
Mobile Apps Mobility
An evaluation of HTML5 for cross-platform

development

Hanne Oustad

Master of Science in Informatics

Supervisor: Jon Atle Gulla, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem description

Mobile apps are often restricted to one platform (Android, iOS, Windows
Phone), and one market (i.e. localization). This task will analyze how
to efficiently enable service development across platforms and markets for
telco-enriched apps and services. In particular, we would like to evaluate
the use of HTML5 as part of a cross-platform development strategy. A
case study from mobile news recommendation is used to investigate mobile
service development with HTML5.

Research questions:

• What are the advantages and limitations of using HTML5 as com-
pared to native development on mobile platforms?
• What is the quality of current tools for HTML5 cross-platform service

development?
• What methodological approaches are suitable for HTML5 app devel-

opment?

The deliverable includes a prototype that demonstrates the use of HTML5
for a mobile news recommendation system.

1

Preface

This report is the documentation of the work done during the 5th year of
my Master Degree in Informatics, at the Norwegian University of Science
and Technology (NTNU).

I would like to thank my supervisor Professor Jon Atle Gulla at the De-
partment of Computer and Information Science at NTNU and Erik Berg
at Telenor for the interesting assignment, which have given me much new
knowledge and experience in HTML5 development. I will also like to thank
them for the valuable guidance and feedback during the project, both with
the practical experiment and with writing this thesis.

Finally, I would like to thank Daniel Børseth for report proofreading and
valuable input in the completion phase.

i

Abstract

In recent years, there has been a growing interest in cross-platform devel-
opment and HTML5 as a development tool. The possibility for developers
to code once and run on multiple platforms could decrease development
costs and make it easier to target more platforms and reach more people.
The popularity of HTML5 has attracted developers to create tools that
make the development process easier and faster.

The goal of this thesis is to evaluate the use of HTML5 as development tool
for cross-platform development, based on a case study where a prototype of
a context-aware application for news recommendation is built. This goal
is reached by studying current technologies, as well as the implemented
solution of the mobile news application. After the theoretical study and
implementation of the mobile news application is completed, an evaluation
of the findings are carried out to check if HTML5 is suitable for cross-
platform mobile application development, based on the given use case.
The evaluation results are then used to give a conclusion about how well
suited HTML5 is for this purpose.

The mobile news application has been developed both as a pure web appli-
cation and a hybrid application, where Apache Cordova is used as frame-
work for the hybrid approach. Evaluation of the two development ap-
proaches and the findings in this thesis shows that the hybrid approach
was slightly better than the pure web approach for the given case, espe-
cially when looking at the quality of the application.

Abstract

I de senere år har det vært en voksende interesse for kryss-plattformutvikling,
og bruken av HTML5 som et utviklingsverktøy. Mulighetene for utviklere
til å kode en gang, og kjøre p̊a flere forskjellige plattformer kan senke
utviklingskostnader og gjøre det lettere å n̊a flere folk p̊a flere plattformer.
Populariteten til HTML5 har lokket til seg mange utviklere som lager
verktøy for å gjøre utviklingsprosessen enklere, og raskere.

Målet ved denne masteroppgaven er å evaluere bruken av HTML5 som et
utviklingsverktøy for kryss-plattformutvikling, basert p̊a et case studie der
en prototype av en kontekst-avhengig applikasjon for nyhets-anbefalinger
blir laget. Målet n̊as ved å studere de n̊aværende teknologiene, i tillegg
til å implementere en klientløsning til nyhets-anbefalings-systemet. Et-
ter den teoretiske studien og implementasjonen av nyhets-applikasjonen er
ferdig, skal resultatene evalueres for å avgjøre om HML5 egner seg som et
utviklingsverktøy for kryss-plattform applikasjonsutvikling. Evalueringen
av resultatene blir s̊a brukt for å konkludere om til hvor stor grad HTML5
egner seg til denne oppgaven.

Nyhets-applikasjonen som har blitt laget har blitt utviklet som b̊ade en ren
web-applikasjon, og som en hybrid applikasjon der Apache Cordova har
blitt brukt som et rammeverk. Evalueringen av de to fremgangsm̊atene,
og resultatene i denne masteroppgaven viser at hybride applikasjoner er
hakket bedre enn rene web-applikasjoner for det gitte caset, spesielt n̊ar
en ser p̊a kvaliteten av applikasjonen.

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Approach . 4

1.3 Results . 4

1.4 Report Structure . 5

2 Theoretical Background 7

2.1 Mobile Applications . 7

2.1.1 Native Applications 8

2.1.2 Cross-Platform Applications 10

2.1.3 Mobile Web Applications 11

2.1.4 Hybrid Applications 12

2.2 Web versus Native Applications 14

2.3 Web Technologies . 16

2.3.1 HTML5 . 16

2.3.2 JavaScript . 16

2.3.3 CSS . 17

2.3.4 HTML . 17

3 Related Work 18

3.1 Web versus Native . 18

3.2 HTML5 Cross-Platform Service Development 20

3.3 Methodological Approach 22

3.4 The Future of HTML5 . 23

3.5 Summary . 24

4 Case Study 25

4.1 Context-Aware Applications 25

iii

Contents

4.1.1 Context Modeling Language 26

4.2 Context-Aware News Services 28

4.2.1 Characteristics of a News Service 28

4.3 A Context-Aware HTML5 News Application 29

4.3.1 Objectives and Method 29

4.3.2 Existing News Recommendation System 30

4.3.3 Interface . 32

5 Development Approach 34

5.1 Methodology . 34

5.2 Environment . 35

5.2.1 Platforms . 36

5.2.2 Constraints . 37

5.3 Current Practices and Products 37

5.4 Requirements . 38

5.5 Specification and Design 38

6 Application Design 40

6.1 Context Model . 40

6.2 Application Requirements 42

6.2.1 Functional Requirements 42

6.2.2 Non-functional Requirements 43

6.3 User Interface Design . 44

6.4 Evaluation Criteria . 50

6.4.1 Quality . 51

6.4.2 Development . 56

7 Realization 58

7.1 Tools and Libraries . 58

7.1.1 Development Tools 59

7.1.2 Architecture . 60

7.1.3 User Interface . 61

7.1.4 Device Features . 62

7.2 Implementation . 62

iv

Contents

7.2.1 Architecture Design 63

7.2.2 The Implemented News Application 66

7.3 Improvements . 71

8 Evaluation 73

8.1 Logic Scoring of Preference 73

8.2 System Requirement Tree 77

8.2.1 Functionality . 77

8.2.2 Reliability . 80

8.2.3 Usability . 82

8.2.4 Efficiency . 84

8.2.5 Maintainability . 87

8.2.6 Portability . 91

8.2.7 Platform Ecosystem 93

8.3 Elementary Preference Aggregation 98

8.3.1 Summary . 105

9 Discussion 107

9.1 Methodology . 107

9.2 Development Challenges 108

9.3 Evaluation . 109

10 Conclusion 111

11 Further Work 114

A Use Cases 118

A.1 Opening a List of News Articles 118

A.2 Opening a Single News Article 119

A.3 Opening a Single News Article in a Map 120

A.4 Opening News Articles in a Map 121

A.5 Filter News Articles . 122

B Element Preference Calculations 123

B.1 Functionality . 123

v

Contents

B.2 Reliability . 123

B.3 Usability . 124

B.4 Efficiency . 124

B.5 Maintainability . 124

B.6 Portability . 125

B.7 Platform Ecosystem . 125

vi

List of Figures

3.1 Framework summary [8] 21

4.1 An example CML model [20] 27

4.2 News recommendation system architecture 31

5.1 Method diagram . 35

6.1 CML . 41

6.2 Listed news . 45

6.3 Extended news . 46

6.4 Extended news in map . 47

6.5 News in map . 48

6.6 Settings menu . 49

7.1 Data flow diagram . 64

7.2 State machine diagram . 66

7.3 The main page of the mobile news application 68

7.4 An opened news article . 68

7.5 Showing the locations of an article on a map 69

7.6 Data flow diagram . 70

7.7 A drop down settings menu 71

8.1 A preference scale . 74

8.2 The GCD function: 17 levels and their symbols [44] 76

8.3 Suitability preference scale 78

8.4 Boolean characteristics preference scale 79

8.5 Data formats preference scale 80

8.6 Offline capability preference scale 81

8.7 Navigation preference scale 83

8.8 User interface preference scale 84

vii

List of Figures

8.9 Latency preference scale 85

8.10 Response time preference scale 86

8.11 CPU preference scale . 87

8.12 Memory preference scale 87

8.13 Analyzability preference scale 88

8.14 Changeability preference scale 89

8.15 Availability of test libraries preference scale 90

8.16 Availability of test runners preference scale 90

8.17 Adaptability preference scale 91

8.18 Installability preference scale 92

8.19 Languages preference scale 94

8.20 Tools preference scale . 95

8.21 Community preference scale 95

8.22 Tutorials preference scale 96

8.23 Documentation preference scale 97

8.24 Guidelines preference scale 98

8.25 Partial logic aggregation for functionality 99

8.26 Partial logic aggregation for reliability 100

8.27 Partial logic aggregation for usability 100

8.28 Partial logic aggregation for efficiency 101

8.29 Partial logic aggregation for maintainability 102

8.30 Partial logic aggregation for portability 102

8.31 Partial logic aggregation for the platform ecosystem 103

8.32 Global quality aggregation 104

viii

List of Tables

2.1 Platform properties . 9

6.1 Use cases . 44

7.1 Development testing environments 59

7.2 JavaScript web application frameworks 60

7.3 Mobile UI frameworks . 61

7.4 Mobile web frameworks . 62

8.1 Quality preference . 105

8.2 Development preference 105

8.3 Global preference . 106

10.1 Advantages and limitations of using HTML5 contra native

development . 112

ix

List of Abbreviations

API Application Programming Interface

CML Context Modeling Language

CORS Cross-origin resource sharing

CPU Central Processing Unit

CSS Cascading Style Sheet

CSV Comma-Separated Values

DOM Document Object Model

ECMAScript European Computer Manufacturers Association

GCD Generalized Conjunction/Disjunction

GPS Global Positioning System

HTML Hyper-Text Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ISO International Organization for Standardization

JSON JavaScript Object Notation

LSP Logic Scoring of Preference

NTNU Norwegian University of Science and Technology

OS Operating System

REST Representational State Transfer

RSS Rich Site Summary

x

List of Tables

SDK Software Development Kit

SGML Generalized Markup Language

UI User Interface

URL Uniform Resource Locator

VM Virtual Machine

W3C World Wide Web Consortium

XML Extensible Markup Language

xi

1 Introduction

Development of mobile applications has in recent years become increasingly

popular. The ever increasing popularity has led to studies of the most

effective ways to develop applications, and the concept of cross-platform

applications has become a major research area. In this thesis the field of

interest is the HTML5 cross-platform development tool, methodological

approaches and HTML5 development tools. Another interesting field is

news recommendation systems. News recommendation systems can be

distinguished from other news systems in that they give the user relevant

news, and efficiently helps the user to find these news in the pile of news

that is available and published at all times. This thesis looks at how these

systems can be developed as cross-platform applications with the use of

HTML5.

1.1 Problem

Today, more and more people are carrying around smart devices in the

form of smartphones, tablets, and other handheld devices that give the

users access to large amounts of information and functionality at request.

The typical distribution of these functions are through mobile applications

available through application stores such as the Apple App Store on the

iOS platform, and Google Play on Android, and the distribution is often

tied to the type of device you are using to access content. As a result, the

development of an application from a developers stand point is a complex

task that requires that the developer, or team of developers have a broad

technical insight into the different options and constraints enforced upon

them. This has lead to a need for simplifying the development process

across development platforms and environments by creating cross platform

applications.

1

Chapter 1. Introduction

The goal of a cross-platform application is to simplify the development

process of an application from a development stand point, as well as reach

a broader audience by targeting multiple platforms with out investing a

larger amount of effort. The challenge lies in creating an application that

behaves similarly on different platforms when considering quality, user ex-

perience and performance, as well as enabling support for the rapid speed

of evolving technologies.

HTML5 is one of the most popular platforms that can be used to build

cross platform-applications. These applications are run in web browsers,

which means that they can be run on any device that has a web browser.

There currently exist two kinds of cross platform applications that take

advantage of HTML5: pure web applications and hybrid application. Web

applications are basically web pages, that are designed to work on multiple

devices. Because the application is on the web, it can be opened with any

modern web browser, on any device. Hybrid applications takes advantage

of a web view present in a native application, meaning they are built

using web technologies, while native code is used to give access to wider

functionality of the device. These applications can be stored locally on

the device just like native applications. There exist many examples of

successfully developed hybrid applications on PhoneGap’s web page [1],

such as the Logitech Squeezebox Controller.

For evaluating HTML5 as a development tool for mobile applications, a

case study from mobile localized news are used. The case study is to

develop a context-aware application in HTML5, that takes advantage of

the users location as well as some user inputted preferences, to give a better

experience for the user.

Together with this case study, there are some research questions this thesis

will aim to answer. The research questions are:

• What are the advantages and limitations of using HTML5 as com-

pared to native development on mobile platforms?

• What is the quality of current tools for HTML5 cross-platform service

2

1.1. Problem

development?

• What methodological approaches are suitable for HTML5 app devel-

opment?

The first research question that this thesis aims to give an answer to is the

advantages and limitations of using HTML5 as development tool, com-

pared to native development. In which ways are mobile HTML5 develop-

ment different from native development? What are the advantages and

disadvantages with this approach? The biggest differences and the advan-

tages and limitations for each approach will be discussed, and the findings

related to HTML5 will be taken into account when developing the context-

aware application.

The second research question the thesis aims to give an answer to is what

the quality for current tools for HTML5 are. What are the capabilities and

stability of these tools? What is the reputation of these tools? Different

tools will be studied and discussed, and some of these tools will be used in

the development process.

The third research question concern the methodological approach for HTML5

development. Which methodology will be used in developing the mobile

news application? The methodology should be based on a real method,

and some research will be done in how mobile applications usually are de-

veloped. The methodology used, and the experiences with this approach

will be discussed.

Together with these research questions, the thesis will also include a proto-

type of a mobile news recommendation system developed in HTML5. This

application is developed client side on top of an existing back-end system.

The overall goal is to see if HTML5 is a suitable development method for

the given case study, together with characteristics and methods for this

approach.

3

Chapter 1. Introduction

1.2 Approach

The research approach in this thesis is a theoretical study of HTML5, and

a practical experiment of HTML5 in use.

First, the problem is defined and the research approach is determined.

Second, a theoretical study is performed by reading papers about cross-

platform development and HTML5, and checking out current methodolog-

ical approaches and existing tools that is used in HTML5 development.

This information is gathered to get an overview of the state of the art, and

other related work that is of interest.

Third, a practical experiment is executed by implementing a real HTML5

news application that retrieves data from a dedicated news feed, back-end

system.

Last, an evaluation of the system and the findings is carried out, based on

some characteristics.

1.3 Results

A goal of the research was to evaluate the use of HTML5 as development

tool for news recommendation systems. Development of the system is

based on research during the development phase, and evaluated based

on some criteria. The results from this evaluation and the rest of the

development process will be used to conclude the thesis. In addition to this

system, the state of the art is discussed, and the theoretical background is

introduced.

The results focuses on the evaluation of both the hybrid application and

the pure web application, together with development process and charac-

teristics of HTML5 development.

The results show that the gap between native applications and HTML5 is

still present in some areas, while in others they compete equally. Some of

4

1.4. Report Structure

the problems with HTML5 applications have been solved by good resources

such as libraries and frameworks that can helt in the development process.

The results related to the develoment methodology show that for small

simple aplications, a traditional iteration based agile methodology should

suffice, but for larger projects, other considerations have to be made.

1.4 Report Structure

The thesis is structured as follows:

Chapter 2: Theoretical Background introduces the theoretical back-

ground of the thesis. Cross-platform applications and native applications

are introduced together with an introduction of HTML5, tools, and ad-

vantages and disadvantages with both web and native approaches.

Chapter 3: Related Work presents work from related projects and

research done to identify the state of the art and current issues in the

existing research.

Chapter 4: Case study introduces the case study and context-aware

applications.

Chapter 5: Development Approach presents the development ap-

proach chosen in this thesis, and how the mobile news application should

be built.

Chapter 6: Application design presents how the design of the appli-

cation should be.

Chapter 7: Realization presents what was done and the application

that was implemented.

Chapter 8: Evaluation presents and evaluates the results.

Chapter 9: Discussion discusses the results from the evaluation.

Chapter 10: Conclusion concludes the thesis, and tries to answer the

question: Is HTML5 preferred over native development?

5

Chapter 1. Introduction

Chapter 11: Further Work describes possibilities for further work.

6

2 Theoretical Background

This chapter will provide a introduction to relevant technologies and con-

cepts that are of interest in this project.

