
In-Application Payment from Mobile Apps
A study of In-App Payment

Jøran Christiansen Haines
Alexander Hanssen

Master of Science in Informatics

Supervisor: Torbjørn Skramstad, IDI
Co-supervisor: Lillian Røstad, IDI

Department of Computer and Information Science

Submission date: May 2013

Norwegian University of Science and Technology

1 Preface
This thesis was written by Alexander Hanssen and Jøran Haines. For the
last two years we have been studying Informatics - Systems engineering and
human-machine interaction, after previously studying at the University of
Nordland together. The master thesis was written as a part of a ongoing
collaboration project between IDI at NTNU and Telenor, and it marks the
end of our 5 year long studies.

We would like to thank our supervisors, Erik Berg from Telenor and
Lillian Røstad.

Finally we would like to thank our families and friends for the support
and help throughout our studies and writing our thesis.

1

2

Contents
1 Preface 1

2 Abstract 9

3 Sammendrag 10

4 Introduction 11
4.1 Background . 11
4.2 Motivation . 13
4.3 Research questions . 14
4.4 Method . 15

5 Current in-app payment service providers 17
5.1 Apple . 17
5.2 Google . 18
5.3 PayPal . 18
5.4 Windows . 19
5.5 Others . 20

6 The business aspect 23
6.1 What type of application fits which type of business model? . 24
6.2 A deeper look into Freemium as a business model 25

7 Application development 27
7.1 Android . 28
7.2 PayPal . 32
7.3 Google . 34
7.4 iOS . 37

8 Comparison model 41
8.1 Business . 41

8.1.1 Fees . 41
8.1.2 Profit . 41
8.1.3 Business models . 42
8.1.4 Distribution . 42
8.1.5 Market size . 42

8.2 Technical . 43
8.2.1 Registration . 43
8.2.2 Development . 43
8.2.3 Testing . 43

3

8.2.4 Payment . 43
8.2.5 Ease of use . 43
8.2.6 Documentation . 43
8.2.7 Supported technology 44
8.2.8 Support and community 44
8.2.9 Security . 44

9 Evaluation of the service providers 45
9.1 Evaluation of Apple . 45

9.1.1 Business . 45
9.1.2 Technical . 48

9.2 Evaluation of Google . 53
9.2.1 Business . 53
9.2.2 Technical . 56

9.3 Evaulation of PayPal . 63
9.3.1 Business . 63
9.3.2 Technical . 66

9.4 Evaluation of Windows . 70
9.4.1 Business . 70
9.4.2 Technical . 73

10 Comparison 75
10.1 Business . 75

10.1.1 Fees . 75
10.1.2 Profit . 76
10.1.3 Business models . 80
10.1.4 Distribution . 81
10.1.5 Market size . 82

10.2 Technical . 84
10.2.1 Registration . 84
10.2.2 Development . 84
10.2.3 Testing . 86
10.2.4 Payment . 87
10.2.5 Ease of use . 88
10.2.6 Documentation . 89
10.2.7 Supported technology 89
10.2.8 Support and community 90
10.2.9 Security . 90

4

11 User survey 95
11.1 Defining the survey . 95
11.2 Data collection . 97
11.3 Findings . 98

12 In-app purchases in the future 111

13 Conclusion 113
13.1 Future work . 114

A User Survey 123

5

List of Tables
1 Apple profit after 1200 in-app sales. 45
2 Google profit after 1200 in-app sales 53
3 Norwegian fees for PayPal . 63
4 International fees for PayPal 63
5 PayPal profit after 1200 in-app sales 64
6 What kind of functionality the MPL and MECL support . . . 65
7 Windows profit after 1200 in-app sales 71
8 The different fees for the providers 75
9 Business models supported by the different service providers . 80
10 Available apps, amount of downloads and users for each provider 83
11 Development rating for the service providers 86
12 The languages which are supported by each service provider . 90

6

List of Figures
1 Main menu of our application on the Android platform. 28
2 The ability to choose between different categories in a drop-

down menu . 29
3 The question and 4 alternatives in the game. 30
4 The score screen after an ended round. 31
5 Our store with PayPal purchase buttons and the purchase con-

firmation. 33
6 The in-app product presented in the Google Play Store. 34
7 The pop-up box that is displayed after selecting a question

pack to purchase. 38
8 A graph showing how many sales are needed to make a profit . 77
9 Profit after 1 month of sales 78
10 Profit after 6 months of sales 78
11 Profit after 12 months of sales 79
12 Profit after 75 000 applications sold 80
13 Malware by platform, 2011-2012 [1] 91
14 Mobile threats by platform, 2011-2012 [2] 92
15 Question 2: ”How many years of experience do you have with

programming?” . 98
16 Question 3: ”Which of these platforms have you developed for?” 99
17 Question 4: ”Which platform do you prefer to develop for?” . 99
18 The people who have developed for each platform, and which

one they preferred . 100
19 Question 5: ”Which of the following business models have you

implemented in your app?” . 100
20 Question 5: ”Which of the following is your preferred business

model in mobile apps?” . 101
21 The table which shows how important each property/feature

is to the participants . 103
22 How important good guides and documentation are for the

different programmers . 104
23 The table which shows how important each property/feature

is to the participants, questions more focused on in-app purchase105
24 The chart which displays the important properties for the de-

velopers . 106
25 The chart which displays the important properties for the de-

velopers . 107
26 How highly prioritized good guides and documentation are for

the different programmers . 108

7

27 How highly prioritized security properties are for the different
programmers . 108

28 How highly prioritized potential profits are for the different
programmers . 109

29 How highly prioritized no fees are for the different programmers109

8

2 Abstract
The main purpose of this thesis is to evaluate and compare existing service
providers of in-app payment solutions and their APIs, and then conclude
what would be the best choice for hobby developers when deciding on what
service provider to use for their application.

We gained hands-on experience by developing a simple Quiz game app
that featured the implementation of in-app purchase. We took a look at
the major service providers; Apple, Google, PayPal and Windows to get
relevant information and evaluate them based on a comparison model that we
created. The comparison model consists of a business and a technical aspect,
and within of those aspects we chose the most relevant properties that are
necessary to give a fair comparison. We conducted a survey among hobby
developers - both students and IT-employees - in order to get insight on which
properties within in-app payment they considered as the most important
ones. With these results we were able to find some indications on which of
the service providers are best suited for the hobby developer.

The survey indicated that easy distribution, good documentation and
guides along with an easy development process was the most important as-
pects among our participants. Surprisingly, the importance of potential profit
was rather lower than we expected. Based on what we learned from the sur-
vey and the differences we observed during the evaluation of the different
service providers we concluded that the best suited in-app payment provider
for the hobby developer is Google’s solution.

9

3 Sammendrag
Formålet med denne oppgaven er å evaluere og sammenligne eksisterende
tjenestetilbydere av in-app betalingsløsninger og deres APIer, og s̊a konklud-
ere med hva som er det beste valget for en hobby-utvikler n̊ar han skal velge
en riktig tjenestetilbyder for applikasjonen hans.

Ved å selv utvikle en enkel Quiz app som inneholdte en implementasjon
av in-app betaling, fikk vi praktisk erfaring rundt emnet. Vi holdte oss til de
største tjenestetilbyderne; Apple, Google, PayPal og Windows. Vi innhentet
relevant informasjon rundt disse og evaluerte dem basert p̊a en sammenlign-
ingsmodell som vi selv definerte. Sammenlingningsmodellen best̊ar av en for-
retningsdel og en teknisk del, og innen disse to valgte vi flere egenskaper som
var mest relevant for å gi et godt grunnlag til sammenligningen. Vi utførte en
spørreundersøkelse blant hobby-utviklere, b̊ade studenter og IT-ansatte, for å
f̊a tilbakemelding p̊a hva slags egenskaper innen in-app betaling og utvikling
de anns̊a for å være de viktigste. Med resultatene fra undersøkelsen var vi
i stand til å f̊a noen pekepinner p̊a hva slags tjenestetilbydere som var best
egnet for hobby-utvikleren.

Spørreundersøkelsen indikerte at en enkel distribusjon, god dokumen-
tasjon og guider, sammen med en enkel utviklings prosess var noen av de
mest viktigste egenskapene i følge v̊are deltagere. Vi fant ut at ønsket om en
størst mulig profitt som følge av salget av applikasjon var rangert lavere enn
hva vi hadde forventet. Basert p̊a hva vi lærte fra spørreundersøkelsen og de
forskjellene vi observerte under evalueringen av de forskjellige tjenestetilby-
derne, konkluderte vi med at den best egnet in-app betalingsløsningen for en
hobby-utvikler er Google’s løsning.

10

4 Introduction

4.1 Background
Direct communication has grown in importance to all mankind over time.
The need for a timely and precise transfer of information has been well ex-
emplified in the conveyance of business transactions. In a historical perspec-
tive, the means by which we make these connections has undergone dramatic
changes. Most importantly, the implementation of modern technology has
allowed us to communicate on a 24-hour, global scale with the possibility to
do this while being intransit. From the initial use of postal or telegraph ser-
vices to the utilization of the telephone in the early twentieth century, we are
now offered a more powerful channel for this exchange through the introduc-
tion of today’s mobile counterpart, the cell phone. In 2004 there existed an
estimated 1.752 billion cell phone subscriptions worldwide[3]. Additionally,
the world had nearly as many cell phone subscriptions as there were humans
on the planet according to a U.N. Telecom agency report from 2012[4]. Ear-
lier versions of the cell phone are commonly referred to as a feature phone,
a device with no touch-screen or QWERTY keypad, which operates without
an advanced operating system. Its primary functions include voice and text
messaging in addition to simple web browsing and e-mail. Today’s modern
cell phone is labelled a smartphone and it offers a wider variety of advance
features. It has a mobile operating system and greater computational capa-
bilities than the feature phone.

Smartphones correspond to personal computers and their ability to run
applications opens a vast market for developers. Smart-phone sales are
steadily increasing, with 210 million units sold during the first quarter of
2013 – up 42.9% from the first quarter of 2012 [5]. According to a report by
Nielsen published in early 2013, more than half of the mobile device users in
Australia, China, South Korea, USA, and the UK are smart-phone users[6].
As smart-phones are becoming less expensive, the market is growing in Asia-
Pacific and other developing countries as well[7].

The previously mentioned market potential offered to developers lies
within the growing popularity of mobile applications, commonly called an
“app”. A mobile app is an operable program and its purpose may focus
on interests such as gaming and general utilities relating to literature, mu-
sic, food, travel, health, business, finance, weather and news. The potential
appears to be unlimited.

Developers may create apps and channel sales and distribution through
providers such as Apple, Google, and Microsoft Windows at a fee. To get a
sense of the popularity today, according to Apple’s press release from early

11

2013, it was announced the the App Store has achieved over 500 million
active accounts and the number of apps exceeding 775,000 for its iPhone,
iPad, and iPad touch. Customers had downloaded over 40 billion apps and
developers had been paid over seven billion dollars by Apple[8].

Sales of mobile apps is a steadily growing phenomenon and there exists
a potential market for both large companies and hobby developers to tap
into. We define a hobby developer as a person with varying experience in
mobile development who work in his or hers own spare time as an independent
developer. They may have only recently begun with mobile development or
have several years of experience and are often driven by personal motives
such as profit, enjoyment, or individual interests.

Should you wish to distribute an app, there are several choices that you
may make in regards to a business model for your app. When we discuss
business models for apps, we refer to how you wish to generate income from
your offer. More specifically, when we mention “business model”, we are
speaking of the business models the Apple, Google, PayPal, and Windows
support. These business models include payment for each application, ad-
vertisement, in-application payment, and free application. Our focus in this
paper will be in-application payment.

Paying for additional content instead of buying the application itself is
an interesting business model. This business model is often referred to as a
freemium model [9, p.89-98], a business model where the product itself is
free but extra feature or functionality requires an additional fee. The way
this is introduced in mobile development is by in-application purchases, where
extra virtual features are offered within the application which the customers
may pay for to enhance their experience with the application.

The trend of DLC(Downloadable Content) in computer gaming where
the creators may charge money for additional content has also made it’s way
into the mobile platform. Instead of making money on your application by
charging a one time fee to use the application, some make it free and charge
for additional content, while some make it free and use advertisements as
their way of generating revenue. By switching over to the freemium paradigm
the developers wouldn’t have to bother with having to develop a free-to-use
”lite” version and a ”pro” version of the application. Instead, the application
will be free to download, and the user himself can decide what he wants
purchase in form of additional features or new content after he has tried the
application.

This business model has had a huge increase in popularity as users don’t
have to pay to try the application, and the developers only need to develop a
single version of the game. By making the app free to download more users
might download it, and hopefully those who purchase additional content

12

make up for those who don’t[10]. Also, the developers can focus on developing
new features and content for the application to secure a continuous income
without having to develop a completely new application.

The content that is offered is often something that adds to the experience
of the game, such as extra levels or new equipment for your character. Some
games employ their own digital currency such as virtual gold to purchase
extra content, and sell these packs of gold for a related amount of real money.
This is where the in-application payment service providers step in. They
offer a simple way for the developers to implement a payment model which
they feel fits best for their own application.

Apple, Google, PayPal and Windows are some of the service providers a
developer can use for delivering extra content at a price, but which fits best
for the hobby developer? They all offer an in-app payment service with an
API and some tools for the developer to use and we will refer to them as
service providers in this thesis.

The people that develop apps on a hobby basis might not have the same
knowledge when it comes to economic aspects, unlike large companies. It
might be difficult for them to choose choose the ideal payment method that
suits the application, but we hope to give some insight and advice which can
help the hobby developer.

4.2 Motivation
As students and as tech-geeks, apps is something that has fascinated us for
quite some years. Since developing our own simple application during our
bachelor thesis, and just being interested in apps in general, we knew that
we would like to do something similar for our master. We wish to explore
this topic because it is fresh and increasing in popularity[11]. Another point
is that we found little relevant reference material on the topic, so there does
not seem to be much research published on the topic of in-app payment. In-
application payment is currently the new hot business model when it comes
to the application market. We wish to find out the pros and cons of using
this method compared to paying for the application once. That is why we
wish to seek out what the developer that makes apps in his or hers spare
time value when it comes to this subject.

This thesis is written for Telenor who also wishes to know what would be
the best choice when it comes to the selection of an in-application payment
solution.

13

4.3 Research questions
The main question for this paper is to determine which in-application solu-
tion would be the best choice for a hobby/private developer. First we want
identify what providers and solutions are out there. Then when looking at
the different solutions we will evaluate them based on a comparison model.
The questions we want to answer here are what technology they support.
What kind of business models do they support? Here we will look at types
of payment, business constraints etc. Then we will look at the development
process. Are there any requirements to use them? Do you have register an
account or pay for it? How are they to test? Do they have any developer sup-
port or community? Security is also an important aspect when dealing with
money transactions. Therefore we will also look at what security features are
supported and how they are to configure. To evaluate the solutions we will
need to identify the requirements and expectations of the developers. When
we’ve identified these we can create a set of criteria to evaluate a solution.
These criteria will be used to create a model to evaluate a payment solution.
Then we can look at how the solutions compare to each other. Then, when
we have compared the solutions, we want to answer what would be the best
choice based on our case.

To summarize we have the following questions we want to answer:

1. What would be the best choice of in-app payment solution for a private
or hobby developer?

2. What providers/solutions of in-application payment APIs are out there?

(a) What business models do they support?

3. How’s the development process?

(a) What is required to use the API?
(b) What technology is supported?
(c) How is the API to implement(ease of use)?
(d) How is it to test?
(e) Is there some kind of developer support or community?

4. What security features are supported and how are they to configure?

5. How does the different solutions compare to each other based on the
needs of the developers?

6. What expectations do the developers have to the solutions

14

(a) What are the most the important features and requirements for
the developer?

4.4 Method
The first task is to review the in-app payment solutions that are already
available today. The resources we are using to obtain completed research,
data and general knowledge are Google Scholar1, IEEE Xplore2, and NTNU’s
University library3. Then we will evaluate them one by one before moving
to doing a comparison of the in-app payment service providers and their
solutions. In order to do this we need to create a comparison model. We
will identify the most important properties within the business and technical
aspects of an in-app payment service to create our comparison model. Our
focus will be how one in-app payment solution differs from the others, from
the perspective of the developer. We wish to find out what hobby developers
value when choosing a method for billing the customers for additional con-
tent, so we will be conducting a survey in form of a questionnaire to identify
the most important properties and expectations for the hobby developer.
Based on the results of this survey and the results from our comparison with
the comparison model we will be able to conclude which of the chosen in-app
payment services would be the choice for a hobby developer.

We also want to gain some hands-on experience and insight for ourselves,
so we will develop a relatively simple application to test out the various ways
we can implement in-app payment by using the various payment services.

1http://scholar.google.com
2http://ieeexplore.ieee.org/Xplore/home.jsp
3http://www.ntnu.no/ub

15

16

5 Current in-app payment service providers
Today developers have many different options and solutions to choose from
when deciding on which and how to implement in-app purchases. In this
thesis we will not be evaluating and comparing them all. Instead we will
focus on the more well-known ones which are Apple, Google, PayPal and
Windows Phone. In this section we will give you a short introduction to the
service providers we have chosen and a short list of what else is out there.

5.1 Apple
Apple Inc. was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald
Wayne[12]. Their initial focus early was on computers, such as Apple I and
II, Macintosh and later on the iMac, Mac Pro and MacBook Pro. Even
though the Macintosh sold well when it was introduced in 1984, they went
through a difficult period with low sales and was struggling to get ahead of
its competitor, Microsoft[13]. Apple really began to shine when they started
focusing on mobile devices such as the portable media player - the iPod -
along with its own portal to purchase music for this device, iTunes Store[14].
Later they achieved even greater success with the introduction of several
other mobile devices such as the iPhone, iPod Touch and iPad, all of which
have done considerably well in the market.

One of the reasons why Apple has become so profitable is that they
manufacture their own products and the operative system that their devices
use are exclusively theirs. Their products are fashionable because of their
unique and distinguishable design, and the devices maintain a favorable ease
of use. These are a few of the factors that have granted them a huge following
across the globe. The simplicity of their products has been a key to their
success. The iPhone was introduced in 2007 and the App Store followed
one year later which allowed customers to download applications for their
device[15][16]. With the ability to download and purchase applications from
this store came the possibility for developers to offer additional in-app content
for a premium, known as in-application purchase.

