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Abstract

The field of medical image analysis is becoming an increasingly important
part of the medical profession. Advancements in the field of medical imaging
techniques results in images and volumes with an increasing level of detail.
Effective methods are needed to extract information from this ever increas-
ing ammount of data, making the field of image analysis more important
than ever.

Segmentation is an important part of the medical image analysis process.
It is used to extract visualize and process relevant anatomical structures
within the body. In this project we explore a spesific segmentation approach
known as the level set method to extract medical data. We wanted to explore
its ability to extract data from volumes of different modailites, such as CT
and MRI.

The level set method was implemented using the sparse field approach
which is a version optimized for serial execution on the CPU. In addition
we explored the possibility of parallelizing it using CUDA on the GPU.

The results shows that the implemented sparse field method produces
good results and is exellent at preventing leakage where other similar meth-
ods would struggle. However, level set methods have some problems seg-
menting images with low variance, causing leakages, which is also present
in the implemented sparse field algorithm.

The program was parallelized in the GPU using the CUDA technology.
The sparse field method is however optimized for serial implementation,
which resulted in little performance increase.
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Chapter 1

Introduction

1.1 Background

Data associated with a patient is ever increasing, and with this increase
comes a need for effective ways of interpreting it. Medical image processing
such as segmentation and registration is becomming part of daily operations
in the medical proffession because of the possibilities they provide. This
project is aimed at exploring ways of efficiently interpreting this data using
level set methods.

1.2 Project Goals

The purpose of this project is to explore the Level Set method for medical
image segmentation with the purpose of extracting anatomical structures
from medical volume data. The following tasks will be attempted:

• Implement a version of the level set method

• Investigate possibilities of fast image segmentation using the imple-
mented method

• Investigate the strengths and weaknesses of the level set method and
try to achieve good segmentation results

2
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1.3 Outline

Chapter 2 - Background Theory

In this chapter relevant background theory is presented. This includes how
medical volumes are created, an introduction to general segmentation and
parallel computing in the GPU.

Chapter 3 - Level Set Method

The Level Set method is described in detail. Two approaches, Narrow Band
and Sparse Field, is introduced.

Chapter 4 - Sparse Field Implementation

A walkthrough of the implemented code of the sparse field method will be
given.

Chapter 5 - Results

Chapter 5 presents the segmentation results and performance results.

Chapter 6 - Discussion

Results and the outcome of the implemented algorithm is discussed in this
chapter.

Chapter 7 - Conclusion and Future Work

The last chapter contains conclusion and possibilities for future work.



Chapter 2

Background Theory

2.1 Medical Background

2.1.1 Brain

The brains position inside the cranium makes it difficult to access for surgery
and diagnosis. Non-invasive approaches to diagnosis has therefore become
the norm and is today widespread in its usage. The brain can be subdivided
into several regions, but the segmentation performed in this project will only
distinguish between general features, so the level of detail needed to describe
the result is therefore limited.

Figure 2.1: Overview of the brain.

Figure 2.1 is a basic overwiew of the brains structure and in figure 2.2 a

4
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cross section of the cerebral cortex can be seen. Like the rest of the brain,
the cerebral cortex can be further divided into greymatter shown in figure
2.2 as the band folding in on itself along the surface, and white matter as the
lighter area surrounded by the greymatter. The brain also contains a set of
structures containing cerebrospinal fluid known as the ventricular system,
shown in the mddle of figure 2.2.

Figure 2.2: Ventricles are shown in blue.

2.1.2 Blood vessels

The blood vessels transport blood throughout the body and is part of the
circulatory system. Vessels carrying blood from the heart to the tissues are
called arteries and vessels returning the blood back to the heart are called
veins. Damage to arteries are usually more dangerous than damage to veins
because arteries deliver vital oxygen to the tissues. Reduced bloodflow to
the tissues can either be caused by a ruptured blood vessel or a blood vessel
occluded by a blood clot. Insufficient blood flow can in turn lead to necrosis
(tissue death). Anurisms are bulges on the wall of the blood vessel. If
ruptured they cause hemorrhage that can be life-threatening when they
occur in vital organs, especially the brain. Medical imaging can detect
aneurism that need to be treated before they rupture or detect bleeding
that already has occured and need to be treated in its own way.
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2.1.3 Liver

Figure 2.3: Illustration of the liver.

The functions of the liver ranges from detoxification and red blood cell
decomposition to storage of glycogen. It is considered a vital organ, and
diseases concerning the liver can be life-threatening. Extracting the liver
volume can be difficult because of its composition and shape. It normally
has a wide range of pixel intensities when captured using modalities like CT
and MRI, which makes it difficult for segmentation techniques to identify
it.

2.2 Medical Imaging Techniques

2.2.1 X-Ray imaging

X-ray imaging is a medical imaging method that uses X-ray radiation to
generate images. X-ray photons are generated using a X-ray tube which
consist of an anode and a cathode on opposite sides, with vacuum in the
space between them. Electrons are liberated when the cathode is heated
up, and accelerate at a high speed toward the anode. When the electrons
hit the anode (which usually consist of one of the metals tungsten, copper
or molybdenum) about 1% of the energy is converted into X-ray photons
while the rest dissipates as heat. The X-ray photons are directed towards
the patient, which is located between the X-ray tube and a detector (digital
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film). The X-ray travels through the body, some of it being absorbed and
the rest hits the detector. The parts of the body with high density absorbs
most of the X-ray photons directed towards it, while soft tissues such as
muscle and fat absorbs some of it depending on the type of tissue and its
density. The detector acts as a digital film which represents the final image
as white where the X-ray energy was absorbed by the body, and dark in
places with little absorbtion (e.g. liquid and air). The X-ray image can thus
be seen as the ”shadow” of the released X-ray energy.

Even if the soft tissues does not absorb as much of the X-rays as the
hard tissues, they still absorb some, so if a low energy photon source were
used, it would be difficult to see the difference of hard and soft tissues in
the resulting X-ray image. This is why X-ray on bones and other hard
tissues requires a photon source of high energy. High energy means more
radiation. A side-effect of X-ray imaging is the ionizing radiation from the
X-rays, but conventional X-ray imaging does not require a large amount
of radiation. Another disadvantage is that conventional X-ray imaging can
only be used to create 2D images, which limits the amount of information
gained. Advantages with X-ray imaging is that it is very fast to use and
good at bone imaging. Thus, X-ray imaging is widely used to detect bone
fractures and by dentists to exam teeth.

2.2.2 Computed Tomography

A computed tomography (CT) machine consist of an X-ray source (emitter)
that generates X-rays and releases them towards the patient. The detector
array at the opposite side receives the X-rays not absorbed by the patient.
The machine rotates around the patient while releasing X-rays to get in-
formation from all directions. The detector array (scintillator) transforms
the X-rays into proportionally strong electric currents which is represented
as image slices. By moving the table step by step a full 3D volume can be
created by combining the 2D slices together.

The advantages by using CT over a normal X-ray scan is that CT can
take images in any direction, and that the result is a volume of data. Anoth-
er advantage is the high contrast of the resulting images, CT can differenti-
ate between tissues with less than 1% density difference. But better quality
comes with a cost, increasing the quality of the images requires an increase
in the amount of radiation. So there is always a tradeoff between noise in
the images and the dosage of radiation. As mentioned before, X-rays are
ionizing, and the high amount of ionizing radiation from CT is its biggest
disadvantage. MRI is sometimes preferred over CT for small children, since
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the ionizing radiation effects younger people more. Unlike conventional X-

Figure 2.4: CT image of a head.

ray imaging which is mostly used to represent teeth and bone, CT is used
more broadly. CT is for example used to image the heart, abdomen, acute
and chronic changes in lung, detecting tumors in different parts of body, in
addition to bone fractures. Figure 2.4 depicts a regular CT image of the
head.

2.2.3 Magnetic Resonance Imaging

All electrons, protons and neutrons have an angular momentum around
their own axis, i.e. they have a spin. All charged objects with a spin and an
odd mass number creates a magnetic field around themselves. These small
magnetic fields are exploited by a MRI machine to generate the MRI signal.
These tiny magnetic fields are randomly aligned when no external force is
acting on them.

If a small magnetic field is inside a much stronger homogenous magnetic
field it will align itself according to the strong one. This is the idea behind
MRI. The fact that hydrogen is the most abundant element in the body
when considered as number of atoms, and its nucleus only consist of a single
proton makes hydrogen the most sensitive atom to MRI machines.

The magnetic fields generated by MRI machines used clinically today
vary from 0.2 to 3 tesla, and using stronger magnetic fields results in lower
signal-to-noise ratio. The homogenous magnetic field, B0, generated by the
MRI machine is aligned in a certain direction referred to as the longitudinal
direction. When B0 is turned on, the hydrogen protons in the patient’s
body are aligned parallel with it, i.e. in the longitudinal direction. Most
of the protons will align their magnetic field in the longitudinal direction,
causing a net magnetisation Mz aligned parallel with B0 (Mz = M0), while
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some will align in the opposite (antiparallel) direction. The favorable state
of the protons is when they are parallel with B0, which is the less energetic
and more stable state. While B0 is turned on, a small radio frequency pulse
(RF-pulse) is applied through a coil perpendicular to B0, towards the area
of the body to be examined. This RF-pulse has the same frequency as the
spin, or nuclear precession, of the hydrogen protons, thus affecting only
the hydrogen nucleus. The hydrogen protons aligned with B0 will absorb
this RF-pulse and jump to a higher energy state, and as a result align in a
direction away from B0, causing the net magnetisation Mz to rotate away
from the longitudinal direction. The amount of rotation depends on the
strength and length of the RF-pulse. The RF-pulse can therefore be used
to adjust the direction of net magnetisation to any angle. When the RF-
pulse is turned off, the absorbed energy is released, resulting in the protons
to return (relax) to being re-aligned with B0. The RF-pulse is continously
turned on and off, and the energy emitted (MR-signal) when relaxing is
picked up by receiver coils, processed by a computer and stored as a 3D
data volume.

In addition to the homogenous B0 field there are additional smaller
magnetic fields called gradient fields. The purpose of these non-homogenous
gradient fields is to determine the exact position of where to get a 2D slice
from. A gradient field changes the precession of the hydrogen protons along
the axis it is applied, and by sending out RF-pulses targeting these hydrogen
protons the exact position of the patients body to get a 2D slice from is
determined. Moreover, the gradient fields and the RF-pulse can also be
used to determine the thickness of the 2D slices.

The advantage of MRI over CT is that there is no ionizing radiation
associated with it. A disadvantage is that people with metal implants can
not use MRI because of the strong magnetic field. Another disadvantage is
that the imaging process takes long time, which is problematic for people
with claustrophobia since the patient have to be inside the machine.

T1 and T2 weighted images

The time interval between two successive RF-pulses is called the repetition
time (TR), and the time taken from the RF-pulse is applied to the peak
of the signal received by the coil is the echo time (TE). The time taken
after a RF-pulse for the net magnetisation Mz to re-align with B0 is called
the longitudinal or spin-lattice relaxation time. The magnetisation in the
longitudinal plane (z-axis) is given by

Mz = M0(1− e−t/T1), (2.1)
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where T1 is the time taken for Mz to recover 1−e−1 = 63% of the equilibrium
net magnetisation M0. T1 varies for protons of different tisse types. This
is measured and used as the main source of tissue contrast information
in T1-weighted images. T1-weighted images are created at the time of the
greatest difference between the T1 values of the tissues being examined, by
using short TR and TE . Increasing the magnetic field B0 increases T1, hence
increasing the strength of B0 gives better contrast in T1-weighted images.

Neighbouring molecules causes the hydrogen protons attached to differ-
ent types of molecules to experience slightly different local magnetic fields.
As a result, these hydrogen protons will precess at slightly different fre-
quencies. This causes the spins to dephase and decrease the net transverse
(xy-plane) magnetisation right after the RF-pulse is turned off, and is called
transverse or spin-spin relaxation. This decay of magnetisation in the trans-
verse plane is defined as

Mxy = M0 e
−t/T2 , (2.2)

where T2 is the time taken for transverse magnetisation to reach e−1 = 37%
of its initial value. The contrast in T2-weighted images are determined by
differences in T2 relaxation times of different tissue types, and is taken when
the difference in the T2 values is greatest.

The difference of T1 and T2-weighted images is illustrated in figure 2.5
(from [1]). Both images were taken with magnetic fields of 1.5 tesla. In

(a) (b)

Figure 2.5: (a): T1-weighted image, (b): T2-weighted image

T1-weighted images, fluids (such as the cerebrospinal fluid in figure 2.5 a)
are dark and fat-based tissues are brighter. This gives clear boundaries
between different tissue types, and is thus used to represent anatomical
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structures. Fluids are very bright and tissues are mid gray in T2-weighted
images. Therefore, T2-weighted are used to demonstrate pathology.

2.3 Segmentation

Image segmentation is the process of dividing an image into meaningful
non-overlapping regions or objects. The main goal is to divide an image
into parts that have strong correalation with objects of the real world. Seg-
mented regions are homogenous according to some property, such as pixel
intensity or texture. Mathematically speaking, a complete segmentation of
an image I is a finite set of regions I1, ...., IS such that the condition (from
[4])

I =

S⋃
i=1

Ii, Ii ∩ Ij = ∅, i 6= j (2.3)

is satisfied. Image segmentation is one of the first steps leading to image
analysis and interpretation. It is used in many different fields, such as
machine vision, biometric measurements and medical imaging.

