about the framework. And as presented in chapter 3, looking aside from the
placing of the actual bets with real money, the system is as automated as it can
be. Everything from scraping data to predictions and placing imaginary bets is
done within the framework, thus making it as the goal intended.

6.2 Conclusion

Based on the section 6.1, we do not want to conclude that adding more statisti-
cal data will lead to an worse prediction model. As mentioned, the results may
be compromised due to different factors, we do however feel confident that our
findings are fairly accurate. And given enough time to do eave more extensive
testing and research an model with more statistical data still can perform well.
The model version 2.0 did return a positive profit in with both the conservative
and moderate betting style, thus we can conclude that adding more data do not
make an prediction model completely unusable. Section 6.1 does also discuss our
goal and research questions. We feel that our main goal have been reached, since
we did manage to build a model using more data, that is profitable and fairly
accurate compared to bookmarker odds. Also a framework that is as automated
as it gets, excluding the real betting, is build and presented. The research ques-
tion have also been answered as good as they can be given our time frame. And
we feel confident that we have presented and developed a good framework that
is very well suitable for using with JAGS. In addition to the main goal and the
research question, we want to point out the idea of implementing MPT. We feel
that this betting strategy may be worth looking into, since it gave fairly good
results as shown in section 5.2.
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Appendix A

Appendix B: JAGS model
v1.0

### TBM v1.0

###################################################

data {

# Set C^(x) and C^(y) as constants

# Values reported by Rue & Salvesen

homeGoalAvg <- 0.395

awayGoalAvg <- 0.098

}

model {

### Time model

#################################################

tau ~ dgamma(10, 1)

precision ~ dgamma(10, 0.1)

# Loop through all teams and all timeslices

for(t in 1:noTeams) {

# Initial distribution of attack/defense strength

attack[t, 1] ~ dnorm(0, precision)

defense[t, 1] ~ dnorm(0, precision)

# Evolve the attack/defense strength over time with Brownian motion

(Wiener process).
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## The parameters are normally distributed with mean equal to the

parameter value of

## the previous timeslice (round). Loss-of-memory effect provided by

variance parameter.

for(s in 2:noTimeslices) {

attack[t, s] ~ dnorm(

attack[t, (s-1)],

(

((abs( days[t,s] - days[t,s-1] )) / tau) * precision

)

)

defense[t, s] ~ dnorm(

defense[t, (s-1)],

(

((abs( days[t,s] - days[t,s-1] )) / tau) * precision

)

)

}

}

### Goal model

#################################################

# Params:

## attack[t, s] / defense[t, s] = attack/defense strength for team t at

given timeslice s

## team[i, 1] = home team in game i

## team[i, 2] = away team in game i

## timeslice[i, 1] = timeslice(round/games played so far) of home team

in game i

## timeslice[i, 2] = timeslice(round/games played so far) of away team

in game i

## goalsScored[i, 1] = goals scored by home team in game i

## goalsScored[i, 2] = goals scored by away team in game i

# Give the delta-parameter some room to move

gamma ~ dunif(0, 0.1)

# Loop through all games in correct order

for(i in 1:noGames) {

# delta param for psychological effect of underestimating

delta[i] <- (
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attack[team[i, 1], timeslice[i, 1]] + defense[team[i,

1], timeslice[i, 1]] -

attack[team[i, 2], timeslice[i, 2]] - defense[team[i,

2], timeslice[i, 2]]

) / 2

log(homeLambda[i]) <- (

homeGoalAvg +

(

attack[team[i, 1], timeslice[i, 1]] -

defense[team[i, 2], timeslice[i, 2]] -

gamma * delta[i]

)

)

log(awayLambda[i]) <- (

awayGoalAvg +

(

attack[team[i, 2], timeslice[i, 2]] -

defense[team[i, 1], timeslice[i, 1]] +

gamma * delta[i]

)

)

goalsScored[i, 1] ~ dpois( homeLambda[i] )

goalsScored[i, 2] ~ dpois( awayLambda[i] )

}

}
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Appendix B

Appendix C: JAGS model
v2.0

### TBM v2.0

###################################################

data {

# Set C^(x) and C^(y) as constants

# Values reported by Rue & Salvesen[2000]

homeGoalAvg <- 0.395

awayGoalAvg <- 0.098

# Small constant to avoid sampler getting stuck

C <- 0.0001

# Scaling-specific parameter for beta distributions

S <- 10

# Loss of memory effect for beta distributions

eps <- 3

rho <- 10

}

model {

### Time model

#################################################

tau ~ dgamma(10, 1)
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precision ~ dgamma(10, 0.1)

# Loop through all teams and all timeslices

for(t in 1:noTeams) {

# Initial distribution of attack/defense strength

attack[t, 1] ~ dnorm(0, precision)

defense[t, 1] ~ dnorm(0, precision)

# Initial distribution of other skill parameters

# Add C to avoid sampler getting stuck at inf.

# Truncate the distributions to avoid [0, 1] - <0,1> is much nicer.

passSuccess[t, 1] ~ dbeta(

0.7 * S,

0.3 * S

)T(C, 1-C)

aerialSuccess[t, 1] ~ dbeta(

0.5 * S,

0.5 * S

)T(C, 1-C)

contestSuccess[t, 1] ~ dbeta(

0.5 * S,

0.5 * S

)T(C, 1-C)

possession[t, 1] ~ dbeta(

0.5 * S,

0.5 * S

)T(C, 1-C)

attempts[t, 1] ~ dbeta(

0.5 * S,

0.5 * S

)T(C, 1-C)

saves[t, 1] ~ dbeta(

0.7 * S,

0.3 * S

)T(C, 1-C)

# Evolve the attack/defense strength over time with Brownian motion

(Wiener process).
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## The parameters are normally distributed with mean equal to the

parameter value of

## the previous timeslice (round). Loss-of-memory effect provided by

variance parameter.