17

5.2 Google
Android is an operating system for mobile devices and it’s currently the
most popular mobile operating system. Android was originally developed by
Android Inc., with the help of the Open Handset Alliance and Google. In
2005 Android Inc. was bought by Google which continued the development
of the OS[17]. Android was first revealed in 2007 and in 2008 the first mobile
devices running Android hit the stores. After the release the popularity of
Android quickly grew and now in 2013 Android is by far the largest and most
popular OS. Recent numbers show that the number of mobile devices with
Android sold world wide in 2012 was over 144 000 000 units. This means
that an impressive 69.7% of device sold were running Android[18].

Google’s app store for Android is called Google Play. This is the official
marketplace where developers can sell their applications. If you wish to sell
your applications through Google Play you also have to use their APIs and
services for handling sales. In March 2011 Google released their API for
in-app purchases. Google Play will be used to handle in-app purchases on
Android; however we will discuss this later in the report. Today most of
the top grossing applications on Google Play are using in-app purchases to
generate revenue4.

In December 2012 Google released their latest in-app billing API, ver-
sion 3, to the developers. The new version is said to ”significantly simplify”
implementing in-app purchases in your applications[19]. Through coopera-
tion with mobile operators, Android is also the only operating system which
currently support billing over ones mobile subscription. In Norway this was
launched by Telenor March 21 2013 as the only mobile operator currently
having this payment option 5.

5.3 PayPal
PayPal is one of the largest providers of e-commerce services used on the in-
ternet. Its main business is based on handling payments and transactions on
the internet, and is widely used in online shops, handling donations, auction
sites, etc. PayPal makes money by taking a little fee from every transaction,
where the amount of fee is based on the transaction amount, currencies used,
national/international transaction and such. In 2012 PayPal had $5.6 billion
in revenue and their services are available in most countries[20].

4https://play.google.com/store/apps/collection/topgrossing?hl=en
5http://www.telenor.com/news-and-media/press-releases/2013/google-and-

telenor-norway-make-it-easier-to-buy-apps-and-games-on-google-play/

18

PayPal also offer in-app payment APIs to handle transaction in applica-
tion. They are currently offering several different APIs which can be used
depending on what the developers needs. These are available to both An-
droid and iOS. However using these APIs imposes certain restrictions, which
we will discuss later.

5.4 Windows
Microsoft was founded in 1975 by Bill Gates and Paul Allen and has created
a vast series of operating systems and software products. Windows was first
introduced as a graphical extension to MS-DOS which was an early text-
input based OS. Several new versions were released from the 80s to present
day with the newest being Windows 8. The massive library of software that
they have developed and sold over the years has made Microsoft an extremely
profitable company and it is the largest software creator when it comes to
total sales, profit, assets and market value[21].

Microsoft started their mobile journey in the 1990s by developing oper-
ating systems for handheld devices, then called Pocket PCs. In the early
year of 2000 the first Pocket PC was released as a pen-based touch screen
and the operating system was based on Windows CE 3.0, a trimmed-down
and compact OS designed for embedded systems[22]. Several improvements
were made shortly thereafter and in 2003 they introduced Window Mobile
which was targeted for both pocket PC’s and smartphones[23]. This OS was
superseded by Windows Phone in 2010[24] and this is the branch of OS that
are used on today’s Windows-based smartphones. There are two OS’s that
coexist today, Windows Phone 7 and Windows Phone 8. Windows Phone
7.8 is the newest update and the intention was for older phones to have a
longer life span since hardware limitations could not support Windows Phone
8. Windows Phone 8 was made to support high-end hardware devices and
is similar to the desktop version of Windows 8, which has the user interface
known as Metro - a design which relies on flat colored live tiles and horizontal
scrolling to keep interaction clean and simple.

Purchases and downloads on these devices go through Windows official
app store, called Windows Phone Store[25].

19

5.5 Others
There are several other providers that provide their own application store
with the ability to add in-app purchases to the apps that are available there.
Due to limitations in time and scope in this thesis, we chose not to include
the following providers as they do not have the same market size as the
biggest providers or may have some other restrictions when it comes to in-
app purchase.

The following are divided into two parts, the providers that have their
own native OS which they offer content through own application stores and
the third-party providers.

Samsung

Samsung6 is a large South Korean company and is the world’s largest in-
formation technology company[26]. The newest hand-held devices they offer
uses their own version of Android and they have several API’s that the de-
velopers can use in for the technology limited to Samsung devices. You can
make use of their own SDK if you wish to add In-App Purchase, limited to
Samsung devices. Samsung Apps is the name of their virtual store where you
can download apps to your hand-held device or your Samsung SmartTV.

BlackBerry

The BlackBerry is a brand that sells smartphones, tablets and other ser-
vices 7. BlackBerry World is the official application distribution service with
approximately 100,000+ apps available today 8.

Amazon

Amazon Appstore9 was launched by Amazon in March 22. 2011[27]. They
currently offer an app store and in-app purchase API for the Android plat-
form. In order to use their app store the developer is required to pay a
fee.

6http://www.samsung.com
7http://us.blackberry.com/
8http://appworld.blackberry.com/webstore/?
9http://www.amazon.com

20

GetJar

GetJar10 is a third-party service provider. They offer their own payment
API and app store. GetJar works quite differently than a lot of the other
options in that it uses virtual currency which can also be used across other
GetJar applications. We expect to see more of this type of cross-application
currencies.

VISA

VISA11 is also a third-party service provider, but they only have solutions
for handling payments by credit cards. In order to use the services VISA
offer the developer has to have a registered business and will also have to fill
out an application, which means most hobby developer can’t use it.

10http://www.getjar.com
11http://www.visa.com

21

22

6 The business aspect
The mobile application market is fairly new and popular platforms such as
Apple’s App store and Google’s Play(earlier called Android Marked) made
apps incredibly popular. The App store was released in July 2008, Google
Play was released in October 2008 and the revenue that the apps has gener-
ated keeps increasing for each year. The business model that the apps have
been following have been through some changes when it comes to making
the biggest possible revenue.

Some of the different types of business models that the applications use
are:

1. A free application without advertisement. This is often used for
apps that serve educational purposes, such as some online dictionar-
ies, wikipedia or other various apps paid for by either governments or
organizations. There can also be apps that are made by companies
who already profit by offering their business specialization and want to
make their service available on the mobile platform.

2. Free applications with advertisement. These applications were
very successful and still are to some degree since you can obtain an
application for free with only the small annoyance of advertisements
taking up a small portion of your screen. This is very popular to use
with applications such as games since lots of downloads could mean a
great revenue. Some apps are offered as both a free version and a one
time fee version.

3. Free applications with additional content. This model is also
called ”Freemium”, as in when a product is offered for free but a pre-
mium is charged for additional features or digital goods. This model
is indeed the topic of our paper and it has grown a lot in popularity in
the recent years.

4. Applications with a one time purchase fee. A pay-per-download
model where you purchase the application and download it with all its
features.

5. Subscription-based applications. A business model where you pay
a monthly fee to gain access to some media such as music, video or
news.

When developing an application, several decisions must be made when
selecting the business model that best suits the application. Some choose to

23

make ”lite” versions of the apps with limited features freely available and a
full-blooded version that can be purchased for a one time fee, or at a monthly
subscription rate. If you are developing a game that allows for customization
of a character for example, allowing for in-app purchases and while providing
the game for free might boost the total generated income of the app. If you
are developing an online game where you play simple card games with your
friends, perhaps a model where you offer a free version with ads and a paid
version without is the best fit.

The current money maker dominating the app market is the Freemium
model. A publication made in 2011 by Distimo shows that half of the top
200 grossing applications on Apple’s App Store were generating their revenue
using the “Freemium” and in-app purchase model[28]. On Google Play 65%
of the top apps were using this model. According to a new study done by app
analytics firm App Annie in 2012, these numbers have grown even stronger
with freemium apps generating 69% of the app revenue of iOS apps and 75%
of all Android app revenues[29]. App Annie tracks over 700 000 apps world-
wide by gathering data from various sources and also offer analytic tools for
your own apps.

6.1 What type of application fits which type of busi-
ness model?

When considering what kind of application you want to develop you must
carefully select a most suitable business model if you want to maximize your
profit. If your goal is not to get maximum profit, there are other business
models if you just want to reach a big crowd. If your application is a tool that
could improve the usability of your device or adds features which it didn’t
already have, you might want to consider a one time purchase fee. Examples
are new widgets, media players, office tools, utility apps that could be used
to assist in normal day tasks.

Many developers release different versions of their apps, one being free
and with advertisement and another ”premium” version without ads. This
is often a good idea since the application can be tested out for free before
purchasing the premium version, and if that doesn’t happen - some cash will
be generated from advertising. Testing out one-time purchase fee apps is
an easier task on Android as compared to iOS. Here, you can pay for an
app and still receive a full refund if you delete the application within 15
minutes, whereas you have to go through a more tedious process to get your
refund from applications from the App Store. In fact, in Apple’s Terms And
Conditions it states that every sale is final, although there exist some special

24

exceptions[30].
When it comes to developing games, the most popular and greatest

revenue-generating business model is the in-app purchase model. It suits
games very well since it’s easy for games to have additional levels, extra gear
or valuables that may be purchased. Once again, by offering the game free,
it can reach a wider audience who include the preferred kind of customers,
ones that continually invest more money on your product. According to a
research done by ABI Research a disproportionately small amount of users is
spending a disproportionately large amount of money per user and is driving
the in-app purchase model[10]. So the key to success is to make a game that
is enjoyable and popular, with the possibility of in-app purchase items for the
people who are willing to spend money to enhance their experience. Easier
said than done, no doubt. But be wary that there are also customers who
dislike the idea of not getting the full experience and the fact that they have
to pay for several small things instead of getting the full package at a set
price, can be off-putting. This is often the case in games where you compete
against others and you face challengers who have spent lots of real money, if
the content that they bought gives them clear advantages against those who
have not paid, it becomes a pay to win scenario which is frowned upon in
gaming communities.

It all boils down to what kind of content or service your application is
offering when choosing the correct model. It’s no easy task to choose the
correct one, choosing several different types to meet the needs of different
types of customers is no bad idea. In ABI Research’s forecast they expect in-
app purchase to be the top grossing revenue model when it comes to making
application sales in the following years to come[10].

6.2 A deeper look into Freemium as a business model
More and more apps are turning to the Freemium model in hopes of increased
revenue. But when choosing this type of business model, one should really
think where this will take your product. Even though we can see that in-app
purchase revenue from free apps accounted for 71 % of the revenue made on
the iOS platform in feburary 2013 in the United States [11], one must not
blindly choose this model without thinking it through and hoping it will land
you a great deal of cash. One of the greatest advantages that it brings to
the table is since it’s free - more people will try it and because of this you
might gather a larger user base for your product. But this might also be
the problem, you get users and not direct customers - you hope that people
will fall in love with your product and will be willing to pay for it later
[31]. When in-app purchases first got released in iOS 3.0. Users didn’t fully

25

understand the business model. Developers used this model to let users try
the app before purchasing anything. However, they reacted differently than
expected. Many had downloaded the app expecting it to be free, just to
realize they had to pay to get all the levels[32]. This resulted in bad reviews
and angry customers. The power of free is a strong one, and an experiment
called the ”Hershey’s experiment” done by behavioural economists at MIT
[33] is believed to be one of the starting points that led to the snowball effect
of the freemium model. The experiment is done by giving the choice of two
chocolates, one Hershey’s chocolate which is considered to be cheaper and
of lower quality and one Ferrero Rocher chocolate which is an expensive and
considered of higher quality. The prices were manipulated as such between
the subjects:

Hershey’s Ferrero Rocher
2 cents 27 cents
1 cent 26 cents
Zero 25 cents

The first two conditions showed a roughly even split, but when presented
with the option of a free product - 90% chose the Hershey’s. This shows that
when presented the option of a free product, people will choose it and this is
what became the foundation of the freemium school of thought - free is free
marketing. You build your customer base with the free app, then you mon-
etize that base by adding extra content or presenting a paid version. This
might be easier said than done, and if you look at the expected value per
customer - you have to look at the expected value of free. Using the ”Her-
shey’s experiment” and doing the math like suggested by the blog Iterative
Path [34], we get two cases. 1.When the price was 1 cent for Hershey’s and
26 cents for Rocher, the choice was even, that is 50%. So the expected value
of the customer is (0.5 * 1 + 0.5 * 26) = 13.5 cents 2.When the price was
0 cent for Hershey’s and 25 cents for Rocher, the choice was 90% Hershey’s
and 10% Rocher. So the expected value is (0.9 * 0 + 0.1 * 25) = 2.5 cents

The expected value per customer is 13.5 cents if you choose to charge 1
cent for the product and the expected value per customer is 2.5 cents if it’s
free. This means if you choose to offer the free version, you lost 11 cents
and have to make it up in a different way. A low priced version alongside
a premium version might be an better option, but since there are limits on
how low you can price your app on the app stores, this is a challenge and
you really have to think through before making your decision.

It’s important to remember that even though we see how much in-app
purchases generate in revenue, those numbers are from the hugely successful
apps and the model itself is no guaranteed key to success.

26

7 Application development
Our key goal when deciding what kind of application we wanted to develop
was to make it as simple as possible in order to get some experience with
the different providers and their implementation of in-app purchases. We
knew we wanted to make some kind of game since in-app payments are fairly
popular in those, but since neither of us had any previous experience in doing
graphics we ended up with a text-base game - the Quiz Challenge.

It’s a single player game where you answer questions by clicking on one of
four alternatives and get a score by the end of the game. It’s far from com-
plete, it only contains the core mechanics such as starting a game, choosing
a category, answering the questions and a high score board. The important
bit was adding a store to the app which allowed for purchase of additional
packs of questions. We thought about adding other purchases like new game
modes, but decided to keep it simple since just adding an extra category with
extra questions would be least time consuming.

We made the app for two platforms, Android and iOS. Microsoft Phone
was also considered, but was dropped due to time restrictions. We made two
versions on Android, one which uses Google’s Payment API and one which
uses PayPal’s API.

27

7.1 Android
Since we were going to make two versions of the Android app we decided to
first make a ”skeleton” app with the core functionality which is used in both
apps. With this done we could start implementing each of the stores and
in-app purchases. The skeleton included the starting screen, settings, most
of the navigation and the game itself. We did not put that much effort into
graphics and design, and won’t be expecting an award for our design choices
any time soon.

Our starting screen is very simple activity that includes navigation but-
tons to everything you need in the app, as you can see in figure 1.

Figure 1: Main menu of our application on the Android platform.

When a user pushes the New Game button he will be taken to the pre-
game screen to create a new game. Here he can choose which category he
wants to play. The default categories available are TV, movies and sport.
You can see this activity on figure 2.

28

Figure 2: The ability to choose between different categories in a drop-down
menu

After the user has chosen his category and starts the game he will be
taken to the game activity you can see on figure 3. The game itself is also
pretty simple. The user gets a question with 4 alternatives. The game will
go on until he answers a question incorrectly.

29

Figure 3: The question and 4 alternatives in the game.

When the game ends the user will be taken to the score screen. Here he
can view his score and add it to the high score list if he wants to. He can also
start a new game. You can see this screen on figure 4.When we were done
with this part of the app we could begin implementing the in-app purchases
for the Google Play and PayPal apps.

30

Figure 4: The score screen after an ended round.

31

7.2 PayPal
When a user pushes the store-button he will be taken to in-app store. As
you can see on figure 5 with the PayPal API you have to use one of the three
button types following in the API. In the store the user can select what item
he wants to purchase. We only created two new categories for our app. After
selecting a product he will have to log in on his PayPal-account. You can see
this on figure 5. After he logs in the purchase will be completed. The app
will then receive a notification telling if the payment went through. If it did,
the app will update and the new category will be available to play the users
next game.

Here you can see how easily you add the ”Pay with PayPal”-button.
1 CheckoutButton purchaseHistoryButton = pp. getCheckoutButton (

this , PayPal . BUTTON_152x33 , CheckoutButton . TEXT_PAY);
2 LinearLayout . LayoutParams params = new LinearLayout .

LayoutParams (LayoutParams . WRAP_CONTENT , LayoutParams .
WRAP_CONTENT);

3 params . topMargin = 10;
4 purchaseHistoryButton . setLayoutParams (params);
5
6 purchaseHistoryButton . setOnClickListener (new OnClickListener

() {
7 public void onClick (View v) {
8 purchaseType = " history ";
9 requestPurchase ();

10 }
11 });

1 private void requestPurchase () {
2 PayPalPayment newPayment = new PayPalPayment

();
3 newPayment . setSubtotal (new BigDecimal (8.00));
4 newPayment . setCurrencyType ("NOK");
5 newPayment . setRecipient ("joran. _1350996801_biz@gmail .

com");
6 newPayment . setMerchantName ("H2 Devs");
7 Intent paypalIntent = PayPal . getInstance (). checkout (

newPayment , context , new ResultDelegate ());
8 startActivityForResult (paypalIntent , 1);
9 }

When the button is added, you will also have to add an OnClickListener.
In our listener we will run the method requestPurchase when the purchase
button is clicked. In this method we create a PayPalPayment-object. We
add all the needed information to in the object to complete the purchase.
This contains most of the information about the item that’s about to get

32

purchased, like price, currency and recipient. We then create an Intent which
we send to a new activity. In this activity the payment-object gets sent to
PayPal while the new activity waits for the response. Once a response is
received the app will read the response and act depending on the response.
This response could for instance be OK, that the payment was completed,
or FAILED.

Figure 5: Our store with PayPal purchase buttons and the purchase confir-
mation.

33

7.3 Google
For the application created with Google’s API you get a lot more integrated
functionality you can use in your store. One example of this is that the user
doesn’t have to log in as it is with PayPal. So when a user on our Google
app wants to unlock a new category he enters the store, which you can see in
figure 6, he chooses the category he wants. He will then be taken to Google
Play. Since the user is already logged in with his Google-account he will be
taken directly to the screen where he confirms the purchase. If he doesn’t
already own this product and payment goes through the app will update the
database to unlock the new questions.

Figure 6: The in-app product presented in the Google Play Store.