Automated image segmentation is a challenging problem for many dif-
ferent reasons. Noise, partial occluded regions, missing edges and lack of
texture contrast between regions and background are some of these reasons.
Noise is an artifact often found in images which makes the segmentation
process harder. In the process of generating medical images noise is of-
ten introduced by the capturing devices. As a pre-processing step before
segmentation, the image can be smoothed to reduce noise. In the context
of medical images segmentation usually means a delineation of anatomical
structures. This is important for e.g. measurements of volume or shape.
Low level segmentation methods are usually not good enough to segment
medical images. Thus, higher level segmentation methods that are more
complex and gives better results are used. The biggest difference between
low-level segmentation methods and higher level segmentation methods is
the use of apriori information. Low-level methods usually have no infor-
mation about the image to be segmented, while high-level segmentation
methods can incorporate different types and amount of apriori information.

Traditional low-level image segmentation methods can roughly be divid-
ed according to the type of technique used:

• Global/Histogram based methods

• Region based methods

• Edge based methods
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2.3.1 Histogram-based segmentation methods

Global knowledge about an image is usually represented by the histogram of
the intensity values in the image. Histogram-based segmentation methods
uses this information to segment simple images. These segmentation meth-
ods are usually much faster than other methods, but restricted to images
with simple features.

Thresholding

The simplest segmentation approache is called thresholding. Thresholding
is used to seperate objects from the background using a threshold value T .
A threshold value splits the image in two groups, where all pixels with in-
tensity value higher than T represents an object or the foreground, and the
rest represents another object or the background. Choosing a good thresold
value is important, as small changes in the value can significantly affects
the resulting segmentation, which can be seen in figure 2.6c and 2.6d (de-
scribed in more detail later). The threshold can be selected manually by
either inspecting the image or the histogram of the image. But usually the
threshold is selected automatically, and a variety of methods for automat-
ically selecting T exists. When little noise is present, the mean or median
intensity values can be selected as the threshold. The simplest method to
select a threshold, apart from doing it manually, is iterative thresholding
and is computed as follows:

1. Choose an initial threshold T0 and segment the image.

2. The segmented image will consist of two groups, C1 and C2. Set the
new threshold value Ti to be the sum of the mean intensity values
from C1 and C2, divided by 2.

3. Segment the image using Ti.

4. Repeat steps 2 and 3 until |Ti − Ti−1| is less than a predefined value.

By using multiple threshold values the image can be split up into sev-
eral regions. Segmentation by thresholding is only suitable for very simple
images, where the objects in the image does not overlap and their intensi-
ty values are clearly distinct from the background intensity values. If the
threshold is poorly chosen, the resulting binary image would not be able to
correctly distinguish the foreground from the background.
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Otsu’s thresholding method

Otsu’s thresholding method assumes that the image contains two region-
s with the values in each region creating a cluster. Otsu’s method tries
to make each cluster (or class) as tight as possible, thus minimizing their
overlap. The goal then is to select the threshold that minimizes the com-
bined spread. The threshold that maximizes the between-class variance
σ2
b (t) = ω1(t)ω2(t) [µ1(t)µ2(t)]2 is sought after. ω1(t) and ω2(t) are the

weights (computed from the normalized histogram) of the two clusters, and
µ(t) is the mean intensity value of the clusters. Otsu’s method starts by
splitting the histogram into two clusters using an initial threshold. Then
σ2
b (t) is computed for that threshold value. The between-class variance σ2

b (t)
is then iteratively computed for every intensity value, and the threshold that
maximizes the between-class variance σ2

b (t) (or minimizes the within-class
variance) is chosen as the final threshold value.

Figure 2.6 illustartes a gray-scale image and the segmentation results
using both iterative global thresholding and Otsu’s method. The threshold
found using the iterative threshold method is 0.7332 where the range is
from 0 (black) to 1 (white). The threshold found using Otsu’s method is
0.7686. The image to be segmented is shown in figure 2.6a, and its histogram
in figure 2.6b. As can be seen from the histogram, it is not possible to
select a near perfect threshold by just looking at it. Figure 2.6c illustrates
the segmentation result from the iterative global thresholding method and
figure 2.6d is the segmentation result using Otsu’s method. Even though
the difference of the two threshold values is small, the segmentation results
have a considerable difference, where Otsu’s method gives a better result.

2.3.2 Region based segmentation

Region based segmentation methods tries to find homogenous regions based
on gray-scale, color, texture or any other pixel based measure in an image.
Pixels with similar properties are grouped together in regions Ii. The choice
of homogenity criteria is an important factor that affects the end segmenta-
tion result. In addition to the condition in equation 2.3, images segmented
by region based segmentation also satisfies the two following conditions:

• All regions Ii should be homogenous according to some specified cri-
teria: H(Ii) = true, i = 1, 2, ..., S.

• The region that results from merging two adjacent regions Ri and Rj
is not homogenous: H(Ii ∪ Ij) = false.



CHAPTER 2. BACKGROUND THEORY 14

(a)
(b)

(c) (d)

Figure 2.6: (a): Image to be segmented, (b): Histogram of image, (c): Seg-
mented using iterative global thresholding, with T = 0.7332, (d): Segmented
using Otus’s method with T = 0.7686.

An example of a homogenity criteria for a region could be all adjacent pixels
with intensity value within a range {x, y|x ± y}. That is, if two adjacent
pixels have intensity values in the range x± y they are in the same region.
Region based segmentation methods are usually better than edge based
segmentation methods in noisy images where the borders are difficult to
detect.

Region growing

An example where thresholding is insuficient is when parts of the foreground
have the same pixels values as part of the background. In this case, region
growing can be used. Region growing starts at a point (seed point) defined
to be inside the forground and grows to include neighbouring foreground
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pixels. This seed point is manually set at the beginning and consists of one
or more pixels. A small region of 4x4 or 8x8 can for example be chosen as a
seed region. The regions described by the seed points grows by merging with
their neighbouring points (or regions) if the homogenity criteria is met. This
merging is continued until merging any more would violate the homogenity
criteria. When a region cannot be merged with any of its neighbours it is
marked as final, and when all regions are marked as final the segmentation
is completed. The result of region growing can depend on the order in
which the regions are merged. Thus, the segmentation result may differ if
the segmentation begins, for example, in the top right corner or the lower
left corner. This is because the order of the merging can cause two similar
adjacent regions R1 and R2 not to be merged if an earlier merge of R1

and R3 changed the characteristics of R1 such that it no longer is similar
(enough) to R2.

Region splitting

Region splitting is the opposite of region growing, and starts with a single
region covering the whole image. This region is iteratively split into smaller
regions until all regions are homogenous according to a homogenity criteria.
One disadvantage of both region growing and region splitting is that they
are sensitive to noise, resulting in regions that should be merged remaining
unmerged, or merging regions that should not be merged.

2.3.3 Edge based segmentation

Edge based segmentation methods are used to find edges in the image by
detecting intensity changes. The edge magnitude at a certain point is the
same as the gradient magnitude, and the edge direction is perpendicular to
the gradient. Thus, change in intensity at a point can be detected by using
first and second order derivatives. There are various edge detection opera-
tors, and they all approximate a scalar edge value for each pixel in an image
based on a collection of weights applied to the pixel and its neighbours.
These operators are usually represented as rectangular masks or filters con-
sisting of a set of weight values. These masks are applied to the image to
be segmented using discrete convolution.
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First and second order operators

A simple second order edge detection operator is the Laplacian operator,
based on the Laplacian equation:

∇2f(x, y) =
∂2f

∂x2
+
∂2f

∂y2
(2.4)

This equation measures edge magnitude in all directions and is invariant to
rotation of the image. Second order derivatives are commonly discretized

by approximating it as ∂2f
∂x2

= f(x + 1, y) + f(x − 1, y) − 2f(x, y) which is
also how the Laplacian is discretized:

∇2f(x, y) = f(x+1, y)+f(x−1, y)+f(x, y+1)+f(x, y−1)−4f(x, y) (2.5)

This Laplacian equation is represented by the mask in equation 2.6, and
a variant of the equation that also takes into account diagonal elements is
shown in 2.7.0 1 0

1 −4 1
0 1 0

 (2.6)

1 1 1
1 −8 1
1 1 1

 (2.7)

Since the Laplacian mask is based on second order derivatives it is very
sensitive to noise. Moreover, it produces double edges and is not able to
detect the edge direction. The center of the actual edge can be found by
finding the zero-crossing between the double edges. Hence, the Laplacian
is usually better then first order derivatives to find the center-line in thick
edges. To overcome the sensitivity to noise problem, the image can be
smoothed beforehand. This is the idea behind the Laplacian of Gaussian
(LoG) operator. The LoG mask is a combination of a Gaussian operator
(which is a smoothing mask) and a Laplacian mask. By convolving an image
with a LoG mask it is smoothed at the same time as edges are detected.
The smoothness is determined by the standard deviation of the Gaussian,
which also determines the size of the LoG mask.

There are various masks based on first order derivatives, and two of
them are the Prewitt and Sobel masks, represented in equation 2.8 and 2.9
respectively. These two are not rotation invariant, but the masks can be
rotated to emphasize edges of different directions. The masks as they are
represented in equation 2.8 and 2.9 highlights horizontal edges.
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 1 1 1
0 0 0
−1 −1 −1

 (2.8)

 1 2 1
0 0 0
−1 −2 −1

 (2.9)

As can be seen from the above masks, the only difference between the Sobel
and Prewitt is that the middle column (or row in a rotated version) in the
Sobel mask is weighted by 2 and -2. This results in smoothing since the
middle pixel is given more importance, hence, the Sobel is less sensitive to
noise than Prewitt.

Figure 2.7a illustrates a gray-scale image and 2.7b is the edge segmented
image based on LoG. 2.7c is the edge image resulted from the Sobel mask
in equation 2.9b and 2.7d is the result from segmentation after rotating
the mask 90◦. The segmentations resulted by using the Prewitt operator
to segment the image in figure 2.7a had no significant difference from the
Sobel segmented images.

(a) (b)

(c) (d)

Figure 2.7: (a): Image to be segmented, (b): LoG, (c): Sobel - highlighting
horizontal edges, (d):Sobel - highlighting vertical edges
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Canny edge detector

A more powerful edge detection method is the Canny edge detector. This
method consist of four steps. The first step is to smooth the image based
on a Gaussian filter with a given standard deviation σ. In the next step
the derivatives in both directions are computed using any first order oper-
ator, and using these the gradient magnitude image and its direction are
computed. The gradient magnitude image typically contains wide ridges
around local maxima of the gradient. In order to get a single response to an
edge, only local maxima should be marked as edges. This process is called
non-maxima suppression. A simple way for non-maxima suppression is to
first quantize the edge directions according to 8-connectivity (or 4 connec-
tivity). Then consider each pixel with magnitude > 0 as candidate edge
pixels. For every candidate edge pixel look at the two neighboring pixels
in edge-direction and the opposite direction. If the magnitude of the candi-
date edge pixel is not larger than the magnitude of these neighboring pixels,
mark the pixel for deletion. When all candidate edge pixels are inspected,
remove all the candidates that are marked for deletion. Now all the edges
will contain a single response, but there still are lines/pixels that are not
part of any continues edge. To remove these, hysteresis thresholding is used.
Hysteresis thresholding consist of segmenting the image with two threshold
values. First, the non-maxima supressed images is thresolded with a high
thresold value Th that determines which of the remaining candidate edge
pixels are immediately considered as edge pixels (strong edges). The high
threshold value leads to an image with broken edge contours. Therefore a
low thresold value Tl is used to threshold the non-maxima supressed image
again. The pixels in this segmented image that are connected to a strong
edge are added to the final edge image.

The Canny edge detector gives different results based on the values of σ,
Th and Tl, but the derivative operator used to find the magnitude and how
the non-maxima suppression was implemented also affects the final edge
segmented image.

2.4 Parallel computing in GPU

A huge disadvantage with the level set method for segmentation is that it
is very slow when working with big data volumes in 3D space. Implementa-
tions of level set algorithms for 3D in the graphical processing unit (GPU)
parallelizes the level set method and makes it much faster. One of the first
GPU based 3D implementations of the level set method was by Lefohn et



CHAPTER 2. BACKGROUND THEORY 19

al. in [9] in 2003. In this paper a modified sparse field level set method was
implemented for the GPU using graphic APIs such as OpenGL and Direc-
tX. In the past few years general purpose GPUs have made implementing
level set methods and other non-graphical tasks in GPUs much easier. In
[10] some simple medical segmentation algorithms was implemented using
NVIDIAs CUDA technology, and in [11] CUDA was used to implement the
level set method.