Section 2.1 will begin with an introduction of what an mobile applica-

tion is, together with an introduction of the two different types of mobile

applications: native and cross-platform applications, and their associated

advantages and disadvantages. Section 2.2 compares native and web appli-

cations against each other, and section 2.3 introduces the web technologies

HTML5, JavaScript, CSS and HTML.

2.1 Mobile Applications

A mobile application is a program developed to run on small mobile hand-

held devices, such as smartphones and tablets. These mobile applications

are small software products that lets the device user perform specific task,

e.g. playing games or communicate with others in social media applica-

tions. There are two ways to develop mobile application, i.e, the native

development approach and the cross-platform development approach. De-

pendant on the chosen development approach, the mobile application can

be preloaded into the device, downloaded or accessed through the app store

or the Internet later on, or accessible through the mobile web browser.

Development of mobile applications began over 10 years ago, but the big

boost in popularity first began when Apple introduced the iPhone App-

Store in 2008. After that, both Android, Windows Phone and other plat-

forms has created marketplaces, and the development of mobile applica-

tions have increased dramatically [2].

7

Chapter 2. Theoretical Background

2.1.1 Native Applications

A native application is a software program that can perform a specific

function on a particular platform, since they are built specifically for that

platform [3]. There exists a number of different platforms, where some

of the major platforms today are Android, Windows Phone and iOS [4].

Each of these platforms have their own programming languages, develop-

ment environments and marketplaces that must be used when developing

applications.

The programming language used when developing native applications for

Apples iOS devices (iPhone, iPad and iPod) are primarily the Objective-C

language. For the Android platform the programming language is Java,

and for Windows Phone it is C# [5–7].

The development environment for each of the platforms is called the In-

tegrated Development Environment (IDE). The IDE provides tools for

writing, testing and deploying applications into the targeted platform en-

vironment. For Android, the officially supported IDE is Eclipse, for iOS it

is XCode, and Windows phone uses Visual Studio. Both XCode and Visual

Studio costs money, while Eclipse IDE is free to download and use [5–7].

Each of the different platforms have their own application stores, which

are marketplaces where applications are published and made available for

anyone who have a device with the same platform. The application stores

makes it possible to browse and download applications that was developed

for the same platform, and install them on the device [4]. The marketplace

for Android is called Google Play, Windows phone has the Windows Phone

Store, and the iOS marketplace is called App Store [5–7].

Each of these platform specific properties are summarized in table 2.1.

8

2.1. Mobile Applications

iOS Android Windows
Phone

Programming
language

Objective C Java C#

IDE XCode Eclipse Visual Studio
Marketplace App Store Google Play Windows Phone

Store

Table 2.1: Platform properties

ADVANTAGES AND DISADVANTAGES

There exist both advantages and disadvantages with the native develop-

ment approach. The biggest advantage with native applications is that

they can take advantage of native features like camera and GPS, because

of the deep integration with the Operating System (OS) and hardware [4].

In native development ecosystems, there also exist well established guide-

lines for usability and user experience. These can make the development

process easier, especially for inexperienced developers, and the design will

be more suitable for the target platform. Native applications are usually

responsive, which gives less lag and latency. This is because most of the

data in the application is part of the application itself [4].

Native applications also provide one-click access to applications, and they

are by default bookmarked and persistent. When an application is installed

on the device, the application is always available with its own small icon in

the application menu. Because they are installed on the device, there is no

need for a persistent network connection to access them. The application is

downloaded and installed from the application stores, and these application

stores makes it easier to discover and find applications. Because of this,

it is easier to make money as a developer on a native application because

of the application store, since you set a price on the application, and then

people have to pay for it when they download it [3].

The biggest disadvantage with native applications is that they are platform

9

Chapter 2. Theoretical Background

dependent, meaning that the developers need to develop own versions of

the application for every platform that should be reached. This is a big dis-

advantage because it requires a need for broad programming skills, because

of all the programming languages and environments used in the different

platforms.

Another disadvantage is that the application can not update itself, but

instead, the user has to choose to update to the newest version when it is

available [4].

At last, since each platform requires their own version of the application,

the development, testing and adaption to each of the different environ-

ments, including maintenance and marketing, is costly [3].

2.1.2 Cross-Platform Applications

Cross-platform applications are mobile applications that can run on differ-

ent platforms without large modifications [8].

There are several ways to create cross-platform applications [8]:

• Cross-compilation - Compiles source code into different target en-

vironments (platforms).

• Virtual Machine - Executes applications as virtual machines.

• Mobile web application - Utilize HTML5 to create web applica-

tions that can be run on a device.

Cross-compilation is a technique where a cross-compiler is used to separate

the build and target environment and the application from each other. The

cross-compiler works as a transformer that transforms the source code into

a platform specific native application. The resulting application can be ex-

ecuted and used like a native application on the device. The big advantage

with cross-compilation is performance since the application behaves as a

native application on the device and provides a better user experience.

The application will also have access to device features such as the cam-

era and sensors of the device. The problem with cross-compilation lies in

10

2.1. Mobile Applications

the complexity of the source code that is produced. To be able to sup-

port all targeted platforms, the source code has to reflect the differences

of these platforms in the source code, which can be difficult to write and

maintain [8].

Another way to make cross-platform applications are with a Virtual Ma-

chine (VM). A VM is used to execute programs like a real physical machine.

The advantage with this is that the application becomes very portable,

because it is easy to maintain and extend. The disadvantage with this

technique is that applications tend to run more slowly in virtual machine

environments, because of runtime interpretation latency [8].

The last way of creating cross-platform applications is as a Mobile web

application, which is the focus area of this thesis. By using HTML5 to

create a cross-platform application, the application can run in a mobile

web browser, or in a browser view embedded into a native application

(hybrid application) on the device [8].

2.1.3 Mobile Web Applications

Web applications are applications that live on a web server, and not on

a mobile device itself. These applications can be accessed through the

web browser on the mobile device. A mobile web application is built with

HTML, CSS, and JavaScript [4], and is usually a mobile application, or a

mobile adapted static web site.

When the application is run like a pure web application it is immediately

available on the mobile web browser, just by typing in the Uniform Re-

source Locator (URL) of the application in the browser. This assumes that

there exists an active data connection, and that the application server is

up and running. Because of this, the application is accessible on any de-

vice that has a web browser, which makes the web application device and

platform independent [3].

11

Chapter 2. Theoretical Background

ADVANTAGES AND DISADVANTAGES

The biggest advantage with web applications is the cross-platform compat-

ibility. This means that the web application can be accessed on multiple

platforms just by typing in an URL, which results in the advantage that

there is no need to download anything. Web applications can be updated

continuously, and the most recent version of the application is always ac-

cessible in the mobile browser. This means that the user does not need to

bother with version tracking and updating applications on the device [3].

Because the application is developed once and with only one code base,

the development process is cheap, and the application is easy to build

and maintain. The developer can with just small changes, cover several

platforms without any big costs.

The disadvantages with pure web applications are often related to user

experience. The user experience of a web application can be poor because

of restricted access to device capabilities, and it is impossible to emulate

a native UI inside a web browser [8].

Another disadvantage is that it is not possible to upload the application

to marketplaces like the Apple App Store or Google Play Store, which

makes the applications less visible than applications that can be published

in application marketplaces. To access a web application, it takes several

clicks and text entry input to access the application in the web browser,

and because of the limited input methods, this can be a challenge.

Another disadvantage with web applications is that they are not that good

with interactive, CPU-intensive and visually rich applications, like games.

Also, they generally require a persistent network connection [3].

2.1.4 Hybrid Applications

Hybrid applications are a combination of native applications and web ap-

plications. A hybrid application is developed using web technologies such

as HTML, CSS and JavaScript, and then they are wrapped inside a native

12

2.1. Mobile Applications

container so that they can run as a native application [4]. The framework

Apache Cordova (previously named PhoneGap) [9] is an example of such

container, that makes the application works like a native application on

the device.

ADVANTAGES AND DISADVANTAGES

With hybrid applications it is easy to develop applications with user-

friendly tools and familiar programming languages instead of having to

learn several programming languages to be able to create applications for

several platforms [4].

An advantage is that some hybrid applications can connect to the mobile

web, and utilize a native container to access a mobile web application

through a native browser view, this means that the applications receives

some of the same advantages of mobile web applications, as well as solve

some of the problems such as availability. Hybrid applications, like mobile

web applications, can update fast and continuously [4].

A hybrid application is stored locally on the device like native applications,

and is accessible through a small icon in the application menu, and the

need of data connection is removed if the application is run locally from

the device. Just like native applications, hybrid applications also have

access to native features because of the native wrapper they are contained

in.

Hybrid applications are wrapped in a native app wrapper before they can be

installed on a mobile device. This means that the application is deployed to

a specific platform. It is not all hybrid application generators that support

all platforms, so you need to pick a generator that wraps in the desired

platforms [4]. When a hybrid application is deployed on a platform in this

way, and it only run locally, it is important to notice that the continuous

updating of the application is removed, since the application has to be

manually updated.

13

Chapter 2. Theoretical Background

2.2 Web versus Native Applications

This section compares the native and web approaches against each other,

and looks at advantage and disadvantages with both approaches.

As described in the previous sections, a web application approach is cross-

platform, while the native application approach is platform dependent.

This means that it is theoretically easier and cheaper to build web appli-

cations since they require less knowledge about specific technologies.

When considering the development environments for both approaches,

there is a bigger requirement for development knowledge in native ap-

plication development than in web development. In native development,

the developer has to know many programming languages if the application

should be accessible on multiple platforms, and this requires expertise in

all of the programming languages. This also means that a developer has

to actually create code in all of these languages as well, which is time con-

suming. When developing web applications, the developer only needs to

know the HTML5 technologies as development tool. Because of this, there

is a bigger development cost in native development that web development.

This can also be said for each of the platform Application Programming

Interfaces (API). Every framework for creating native applications has dif-

ferent APIs, so in addition to the various programming languages, one

must also know the APIs for the various operating systems. And these are

usually large.

Another important development environment concern is the IDE that is

used when developing the applications. For example, Google has facilitated

the use of Eclipse, but this is not required, while Apple require the use

of XCode. This can create difficulties if one does not have access to a

mac. For web applications, you can develop using whatever development

environment you want.

A constraint that enforced on a developer that develops using a web tech-

nology approach is that access to the native features of the mobile device is

14

2.2. Web versus Native Applications

limited. In a native development environment, these features are accessible

and can be used to enrich the application. While some of these features

are unavailable, e.g., sensory information, HTML5 has support for others,

such as geolocation [10].

Native application development defines guidelines for how the application

should look and behave to give the application a good user experience.

This is an important usability aspect since most applications will follow

the guidelines, and resemble each other. This can also be seen in the user

interface libraries and technologies that are used in native development.

As an example, Android uses the Extensible Markup Language (XML) to

create the user interface. These user interface libraries define pre-defined

components that adhere to the guidelines of the platform. Each platform

uses different technologies for creating the views in the application. This

is also the case in web application development, but one can use one single

technology to define the views. By default, the available web technologies

do not define component that follow any guidelines for web applications,

but it is possible to include third-party libraries such as jQuery mobile and

Sencha Touch.

When native applications are published on application stores, they are ac-

cessible for everyone that wants to download them and install them on their

devices. This is not possible for web applications, since there are not any

application stores for HTML5 applications for some of the biggest native

platforms. The only application store that consists of HTML5 applications

is Firefox Marketplace [11].

By publishing applications to application stores, the applications are al-

ways accessible by one-click access in native development. For web appli-

cations, the applications is accessible in any web browser, and there is no

need for the user to download the application. Because the application is

accessible in the web browsers in web applications, the newest version of

the application is always accessible. In native applications, the user has to

update the application manually.

15

Chapter 2. Theoretical Background

Web applications usually requires network connection, while native appli-

cations are not required to have a persistent network connections since the

application code resides on the device, and not on a remote server. In some

cases it is also possible to run HTML5 applications from the device.

2.3 Web Technologies

There exist a number of web technologies which helps you develop web

applications, like Cascading Style Sheets (CSS), Hyper Text Markup Lan-

guage (HTML) and JavaScript. HTML5 is a collection of these web tech-

nologies. This section introduces HTML5, JavaScript, CSS and the HTML

standard.

2.3.1 HTML5

HTML5 refers to the web technologies HTML, JavaScript and CSS [12].

The main idea behind HTML5 was to reduce the need for external plug-ins,

improve error handling, get web applications to behave more like native

applications by adding support for location-based services, and separating

content from presentation in the syntax [12].

The biggest improvement in HTML5 is that the use for external plugins is

reduced since native support for playing audio and video has been imple-

mented into the browser. In a desktop environment this has usually not

been a problem since several plug-ins such as Adobe Flash, Apple Quick-

time and Microsoft Silverlight have provided the necessary functionality.

For iPhone, iPad and Blackberry users, this is a problem, since there is no

plug-in support. HTML5 solves this problem by allowing built-in support

for video in browsers [12].

2.3.2 JavaScript

JavaScript (originally called LiveScript) is a scripting language developed

in the early 1990s by Brendan Eich that worked at Netscape. JavaScript

16

2.3. Web Technologies

is a client side scripting language, which runs in the browser and defines

interactions and animations. JavaScript is usually embedded in the web

page or included from a JavaScript file, and it is used to manipulate the

Document Object Model (DOM) to the web page [13].

JavaScript also goes by the name ECMAScript (European Computer Man-

ufacturers Association) , which is the standardized version of JavaScript [13].

2.3.3 CSS

CSS is a style-sheet language for stylistic control beyond HTML, it defines

style and presentation. The work with CSS started in 1994 at CERN,

and the first edition (CSS1) became a W3C Recommendation in 1997 [14].

CSS1 is a style sheet which attaches style to HTML documents. The

second edition (CSS2) became a W3C Recommendation in 1998, with the

new feature media-specific style sheets [15]. Today, CSS3 is the current

CSS module [16].

2.3.4 HTML

HTML was initially created by Tim Berners-Lee in 1989 [12], as a way for

researchers to collaborate and share data electronically. HTML was based

on Generalized Mark-up Language (SGML), an existing language. The

previous revision of HTML came in 1999, and a lot have changed on the

Internet since then. HTML is used to define static text and images.

Today, it is heading towards a new revision of HTML, the HTML5 stan-

dard. HTML5 (Hyper Text Markup Language revision 5) is the latest

HTML standard, and is still in progress. It is developed by the World

Wide Web Consortium (W3C) [12].

17

3 Related Work

Cross-platform mobile application development has been a popular re-

search topic the last years, which has resulted in several studies in this

area.

This chapter will give an overview of the state of the art for mobile cross-

platform application development tools, including advantages and disad-

vantages with HTML5, development methodologies and where HTML5 are

headed.

Section 3.1 looks into previous research in advantages and disadvantages

in web and native development. Section 3.2 looks into reserch on cross-

platform development tools. Section 3.3 describes current research in de-

velopment methodologies for mobile applications. Section 3.4 introduces

the future of HTML5, and section 3.5 gives a summary of the related work

found.

3.1 Web versus Native

Mobile web application development compared to native application de-

velopment have both advantages and disadvantages. Andre Charland and

Brian Leroux (2011) studied and discussed strength and weaknesses in web

and native development, with focus on areas where the gap is closing be-

tween the two approaches [10]. Some of the main research areas was Native

and Web Code, User Interface Code, User Experience, Performance and

Design.

• Native and Web Code - When developing native applications for

every platform, the programming languages, SDKs, tools, build sys-

tems and APIs is different for every platform, which makes the skills

18

3.1. Web versus Native

required high. In the case of web development, the only thing the

developer needs to know is JavaScript, HTML and CSS to make an

application, and the PhoneGap framework can be used to call native

device features via a common JS API.

• User Interface Code - Native platforms has user-interface controls

and experiences to make consistent user interfaces, while in web de-

velopment this is a bigger job.

• User Experience - The context, Hardware, Platform conventions,

environment and implementation are all aspects that affect the user

experience.

• Performance - Both latency and execution time are important per-

formance points.

• Design - The web approach has some limitations when it comes to

beautiful design.

To summarize, the web approach has not yet achieved the same level of

performance as native code, but the gap is getting smaller.

Lionbridge (2012) studied key characteristics of native and web applica-

tions, and their advantages and disadvantages [3]. A summary of the ad-

vantages and disadvantages with the different approaches are given below.

• Web application advantages - They are cross-platform compati-

ble, which mean they reach multiple platforms. They are cheap and

easy to build and maintain, and there is no need for any downloads.

Because the application is accessible through a URL, the newest ver-

sion is always available.

• Web application disadvantages - There is a limited mobile device

functionality support, and hardware and software on mobile devices

are often not accessible. They also generally require a network con-

nection.

• Native application advantages - They can access hardware and

software on mobile devices. They have the ability that they can

run offline, because they are installed on the device. They are also

19

Chapter 3. Related Work

always visible in the application list screen, and the application stores

reminds the users to update the applications. It is also easy to make

money on native applications, since you set a price for download in

the application stores.