There are a lot of classes that you need to add with the payment API
version 2, but the most important parts are to add permission to your man-
ifest file so that the application can make use of the billing system, and to
compute the public key which you get from the Android publisher site. The
products are identified with a string that you choose at the publisher site;
in our case we choose the identifier as ”history 003” for our history question
product. The product is added in our Catalog of products and it contains

34

the ”sku” or stock-keeping unit which is the unique string of the product,
the name ID and the type of product; managed, unmanaged or subscription.

1 private static final CatalogEntry [] CATALOG = new
CatalogEntry [] {

2 new CatalogEntry (" history_003 ", 3, Managed . MANAGED),
3 new CatalogEntry (" science_004 ", 4, Managed . MANAGED),
4 };

When the user clicks the ”Purchase history questions”-button this method
runs:

1 public void unlockHistory (View v){
2 mSku = " history_003 ";
3 if (mManagedType != Managed . SUBSCRIPTION &&
4 ! mBillingService . requestPurchase (mSku , Consts

. ITEM_TYPE_INAPP , mPayloadContents)) {
5 showDialog (DIALOG_BILLING_NOT_SUPPORTED_ID);
6 }
7 }

This sends a request to Google for a purchase of that product and de-
pending on what the user does, if he chooses to purchase or cancel, this then
runs when the transaction is complete.

1 public void onRequestPurchaseResponse (RequestPurchase
request ,

2 ResponseCode responseCode) {
3 if (Consts .DEBUG) {
4 Log.d(TAG , request . mProductId + ": " +

responseCode);
5 }
6 if (responseCode == ResponseCode . RESULT_OK) {
7 dataSource . unlockCategory (3);
8 if (Consts .DEBUG) {
9 Log.i(TAG , " purchase was successfully

sent to server ");
10 }
11 } else if (responseCode == ResponseCode .

RESULT_USER_CANCELED) {
12 if (Consts .DEBUG) {
13 Log.i(TAG , "user canceled purchase ");
14 }
15 } else {
16 if (Consts .DEBUG) {
17 Log.i(TAG , " purchase failed ");
18 }
19 }
20 }

35

If the purchase went through okay, the dataSource.unlockCategory(3)
method runs which unlocks the history questions for the user.

36

7.4 iOS
The iOS application was made after we finished the Google and PayPal
implementations for the Android. We wanted to keep it as similar as possible
when it came to look and design, but we had add the bar at the top which
allows for navigating back and forward through the application. The flow of
the application is identical to the Android version, with a main menu that
allows you to start a new game, check out the high score, change settings
(not implemented), go to the store to purchase additional questions and exit
the application.

It is not recommended to bundle the data that is unlockable by purchases
inside the original application. It is recommended to use a server that the
application contacts after a purchase is done to retrieve the extra content.
We didn’t do this since the application was never intended for public release
and of course to save ourselves from the extra effort.

When the user enters the app’s store and selects a question pack to pur-
chase, a pop-up box appears with the choices of purchasing the selected item
or to cancel the purchase as you can see in figure 7. If the user isn’t logged
into his/hers Apple account, they are asked to do so before proceeding.

37

Figure 7: The pop-up box that is displayed after selecting a question pack
to purchase.

If the purchase is started the method purchaseProUpgrade is called. The
payment is added to the payment queue.

1 - (void) purchaseProUpgrade
2 {
3 SKPayment * payment = [SKPayment

paymentWithProductIdentifier :
kInAppPurchaseProUpgradeProductId];

4 [[SKPaymentQueue defaultQueue] addPayment : payment];
5 }

After the queue has been updated it checks if the payment was completed,
failed or restored. So the necessary code for adding the purchased content
is done inside the case ”SKPaymentTransactionStatePurchased”. The code
below shows this, but the code that unlocks the purchased content is not
shown.

1 (void) paymentQueue :(SKPaymentQueue *) queue
updatedTransactions :(NSArray *) transactions

2 {

38

3 for (SKPaymentTransaction * transaction in
transactions)

4 {
5 switch (transaction . transactionState)
6 {
7 case SKPaymentTransactionStatePurchased :
8 [self completeTransaction : transaction];
9 // unlock purchased content .

10 break;
11 case SKPaymentTransactionStateFailed :
12 [self failedTransaction : transaction];
13 break;
14 case SKPaymentTransactionStateRestored :
15 [self restoreTransaction : transaction];
16 break;
17 default :
18 break;
19 }
20 }
21 }

This is the method that is called when a transaction was successful.
1 - (void) completeTransaction :(SKPaymentTransaction *)

transaction
2 {
3 [self recordTransaction : transaction];
4 [self provideContent : transaction . payment .

productIdentifier];
5 [self finishTransaction : transaction wasSuccessful :YES

];
6 }

We didn’t have to add that much code ourselves, besides adding the func-
tionality to unlock the content.

After our hands-on experience with three out of four of the service providers
in-app payment solutions, we could move on to create a comparison model
which we could later use to evaluate the service providers with.

39

40

8 Comparison model
In this section we will define and explain what aspects and points we will
be evaluating and comparing. This will be the model we use to compare the
different providers and solutions of in-application payment APIs.

Since we are going to study and compare from both a business and tech-
nological aspect, we decided to divide our comparison model into two parts,
a business model and a technological model. In each model we have iden-
tified several categories that we want to compare. Each category may also
have several topics we want to compare. Some of the topics might be easy to
compare, but others might require much more effort in order to make them
comparable. Conducting user surveys and interviews with developers will
help us get some data on what they prioritize and what topics are the most
important ones.

This could help hobby developers decide which In-Application payment
solution works best for them, based on what they have selected as important,
less important and not important.

8.1 Business
8.1.1 Fees

Here we will compare what fees and how much the developers have to pay to
sell their products. So for a hobby developer the less fees, the better. Fees
we will be looking at could be:

1. Registration fee

2. Yearly/monthly fee

3. Fee per purchase

8.1.2 Profit

The profit is how much the developer is left with after the service provider
has taken its share of the pie. How much is the developer earning per sale?
This is one of the most important aspects when rating the service providers.
The more profit that is left for the developer after each sale, the better it is
for him or her. To compare the total profit from the application will use the
following case:

We assume that each free application will sell an average of 100 in-app
products each month, which is a total of 1200 purchases for a whole year,

41

which we see as a realistic amount for a small scale developer. We will then
subtract whatever fees the developers have to pay that year.

We will also take a look at what happens if an application sells 75 000
products.

8.1.3 Business models

What kind of business models does the provider support. This can for in-
stance be some of the following:

1. Pay-per-app

2. In-app advertisement

3. In-app purchase

(a) One-time purchase
(b) One-time-one-use-purchase
(c) Subscriptions

Here we will mainly look at which of these features they offer to the
developers. We will also take a closer look into each one to see if there are
any difference for the different providers.

8.1.4 Distribution

Here we will look at how the developers can distribute their application.
What distribution channels can the developers use? Are there any differences
or limitations? This could for instance be Google Play, Apple’s App Store
or third party application stores.

8.1.5 Market size

We will take a look at how many apps that have been downloaded since
start, how many users pay and how many apps are available today. Evaluate
the pros and cons of an already large market. The better the market is, the
easier and more potential there is to earn a profit.

42

8.2 Technical
8.2.1 Registration

Look at and compare the process of creating and configuring an account to
support in-application payment.

8.2.2 Development

Here we will evaluate and compare the actual development and implemen-
tation of the in-application payment API into the application. This could
include the difficulty, knowledge and experience required, how much code has
to be written and time used.

8.2.3 Testing

It’s important for developers that they can test their in-app store to find
flaws and weaknesses. Most providers have test servers that the developers
can use to test their applications without fear of letting users test it before
it’s ready for the ”real” market. So here we will evaluate the test environment
that is provided, ease of setup and use, and take a look at how quickly you
can test new code.

8.2.4 Payment

Compare what types of payment are offered and how they can be config-
ured. An example of this is dividing the profit from a transaction to several
receivers.

8.2.5 Ease of use

How easy is it for the user to pay for an application, how easy is it to set
up an account and add a credit card. This will directly affect how much
profit you earn. The easier it is for customer, the more likely he is to make
a purchase in you application.

8.2.6 Documentation

Evaluate how well documented the steps of implementing is done, how easy it
is to find what you are looking for and overall quality of the documentation.
For inexperienced this is very important to make the process of implementing
the API’s easiest possible.

43

8.2.7 Supported technology

Compare what technologies the different implementations support such as
operating systems and programming languages among others.

8.2.8 Support and community

Evaluate how easy it is for the developer to get the help needed from the
providers own support crew or from the community. Check how easily nav-
igated the help pages are and maybe find info on response time from the
provider. The communities can be compared in form of size and active users.

8.2.9 Security

Things we will look at are what threats you are vulnerable to, how much
malware is out there, how easy it is to configure the security and what security
features the platforms offer.

In the next section we will evaluate Apple, Google, Paypal and Windows
using this comparison model.

44

9 Evaluation of the service providers
In this section we will go through Apple, Google, PayPal and Windows and
use our comparison model to evaluate each of the service provicers.

9.1 Evaluation of Apple
9.1.1 Business

Fees

When you wish you start developing and distributing iOS applications you
need to enroll in the developer program which has a yearly fee of $99. The
price is the same for individuals and companies unless a company wants to
create proprietary applications - then the yearly fee is at $299.

Apples cut on each transaction and purchase is 30%.

Profit

Apple uses a ”price tier list”, so the prices you can use are set by Apple. They
will also take 30% of every transaction, which gives you a 70% profit. This
amount is the same for buying the application and in-app purchases. We will
use the first tier in the list as a basis for the comparison. The first tier is of
course the lowest amount, which is $0.99. So for each sale your profit would
be $0.693. Since Apple require developers to purchase a developer license for
$99 each year, you would need to sell 143 items to make a profit each year.
Though if you get any sales in Norway, you would get a bit more profit from
each sale.

So if you sell 100 items each month on average for $0.99 you would get
the following:

The first month: 100 * 0.693 - $99 = $-29.7 The following months we get
100 * 0.693 = $69.3

Month Profit($)
1 -29.7
6 316.8
12 732.6

Table 1: Apple profit after 1200 in-app sales.

45

So after a year, with 1200 sales you would get a profit of $732.6. If we
increase the number of sales to 75000 we get:

75 000 * 0.693 - $99 = $51876.
If these were sold in Norway with the increased price you would be left

with substantially higher amount.

Business models

Apple supports pay-per-app, in-app advertising, subscriptions and in-app
purchase. The purchase types that are offered within in-app purchase are

1. Consumables: Items that can used once in an application, like a
potion or in-game gold.

2. Non-Consumables: Items that a bought one time and then persist.
These items are available on all registered devices for the user.

3. Auto-renewable Subscriptions: This subscription type allows a
user access to a item or service for a set duration. This subscription
auto renews at the end of the duration.

4. Free Subscriptions: Subscription type that delivers content free of
charge for the duration.

5. Non-Renewing Subscriptions: Subscription type where the user
has access to content for a limited duration.

Distribution

The main method of distributing your applications is through Apple’s App
Store. Installing apps that are available on this store onto your iOS de-
vices requires authentication and can only be done via the App Store and/or
iTunes.

Applications can also be distributed by companies hosting their own in-
house software for iOS devices via Intranet or restricted web pages available
only for employees. This requires the developers to enroll in the iOS Devel-
oper Enterprise Program.

For testing purposes Ad Hoc distribution is used to install the application
to a total of 100 iOS devices, and these devices must be registered manually
by their ID. This feature is supported by both the iOS Developer Program
and the iOS Developer Enterprise Program.

The last distribution model, although not legal in all countries, is via
third-party sites. This requires you to unlock/jailbreak your device which

46

removes the limitations and permits root access to the iOS operating system,
which in turn allows you to install applications outside the App Store[35].

47

Market size

According to Apple’s press release on January 28. 2013 [36] App Store now
offers over 800 000 applications to it’s users, and has had a total of 40 billion
downloads since 2008. Since then Apple has paid out over 7 billion dollars to
the developers. During the most recent earnings call from Apple(January 23,
2013), Tim Cook said that ”well over half a billion iOs devices” have been
sold in total. So there is a great potential in the iOs market.

However, Distimo estimates in the 2012 yearly review report, that the
growth in daily revenue from App Store only increased by 21% the last four
months of 2012[37]. If we compare this number to the growth in January
2012, which was 51%, the growth of App Store has slowed down. Although
this number is based on data from 20 countries. Even though App Store
hasn’t had the biggest increase in revenue, they still have the highest revenue.
On an average day in November 2012 the daily revenue from App Store was
an astonishing 15 million dollars. An interesting point in the report is that
of the revenue in November, 10% of it came from the top 7 applications.

9.1.2 Technical

Registration

There are several different programs you can choose between when you want
to start developing iOS applications. The most common is the iOS Developer
program which is offered both to individuals and companies. To register as
a company you need a D-U-N-S number which is an unique number given
to a single business entity. When you register as an Apple developer you
get free access to developer tools and resources needed to create iOS and
Mac applications. You also get access to sample code and videos from their
world-wide developers conference which can be of great help for both new
and experienced developers. You register by either signing in with your
pre-existing Apple ID or you create a new Apple ID. The Apple ID is your
main account when dealing with everything that you deal with Apple such
as purchasing and downloading apps from the App Store, using iTunes to
buy songs and iTunes Connect to distribute your content. Having only one
account that is integrated into all Apple services keeps it simple for the
developer. All in all it’s a very simple and painless experience.

Development

When we started developing our application for iOS our experience with Mac,
XCode and Objective-C was from very limited to non-existent. Neither of us

48

had used XCode or Objective-C prior to this. Due to this and our lack of time,
we decided to cut down the application even more, and focused primarily on
implementing the in-app billing along with some basic functionality.

Before we started writing any code we had to find a good source of infor-
mation and knowledge and headed over to the iOS Developer Library to read
up on the SDK and in-app billing API. As we entered the site we were over-
whelmed by information. Since we had never developed using Objective-C we
had to depend on Apple’s guides and information sites, which we found to be
very confusing and hard to find what we were looking for. So we abandoned
the site and found other sources for information. We’ll talk more about this
later.

After we had found the information we needed, writing the code wasn’t
that difficult, but it’s quite different from Java and the Android SDK. Ba-
sically we had the following steps to implement in-app purchases to our
application:

1. Create a unique App ID

2. Generate and install a new provisioning profile

3. Update the bundle ID and code signing profile in Xcode

4. Submitting application metadata in iTunes Connect

5. Add the products for in-app purchase

6. Write code for fetching the product from your store

7. Wait for products to become available

The implementation and the amount of code needed was very manageable,
even for rookie developers. One thing holding us back was the bureaucracy
of Apple. A lot of time was spent filling out forms and waiting for responses
and updates. All in all we spent about a week developing the application for
iOS.

Testing

It’s important for developers that they can test their in-app store to find
flaws and weaknesses. Most providers have test servers that the developers
can use to test their applications without fear of letting users test it before
it’s ready for the ”real” market. So here we will evaluate the test environment
that is provided, ease of setup and use, and take a look at how quickly you
can test new code.

49

We ran into some problems when testing on a device at first because of
an older Mac OS preventing us from using the newest iOS SDK. Using this
old version created a conflict with the mobile device which only supported
the newest iOS code. This was solved by getting up to date with the newest
OS, even though it cost us money in order to upgrade.

Testing is possible without external devices by using the iOS Simulator
which is included in Xcode 4. The simulator is quite good and it even has
support to test out in-app purchases in the newer versions. When you haven’t
implemented in-app purchase in earlier projects, this certainly speeds up the
process of getting it done.

Testing on devices is a more tedious process than just plugging your
device into your computer and running it. You need to add the device IDs
of the devices that are going to be used for testing into the iOS Provisioning
Portal. You need a distribution certificate in your keychain and an ad-hoc
provisioning profile which contains the app ID and the device IDs. Then you
can create the package with the application for the tester. The testers need
that file and the Ad-hoc provisioning profile file in order to test. Quite a lot
of work the first time around.

Payment

In order to use the App Store you must use your Apple ID to create a iTunes
Store account. When creating this account you need to enter your billing
information and select a credit card to make purchases from. Application
and in-app purchases will then be made with this stored card information.

Ease of use

Since it’s required to have an Apple-ID account to download applications
on App Store, a user will already have a credit/debit card registered to his
account. So when trying to make a purchase in an application, all a user
has to do is just press purchase and confirm the purchase when a dialog box
appears. This process is so simple that unknowing kids can purchase items
without knowing what they’re actually doing. Which has been a bother to
some people. Other than confirming the purchase, the in-app store design is
mostly up to the developers.

Documentation

The documentation provided for in-app purchase is very thorough and de-
tailed. The API programming guide that is presented on Apple’s developer
site is divided into several sections to give introduction, explain what is

50

needed and the steps involved to finalize the implementation. The step-by-
step process is perhaps the number one thing that developers are on the
outlook for when they are in need of a quick solution. An developer unfamil-
iar with iOS development and iTunes connect might not find much help in
the in-app purchase documentation as some additional knowledge is required
in order to create an unique App ID, a provisioning profile and a few other
steps that need to be done prior to the in-app purchase implementation.

So this led us to search the web for a more first-time and ”newbie” friendly
guide. We found a blog containing a tutorial [38] which gave us a good
starting point and a good overview of what needed to be done.

The documentation that Apple provide is of very high quality, but it can
be quite overwhelming at times.

Supported technology

Apple is very strict with what technology can be used to make application
for their hardware. This inflexibility turned out to be quite a problem for us.
First of, you have to use a Mac and you should use Xcode. Ok, so you have
to get a hold of a mac. Then to test we couldn’t use our available iPhone
since it was old and did not have the right version of iOS. Because of this we
had to get the newest iOS SDK, which required we buy Mountain Lion. We
experienced that if you don’t have to newest products from Apple, you’re
going to have a bad time. Other than that, as mentioned earlier, you code in
Objective-C and it only works on Apple products. There are ways to create
iOS applications outside using the native tools that are available, one way
is to use Xamarin, a cross-platform development tool which allows you to
create iOS, Android and Windows apps by writing the code in C#.

Support and community

Apple’s support site for developers is mainly centred around FAQs sorted in
topics as the different types of developer programs, the App Store and other
technical issues. If you click one of these topics it covers what needs to be
done in order to register for one of these programs, what tools are available
and the necessary resources to get started. These pages link to the devel-
opment center for iOS, Mac and Safari which are heavily documented and
contains all things needed for a developer to start up from scratch including
sample code, tutorial videos and documents. The developer center site also
links to the official developer forums where developers can ask and answer
questions. The official forums are quite active, with over 117 000 threads,
not including the archives. There’s also a lot of activity on StackOverflow

51

for iOS, with a total of 130 000 questions posted, of which only 33 000 is
unanswered. Members of the developer program have to option to write two
TSI support tickets per year to get further help if you can’t find any answers
on the forum.