2.4.1 Data and task parallelism

Data and task parallelism are the two main categories of computer paral-
lelism. Data parallelism is achieved by having different units execute the
same task on different data in parallel. This type of parallelism is used in im-
age processing where for example all pixels are increased by the same value.
When using task parallelism the tasks are seperated to different executional
units (usually cores) and executed on different data. Task parallelism is
seperated into two parts based on the type of communication used between
the executional units. These two methods are the shared memory method,
and the message passing method used in distributed memory. When using
shared memory, the executional units have a shared space in the memory
that all executional units can read from and write to. To control that no
conflicts arises when multiple units accesses the shared memory, locks have
to be used. By using locks the part in memory that a unit is writing to can-
not be accessed by any other unit, and only when a unit is finished writing
is the lock released to provide other units access to the memory data or the
lock. Synchronization to prevent race conditions (occurs when operations
depending on each other is executed in the wrong order) so that a unit does
not change the value of a memory location before other units have used it
is also an important factor when using shared memory. Pthreads is an API
that supports shared memory multiprocessing, and another which will be
introduced later in this chapter is OpenMP. The other method for commu-
nication between the units is message passing which is used in distributed
memory systems such as supercomputers. The communication is handled
by sending and receiving messages between the units. Messages sent can be
one of several different types, such as synchronous or asynchronous, one-to-
one or one-to-many. Several message passing systems exists, some of them
being the Java Remote Method Invocation, Simple Object Access Protocol
(SOAP) and the popular Message Passing Interface (MPI).
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2.4.2 Central processing unit

The central processing unit (CPU) is responsible for carrying out instruc-
tions of computer programs and managing hardware. It runs most processes
on the computer and has therefore been optimized to handling many kinds
of tasks. Before multiple cores was intruduced to the CPU it was common
to run multiple processes using time multiplexing to give the appearence
of parallelism. Today most CPU’s have multiple cores and can run many
processes in parallel by assigning them to different cores. If more than one
process runs on any one core, time multiplexing is often used.

2.4.3 Flynn’s taxonomy of computer architectures

Michael J. Flynn proposed in 1996 a taxonomy of classification of computer
architectures. Taxonomy is the study of the general principles of scientific
classification. Flynn described four different types based on the use use of
one or multiple numbers of data and instructions.

Single Instruction Single Data - SISD

The SISD architecture uses no parallelism in either the data stream or the
instruction stream. SISD is used in uniprocessors and exectues a single
instruction on a single data. Figure 2.8 illustrates how SISD works. In the
figure processing unit is abbreviated as PU.

Figure 2.8: Single Instruction Single Data.
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Single Instruction Multiple Data - SIMD

Architectures based on SIMD uses multiple processing units to execute a
single instruction on multiple data. Thus SIMD uses data level parallelism
as previously discussed. Modern CPUs are all able to perform SIMD in-
structions and they are able to load n numbers (n may vary depending on
design) of data to memory at once and and execute the single instruction
on the data. An example where SIMD instrctions can be used is in image
preocessing where several pixels are to be added or subtracted the by samme
value. How SIMD instructions works is shown in figure 2.9

Figure 2.9: Single Instruction Multiple Data.

Multiple Instruction Single Data - MISD

MISD is the least used archetecture type of the four in Flynn’s taxonomy.
This is because doing multiple instructions on a single data is much less
scalable and it does not utilize computational resources as good as the rest.
MISD is illustrated in figure 2.10.

Multiple Instruction Multiple Data - MIMD

Being able to do multiple instructions on multiple data is possible by having
different processors execute instructions on multiple data. Modern CPUs
consisting of several cores are all based on MIMD for parallelism. MIMD is
illustrated in figure 2.11.
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Figure 2.10: Multiple Instruction Single Data.

Figure 2.11: Multiple Instruction Multiple Data.

2.4.4 Graphics processing unit

A graphics processing unit (GPU) is a specialized chip that initially was
designed to offload the CPU and accelerate processes associated with com-
puter graphics. The process of computing the color of each pixel on screen
is memory intensive but independent of each other and thus highly paral-
lelizable. The architecture commonly associated with GPU’s is SIMD.
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2.4.5 General Purpose GPU

The GPU was developed to be able to perform graphics operations on large
data structures in parallel. Earlier, if we wanted to perform something oth-
er than graphics operations we had to translate the code to something the
GPU was able to understand. A GPGPU is simply a GPU that is able
to perform computations normally handled by the CPU. GPGPU’s were
developed because of the potential speedup associated with parallelizing a
program. OpenCL and CUDA are the two dominant open GPGPU com-
puting languages. Unfortunately, GPGPU’s come with certain restictions in
operations and programming and is therefore not always a good alternative
to CPU execution.

2.4.6 OpenMP

OpenMP is an API that supports shared memory parallel programming in
C, C++, and Fortran for multiple processor architecture types and operative
systems. OpenMP was designed to allow programmers to incrementally
parallelize existing serial programs, which is difficult with MPI and Pthreads
[14]. OpemMP makes it simple to code parallel behaviour by allowing the
compiler and run-time system to determine some of the thread behaviours
details. OpenMP is a directive based API, which means that a a serial
code can be paralellized with little effort and a carefully written OpenMP
program can be compiled and run as a serial program if the compiler does
not support OpenMP.

2.4.7 CUDA

CUDA (Compute Unied Device Architecture) is a program development
environment introduced by NVIDIA in 2006 for their GPUs in C/C++ and
Fortran[?]. CUDA and OpenCL (which unlike CUDA supports all kinds of
GPUs) have made GPU programming much more user-friendly than before,
when the tasks had to be transformed into rendering problems. CUDA
programs are initialized on the CPU (called the host) and then the data
needed for the computation in the GPU (called the device) is initialized in
the CPU and copied over the PCI bus to the GPU. When the computation
is finished, the results are copied back to the CPU. In CUDA, a kernel is
a program (function) that is executed in the device. The kernel code is
run in parallel on a number of threads. Threads are grouped into blocks
whose size (number of threads in a block) and dimension (up to 3D) can be
decided by the programmer, within the maximum limit of 1024 threads per
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block (for compute capability of 2.0 or higher). But 32 threads will always
execute the same code (even if less than 32 executions is needed), and such
a group of 32 threads is called a warp. Thus, the number of blocks used
should be a multiplum of the warpsize to achieve maximum performance.
It must be noted that warps are not a part of the CUDA model but device
dependent, and even though the warpsize usually is 32, it does vary from
device to device. Figure 2.12 illustrates the programming model of CUDA,
which also shows that a set of blocks is called a grid.

Figure 2.12: CUDA programming model.

Each thread in CUDA have its own registers and local memory, and all
the threads in a block have a shared memory, all of which can be written
to and read from the device. In addition all threads in a grid share global,
constant and texture memory which can be read and written by the host
and the device (constant and texture memory is read-only for the device).
How these are connected together is indicated in figure 2.13. Registers
are the smallest, but also the fastest, and the per-thread register limit for
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compute capability (version) 3.0 is 63 registers per thread. If a thread needs
more than 63 registers the shared memory is used (L1 cache) which is much
slower. And if even more is needed the even slower global is also used.

Figure 2.13: CUDA memory model.

Functions used in CUDA code can be of different types. A global func-
tion (with the identifier global in front) is a function that runs on the de-
vice, but only callable from the host. The second type is device ( device ),
and this type of functions are only callable by functions running on the de-
vice, i.e. device and global functions. The last type, host, is code that only
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runs on the host. Host functions can be identified by the syntax host in
front of the return type, but this is not required. NVIDIAs own compiler,
nvcc, splits up the code into host and device components, compiles the glob-
al and device functions itself, and lets the standard host compiler compile
the host code. If the same functions is needed in both host and device it
can be compiled as by both nvcc and the host compiler if it is identified by
both host and device . The syntax for calling a kernel from the de-
vice is kernelName<<<numBlocks, numThreadsPerBlock>>>(arg1, arg2,
..., argN). The triple angle brackets indicate that it is a kernel launch. The
first number within these brackets is dimension of the grid, measured in the
number of blocks in that grid. The second is the block dimension, i.e. the
numbers of threads in a block. Calling a kernel with X number of blocks
and Y number of threads per block results in X ∗ Y parallel executions of
that kernel.

Algorithm 2.1 (from [15]) is a simple CUDA program in C++ that shows
the basic CUDA syntax. In line 4 three arrays are created, and in line 5
copies of these to be used in the device is created. These have to be pointers
(even if they are not arrays as in this case) because they are to be used on
the device and must point to device memory. In line 9-11 space is allocated
for the arrays using cudaMalloc in the device just like calling malloc would
allocate space on the host. After two of the arrays have been filled with
random values they are copied over to the device using the cudaMemcpy
function in line 22-23. The cudaMemcpy function takes in four inputs. The
first input is the destination address, which in this case was allocated in
line 9-10, the second input is the source to copy, the third input is the
size in bytes and the last input is the type of transfer. Type of transfer is
either cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost indicating
transfer from host to device and device to host, respectively. On line 26
the kernel is launched. The code within the kernel (line 38-43) is written as
serial code, and to differentiate between the different threads all threads can
be assigned an unique thread identification. This thread-id is calculated as
the id of the thread within the block (threadIdx), plus the id of the block
(blockIdx) times the number of blocks (blockDim). The if-sentence in line
40 avoid errors in case the size of the array is less than the number of threads
started (not necessary in this case since the number of threads is equal to
the array size). Inside the if-sentence each thread does one addition with its
thread-id as the position in the arrays. At line 29 the result array is copied
back to the CPU, and lastly the allocated space in the GPU is freed in line
32-34.

1 #define N (2048∗2048) //number o f t h reads
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2 #define M 512 //number o f t h reads per b l o c k
3 int main ( void ) {
4 int ∗a , ∗b , ∗c ; // hos t cop i e s o f a , b , c
5 int ∗dev a , ∗dev b , ∗dev c ; // dev i c e cop i e s o f a , b , c
6 int a r rayS i z e = N ∗ s izeof ( int ) ; // need space f o r N

i n t e g e r s
7
8 // a l l o c a t e dev i c e cop i e s o f a , b , c
9 cudaMalloc ( (void ∗∗)&dev a , a r r ayS i z e ) ;

10 cudaMalloc ( (void ∗∗)&dev b , a r r ayS i z e ) ;
11 cudaMalloc ( (void ∗∗)&dev c , a r r ayS i z e ) ;
12
13 a = ( int ∗) mal loc ( a r r ayS i z e ) ;
14 b = ( int ∗) mal loc ( a r r ayS i z e ) ;
15 c = ( int ∗) mal loc ( a r r ayS i z e ) ;
16
17 // f i l l t he a and b arrays wi th randon i n t e g e r s
18 random ints ( a , N ) ;
19 random ints ( b , N ) ;
20
21 // copy inpu t s to dev i c e
22 cudaMemcpy( dev a , a , a r rayS ize , cudaMemcpyHostToDevice ) ;
23 cudaMemcpy( dev b , b , ar rayS ize , cudaMemcpyHostToDevice ) ;
24
25 // launch add () k e rne l wi th b l o c k s and threads
26 add<<< N/M, M >>>( dev a , dev b , dev c ) ;
27
28 // copy dev i c e r e s u l t back to hos t copy o f c
29 cudaMemcpy( c , dev c , ar rayS ize , cudaMemcpyDeviceToHost ) ;
30
31 f r e e ( a ) ; f r e e ( b ) ; f r e e ( c ) ;
32 cudaFree ( dev a ) ;
33 cudaFree ( dev b ) ;
34 cudaFree ( dev c ) ;
35 return 0 ;
36 }
37
38 g l o b a l void add ( int ∗a , int ∗b , int ∗c ) {
39 int threadId = threadIdx . x + blockDim . x∗ blockIdx . x ;
40 i f ( threadId < a r rayS i z e ) {
41 c [ threadId ] = a [ threadId ] + b [ threadId ] ;
42 }
43 }

Listing 2.1: Simple CUDA program
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Level Set Method

3.1 Introduction

Surfaces that evolves over time can be difficult to represent. Taking the sur-
face in figure 3.1 as an example, assume that the red surface is heat and the
arrows on the interface as the direction of its movement, which is normal to
the interface itself. One way to represent the propagation of this interface is
by the function y = f(x, t), where t represents time and x, y are coordinates.
The problem with this representation is that it cannot represent every con-
cievable shape of the interface. If for instance the shape of the interface
has more y coordinates for a particular x coordinate (which is true for all
closed interfaces), the interface cannot be correctly represented using this
notation. A better alternative is to use a parametric equation. The prob-

Figure 3.1: Interface of a moving surface.

lem mentioned above would then be solved because the interface would only
depend on the time variable t. But parametric representation of evolving

28
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interfaces have its own difficulties. When a surface evolves, the model have
to be reparemeterized, which due to the computional overhead (especially
in 3D) add limitations to what kind of shapes a parameterical model can
represent effectively. Topological changes, such as splitting or merging part-
s during the propagation is difficult to represent using parametric models.
Sharp corners, distant edges blending together and the complexity of rep-
resenting boundaries in higher dimensions are some other reasons why an
evolving surface is difficult to represent parametrically. A simple example
is shown in figure 3.2. The two interfaces have to be represented as a single
parametric function when merging and as two seperate againg when they
split, and some sort of collison detection must be used to discover when the
interfaces merge/split.

Figure 3.2: Interface evolution difficult to represent parametrically.

As a solution to all the problems mentioned above, Osher and Sethi-
an introduced the level set method in 1988 in [2]. The main idea behind
the level set method is to represent the interface of a surface implicitly by
using a higher dimensional function. Adding an extra dimension simplifies
the problems mentioned above significantly. This higher dimension func-
tion is called the level set function, and a 2D interface (a curve) would be
represented by the 3D level set function

φ(x, y, t) (3.1)

where the additional dimension t represents time. Similarly any 3D or
higher level function can be represented by a level set function by adding
one dimension. At a given time step, the evolving surface/model can be
represented as a closed curve by the boundary of the level set at that time
step. This representation of the model is called the zero level set and is
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defined as the set of points where the level set is zero:

Γ(x, y, t) = {φ(x, y, t) = 0}. (3.2)

The initial curve is at the xy-plane, that is, at φ(x, y, 0). As an example,
figure 3.3a depicts a circle with arrows pointing in the direction it is evolv-
ing, and figure 3.3b is the cone that represents the corresponding level set
function with the start-position in red.