• Native application disadvantages - Separate versions of the ap-

plication for every platform that should be reached need to be devel-

oped, and the maintainance requires more work. Content publishers

also have to share information about their subscribers with the ap-

plication stores.

• Hybrid application advantages - Blends both the web and the

native approaches together, and reduces the development time and

cost. The application looks and behaves like an native application,

but it is developed with web technologies.

• Hybrid application disadvantages: The web-based and native

functionality should blend together seamlessly, which is a design is-

sue.

To summarize, mobile applications reach a wider audience with less costs,

and native applications costs more, but provide a richer user experience.

The native applications and the web applications complement each other,

and both approaches should be used, but there could be a solution to try

the web approach first if companies are new in mobile development.

3.2 HTML5 Cross-Platform Service Develop-

ment

HTML5 development tools and the quality of those tools are an interesting

topic that will be looked into.

Gustavo Hartmann, Geoff Stead and Asi DeGain (2011) looked at cross-

platform mobile development [8], with focus on cross-platform approaches,

development tools and m-learning development.

Different approaches to solve the cross-platform problem are first discussed

20

3.2. HTML5 Cross-Platform Service Development

in the paper, which is cross-compilation, a Virtual Machine (VM) or a

mobile web application. Then, development frameworks and tools are

studied and compared.

The types of frameworks are divided into the following groups: Libraries,

Frameworks, Platforms and Products/Services. The libraries are small

toolkits that offer a specific functionality. Frameworks are collections of

libraries, software components and architecture guidelines. Platforms are

sets of frameworks, tools and services, and products/services offers a spe-

cific functionality. The most significant players when the research was done

is summarized in a table, as shown in figure 3.1.

Figure 3.1: Framework summary [8]

Some of these frameworks are then reviewed and described in more detail,

21

Chapter 3. Related Work

these were Rhodes, Phonegap and Appcelerator Titanium. For each of

these frameworks the device capabilities are listed.

Finally, different types of m-learning is described with associated recom-

mended technical building approach.

To conclude, there exist a number of tools, and software engineers need to

make use of the right set of development tools to create mobile learning

solutions quickly and efficiently. The cross-compilation and mobile web ap-

plications were the leading cross-platform development techniques. Where

cross-compilation is when common source languages are used to develop

the application before they are compiled to the different platforms. The

mobile web application is built with common web technologies including

HTML, CSS and JavaScript, while the application is accessible through

the mobile web browser.

3.3 Methodological Approach

When developing mobile applications it is natural to look at the develop-

ment process and the methodology approach used.

Tony Wasserman (2010) looked at engineering issues related to mobile ap-

plication development, including the development process [17]. His findings

were that agile techniques were the most common in all but the largest and

most complex development projects, and that agile methodologies such as

Scrum and Test Driven Development were used in mobile development

projects, even in single person teams.

The article considers the need for scaling up when the complexity of the de-

velopment process increases. Approaches that work well for single-person

teams might no work well in more complex development projects, because

requirements can change, which greatly impacts the need for testing and

architectural decisions. The focus of the article is on the increasing amount

of unique aspects of mobile application development.

Developing mobile application is similar to software engineering for other

22

3.4. The Future of HTML5

embedded applications, but adds some extra requirements that needs to

be taken into account when developing for mobile devices. Interaction

with other devices, sensor handling, native and mobile web applications,

differences in hardware and software, security, user interface guidelines,

test challenges, and power consumption are requirements mentioned in

the article. The following list summarizes the most important of these

requirements:

• User interface - The user interface is critical in mobile application

development because of smaller screens and different styles of user

interaction. This means that the interaction design of the application

plays a more important role in the development process.

• Non-functional requirements - The success of a mobile applica-

tion depends on a list of non-functional requirements, especially re-

lated to performance, e.g. efficient use of device resource, scalability

and responsiveness.

• Testing - Because of the fragmentation of devices, it is important to

not just test an application in a emulator, but also extensively test

the application on different devices with different configurations.

• Maintenance - Because the world of mobile platforms is rapidly

changing, continuous updates of applications are required, but there

is no guarantee that a user or group of users will update their devices

and applications.

These requirements introduce more complexity into the process of develop-

ing mobile applications and may need extra attention by introducing pro-

cesses into the agile development approach to target these requirements.

3.4 The Future of HTML5

HTML5 is still under development, making the future of HTML5 interest-

ing.

Peter Lubbers, Brian Albers and Frank Salim (2011) looked at the future

of HTML5 in their book, Pro HTML5 Programming [18]. They looked at

23

Chapter 3. Related Work

where thing are going, and discussed some of the promising features that

will come. Some of these new features are SD graphics, the new device

element, gestures, touch events, and Peer-to-Peer networking. These new

features will when they are implemented in browsers enable developers to

create more rich device supported web applications without the need for

native containers.

3.5 Summary

In [10] and [3], web versus native applications are discussed. The articles

both conclude that web applications at present can not perform and act

on the same levels as native applications, but that they are getting better

and better.

In [8], various tools for cross-platform development are discussed. The arti-

cle concludes that the cross-compilation technique, and the web application

technique is the preferred method of creating cross-platform applications.

In [17], the impact of mobile application development on existing develop-

ment methodologies were discussed, and the need for the introduction of

new processes into existing methodologies were expressed.

In [18], the feature of HTML5 was discussed in relation to many new

features that are yet to be implemented in common browsers.

24

4 Case Study

To evaluate the use of HTML5, a case study where a context-aware appli-

cation is built, is used. The applications should be build both as a pure

web application, and as a hybrid application.

Section 4.1 will begin by explaining the theory behind context-aware ap-

plications, and the Context Modeling Language tool which will be used to

show how the mobile news application should work by specifying the con-

text of the application. Section 4.2 describes the context-aware news ser-

vices and their characteristics. Finally, section 4.3 introduces the HTML5

mobile news application.

4.1 Context-Aware Applications

The concept of a context-aware application is an application that adapts

to the context of use. As an example, consider an application that based

on the users location, shows a direct route to the nearest restaurant that

fits the users preferences.

This kind of application operates in a dynamic environment where the

decisions of the application are computed continuously and with minimal

interaction from the user, which means that in theory, the content shown

on the application is always what the user expects to see.

A context-aware application makes decisions based on four types of infor-

mation [19,20]:

• Sensed - Highly dynamic information that is prone to noise and

errors.

• Static - Fixed information that remains the same over the lifetime

of the entity that owns it.

25

Chapter 4. Case Study

• User-supplied - Initially reliable information, that degrades over

time.

• Derived - Information that is retrieved by deriving information from

other information sources.

These information sources contribute to the development of context-aware

applications, but there exists some problems that arise when the informa-

tion is wrong or stale. Some of these problems are possible to solve by

defining meta-data for information that define values for e.g. freshness or

certainty.

4.1.1 Context Modeling Language

The Context Modeling Language (CML) [20] is a tool created to assist in

the specification phase of creating a context-aware application. CML pro-

vide constructs that can describe types of information, their classifications,

meta-data, and dependencies.

26

4.1. Context-Aware Applications

Figure 4.1: An example CML model [20]

Figure 4.1 shows a model example created in CML. The figure shows how

objects (ellipsis) are connected together by a role played by an object type

inside a fact type. As an example, the located near fact type has two roles,

one played by the device, and the other played by a person. The fact types

are annotated and shows the fact type, e.g. the located near fact type is

a derived fact, and the role played by the device inside the located at fact

type is a sensed fact type, and an alternative fact type (since it can have

multiple locations) [20].

27

Chapter 4. Case Study

4.2 Context-Aware News Services

A context-aware news service provides news that can be filtered on context

information. These services collect news articles from various news content

providers, and deliver them based on the inputted context information.

The context could be the news articles category or any other inputted

attributes, e.g., the time the article were posted, some location data from

where the article is from, or other attributes stored with the article [21].

As an example, smartphones have a limited screen size, so it is more cum-

bersome to navigate sites and filter out news by eye. In these cases, a

context-aware news service can provide a user with news that are tailored

to any filters that the user provides, which should give the user easy access

to categories or other articles the user wants to access [21].

4.2.1 Characteristics of a News Service

When developing a news service, some considerations have to be made

about how the service should be constructed. Below, some characteristics

that are important to news services are defined:

• Content driven - The focus of a news service is on the content

delivered to the user.

• Continuously updating - The news service should deliver recent

or current news articles, rather than related or past articles.

• Usability - A news service should be easy to navigate and use.

These characteristics can be interpreted in various ways. The usability of a

news service is dependant on what kind of medium the news are delivered

on. As mentioned previously, devices with smaller screens often require

more creative solutions for presenting articles than desktop clients. These

same constraints also affect the content delivered by the service, i.e. a

desktop client is able to show more news than a smartphone.

28

4.3. A Context-Aware HTML5 News Application

By adding context-awareness to a news service, the characteristics of the

service can change based on the context of use. To continue the previous

example of desktop versus smartphone devices, a user using a smartphone

can get different or a sub-set of articles, while on a desktop client, the user

might receive all relevant news.

4.3 A Context-Aware HTML5 News Applica-

tion

This case study will design and implement an HTML5 application for

delivering news based on contextual information such as location and user

preferences.

The application will work as a front-end for a news recommendation system

created by NTNU SmartMedia, a program at the Department of Computer

and Information Science at Norwegian University of Science and Technol-

ogy, with close collaboration with the Scandinavian media industry [22].

This section presents objectives and method of the study, as well as the

pre-existing system the application will be based on.

4.3.1 Objectives and Method

The goal with this case is to carry out a development process by setting

requirements. The requirements affect how HTML5 are evaluated as a

method for developing applications. By conducting a case study, subjec-

tive impressions of what is important in the application is achieved. This

will affect the evaluation later on. What is important is that it will be

evaluated.

The process of conducting the case study is accomplished by first create

specifications, then design, define, implement, evaluate, discuss, and con-

clude.

29

Chapter 4. Case Study

4.3.2 Existing News Recommendation System

The existing system for news recommendation has been created to over-

come a set of challenges that limit the effectiveness of recommendation

systems in general. Specifically, the identified challenges listed below are

related to the use of news recommendation in a mobile context [23].

• Limited user interfaces - Mobile devices in general have small

screens which make it difficult to show all the information one wants.

• Short life cycles - News articles have short life cycles.

• Cold start users - Users that request a recommendation without

having any preferences.

• Cold-start news articles - News articles that are not tied to any

users preferences are difficult to recommend.

• User’s desirability - What kind of news articles a user wants to

see are hard to detect.

• Context - The context of the user decides the users preference for

particular articles.

The recommendation system retrieves information from two sources: real-

time news streams and real-time web services. These two sources are the

basis for two separate server side components, the News data preparation

and aggregation and the Recommendation engine.

Figure 4.2 shows the system architecture of the news recommendation

system. The details of the system are described in the sections below.

30

4.3. A Context-Aware HTML5 News Application

Figure 4.2: News recommendation system architecture

NEWS DATA AGGREGATION AND PREPARATION

When the news recommendation system retrieves data from the real-time

news stream, it needs to be processed into indexed documents. This pro-

cess consists of four steps:

• Fetching - News articles are fetched from the RSS feeds. At this

point the articles contain entries such as title, lead text, images,

URLs, etc. The URLs are used to fetch the entire HTML document

31

Chapter 4. Case Study

of the article, which is then parsed to get the desired content.

• Syntactic processing - The Apache OpenNLP library is used to

identify location, names of persons and organizations.

• Semantic processing - The Google Maps API is used to find

geocodes of the location names found in the previous step.

• News indexing - The articles are indexed by using SolR search

indexing. This allows client applications to search for content and

build queries for retrieving content.

After these steps, some of the information is further analyzed to provide

better recommendations. The locations that were identified in the news

articles are compared and filtered to only show relevant locations, and the

similarity of news is determined based on the context of the user.

RECOMMENDATION ENGINE

The two most important factors of the recommendation engine are fresh-

ness/recency and user preferences.

The preferences of the user are split into short-term and long-term, where

the long-term preferences are defined by the users profile, while the short-

term preferences of the user is based on the users context and the popu-

larity of the news articles. The users context is determined by the users

location, and the users recent preferred news articles. What articles are

popular is determined by measuring their popularity by listening to the

real-time web services, i.e. Twitter.

4.3.3 Interface

The interface the news recommendation system is available as a REST

API. To access the data from the system, one has to send HTTP GET re-

quests with different kinds of filters for querying the news recommendation

system for specific news.

This REST interface can deliver content on a number of different formats,

such as CSV, XML, JSON, and other formats, but XML is the default

32

4.3. A Context-Aware HTML5 News Application

standard. An example of an URL is shown below:

{end-point}?rows={rows}&wt={format}&sort={order}&q={query}

Here the structure of the API URL is shown, where the end-point in the

above URL is the end point for the request. The rows query parame-

ter controls the amount of articles that are returned from the system. If

this parameter is not specified, the system returns 10 articles. The for-

mat query parameter controls the format of the data response, and the

order query parameter controls the order of the received articles. The last

query parameter query is a query that determines what fields that must

be present. Below, an example query is shown:

lead-text:*%20AND%20text:*%20AND%20title:*%20AND%20cat:*

The above query will only return results that have at least a lead-text, text,

title, and category. Other options are also available as defined in [24].

33

5 Development Approach

This chapter introduces the development approach of how the application

should be built. The development approach covers the full scope of the

development process, from design to chosen methodology, and makes it

easier and more efficient to develop the application.

Section 5.1 starts by describing the chosen development methodology.

Section 5.2 introduces the development environment for the planned mo-

bile news application, including targeted platforms and development con-

straints. Section 5.3 describes the current practices and products available

for developing mobile applications, and section 5.4 introduces the use of

requirements in the development process. Section 5.5 describes how the

specifications and design will be performed.

5.1 Methodology

The development process will use a agile methodology where small pars

of the mobile application will be designed and created in separate phases.

After each phase (iteration), the functionality created is evaluated and

used as a base for the next iteration.

34

5.2. Environment

Figure 5.1: Method diagram

Figure 5.1 show a flow chart of how the work will be done methodically.

Each iteration will be in two weeks, where a functional requirement that

will be developed is specified, implemented and tested/evaluated. The

evaluation is based on the specified function, and how it is decided that it

should work.

The selection of requirements is based on dependencies, and the require-

ments that must be completed before others to work is first developed.

For example, If a user wants to open a single news article, the list of news

articles has to be implemented for this choice to be available.

The testing and evaluation will be performed on the different targeted

platforms, and they will be checked against the requirement too see if they

are met.

This methodology will allow the implementation of the application to be a

working application after each iteration. In this way, risks can be reduced

by not starting on implementation specifics that will take too much time.

5.2 Environment

The purpose of the case study is to develop a mobile application by using

HTML5. In essence, a mobile HTML5 application is a standard web appli-

cation that is adapted for mobile platforms and devices. This means that

35

Chapter 5. Development Approach

the application environment is shaped by the strengths and limitations of

both a standard web development environment, and a mobile development

environment.

As an example, although most web applications are accessible through a

mobile device, a lot of quality aspects are lost as a result of various con-

straints, e.g. smaller screens can only show limited amounts of information

without compromising on readability.

When considering the development environment, some considerations have

to be made. Since one of the problems with native development is device

and platform fragmentation, the application should solve this to a certain

degree. This means that the platforms the application should be developed

for have to be identified, and any unique features and limitations of the

platform must be considered.

5.2.1 Platforms

One of the important aspects of HTML5 applications is that the appli-

cations should be able to run on all platforms able to render HTML and

evaluate JavaScript and CSS. This case study will only consider some of

the most popular platforms, i.e. Android, iOS, and Windows Phone.

When developing native applications, each of these platforms require a

specialized development environment, but when developing a HTML5 ap-

plication one can use a simple text editor to create an application.

The development of the application will primarily be performed in the

Eclipse IDE [25]. The application code will consist of the HTML, JavaScript

and CSS required to run the application.

One important aspect of mobile web applications is that they can be run

and tested in any web browser. This enables a continuous feedback loop

when developing the application.

36

5.3. Current Practices and Products

5.2.2 Constraints

Since all the targeted platforms have different development environments,

it is problematic to develop an application on a single development ma-

chine. In the case of android, the development is made easy by using free

software such as Eclipse for development, but iOS requires the XCode IDE

and an Intel based computer with Mac OS X Lion as a development envi-

ronment. The same constraints apply to Windows Phone which requires

Visual Studio for development.

Other difficulties relate to testing the application during development on

different devices and configurations. The device fragmentation related to

smartphones is huge, and devices come in lots of various configurations.

To be able to efficiently test the application on these configurations an

emulator has to be used.