Security

Apple’s strict process of reviewing applications before being made available
to the App Store is one reason why there are less headlines regarding iOS
when it comes to malicious apps. A case study of security on different mobile
platforms in 2011 concluded that ”a non proficient attacker would not choose
to use the iOS as a privacy and security attack vector, since it is the platform
having the most defensive mechanism in place (i.e. application testing, con-
trolled application installation vectors and remote application removal) and
being difficult in application development” [39]. In quarter 1 to 3 in 2012,
only 1,1% of all new mobile threats was found on iOS [2].

Apple is a large and successful company, it has many dedicated users who
place a great deal of trust in that their products are secure. Apple has a great
responsibility and takes security very seriously, a few of the steps that they
have taken to secure their reputation and trust of their users are some of the
following: App code signing which requires all apps that are to run on the
iOS system to have its executable code signed by an Apple-issued certificate.
This means all third-party apps must be validated and signed before being
allowed to run on the device. Developers must register with Apple and
be verified before being able to develop and distribute applications and in
addition the application is reviewed to ensure that the application that is
uploaded is operating as the developer has stated.

All third-party apps are sandboxed in the sense that they can’t access files
from other applications or make any changes to the device itself. This is done
to keep applications separated and prevent them from getting information
stored by other apps[40].

Over the years Apple has had one problem, and a very simple one at that.
Purchasing apps and in-app items has been so easy that even small children
can complete a purchase. Through the years there has been some cases where
these kids have spent hundreds of dollars with their parents knowing. One
case went so far that the parents sued Apple[41].

52

9.2 Evaluation of Google
9.2.1 Business

Fees

To register as a publisher you need to pay a one time fee at $25. This means
that once you have paid this fee, there will be no other monthly or yearly fee
that needs to be paid.

As for fees per purchase, Google will take 30% of every type of transac-
tion/purchase.

Profit

As mentioned in the last section, Google will take 30% from every transaction.
This includes purchasing the application itself, in-app purchases etc. Most
transactions will be for around $0.99. This means Google will take 30.6 cents
for each purchase, which leaves the developers with $0.693. So in order to
earn a profit for an application you need to sell at least 37 products in you
app. As 37 sales * $0.693 = $25.64.

Now let’s look at if your application gets 100 purchases each month for
$0.99.

The first month we get (100 sales * $0.693) - $25 = $44.3. The following
months we get 100 * $0.693 = $69.3.

Now if your application gets a bit more popular and you get 75 000
purchases the first year, we get the following profit the first year:

75 000 * $0.693 - 25 = $51950

Month Profit($)
1 44.3
6 390.8
12 806.6

Table 2: Google profit after 1200 in-app sales

53

Business models

Google supports pay-per-app, subscriptions, in-app advertising and in-app
purchase. The in-app purchase product types that Google offers depends on
which API version you choose, 2 or 3.

They recommend to use version 2 if you want to sell subscriptions in your
application, which are items that are sold with a recurring bill interval until
the user cancels it. Version 2 also included Managed per user account and
unmanaged product types. ”Managed” are items that can only be purchased
once per user account and Google Play stores that transaction information
which allows for restoring later on. Unmanaged are items that do not have
their transaction information stored on Google Play, which leaves the devel-
oper of the app to keep track of these items.

Version 3 is recommended if you want to sell in-app products only, not
subscriptions. This version only has one product type; managed in-app prod-
ucts. This product type has the ability to offer non-consumable and consum-
able items, similar to version 2’s managed and unmanaged, but this time you
can keep track of the user’s ownership of in-app products.

Distribution

Android strives to be an open platform, and therefore offers a lot of flexibility
and choices to developers. One of these choices is how to distribute your app.
Android applications can be distributed through marketplaces, web sites or
even e-mail.

The main distribution channel for Android applications is Google’s own
app store, Google Play. For a developer to share his application on Google
Play he has to accept the terms of agreement. This is the Developer Distri-
bution Agreement and the Developer Program Policies[42]. In the Developer
Program Policies Google states the following:

“App purchases: Developers charging for applications and downloads from
Google Play must do so by using Google Play’s payment system.
In-app purchases: Developers offering additional content, services or func-
tionality within an application downloaded from Google Play must use Google
Play’s payment system as the method of payment, except:

1. where payment is primarily for physical goods or services (e.g. buying
movie tickets; e.g. buying a publication where the price also includes a
hard copy subscription); or

2. where payment is for digital content or goods that may be consumed

54

outside of the application itself (e.g. buying songs that can be played
on other music players)”

This section specifies that when using Google Play for distributing your
app, you cannot use a third party library to handle in-application payments
and transactions. The only exceptions being if you are selling digital content
which is used outside of the application itself, or if you are selling physical
goods or services. You of course also have the usual no sexually explicit
material, bullying or violence, illegal activities, infringement of intellectual
property etc.

There are also many third party app stores available to developers who
want to use other or more channels to distribute their app. An example of
this is Amazon App Store which is growing rapidly.

Market size

It’s hard to get exact numbers on which of the competitors are in the lead.
When it comes to shipping out new devices, Android completely crushes
iOS devices with its recently 75% over iOS’s 14,9%, third quarter 2012 [43].
There are several large manufacturers shipping units with Android such as
Samsung, Sony and HTC and only Apple shipping iOS units. Google bought
Android in 2005 and sought out to make it the future of mobile computing.
Instead of the manufacturers making their own operative system for their own
devices, they built their own variations on top of the already free Android
system provided by Google. This is what makes Android so popular and
widely used, and it is still on the rise. Devices with Android are also generally
cheaper than iOS devices which gives them an advantage.

Our main focus however, is on applications and its market. How many
applications are available, how many applications are downloaded and how
much revenue is generated from these applications are some the the key
questions. Another aspect is to look at the demographic of the users and
which part of it uses and spends money on apps more frequently.

As of November 2012, Google said that about 700,000 applications were
available for download [44]. In September 2012, Google announced that
25 billion apps had been downloaded. These numbers are easily observed
compared to other figures such as sales, revenue and how many of these are
generated by in-app purchases. According to a publication made by Distimo
in 2012[37], a typical day for Google Play generated $3.5M USD in revenues
when looking at the 20 largest countries using the store. Looking at the top
10 publishers in Google Play 2012, only 3 of these publishers had an average
price paid per app, whereas iOS’s top 10 publishers had only 2 that didn’t
have an average price paid per app.

55

9.2.2 Technical

Registration

In order to upload applications one has to register for a Google publisher
account and if the application is to support payment of some sort, a Google
Wallet(also known as Google Checkout)12 account is needed also. To register
as a publisher you need to pay a one time fee at $25. The nice thing is that
you use your gmail account to register for all these services, so if you already
have set up your Google Wallet which you use to pay for apps, you pay the
publisher account fee with that. Then you register as a merchant in order
to be able to charge for your in-application products, which is free. All you
have to do then is sign in with your Gmail account, select your location and
agree to the terms and then you are good to go. The only requirement being
that you need a active credit/debit card.

When this is done you’re ready to start implementing in-app payment in
your application and configure your in-app products.

To sum up; you need a publisher account, a Google Wallet account and
a merchant account which all use your previous Google account information
to register with.

Development

Before implementing the in-application billing we made our own simple ap-
plication which we will not go into too much detail right here. To keep it
short, the idea was a simple quiz application where there are some questions
in a certain category and the user has the opportunity to purchase addi-
tional categories with new questions, which is where the in-app billing comes
into play. We had some basic knowledge of the Android SDK and when
we considered our application to be functioning well enough to implement
the important feature, we followed a guide provided by Google on how to
do so[45]. There were 7 steps to be followed in order for the application to
support in-app billing:

1. Download the in-app billing sample application. This step encouraged
to upload the sample application and try the in-app billing functionality
before adding to our own project, so we did.

2. Add the IMarketBillingService.aidl file to your project. An .aidl is
an Android Interface Definition Language file which generates a Java

12For more information: http://www.google.com/wallet/

56

interface file to your projects gen folder. You can then use this interface
to make billing request to Google.

3. Update your AndroidManifest.xml file. We needed to define a new
permission for the application in order to use the billing functional-
ity called “com.android.vending.BILLING”. We also needed to add a
BroadcastReciver with some intent filters and a local Service to bind
with the IMarketBillingService. This was all accomplished by using
their sample code. Since the sample application also contained all the
classes needed for steps 4-6, we choose to skip to part 7 after copying
the needed classes into our own application. We did however look at
the classes to understand what was going on, even though one should
just appreciate that “it just works!”.

4. Create a Service and bind it to the MarketBillingService so your ap-
plication can send billing requests and receive billing responses from
Google Play.

5. Create a BroadcastReceiver to handle broadcast intents from Google
Play. Create a security processing component to verify the integrity of
the transaction messages that are sent by Google Play.

6. Modify your application code to support in-app billing. We modified
one activity class in our code called StoreActivity since this class had
two simple buttons which were to be used as redirections to the Play
Store. So in simple terms we had to add functionality so that when
the user presses the button to purchase the category History, the app
would then send all the necessary requests to Google so that the Play
Store displays the item that the user wished to purchase. This will be
told in greater detail in the next section, Testing.

The guide goes through all of these steps in much more detail with exam-
ple code and explaining how the different parts and classes interact. This,
at first, seemed quite easy, but as we got started it didn’t go quite that
smoothly.

We used the example code combined with the guide as a starting point,
but we found it a bit confusing. To make a good implementation we needed
a lot functionality, which needed a good amount of coding. Even with the
guide we didn’t know where to start. There were a lot of classes and methods
that were needed, but after carefully going through the example code step-
by-step we figured out most of it. All in all it took some time to implement,
and wasn’t as easy as ”just implementing a few methods”. It requires a great
deal of knowledge and configuration.

57

One thing that should be noted is that when we were developing, we were
using the In-app Billing API version 2 which now is superseded by version
3. While we haven’t tried implementing the in-app billing using the newest
API, what we’ve seen from the documentation on how to implement the API
- it seems easier and less confusing.

Testing

There was a lot of back and forth for us when doing the testing. We ran into
a problem which can be a bother for developers that are either developing
alone or do not have access to an extra phone to test on. Emulators can
be used to test almost everything except interaction with the Play store. So
in order to test your in-app billing functions, you need an account which is
listed as your test account and you of course need to use a phone that has
Android. We didn’t think we’d run into problems here since we had a phone
with android, but one thing stopped us from ”finalizing a sale” when we tried
to purchase an item from our own sample application. We had set up our
publisher account and merchant account with the same gmail account we
were using on our testing device. And it turns out that you can’t purchase
your own applications and/or in-application products, not even for testing.
This can be solved either by

1. Resetting your phone to set up a new primary account, which you
make as one of your test accounts. This will require you to add a gmail
account that is not the same as your merchant account. This can be
bothersome since you will then need to reset these settings again if you
wish to use your phone with your original gmail account.

2. Buy/borrow someone else’s android phone, and add that gmail account
as a test account.

3. Replacing your in-application product ID with a fake product ID that
android offers to test your application with, called android.test.purchased.
When you make this request, Google Play responds as though you
have purchased an item and you can then unlock the content that you
wanted to be your product. There are also other reserved test meth-
ods called ”android.test.canceled”, ”android.test.refunded” and ”an-
droid.test.item unavailable”.

This could be an issue for the spare time developer if he/she doesn’t have
access to an extra phone to test the purchase of own items. While waiting

58

for an old android phone to be sent to our house, we attempted to test the
application on one of our room mates phone.

The tedious thing when testing like this is you first have to upload and
sign your current version of the application and then upload that version
manually to the phone via an USB-cable. When we came across an error in
our code we had to update the manifest so that it wouldn’t conflict with the
current version that was already uploaded and export the project as a .apk
all over again. When uploading the new version to the publisher account, we
then had to wait a few hours since it took some time for the in-app products
to be available again. This really puts a halt to your developing process since
you might not be sure what is causing the error when you are running the
application on your cell phone.

Payment

Compare what types of payment are offered and how they can be config-
ured. An example of this is dividing the profit from a transaction to several
receivers.

With Google’s in-app billing you can’t customize the payments as ad-
vanced as with other payment providers(PayPal). When a user purchases
an item in your app the amount is withdrawn from the users Google Wallet
account. So buying from Google Play, of course, requires that you have a
Google Wallet account, which requires a credit/debit card.

The Google Wallet account is set up when the user tries to purchase
something from Google Play. Your credit/debit card is stored in the Wallet,
which means it stores the account information on their secure servers until
you wish to remove it. The goal of storing the information is to make it more
convenient for the user to make additional purchases from the Play store
without having to manually enter your payment information each time. The
charges to your card will appear on your credit/debit card and a complete
order will give you a receipt via email.

Some mobile network operators offer an alternative to this, by purchasing
apps via carrier billing. So instead of paying with your card, the bill will be
posted to your mobile billing account after a 15 minute return period is
expired. This is something that’s still in the works as it is only currently
available in some countries and for some mobile operators. As of early 2013,
customers of Telenor in Norway and Sweden are able to pay for apps by using
carrier billing via Google Play.

59

Ease of use

It is quite easy for the user to pay for an application or an in-app purchase.
If they already have a Google wallet linked to their Google account on their
device, the purchasing procedure is pretty straightforward. You need to be
logged in on your Google account in order to download applications on the
Play Store and if the application has a download price, you press a purchase
button which contains the price of that application. When clicking that
button you are asked to agree to the payment Term of Service, then to
finalize the purchase you have to click ”Accept and buy” which starts the
download if your credit/debit card has sufficient funds.

In-app purchases are implemented by the developer, but the payment is
done using the same procedure as normal application purchases. When an
in-app purchase is implemented into an application, the user clicks on the
item that he/she wishes to purchase and is then redirected to the Play Store
where that item is listed and paid for.

Documentation

On the Android developer site, Google offers a very well documented guide on
how to implement in-app billing in your app as well as reference information
on the API. With the changes in API version 3.0, the guide is now written in
5 steps with a detailed description and code examples. In the reference guide
you can look up technical information on methods and messages used in the
API. The API also comes with a working example application which you can
use to get some more insight and examples on how your in-app billing could
be implemented.

During our development we found the guide a bit confusing at first and
needed to read through it a couple of times before we finally fully understood
how to implement the API.

Supported technology

In-app billing for Android is of course implemented in Java. The APIs cur-
rently support Android 2.2 and above, which would support over 90% of
active devices running Android.

Android applications are coded in Java, which means applications can
be developed on almost any platform like Mac and Linux. You can also use
.Net and Visual Studios using the right tools. So implementing in-app billing
with Google’s API is highly flexible.

60

Support and community

For support related to coding/implementation Google provides links to sev-
eral community forums on their Android developer web page, in form of
Google Groups and IRC channels. IRC, Internet Relay Chat, is a protocol
used for chatting with channels for various discussion topics that allows for
group communication or one-to-one communication. The community is al-
ready quite large due to the amount of people developing applications and
is steadily rising. They also have a help center where you can get help with
other issues related to Google Play.

Stackoverflow[46] is a popular site used by developers to ask and answer
questions regarding programming problems, algorithms and coding tech-
niques. Questions can be tagged with relevant subjects and the tag ”an-
droid” has been tagged in almost 300 000 questions. Of these 90 000 are
unanswered. So chances are if you have an issue with your current imple-
mentation of in-app purchase, a Google search might lead you to that site
where your question already may have been answered.

Google does not offer any other kind code-level support then the forums,
however if your problem is related to Google Play or your account you could
write a support ticket for help.

Security

Android being the largest actor in the mobile market [18] and with it’s focus
on openness makes it the most attractive target for hackers. With no control
or code review of applications on Google Play and the increasing use of
independent third-party app stores, the distribution of malicious applications
is easy on Android. Because of this, Android is the most targeted operating
system for mobile devices [2]. In Mcafee’s threat report for Q3 2012 [1] goes
as far as saying ”In fact, we see very few mobile threats that are not directed
at Android phones”. F-secure reported over 51000 unique samples detected
during this quarter, although only a few were actually found to be on Google
Play. So the amount of malware for Android is extensive and new exploits
are detected almost daily.

A study in 2011 that focused on Google’s In-App Billing API, found that
over 58% of the top applications on Google Play at the time were vulnerable
to an automated attack which would make all the items in an in-app store
free of charge[47]. This attack is attack is called the FreeMarket attack. The
way it works is that a fake app store is created. Then the application to
be attacked is rewritten to use this fake app store instead of the real one,
resulting in free purchases. They could then release the app to give other

61

user access.
When developing your application and implementing the in-app billing,

Google provides guides and information on how and why you should make
your more application more secure [45]. This makes it easier for more inexpe-
rienced developers to make a secure application and also gets more focus on
security. Basically the security in Android breaks down to the manifest.xml
file and application signature. In the manifest developers explicitly define
each permission the application needs. All the permissions an application
has defined can be viewed by the customers prior to purchasing and down-
loading it. So it’s very much up to the users to be careful when getting new
applications for their device. So if a developer follows Google’s best prac-
tices and guide, configuring the security correctly shouldn’t be too big of a
challenge.

To prevent the worst malware to spreading Google has what is referred to
as a ”kill switch”. This is a feature which Google can use to remotely remove
malware from devices. On Feb. 2. 2012 Google revealed their next step
against the malware on Android. They called this ”Bouncer” [48]. Bouncer
is a security service that automatically scans newly uploaded applications
on the Play Store in search of malicious code. This new feature was said to
remove 40% of malware in the store, but it didn’t take long before methods
to circumvent Bouncer appeared.

62

9.3 Evaulation of PayPal
9.3.1 Business

Fees

PayPal is free to use for private developers, so there’s no registration fee and
yearly fee, but they do have a small fee on sales. PayPal offers offer two
options for payment plans with different fees. They have the standard plan
and the micro payment plan. Other factors which affect the transaction fee
are national/international transactions, currency types and your revenue.

As you can see on table 3 and table 4 the transaction fee is based on how
much revenue you got. The more you sell, less of a fee you have to pay. To
get this benefit you have to apply for Merchant rate, and it is always based
on your sale volume the previous month.