(a) (b)

Figure 3.3: (a): Circle with arrows pointing in direction of movement, (b):
Corresponding level set function

Assuming that the zero level set moves in a direction normal to the speed
F, then φ satisfies the level set equation

∂φ

∂t
= |∇φ|F (3.3)

which is used to update the level set at each time step (iteration). Here
|∇φ| represents the gradient of φ, and the speed function F describes how
each point in the boundary of the surface evolves. The level set method is
applied in many different contexts, such as image processing, fluid dynamics
and other simulations, and the speed function F depends on the type of
problem being considered.
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3.2 Speed function for image segmentation

An often used speed function for image segmentation that combines a data
term and the mean curvature of the surface is [9, 8]

F = αD(I) + (1− α)∇ ∇φ
|∇φ|

(3.4)

where∇·(∇φ/|∇φ|) is the normal vector that represents the mean curvature
term which keeps the level set function smooth. D(I) is the data function
that forces the model towards desirable features in the input data. The free
weighting parameter α ∈ [0, 1] controls the level of smoothness, and I is the
input data (the image to be segmented). The smoothing term α restricts
how much the curve can bend and thus alleviates the effect of noise in the
data, preventing the model from leaking into unwanted areas[8]. This is
one of the big advantages the level set method has over classical flood fill,
region grow and similar algorithms, which does not have a constraint on the
smoothness of the curve.

A simple data function for any point (pixel, voxel) based solely on the
input intensity I at that point[9, 8] is:

D(I) = ε− |I − T | (3.5)

Here T is the central intensity value of the region to be segmented, and ε is
the deviation around T that is also considered to be inside the region. This
makes the model expand if the intensity of the points are within the region
T ± ε, and contract otherwise. The data function, plotted in 3.4, is gradual,
thus the effects of D(I) diminish as the model approaches the boundaries
of regions with gray-scale levels within the T ± ε range [8]. This results in
the model expanding faster with higher values of ε and slower with lower
values.

The level set algorithm is initialized by placing a set of seed points that
represents a part inside the region to be segmented. These seed points are
represented by a binary mask of the same size as the image to be segment-
ed. This mask is used to compute the signed distance function which φ is
initialized to be the signed distance transfrom.
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Figure 3.4: The data function, from [9].

3.3 Signed Distance Transform

A distance function D : R3 → R for a set S is defined as

D(r, S) = min(r − S) for all r ∈ R3 (3.6)

If a binary image have one or more objects, a distance function can be
used to assign a value for every pixel (or voxel in 3D) that represents the
minimum distance from that pixel to the closest pixel in the boundary of the
object(s). That is, the pixels in the boundary of an object are zero valued,
and all other pixels represent the distance to the boundary as a value. Using
a distance transform was the idea of how to initialize φ in [2], where it was
initialized as φ = 1 ± D2. But in [6] it was showed that initializing φ
to a signed distance function gives more accurate results. Signed distance
transforms (SDT) assign for each pixel a value with a positive or negative
sign that depend on whether the pixel is inside or outside the object. The
values are usually set to be negative for pixels that are inside an object, and
positive for those outside. The pixels of the model, which represents the
boundary (the zero level set), have values 0. A binary image containing an
object is shown in figure 3.5a (the numbers in this image represent intensity
values). Figure 3.5b is the signed distance transform of 3.5a where city-
block (manhattan) distance have been used, and figure 3.5c is the signed
Euclidean distance transform (SEDT).

As can be seen from the figures above, using different kind of functions
for the SDT can result in different distances. These differences effects the
accuracy of the level set function, which may leads to different end-results
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(a) (b)

(c)

Figure 3.5: (a): Binary image, (b): SDT based on city-block distance, (c):
SDT based on euclidean distance

of the segmentation, hence, the function used to represent the distance have
to be carfully chosen. However, sometimes a less accurate SDT have to be
used as a tradeoff for faster computation time.

3.4 Discretization by upwinding and difference of
normals

To use the level set method in image processing it have to be discretized,
but simple forward finite difference schemes cannot be used because such
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schemes tends to overshoot and are unstable. To overcome this problem the
up-winding scheme was proposed in [2]. To avoid the overshooting problems
associated with forward finite differences the up-winding scheme uses one-
sided derivatives that looks in the up-wind direction of the moving interface.
Let φn and Fn represent the values of φ and F at some point in time tn.
The updating process consist of finding new values for φ at each point after
a time interval ∆t. The forward Euler method is used to get a first-order
accurate method for the time discretization of equation 3.3, given by (from
[5])

φn+1 − φn

∆t
+ Fn · ∇φn = 0 (3.7)

where φn+1 is φ at time tn+1 = tn + ∆t, and ∇φn is the gradient at time
tn. This equation is expanded as follows (for three dimensions):

φn+1 − φn

∆t
+ unφnx + vnφny + wnφnz = 0, (3.8)

where the techniques used to approximate the unφnx, vnφny and wnφnz terms
can be applied independently in a dimension-by-dimension manner [5]. When
looking at only one dimension (for simplicity), the sign of un would indicate
whether the values of φ are moving to the right or to the left. The value un

can be spatially varying, hence by looking at only one point xi in addition
to only look at one dimension, equation 3.8 can be written as

φn+1
i − φni

∆t
+ uni (φx)ni = 0, (3.9)

where (φx)ni denotes the spatial derivative of φ at point xi at time tn. The
values of φ are moving from left to right if ui > 0, thus the points to the
left for xi are used to determine the value of φ at point xi for the the next
time step. Similarly, if ui < 0 the movement is from right to left, and the
points to the right of xi are used. As a result, φx is approximated by the
derivative function D+

x when ui < 0 and D−x when ui > 0. When ui = 0 the
term ui(φx)i equals zero, and approximation is not needed. Extending this
to three dimensions, the derivatives used to update the level set equation
are

Dx =
φi+1,j,k − φi−1,j,k

2
Dy =

φi,j+1,k − φi,j−1,k

2
Dz =

φi,j,k+1 − φi,j,k−1

2

D+
x = φi+1,j,k − φi,j,k D+

y = φi,j+1,k − φi,j,k D+
z = φi,j,k+1 − φi,j,k

D−x = φi,j,k − φi−1,j,k D+
y = φi,j,k − φi,j−1,k D+

z = φi,j,k − φi,j,k−1
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(3.10)

which is taken from the appendix of [8]. This is a consistent finite difference
approximation to the level set equation in 3.3, because the approximation
error converges to zero as ∆t → 0 and ∆x → 0 [5]. In addition to being
consistent, it also have to be stable in order to get the correct solution. Sta-
bility guarantees that small errors in the approximations are not amplified
over time. The stability can be enforced using the Courant-Friedreichs-
Lewy (CLF) condition which says that the numerical wave speed ∆x

∆t must
be greater than the physical wave speed |u|,

∆t =
∆x

max{|u|}
, (3.11)

where max{|u|} is the largest value of |u| on the model.
The gradient ∇φ is approximated to either ∇φmax or ∇φmin depending

on whether the speed function for a given point Fi,j,k is positive or negative,

∇φ =

{
||∇φmax||2 Fi,j,k > 0
||∇φmin||2 Fi,j,k < 0

(3.12)

where ∇φmax and ∇φmin is given by (from [8])

∇φmax =



√
max(D+

x , 0)2 +max(−D−x , 0)2

√
max(D+

y , 0)2 +max(−D−y , 0)2

√
max(D+

z , 0)2 +max(−D−z , 0)2


(3.13)

∇φmin =



√
min(D+

x , 0)2 +min(−D−x , 0)2

√
min(D+

y , 0)2 +min(−D−y , 0)2

√
min(D+

z , 0)2 +min(−D−z , 0)2


(3.14)

The curvature term ∇· (∇φ/|∇φ|) of the speed function F is discretized
using the difference of normals method. The second order derivatives are
computed first:

D+y
x = (φi+1,j+1,k − φi−1,j+1,k)/2 D−yx = (φi+1,j−1,k − φi−1,j−1,k)/2
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D+z
x = (φi+1,j,k+1 − φi−1,j,k+1)/2 D−zx = (φi+1,j,k−1 − φi−1,j,k−1)/2

D+x
y = (φi+1,j+1,k − φi+1,j−1,k)/2 D−xy = (φi−1,j+1,k − φi−1,j−1,k)/2

D+z
y = (φi,j+1,k+1 − φi,j−1,k+1)/2 D−zy = (φi,j+1,k−1 − φi,j−1,k−1)/2

D+x
z = (φi+1,j,k+1 − φi+1,j,k−1)/2 D−xz = (φi−1,j,k+1 − φi−1,j,k−1)/2

D+y
z = (φi,j+1,k+1 − φi,j+1,k−1)/2 D−yz = (φi,j−1,k+1 − φi,j−1,k−1)/2

(3.15)

Then these derivatives are used to compute the normals n+ and n− in
equation 3.16, which is used to compute the mean curvature H in equation
3.17 taken from [8].

n+ =



D+
x√

(D+
x )2+(

D+x
y +Dy

2
)2+(

D+x
z +Dz

2
)2

D+
y√

(D+
y )2+(

D
+y
x +Dx

2
)2+(

D
+y
z +Dz

2
)2

D+
z√

(D+
z )2+(

D+z
x +Dx

2
)2+(

D+z
y +Dy

2
)2



n− =



D−
x√

(D−
x )2+(

D−x
y +Dy

2
)2+(

D−x
z +Dz

2
)2

D−
y√

(D−
y )2+(

D
−y
x +Dx

2
)2+(

D
−y
z +Dz

2
)2

D−
z√

(D−
z )2+(

D−z
x +Dx

2
)2+(

D−z
y +Dy

2
)2


(3.16)

H =
1

2
∇ · ∇φ
|∇φ|

=
1

2
[(n+

x − n−x ) + (n+
y − n−y ) + (n+

z − n−z )] (3.17)

Finally, the level set equation is updated as

φ(t+ ∆t) = φ(t) + ∆tF |∇φ|. (3.18)
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3.5 Chan-Vese engergy function

The speed function of the the level set discussed so far is one of the most
popular speed functions used, along with many modifications and improve-
ments of it based on the problems at hand. But this far from the only speed
function out there. The Chan-Vese energy funtion is another function that
is used as speed function to evolve the level set. The Chan-Vese model
is a powerful and flexible method which is able to segment many types of
images, and is used widely in the medical imaging field, especially for the
segmentation of the brain, heart and trachea.

In this project a simplified version of the Chan-Vese function is used.
This simplified version of the Chan-Vese energy function (ECV ) is defined
as:

ECV (c1, c2, C) =

∫
inside(C)

(µ(x, y)−c1)2 dx dy+

∫
outside(C)

(µ(x, y)−c2)2 dx dy [13]

(3.19)
where µ is the image, and C is a closed segmentation curve. In the context
of the level set function C is the curve defined by the zero level set. The
constants c1 and c2 are the average greyscale intensity values inside and
outside of C, respectively. Discretizing this energy function and writing it
as a pixelwise function gives

ECV (x, y) = (µ(x, y)− c1)2 − (µ(x, y)− c2)2. (3.20)

The average values c1 and c2 can chosen by sampling intensity values
both outside and inside of the object to be segmented and averaging them.
When the algorithm is calculating the speed of a point in the interface
(determining whether its going to expand or retract) it looks at its pixel
value and compares it to the measured mean values of the foreground and
background. The speed, either positive, negative, or zero, depends on which
of the two mean values it resembles the most. This simplified version of the
Chan-Vese function acts much like a simple region grow method without
any consideration for curvature and smoothness of the zero level set.

3.6 Narrow Band

3.6.1 Introduction

When working with the level set of a single interface a huge drawback with
the originally proposed level set method is the computional inefficiency due
to computing over the whole domain of φ. As a solution to this problem
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Adalstein and Sethian proposed the narrow band method in 1994[3]. The
narrow band looks at the interface of a single level set instead of the whole
domain, and thereby decreases the computational labor of the standard
level set method for propagating interfaces considerably. Another reason
the narrow band was proposed are problems where the velocity field is only
given on the interface. In such cases the construction of an appropriate speed
funcion for the entire domain made use of the classical level set method a
significant modeling problem.

3.6.2 Overview of the Narrow Band method

Unlike the original level set method, which describe the evolution of an
embedded family of contours, the narrow band works with only a single
surface model[7]. That is, instead if calculating φ over the whole domain it
focuses only on a small part surrounding the surface. There are many cases
in which the description of the evolution of only one surface in the domain
is needed, and in such cases the narrow band method operates much faster
while delivering the same results. The method ignores points that are far
away from the zero level set at each iteration and only looks at the points
within a narrow band. This is possible because points far away from the
zero level set do not have any influence on the result. That is, only the area
of φ where φ ≈ 0 is important for accurate representation of the level set.
The narrow band method restrict the computation to a thin band of points
by extending out approximately k points from the zero level set (shown in
figure 3.6), and an embedding of the evolving interface is constructed via
a signed distance transform. All points outside the band is set to constant
values to indicate that they are not within the band and thus should not
be used in the computation. This reduces the number of operations at each
iteration from O(nd+1) to O(nkd) [3] where d is the number of dimensions
and n is the (average) number of points in one dimension. The points within
the band is used to calculate the distance function and then to initialize φ
to the signed distance. As the zero level set evolves, φ will get further and
further away from its initialized value as signed distance. As this happens
φ must be ensured to stay within the band. One way to do this would be
to make a new band for each iteration. But determining which points are
to be inside the band, and deciding how to take the differentials at the edge
points makes the reconstruction process of the band time consuming. Thus
a given band is used for several iterarions with the same initialization of φ.
When the interface gets close to the band it has to be reset from the current
position of the zero level set and φ must be reinitialized. Reinitializing φ
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Figure 3.6: The narrow band extending out with a width of k from the level
set.

at every iteration takes too much time and the alternative task of finding
out if any of the pixels in the zero level set are getting close to the edge
of the band (for every iteration) also takes time. Hence, φ is usually just
reinitialized after a fixed number of iterations, which keeps φ approximately
equal to the SDT.