When developing web applications, the browser enforces constraints on

the web applications by limiting the execution of scripts, and sending and

retrieving of information by origin. This constraint is called the Same-

origin Policy [26]. This means that all XMLHttpRequests [27] from the

application to the news recommendation system will be blocked, since they

have a different host name and port (originator). To work around this, a

Node.js [28] proxy server will be made to act as an intermediary between

the web application and the news recommendation system.

5.3 Current Practices and Products

The web development and mobile development community is currently ex-

periencing a rapid development of new technologies that can be used to

create applications more efficiently. This means that as a developer, the

amount of frameworks and libraries that are available for use is large, and

new and better solutions continuous to emerge. This also means that a

large number of technologies are orphaned when they become obsolete or

another frameworks solves the problem better. When considering frame-

37

Chapter 5. Development Approach

works and libraries, it is important to consider these factors.

Apache Cordova [9] is a platform for creating hybrid applications by using

HTML, CSS, and JavaScript. It is currently the only platform for creating

hybrid applications that support Android, iOS and Windows Phone, that

is also free. Other platforms such as Appspresso [29] and Application

Craft [30] have limitations or cost money.

When using a platform for creating hybrid applications, as well as when

creating mobile web applications, mobile UI frameworks such as jQuery

Mobile [31] and Sencha Touch [32] are used to create UI components that

try to stick to the design guidelines defined by the various device platforms.

5.4 Requirements

To be able to create an applications that can act as a client for the news

recommendation system described in section 4.3.2 some requirements have

to be defined. These requirements should reflect the needs of the system,

and will also be used in decisions in the development effort related to

functionality.

Both functional and non-functional requirements will be defined, the func-

tional requirements will describe how the news recommendation applica-

tion should work, as well as how this affects the design of the application.

The non-functional requirements should define a set of minimal require-

ments related to the quality of the application.

5.5 Specification and Design

The defined requirements will be used in creating a specification of the logic

of the application, as well as in defining navigational structures within the

application.

The specification will be defined as use cases that describe how the user

will interact with the application, and how the application will respond.

38

5.5. Specification and Design

Each use case will be connected to a functional requirement, and one or

more non-functional requirements.

39

6 Application Design

This chapter introduces the planned mobile news application design, and

gives an overview of how the implemented solution will work. The purpose

of this chapter is to give an introduction, and define the specifics of the

application by creating requirements. These requirements are the base for

a set of evaluation criteria that are made to reflect the requirements.

Section 6.1 gives a Context Model of the system which displays the struc-

ture of the system. Section 6.2 defines the functional and non-functional

requirements for the application, and section 6.3 describes the associated

use cases. Section 6.4 describes the characteristics the application should

be evaluated on.

6.1 Context Model

Here, a model of the application by use of the Context Modeling Language

(CML) discussed in section 4.1.1 is described. The purpose of the model is

to create an image of the different entities that participate in the contextual

aspects of the system.

Figure 6.1 shows a CML model of the application.

40

6.1. Context Model

Figure 6.1: CML

As seen in the figure, there are six object types, Person, Device, News,

Location, Category and Time represented as ellipsises. Each of these object

types has their representation values in parentheses, e.g., News has the

representation value id. Each of the ellipsises are connected together with

fact types and boxes that represents roles.

To give an example from the figure, an instance of the has category fact

type can look something like has category[12345, Sport], where the first

value represents the id of the news article, and the second value represents

the category of the news article.

Each of the fact types have annotations that signals if the fact type is

sensed, static, profiled, derived, temporal or ambiguous/alternative. In

the previous example, the News articles category fact type are profiled

(user-supplied).

41

Chapter 6. Application Design

Both the person and the device has both sensed and alternative facts,which

means that for example a device can have multiple locations.

6.2 Application Requirements

This section presents the requirements for the mobile news application.

These requirements are an essential part of the development process, and

will be used in the project evaluation.

The following sections will describe both the functional and non-functional

requirements that have been defined for the mobile news application. Since

the focus of this thesis is to evaluate HTML5, and not the resulting ap-

plication, some of the requirements will not be considered since they rep-

resent properties that are tightly coupled to the implementation of the

application, and not the technologies the application is built on. The re-

quirements that will be explored shallowly, or omitted are for the most

part non-functional.

6.2.1 Functional Requirements

The previous section showed how the different objects in the news aggre-

gation system are connected by contextual information. By analyzing this

model, it is possible to create a list of functional requirements needed for

the application to provide basic functionality.

The news application should deliver relevant news articles to a user, and

the delivery of the articles are based on filters that personify the content

delivered to the user. The filters are supplied by the user, and can be

used to request specific content from the news recommendation system,

e.g., a user can tell the application that it should only fetch news that are

described as sport. These filters are used in the server-side implementation

of the news recommendation system described in section 4.3.2. The news

application should act as a client in a client-server infrastructure.

The items listed below describes the functional requirements of the appli-

42

6.2. Application Requirements

cation:

1. Show all news articles

1.1. Show articles in list

1.2. Show articles on map

2. Show a single news article

2.1. Show detailed article

2.2. Show article on map

3. Enable filtering of news articles

3.1. Enable filtering based on user-supplied information

3.2. Enable filtering based on sensed information

All the above requirements are equally important to achieve an application

that works with the news recommendation system, but they have been pri-

oritized to satisfy any dependencies between the requirements. A further

exploration of these requirement can be found in section 6.3.

6.2.2 Non-functional Requirements

Mobile applications are dependent on non-functional requirements to func-

tion properly. Since mobile applications usually have more constraints than

traditional desktop applications, it is important to consider these require-

ments in every aspect of the mobile application. The most important con-

straints a mobile device has are related to: device resources, networking,

and user interface design.

Some of the most important non-functional requirements when develop-

ing mobile applications are performance issues like efficient use of device

resources, responsiveness and usability. These requirements allow users

to use an application smoothly. Section 6.4 will describe the evaluation

criteria related to the non-functional requirements of the application.

43

Chapter 6. Application Design

6.3 User Interface Design

The requirements defined in section 6.2.1 and section 6.2.2 have been for-

mulated into use cases [33] that describes the overall functionality of the

application. The use cases are explained in detail in Appendix A, but ta-

ble 6.1 is a summary of each use case, its corresponding description and

the requirements it satisfies.

Use case Description Requirement
UC1 A user opens the web applica-

tion, and a list of news articles
are shown.

F1.1

UC2 A user opens a news article from
the list of articles.

F2.1

UC3 A user opens a news article in a
map.

F2.2

UC4 A user opens the map with news
articles.

F1.2, F3.2

UC5 A user opens the settings menu,
and selects a settings option.

F3.1

Table 6.1: Use cases

For each of the above use cases and the functionality they describe, screen

mock-ups have been made that illustrate the proposed design of the appli-

cation, and the accompanying behaviour inside and between screens. The

rest of this section will describe each use case from the perspective of a

screen mock-up and describe how the news application will satisfy both

functional and non-functional requirements.

The use case UC1. Opening a list of news articles describes the

opening of the application. The main page is the first page the user will

see when the application is started and contains all the news articles that

have been fetched. Figure 6.2 shows a sketch of the main page, where the

news articles are listed.

44

6.3. User Interface Design

Figure 6.2: Listed news

The way a user opens the application is dependant on how the application

is deployed. In the case of a standard mobile web application, it will be

reachable by inputting an URL into the mobile browser, which will start the

application. In the case of a hybrid application, the news application will

have its own icon and be available in the application menu on the mobile

device. When the application is started, the news articles should be listed

as clickable areas in two columns in the main region of the site. The news

articles will have different background colors based on the category of the

article. These categories are Technology, Sport, Entertainment, Economy

etc.

The rest of the main page consist of a header region with two buttons, the

filter menu and the options menu, which will be explained later.

As for non-functional requirements, both performance and robustness is

important for the main page to work properly. The application should

load the news articles with little waiting time, and if there isn’t any news

45

Chapter 6. Application Design

articles available, or if there is no network access, the application should

give the user correct feedback.

The use case UC2. Opening a single news article describes how

the user access a single news article, and gets access to more information

regarding this article. How the user opens the article is integrated and

illustrated in Figure 6.3.

Figure 6.3: Extended news

When the user touches the wanted news article in the main page, the site

refreshes and the article is extended. In the extended view, news title,

picture, lead text and text are information from current article that will

be displayed. The user can from here choose to go back to the main page,

or view the location of the current news article in a map. This is done by

the map button in the header. If the article don’t have any location, the

map option should be missing.

The non-functional requirements performance, robustness and quality are

all important for the extended news to perform properly. The wanted news

article should open without delay, and the application should give proper

feedback if there occur any errors. Desired news article should also be easy

to select from the main page.

46

6.3. User Interface Design

The use case UC3. Opening a single news article in a map describes

the opening of a map with the localization for a single news article. It

is realized with a map button in the article that redirects the user to the

map view. A marker in the map gives the localization of the news article,

together with a marker of the users current location. Figure 6.4 illustrates

how the application will look like when the user touches the map button,

and the map is displayed.

Figure 6.4: Extended news in map

The user can touch the screen to change the zoom level of the map to see

a wider or smaller area. From here, the user can go back to the chosen

article.

The non-functional requirements performance, quality and robustness are

all important for the application to function properly when the map is

loaded. The application should respond and open the map without any

big delays. The map option should be intuitively and easy to understand,

which is done by a map button. If the map or location is not available,

the application should failure in a proper way.

The use case UC4. Opening news articles in a map describes the

opening of a map with markers for the location of news articles. Figure 6.5

47

Chapter 6. Application Design

illustrates how the application reacts when the user choose to open news

articles in a map by clicking on the map option.

Figure 6.5: News in map

In the settings menu, there are a setting that decides if the map contains

markers for all news, or news located nearby the users current location.

Both the settings menu and the map option is accessible in the main page.

The user can choose to open the map directly in the main page, or in the

settings menu if the user wants to change the map option before opening

the map.

The map page in the application will look the same for both all news and

local news, but with different zoom area. The users current location will

also be in the map. From here, the user can choose to to go back to the

main page, open the settings menu and change the settings, or open a

single news article from the map.

Quality, robustness and performance are all non-functional requirements

that is important for the application to function properly when the map

is opened. It should be easy to choose and switch which map option that

is suitable, and the map should be easy accessible. It is not necessary

that the user choose the map option each time the map is opened, this is

48

6.3. User Interface Design

therefore in the settings menu. The robustness requirement is important

since application should give proper feedback if there occur any failures.

Performance is included since the application should have low response

time, and minimum delays.

The use case UC5. A user opens the settings menu, and selects

a settings option describes how user-supplied information affects the

application. Figure 6.6 illustrates how the application will look like when

the user choose to open the settings menu for the news application.

Figure 6.6: Settings menu

The user can select one or more categories from the categories list, to show

in the news article list. This makes it easier to filtrate out relevant and

interesting information for the user. The categories of the news articles

are given their own individual color, so that they are easier to recognise in

the news list. After the user has chosen the desired news categories, the

main page will refresh and only display news from the chosen categories.

The user can also choose to change how many news articles that will appear

in the news list in the main page. Radio buttons are used to illustrate that

the user can only choose one number of articles that will be displayed.

49

Chapter 6. Application Design

At last in the settings menu, the user can choose the map option as de-

scribed earlier.

Performance, Robustness and Quality are all non-functional requirements

that is required for a good experience when the user changes settings in the

application. When the user choose to change the settings, the application

should respond and set the changes immediately. In the settings menu,

settings that is not possible should not be possible to choose by the user.

As example, radio buttons is used so that the user only can choose one

of some alternatives when setting number of articles and the map option.

The radio button is used to set categories, since the user can choose one

or more categories. It should not be possible to set zero categories. The

settings option should be easy to recognize and easy accessible.

6.4 Evaluation Criteria

The preceding sections defines requirements for both the functional and

non-functional aspects of the mobile news application. By using these, it

is possible to define criteria that the application should be evaluated on.

After the application has been created, these evaluation criteria will be

used to evaluate the suitability of the application from the context of a

mobile news application.

The application should be evaluated from a developers stand point, which

means that the evaluation criteria that are not related to the previously

defined requirements describe evaluation criteria that are mostly based on

the development process.

Since the purpose of the application is for consumption of information,

and not production, some aspects of mobile applications do not need to be

evaluated, e.g. user experience related to inputting of data.

It is expected that the application should perform equally on all mobile

platforms, i.e. Android, iOS, and Windows Phone.

This section describes the characteristics of Quality and Development.

50

6.4. Evaluation Criteria

6.4.1 Quality

The quality of a system can be determined by a set of characteristics and

sub characteristics that are further decomposed into attributes that are

measurable. These attributes can be computed by using a metric [34].

The International Organization for Standardization (ISO) has defined ISO/IEC

9126 [35] which defines a quality model for use as a framework in software

evaluation. There are some definitions in this model that do not fit with

the evaluation of a technology for developing a product, since the quality

model defines a lot of characteristics that are defined in the context of use.

In addition, each characteristic contains a sub-characteristic that is related

to regulatory compliance that is not needed in the evaluation performed

in this thesis.

The following sections will describe de characteristics and sub-characteristics

from ISO/IEC 9126, and how they will be used in the evaluation of HTML5

as a cross-platform development strategy. The purpose of using an adapted

quality model for evaluating is to gain a sense of what quality characteris-

tics a finished product developed using HTML5 will have.

FUNCTIONALITY

The capability of the software product to provide functions which

meet stated and implied needs when the software is used under

specified conditions [35].

The sub-characteristics of the quality characteristic functionality are de-

scribed below:

• Suitability - If the product provides appropriate functionality.

• Accuracy - If the product provides the appropriate results with

needed precision.

• Interoperability - If the product is able to interact with other sys-

tems.

51

Chapter 6. Application Design

• Security - If the product can protect data and information from

unauthorized entities.

The above sub-characteristics describe how the functionality of a software

product can be evaluated according to its functionality. When considering

these characteristics in the case of the mobile news application, it is possible

to omit Accuracy from the evaluation.

Accuracy in the mobile news system is not delivered by the mobile news

application, but from the news recommendation system, so it is out of the

scope of the evaluation.

The Suitability will in this case be the products ability to provide appro-

priate functionality, where the functionality will be the necessary functions

to create an application that can work as a news application.

The Interoperability of the mobile news application will in this case be its

ability to interact with the news recommendation system. This is impor-

tant for the system to function properly.

The Security can be measured by the applications ability to protect the

privacy of its users. Since the application is meant for consumption of

information, the security aspects from a users point of view are not as

important as in other applications.

RELIABILITY

The capability of the software product to maintain a specified

level of performance when used under specified conditions [35].

The sub-characteristics of the quality characteristic reliability are described

below:

• Maturity - If the product is able to avoid failures.

• Fault tolerance - If the product is able to tolerate failures.

• Recoverability - If the product is able to recover from failures.

The reliability of a system is important for it to work properly. This in-

52

6.4. Evaluation Criteria

cludes how robust the system is, and that the system reacts in a satisfactory

way.

When considering the above characteristics, it is clear that they are de-

fined to represent how a product is made, and the products ability to act

on failures. If these characteristics are to be used in evaluating HTML5

applications, they must be adapted.

If we prepend the definition of the reliability characteristic to represent

the ability of the product to facilitate functions or tools so that a system

can provide Maturity, Fault tolerance, and Recoverability, it is possible to

evaluate the quality of the mobile news application.

USABILITY

The capability of the software product to be understood, learned,

used and attractive to the use, when used under specified con-

ditions [35].

The sub-characteristics of the quality characteristic usability are described

below:

• Understandability - If the product enables the user to understand

how the product solves a particular task.

• Learnability - If the product enables the user to learn how the

product works.

• Operability - If the product enables the user to control the product.

• Attractiveness - If the product is attractive.

The usability of a mobile application is important because the screen sizes

of various mobile devices are smaller than on desktop computers. This

means that new navigational paradigms must be used to accomplish tasks.

When considering the Understandability of a product, it is possible to think

of how an application resembles other applications with the same purpose

and applications on the same platform. In native development this is a

big deal, and guidelines and rules are created to give applications similar

53

Chapter 6. Application Design

look and feel. Learnability is also based on these same concepts, and the

familiarity of applications may enable users to learn how the applications

work quickly.

When evaluating these two characteristics, the important aspects are how

HTML5 and the web enables a developer to create solutions that enable

understandability and learnability.

The two last characteristics, Operability and Attractiveness are mainly

dependant on specific implementation details of the application, and are

not interesting in the context of this evaluation.

EFFICIENCY

The capability of the software product to provide appropriate

performance, relative to the amount of resources used, under

stated conditions [35].

The sub-characteristics of the quality characteristic efficiency are described

below:

• Time behaviour - If the product provides appropriate response and

processing times under normal operation.

• Resource utilization - If the product provides an appropriate use

of resources under normal operation.

The efficiency of a product is a characteristic that has to be measured in

use. It mainly consists of measurements related to time when reading and

writing information, and how the resources of the system is used.

When evaluating efficiency, the measurements have to be done on an al-

ready implemented application to get an insight in how the resources of a

device are used, and how this impacts the normal operation of the appli-

cation.