Monthly revenue Fee per transaction($)
0,00 NOK - 20 000,00 NOK 3,4% + 2,80 NOK

20 000,01 NOK - 80 000,00 NOK 2,9% + 2,80 NOK
80 000,01 NOK - 400 000,00 NOK 2,7% + 2,80 NOK
400 000,01 NOK - 800 000,00 NOK 2,4% + 2,80 NOK

>800 000,00 NOK 1,9% + 2,80 NOK

Table 3: Norwegian fees for PayPal

A retailer can apply for a micro transaction plan, which you would use for
in-app payment. This plan is customized for transactions below $10.With this
plan you get a transaction fee which is 5% + $0.05. International transactions
includes a 1% additional cross-border fee, and an additional 2,5% fee for
currency conversions. To use this plan you either need to have a Premier
account or a business account, which you should have anyway to be able to
support payments from credit and debit cards.

Monthly revenue Fee per transaction($)
0,00 NOK - 20 000,00 NOK 4,9% + 2,80 NOK

20 000,01 NOK - 80 000,00 NOK 4,4% + 2,80 NOK
80 000,01 NOK - 400 000,00 NOK 4,2% + 2,80 NOK
400 000,01 NOK - 800 000,00 NOK 3,9% + 2,80 NOK

>800 000,00 NOK 3,4% + 2,80 NOK

Table 4: International fees for PayPal

63

Profit

Here we will assume that most developers will get the micro transaction plan,
since this will be the most ideal choice with such low transactions. So then
the fee you have to pay will be 5% + $0.05 + 1% for cross border fee. Since
there is no registration or yearly fees, you’ll have a profit from your first sale.
You can also set the price to be whatever you want, but we will assume that
you sell for about the same amount as the others, $.99 or 6 NOK. Profit per
in the same nation will be ($.99 - $0.05) - 5% = $0.8905 and $0.8806 for cross
border sales with currency conversion.

For national sales you will get the following each month: 100 * $0.8905
= $89.05. Assuming that half the sales will be international we get: ($89.05
/ 2) + (50 * $0.8806) = $88.555

Month Revenue(National) Revenue(with 50% int. sales)($)
1 $89.05 $88.555
6 $534.30 $531.33
12 $1068.60 $1062.66

Table 5: PayPal profit after 1200 in-app sales

If we increase the sales to 75 000 we get:
75 000 * $0.8905 = $66787.50
and with 50% international:
75 000 * $0.8806 = $66045.00

Business models

The available business model depends on what account type and API the
developer decides to use. However, you cannot implement a ”Pay-per-app”-
model with PayPal, as this has to be done through the distribution channel
the developer chooses. You also can’t directly earn money through ads with
PayPal. PayPal is just handling transactions; the rest is up to the developer.

PayPal offers 4 different payment APIs, but the only ones with In-app
payments, and therefore the most relevant, are the Mobile Payment Libraries
(MPL) and Mobile Express Checkout Library (MECL).

64

MPL MECL
In-app payment + +

Runs without back-end API integration +
Quick integration + +

Credit card checkout (no PayPal account needed) +
Supports auth/settle payments +
Supports Recurring Payments + +

Table 6: What kind of functionality the MPL and MECL support

As we can see from table 6 both APIs support in-app purchases and
subscriptions. The main difference is that with MPL a customer can’t make
any purchases with a credit card without having a PayPal account. But
other than that both APIs support one-time purchases. This means they
also support one-time-one-use; it’s just up to the developers code how to
handle it. You won’t get a free database to store your sales.

Distribution

PayPal can be implemented on both Android and iOS, but they both have
some requirements for using their native app stores. In their Terms of Agree-
ment it states that you are not allowed to sell your application on either
Google Play or Apple’s App Store unless you are using their own APIs to
handle sales. So when you choose to use PayPal your application is not eli-
gible to be distributed on them. You therefore need to use third-party app
stores and distribution channels. This greatly limits your marked size. Pay-
Pal does not at this date have a way to distribute applications themselves, so
the developer will have to use third-party sites like Amazon[49], Handster[50]
or GetJar[51].

Market size

Even though you can’t use Play or App Store, there are many independent
third-party app stores out there, but the market size for applications that
use PayPal will still be highly reduced. Let’s look at one of the biggest
third-party app stores, Handster. They currently have over 50 000 apps for
Android and over 20 000 apps for the iPhone. The interest for these app
stores is increasing, but they’re still far behind. One positive thing with a
smaller app store is that you will make it easier for customers to find your
app in a store with thousands.

65

9.3.2 Technical

Registration

When you first arrive at the PayPal developer site you get a good overview
of the different solutions they have available. Based on this overview you can
easily decide what solution you better use. They even have some example
use cases describing what the solutions support and should be used for. We
ended up with PayPal Mobile Libraries as this API best suited our needs for
our application.

After you have decided on what API to use you have to start registering
an account on PayPal. These accounts are free to register for both personal
and companies/non-profit organizations. After you’ve made an account with
PayPal you need to register with x.commerce. This is quite easy as all you
have to do is to log in with your PayPal account to import your account to
x.commerce. You will also have to create an account with PayPal Sandbox.
The Sandbox is a testing environment where developers can test their calls
to PayPal, which of course is very important.

Development

Now the next step is to find the right SDK/API and start developing. PayPal
has ”How To”s and ”Getting started” guides for everything, but we experi-
enced some confusion to which one was correct for us. After some time and
some searching we found our starting point and proceeded to download the
MPL API.

The SDK comes with sample code and some good documentation. The
sample code is a simple application which shows how the API can be imple-
mented into an app, although not all of it is needed. In the documentation
you get a step-by-step guide to how implement the API. It gives you a good
description of what features it has, method calls, response codes etc.

Implementing the Mobile Payment Library in Android was a quite easy
and quick task. There are a lot of resources that help you implement it. But
all you really need is already included in the SDK.

While developing we found a few things that weren’t perfect. First off,
you have to use PayPal’s official ”Pay with PayPal”-button. You cannot
change it, and it only comes in three sizes. Also, the user interface for this
activity has to be hard coded for you to be able to add the purchase button,
which is quite a hassle and not very good practice.

After you press the purchase button you will be take to the payment
activity. This activity you cannot change at all. Although this is annoying,
it gives the users the same interface as every other PayPal payment window.

66

If you really want to use PayPal as your in-app payment solution, you
better have some kind of back end server to register purchases. PayPal does
not keep track of what a user buys. This will give you a problem if a user for
example has downloaded your app, bought an item in your store, uninstalled
the app and then at a later point reinstalled it. Without a back end you won’t
be able restore his purchased items. Other elements that we noted were that
the size and loading time of the MPL library is horrific, which makes the
application bigger and the purchase process slower when compared to the
application that uses Google’s API.

All in all, after we found the documentation and sample code the imple-
mentation was quite easy and was done within a few hours. You basically
just have to write a few methods with a few lines of code.

Testing

For testing, PayPal offers a sandboxed testing environment where developers
can test their apps and the payment API without having to worry about
security, money and other potential problems. It’s a safe testing environment.

Before you can use PayPal Sandbox you have to create test accounts for
both seller and buyer. You can use pre configured test accounts, or you could
create them yourself. For testing, we just went for the easy choice of using
the ones that were pre configured.

To use the sandbox you have to make a few configurations in the appli-
cation. You have to sign the application with a fixed appID. This ID-code
says that the application is a test app. The second thing you to do is setting
the app to use the sandbox server.

The code below shows how the PayPal API is initiated. The second
parameter in the method call says that the app is a test version and that it
should use the Sandbox server.

PayPal ppObj = PayPal.initWithAppID(this.getBaseContext(), ”APP-
80W284485P519543T”, PayPal.ENV SANDBOX);

In the sandbox developers can set the money balance on the test accounts
which is used to simulate real transactions. The seller account will also be
updated when a transaction goes through. This way we can easily monitor
transactions.

Payment

The PayPal API offers several different payment methods, which gives devel-
opers ways to implement quite advanced payments. Developers can choose

67

from what PayPal calls simple payment, parallel payment and chained pay-
ment.

• Simple payment is the most basic type of transactions. It only supports
payment to a single recipient.

• Parallel payment gives developers the opportunity to divide the pay-
ment between several recipient. Using this method changes the user
interface a bit so that the customer sees who the money goes to.

• Chained payment is also way of handling dividing the amount between
several recipients, but here the whole amount is paid to a single receiver,
called the primary receiver, who then passes it to several other receivers.

Using PayPal requires that a user has a PayPal account with funds or a
credit/debit card. And as mentioned earlier, PayPal offers both subscription
type payments and one-time payments.

Ease of use

When a customer presses the Pay with PayPal-button he will be taken to
an activity where he has to sign in with a PayPal account. This process is
very much like all other payment solutions from PayPal. This will make it
easier to use for customers. There is also an option to save username and
password.

Documentation

As we discussed in the development section, the SDK comes with most of the
documentation a developer might need. It’s a simple step-by-step guide and
it’s so easy to follow that even developers with very little experience will be
able to complete the implementation. You can also look at the code example
to see how it is done. All in all the quality of the documentation is good.
The only thing that’s missing is anything regarding security configuration.

Supported technology

PayPal currently has two libraries available for mobile developers, MPL and
MECL and are mentioned on page 65. Both these libraries are available
for Android version 1.5 and higher. As for iOS the libraries are available
for(iPhone, iPad, iPod) iOS 3.0 and higher.

68

Support and community

PayPal has an official forum where developers can ask other developers for
help. The forum doesn’t seem to have very high activity however. Most of
the posts on the board have a few responses, if any. Other than the official
forums there seems to be some activity on Stackoverflow. Whenever we had
any problems, we found most of them on Stackoverflow or on some kind of
developer blog. So there is a small active community. Other than the forums,
PayPal doesn’t offer much code-level support.

Security

PayPal has millions of users all over the world, and is one of the biggest
payment providers on the internet. Their payment libraries are used for
everything from big web stores to small donations to a private site. PayPal
is a widely known brand that most people have heard of or used earlier at
some point. This gives PayPal a great deal of trust, which will lead to more
people willingly using the technology. There have been some security issues
in the past, as shown in the National Vulnerability Database, but none of
them are related to the mobile library[52].

As for configuring security in your application, there was very little infor-
mation to be found, and it was not even mentioned in the guides. This can
be an issue. Misconfiguration could easily lead to a potentially serious flaw
in an application.

When you configure the PayPal transactions you have to define the amount
to be paid, what kind of currency should be used and to whom the money
should be transferred. By following the guide and code examples you would
end up with the following lines of code:

newPayment.setSubtotal(new BigDecimal(8.00));
newPayment.setCurrencyType(”NOK”);

newPayment.setRecipient(”joran. 1350996801 biz@gmail.com”);

All that defines to where the money should be transferred is that last line
of code. If you were to change this line, the money would end up somewhere
else. Obviously, this wouldn’t be very good for security reasons. If a hacker
decides to reverse engineer your application, he could quickly locate that line,
change it to a merchant account he controls, and release a ”spoof” version of
the application.

Since there’s no app store, there’s no approval or control of applications.
When using independent app stores, the risk of malware and bad software is
higher[53].

69

9.4 Evaluation of Windows
9.4.1 Business

Fees

To join the Windows Phone Dev Center you need to register an account which
requires an annual fee of $99. They also offer a free of charge subscription if
you are a DreamSpark student. You can register as a DreamSpark student
and get access to free designer and developer tools if your school is one of
the ones that are eligible for this program. As NTNU students we were able
to register as a DreamSpark student and get free access, which is great for
our purpose.

Microsoft has no limit to how many paid-applications you can submit to
the marketplace for free, but if you’re submitting free applications, there’s a
limit of 100. For very free application you want to submit past 100 submis-
sions you’ll have to pay $19.99 for each application.

Microsoft will also take 30% off of every purchase in your application.

Profit

Without actually testing this ourselves, we found it to be quite confusing
trying to find exactly what the minimum price is for sales in Windows Phone
Store. When looking at the documentation in the Developer center we found
that the minimum price in the price-tier is $1.49 13. But when looking at
the actual prices in the app store we see most applications selling for $0.99
[54]. Since this seems to be the going price, we decided to use this amount
for comparison.

How easy it is to make a profit when developing and release an application
on Windows Phone depends on your whether or not you’re a student at a
DreamSpark school. If you are, you won’t have to pay the $99. So here we
will have two additional cases when looking at your profit. One case if you’re
a DreamSpark student and another for non-DreamSpark developers.

So if you’re one of the lucky students and don’t have to pay the license
fee of $99, you’ll start making money from your first sale. Microsoft will
take 30.6c for each sale in your application, which leaves the developers with
$0.693. So if we take a look at the first case where you sell 100 items each
month for $.99.

For each month you will get (100 sales * $0.693) = $69.3.
13http://msdn.microsoft.com/en-us/library/windows/apps/jj193599.aspx#

pricetiers

70

Month DreamSpark($) Non-DreamSpark($)
1 $69.3 $-29.7
6 $415.8 $316.8
12 $831.6 $732.6

Table 7: Windows profit after 1200 in-app sales

Now, if you have to pay the $99, you need to sell a few more items in
order to start making a profit.

The first month with only 100 sales you will get: 100 * $0.693 - $99 =
$-29.7 The following months we get 100 * $0.693 = $69.3

If we increase the number of sales to 75 000 we get:
75 000 * $0.693 = $51975 for DreamSpark 75 000 * $0.693 - $99 = $51876

for non-DreamSpark
In order to receive payment at all from Microsoft you have to have at

least $200 in revenue. Anything below this and you won’t receive anything
[55].

Business models

Here we will mainly look at which of these features they offer to the devel-
opers. We will also take a closer look into each one to see if there are any
differences for the different providers.

Some of the business models that are supported are:

• Paid apps - Regular paid for each download of an application, not all
countries are supported for this however.

• Trial Apps - An option for the developer to let the application act in
”trial mode” which later can be enabled into a full working application.
The developer decides what functionality is available in trial mode or
if it should be fully working for a limited amount of time. This is a
good way to allow users to test the application before buying it [56].

• Advertising in apps - You can include advertising in your applica-
tions by using the Microsoft Advertising SDK.

• In app purchase - Available in two different product types; consum-
able and durable. In-app purchase is only available in Windows Phone
8 [57].

71

Distribution

The main channel for distributing Windows Phone 7 apps is the Windows
Marketplace. The Marketplace offers apps, games, music, movies, TV shows
and podcasts and can be launched from the device itself or via the web.
In Windows Phone 8, you use an improved version simply called Store or
Windows Phone Store which also recommends apps based on what you like.

Windows also offers a solution for companies that want to distribute
apps internally for their own employees [58]. The company can bypass the
Windows Phone Store by getting an enterprise certificate from Symantec,
creating an application enrollment token and developing a Company Hub
app. The employees can then enroll for company app distribution on their
phones and install the company apps. This is only available for Windows
Phone 8.

There’s also a possibility to install non-marketplace and homebrew apps
and this is done by unlocking your Windows Phone and by using a proce-
dure called sideloading. Sideloading is when you transfer data between two
local devices, such as a computer and a mobile device via USB or memory
card. Without going into too much detail, this is a alternative endorsed by
Microsoft themselves for homebrew app developers called ChevronWP7 [59]
which is a service that costs $9 which lets you ”unlock” your phone to install
a limit of 10 apps from the web via your computer using developer tools. This
type of ”unlocking” isn’t the same as iOS Jailbreaking, but it gives the same
privileges as an developer gets in order to run applications for debugging etc.
This service was discontinued in August 2012.

Market size

Microsoft’s Windows Phone Store had an explosive growth during 2012, and
during this year they doubled the amount of applications in their app store
from 75000 to 150000 applications in total, according to Microsoft’s developer
blog. They also said that the average amount of application downloaded per
device running Windows Phone is up to 54 [60]. Many of the applications
are only available for Windows Phone 7 and 8.

Windows Phone also almost doubled their market share in the last quarter
of 2012 from 1.8% to 3.0% [18]. This indicates it’s a growing market for
Windows Phone.

72

9.4.2 Technical

Since we didn’t develop our application for Windows Phone we decided to
remove the Development process section.

Documentation

When trying to find documentation for implementing in-app purchases for
Windows there was a lot of back and forth browsing. After spending some
time and effort we found several pages on Microsoft’s Dev center14 that would
help us, and we felt we had the information needed to complete the develop-
ment process. The problem was that we couldn’t easily find one page with
a good overview of everything related to in-app purchase. Even though we
found documentation on the implementation, there was very little informa-
tion on the business side.

Besides the challenge of finding the information needed, the documenta-
tion itself was decent. It came with step-by-step guide with a lot of code
samples and a good API reference guide.

Supported technology

Compare what technologies the different implementations support such as
OS’s and programming languages among others.

To develop apps for Windows Phone 8 you need the Windows Phone
SDK 8.0 which includes Microsoft Visual Studio Express and an Emulator
for testing. This SDK requires 64-bit Windows 8 Pro, which means that
you can’t develop Windows Phone 8 apps on older Windows versions such as
Windows 7. The SDK 8.0 supports development for Windows Phone 8 and
7.5 devices.

The supported programming languages are C#, VB.NET, C++. C++
was not supported until Windows Phone 8 [61].

Support and community

Microsoft has their own support site at the Windows Phone Dev Center [62].
On this page they give the developers an overview of the official and some
other unofficial communities. This includes the Developer forums and links
to other communities like Stack Overflow and a subforum at Reddit [63].
They also provide links to How To’s where developers could find a solution
to his problems.

14Windows Dev Center: https://dev.windowsphone.com/en-us

73

At the developer forums, the sub forum for Windows Phone development
currently has over 11000 threads where well over 5000 have been answered,
with a total of 73000 messages. Over at the Stack Overflow they have over
15000 threads tagged with windows-phone. Since the release of Windows
Phone in late 2010 the community has quickly grown into a large community,
and with the increase in market share and popularity, it will most likely
continue to grow.

If you don’t get the help you need on the forums you could also write a
support ticket, but there will some waiting for a response.

Security

Most people have used a Microsoft or Windows product in their life, and are
familiar with its areas of use. Even though Windows Phone is fairly new
and has a low market share, the brand Windows is well known. Since its
release, Windows Phone has statistically been one of the most secure mobile
OS’s. Very few threats have been identified according to F-Secure’s most
recent Mobile Threat Report [2]. Only 0.6% of all threats to mobile devices
found during Q1-Q3 2012 were related to Windows Phone. This doesn’t
necessarily mean that Windows Phone has better security. As we mentioned
earlier, Windows’ market share is quite low compared to other operating
systems and therefore doesn’t make it an equally attractive target.