As metioned in the section about signed distance transforms, different
SDTs can lead to slightly different end-results and must be carefully chosen.
If the technique used to approximate φ to a signed distance function is
too sensitive, φ needs to be reinitialized accurately and often. If it is less
sensitive, it does not have to be initialized so often and a less accurate
method can be used, but this may lead to noisy features [5].

The narrow band, despite its improvements over the original level set
method, is not optimal. The band used being too wide is the main reason.
Even if k=2 is enough to compute the necessary derivatives, the band have
to be of a certain width (k=12 was used in the test of topological changes
in [3]) because of two competing computional costs[7]. The first is the cost
of computing the position of the curve and the SDT, and reset the band.
The second is the cost of computing the evolution process over the entire
band.

3.7 Sparse Field

3.7.1 Introduction

The narrow band method assumes that the computation of the SDT is so
slow that it cannot be computed for every iteration. The sparse field method
introduced in [7] uses a fast approximation of the distance transform that
makes it feasible to compute the neighborhood of the level set model for
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each iteration. In the sparse field method the idea of using a thin band is
taken to the extreme by working on a band that is only one point wide. To
keep track of the band a set of points, active points, are defined. The set of
these active points, the active set, is equal to the zero level set. Using only
the active set to compute the derivatives would not give sufficient accuracy,
hence the method extends out from the active points in layers one pixel wide
to create a neighborhood that is precisely the width needed to calculate the
derivatives for each time step.

Several advantages to this approach are mentioned in [7]. Like stated
above, no more than the precise number of calculations to find the next
position of the zero level set surface is used. This also results in that only
those points whose values control the position of the zero level set surface
are visited at each iteration, which minimizes the calculations necessary.
The number of points being computed is so small that a linked-list can be
used to keep track of them.

The sparse field algorithm is based on an important approximation. It
assumes that points adjacent to the active points undergo the same change
in value as their nearby active set neighbours. But despite this, the errors
introduced by the sparse field algorithm are no worse than the error in the
original level set algorithm.

As a result of only visiting the grid points whose values are changing
(the active points and their neighbors) at each time step, the computation
time is O(dn−1) , where d is the number of pixels along one dimension of the
problem domain [7]. This is the same as for parameterized models where the
computation times increase with the resolution of the domain, rather than
the range. Comparing this with the fact that the originally proposed level
set method has O(dn) computation time, the sparse field should perform
considerable faster. This was confirmed in [7], where these two methods
were compared. Their sparse field algorithm achieved a speed increase of
34.8 times in a 300x300 image containing a circle of radius N/3 moving
inwards with constant speed.

3.7.2 Overwiew of the Sparse Field method

A disadvantage of the narrow band method is that the stability at the
boundaries of the band have to be maintained (e.g. by smoothing) since
some points are undergoing the evolution while other neighbouring points
remain fixed. The sparse field method avoid this by not letting any point
entering or leaving the active set affect its value. A point enters the active
set if it is adjacent to the model. As the model evolves, points that are
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no longer adjacent to the model are removed from the active set. This is
performed by defining the neighborhoods of the active set in layers and
keeping the values of points entering or leaving the active set unchanged. A
layer is a set of pixels represented as Li where i is the city-block (manhattan)
distance from the active set. The layer L0 represents the active set, and L±1

reprsents pixels adjacent to the active set on both sides. Using linked lists
to represents the layers and arrays (matrices) to represent distance values
makes the algorithm very efficient.

As described in section 3.4, the Up-Winding scheme is used to calculate
the curvature in an area a point in a grid. This scheme uses both first and
second order derivatives, and to calculte them it needs a 3x3x3 grid (in 3D)
of points surrounding the active point whose speed is being calculated. This
creates a lower limit for the number of layers needed surrounding the active
set. In addition to the active set which is stored in L0, four additional lists
are needed, L1 L2 L−1 L−2. These lists keeps track of where the points of
computational significance are located at any time during execution. They
are defined by their closeness to, and on which side of L0 they are located.
L−1 and L1 are defined as the layers of neighbouring points to L0 on the
inside and outside, respectively, of the object under segmentaion. Likewise,
L−2 and L2 are defined as the neighbours to L−1 and L1. Like the other
aproaches to the level set method, the datastructure that tracks the evolu-
tion of the interface is an array (φ) with the same dimensions as the problem
domain. It is important to note that the lists are used to keep track of which
points are in the active set and their neighbours, and changes in φ must be
reflected in these lists.

The initialization process of the interface is fairly straight forward and
starts by defining a seed point. This is usually a binary mask, of equal size
as the problem domain, consisting of points defined as either inside (seed)
or outside the mask. The points in the border of the seed (points inside the
object with neighbours defined as outside points) are defined as the active
set (i.e. zero level set). This is reflected by assigning the corresponding
points in φ to 0, and by adding them to the L0 list. The other lists are then
filled with points according to their definitions, and φ is updated accordingly
(more about this later).

Each iteration consist of three main steps. First, points in φ who are
members of the active set are updated by the speed function. Secondly
these changes are reflected in the neighbouring layers, and finally, the lists
are updated accordingly. How these steps are executed will be described in
chapter 4.



Chapter 4

Sparse Field - Implemented
code

4.1 Introduction

The sparse field level set method was implemented in C++ for this project,
and the implemented code is mainly based on the pseudocode in [12], which
again is based on Whitaker’s introduction to the sparse field method in [7].

The sparse field was first implemented in 2D and after bugfixing and
some test-runs it was extended to 3D, which executes and runs in the exact
same way as the 2D version. Later the code was parallelized by implement-
ing it in CUDA. The implemented code of the all versions can be found in
the Appendix.

This chapter will give a detailed explanation of the implemented code
and how it works. Henceforth, when the word pixel is meantioned it can
have slightly different meanings. Elements in different arrays will be referred
to as pixels (even if they actually are integer of floating point values), as
will the elements in all the lists.

4.2 The layers and their representation

As previously mentioned, the sparse field method can be implemented using
linked lists to hold the pixels being used in the calculations. These pixels
are seperated into five layers, each represented by a linked list. These layers
(described in 3.7) are visually illustrated in figure 4.1. In this figure the
lists L−2, L−1, L0, L1 and L2 are represented as Ln2, Ln1, Lz, Lp1 and Lp2
respectively, and will henceforth be referred as such.

42
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Figure 4.1: Visual representation of the layers.

The elements in these lists are C/C++ structures (struct) called Pixel
which contains integer values x and y (and z in 3D) representing their
coordinates in φ. Hence, when an element in φ is to be added to any of the
layers, the coordinates in φ of that element is used to create a new Pixel
which is added to the list corresponding to the layer in question.

The range of values a point in φ must have to be in any of the lists,
as defined in [7], is shown in table 4.1. By looking at table 4.1 it can be
seen that Lz has a slightly wider range than the other lists. This range
of exactly 1 does in some cases cause problems that lead to disortions and
artifacts in the segmentation. What these problems are will be discussed
in 4.5. To overcome these problems the ranges of the lists were slightly
changed to make all the lists equal in range. The range-corrected lists used
in the implementation are shown in table 4.2, and even though the change
seems small and insignificant it improves the result significantly (as will be
discussed in 4.5).

List Name Range

Lz [−0.5, 0.5]
Ln1 [−1.5,−0.5}
Lp1 [0.5, 1.5]
Ln2 [−2.5,−1.5}
Lp2 {1.5, 2.5]

Table 4.1: Range of lists used in [7] and [12]
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List name Range

Lz [-0.5, 0.5}
Ln1 [-1.5, -0.5}
Lp1 [0.5, 1.5}
Ln2 [-2.5, -1.5}
Lp2 [1.5, 2.5}

Table 4.2: Range of lists used in the implementation

4.3 Datastructures and types used

In addition to the five lists representing the five layers, two arrays of equal
size and dimension as the problem domain are used. One of them is shown
in figure 4.2. This image represents the 5 different layers with different

Figure 4.2: Label image: image showing the different layers under segmen-
tation.

colors, with the same color codes as in figure 4.1. At a given iteration, Ln1,
Ln2 and the dark parts are defined to be inside the object being segmented.
Similarly, Lp2, Lp1 and the white parts are defined to be outside the object.
This type of image will be referred to as the label image/array because it
shows the label assigned to each pixel of the image being segmented. This
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array is used to track where the pixels containing the different layers are on
the domain. Given a point, to find out which layer (if any) it is a member
of, a simple lookup to the label array is enough. An excellent feature of
the label array is that it can be used to visually verify if all the layers are
correctly aligned and if there are any pixels of any layer that are poorly
placed. The label image can thus be used to find artifacts that might have
resulted from code errors by an user visually looking at it, which proved to
be of excellent help when debugging. An example of a label image which
clearly states that there is something wrong with how the layers are handled
in the code is shown in figure 4.3 (zoomed in for clarity). How that label
image actually should have been is illustrated in figure 4.4.

Figure 4.3: A label image with artifacts due to code errors when handling
the layers.

The other array used is the φ - array, which contains the actual φ values
of each pixel in the domain. The range of the values is exactly the same as
in the label image, but while the label image only contains integer values
describing which layer a pixel is part of, the φ image contains the actual
values (floating point numbers) of the level set. The images represented by
the label and φ arrays would thus be very similar (though small differences
may be seen) when looking at, but they do have different tasks. The label is
as mentioned used as a lookup table, while the φ array represents the actual
level set, and is used to determines which layer a pixel belongs to after its
value have been updated with the speed function.

To correctly move pixels between the layers some temporary lists have
to be used, one for each layer. By using these temporary lists, called Sn2,
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Figure 4.4: How the label image should have been.

Sn1, Sz, Sp2 and Sp2, elements in the corresponding Ln2, Ln1, Lz, Lp1
and Lp2 lists are prevented from being moved more than once in a single
iteration.

4.3.1 Code structure

The code (of every version) is seperated into three C++ files, main.cpp,
update.cpp, IO.cpp, and corresponding header files. The update.cpp file
consist of everything that happens at each iteration, this includes calculating
the speed function, updating the φ array with the speed, updating the label
array and update the lists. The IO.cpp file handles the input parameters
to the program, as well as reading the input file and writing result to file.
The main.cpp file consist of actions executed before and after the actual
segmentation, such as initializing everything, and the running main loop by
calling functions in update.cpp.

4.3.2 Input, initialization and output

The program takes four inputs, the total number of iterations, threshold,
epsilon and alpha. More inputs can be defined as input, e.g. seed points
and the location of the input/output files, but these are currently set in the
code because too many inputs is unnecessary when running the problem
with a few different data sets. Handling of the input code is however set up
in a way that makes adding more inputs a simple task.

An array of same size as the problem domain is used to initialize label,
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φ and Lz. This array, called init, is initialized to zero valued elements at
start, and then filled with 1’s given the x,y (and z in 3D) coordinates of the
seed point(s). The seed point creates a circle (or sphere if 3D) of 1’s in the
init array that represents the starting position. Then, based on the values
in init the two arrays label and φ are initialized. All pixels in label and φ
corresponding with those in init with value 1 are set to -3 to indicate that
they are inside the segmentation object. All other pixels in label and φ are
set to 3 indicating that they are outside the object. Then the corresponding
pixels to all values in init that are 1 but have 0 valued neighbours are set
to 0, indicating that they are part of the zero level set. Then these pixels
are added to Lz as initial zero level set values. Then Ln1, Lp1, Ln2 and
Lp2 are filled according to their definitions, and the label and φ arrays are
updated to refelct these changes. After these initializing actions are finished
the segmentation process can start.

The output of the program is an image/volume of same size as the in-
put. The 2D version outputs two files, the label image was as mentioned an
important part of the debuging process and is therfore made as an output.
The second output is an image containing the zero level set, which defines
the border of the segmented object. The output from the 3D version is a
volume containing the zero level set. The output is only the zero level set
itself, and the object defined by the zero level set is not filled. In the 2D
version the label image does fill the whole object, and in the 3D version
there are more advantages by not filling. It is much easier to compare the
segmentation result with the original when looking at 2D slices by superim-
posing the result on the original. Moreover, it would not make a difference
when rendering the result volume from the outside, and when rendering
inside the volume it is easier to get a clear overview.

4.4 Levelset evolution process

First all pixels in Lz are updated by the speed function. Some (or all) of
these pixels may at that point in time have values outside of Lz’s range. The
pixels in Lz with values smaller than -0.5 will then be removed from Lz and
added to Sn1, while those with values greater than or equal to 0.5 will be
removed from Lz and added to Sp1. This process is shown in the pseudocode
in algorithm 1. This process of updating the pixels with new values, and
moving them to neighbouring lists if they are not within the range of the
list, is executed for all the other lists as well. The difference with Lz and
the rest is that while the pixels in Lz are directly updated by the speed
function the pixels in the other lists are not. By definition, pixels in Ln1
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Algorithm 1 Update elements in Lz with the speed function and transfer
to Sp1 or Sn1.