The measurements that are important in mobile applications have big im-

plications on the responsiveness of the application, which can have a big

effect on usability. When evaluating these characteristics, the delays in

54

6.4. Evaluation Criteria

time, and the use of resources should not impact the user experience of

interacting with the application.

MAINTAINABILITY

The capability of the software product to be modified. Modifi-

cations may include corrections, improvements or adaptation

of the software to changes in environment and in requirements

and functional specifications [35].

The sub-characteristics of the quality characteristic maintainability are

described below:

• Analyzability - If the product can be diagnosed for failures and

deficiencies.

• Changeability - If the product can be modified.

• Stability - If the product can tolerate modifications without unex-

pected effects.

• Testability - If the product can be tested.

The above characteristics describe properties of a product that are im-

portant during the development phase, and after the product has been

deployed. In the context of mobile web applications, these properties can

be evaluated in the form of available tools and libraries that can be used

to diagnose and test the application.

The Stability characteristic describe properties of a system that is very

dependant one the implementation of the system in question. During this

evaluation, the stability of the mobile application is of less interest than

the characteristics that can lead to a stable system, e.g., if there are ways

to test the software.

Of the above characteristics, Testability and Analyzability can be evaluated

by looking at the available options in the form of tools and frameworks that

can be used to achieve maintainability. The last characteristic, Change-

ability describes a quality that describes how patchable, or updateable the

55

Chapter 6. Application Design

system is.

PORTABILITY

The capability of the software product to be transferred from

one environment to another [35].

The sub-characteristics of the quality characteristic portability are de-

scribed below:

• Adaptability - If the product can be adapted for other environ-

ments.

• Installability - If the product can be installed in a specific environ-

ment.

• Co-existence - If the product can co-exist with other products in

the same environment.

• Replaceability - If the product can be used instead of another prod-

uct in the same environment.

The portability characteristic is important in the context of this case study.

A big part of the motivation behind evaluating HTML5 as a cross platform

strategy is the portability of the applications.

The Adaptability and Installability characteristics are a very important

part of the evaluation since they can have such a large impact on the final

evaluation.

In contrast, if the application can Co-exist or replace other products is of

less importance.

6.4.2 Development

A big part of the evaluation process should focus on the development of

the mobile application. The development phase takes into consideration

characteristics of HTML5 that are not related to the quality of the end

product, but characteristics that describe the ecosystem around HTML5

and cross-platform development of applications.

56

6.4. Evaluation Criteria

PLATFORM ECOSYSTEM

The ecosystem describes the whole environment around an application,

and is an integral part of the development process. In native application

development, the ecosystem is mostly controlled by the providers of the

platforms, which mean that they have an incentive to keep documentation,

tutorials and guidelines updated and of good quality.

An important part of the ecosystem is technical costs. These include the

costs of implementation, and all other costs of things that need to be done

in the development process. Some examples of technical costs are the

learning of new platforms, and tools that will be used. Some platforms

require that their

Another important aspect of the ecosystem is the resources. Good re-

sources can produce extension, documentation, tutorials, guidelines and

other resources that can be helpful when developing a new system.

57

7 Realization

The implementation of the mobile news application consists of an HTML5

web application which can run in a standard browser as well as a mobile

browser, and a hybrid application that is run in a native container.

The purpose of the application is to deliver news to a user based on the

context of the user, i.e., the location and other user-specified parameters.

These news articles should be viewable as markers on a map, or as a

traditional list of articles. The user-supplied parameters are filters related

to the desired category and number of articles.

There exist a large number of possible tools and frameworks that can be

used to develop HTML5 cross-platform applications, and help provide con-

sistent HTML5 applications across multiple mobile browsers. The follow-

ing sections describe the process of developing the applications, and some

of the considerations that had to be made to satisfy the requirements that

were defined in section 6.2. Since there exist a lot of frameworks, only the

most relevant will be presented in the following sections.

7.1 Tools and Libraries

Since the server-side implementation is not part of this thesis, the only

implementation is the HTML5 web application and the hybrid equivalent.

To be able to create these applications, a range of tools and libraries was

used to help in the development process. The following section will describe

these.

Section 7.1.1 will describe the development environment that was used to

create the applications. Section 7.1.2 will describe the process of choosing

an appropriate framework as a basis for the architecture of the applications.

58

7.1. Tools and Libraries

Section 7.1.3 will describe the process of choosing appropriate frameworks

an libraries for the user interface of the applications.

7.1.1 Development Tools

The development of the mobile news applications was done using the

Eclipse IDE, which is an open source development platform for building,

deploying and managing software [25]. It exist a number of different Eclipse

packages available for download, and the package used for developing the

application was the Eclipse Java EE IDE for Web Developers, the Juno

version.

Since the application run client-side and are based only on web technolo-

gies, the application could be tested right in the web browser. All web

browsers has a developer console, where it is possible to inspect what is

going on in the browser. That includes the stylesheets used, the markup of

the page, script files and requests and response. In this study, the Google

Chrome browser has been used as environment for the debugging since it

is based on WebKit [36] like the browsers on Android and iOS.

To test the application in its real environment, some mobile devices was

used, these are listed in table 7.1.

Device platform version
Samsung galaxy S2 Android 4.2.2

Samsung Galaxy Note 2 Android 4.1.2
Apple iPad 2 iOS 6.1.3

Table 7.1: Development testing environments

Because of the difficulties of creating iOS and Windows Phone applications

without access to a Mac and Visual Studio development environment, an

emulator that can emulate the applications on the different platforms was

used. This was the Opera Mobile Emulator [37], which runs the same code

as its mobile phone versions. In the emulator, it is possible to choose one of

the preconfigured popular phones, such as Samsung Galaxy S3, or custom

59

Chapter 7. Realization

made your own emulator environment by setting Resolution, Pixel Density,

User Interface, User Agent String, Window Scale, and Arguments.

7.1.2 Architecture

One of the consequences of creating a mobile application using HTML5

and its related technologies is that the client-side becomes thicker and

more dependant on logic. This means that the client-side code becomes

just as important as the server-side code when considering the performance

and maintainability of the application.

As a result of this, large numbers of frameworks and libraries that help

developers with the structure of the application by providing JavaScript

constructs and functions that contribute to the development process.

To be able to satisfy some of the defined requirements, such a framework

is required to create code that is testable and maintainable to reduce bugs

and performance issues in the application.

Framework Size StackOverflow GitHub
Backbone [38] 6.3Kb + 4Kb 9030 14267
Ember [39] 51Kb 3911 7072
Knockout [40] 14Kb 5744 3733
Angular [41] 29Kb 6096 10073

Table 7.2: JavaScript web application frameworks

Table 7.2 shows four popular web frameworks and some statistics related

to them. The size column represents the file sizes of the source files that

have to be included with the web application. In the case of Backbone,

the utility library Underscore has to be included. The StackOverflow col-

umn represents the number of questions on StackOverflow, which in addi-

tion to the number of GitHub stars might indicate the popularity of the

frameworks, as well as be an indicator of the community of each of the

frameworks.

60

7.1. Tools and Libraries

7.1.3 User Interface

The user interface implementation of the mobile news applications try to

satisfy the non-functional requirements related to usability as defined in

section 6.4.1. This section focused on the understandability and learnability

of an application as important aspects from a user standpoint.

If an application wants to achieve these properties, it should be able to

deliver applications that the user expects, i.e, an iOS application should

look and behave like an iOs application, and an Android application should

look and behave like an Android application.

Since the HTML5 ecosystem does not provide any predefined components

and guidelines that adhere to the standards of the native platforms, devel-

opers need to utilize third-party libraries that provide these capabilities.

Framework Android iOS Windows Phone
jQuery Mobile Yes Yes Yes
Sencha touch Yes Yes Yes

jQTouch Yes Yes No

Table 7.3: Mobile UI frameworks

Table 7.3 shows three popular mobile ui frameworks that provide user

interface elements and animations. Two of these frameworks support all

the platforms that this thesis aims for.

One of the problems with these UI frameworks is that they do not provide

a native look and feel, but provide their own version of something that

looks like bits and pieces from different platforms. As an example, each

of the UI frameworks provide a back button at the top of the application

that resembles the back button from iOS. If an HTML5 application was

developed for the iOS platform, this would not be a problem, but on most

Android phones, the back button (either a hard or soft button) at the

bottom of the screen is used. One of the options one has when using

UI frameworks like this is the ability to customize the user interface with

61

Chapter 7. Realization

themes and other user interface elements, but it takes more work to create

something that is slightly different than what the framework defines.

7.1.4 Device Features

In the context of the mobile news application, it is important that some of

the device features are available, especially when developing hybrid appli-

cations. To be able to utilize the functionality of a mobile device, an API

to the device features is needed.

Framework Architecture Device UI Free
Apache Cor-
dova

No Yes No Yes

M-Project Yes Apache Cor-
dova

jQuery Mo-
bile

Yes

App Frame-
work

Yes Yes Yes Yes

Titanium Yes Yes Yes Yes

Table 7.4: Mobile web frameworks

Table 7.4 shows four mobile web frameworks that offer varying degrees

of functionality for the development of mobile web applications. Some of

these frameworks offer complete solutions consisting of the desired devel-

opment constructs needed to create cross-platform applications. The table

shows that both App Framework, and Titanium offer full solutions, while

Apache Cordova only works as a library for accessing the device features

of a mobile device.

7.2 Implementation

At the beginning of the development process, some decisions for how the

news application should be developed had to be made. To be able to look

at two different aspects of mobile html5 application development, both a

pure web application and a hybrid application was implemented.

62

7.2. Implementation

Instead of using one of the mobile specific JavaScript frameworks, the

choice fell upon a more self-deployed method. For creating the application

architecture, Backbone was used in conjunction with Backbone.Marionette [42]

to ease the construction of views in the application. These JavaScript li-

braries are small and work in all web browsers, which reduces the footprint

of vendor code in the application. To create the views and design of the

application, the Amazium CSS library [43] was used to provide the correct

views settings for different screen sizes.

This approach enables the developer to have full control of the complex-

ity of the application by only including libraries that do one thing. The

disadvantage with this is that it requires the developer to write more code

(especially in complex applications), but in the case of an information con-

sumption application that only has to show data, it should be sufficient.

The reason why none of the UI frameworks, i.e, jQuery Mobile, Sencha

Touch and jQTOuch was chosen is because they are big frameworks with

many dependencies and peculiarities. And even though these frameworks

advertise that they can provide the native look and feel for Android, iOS

and Windows Phone, it requires extra work even when they are used.

When using this frameworks, you also lock yourselves to their way of de-

veloping applications, and maintenance in the case of updates is more

difficult.

Developing the hybrid application for the Android platform was done using

the Apache Cordova framework and the Android SDK. Apache Cordova

was chosen because of the wide support of tools and the big community

around it.

7.2.1 Architecture Design

The application is developed in HTML5, which means that JavaScript files

interact with the device, HTML files adds structure and CSS3 files defines

the page appearance. The hybrid application is created with HTML5, just

like the web application, and it is wrapped with Apache Cordova.

63

Chapter 7. Realization

Because of browser limitations, a proxy server had to be made to route

all AJAX-requests to the news recommendation system. This is because

of the same-origin security policy in a browser which limits cross-domain

AJAX-calls.

The proxy server is a bare bones Node.js server with a single REST end-

point that routes the request from the mobile news application to the news

recommendation system.

DATA FLOW DIAGRAM

To illustrate how the data flows through the system, a data flow diagram

is made.

Figure 7.1: Data flow diagram

Figure 7.1 shows how the the implemented application works in relation

to the rest of the system.

First, the mobile client sends a HTTP GET request to the proxy server

which accepts the query parameters specified in the client, and builds an

URL that the news recommendation system can use. As an example, the

client sends a request to

{server-endpoint}/stories?rows={rows}&category={category}

The query parameters are read and used to build another URL as specified

in section 4.3.3. The proxy then calls the endpoint of the news recommen-

dation system, which returns a JSON data object that is routed through

the proxy and into the client.

64

7.2. Implementation

At the client, the JSON object is parsed into the desired format, and

showed as a list of news articles for the user.

STATE MACHINE DIAGRAM

A State Machine Diagram models the behaviour of a system, and specifies

which states the system can be in [33]. This technique is used and illus-

trated in figure 7.2, which illustrates how the application behaves at all

times.

The initial pseudostate indicates which state the applications is in when

the application is started. The initial pseudostate has an arrow that points

to the initial state, the main page.

The figure illustrates that the application can be in four states, the home

page, extended article, the settings menu and the map view. The states are

connected by lines that gives the transitions, which tells how the applica-

tion changes from state to state. Each transition is written in the following

way, where each part is optional: trigger-signature [guard]/activity, where

trigger-signature is the event that triggers the change of state, [guard] is

an boolean condition that must bet true for the change to take place, and

the activity is what happens in the transition [33].

In State Machine Diagrams there are usually an final state that indicates

the termination of the system, but in this application there does not ex-

ist any final state, because it is a web application and the application is

terminated just by closing the browser or by opening another URL.

65

Chapter 7. Realization

Figure 7.2: State machine diagram

INPUT METHOD

When the use wants to perform some actions in the news application, it

requires some input from the user. The chosen input method is buttons

interaction, where the user touches buttons and the application makes

action based on which button that is touched. As an example, if the user

opens the settings menu and selects a category, the application responds

and fetches news from that category instantly.

In addition to buttons, when selecting articles from the list of articles,

touch presses are also used to select the desired article.

7.2.2 The Implemented News Application

This section presents how the news application was implemented, and pro-

vides a detailed representation of the user interface of the final result. For

66

7.2. Implementation

each of the use cases covering the functional requirements described in ap-

pendix A, the implemented solution for these requirements are presented

and described.

The screenshots in the following sections are only from the web implemen-

tation of the application since any screenshots from the hybrid application

would look identical.

OPENING A LIST OF NEWS ARTICLES

When the user opens the main page of the application, the user will see the

news listed. When accessing the application, there is no need for signing

in or other user-supplied information to see this page. All that is required

is that the user enters the URL for the application in the web browser, or

downloads it from the app store in the hybrid approach.

Figure 7.3 shows the main page that appears when the user opens the

application, and the list of news articles appears. The figure shows three

different stages of the main page. Figure 7.3a shows how the main screen

of the application is when the user first enters the application. The appli-

cation is filled with the ten most recent news articles. If the users selects

another category, a loading indicator will pop-up as shown in figure 7.3b,

and then the main screen will be loaded with articles from the selected

category as shown in figure7.3c.

As shown in the figures, the news articles are listed listed in a row, where

the article title and lead text are shown for each of the news articles. The

article also has a publisher and published field that shows the recency of

the article.

OPENING A SINGLE NEWS ARTICLE

When the application user clicks on a article in the news feed in the main

page, it will appear a new page with expanded information about this

article. In addition to the news article title and lead text, pictures and full

text will be displayed in the expanded view. Figure 7.4 shows how this

67

Chapter 7. Realization

(a) All categories (b) Loading (c) Filtered on category

Figure 7.3: The main page of the mobile news application

was implemented.

Figure 7.4: An opened news article

68

7.2. Implementation

The user can scroll the page to read the whole text bu using swipes on the

screen.

OPENING A SINGLE NEWS ARTICLE IN A MAP

When the user is in the detail view of an article, it is possible to press the

globe at the top of the screen to show that article on a map. As shown in

figure 7.5, the map shows the locations of the news article as markers on

the map.

Figure 7.5: Showing the locations of an article on a map

The Google maps API was used to plot and show news on a map. When

a news article is extended, both the users location and the story location

is given in the map.

OPENING NEWS ARTICLES IN A MAP

When the user is in the list of all news articles, the user can choose to plot

all news on a map by pressing the globe at the top of the screen. Figure 7.6

shows the implemented solution of all news on the map.

69

Chapter 7. Realization

Figure 7.6: Data flow diagram

FILTER NEWS ARTICLES

The filter menu is accessible from all screens in the application. When the

user click on the setting icon in the top right of the application, a drop

down menu with filter option appears from the top of the screen. In the

settings menu, the user can choose which categories to display in the news

feed on the main page. The user can choose one of the categories Economy,

Sport, Technology, Lifecycle, Entertainment, and News.

After choosing desired categories, the main page will refresh and only dis-

play news from the desired category.

Also, the user can choose how many articles to display in the main menu.

70

7.3. Improvements

(a) Samsung Galaxy Note II (b) iPad

Figure 7.7: A drop down settings menu

Figure 7.7 shows how the filter menu is implemented. the purpose of the

menu is to allow the user minimal interaction with the application to get

the desired outcome.

7.3 Improvements

There are some improvements that can be done with the news application

as it is today. Due to the time constraints, some ideas and design improve-

ments had to be set aside. These improvements concerns improvements on

the implemented application that would lead to a better quality and user

experience.