Microsoft has applied several security measures to protect the device and
its data from threats. ”Trusted Boot” ensures that only authorized code
can run before they are allowed to load the operating system [64]. This
means all apps must be signed properly to execute. Windows Phone 8 keeps
applications separated by keeping no communication channels between apps
other than through the cloud. Each app is also granted just the capabilities
it needs to perform its use cases, and these are available to the user to check
upon installation. Apps are checked and go through a certification process
before being made available to the Windows Phone Store.

In the next section we will compare each of the service providers based on
what we have learned and evaluated in this section.

74

10 Comparison
In section 9 we individually covered each of the chosen service providers and
evaluated them based on our comparison model. In this section we will see
how they compare to each other. We will follow the comparison model and
go through it comparing them section by section. So we will start with the
business part of the model and then move on to the technical.

10.1 Business
10.1.1 Fees

To compare the fees we looked at registration fee, yearly/monthly fees and
fees per purchase. We found that it was mostly the registration and yearly
fees that were different. The fee per purchase was the same for all providers
except for PayPal. The results are summed up in table 8.

When looking at registration fee, the only one that required this was
Google with a fee of $25. This is just a one-time fee and is the only fee
required to develop and distribute apps for Android. Windows and Apple on
the other hand both have a yearly fee of $99. Although Windows is free if
the developer is a student. As for the fee per purchase it is 30% for Apple,
Google and Windows. PayPal has a more complicated fee plan which you can
see in table 3 and table 4 on page 63, so we won’t go in-depth on that here.
Basically with the right payment plan you will pay 10-15% of the amount on
a $1 transaction.

PayPal is clearly the winner if the developer wants to spend as little
money as possible to be able to develop and release applications. A one-time
fee versus a yearly fee could make a difference for a person who wants to start

Apple Google PayPal Windows ($)
Registration
Fee

None $25 None None/Free

Yearly Fee $99 None None $99/Free
Fee per
purchase

30% of
each trans-
action

30% of
each trans-
action

See Table x 30% of each
transaction

Table 8: The different fees for the providers

75

doing mobile applications for the first time. It costs no money to implement
PayPal’s in-app purchase system, but the downside is that you won’t get
your application distributed at the App Store or Play Store.

It is important to keep in mind that those providers that charge more and
more frequently might be doing so to provide better services and the appli-
cation reviewing process most likely is a full-time job for lots of employees.

10.1.2 Profit

The profit is the amount of money the developers receive after all the fees have
been subtracted. To compare the profit from the different service providers
we used two cases. The first case was how much profit the developer would
get when selling on average 100 items for $1 each month for 12 months. The
second case was how the profit would compare if the application was a bit
more successful and sold 75000 items in a year. We also looked at how many
sales an application needed in order to make a profit.

If we start to look at how much the developer will get for each sale, we
see that they will mostly be the same since they take 30% of each sale except
for PayPal. For Google, Apple and Windows Phone the developer will get
$0.693 from a $.99 sale. From PayPal the developer will receive $0.8905. We
also want to mention that with the price tier list some of the developers will
get a higher profit in some countries. An example is that in App Store if a
app costs$1 in the US, with the fixed prices it costs 7 NOK in Norway. This
is at the time of writing an increase of almost 20% based on the exchange
rate.

76

Figure 8: A graph showing how many sales are needed to make a profit

With the different fees and profit per sale calculated we can now compare
how many sales you need in order to make up for the registration and yearly
fees. As we can see in figure 8 on page 77, PayPal and Windows(DreamSpark)
has no registration/yearly fee, and therefore you will have a profit from the
first sale. With Google’s one-time fee of $25 you will need to sell 37 items.
Apple and Windows on the other hand, with its $99 yearly fee, the developer
has to sell at least 143 items each year to make a profit.

77

Figure 9: Profit after 1 month of sales

Now let’s look at how the services compare to each other when selling
on average 100 items each month. At the first month after selling 100 apps,
only Apple and Windows are not making profit. This is because of their high
yearly fee, whereas Google’s low one-time fee and PayPal’s no registration
fee takes them to the lead.

Figure 10: Profit after 6 months of sales

After 6 months of selling 600 applications on each platform, Apple and

78

Windows are getting more profitable while PayPal is still making the most
profit.

Figure 11: Profit after 12 months of sales

After 12 months PayPal has the highest profit ending up with $1083.00,
with Windows (DreamSpark) and Google following behind with $831.6 and
$806.6. And with the worst profit we have Apple and Windows at $732.6.
So when only looking at profit compared with an equal amount of sales we
see PayPal giving the developers the best profit.

79

Figure 12: Profit after 75 000 applications sold

If we increase the number of sales to 75000 we see how much difference the
fees will affect your profit if your application is successful. Not surprisingly
PayPal comes out on top with its low fees resulting in a profit of $66787.50.
Then we have Windows (DreamSpark) with $51975, Google at $51950 and
finally Apple and Windows with $51876. The calculations are based on $1
sales, but as mentioned earlier, with the fixed prices on a price-tier list you
will make more money in certain countries.

10.1.3 Business models

First, let’s take a look at what business models the service providers support.

Apple Google PayPal Windows
Pay per App x x x

In-App purchase x x x x
One time purchase x x x x

One time one use purchase x x x x
Subscription x x x

Trial application x
In-App advertising x x x

Table 9: Business models supported by the different service providers

80

All the service providers have their own distribution channels except Pay-
Pal; they just handle the transactions and leave the rest up to the developer.
In app purchase is supported by all providers, even though Windows didn’t
support it until Windows Mobile Phone 8. The different types of in app pur-
chases are available for all providers except Windows which don’t support
subscription based payments.

Windows is the only platform that offers trial applications as an imple-
mentation choice when developing. This could be done manually by creating
”stripped down” versions of your paid application on iOS and Android.

The main difference between the providers when implementing in-app
purchase is that the service is more integrated on iOS, Android and Windows
compared to PayPal. If we picture a scenario where a user purchases a sword
in a game, then installs this game on a new device - he would of course like
his purchased sword in this game as well. Since applications are bound to
the users account along with all its purchases on iOS, Android and Windows
Phone 8 the only step necessary to retrieve it is to simply download it again.
If you want this done with your PayPal implementation, you will have to
create a service that recognizes the user that you have registered in your own
database to confirm that he/she has purchased this item previously. So even
though PayPal offer some of the same type of business models as the others,
there might be more work involved if you want to get on par with the other
providers quality of service.

When it comes to In-App advertisement, Apple, Google and Windows
have their own SDKs to help and provide services like Apple iAd, Google
AdMob and Microsoft Advertising.

10.1.4 Distribution

As we mentioned in the previous section, the only in-app purchase provider
that doesn’t have an official or a distribution channel of their own, is PayPal.
Apple, Google and Windows on the other hand have their own channel of dis-
tribution. Since they are developing and manufacturing both mobile device
and the operating systems, they develop and customize their own services,
which PayPal or any third party service provider could never do. Using the
official app stores will of course make it easier for most users to access the
store and purchase an app. They will also feel a lot safer when they know it’s
controlled by big companies such as Google and Apple. For developers us-
ing PayPal, they have to depend on other unofficial third-party distribution
channels. This of course also has its advantages and disadvantages.

First of we have the size of the app stores. Apple and Android can boast
with number of apps up in the 700000-800000 with billions of downloads,

81

whereas the third-party app stores have from a few hundred up to 250000.
The larger ones being Amazon App store[49], Getjar[51] and Handster[50].
Second, using unofficial app stores has its security issues. They often have
no app reviews or control of apps, and a lot malware is coming from these
app stores.

10.1.5 Market size

In this section it is easier to look at the numbers and compare them in order
to see who has the most applications, downloads and users, but we also have
to take into consideration what pros and cons there is of an already large
market. Getting the correct numbers that are up to date isn’t easy as those
numbers aren’t announced that often by the providers themselves.

We will focus on the amount of applications that are available on each the
markets first; Apple’s App Store, Google’s Play Store and Windows Store are
the biggest ones since they are the main distribution channel for each of the
providers. Applications that use PayPal’s payment system are not allowed on
these markets due to the providers own payment systems, and PayPal does
not have its own marketplace. Gathering numbers on how many apps that
are using PayPal’s in-app purchase is impossible since they can be scattered
around several third-party site marketplaces.

82

Available apps Apps downloads User activations
Apple App
Store

850 000(May 2013[65]) 50B(May 2013)[65] 500M(Jan.2013 [8])

Google
Play Store

700 000(Oct 2012[44]) 48B(May 2013[66]) 900M(May 2013 [66])

Windows
Phone
Store

145 000(Feb 2013[67]) 1.7B 15 31M 16

Table 10: Available apps, amount of downloads and users for each provider

One thing to take into consideration is that the App store was released 2
months prior to the App Store(previously Android Market) and the Windows
Phone Store was released 2 years after this. We can see from table 10 on
page 83 that Apple currently has the most applications available. But since
Google’s number is so outdated it is reasonable to assume that they aren’t
that far apart in total available apps. Windows is still at an early stage with
its phone market so it ”only” has 145 000 applications available.

Having so many applications available could also have its downsides. It
could be hard for a new application to break through and gain audience if
there already are similar applications out there or just too many applications
in general. Publishing an application on a newer market with less available
apps could make it more popular than if it were to be published in an already
over saturated market.

15This number is from where an average user have downloaded 54 apps [60] multiplied
by total users.

16Total users is added manually by checking multiple Gartner reports [18], [5],
[68],[69],[70],[71]

83

10.2 Technical
10.2.1 Registration

The registration processes aren’t that different between the service providers.
For all of them you first have to register a ”basic” user account, and then
find out what type of account is needed for a developer. For Apple this is the
iOS Developer Program. For Google you will need a Google Publisher and
Wallet account. With PayPal you need a x.commerce and Sandbox account
for testing. There are only some minor differences.

PayPal is the only one where a credit is not required. All you have to do
to use PayPal is to create the account. If you want to pay with PayPal you
could transfer some money to that account. When you’re going to use this
account as a merchant you could apply to get merchant discount on your
transfer. For using PayPal you should also apply for the micro transaction
plan. This process was also quite easy, but it did take a couple of months to
get approved for the micro transactions.

With Apple you need to have an Apple-ID. With this account you can
access and join the iOS Developer Program. This costs $99 each year, but it’s
required for in-app payments and to publish your app. As for Google, you
need to have a Google account. When you have this account you can easily
register for the other services Google offers, this includes the Wallet account.
After this you have to register for an Google publisher account. This is
needed if you’re going to use in-app payment or publish your application and
this requires the one-time fee of $25.

We would say that based on our experience, the easiest registration pro-
cess was Apple. Apple was quick and easy to find what you needed. Then
we have Google and PayPal. With Google there was some confusion due to
name changes, but all in all it wasn’t that bad. PayPal was also easy, but
there was a long wait to get the approval for micro transactions.

10.2.2 Development

The development was done on two platforms, Android and iOS, with PayPal
implemented on Android. These platforms are very different in both im-
plementation and policies. Under the development sections in each service
provider we went through in some detail how the implementation was done.
We decided we would compare the processes by evaluating them in four cat-
egories; level of difficulty, knowledge/experience required, lines of code and
time used. When we developed the Android application, we first made a
”skeleton” app so we could use this as a basis for our PayPal implementation
as well.

84

All the development that was done of course requires some basic knowl-
edge of programming, but with good guides and helpful forums one does not
need to be an expert to get the in-application payment implementation work-
ing. If you have no previous experience with any programming languages,
the learning curve will be pretty steep and perhaps a bit harsh if you want
to go straight ahead and develop an mobile application. Programmers who
have basic knowledge about coding in general will have a smoother transition
if they have coded in advance before embarking into mobile development.

The difficulty of implementing the in-app payment varied some between
the different APIs. For PayPal the implementation was very easy and even
the most inexperienced developers should be able to implement it. You
basically just had to write a few lines of code and hard-code some of the
GUI. With this easy implementation you lose a lot of flexibility and you
should have a back-end server as well. The payment API was implemented
and tested in only a few hours, and the number of lines of code is just about
200 including the hard-coded GUI.

With Google, when using API version 2.0, there was a lot more function-
ality and configurations that had to be implemented in order to fully support
in-app payment. Even with the all documentation it’s a lot more difficult
than PayPal, but you don’t need to have a back-end server. To complete
the implementation we spent around 20 hours, though a lot of this was time
spent waiting and testing. We would say that this API requires some more
knowledge as it’s more complex. In total we ended up with 5 classes and
500-600 lines of code. A lot of the code was from the documentation and
guide which we used and then customized for our app.

We had only made one mobile application beforehand, a simple Android
application, but without any possibilities for in app purchase. Because of
this, we had an easier time developing for Android than we did for iOS since
we had previous experience with Java but no experience with Objective C.
After we spent several days working out how to get a simple application
up and running on iOS and understanding how Objective C is compared
to Java, we could focus on the in-app purchase implementation. Writing
the code for the application to fetch the product information from Apple is
mostly done by copying code already written and replacing the necessary
lines with your own unique application Id’s, so this part isn’t exactly hard.
The difficult part is writing code which allows a purchase to unlock some
feature or how the products shall be displayed within the application. The
in-app purchase implementation took us about 15 hours, but most of this
time was spent waiting for a product to appear after adding it on Apple’s
systems and testing in general. We added two files to handle the in-app
purchase, one header and one implementation file that contained around 200

85

Difficulty Knowledge/experience Lines of code Hours spent
iOS 2 2 200 15

Android 3 2 500-600 20
PayPal 1 1 200 4

Table 11: Development rating for the service providers

lines of code. If we would’ve added functionality to the app such as unlocking
features with a purchase, there would’ve been more code. But we decided
due to shortage of time to only test the communication between the app and
Apple’s service to retrieve the purchase success message.

When comparing difficulty and knowledge/experience we will rate each
one from 1 to 5 where 1 is low difficulty and little knowledge/experience
recommended, whereas 5 is the opposite.

We can see here that we clearly spent the least amount of time and effort
implementing PayPal’s solution. Not only did we spend the fewest hours
implementing it, but in our opinion it is also the least difficult. But there is
a good reason why PayPal is easier to implement than the other two; they
have far more complex APIs with greater focus on security, integration with
the device itself and more convenience for the developer such as tracking sales
and linking each app to each user. Adding the in app purchase products to
Apple’s and Google’s services took several hours before they became available
to fetch information from and that is one of the key reasons why we spent
more hours completing our task.

10.2.3 Testing

Starting with PayPal, to test the PayPal payment you use the PayPal Sand-
box. All you have to do to get ready for the testing is to register an account,
create some mock merchant and customer profiles, and change a few lines of
code in your application to set it to use the sandboxed testing environment.
This works in both the simulator and on a device. It’s quick and easy to set
up and we were testing in about 30 minutes.

Testing with Google can be quite a problematic task as you probably
want to have an extra device to test on, since you can’t use the emulator
or purchase items from your own account Google account for this. Also,
if you have to make some changes in your code or items in your store you
have to wait for Google Play to update the changes. This can take up to a

86

day. However, when all is in order the testing itself is easy. You can easily
simulate different scenarios and errors to find flaws in your application.

With Apple you can test in the simulator which is included in the SDK.
This makes the testing process a whole lot easier. You can also test with
device, but this requires some more time and work. There’s also some waiting
here as well when doing some changes in the in-app store etc.

Again PayPal is the simplest solution. It’s was the quickest and easiest
process when compared to the others, and you can without any hassle, test
on both a simulator and a device. Apple also supports testing on simulator
and a device, but the process of creating a ”testing device” can be quite
confusing the first time. You can also add test-users/devices with Google,
but the process is much easier, except if you want to use your own device
for testing. You will also spend a lot of time waiting for updates on Google
Play.

10.2.4 Payment

With Apple and Google you link your credit or debit card to your account.
With Apple the billing information you type in is stored with your Apple
ID and with Google it is stored in the Google Wallet which is linked with
your Google account. The way purchases work is very similar since you are
already logged into your account in order to get access to the applications
on your device. But while Apple only allows you to accept the payment by
clicking okay with the one credit/debit card you have added Google lets you
choose between several credit/debit cards if you have more than one and
even the possibility to pay with your mobile carrier if it is supported. With
Google it also displays the permissions the application requires along with
terms and conditions which has to be agreed upon in order to finalize the
purchase.

PayPal is different since when you press to purchase an item you need to
enter your PayPal account username/password and accept the purchase. If
your account has sufficient funds it will process your sale and the item will
be available when the sale is confirmed.

Apple and Google offer similar ways for the developer to offer their ap-
plication or in-app products for a price. Apple has iTunes Connect where
you have to enter your information in order to receive the money which goes
through Apple and after they have taken their cut you get the remaining.
Google uses a similar service called Checkout which also works as an agent
between yourself and the customer. The developers that use PayPal gets
their cut transferred directly to their own PayPal account.

When it comes to customization of the payment, PayPal is the only

87

provider offering something that differs from the others. You can choose
for the payment to be made out to one single receiver, several receivers or to
one single which then divides the payment to several other receivers. Get-
ting refunds for an application that you aren’t satisfied with or bought on
accident is an easier task on the Google Play Store since it allows you to get
a full refund if you delete the application within 15 minutes of purchase. If
you wish to do this with Apple you have to apply for a refund via iTunes
and fill out a form, but you will most likely search the web for a guide on
how to get a refund. Refunds on PayPal are a bit different since you have to
contact the seller directly and ask for a refund, which then can be granted
manually.

When comparing all the providers payment solutions and the way they
have handled it in general, Google stands out as more user-friendly when it
comes to refunds, more versatile as it offers mobile carrier billing and the
possibility of adding several credit cards which can be helpful for company
employees that wish to use the company card to purchase necessary work-
related products.

10.2.5 Ease of use

With all of the service providers you bind a credit card to your account when
you create it. The only one not requiring this is PayPal, but with them you
have to transfer funds to your account if you don’t bind a credit card to it.
Since every in-app purchases go through their official app stores for Apple
and Google, the users seldom have to worry about creating an account and
giving his credit card information to a third party. The transactions instead
go through the account that the mobile device is bound to. This makes the
process of completing an in-app purchase very easy. As we discussed earlier,
some are complaining that this is too easy, resulting in little kids purchasing
items for hundreds of dollars without their parents knowing. PayPal will
most likely not have this problem since it requires a login and a few more
steps than just confirming through a pop-up box.