1: for all p ∈ Lz do . p = Pixel
2: φ(p.x, p.y) = φ(p.x, p.y) + speedFucntion(p.x, p.y)
3: if φ(p.x, p.y) ≥ 0.5 then
4: sp1.add(p)
5: Lz.remove(p)
6: else if phi(p.x, p.y) < −0.5 then
7: Sn1.add(p)
8: Lz.remove(p)
9: end if

10: end for

and Lp1 are neighbours of pixels in Lz, which makes a recomputation of the
speedfunction for these pixels unnecessary. When Lz moves in one direction,
Ln1 and Lp1 must move in the same direction, resulting in Ln2 and Lp2
doing the same. This process of following Lz can be accomplished in code
by several means, but doing it as in the pseudocode in algorithm 2 proved
to give good results. For pixels in Ln2 and Ln1 the greatest value from a
pixel’s four neighbours (over, under, left, right, and pixels in front and back
for 3D) in label is found, and then that pixel is assigned the found value
minus one. Similarly for Lp2 and Lp1 the smallest value of the neighbours
is found, and the pixel is assigned that value plus one. In algorithm 3 Ln1
and Lp1 are updated similarly to Lz in algorithm 1, using algorithm 2 to
update φ. Algorithm 4 shows the same for Ln2 and Lp2. Notice that the
label and φ arrays of the pixels moving out of Ln2 and Lp2 are updated in
algorithm 4. This is not the case in algorithms 1 and 3 because the pixels
of Ln1 and Lp1 are depended on the values of the φ and label arrays of the
pizel who are in Lz. Likewise, Lp2 and Ln2 are dependent on the values of
Lp1 and Ln1, but no lists are dependent of Lp2 and Ln2, hence they can
be updated in 4.

When all pixels moving from one layer to another layer have been
adressed, pixels moving into Lp2 and Ln2 from the outside have to be added
to Sp2 and Sn2. This is accomplished by simply adding all neighbours of
Lp1 and Ln1 who are not part of any layer, to Sp2 and Sn2 respectively,
and update their value by incrementing or decrement by one to reflect the
range of the lists they are moved to. How this actually is implemented can
be seen in algorithm 5, which includes the updating of the lists by their
corresponding temporary list. Alogrithms 1, 3, 4 and 5 (in that order) is
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Algorithm 2 How Ln2, Ln1, Lp1, Lp2 follows after Lz.

1: procedure follow(p, greaterOrLess, checkAgainst)
. p = Pixel, greaterOrLess and checkAgainst are integers

2: result = checkAgainst
3: if greaterOrLess = 1 then . true for: Ln1 and Ln2 pixles
4: for all n ∈ N(p) do

. N(p) = neighbouring pixels: over, under, left, right
5: if label(n.x, n.y) > result then
6: result = φ(n.x, n.y)
7: end if
8: end for
9: end if

10: if greaterOrLess = −1 then . true for: Lp1 and Lp2 pixles
11: for all n ∈ N(p) do
12: if label(n.x, n.y) < result then
13: result = φ(n.x, n.y)
14: end if
15: end for
16: end ifreturn result
17: end procedure

the complete set of actions executed in each iteration of the segmentation
process.
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Algorithm 3 Update elements in Ln1 and Lp1

1: for all p ∈ Ln1) do
2: if p has no neighbour that is part of Lz then
3: Sn2.add(p)
4: Ln1.remove(p)
5: else
6: M = follow(p, 1, 0)
7: phi(p.x, p.y) = M − 1
8: if phi(p.x, p.y) ≥ −0.5 then
9: Sz.add(p)

10: Ln1.remove(p)
11: else if phi(p.x, p.y) < −1.5 then
12: Sn2.add(p)
13: Ln1.remove(p)
14: end if
15: end if
16: end for
17: for all p ∈ Lp1) do
18: if p has no neighbour that is part of Lz then
19: Sp2.add(p)
20: Lp1.remove(p)
21: else
22: M = follow(p,−1, 0)
23: phi(p.x, p.y) = M + 1
24: if phi(p.x, p.y) < 0.5 then
25: Sz.add(p)
26: Lp1.remove(p)
27: else if phi(p.x, p.y) ≥ 1.5 then
28: Sp2.add(p)
29: Lp1.remove(p)
30: end if
31: end if
32: end for
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Algorithm 4 Update elements in Ln2 and Lp2.

1: for all p ∈ Ln2) do
2: if p has no neighbour that is part of Ln1 then
3: label(p.x, p.y) = −3
4: phi(p.x, p.y) = −3
5: Ln2.remove(p)
6: else
7: M = follow(p, 1,−1)
8: phi(p.x, p.y) = M − 1
9: if phi(p.x, p.y) ≥ −1.5 then

10: Sn1.add(p)
11: Ln2.remove(p)
12: else if phi(p.x, p.y) < −2.5 then
13: label(p.x, p.y) = −3
14: phi(p.x, p.y) = −3
15: Ln2.remove(p)
16: end if
17: end if
18: end for
19: for all p ∈ Lp2) do
20: if p has no neighbour that is part of Lp1 then
21: label(p.x, p.y) = 3
22: phi(p.x, p.y) = 3
23: Lp2.remove(p)
24: else
25: M = follow(p,−1, 1)
26: phi(p.x, p.y) = M + 1
27: if phi(p.x, p.y) < 1.5 then
28: Sp1.add(p)
29: Lp2.remove(p)
30: else if phi(p.x, p.y) ≥ 2.5 then
31: label(p.x, p.y) = 3
32: phi(p.x, p.y) = 3
33: Lp2.remove(p)
34: end if
35: end if
36: end for
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Algorithm 5 Updating by using the temporary lists.

1: for all p ∈ Sz) do
2: label(p.x, p.y) = 0
3: Lz.add(p)
4: end for
5: Reset Sz
6: for all p ∈ Sn1) do
7: label(p.x, p.y) = −1
8: Ln1.add(p)
9: for all n ∈ N(p) do

10: if phi(n.x, n.y) = −3 then
11: Sn2.add(n)
12: end if
13: end for
14: end for
15: Reset Sn1
16: for all e ∈ Sp1) do
17: label(p.x, p.y) = 1
18: Lp1.add(p)
19: for all n ∈ N(e) do
20: if phi(n.x, n.y) = 3 then
21: Sp2.add(n)
22: end if
23: end for
24: end for
25: Reset Sp1
26: for all p ∈ Sn2) do
27: label(p.x, p.y) = −2
28: Ln2.add(p)
29: end for
30: Reset Sn2
31: for all p ∈ Sp2) do
32: label(p.x, p.y) = 2
33: Lp2.add(p)
34: end for
35: Reset Sp2
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4.4.1 Speed function explained

Two different speed functions are implemented. These are seperatly imple-
mented in their own methods, and a speed function is only referenced in one
place in the code. This makes it easy to implement new speed functions,
and to change between which of them to use when running the program.
The speed function methods takes in as parameters the coordinates of the
pixel to calculate the speed chnage on, and returns a value which then is
added to the speed from the last iteration. The two speed functions im-
plemented are the ones explained in chapter 3. The simplified Chan-Vese
speed function was first implemented, and only used to test whether the
rest of the implemented sparse field code worked as expected. Because this
simple function behaves much like a region grow function it will not be a
part of the discussion in the result chapter.

The other speed function was implemented as explained in chapter 3,
except for some parts that were dropped because it was not needed in this
verion of the sparse field. A short description of how the speed function is
calculated is shown in algorithm 6

Algorithm 6 Speed function calculation.

1: procedure speedFunction(p)
2: Calculate the data term
3: Calculate first order derivatives
4: Calculate second order derivatives
5: Calculate normals
6: Calculate the curvature
7: speed = -α * dataTerm + (1-α) * curvature);
8: end procedure

Notice that the α * dataTerm is multiplied with -1. Assume that a point
in the zero level set have its value in φ increased by a value that would make
it be transfered over to the Lp1 layer. This means that a point that was in
Lz is now part of Lp1, and its neighbour that was Ln1 is now Lz, i.e. the
zero level set have contracted. This is the opposite of the wanted behaviour,
and thus the α * dataTerm term is set to -α * dataTerm. This is normal
in an implementation of this speed function, and not something used only
in this project.

To improve the speed of the evalution process of the zero level set the
calculation of the data function (defined in 3.5) was modified. The modified
version of the data function divides the result of the previously defined data
term by ε. This makes the data term which before had an range of {−1, ε}
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to get a new range of {−1, 1} (after clamping the minimum range to -1),
which greatly improves the speed. This modification makes the segmenta-
tion process go much faster (less iterations needed for a full segmentation)
and the only difference for the user is that the α values used in the speed
function have a different scaling. This modification will be discussed in more
detail in the discussion (chapter 6).

New speed functions can be implemented and easily merged with the
rest of the code, but an importatnt factor that must be remembered is that
the value returned from the speed function must be in the range {−1, 1} to
reflect therange of the layers. Another important factor is that the lists rep-
resenting the layers must support equal sized range-width (< 1) because the
speed function is calculated the exact same way for all elements regardless
of which layer it is a member of.

The calculations needed for the computations of first and second order
derivatives and the normals for the speed function are in a header file. By
keeping these outside the speed function, the calculations can be reused in
any other speed funtion that may be implemented in the future.

4.5 Problems met

As previously mentioned, when looking at figure 4.3 it can be clearly seen
that something is wrong with how the lists (the layers) are arranged. This
becomes even more clear when looking at figure 4.5 which shows only the
zero level set. The zero level set in figure 4.5 is the segmentation result

Figure 4.5: Zero level set corresponding to the label image in figure 4.3.

(zoomed in) that corresponds to the label image in figure 4.3. The zero



CHAPTER 4. SPARSE FIELD - IMPLEMENTED CODE 55

level set is supposed to be a one pixel wide continous line, which is not true
in this case. Several problems and bugs in the code combined were reasons
were for this result. Much time and effort was used to debug this and to
fix these problems. In addition to creating artifacts in the results, the bugs
also made the program run slower, which made the debugging process even
more time consuming. The main problem was that the layers were not of
equal range-width and that the speed function was not normalized to be
within the range {−1, 1}, which will now be explained in more detail.

When an element in any of the five layers is updated by the speed
function the new value may not reflect the range at which is allowed for
the layer it is part of. In that case it have to be moved to another layer or
in case the value is not in the allowed range of any of the layers removed
from its current layer and not added to any other. The problem caused
by the value returned by the speed function not being normalized was that
elements in any layer was able to be transferred from its previous layer to a
layer that is not a neihbouring layer. For example, transferring a pixel from
Ln1 is restricted to its neighbouring layers of Ln2 and Lz. But if a pixel A
in Ln1 with value -0.65 had its value increased by 1.2, its new value of 0.55
would indicate that it should be moved to Lp1, jumping over Lz.

As can be seen in table 4.2 all the lists have the exact same range-width
of < 1, which is not the case in table 4.1. If the ranges in table 4.1 is used
it will disort the segmentation process. This happens for example when
an element in Lz have the value -0.5 and is increased by 1 by the speed
function. A result from the speed function with value 1 (or -1) indicates
fast movement and that element should be moved to Lp1 (or Ln1). But
according to table 4.1 that will not happen in Lz when the value is -0.5 (or
0.5), even if a change in 1 of an element in any other layer would definetly
move it out of that layer. But even if an element that should be removed
is not removed, an element from either Ln1 or Lp1 is moved into Lz (which
is correct behaviour), hence the Lz becomes two pixels wide. An example
layer image of this is illustrated in figure 4.6.

4.6 CUDA Implementation

The sparse field level set method was parallelized by implementing it in
CUDA. This process proved to be somewhat more complicated than creating
a serial sparse field program. The sparse field method is as mentioned an
optimized version of the narrow band method that focuses on using dynamic
arrays (linked lists) to hold the elements needed for computation. This is a
very serial way of thinking, and parallelization was not a factor when sparse
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Figure 4.6: Layer image with Lz two pixels wide.

field method was created.
The most important change in the CUDA implementaion was the addi-

tion of another array in the same size as the image to be segmented. This
array, called layer, is used as an replacement for the five lists and their
corresponding temporary lists. This change was made because of two rea-
sons. The first reason is that the only dynamic array structure supported
by CUDA (as of May 2013), called thrust and is a C++ template library for
CUDA[19], does not support resizing within the device. This is in itself is a
reason to not use arrays (dynamic or not) to represent the different layers
when the code is structured as it is in the serial versions. The other reason
is that the use of an array of same size as the image to be segmented, with
each coordinate being handled by a single thread in the GPU utilizes the
power of paralleilsm that the GPU provides much better.

The most used method to utilize the parallel capabilities of GPUs when
working with multidimensional arrays is to split the array into small tiles,
each manageable by a CUDA block, and do the processing using the shared
memory. This avoids too much use of the slow global memory whic can
take hundreds of clock cycles to load data. Comparing this to the 1-2 cycles
needed to access data in the local memory a huge difference in speed can be
achieved by using the local and shared memory. But doing it this way does
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however require an almost complete re-implementaion of the code, which
due to the limited time was not achievable in this project. Instead an array
was used as a whole without splitting it up.