One of the other functionality that were described in the functional require-

ments were the ability to filter news on location. As of now, the mobile

news application returns all news. This is also present in the setting menu,

71

Chapter 7. Realization

where the buttons for filtering on the locality of news are present, but not

implemented.

When a news article has been selected and shown in a map, or if all the

articles have been shown in the map, the user should be able to select an

article from the map to open the article.

72

8 Evaluation

In this chapter, the strengths and weaknesses of developing a HTML5

application for the given use case is evaluated. The evaluation is based on

the criteria from Section 6.4.

The criteria is evaluated by the use of the LSP method discussed in Sec-

tion 8.1. First each of the criteria is divided into measurable components

with the system requirement tree. Then for each of the web and hybrid

approach, each component is given a elementary criteria and a elementary

preference between 0 and 1 based on information collected on the Internet

and experience from the development process. At last, the aggregation is

executed.

8.1 Logic Scoring of Preference

Logic Scoring of Preference (LSP) is a quantitative evaluation methodology

for evaluating software quality [44]. The LSP methodology consists of the

following steps:

1. Define an evaluation standpoint.

2. Identify evaluation criteria.

3. Determine the elementary preferences.

4. Aggregation of elementary preferences.

The first step is the definition of the evaluation standpoint. This is the

standpoint from where the system is evaluated from, e.g., software users

and software developers have different criteria, and therefore the system

needs to be evaluated from their different points of view.

This evaluation standpoint is the base for the creation of a system re-

quirement tree, which is used to systematically identify software evaluation

73

Chapter 8. Evaluation

criteria components. These components are decomposed into aggregation

blocks until the components can not be divided into smaller components.

These components of the lowest level of the tree are directly measurable,

and are called performance variables.

Each of these performance variables must have a defined elementary cri-

teria that determines the elementary preference of the variable. This el-

ementary preference determines the level of satisfaction for each value of

the evaluated performance variables. The elementary preference score is

a value between [0,1] or [0,100%] [44]. The elementary preference can be

calculated as follows:

Ei = Gi(Xi)

where E is the elementary preference, G is the function for calculating E,

X is the score of a performance variable, and i is the number of a particular

feature. This relationship can also be represented as a preference scale [44].

Figure 8.1: A preference scale

Figure 8.1 shows a preference scale for calculating an elementary prefer-

ence. The top of the figure represents a score for a performance variable,

where Xmin represents the minimum score, which result in an elementary

preference of 0%, and Xmax represents the maximum score which will result

in an elementary preference of 100%.

74

8.1. Logic Scoring of Preference

All of the elementary preferences present in an aggregation block are used

to calculate the preference score of the feature that contained the elemen-

tary preferences. These preference scores can again be used to calculate

the preference score of the feature above and so on until the entire system

requirement tree has been aggregated into a global preference score. The

global preference is defined as:

E = L(E1, . . . , En)

where E is the global preference, L is the function for evaluating E, En

is preference n, and n represents the number of preference scores. The L

function calculates the output preference by the formula:

e0 = (W1E1
r + . . . + WkEk

r)1/r,W1 + . . . + Wk = 1

where e0 is the output preference score, W is the weight of the elementary

preference, E is the elementary preference of a performance variable, k is

the number of performance variables in an aggregation block, and r is a

conjunctive/disjunctive coefficient of the aggregation block.

The weights from the L formula are defined as a fraction of 1, and signify

the importance of a preference value.

The aggregation function represents a process of logic aggregation of pref-

erences that iterates over the system requirements tree from the leaf nodes

to the root, and aggregates the aggregation blocks by using suitable logic

aggregation operators.

There are five logic aggregation operators with specific logic properties [44]:

• Simultaneity - When two or more preference variables must be

present simultaneously.

• Replaceability - When two or more preference variables can be

replaced by alternatives.

75

Chapter 8. Evaluation

• Neutrality - When two or more preference variables can be grouped

independently.

• Symmetric - When two or more preference variables affect the eval-

uation in the same logical way.

• Asymmetric - When mandatory preference variables are combined

with desired or optional preference variables.

Simultaneity, replaceability and neutrality are three special cases of the

Generalized Conjunction/Disjunction (GCD) function. Where neutrality

(A) represent arithmetic mean, simultaneity (C) represent conjunction,

and replaceability (D) represent disjunction. C are categorized as C+,

CA and C- to represent if they are strong, medium or weak conjunctions.

Further, C– is between A and C-. The same is the case for the replaceability

function.

Figure 8.2 shows these function, from total disjunction to total conjunction.

Figure 8.2: The GCD function: 17 levels and their symbols [44]

76

8.2. System Requirement Tree

8.2 System Requirement Tree

The system requirement tree is based on the quality characteristics from

section 6.4.1 and 6.4.2.

1. Quality

1.1. Functionality

1.2. Reliability

1.3. Usability

1.4. Efficiency

1.5. Maintainability

1.6. Portability

2. Development

2.1. Ecosystem

The above list is a summary of the quality characteristics and charac-

teristics related to the development process. The following sections will

present each characteristic, and define element criteria for each of them.

The goal is to achieve measurable characteristics, and aggregate these into

an elementary preference score.

The aggregation process also contains relative weights for each charac-

teristic. These help in determining which characteristics that are more

important than others. These weights are subjective to a certain degree,

and might affect the final result.

8.2.1 Functionality

The measurable characteristics related to functionality describe function-

ality that must be present for the mobile news application to be able to

satisfy the functional requirements specified in section 6.2.1.

The following list describe the sub-characteristics of functionality, where

the leaf nodes of the tree describe the measurable characteristics.

1. Suitability

77

Chapter 8. Evaluation

1.1. Storage

1.2. Connectivity

1.3. Geolocation

1.3.1. GPS

1.3.2. Network

1.4. User interface

1.4.1. Back button

1.4.2. Resolution handling

1.4.3. Orientation handling

2. Interoperability

2.1. Data formats

2.2. Communication protocols

3. Security

3.1. Privacy

SUITABILITY

The suitability characteristics describe functionality that is commonly avail-

able in the development of native applications. Some of these character-

istics such as location are essential in the creation of the mobile news

application, and should be weighted more importantly than others. For

most of these functions, the evaluation can be done on the availability of

the function on Android, iOS and Windows Phone.

Figure 8.3: Suitability preference scale

Figure 8.3 show how the elementary preference of the suitability character-

78

8.2. System Requirement Tree

istics are calculated in a preference scale. If a functionality is not present

on any platforms, the preference score will be 0, and 1 if it is present on

all platforms.

INTEROPERABILITY

The interoperability characteristic describes if it is possible for the system

to communicate with other systems. If two or more systems are able

to communicate, they need to share communication protocols and data

formats. In the case of the mobile news application, this is an essential

characteristic because the application needs to communicate with the news

recommendation system.

Figure 8.4: Boolean characteristics preference scale

The two measurable characteristics that have been decomposed from the

interoperability characteristic are data formats and communication pro-

tocols. The news recommendation system delivers information over the

HTTP protocol, so the element criteria for the communication protocol

characteristic can be formulated as a boolean property, where an element

preference of 0% signifies that HTTP is not supported. The preference

scale from figure 8.4 show the graphical representation of this preference.

The news recommendation system sends its data over the following pro-

tocols: XML, JSON, CSV and HTML. This means that the data formats

characteristic can be evaluated based on if these formats are available from

the mobile news application. The element criteria for data formats can be

formulated as follows: one point for each data format supported.

79

Chapter 8. Evaluation

Figure 8.5: Data formats preference scale

Figure 8.5 shows the preference scale for the data format characteristic.

If all specified data formats are available, the element preference will be

100%.

SECURITY

The security characteristic describes the ability of the mobile application

to protect it from unauthorized access. Since the mobile application is

meant for consumption of information, the security implications of most

transactions are small. One important concern is still the privacy of the

user, since the user has to share location information.

The privacy characteristic can be evaluated if the geolocation implemen-

tation follows the W3C Geolocation standard [45] which states that User

Agents must not send location information to Web sites without the ex-

press permission of the user. This means that the preference scale will be

a equal to the suitability characteristics as defined in figure 8.3. To get a

full score, the geolocation API of the mobile browsers must implement the

API correctly.

8.2.2 Reliability

The reliability characteristic describes non-functional requirements of the

system so that the system can perform at normal operation even when the

system experiences errors and failures.

80

8.2. System Requirement Tree

The following list describe the sub-characteristics of reliability, where the

leaf nodes of the tree describe the measurable characteristics.

1. Maturity

1.1. Offline capability

2. Recoverability

MATURITY

The maturity characteristic describe the ability of the mobile application

to avoid failures. One of the characteristics that are helpful in this sense

is if the mobile application has offline capability. If the application can be

run offline, connectivity issues can be avoided.

For offline capability to be present, both the availability to store state

in the client, and the ability to monitor the connection of the client is

necessary. The element criteria of the offline capability characteristic can

be described as follows:

• For each of the platforms Android, iOS, and Windows Phone

– 1 point for storage functionality

– 1 point for connectivity functionality

Figure 8.6 shows the preference scale for the offline capability preference. If

both storage and connectivity are present for all platforms, the elementary

preference will be 100%.

Figure 8.6: Offline capability preference scale

81

Chapter 8. Evaluation

RECOVERABILITY

The Recoverability capability describe the ability of the application to

recover after failures. If the applications is to recover, it should be able to

resume a previous state from before the failure.

To be able to recover, the application has to be able to save state locally

which can later be rolled back to in the case of failures. This requires that

the application has storage functionality and can store state information.

The element criteria of the recoverability characteristic is similar to that of

the offline capability characteristic, but only requires the storage function-

ality. The element criteria can be described as for each of the platforms

Android, iOS and Windows Phone, add one point if the platform supports

storage.

8.2.3 Usability

The usability characteristic describes non-functional requirements of the

system so that the system is useful for the user that is going to use it.

The following list describe the sub-characteristics of usability, where the

leaf nodes of the tree describe the measurable characteristics.

1. Understandability

1.1. Navigation

1.2. User interface

UNDERSTANDABILITY

The understandability characteristic describes the systems ability to be

understood. Some of the characteristics that can be derived from under-

standability are navigational paradigms, i.e., if the mobile application can

apply known navigational patterns that the user is used to, such as touch

gestures.

The characteristic Navigation describes the navigational patterns available

82

8.2. System Requirement Tree

in the mobile application. Some of the patterns that are used in native

applications are touch gestures and soft buttons. The element criteria for

the navigation characteristics can be described as follows:

• For each of the platforms Android, iOS, and Windows phone

– 1 point if touch gestures are supported

– 1 point if soft buttons are supported

Figure 8.7 shows the preference scale for the navigation characteristic. If

both touch gestures and soft buttons are available for all platforms, the

elementary preference of navigation is 100%.

Figure 8.7: Navigation preference scale

The User interface characteristic describes how the user interface elements

and overall user experience can be created in the application. In native de-

velopment, there exists guidelines and rules for how an application should

look, and how different parts of the application should be created. The

element criteria for the user interface characteristic can be described as

follows:

• For each of the platforms Android, iOS, and Windows Phone

– 1 point if there exist guidelines for creating the user interface

– 1 point if there exist user interface libraries that define prede-

fined components and styles

83

Chapter 8. Evaluation

Figure 8.8: User interface preference scale

Figure 8.8 shows the preference scale for the user interface characteristic.

If there exist both guidelines and user interface libraries, the elementary

preference of the user interface characteristic is 100%.

8.2.4 Efficiency

The efficiency characteristic describes non-functional requirements of the

system so that the system can provide a good performance.

The following list describe the sub-characteristics of efficiency, where the

leaf nodes of the tree describe the measurable characteristics.

1. Time behaviour

1.1. Latency

1.2. Response times

2. Resource utilization

2.1. CPU

2.2. Memory

TIME BEHAVIOUR

The time behaviour characteristic describes the capability of the system to

provide appropriate response and processing times under normal operation.

Some of the characteristics that can be derived from time behaviour are

Latency, Response time and Throughput.

The characteristic Latency describes time delays in the system. If there

84

8.2. System Requirement Tree

exist a big latency, the data transmission rate is low. Latency is measured

in milliseconds, and a high latency slows down the system and results in a

poor system performance.

Figure 8.9: Latency preference scale

Figure 8.9 shows the preference scale for the latency characteristic. If the

data latency is 100 ms, the latency is not noticeable, and the element

preference will be 100%. If the data latency is 5 seconds, the latency is

noticeable, and the element preference is 0%.

The Response time characteristic is the time it takes from a user action

to a system response. The response time is measures based on how many

seconds it takes before the user gets a response from the system.

In easy tasks, like movements and button clicks, the application should

respond in 100ms. Then the system reacts instantly, and the system re-

sponse time is good. On the other side, if the system responds too fast,

the user cannot keep ut with the response.

In normal tasks, like site navigation, the response time should be under 1

second. If the system uses 1.0 seconds to response, the response time is

noticeable, but it is tolerable.

In time consuming tasks, like loading data, the application should respond

in under 10 seconds. If the system uses 10 seconds to response, the users

attention is affected, but the response time is acceptable due to the amount

of data loading.

85

Chapter 8. Evaluation

Figure 8.10 shows the preference scale for the response time preference. If

the response time is 100ms, the elementary preference will be 100%. For

easy tasks, Xmax are 200ms, meaning that if the response time is 200ms,

the elementary preference will be 0%. For normal task, response time over

3 seconds are not acceptable, and the elementary preference will be 0%.

For time consuming tasks, 10 seconds give a elementary preference on 0%.

Figure 8.10: Response time preference scale

RESOURCE UTILIZATION

The Resource utilization characteristic describes the capability of the sys-

tem to handle resources. This is divided into the two sub characteristics

CPU and Memory.

The CPU characteristic describes the CPU utilization by the news appli-

cation. Effective use of the CPU allows the application to run faster and

more efficiently. The CPU usage is given in a percentage scale (0%-100%),

where, 0% is the lowest CPU usage, and 100% is the highest CPU usage.

High CPU usage may result in reduced response time, while low CPU us-

age shows that the device is able to run the program easily. To evaluate

the news application CPU utilization, the highest score is set to 100% and

the lowest score is set to 5%, since there must be some CPU usage when

using the application. Figure 8.11 shows the preference scale for the CPU

preference.

86

8.2. System Requirement Tree

Figure 8.11: CPU preference scale

The Memory characteristic describes the amount of memory used by the

news application. If the memory usage is high, the device may feel slow,

and the user experience gets poorer.

Figure 8.12: Memory preference scale

Figure 8.12 show how the elementary preference of the memory preference

is calculated. The application should use less than 20MB of the memory,

and more than or approximately 0MB. If the application uses approxi-

mately 0MB, the element preference will be 100%, and if it uses 20MB or

more, the element preference will be 0%.

8.2.5 Maintainability

The measurable characteristics related to maintainability describe prop-

erties that must be present for the application to be maintainable. That

includes properties that is important both during the development phase,

and after the deployment of the application.

87

Chapter 8. Evaluation

The following list describe the sub-characteristics of maintainability.

1. Analyzability

2. Changeability

3. Testability

3.1. Availability of test libraries

3.2. Availability of test runners

ANALYZABILITY

The analyzability characteristic describes the systems ability to be ana-

lyzed. This ability is often in the form of diagnostic utilities that can

be used to monitor quality aspects of a system such as performance and

fault tolerance. To be able to evaluate the analyzability of an HTML5

application, one can look at the availability of tools for diagnostics.

Figure 8.13: Analyzability preference scale

Figure 8.13 shows the preference scale of the analyzability characteristic.

The element criteria can be defined as:

• One point for each diagnostic tool that has:

– Support for Android, iOS, Windows Phone and HTML5

– Support for monitoring and reporting of crashes

– Support for behaviour statistics

– Support for error notifications

If one can find more than two diagnostic tools that fulfill these criteria, an

elementary preference of 100% is achieved.

88

8.2. System Requirement Tree

CHANGEABILITY

The changeability characteristic describe if it is possible to update or patch

the application. This is an important characteristic because it enables the

developers to fix problems that can lead to down times in the applica-

tion. To further limit the characteristic, the updating of patching of the

application must happen in reasonable time to limit potential down times.

Figure 8.14: Changeability preference scale

The preference scale of the changeability characteristic is described in fig-

ure 8.14. The figure shows that if an update takes a couple of hours, the

elementary preference is high, and if the update takes longer than 24 hours,

the elementary preference is low.

TESTABILITY

The testability describes if it is possible to test the application, and how

easy it is.

The measurable characteristics that have been decomposed from the testa-

bility characteristic are the availability of test libraries and the availability

of test runners. To be more specific, the test libraries need to be able to

provide the basic constructs for creating unit tests, and the test runners

need to be able to run test in different environments, and from different

environments.