So without a doubt the ones that are easiest to use are Google and Apple.
There are some downsides to this since it is so easy to purchase, children
with access to their parents devices might purchase content without knowing
that it bills their parents and might end up spending thousands of dollars.
Windows has a feature that aims to prevent this called Kid’s Corner and
it allows you to add what apps, music, videos and games that should be
available and this also turns of in app purchase by default.

88

10.2.6 Documentation

All of the APIs had guides on how to use and implement them. However,
there some small differences in the quality. If we start with PayPal, since
the implementation itself is such an easy task, the guide is also very short
simple, and probably the easiest to use. Almost anyone will be able to
implement it. Google’s API is also very well documented. But here the
implementation is a lot more complex and requires more work, resulting in a
more advanced and comprehensive guide and documentation. It takes some
time to get a good understanding of what you need to do the first time,
but once you reach this point the guide is of good help towards getting a
high quality implementation. Google also has the reference page where a
developer can easily look up methods, messages, etc. We found Apple’s
documentation to be of high quality, but it can be overwhelming. There is so
much information, and it could be a problem to find what you’re looking for.
During our development there were some information we couldn’t find and
had to look for other sources. So for someone just starting out developing for
iOS it could be troublesome. The one that gave us the worst experience was
Windows. We had a hard time finding the information we were looking for.
There was neither an overview page nor a particularly easy way to navigate
the site. One could argue that this could be because the API is quite new
and probably will improve their documentation in the future.

10.2.7 Supported technology

First we will give an overview of what kind of languages are supported with
each provider as we can see in table 12 on page 90.

The only provider supporting almost all programming languages is Pay-
Pal, only missing the implementation of .NET based languages. It is no won-
der that no providers support this kind of cross-platform possibility since they
usually stick to one native programming language and their own platform.

Besides the native tools that the providers recommend, there are other
options out there that make cross-platform development possible. One exam-
ple is Mono, a open source .NET development framework designed for cross-
platform development which makes creating iOS and Android apps possible
if you wish to write in C#.

There isn’t any real comparison that can be made out of this since each
provider has its own technology stack and it wouldn’t make any sense to
figure out which is better. PayPal does support several implementations,
but then again it is not a native operative system such as iOS, Android or
Windows Phone. One thing that is possible however is to look at what your

89

Apple(iOS) Google(Android) PayPal Windows
Java x x

Objective C x x
.NET(C#, C++, VB.net) x

Table 12: The languages which are supported by each service provider

options are when choosing a provider based on what operating system you
are programming with and if you have the correct developer kits.

10.2.8 Support and community

Each service provider has its own support site and help center where devel-
opers can find the help they need or they’ll be redirected to where they can
find it. For code-level support, the support is mostly in form of a forum
where developers can ask other developers about whatever problems they
might have. StackOverflow[46] seems to be the place where most developers
come to seek help. This seems to be a trend for most of the platforms.

PayPal clearly has the smallest community, and has the least activity. On
the official forums a lot of post goes unanswered. On StackOverflow PayPal
has only 4000 questions where 1500 are unanswered. PayPal’s pages can also
be hard to navigate when looking for something specific. Windows Phone’s
developer community seems to be larger than PayPal when looking at the
activity on the different support sites and forums. You can also easily find
links to other resources besides the official forums.

Apple and Google of course by far have the largest communities. Al-
though one difference is that with Apple the official forums are very active
compared to the others, where much of the activity is on unofficial forums
like StackOverflow. And with Apple and Windows Phone the developers
have the option to write support tickets for additional technical support.

10.2.9 Security

Of the four in-app payment providers PayPal is the only one that isn’t in-
tegrated in its own operating system and is therefore not equal when com-
paring. There haven’t been many reports on targeted at the payment APIs.
As we mentioned in the section on PayPal, they have had some flaws in the
past, but none related to the mobile API. Our biggest concern with PayPal is
that there is nothing about security in their guides, which could potentially

90

lead to a weakness in the app. This is something that Apple and Google has
taken seriously and have included in their documentation.

As for threats to the other platforms, the number of malware and spyware
is quite extensive. The worst one by far is Android. When looking at figure
13 you can see how big the difference is in malware based on platform. This
is the result of the open mindset Android has and it being the most used
operating system on the marked. It makes for the most attractive target
for hackers and other wrongdoers. If we take a look at total number of
threats percentage on figure 14 we see that Android is the worst here as
well. Compared to iOS and Windows Phone the difference is quite large. So
we can safely say that Android is the most exposed of them all.

Figure 13: Malware by platform, 2011-2012 [1]

91

Figure 14: Mobile threats by platform, 2011-2012 [2]

Apple is responsible for both the OS and the devices that they sell,
whereas Google offer their OS to hardware manufacturers such as Samsung,
HTC, Sony. Google also have their own devices which run Android but Apple
does not give permission for outsiders to use their iOS. This allows for device
manufacturers to create their own version of Android and that means own
security implementations. Devices with Windows Phone 8 are manufactured
by Nokia, HTC, Samsung and Huawei but all use the same OS. Since Ap-
ple is in charge of both device and software this allows them to do security
exactly the way they want to.

When submitting applications to Apple and Microsoft they go through
a process where it is checked for malicious code, quality and security issues
among others. Since this isn’t done manually by Google, some bad appli-
cations manage to slip by the automated checks and into the store. These
applications are often swiftly removed when they get reported by users be-
fore they infect too many devices. The work that Apple and Microsoft put
into preventing these applications from reaching the market in the first place
gives them more trust among users.

(Another security feature that Apple, Google and Microsoft has is the
infamous kill switch which allows for deletion of applications without user
consent.) To conclude, Apple’s closed source and strict app submitting
process puts them at the top when it comes to the lack of security issues.
Windows is similar, but Apple is so much larger when it comes to market size
and applications available that it is impressive that there have been so few
security scandals. Even though Google’s security practices are good, there
have been too many malicious applications and attempts towards Android

92

users for it to compete with Apple and Microsoft

In the next section, we will present the user survey which we conducted in
order to get some real data from the developers to help us understand what
they consider as the most important aspects of in-app payment.

93

94

11 User survey
We wanted to conduct a survey in form of a questionnaire to help us better
understand exactly what properties most hobby developers prioritized when
thinking of introducing a store within their app. By getting this knowledge
we could compare it up against the properties of each of the different in-app
purchase service providers and see which one best matches the developers
preferred properties and from that see what would be the best choice.

11.1 Defining the survey
When selecting the types of questions we wanted to ask, and what we wanted
to get out of our survey in general, we looked at our comparison model to help
shape the survey. Since we would use the result of the survey to help answer
some of our research questions, using the comparison model as a baseline for
the survey questions felt natural. We had some hypotheses regarding some
of the topics in our survey and we wanted to see if we were somewhat correct
or not. Our hypotheses are the following:

1. Those who have implemented the in-app purchase prefer it as a business
model.

2. Potential profit from application development would be ranked very
high, and even higher for those with more programming experience.

3. Good documentation and an easy development process is very impor-
tant for developers with less experience.

4. Most people have used and prefer the Android platform.

We used an online survey tool called SurveyMonkey [72] to generate and
distribute our survey. It had some limitations, such as number of questions
and logical rules that couldn’t be applied unless we paid for a premium mem-
bership. This premium membership would’ve also given us fewer restrictions
when analyzing the data. The fact that we couldn’t ask as many questions
as we wished might just have been a good thing for us, since we didn’t want
our participants to spend too much time answering them - this often ends in
people getting tired and not completing it. We then had to be more careful
when selecting 10 questions which was the maximum amount of questions
available for free.

We started our survey with a simple way to get to know our participants,
since it is interesting to see what kind of influence the years of programming
experience they have and what current occupation they are in affects their

95

opinions. We also wanted to map what kind of mobile platforms they have
developed for and which they preferred before digging into the important
questions about in app purchase.

The first thing we wanted to find out was what kind of business models
in mobile development (free, paid, ads, in-app payment and subscriptions)
they have implemented themselves and which one they preferred. Now that
we had all these topics covered, we could focus the rest of the survey on in
app purchase related questions.

We then asked our participants to grade a series of questions on a scale
of importance. This was presented as a list where they selected how impor-
tant they felt each issue was to them. The five choices were: ”Don’t care”,
”Not important”, ”Less important”, ”Important” and ”Very important”. The
questions we used were:

7. How would you grade the following statements on a grade of importance?

• I want to pay as little as possible to develop and sell my app.

• I want to sell my app in the official app store.

• I want to make money on my app.

• I want an easy development process.

• I want good guides and documentation.

• I want an active community to give/receive help.

• I want to be able to receive high quality support from official techni-
cians.

8. How would you grade the following statements on a grade of importance?

• I want to spend the least amount of time implementing the in-app
payment.

• I want a fast and easy way to set up and configure my in-app purchases.

• I want to be able to quickly test my in-app store/purchases.

• I want to be able to test in an emulator.

• I wish for my customers to be able to pay over carrier billing/phone
bill.

• I want an easy way to handle refunds.

96

• I want my customers to have an easy process completing a purchase.

• I want there to be mandatory security mechanisms in place(Authentication,
encryption, access control etc)

• I want to easily configure the security in my app(Authentication, en-
cryption, access control etc).

In order to avoid that all participants answered that everything is equally
important or equally not as important, the last part of the survey asked them
to rank some of these properties or topics in order of importance. You can
view the full survey in Appendix A. By doing this we hoped to get some
good data on what the developers considered as the most important aspect
of them all and what kind of influence their experience and occupation had
on this.

11.2 Data collection
When conducting the survey we wanted to reach as many people as possible
to get a more precise result, but to be realistic we set a goal of 50 responses
where the respondent’s experience would be somewhat equally divided among
the groups we set. But with our limited time and resources we decided to go
for random sampling when collecting data.

Our target group consist of people who develop in their spare time on
private projects, not work related, i.e. hobby developers who do small-scale
development. We also wanted people who have experience in developing
apps for smart phones on any platform and preferably some experience with
in-app purchases, though that was not a requirement.

To distribute and collect data we sent the questionnaire to contacts via
e-mail. Some of them continued to distribute it on their Intranet and such so
we would reach a few more people. We also used social medias like Facebook
to distribute the questionnaire.

In the end we ended up with a sample size of 47, a bit short of what we
wanted. We understand that there are some issues with having such a low
sample size, but it should give an insight nonetheless. We realize that for
example the question regarding preferred mobile platform would most likely
look different if our target audience was a larger group of programmers, say
500, since a lot of our respondents are students and are likely to have more
Java experience than Objective-C experience due to costs and programming
courses. We want to mention that all of the respondents were from Norway,
meaning that we have to be careful and consider that the result can be local
for Norway and might you get some different results internationally.

97

Even though we wanted more input from people with low experience,
some of the questions might strike them as intimidating due to their unfa-
miliarity with some of the concepts around mobile development.

It’s a hard task to reach the people that are willing to complete surveys,
and it makes it even harder since we offer the respondents no compensation
for taking their time to complete it, except our humble gratitude for helping
out.

11.3 Findings
Before we go too deep into the data collected we will give you a quick
overview. As we said earlier we had 47 responses to our questionnaire. Their
occupation was divided between Students (24) and employed with an IT-
position (23), with very variable experience, as you can see on table 15.

Figure 15: Question 2: ”How many years of experience do you have with
programming?”

It is regrettable that we didn’t collect more data from people with less
than one year experience, but we couldn’t find an effective way to reach a
large amount of young IT-students with the time and resources we had left.
We can see that almost half of our respondents have five or more years of
programming experience, which is not unexpected since almost half of them
are employees within the IT-business. The second largest group belongs at
the 3-5 years experience level, which is where we are at and most of our
acquaintances are as well. Later we will look deeper into how the different
experience levels and current occupation might affect their opinions on in-app
purchase.

98

Figure 16: Question 3: ”Which of these platforms have you developed for?”

When looking at which platforms the participants have developed for it’s
not surprising to see Android on top. This may be because it’s free to develop
and the Android platform itself is very popular. We will discuss this later in
the paper. iOS came as the second most used platform in our survey, with
a total of 45% having developed an app. Next we have Windows Phone
with 32%. Under the ”other” category we have platforms such as Symbian,
Blackberry, etc.

Figure 17: Question 4: ”Which platform do you prefer to develop for?”

We also asked the participants which platform they preferred to develop
for. The result was that 51.1% said they preferred Android over the other
platforms. Our assumption that Android was the most experienced and
preferred platform was correct. It’s somewhat surprising that iOS only got
12.8%. But given the fact how easy it is to get a hold of the tools that’s
necessary for Android development compared to iOS in terms of price and
hardware requirement, we didn’t expect the small-scale developers to have
that much experience with iOS in general.

99

Figure 18: The people who have developed for each platform, and which one
they preferred

The people who have experienced developing apps for iOS still preferred
Android over iOS. What’s also quite interesting is that almost 50% of people
having experience with Windows Phones prefer this over the other platforms.
In table 18 you can see which platform the participants prefer based on what
on platform they have developed for.

Figure 19: Question 5: ”Which of the following business models have you
implemented in your app?”

When uncovering what kind of different business models the developers
had implemented, only 34 out of 47 people answered the question and 7
people selected none. There was an option to select multiple choices on this
question, and the result can be seen in table 19. Those who didn’t answer
this question or selected “none” might have done some mobile development
for educational purposes or for fun and have not released their application to
the public, thus thinking that they didn’t implement one of these business
models. We can see that the most used business model here is the free

100

application model, and none had any experience with a subscription based
app.

Out of the remaining three business models, the in app purchase model
was the one that our participants had least experience with, only three people
had implemented it in their application. When we select these three people
and compare them to other questions, we get some interesting finds. We had
hoped that additional people would’ve had experience with in-app purchase
since this would lead to an even stronger and relevant sample size. Reasons
for this low number could be that in-app purchases is mostly used in games,
which require a great amount of work and experience. Implementing in-app
purchases in itself also requires more work than just making the app free or
a simple paid app, which could be why many choose to not to implement
it. The three people all had Android as their preferred platform to develop
on, this might be coincidental due to the how many of our participants that
have Android experience and the low response on this question. Two of
these persons with in-app purchase experience also had this business model
as their preferred business model. This gives us a small indication that
our assumption about in-app purchase in hypothesis number 1 was correct.
When looking into questions 7 and 8 where the participants are asked to
grade some statements on a scale of importance, one statement stands out
as more important than the others. ”I want my customers to have an easy
process completing a purchase” has a score of 4.67(ranging from 1 to 5, where
1 is don’t care and 5 is very important) between the three persons with in-
app purchase experience. Four people had implemented paid applications
and five had done free apps with advertisement.

Figure 20: Question 5: ”Which of the following is your preferred business
model in mobile apps?”

After seeing what experience the developers have in both platforms and
business models, we wanted to know if they had made up their mind about

101

what business model they themselves prefer. Here the alternatives to choose
from were every common available business model and ”none”. The result
can be seen in table 20. It’s not shocking that the ”free app” model was
the most popular for hobby developers. This could be because most hobby
developers are motivated by just developing an app for enjoyment, not profit.
Another reason we’re seeing this could be that most of the developers have
only used the ”free” model, as we learned in question 5. Then we have in-app
purchases as the second most popular business model with 35%, and following
are the paid apps. When comparing this result to which platforms(Android,
iOS, Windows) they have experience in developing for and prefer the result
is roughly the same. Weirdly most of those who chose in-app purchases do
not have experience with implementing it. This could be because we did not
specify in the question that they should have experience with the business
model the choose. But this still indicates that many like and prefer the
freemium model in apps in general.

102

Figure 21: The table which shows how important each property/feature is
to the participants

With question 7 and 8 we hoped to find exactly what features and proper-
ties are important to the developers when choosing which platform and API
to use. As we mentioned earlier the question was based on several statements
in which the participants had to rank the statements based on how impor-
tant they are to them. Based on this data we can see the statement that
got the highest score was ”I want good guides and documentation”, which
means that to the average developer in our survey this is the most important
property when developing an app. The least important statement was sup-
port from official technicians. Other properties that scored quite high were
easy development and being able to sell their app in an official app store.

103

We wouldn’t have guessed that making money would have such a low score,
but as hobby developers they might favour the learning experience and other
reasons instead of making money.

One interesting thing to look for in this question is to compare how impor-
tant these issues are based on their years of programming experience. Unfor-
tunately some of our participants skipped the last questions, so at question
7 we only had 4 people with 1-3 years of experience, 12 people with 3-5 years
of experience and 18 people with 5 years or more of experience. The wish
for an easy development process was favoured most by the people with 3-5
years of experience with a score of 4.33, while not surprisingly the people
with 5 years or more didn’t favour it as much, but still gave it a pretty high
score of 4.06. We also found out that good documentation and guides is
more important the more experience you’ve got as we can see in figure 22.
This was the opposite of we expected, since we thought the people with less
experience would consider good documentation as more important.

Figure 22: How important good guides and documentation are for the dif-
ferent programmers

104

Figure 23: The table which shows how important each property/feature is
to the participants, questions more focused on in-app purchase

Question 8 was similar to Q7, except it focuses more on features and
properties for in-app payment. So based on this question we want to find
what properties are most important when picking an in-app payment API,
and from it we can derive the most common requirements. When looking
at the ones that got the highest average score we see that there are a few
that stand out. The highest ranked was ”I want my customers to have an
easy process completing a purchase” with a score of 4.38, ”I want there

105

to be mandatory security mechanisms in place (Authentication, encryption,
access control etc)” with 4.09 and ”I want to easily configure the security
in my app(Authentication, encryption, access control etc)” with 3.94. The
statement with the lowest score was ”I wish for my customers to be able to
pay over carrier billing/phone bill” with 2.74.

Figure 24: The chart which displays the important properties for the devel-
opers

With these questions answered, we begin to see what most hobby develop-
ers prefer in terms of requirement and properties. Now, to get an indication
of what is the most important, we ask the participants to rank and prioritize
some statements. Based on what we learned on Q7, there was no surprise
that the statement that ranked the highest was Good documentation and
guides, with an average ranking of 3.54. Following right behind is Easy
implementation with 3.44. What’s interesting is that even though security
properties were ranked as one of the most important features in Q8, it was
the lowest prioritized in Q9. You can see the rest of the results from Q9 in
figure 24.