This is where the layer array mentioned above comes in. This array
contains integer values corresponding to each value in the label and φ arrays.
Each element in layer who are member of any of the five layers is represented
by a two digit number, and the rest is zero. The first of these two digits is
is either 1 or 2. The second digit represents the layer in which that element
is a part of, if the digit is 3, 4, 5, 6, or 7 it means that the element is part of
Ln2, Ln1, Lz, Lp1 or Lp2 respectively. If the first digit is 2, it corresponds
to the element being part of a temporary list. For example, if label(x, y) =
25 then the element with coordinate (x, y) in the φ array is part of what in
the serial version was called Sz. The decision to make a somewhat unusual
array like this was taken to avoid a set of conditional checks in the code, in
addition to the resulting consumption of less memory. Using an array like
this instead of linked lists makes this implementation close to an extreme
narrow band implementation, though the pixel are processed in the way of a
sparse field implementation. The only other change from the data-structures
used in the serial implementation is the removal of the C++ struct called
Pixel. This struct only contained the coordinates of elements in any of the
five layers, but this is not necassary when not using lists. Apart from these
changes the CUDA code is very similar to the serial version, hence there
is no difference beteween results of full segmentations from the serial and
parallelized version.

4.7 Performance

Both C++ and Matlab were candidates languuages to implement the level
set function in. The adavatage of using Matlab is the simple syntax used
for mathematical operations and the ease of loading/writing and displaying
images in both 2D and 3D. But ultimately C++ was chosen because of its
advantages in speed and the possibility of parallelization. The performance
improvements to be discussed in this section was all performed before the
implementation of CUDA code. This section will only discuss changes made
to improve performance in the serial versions of the code. A comparision
of the performance of the serial and CUDA versions of the program will
be discussed in chapter LINK TIL ENTEN RESULT ELR DISCUSSION
HER.

Several improvements to increase the performance were made after a
working 3D version was complete, some which gave insignificant or small
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performance increases, and a few which greatly improved runtime. One of
the changes made to achieve significantly improved runtime was as simple
as changing all structures defined as double to float. In many cases this
change may seem insignificant, but in this case with data structures of sizes
as big as 5123 and several linked-lists with hundreds of pixels being pushed
and popped each itereation, the change reduced the runtime significantly.
By changing from using double values which take up 8 byte each, to using
float which uses 4 bytes, the memory usage of the array and list structures
was reduced by nearly 50%. A chance that improved the runtime even
more significanly was the replacement of the C++ datastructure STLvector
with the datastructure STLlist. When the implementation process started
STLvector was chosen as the container for the elements in the different
layers, without considering any other candidates. The runtime in 2D using
vwctor was not considered slow, hence vector was also used for 3D. But
due to the slow speed of the 3D version (when using vector) changes were
needed. One improvement was the above-mentioned double to float change,
and even if this improved performance greatly, more changes that could
improve performance were sought after. This resulted in the replacement
of the list container with the vector container for the pixels in the different
layers. Some of the advantages and disadvantages of using the list and
vector data structures are summarized in table 4.3 and 4.4.

Vector

Advantages Disadvantages

Insertion/erasure from the end uses
constant time.

Insertion/erasure from other than
end is costly (O(n)).

Efficient accessing of its elements.

Table 4.3: Advantages and disadvantages of C++ std :: vector

List

Advantages Disadvantages

Fast insertion, extraction and mov-
ing of elements in any position.

Consume some extra memory to
keep the linking information asso-
ciated to each element.
Cannot access elements by their
position.

Table 4.4: Advantages and disadvantages of C++ std :: list
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The reason for the drastical inmprovement in performance when chang-
ing from vector to list is the removal of the overhead associated with in-
serteion and erasure of elements not at the end when using vector. After
the first few iterations, these two actions happens hundreds of times per it-
eration, and by changing to list this overhead along with the smaller log(n)
overhead when increasing the size of the vector is eliminated. The speedup
gained by changing the element types from using double to float and the
speedup aquired when replacing vector with list is shown in table 4.5. Note
that even though the double to float change was made before the vector to
list change, the numbers in the double → float column of the table were
all aquired after the list structure was implemented.

double → float vector → list

2D (512x512) 1.52 → 1.31 sec 2.08 → 1.31 sec

3D (256x256x256) 3,44 → 2.12 min 109.29 → 2.12 min

Table 4.5: Runtime improvements in 2D and 3D.

Another change that was considered but later dropped, was to replace
the use of list with std :: forwardlist. This structure was considered due
to its slightly less overhead when inserting and removing elements which
makes it more efficient than list. But this improvement in insertion and
deletion time over list comes as a consequence of the fact that forwardlist
is a single linked list, and is thus not able to point to the previous element in
the list. The sparse field level set methd can be implemented using single-
linked lists instead of double-linked lists, but the implementation in this
project depends on the lists being double-linked.

4.8 Third party libraries and programs used

Third party libraries for I/O

In both 2D and 3D version third party libraries were used to read and write
input and output data. In the 2D version a simple open source (under
the revised BSD license) C++ library called EasyBMP ([17]) was used for
easily reading and writing Windows bitmap (BMP) image files. In the
3D version the Simple Image Processing Library (SIPL, [18] created by
the co-supervisor for this project, Erik Smistad, is used. SIPL is a C++
library that among other features allows simple load and store of volumes
of different types. In addition to volume (and image) processing it supports
visualization of the data. In this project SIPL is used for reading and storing
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medical volume data by reading directly from raw data or by using an mhd
metafile. It is also used for visualizing 2D slices of the input volume and
segmentation result for comparision.

Program for visualizing volumes

In addition to SIPL to visualize the volume data, a Matlab plugin named
Viewer3D [20] was used. Viewer3D enable the segmentation result to be
superimposed on the the original volume, either as 3D volume rendering or
2D slicing. In the final stage of the project an open source program named
Amide [21] was used, which in addition to the features previously mentioned
also supports customizable coloring of objects.



Chapter 5

Results

In this chapter the results of multiple runs of the program will be discussed,
both in 2D and 3D. First some runs in 2D will be discussed along with how
the variables in the speed function affects the segmentation. Then some
results from 3D runs will be illustrated, before the performance of different
runs are compared. The Chan-Vese speed function implemented will not
be discussed in any detail because the very simplified version implemented
behaves much like a simple region grow function.

A note about the values used to get the segmentation results in this
chapter, the values used for the speed function were found to give a good
result when manually comparing to the input images/volumes, and may
or may not be the optimal values for speed and accuracy. Also note that
the colors used in the volumes are only to clearly illustrate the differences
between input and result, or between number of iterations.

5.1 2D

First a simple binary image of size 512x512 of a circle shown in figure 5.1a
was segmented. The red dot in the middle represents the seed point chosen,
and is not part of the image (superimposed). The values used for the speed
function were: threshold (T ) = 0.99, ε = 0.15 and α = 0.80. Since this image
is binary the T ± ε would not affect the end result of a full segmentation,
as long as T − ε < 1 < T + ε. This also assumes that T − ε is not too close
to 0, which would (also depending on α) either stop the surface evolution
midways or collaps it. The advantage of using higher values of ε within
these limits is that higher values of ε makes the segmentation process faster
by needing less iterations to achieve full segmentation. The reason is that
the data term D(I) (see 3.5) in the speed function is gradual, as mentioned

61



CHAPTER 5. RESULTS 62

when describing the speed function in chapter 3.
Figures 5.1 b, c and d represents the zero level set after 700, 1200 and

1600 iterations respectively. Figure 5.1e illustrates the full segmentation
result which required 2250 iterations.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: (a): Original image with seed point. Zero level set after: (b):
600, (c): 1200, (d): 1600 and (e): 2200 iterations (e): with ε = 0.05.
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By comparing the input image in figure 5.1a with the segmentation
result in figure 5.1e it can be seen that the program succesfully segmented
the image. To measure the difference in iterations needed to get a full
segmentation with a different value of ε an additional segmentation with all
variables equal to the previous segmentation except for ε was performed. By
assigning ε a value 0.05 the result was the exact same after full segmentation,
but the numbers of iterations for full segmentation increased by nearly four
times, from 2200 to about 8600. By omparing figure 5.1e with figure 5.1f
which is the result after 2200 iterations with ε = 0.05, it can be seen how
much slower the interface evolves. And as expected, increasing ε (to 0.30)
decreased the numbers of iterations needed (to 1100).

To test if the program works as it should when parts of the seed point is
outside the object to be segmented, the seed point was set as shown in red in
figure 5.2a. How the interface looked like after 300, 800 and 1300 iterations
is depicted in figure 5.2b, c and d respectively. The final segmentation result
was as expected a correct segmentation of the object as in figure 5.1e.

To further test the robustness of the program and to illustrate the effect
α has on the smoothness of the interface the 512x512 binary image in figure
5.3a, with the seed point superimposed in red, was segmented. Notice the
one-pixel wide ”cut” at the top that seperates the main object in the image
from the smaller one. Also notice the one-pixel wide line that holds together
the main object with the rectangle at the button. Two full segmentations
were run, both with T = 0.99 and ε = 0.15, figure 5.3b is the result with
α = 0.65 and 5.3c with α = 0.90. As explained in chapter 3, α restricts
how much the interface can bend and prevents the model from leaking into
unwanted areas, which can be seen by the fact that 5.3c with a higer value of
α have been able to include the rectangle at the button by evolving through
the thin line, while 5.3b did not manage it. (Note that the modified speed
function was used in this example, this will be discussed in the next chapter).

Higher values gives more importance to D(I) and lower values makes
∇ ∇φ|∇φ| affect the level set more. The more importance ∇ ∇φ|∇φ| gets, the less

likely is the model to leak into unwanted areas. But giving ∇ ∇φ|∇φ| too much
importance makes the model so smooth that it does not reach all areas of
the object being segmented. This is illustrated in figure 5.4b, which is the
segmentation result of the image in figure 5.4a using α = 0.4. These two
figures are of small size (100x100) to clearly illustrate the effects of α on the
smoothness of the segmentation result.
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(a) (b)

(c) (d)

Figure 5.2: (a): Seed point partly outside the object, superimposed on the
input image. Interface after (b): 300, (c): 800 and (d): 1300 iterations.
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(a)

(b) (c)

Figure 5.3: (a): Input image with seed point superimposed. Segmentation
result with (b): α = 0.65, (c): α = 0.90.

(a) (b)

Figure 5.4: Interface smoothness highly valued. (a): Input image, (b):
segmentation result.
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5.2 3D

First volume to be segmented is a volume of an aneurism in a ”semi seg-
mented brain volume”. The goal is to segment the aneurism itself as well as

Figure 5.5: Maximum intensity projection of the volume to be segmented

adjacent connected arteries without expanding into insignificant parts of the
volume. In figure 5.5 the maximum intensity projection of the unsegmented
volume is depicted.

Figure 5.6 shows how the segmented image looks like after 500 iterations.
The values used are T = 1.0, ε = 0.3 and α = 0.75. The dimension of
the aneurism volume is 256x256x256 and the maximal expanding speed
the interface can have using the implemented speed funciton is 1 pixel per
iteration. In theory this would mean that only about half the number of
iterations of the greatest image dimension is needed (assuming the seed point
is located near the center of the volume) in order to achieve convergence.
But this assumes an average speed of 1 pixel per iteration, which in practice
does not happen. The speed is reduced by both the curcature of the object
being segmented and the intensity values of the neighbouring pixels. And
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Figure 5.6: Aneurism segmentation after 500 iterations.

in this case, whith an aneurism volume with narrow paths, the curvature
greatly reduces the speed of the evalution process. It turns out that to
achieve a satisfying result of the aunerism volume with the given the input
parameters stated above, about 3000 iterations is needed.

Figure 5.7 shows the segmentated volume after 500 ((as in figure 5.6)),
1500 and 3000 iterations. The figure shows how stable the algorithm is
throughout the run. The area along the walls of the arteries covered after
500 iterations is not retracting at a later point, nor is it expanding further.
This is shown by observing how well the 500 iterations volume and the 1500
iterations volume overlap.

Next, the original volume (not MIP as in figure 5.5) in gray is compared
to the result after 3000 iterations (in blue). The completely gray arteries are
not connected to the aneurism where the seed point was set and are thus not
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Figure 5.7: Aneurism segmentation after 500 (red), 1500 (blue) and 3000
(gray) iterations.

reachable unless additional seed points are set at their locations. But apart
from those arteries it can be seen that the segmentation result have been
able to access the majority of the arteries, except for a few locations (e.g.
at the top right corner) which was too narrow for the level set to access
given the current values used in the speed funcion. Some segmentations
given different values were executed to access these areas, but that resulted
in the level set leaking into other areas not connected to the seed location.

Two more volumes were segmented using the implemented sparse field
method, but these two were segmented using the modified speed function,
thus the number of iterations and α values used for these two cannot be
directly compared to the segmentations mentioned above.

The first among these two is a T1-weighted MRI volume of a head,
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Figure 5.8: Aneurism: original volume in gray and segmentation result after
3000 iterations in blue.

which was segmented to extract out the brain. The head volume along
with the segmentation result of the brain is illustrated in figure 5.9. The
number of iterations needed to achieve this result was 700. Figures 5.10a
and b illustrates the segmentation result as a superimposition on the original
volume along different coordinates of the z-axis. Figure 5.11 is the slice of a
similar segmentation result with a slightly higher α resulting in leakage at
the bottom left.