89

Chapter 8. Evaluation

Figure 8.15: Availability of test libraries preference scale

Figure 8.15 shows the preference scale of the availability of test libraries

characteristic. The evaluation of test libraries is based on the functionality

of the libraries. A solid test library contains at least assertions, mocking

capability and support for asynchronous tests. The element criteria is

defined as:

• One point for each test library that has:

– Assertions

– Mocking

– Asynchronous support

If there are two or more test libraries that fulfill these criteria, the elemen-

tary preference is 100%.

Figure 8.16: Availability of test runners preference scale

Figure 8.16 shows the preference scale of the availability of test runners

characteristic. To measure the availability of test runners, the element

criteria is defined as:

90

8.2. System Requirement Tree

• One point for each test runners that has:

– Support for most major test libraries

– Support for all browsers

– Support for headless testing

If there are two or more test runners that fulfill these criteria, the elemen-

tary preference is 100%.

8.2.6 Portability

The measurable characteristics related to portability describes function-

ality that is important for cross-platform mobile applications. Since the

application should be port to different platforms, the portability charac-

teristic is a important part of the application.

The following list describes the measurable sub-characteristics of portabil-

ity.

1. Adaptability

2. Installability

ADAPTABILITY

The Adaptability characteristic describes if the application can be adapted

to other platforms. How much work that is required for adapting the appli-

cation to different platforms, is the basis of the evaluation of adaptability.

Figure 8.17: Adaptability preference scale

91

Chapter 8. Evaluation

Figure 8.17 show how the elementary preference of the adaptability pref-

erence is calculated. Since the application should at least be accessible on

the four platforms, Android, iOS, and Windows Phone,the preference score

will remove one point for each platform that is easy adaptable. If there is

no work needed for adapting the application to the different platforms, the

element preference will be 100%. The preference scale takes into account

that the application is already created.

INSTALLABILITY

The Installability characteristic describes if the application can be installed

on target platforms.

The installability characteristic can be evaluated based on if the application

can be installed on a platform or not. This means that for each of the

platforms, the application should be installable in a way such that the

user can choose the application from a list of applications. For each of the

platforms this is possible, a point is given. Figure 8.18 shows the preference

scale for this elementary preference. To achieve an elementary preference

of 100%, an application should be possible to install on Android, iOS, and

Windows Phone. An elementary preference of 0% represents a situation

where an application is not installable at all.

Figure 8.18: Installability preference scale

92

8.2. System Requirement Tree

8.2.7 Platform Ecosystem

The platform ecosystem describes the surroundings of the development

platform. In this case, these surroundings are defined by the possibilities

and limitations the platform enforces upon the developer.

To be able to have create measurable evaluation criteria, the below char-

acteristics are based on properties that are more or less present in native

development platforms.

The following list describes sub-characteristics of the platform ecosystem,

with measurable leaf-nodes.

1. Technological costs

1.1. Languages

1.2. Tools

2. Resources

2.1. Community

2.2. Development Center

2.3. Guidelines

2.4. Tutorials

2.5. Documentation

TECHNOLOGICAL COSTS

Technological costs are the costs of using the technologies in a development

ecosystem. Since specific platform often have very specific requirements

that define the development process, this can be a limitation for the de-

veloper.

The two measurable characteristics that have been decomposed from the

technological costs characteristic are Languages and Tools. If a develop-

ment ecosystem defines a full stack of languages that have to be used to

create an application, the developer in the worst case have to learn the

entire stack of languages. In the case of cross-platform applications, this

means that a developer may be required to gain a complete knowledge of

93

Chapter 8. Evaluation

several development ecosystems.

Figure 8.19: Languages preference scale

Figure 8.19 shows the preference scale for the languages characteristic.

This characteristic can be evaluated based on how many languages that

have to be used to target Android, iOS, and Windows Phone:

• For each of the platforms Android, iOS, and Windows Phone

– 1 point for each language that need to be used to be able to

develop on the platform.

– 1 point for mandatory APIs that have to be used for each plat-

form.

The tools characteristic is important since some development ecosystems

require the use of specific tools for development. This characteristic can

be evaluated as follows:

• For each of the platforms Android, iOS, and Windows Phone

– 1 point for each proprietary platform or software that needs to

be used.

Figure 8.20 shows the preference scale for the tools characteristic. The

figure shows that the number of proprietary platforms and software reduces

the elementary preference of the characteristic.

94

8.2. System Requirement Tree

Figure 8.20: Tools preference scale

RESOURCES

The resources related to a platform ecosystem is the main source of docu-

mentation and references for a developer. This is where a platform vendor

describes the platform and its properties.

Five measurable characteristics that have been decomposed from the com-

munity characteristic are Tutorials, Development center and Guidelines,

Documentation, and Community.

The community of an ecosystem is the group of people and resources that

surround the ecosystem. A good community can be of good help for a

developer that is just starting out in a new development ecosystem, or in

situations that require that a developer needs help for solving problems.

• 3 point if the community has a large and active user base.

• 1 point if the community has a mailing list.

• 1 point if the community has a wiki page.

Figure 8.21: Community preference scale

95

Chapter 8. Evaluation

Figure 8.21 shows the preference scale of the community characteristic. An

elementary preference of 100% is only achieved if a community fulfills all

the criteria.

The tutorials characteristic describes the availability of related tutorials

in a community. To limit the broadness of this characteristic, it will only

consider official tutorials created by the vendor of a platform. The tutorials

characteristic will be evaluated on the number of available tutorials and if

the tutorials apply to different levels of accomplishment:

• 1 point for easily accessible and structured tutorials.

• 2 points for tutorials aimed at beginners.

• 1 point for tutorials aimed at a intermediary level.

Figure 8.22: Tutorials preference scale

Figure 8.22 shows the preference scale for the tutorials elementary prefer-

ence.

A development center is a centralized resource platform for gaining new

information about developing on a platform, and is used as a resource for

developers that need to find specific information about a platform. The

development center characteristic can be evaluated as a boolean elementary

preference.

An essential part of a platform is good documentation, especially if the

platform has an accompanying API. The documentation characteristic

considers the availability of documentation that describes standardized

96

8.2. System Requirement Tree

and implementation specific properties of a platform. The following list

describes how the documentation characteristic should be evaluated:

• 1 point if the documentation covers the APIs of the platform.

• 1 point if the documentation describes the architecture of the plat-

form.

• 2 point if the documentation describes any peculiarities and subjec-

tive conventions of the platform.

Figure 8.23 show the preference scale for the documentation elementary

preference that describes the above lists of criteria.

Figure 8.23: Documentation preference scale

The last characteristic is the guidelines characteristic that describes if the

platform defines rules or guidelines that describe how the platform is meant

to be used, or has to be used. To evaluate this characteristic, the following

criteria are used:

• 1 point for user interface guidelines.

• 1 point for code style conventions.

• 1 point for architectural guidelines.

97

Chapter 8. Evaluation

Figure 8.24: Guidelines preference scale

Figure 8.24 shows the preference scale for the guidelines characteristic.

8.3 Elementary Preference Aggregation

The elementary quality preferences are structured to allow the computing

of partial and global logic aggregation of preferences. Figure 8.25- 8.31

shows the partial logic aggregation structure for functionality, reliability,

usability, efficiency, maintainability, portability and ecosystem, while fig-

ure 8.32 shows the global aggregation structure. For all of the require-

ments, the global quality preference represents the global degree of satis-

faction.

The process of aggregation starts at the bottom, and aggregates upward to

the global quality preference is found. In the aggregation structure, every

aggregation has a CLP operator that is calculated using the calculation

method in this article [44]. The actual values used when aggregating the

partial preferences are listed in Appendix B.

98

8.3. Elementary Preference Aggregation

Figure 8.25: Partial logic aggregation for functionality

Figure 8.25 shows the aggregation structure of the functionality character-

istic. When calculating the partial aggregation of preferences, the resulting

value for HTML5 is 92,5% which signals a really high degree of satisfac-

tion. The degree of satisfaction for the hybrid application was also really

high at 98%.

Both the web and hybrid approach scored high on most element criteria.

The only characteristic that stands out is the connectivity characteristic,

which is lacking in some browser implementations on mobile devices.

99

Chapter 8. Evaluation

Figure 8.26: Partial logic aggregation for reliability

Figure 8.26 shows the aggregation structure of the functionality character-

istic. The values for the partial aggregation of preferences was a degree of

satisfaction of 91% for HTML5, and 100% for the hybrid application.

The differences between the two approaches here lies in their offline capa-

bility support, and since this is better in a hybrid implementation, it gets

a small boost.

Figure 8.27: Partial logic aggregation for usability

Figure 8.27 shows the aggregation structure of the functionality charac-

teristic. Here, the degree of satisfaction was a bit lower than for the two

preceding aggregations. The partial preference of usability was equal at

58% on both the HTML5 application, and the hybrid application.

The partial aggregated preferences for usability are equal because the two

approaches uses the same technology for creating the user interfaces, and

therefor receives the same limitations as well.

100

8.3. Elementary Preference Aggregation

Figure 8.28: Partial logic aggregation for efficiency

figure 8.28 shows the aggregation structure of the functionality character-

istic. For the HTML5 application, the partial aggregation of preferences

for HTML5 was at 55%. It proved difficult to test the same test cases on

the hybrid application, so the degree of satisfaction will be the same as for

the HTML5 application.

The biggest factor in the efficiency aggregation were the memory use of

the application, which was poor, and the latency. Both of these had really

low scores (0.3 and 0.4) which impacts the aggregated preference greatly.

101

Chapter 8. Evaluation

Figure 8.29: Partial logic aggregation for maintainability

Figure 8.29 shows the aggregation structure of the maintainability char-

acteristic. This characteristic has the biggest spread in aggregated pref-

erences. For HTML5, the partial preference was 72%, and for the hybrid

application it was quite less at 56.8%.

The reason the hybrid application gets a low partial preference in this case

is mostly because it has to target three platforms that have varying time

demands related to updating and patching applications. Since this is not

an issue in a web application, the web application scores much better.

Figure 8.30: Partial logic aggregation for portability

102

8.3. Elementary Preference Aggregation

figure 8.30 shows the aggregation structure of the portability characteristic.

The portability characteristic also shows an interesting result. Here, them

HTML5 application only scores 43.7%, while the hybrid application scores

100%.

Here, we have the opposite situation from the maintainability preference.

Since the web application can only be deployed on iOS devices (as a book-

mark), it has a lower degree of satisfaction related to portability.

Figure 8.31: Partial logic aggregation for the platform ecosystem

Figure 8.31 shows the aggregation structure of the platform ecosystem

characteristic. The partial aggregation of preferences show that for the

platform ecosystem, the degree og satisfaction is fairly low.

103

Chapter 8. Evaluation

Figure 8.32: Global quality aggregation

figure 8.32 shows the aggregation structure of the total aggregation. The

resulting value that is returned from this structure represents the global

degree of satisfaction. In the case of this evaluation, this satisfaction rep-

resents the degree of quality related to the development of a mobile news

application.

The quality characteristic of the system can be defined as the quality of

the resulting system that is achieved by using a particular framework, while

the development characteristic can be defined as the amount of possibilities

and limitations provided by the platform ecosystem.

104

8.3. Elementary Preference Aggregation

8.3.1 Summary

Table tab:score gives the partial and global preferences for for each of

the mobile approaches. This is the last step of the aggregation, and it

indicates that the mobile web applications has reached 65.3% of the quality

preference, while the hybrid application reached 94%.

Quality Factor Weight Web Application Hybrid application
Functionality 0.3 0.9247 0.9674
Reliability 0.1 0.9152 1
Usability 0.2 0.5847 0.5847
Efficiency 0.1 0.5544 0.5544
Maintainability 0.1 0.7259 0.5689
Portability 0.2 0.437 1
Quality 0.6537 0.9403

Table 8.1: Quality preference

Table 8.1 shows that the aggregated quality characteristics of the hybrid

approach are much better than for the HTML5 application. The biggest

differences between the two can be found in the portability of the applica-

tions.

Quality Factor Weight Web Application Hybrid application
Development 1 0.6995 0.5968

Table 8.2: Development preference

Table 8.2 shows the development preference which is directly derived from

the platform ecosystem preference. The preference shows that the degree

of satisfaction related to the platform ecosystem is slightly larger when

developing HTML5 applications.

Table 8.3 shows the final aggregated preferences. The final result is that an

HTML5 application satisfied the evaluation criteria by a degree og 67.10%,

while the hybrid application satisfies the evaluation criteria by a degree of

75.15%.

105

Chapter 8. Evaluation

Quality Factor Weight Web Application Hybrid application
Quality 0.6 0.6537 0.9403
Development 0.4 0.6995 0.5968
Global 0.6710 0.7515

Table 8.3: Global preference

Even though the hybrid application had a much better quality preference

than the HTML5 application, the end result was more balanced because

of the development preference, where the hybrid application scored worse

than the HTML5 application.

106

9 Discussion

This chapter will discuss the creation of the HTML5 and hybrid imple-

mentations of the mobile news application, and experiences related to the

chosen methodology that was used during the development of the appli-

cations. The chapter will also discuss issues and challenges that occurred

during the development process, and how these were handled.

The chapter will first present a discussion on the methodology in sec-

tion 9.1. Section 9.2 will describe the biggest challenges that were met

during the thesis. Section 9.3 will discuss the results that were obtained

after evaluating both HTML5 and a hybrid approach for mobile application

development.

9.1 Methodology

The methodology chosen for the development process was an agile method-

ology. This made it possible to focus on implementing the functional re-

quirements, and implement each of the functions without any big time

delays in extra implementation specifics. By focusing on implementing

one function at the time, the application always had some working func-

tionality, unlike when all functionality is developed at once, and none of

the requirements are working properly.

Each of the functional requirements was implemented in steps where they

were tested right away. The testing was done after each of the implemented

requirements instead of in the end of the entire development process to

minimize the risk of ending up to change the whole implemented solution

just because one part did not work properly.

The testing and evaluation after each phase was an self-activity, with little

107

Chapter 9. Discussion

input from other sources. This made the testing and evaluation somewhat

harder, since the acceptance test were based on own personal opinions

and do not necessarily reflect the opinions of others. If there had been a

more thoroughly testing process with other persons that tried and used

the application, the feedback would have been more accurate.

9.2 Development Challenges

Through the implementation phase, some unforeseen challenges were dis-

covered. This section describes some of the most time consuming and

important challenges from the development process.

One of the challenges that arose early in the development process was the

Same origin policy that exists in all browser. This made it impossible to

access the news recommendation system since the application was running

on another host and port than the server, and all the AJAX calls from the

application failed. The possibilities for fixing this were:

• Proxy server - Set up a proxy server and send REST calls to it,

which then again calls the API with data, and the data returns the

same way.

• CORS - CORS can be set up on the server that makes it possible

to send the XMLHttpRequest across domains. This may present a

security risk since one bypasses the same-origin policy.

• JSONP - One can use JSONP to pack a request in script tags, these

must also be read on the server. This is a little bit scarier since it

makes it possible to run any JavaScript code through an HTTP call.

• Same domain - The application can be hosted on the same domain

as the server that provides the data.

The solution chosen for the same origin problem was to set up a Node.js

proxy that routes all AJAX requests to the news recommendation system.

Another challenge that occurred was that JavaScript parsed data which

contained hyphen on the server as operators, instead of variable names,

108

9.3. Evaluation

this was solved with locally set and rename all the variable names with

hyphen to underscore instead. A good idea in later projects would be to

avoid variable names that contains operators or other reserved names.

9.3 Evaluation

The evaluation results shows that both the web approach and the hy-

brid approach had satisfactory levels. The hybrid approach was ranked

first with 75.15%, while the web approach got 67.10%. It is important

to consider that parts of the evaluation was based on how well a native

application would perform in the same situation, and in the case of the

platform ecosystem, all evaluation criteria were derived from features of

native platforms.

The characteristics that the applications scored lowest on were usability

and efficiency. Of these two, the usability characteristic had the biggest

impact on the final result. The Quality characteristic was computed with

strong conjunction, which means that all the sub-characteristics were manda-

tory, but had an importance decided by weights. This means that espe-

cially for the mobile web application which had a low portability because

it is not installable for most devices, the total degree of satisfaction drops

considerably.

If we only consider what an application can do, HTML5 applications per-

form just as well as native applications in a news consumption case. The

functionality and reliability characteristics had a degree of satisfaction

above 90% for both implementations.

The biggest differences was in maintainability and portability. The porta-

bility in web applications scored lower than hybrid, and the hybrid scored

lower in maintainability.

When considering these results, it is important to notice the degree of

subjectivity in the evaluation. All the element criteria from the measur-

able characteristics have a big part in the determination of satisfaction for

109

Chapter 9. Discussion

a single characteristic, and the weights that are used are also subjective

and impact all stages of the evaluation. In some cases the weights come

naturally, as in the case of location that is critical for this kind of applica-

tion, but it is much harder to determine what characteristics that are less

important than others.