## Implements a custom scaling tecnique for beta-distribution to

mimic Brownian motion

for(s in 2:noTimeslices) {

motion[t, s] <- ((abs( days[t,s] - days[t,s-1] )) / tau) * precision

attack[t, s] ~ dnorm(

attack[t, (s-1)],

motion[t, s]

)

defense[t, s] ~ dnorm(

defense[t, (s-1)],

motion[t, s]

)

betaScale[t, s] <- S - (((abs(days[t, s] - days[t, (s-1)])) / rho)

* eps)

passSuccess[t, s] ~ dbeta(

(passSuccess[t, (s-1)] + C) * betaScale[t, s],

((1 - passSuccess[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

aerialSuccess[t, s] ~ dbeta(

(aerialSuccess[t, (s-1)] + C) * betaScale[t, s],

((1 - aerialSuccess[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

contestSuccess[t, s] ~ dbeta(

(contestSuccess[t, (s-1)] + C) * betaScale[t, s],

((1 - contestSuccess[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

possession[t, s] ~ dbeta(

(possession[t, (s-1)] + C) * betaScale[t, s],

((1 - possession[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

attempts[t, s] ~ dbeta(

(attempts[t, (s-1)] + C) * betaScale[t, s],
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((1 - attempts[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

saves[t, s] ~ dbeta(

(saves[t, (s-1)] + C) * betaScale[t, s],

((1 - saves[t, (s-1)]) + C) * betaScale[t, s]

)T(C, 1-C)

}

}

### Goal model

#################################################

# Params:

## attack[t, s] / defense[t, s] = attack/defense strength for team t at

given timeslice s

## team[i, 1] = home team in game i

## team[i, 2] = away team in game i

## timeslice[i, 1] = timeslice(round/games played so far) of home team

in game i

## timeslice[i, 2] = timeslice(round/games played so far) of away team

in game i

## goalsScored[i, 1] = goals scored by home team in game i

## goalsScored[i, 2] = goals scored by away team in game i

# Give the delta-parameter some room to move

gamma ~ dunif(0, 0.1)

# Scalers for limiting the impact of att/def-skill

attSkillScaler ~ dunif(0, 0.25)

defSkillScaler ~ dunif(0, 0.25)

# Loop through all games in correct order

for(i in 1:noGames) {

# Home team open play skill

playSkillDiff[i] <- (

( passSuccess[team[i, 1], timeslice[i, 1]] -

passSuccess[team[i, 2], timeslice[i, 2]] ) +

( aerialSuccess[team[i, 1], timeslice[i, 1]] -

aerialSuccess[team[i, 2], timeslice[i, 2]] ) +

( contestSuccess[team[i, 1], timeslice[i, 1]] -

contestSuccess[team[i, 2], timeslice[i, 2]] ) +

( possession[team[i, 1], timeslice[i, 1]] -

possession[team[i, 2], timeslice[i, 2]] )

)
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# Home team attack-specific skill

hAttSkill[i] <- (

playSkillDiff[i] +

(attempts[team[i, 1], timeslice[i, 1]] - saves[team[i, 2],

timeslice[i, 2]])

) / 5

# Home team defense-specific skill

hDefSkill[i] <- (

playSkillDiff[i] +

(saves[team[i, 1], timeslice[i, 1]] - attempts[team[i, 2],

timeslice[i, 2]])

) / 5

# Away team attack specific skill

aAttSkill[i] <- 0 - hDefSkill[i]

# Away team defense specific skill

aDefSkill[i] <- 0 - hAttSkill[i]

# Attack/defense node mutators

wHomeAtt[i] <- (hAttSkill[i] * attSkillScaler) + attack[team[i, 1],

timeslice[i, 1]]

wHomeDef[i] <- (hDefSkill[i] * defSkillScaler) + defense[team[i, 1],

timeslice[i, 1]]

wAwayAtt[i] <- (aAttSkill[i] * attSkillScaler) + attack[team[i, 2],

timeslice[i, 2]]

wAwayDef[i] <- (aDefSkill[i] * defSkillScaler) + defense[team[i, 2],

timeslice[i, 2]]

# delta param for psychological effect of underestimating

delta[i] <- (

wHomeAtt[i] + wHomeDef[i] -

wAwayAtt[i] - wAwayDef[i]

) / 2

# Home lambda parameter

homeLambda[i] <- exp(

homeGoalAvg +

(

wHomeAtt[i] -

wAwayDef[i] -

gamma * delta[i]

)
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)

# Away lambda parameter

awayLambda[i] <- exp(

awayGoalAvg +

(

wAwayAtt[i] -

wHomeDef[i] +

gamma * delta[i]

)

)

goalsScored[i, 1] ~ dpois( homeLambda[i] )

goalsScored[i, 2] ~ dpois( awayLambda[i] )

}

}
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