The last volume tested is a CT volume (with dimensions 320x220x72) of
an abdomen where the goal is to extract out the volume of the liver. This
process is somewhat tricky because the liver has greyscale values very similar
to the organs surrounding it, making it difficult to prevent the interface from
leaking into the surroundings. Although the curvature term will prevent
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Figure 5.9: Original volume of head and segmented brain volume in red.

pixel sized leaks and small holes, it will not prevent a broad part of the
interface to move out of the liver volume unless the curvatures is weighted
heavily. In addition, the internal structures of the liver migh vary even more
than the liver and its surroundings. The parameters must thus be chosen
wisely to get a good segmentation. Figure 5.12 illustrates a slice in the
z-axis of the volume with the zero level set superimposed. Dark parts of
the figure have low intensity values, and lighter values have higher intensity
values. The liver is the big semi-uniform area that stretches from the left
and over the middle of the stomach. This is not a full segmentation, but it
clearly displays how different the intensity values witin the liver are. It can
be seen how the little dark dot in the middle at the bottom have hindered
the zero level set to evolve further to the right. This could have been fixed
by increasing α and make it less smooth or by increasing ε and include the



CHAPTER 5. RESULTS 71

(a) (b)

Figure 5.10: Slices along the z-axis of the brain segmented volume, super-
imposed on the original volume.

Figure 5.11: Slightly higher α, resulting in leakage.

dark dot in the segmentation, but both these alternatives would result in
leakages over to other neighbouring organs. An example of this is displayed
in figure 5.13.

5.3 Performance

Testing environment

The tests were performed on a laptop PC with the specifications as described
in table 5.1. The software related specifications are Windows 7 as operative
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Figure 5.12: Slice of CT liver volume in the z-axis with result superimposed.

system, g++ version 4.6.2 as C++ compiler, and CUDA compute capability
5.0 with nvcc version 0.2.1221 as compiler.

PC the tests were executed on

CPU model Intel Core i5-320M

Cores in CPU 2

CPU frequency 2.5GHz

Memory 4GB

GPU model NVIDIA GeForce GT 630M

Cores in GPU 96

GPU memory 1GB

Table 5.1: Specifications of the PC the tests were performed on.

The performance results of the 2D serial and 2D CUDA versions are
described in table 5.2 and 5.3, with results both before and after the mod-
ification of the speed function (equal results). The results in these tables
were all aquired using a single seed point set at an optimal location close
to the center of the object being segmented. The values used for the speed
function were found to be the ones resulting in a correct and complete seg-
mentation. The time was taken for only the segmentation process, thus not
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Figure 5.13: Another slice of liver volume, with leakage.

including the time used to read input, initialize and write result back to file.

Input image 2D serial 2D CUDA
5.1a Unmodified Modified Unmodified Modified

Iterations 2300 320 2300 320

T 0.99 0.99 0.99 0.99

ε 0.15 0.15 0.15 0.15

α 0.80 0.80 0.80 0.80

Time (seconds) 1.31 0.37 2.56 0.14

Table 5.2: 2D perfromance results on figure 5.1a as input.

Table 5.4 describes the results for the 3D version for the aneurism volume
and the results (modified/unmodified) are equal.
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Input image 2D serial 2D CUDA
5.1a Unmodified Modified Unmodified Modified

Iterations 6500 4000 6500 4000

T 0.99 0.99 0.99 0.99

ε 0.15 0.15 0.15 0.15

α 0.60 0.165 0.165 0.60

Time (seconds) 12.29 12.27 7.68 4.30

Table 5.3: 2D perfromance results on figure 5.3a as input.

Input volume 3D serial 3D CUDA
5.5 Unmodified Modified Unmodified Modified

Iterations 3000 2100 N/A N/A

T 1.0 1.0 N/A N/A

ε 0.3 0.25 N/A N/A

α 0.75 0.4 N/A N/A

Time (min/sec) 2.12 1.14 N/A N/A

Table 5.4: 3D perfromance results on figure 5.5 as input.
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Discussion

6.1 Modification of the speed function

Although the level set method is good at handling leakages when the cur-
vature term is taken into account, and naturally deals with merging and
splitting of the interface, it has its shortcommings. If for instance the ob-
ject to be extracted has a greater internal intensity difference than the
border of the object and neighbouring objects, the interface might leak out
of the object in one region and at the same time refuse to grow in another.
Figure 5.13 is an example of this behaviour. To reduce the effects of this
weakness it is possible to combine different segmentation methods to benefit
from their strengths and avoid their shortcommings. Better segmentation
using the level set method alone however might be possible by modifying
the behaviour of the speed function.

As mentioned when discussing the speed function in chapter 4 the data
function was modified a little from the one described in chapter 3. The
reason for this modification is that under certain circumstances the zero
level set moved very slow using the original speed function. This is true
especially when a low ε value is used, because the maximum speed of the
data term (which was shown in figure 3.4) is ε.

75
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Figure 6.1: Original data term, D(I), with ε = 0.1.

Hence, with a small ε and the data term weighted high (high α value)
the resulting speed is potentially only a fraction of its maximally possible
value. As an example, assume ε = 0.1, which makes the maximum speed
resulting from D(I) equal to 0.1, this is shown in figure 6.1. In areas where
the curvature is low or D(I) is weighted heavily, the interface would be
moving at about 10% of max speed.

By dividing the data function by ε its maximally positive value is in-
creased from ε to 1. The new data function can be seen in equation 6.1.

D(I) =
ε− |I − T |

ε
(6.1)

The original data function’s smallest possible value is ε-1. Thus, in the
modified data function ε values smaller than 0,5 will result in values less
than -1. Hence, the result of the equation has to be clamped to -1 for
D(I) < -1.
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Figure 6.2: New data function

The graph in figure 6.2 illustrates the value of the new D(I) as the
intensity increases form 0 to 1. Threshold = 0.5 and ε = 0.1 is chosen to
clearly show how negative values are clamped.

As an alternative to equation 6.1, D(I) could have two different functions
depending on whether it is positive or negative. Positive values would be
divided by ε, and negative values would be divided by 1-ε to give both
positive and negative values a linear increase towards the maxmium value
of 1.

D(I) =


ε− |I − T |

ε
if I is inside [T ± ε]

ε− |I − T |
1− ε

if I is outside [T ± ε]

In practice however, this is not nescessarily as elegant as it looks. Even
though the maximal theoretical value of this D(I) function is ±1 the con-
ditions required to get maximum speed is unusual and does not often occur
in practice. It requires the threshold and intensity to be on oposite sides
of the intensity domain, for instance T = 1 and I = 0. Because resulting
values from this D(I) function close to -1 only appear in extreme cases, the
interface will grow away from negative regions slower than it will grow into
positive ones.
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Figure 6.3: Alternative D(I) function

Figure 6.3 shows this difference in growth for negative and positive
vaules. Although segmentations performed in this project uses equation
6.1, it does not mean that the alternative equation is inherently bad, it just
has a different behaviour.

Equation 6.1 was used in this project becuse of its constant change in
speed for both positive and negative values. This makes D(I) easier to
reason about in order to get good results. Because D(I) now has a much
higher max value it will contributes alot more to the speed and have a
greater impact on the result. The modified speed function will therefore
need different α values to reflect this change. To perform a segmentation
with this modified D(I) to get the same result as from a segmentation which
used the unmodified D(I), α needs to be smaller. Apart from the improved
execution time, using such an α value with the modified D(I), the end
results will not be affected.

As with the data term, the curvature term (C) can also be altered to
achieve different behaviour. The curvature term can for instance be multi-
plied by a factor n, before it is added to the data term in the speed function.
For n > 1 it would then have to be clamped to keep its maximal possible
value at 1.



CHAPTER 6. DISCUSSION 79

Figure 6.4: Scaled curvature function. Unaltered curvature is shown in blue
and altered is shown in red.

Such a curvature function is plotted in figure 6.4, where n = 4 to show
the increase in steepness. The old curvature is shown in blue and the scaled
in red. This type of scaling would make changes in curvature have a bigger
impact on the movement of the interface, so effectively it resembles the
effect of decreasing the α term to weigh the curvature more.

Another and perhaps more interresting way of altering C is to approach
it from the same angle as the data term, and have it grow differently de-
pending on whether it is positive or negative. One of the problems with the
level set method, as mentioned in the section above, is its poor performance
when the difference in intensity within the object to be extract is greater
than the difference between pixels inside and outside the object. If the cur-
vature is scaled differently depending on whether it is positive or negative,
it could potentially force the interface into regions of the object it would
not normally grow into. It has the following definition:

D(I) =


C if C is positive

C n if C is negative

The resulting graph is shown in figure 6.5.
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Figure 6.5: Asymmetrically scaled curvature function. Unaltered curvature
is shown in blue and altered is shown in red.

This alteration would cause the interface to grow into regions where the
curvature pushes it forward, and at the same time prevent the curvature
from restricting the growth too much. The level of detail would decrease
because holes in the segmentation would be filled more easily, but in return
the segmentation might include more of the object given that the space it
normally fail to grow into is at least partially surrounded by the interface.

6.2 Problems with the CUDA implementation

As described before, the updating process of the layers are dependent on
each other. Ln2 and Lp2 are dependent on Ln1 and Lp1 respectively, while
Ln1 and Lp1 depends on Lz. Thus even if all the calculations in each el-
ement of the zero level set can be parallelized, all operations in the other
layers have to wait. One way to overcome this when in a parallel context
is to use barriers to synchronize. But even if all threads within a block are
synchronizable using the CUDA defined barrier synchthreads(), there are
no native ways to synchronize blocks in CUDA. Some ways to manually
synchronize CUDA block exists, for example by using atomic functions to
increment a mutex and busy-waiting until the mutex reaches a predefined
value or by using lock-free sychronizing as described in [16]. But these meth-
ods are only applicable when the number of blocks and threads is less than
what can be run in parallel (hence no native CUDA block synchronization)
which is not the case in this project, where multiple full scale arrays are
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used. In this case, the only way to achieve the desired feature of ordered
execution is to seperate the code into different CUDA kernels. In the serial
versions the pseudocode in algorithms 1, 3 and 4 are all executed in the
same function, but in the CUDA version the code is split up into several
kernel functions. Having to re-create new threads for each iteration once for
all the CUDA kernels affects the performance greatly. However the global
memory is persistent between kernel launches, resulting in no data transfer
while segmenting. Because only a few neighbouring pixels are elements of
the same layer warp divergence will also be affecting the performance. Fur-
thermore, with the lack of shared memory usage and the bottleneck when
accessing the slow global memory the speedup gained is low.

Apart from the fact that shared memory is not utilized, it can be seen
from the results in tables 5.2 and 5.2 that thread creation by multiple kernel
launches at each iteration greatly affects the performance. From table 5.2
it can be seen that the execution time in the CUDA version nearly doubled
that of the serial version. But when using the modified speed function which
only needed 320 iterations for a full segmentation, the CUDA execution time
was less than half of the serial execution time.

A 3D version of CUDA was implemented in addition to the 2D version.
But various problems when implementing prevented a version able to seg-
ment correctly. A few hours with this code should make it able to correctly
extract out volumes. And by using the modified speed function, this version
of the program should be able to give better performance increases than the
2D CUDA version.



Chapter 7

Conclusion and future work

7.1 Conclusion

In this project we looked at the sparse field method and how it can be used
to segment medical volume data. We chose the level set method as the
focus of this project because it is widely used in the field of medical image
segmentation. The sparse field method was chosen because it is one of the
fastest and least computationally demanding of the approaches to the level
set method. In addition we explored the possibilities of parallelizing the
sparse field method to speed up computation time.

The implemented sparse field algorithm is very effective in handling large
data volumes and segmenting medical data by only handling a small portion
of the volume at each iteration.

We explored some modifications to a popular speed function used in
the segmentation of images and volumes. We concluded that one of the
modifications reults in a significant speedup of the execution time. We also
looked into parallilizing the sparse field method using CUDA. However, due
to the nature of the sparse field method it is not well suited to be parallelized.
Dynamic lists are one of the key features in the sparse field algorithm which
is not supported by current CUDA versions. To overcome this restriction,
the CUDA implementaton resembles more an extreme version of a narrow
band method, where the band is as small as possible without affecting the
accuracy of the result.

82



CHAPTER 7. CONCLUSION AND FUTURE WORK 83

7.2 Future work

7.2.1 Reduce leakage

Some weaknessse were mentioned in the discussion chapter. The scenario
where it fails to grow in one region of the image and simultaneously leaks
in another is one of the challenges with the level set method. A possible
solution is to run multiple segmentations. First, extract a rough shape of
the object by using a small α. The resulting surface is then used to confine
the second, more sensitive segmentation. Any leakage during the second
segmentation will be confined to the result of the first segmentation, and
thus heavy leakage is avoided.

7.2.2 Parallelization

GPU’s are great at parallelization, but are not as flexible as CPU’s. GPU’s
are dependent on the CPU to hand it instructions, and the data transefer
between them is a bottleneck. However, the continuously improving func-
tionality of GPU’s makes is feasible in the near future to implement the
sparse field method on the GPU without any major modifications to the
structures. The parallelized version was implemented in CUDA, which only
supports NVIDIA GPU’s. As an alternative to CUDA, the OpenCL plat-
form can be used to parallelize programs not only on NVIDIA systems, but
a wide range of GPU’s and CPU’s. Using OpenCL it would be possible
to parallelize the sparse field method on the CPU which might allow an
implementation using list structures. Using OpenCL will also allow for a
broader range of hardware.

NVIDIA has a library called NVIDIA Performance Primitives (NPP)
which is a collection of GPU-accelerated functions that can be used for
segmentation in CUDA. Using this library to implement the sparse field
level set method might be more compatible than plain CUDA.
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