To some degree, the evaluation framework used to evaluate the non-functional

requirements contained different levels of ambiguity that can be hard to

handle, and make it difficult to define clear evaluation criteria. To be able

to use this kind of evaluation method better, it is important to define cri-

teria that are clearly defined and related to mobile applications and not

software in general.

110

10 Conclusion

The goal of this project was to evaluate the use of HTML5 as development

tool for mobile news recommendation systems, together with tools and

methodologies used in HTML5 development.

During the project a mobile news application was created in both web and

hybrid approaches. In the process of evaluation these applications, both

approaches gave satisfactory scores, and the conclusion is that HTML5

is suitable for this type of application. The conclusion could have been

different if it was an other type of application that was made, i.e. games

and other input heavy applications.

The conclusion will also answer the research questions stated in section 1.1.

What are the advantages and limitations of using HTML5 as

compared to native development on mobile platforms?

The advantages and limitations of using HTML5 as compared to native

development on mobile platforms were found during the technical research

phase. Some of the most important factors are given in table 10.1.

111

Chapter 10. Conclusion

HTML5 Native
Cross-platform platform independent
Few development languages Development languages for every

platform
Optional IDE IDE Constraint
Few APIs Many APIs
No download needed Download
Newest version accessible Manually update
Less responsive More responsive
Hard to find App stores accessibility
Open browser and navigate to
URL needed

One-click access

Few UI guidelines UI guidelines
Limited access to native features Full access to native features

Table 10.1: Advantages and limitations of using HTML5 contra native
development

Table 10.1 shows that there are both advantages and limitations with the

HTML5 approach compared to the native approach. And there is not one

approach that differs greatly from the other.

What is the quality of current tools for HTML5 cross-platform

service development?

There exist a large amount of different tools that can be used in developing

HTML5 cross-platform applications. Some of the most popular are taken

into account in the development process, and a choice was made about

who to use in the development of the mobile news application.

The big amount of tools available can make it hard to choose which to use,

and they can be used for different things. It is important that developers

perform a thorough research before they choose tools, and find tools that

are most suitable for their implementation.

Since the mobile news application was a small client-side application, the

development tools choice fell on write much of the code self. In a bigger

project, it may be smarter to choose a bigger tool like jQuery Mobile.

112

What methodological approaches are suitable for HTML5 app

development?.

In this thesis, an agile methodology was chosen. There does not exist

that much information about methodological approaches in mobile devel-

opment, but for larger enterprise solutions, a methodology that takes the

mobile paradigm into account is important. Especially when considering

the user experience of the application, and how this works across multiple

devices.

For this thesis, the chosen methodology was a suitable HTML5 application

development process.

113

11 Further Work

In this thesis, there has been performed a literature review and a prototype

that demonstrates the use of HTML5 for mobile news recommendation

systems. The mobile news application works for the given use case, but

some functionality and further improvements had to wait because of the

time limit. These improvements could increase the application usefulness:

• Implement missing functionality - Some of the functionality that

were describes as requirements in this theses were not implemented.

These are basic functions that the application should have.

• User Profile - Users could have their own user profile and their

settings saved, so that they don’t need to change settings every time

they access the application.

• Recommendations - Recommendation based on related news and

read ratio by others. This function could be added so that the users

could get more recommendation based news.

• More platforms - The hybrid implementation could cover more

platforms (iOS and Windows Phone). The hybrid approach is only

implement for the Android platform, this could be extended, so that

more platforms could be reached.

• Search - Implement Search functionality. A search functionality

would give the user the possibility to search for specific news, and

get matching news articles in return.

Another interesting possibility is to arrange focus group who performs in

depth testing on the quality of the application. This would result in deeper

understanding of the system, and making it easier to see which functional

and non-functional requirements that is of importance.

114

Bibliography

[1] PhoneGap. Apps created with phonegap. http://phonegap.com/

app. Accessed: 2013-05-29.

[2] Anthony Wasserman I. Software engineering issues for mobile appli-
cation development. pages 397–400, 2010.

[3] Lionbridge. Mobile web apps vs. mobile native apps: How to make
the right choice?, 2012.

[4] Jeff Wisniewski. Mobile that works for your library. Online, 35(1):54–
57, 2011.

[5] Android developers. http://developer.android.com/. Accessed:
2013-05-29.

[6] ios developers. https://developer.apple.com. Accessed: 2013-05-
29.

[7] Windows phone dev center. http://dev.windowsphone.com/. Ac-
cessed: 2013-05-29.

[8] Gustavo Hartman, Geoff Stead, and Asi DeGani. Cross-platform mo-
bile development, March 2011.

[9] The Apache Software Foundation. Apache cordova. http://cordova.
apache.org/. Accessed: 2013-05-20.

[10] Andre Charland and Brian Leroux. Mobile application development:
web vs. native. Commun. ACM, 54(5):49–53, May 2011.

[11] mozilla. Firefox marketplace. https://marketplace.firefox.com/.
Accessed: 2013-05-29.

[12] Matthew B. Hoy. Html5: A new standard for the web. Medical
Reference Services Quarterly, 30(1):50–55, 2011. PMID: 21271452.

[13] Mark Doernhoefer. Surfing the net for software engineering notes.
ACM SIGSOFT Software Engineering Notes, 31(4):16–24, 2006.

[14] H̊akon Wium Lie and Bert Bos. Cascading style sheets, level 1. April
2008.

115

http://phonegap.com/app
http://phonegap.com/app
http://developer.android.com/
https://developer.apple.com
http://dev.windowsphone.com/
http://cordova.apache.org/
http://cordova.apache.org/
https://marketplace.firefox.com/

Bibliography

[15] H̊akon Wium Lie and Janne Saarela. Multipurpose web publishing,
using html, xml, and css. Communications of the ACM, 42(10):95–
101, October 1999.

[16] W3C. Cascading style sheets (css) snapshot 2010. http://www.w3.

org/TR/CSS/. Accessed: 2013-05-29.

[17] Tony Wasserman. Software engineering issues for mobile application
development. FoSER 2010, 2010.

[18] Peter Lubbers, Brian Albers, and Frank Salim. The future of html5.
In Pro HTML5 Programming, pages 313–321. Springer, 2011.

[19] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Mod-
eling context information in pervasive computing systems. In Perva-
sive Computing, pages 167–180. Springer, 2002.

[20] Karen Henricksen and Jadwiga Indulska. Developing context-aware
pervasive computing applications: Models and approach. Pervasive
and Mobile Computing, 2(1):37 – 64, 2006.

[21] H.J. Lee and Sung Joo Park. Moners: A news recommender for the
mobile web. Expert System with Applications, 32:143–150, 2007.

[22] Ntnu smartmedia. http://smartmedia.idi.ntnu.no/. Accessed:
2013-05-16.

[23] Mozhgan Tavakolifard, Jon Atle Gulla, Kevin C. Almeroth, Jon Espen
Ingvaldsen, Gaute Nygreen, and Erik Berg. Tailored news in the
palm of your hand: A multi-perspective transparent approach to news
recommendation. 2013.

[24] Apache solr. http://vm-6120.idi.ntnu.no:8080/solr. Accessed:
2013-05-31.

[25] The Eclipse Foundation. Eclipse. http://www.eclipse.org/. Ac-
cessed: 2013-05-31.

[26] W3C. Same origin policy. http://www.w3.org/Security/wiki/

Same_Origin_Policy. Accessed: 2013-05-27.

[27] W3C. Xmlhttprequest. http://www.w3.org/TR/XMLHttpRequest/.
Accessed: 2013-05-20.

[28] Inc Joyent. node.js. http://nodejs.org/. Accessed: 2013-05-20.

[29] Appspresso. http://appspresso.com/. Accessed: 2013-05-27.

116

http://www.w3.org/TR/CSS/
http://www.w3.org/TR/CSS/
http://smartmedia.idi.ntnu.no/
http://vm-6120.idi.ntnu.no:8080/solr
http://www.eclipse.org/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/TR/XMLHttpRequest/
http://nodejs.org/
http://appspresso.com/

[30] Application Craft Ltd. Applicaton craft. http://www.

applicationcraft.com/. Accessed: 2013-05-16.

[31] The jQuery Foundation. http://jquerymobile.com/. Accessed:
2013-05-27.

[32] Sencha Inc. Sencha touch. http://www.sencha.com/products/

touch. Accessed: 2013-05-27.

[33] Martin Fowler. UML distilled. Addison-Wesley Professional, 2004.

[34] P Botella, X Burgués, JP Carvallo, X Franch, G Grau, J Marco, and
C Quer. Iso/iec 9126 in practice: what do we need to know?

[35] The International Organization for Standardization (ISO). Iso stan-
dard 9126: Software engineering product quality, part 1: Quality
model, 2001.

[36] The webkit open source project. http://www.webkit.org/. Ac-
cessed: 2013-05-31.

[37] Opera Software Asa. Opera mobile emulator. http://www.opera.

com/no/developer/mobile-emulator. Accessed: 2013-03-20.

[38] DocumentCloud Inc. Jeremy Ashkenas. Backbone.js. http://

backbonejs.org/. Accessed: 2013-05-02.

[39] Tilde Inc. Ember. http://emberjs.com/. Accessed: 2013-05-27.

[40] Knockoutjs.com. Knockout. http://knockoutjs.com/. Accessed:
2013-05-27.

[41] Google. Angularjs. http://angularjs.org/. Accessed: 2013-05-27.

[42] Derick Bailey. backbone.marionette. https://github.com/

marionettejs/backbone.marionette. Accessed: 2013-05-02.

[43] Amazium. http://www.amazium.co.uk/. Accessed: 2013-05-02.

[44] Jozo J. Dujmović and Hajime Nagashima. {LSP} method and its use
for evaluation of java {IDEs}. International Journal of Approximate
Reasoning, 41(1):3 – 22, 2006.

[45] W3C. Geolocation api specification. http://dev.w3.org/geo/api/

spec-source.html. Accessed: 2013-05-29.

http://www.applicationcraft.com/
http://www.applicationcraft.com/
http://jquerymobile.com/
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://www.webkit.org/
http://www.opera.com/no/developer/mobile-emulator
http://www.opera.com/no/developer/mobile-emulator
http://backbonejs.org/
http://backbonejs.org/
http://emberjs.com/
http://knockoutjs.com/
http://angularjs.org/
https://github.com/marionettejs/backbone.marionette
https://github.com/marionettejs/backbone.marionette
http://www.amazium.co.uk/
http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html

A Use Cases

A.1 Opening a List of News Articles

Identifier UC1
Description A user opens the web application, and a list of news

articles are shown.
Actors User (primary)
Assumptions The application must be accessible through an URL

or cross-platform application.
Steps

1. The user opens the application.
1.1. The user opens the application by typing

in an URL.
1.2. The user opens the application by selec-

tion the application.
2. A list of news articles are shown to the user.

Variations None
Non-functional

• Performance - The application should have
a maximum delay.
• Robustness - The application should fail

gracefully if there is no connectivity.

A.2 Opening a Single News Article

Identifier UC2
Description A user opens a news article from the list of articles.
Actors User (primary)
Assumptions There exists a list of news articles available to the

user.
Steps

1. The user navigates the list of available news
articles.

2. The user selects a news article.
3. The news article is opened.

Variations None
Non-functional

• Performance - The time to fetch the news
article should happen without delay.
• Robustness - Failures should be dealt with

gracefully.
• Quality - The news article should be easy to

select.

A.3 Opening a Single News Article in a Map

Identifier UC3
Description A user opens a news article in a map.
Actors User (primary)
Assumptions The user has opened a news article from the list of

articles.
Steps

1. The user opens the map for the desired news
article.

2. A map with the news article is shown to the
user.

Variations None
Non-functional

• Performance - The application should re-
sponse with low response time.
• Robustness - Failures should be handled cor-

rect by the application and give the user
proper feedback.
• Quality - If the article does not have any lo-

cation, it should not be possible to choose it.
The map option should be intuitive.

A.4 Opening News Articles in a Map

Identifier UC4
Description A user opens the map with news articles.
Actors User (primary), Application
Assumptions The application has preloaded all news articles.

The application has access to the users location.
In the settings menu, the map option is chosen.

Steps
1. The user selects the map option.
2. The application checks which articles to show

in the map.
2.1. The application retrieves the show all

news setting.
2.2. The application retrieves the local news

setting.
3. A map with markers with the location of news

articles are shown to the user.

Variations None
Non-functional

• Performance - The application should have
a small response time.
• Robustness - The application should handle

failures in a proper way.
• Quality - The map should be easy accessible.

A.5 Filter News Articles

Identifier UC5
Description A user opens the settings menu, and selects a set-

tings option.
Actors User (primary)
Assumptions The application has preloaded all news articles.

The user is currently interacting with the view of all
news articles.

Steps
1. The user opens the settings menu.
2. The user selects a option.
3. The application sets the option.
4. The user saves the settings.
5. The news articles are reloaded.

Variations None
Non-functional

• Performance - The application should re-
spond fast when the user change the settings.
• Robustness - It should not be possible for the

user to choose settings that is not possible.
• Quality - The settings option should be easy

to recognize.

B Element Preference Calculations

B.1 Functionality

Characteristic Weight Score web Score hybrid
Suitability - 0.6

Storage 0.1 1 1
Connectivity 0.1 2/3 1

Geolocation - 0.6
GPS 0.6 1 1
Network 0.4 1 1

User interface - 0.2
Back button 0.4 2/3 2/3
Resolution han-
dling

0.5 1 1

Orientation
handling

0.1 1 1

Interoperability - 0.3
Data formats 0.3 1 1
Communication
protocols

0.7 1 1

Security - 0.1
Privacy 1 1 1

B.2 Reliability

Characteristic Weight Score web Score hybrid
Maturity - 0.5

Offline capabil-
ity

1 5/6 1

Recoverability - 0.5
Storage 1 1 1

B.3 Usability

Characteristic Weight Score web Score hybrid
Understandability

Navigation 0.4 5/6 5/6
User interface 0.6 3/6 3/6

B.4 Efficiency

Characteristic Weight Score web Score hybrid
Time behaviour - 0.5

Latency 0.5 0.4 0.4
Response time - 0.5

Time consum-
ing operation

0.4 0.40 0.40

Normal opera-
tion

0.3 1 1

Easy operation 0.3 1 1
Resource utilization - 0.5

CPU 0.5 0.98 0.98
Memory 0.5 0.3 0.3

B.5 Maintainability

Characteristic Weight Score web Score hybrid
Analyzability - 0.4

Diagnostic tools 1 0.5 0.5
Changeability - 0.2

Updates within
reasonable time

1 1 0

Testability - 0.4
Test libraries 0.5 1 1
Test runners 0.5 1 1

B.6 Portability

Characteristic Weight Score web Score hybrid
Adaptability - 0.7

Effort 1 0.5 1
Installability - 0.3

Number of plat-
forms

1 1/3 1

B.7 Platform Ecosystem

Characteristic Weight Score web Score hybrid
Technical costs - 0.7

Languages 0.4 0.5 0.5
Tools 0.6 1 0.7

Resources - 0.3
Community 0.3 1 3/5
Development
Center

0.1 1 1

Guidelines 0.2 1/3 1/3
Tutorials 0.3 0 0.5
Documentation 0.1 0.5 0.5

	Introduction
	Problem
	Approach
	Results
	Report Structure

	Theoretical Background
	Mobile Applications
	Native Applications
	Cross-Platform Applications
	Mobile Web Applications
	Hybrid Applications

	Web versus Native Applications
	Web Technologies
	HTML5
	JavaScript
	CSS
	HTML

	Related Work
	Web versus Native
	HTML5 Cross-Platform Service Development
	Methodological Approach
	The Future of HTML5
	Summary

	Case Study
	Context-Aware Applications
	Context Modeling Language

	Context-Aware News Services
	Characteristics of a News Service

	A Context-Aware HTML5 News Application
	Objectives and Method
	Existing News Recommendation System
	Interface

	Development Approach
	Methodology
	Environment
	Platforms
	Constraints

	Current Practices and Products
	Requirements
	Specification and Design

	Application Design
	Context Model
	Application Requirements
	Functional Requirements
	Non-functional Requirements

	User Interface Design
	Evaluation Criteria
	Quality
	Development

	Realization
	Tools and Libraries
	Development Tools
	Architecture
	User Interface
	Device Features

	Implementation
	Architecture Design
	The Implemented News Application

	Improvements

	Evaluation
	Logic Scoring of Preference
	System Requirement Tree
	Functionality
	Reliability
	Usability
	Efficiency
	Maintainability
	Portability
	Platform Ecosystem

	Elementary Preference Aggregation
	Summary

	Discussion
	Methodology
	Development Challenges
	Evaluation

	Conclusion
	Further Work
	Use Cases
	Opening a List of News Articles
	Opening a Single News Article
	Opening a Single News Article in a Map
	Opening News Articles in a Map
	Filter News Articles

	Element Preference Calculations
	Functionality
	Reliability
	Usability
	Efficiency
	Maintainability
	Portability
	Platform Ecosystem