106

Figure 25: The chart which displays the important properties for the devel-
opers

In question 10 we wanted to find out a bit more about the thoughts on
the economic aspect. So here we wanted the participants to prioritize which
economic property was the most important. We defined the properties as
potential profit, fees, distribution and support for different business models.
As you can see on figure 25 highest prioritized property was easy distribution
through official app stores. We expected to see no fees ranked high, but
instead potential profit was ranked higher, even though with just a small
margin.

We wanted to see if any of these findings changed if we took a deeper look
into Q7-10 based on experience. Here we uncovered some interesting changes.
For some reason people with 1-3 years of experience have a lower priority on
good documentation and guides as we can see in figure 26, and a much higher
priority on security properties as shown in figure 27. This could because of
the low sample size, as we can’t seem to find any reasonable reasons for
this change. One would think that documentation is more important for
developers with less experience. We also see a less focus on potential profit
and fees. You can see this in figure 28 and 29. For experience and preferred
platform we didn’t see much difference in the data.

107

Figure 26: How highly prioritized good guides and documentation are for
the different programmers

Figure 27: How highly prioritized security properties are for the different
programmers

108

Figure 28: How highly prioritized potential profits are for the different pro-
grammers

Figure 29: How highly prioritized no fees are for the different programmers

109

110

12 In-app purchases in the future
Earlier in this paper we mentioned ABI Research’s forecast for in-app pur-
chases and how they predict an increase in revenue from in-app purchases.
Research company Gartner said in a press release in September 2012 that
they also foresee an increase in revenue. Their forecast is that in-app pur-
chases will by 2016 be responsible for 41% of all revenue in the app stores
based on today’s market, and that 93% of all app downloads will be from
free apps [73]. These numbers are for several large app stores across different
platforms.

We share the belief that there will still be an increase of in-app purchases.
We also expect to see a move from mostly games to other categories of apps
using the freemium model. An example is news apps. Many newspapers
have implemented a ”premium” feature on their websites where readers pay
a small sum to get access to premium-only articles. Similar services will be
offered in apps based on subscriptions and in-app purchases. But we should
mention that there’s been an increasing discontent with freemium model on
the web. Some consumers don’t like the fact this business model is designed
to make people purchase additional content and drop some coins in your
in-app store. How this will affect the future of in-app payment is uncertain,
but if it should gain enough supporters it could lead to some changes.

Another much talked about technology is HTML5 and its capability to
produce cross-platform applications. How this will affect the native apps
and app market is still highly uncertain. This can change the whole balance
of the world of applications. Separation from the native apps open a lot
of new possibilities for handling in-app purchases as well, and might knock
the big companies down from their throne. This can be the opening third-
party payment providers like PayPal need to really enter the app market.
However, Apple, Microsoft and Google won’t sit idle by and wait for this
change. Currently the native apps have a very strong foothold and offer
features and performance which HTML5 can’t match. So most likely the
balance won’t change in the nearest future, but what the future holds is
hard to say.

There is one more player on the playing field which we haven’t talked
much about yet. BitCoin has been in the wind lately and have gotten much
attention from the media as an alternative currency in digital form. There are
already apps that use BitCoins as currency, but since BitCoins is not that
easy to use yet, and very few non-technical or persons who are especially
interested in it have an account or use it, we don’t see it being used in many
apps quite yet. Though it is an interesting thought, and maybe it will grow
in popularity over the next few years.

111

112

13 Conclusion
When we started our thesis we first made ourselves familiar with the topic
of in-app payment, looking for articles and collecting information about the
subject in general. We then wrote about Google, Apple, PayPal and Windows
and gathered all information we could use in preparation of our comparison
model. We took a look at the business aspect of in-app payment where we
listed some of the business models that are available today along with some
thoughts about which one you should choose depending of the scope of your
application and ambitions. It didn’t take us long before we started developing
apps for the different platforms, in order to gain some experience and in-
depth knowledge on the development processes and how it is to implement
in-app purchase for an application. We decided to split our comparison model
up into two models. One technical part and one business part. We then
proceeded to evaluate the chosen service providers and their in-app purchase
services. In section 10 we finally compared the service providers based on the
results from our evaluation in section 9. We needed some real input on what
the developers themselves considered as the most important aspects when
choosing a platform and a in-app payment solution, so we created a survey
with questions based on our comparison model. We took a deeper look into
the data that this survey gave us, and found out a couple interesting things
which could help us conclude our research questions.

We discovered throughout our survey what kind of properties the develop-
ers wanted and prioritized when choosing a platform and a provider of in-app
payment solutions. We gave the participants a series of statements they had
to give a score. After that we asked them to prioritize them, which gave us
some insight into what’s most important if they had to chose one. Based on
this we could see some indications of what the average hobby developer found
to be the most important properties. Easy distribution, good documentation
and guides along with an easy development process was some of the features
which the participants of our survey prioritized as the most important ones.
Some properties such as security and testing were also important, but when
given the choice to prioritize one over the other, they fell short in being at
the top. Google offers the simplest and most effective way to distribute your
app since you can easily use the official app store and at the same time due
to Android’s open-source platform, be able to quickly get your application
on device without any restrictions. It’s hard to chose a winner when it comes
to documentation and guides, Google and Apple’s guides are easily navigable
and of high quality in general. The easiest implementation was without a
doubt PayPal’s solution, there wasn’t much code to write in order for it all
to work and it was easy to test, sadly it can’t be distributed through official

113

app stores.
The process around the in-app purchase itself makes it hard to give the

winning title to a single provider, we have to look at it from a customers point
of view in terms of user-friendliness but also from the developers perspective.
Purchasing content is simple on all platforms except PayPal where you have
to manually enter your information each time, but Google supports an easier
refund process alongside with the support of carrier billing which makes it
more flexible for the customer. Testing in-app purchase is simpler on iOS
since you can do it via the emulator. They all have pros and cons, but when
choosing a platform and a provider, one must first look at what’s important
and based on that which solution is best suited based on those prioritizations.

Based on the result of our survey, Google’s solution fits the average hobby
developer the best - it’s low cost, the documentation is good, it’s familiar
for students who learn Java first and overall it just ended up ahead on the
issues which the survey participants deemed as the most important ones when
compared to our comparison model. Apple’s has the biggest potential for the
developer to make a profit, their documentation is extensive and their focus
on security is solid, but the high fees and expenses in addition to the slightly
more difficult development process puts it just behind Google. PayPal’s low
cost, easy implementation and high profit per sale is great, but this doesn’t
make up for the lack of an easy way to distribute your app through an official
channel. Windows Phone can also be costly, lacks in documentation and the
market size for potential profit is lower when compared to Apple and Google.
However, based on the survey the people who have developed for Windows
Phone seem to prefer it.

13.1 Future work
As for the validity of this paper we believe we’re lacking the data in terms
of sample size and diversity in the survey to be able to fully generalize our
results, and for future work a more comprehensive user survey should be
conducted. We added Windows Phone at a later stage in our writing, and
since we didn’t have time to create an app for it due to time restriction and
simply not owning a Windows Phone device, we felt it didn’t have the same
basis to evaluate it as we did with the others. The platform is still on the
rise and should be considered for future work.

One could also take a look at in-app payment and what results you get
from surveys conducted on developers outside of Norway. The potential of
carrier billing might also be interesting to look into, countries whose inhab-
itants might lack the means to pay with credit cards might open up a big
market for new customers if they are able to pay for apps and in-app content

114

with their phone bill.

115

References
[1] M. Labs, “Mcafee threats report: Third quarter 2012.”

http://www.mcafee.com/us/resources/reports/rp-quarterly-
threat-q3-2012.pdf?cid=BHP012, 2012. Accessed: 2013-05-14.

[2] “F-secure mobile threat report q3 2012.” http://www.f-
secure.com/static/doc/labs_global/Research/Mobile%20Threat%
20Report%20Q3%202012.pdf, 2012. Accessed: 2013-05-14.

[3] G. Goggin, Cell phone culture: Mobile technology in everyday life. Rout-
ledge, 2012. ISBN: 978-0415367448.

[4] “World has about 6 billion cell phone subscribers, according to u.n. tele-
com agency report.” http://www.huffingtonpost.com/2012/10/11/
cell-phones-world-subscribers-six-billion_n_1957173.html,
2012. Accessed: 2013-05-15.

[5] “Gartner says asia/pacific led worldwide mobile phone sales to growth
in first quarter of 2013.” http://www.gartner.com/newsroom/id/
2482816, 2013. Accessed: 2013-05-16.

[6] “Nielsen - the mobile consumer, a global snapshot.” http:
//www.nielsen.com/content/dam/corporate/us/en/reports-
downloads/2013%20Reports/Mobile-Consumer-Report-2013.pdf,
2013. Accessed: 2013-05-15.

[7] “Smartphone shipments forecast to rise on growth in asia-pacific.” http:
//focustaiwan.tw/news/aeco/201212240014.aspx, 2013. Accessed:
2013-05-15.

[8] “App store tops 40 billion downloads with almost half in 2012.”
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-
40-Billion-Downloads-with-Almost-Half-in-2012.html, 2013.
Accessed: 2013-05-14.

[9] M. Lytras, E. Damiani, and P. de Pablos, Web 2.0: The Business Model.
Springer Science+Business Media, LLC, 2009. ISBN: 9780387858951.

[10] ABIresearch, “Mobile application business models.” http:
//www.abiresearch.com/research/product/1009105-mobile-
application-business-models/. Accessed: 2013-05-14.

116

[11] A. Insider, “In-app purchases from ’freemium’ titles account for 71%
of iphone app revenue.” http://appleinsider.com/articles/13/03/
29/in-app-purchases-from-freemium-titles-account-for-71-
of-iphone-app-revenue, 2013. Accessed: 2013-05-14.

[12] O. W. Linzmayer, Apple Confidential: The Real Story of Apple Com-
puter, Inc. No Starch Press, 1999. ISBN: 1-886411-28-X.

[13] D. E. Dilger, “1990-1995: Why the world went windows.”
http://www.roughlydrafted.com/RD/Q4.06/3EC02E78-FD4D-4CDF-
92A0-9C4CBDFAB3D2.html, 2006. Accessed: 2013-05-16.

[14] A. Cantrell, “Apple’s remarkable comeback story.” http://money.cnn.
com/2006/03/29/technology/apple_anniversary/?cnn=yes, 2006.
Accessed: 2013-05-16.

[15] A. P. Info, “iphone premieres this friday night at apple retail stores.”
http://www.apple.com/pr/library/2007/06/28iPhone-Premieres-
This-Friday-Night-at-Apple-Retail-Stores.html, 2007. Accessed:
2013-05-16.

[16] R. Flandez, “Programmers jockey for iphone users at apple site.”
http://online.wsj.com/article/SB121789232442511743.html?
mod=googlenews_wsj, 2008. Accessed: 2013-05-16.

[17] B. Elgin, “Google buys android for its mobile arsenal.” http://www.
webcitation.org/5wk7sIvVb, 2005. Accessed: 2013-05-14.

[18] “Gartner says worldwide mobile phone sales declined 1.7 percent in
2012.” http://www.gartner.com/newsroom/id/2335616, 2013. Ac-
cessed: 2013-05-14.

[19] A. D. Blog, “In-app billing version 3.” http://android-developers.
blogspot.no/2012/12/in-app-billing-version-3.html, 2012. Ac-
cessed: 2013-05-14.

[20] “Paypal finacials.” https://www.paypal-media.com/mediacenter.
cfm, 2013. Accessed: 2013-05-16.

[21] “The world’s biggest public companies.” http://www.
forbes.com/global2000/list/#page:1_sort:0_direction:
asc_search:_filter:Software%20%26%20Programming_filter:
All%20countries_filter:All%20states, 2013. Accessed: 2013-05-14.

117

[22] “The history of windows ce.” http://www.hpcfactor.com/support/
windowsce/wce3.asp, 2012. Accessed: 2013-05-14.

[23] J. Evers, “Microsoft to phase out pocket pc, smartphone brands.”
http://www.infoworld.com/d/hardware/microsoft-phase-out-
pocket-pc-smartphone-brands-232. Accessed: 2013-05-14.

[24] D. Koh, “Q&a: Microsoft on windows phone 7 series.”
http://asia.cnet.com/qanda-microsoft-on-windows-phone-
7-series-62061278.htm. Accessed: 2013-05-14.

[25] “Windows phone store.” http://www.windowsphone.com/nb-
no/store. Accessed: 2013-05-14.

[26] B. Bishop, “Samsung reports q4 2012 financials:$8.27 bil-
lion in operating profit on $52.45 billion in revenue.” http:
//www.theverge.com/2013/1/24/3912972/samsung-reports-q4-
2012-financials-8-27-billion-in-operating-profit, 2013.
Accessed: 2013-05-16.

[27] J. Kincaid, “Amazon’s android app store launches: Test drive apps
directly from your browser.” http://techcrunch.com/2011/03/22/
amazon-android-app-store-3/, 2011. Accessed: 2013-05-16.

[28] H. Koekkoek, “Distimo publication full year 2011.” http://www.
distimo.com/publications/archive/Distimo%20Publication%20-
%20Full%20Year%202011.pdf, 2011. Accessed: 2013-05-14.

[29] R. Kim, “Freemium app revenue growth leaves premium in
the dust.” http://gigaom.com/2012/10/26/freemium-app-revenue-
growth-leaves-premium-in-the-dust/. Accessed: 2013-05-14.

[30] “Apple terms and condotions.” http://www.apple.com/legal/
itunes/us/terms.html. Accessed: 2013-05-14.

[31] R. Srinivasan, “Freemium has run its course.” http://gigaom.com/
2012/07/21/freemium-has-run-its-course/, 2012. Accessed: 2013-
05-14.

[32] M. Lytras, E. Damiani, and P. de Pablos, The Business of iPhone and
iPad App Development. Apress, 2011.

[33] D. A. Kristina Shampan’er, “Zero as a special price: The true value of
free products.” http://web.mit.edu/ariely/www/MIT/Papers/zero.
pdf, 2007. Accessed: 2013-05-14.

118

[34] R. Srinivasan, “Let us do expected value math on $0 price.”
http://iterativepath.wordpress.com/2010/11/17/let-us-do-
expected-value-math-on-0-price/, 2010. Accessed: 2013-05-14.

[35] D. Lamppa, “5 options for distributing your ios app to a limited audi-
ence (legally).” http://mobiledan.net/2012/03/02/5-options-for-
distributing-ios-apps-to-a-limited-audience-legally/, 2012.
Accessed: 2013-05-27.

[36] “Apple updates ios to 6.1.” http://www.apple.com/pr/library/2013/
01/28Apple-Updates-iOS-to-6-1.html, 2013. Accessed: 2013-05-14.

[37] G. J. Spriensma, “Distimo 2012 - year in review.” http://
fortunebrainstormtech.files.wordpress.com/2012/12/distimo-
publication-full-year-2012.pdf, 2012. Accessed: 2013-05-14.

[38] T. Brant, “In app purchase: A full walkthrough.” http://troybrant.
net/blog/2010/01/in-app-purchases-a-full-walkthrough/, 2010.
Accessed: 2013-05-14.

[39] T. . G. Mylonas, Dritsas, “Smartphone security evaluation - the
malware attack case.” http://www.aueb.gr/users/amylonas/docs/
secryptShort.pdf, 2011. Accessed: 2013-05-27.

[40] C. Halbronn and J. Sigwald, “iphone security model & vulnerabilities.”
http://esec-lab.sogeti.com/dotclear/public/publications/10-
hitbkl-iphone.pdf, 2010. Accessed: 2013-05-27.

[41] C. Show, “Parents sue apple over apps that let children spend real money
while playing games.” http://www.dailymail.co.uk/news/article-
2133021/Parents-sue-Apple-apps-let-children-spend-real-
money-playing-games.html#ixzz2TH0eHqPw, 2012. Accessed: 2013-
05-14.

[42] “Google play developer program policies.” http://play.google.com/
intl/en/about/developer-content-policy.html. Accessed: 2013-
05-14.

[43] “Android marks fourth anniversary since launch with 75.0third quarter,
according to idc.” https://www.idc.com/getdoc.jsp?containerId=
prUS23771812, 2012. Accessed: 2013-05-14.

[44] B. Womack, “Google says 700,000 applications available for android.”
http://www.businessweek.com/news/2012-10-29/google-says-

119

700-000-applications-available-for-android-devices, 2012.
Accessed: 2013-05-14.

[45] “Implementing in-app billing.” http://developer.android.com/
google/play/billing/v2/billing_integrate.html. Accessed:
2013-05-14.

[46] “Stackoverflow.” http://stackoverflow.com/. Accessed: 2013-05-14.

[47] T. R. M. E. X. W. D. S. Daniel Reynaud, Eui Chul Richard Shin,
“Freemarket: Shopping for free in android applications.” http:
//droidblaze.cs.berkeley.edu/freemarket.pdf, 2011. Accessed:
2013-05-27.

[48] H. Lockheimer, “Android and security.” http://googlemobile.
blogspot.no/2012/02/android-and-security.html. Accessed: 2013-
05-14.

[49] “Amazon appstore.” http://www.amazon.com/mobile-apps/b?ie=
UTF8&node=2350149011. Accessed: 2013-05-14.

[50] “Handster.” http://www.handster.com/. Accessed: 2013-05-14.

[51] “Getjar.” http://www.getjar.com/. Accessed: 2013-05-14.

[52] “National vulnerability database.” http://nvd.nist.gov/. Accessed:
2013-05-14.

[53] B. Weitzenkorn, “Android malware more than doubled worldwide
in 2012.” http://www.technewsdaily.com/17817-android-malware-
doubles.html, 2013. Accessed: 2013-05-20.

[54] “Windows phone store.” http://www.windowsphone.com/en-
us/store. Accessed: 2013-05-14.

[55] http://msdn.microsoft.com/library/windows/apps/jj193593. Ac-
cessed: 2013-05-14.

[56] “Creating trial apps for windows phone.” http://msdn.microsoft.
com/en-us/library/windowsphone/develop/ff967558(v=vs.105)
.aspx, 2013. Accessed: 2013-05-14.

[57] B. Zamora, “Increase monetization by adding in-app purchase to
your apps.” http://blogs.windows.com/windows_phone/b/wpdev/
archive/2012/11/09/increase-monetization-by-adding-in-app-
purchase-to-your-apps.aspx, 2012. Accessed: 2013-05-14.

120

[58] “Company app distribution for windows phone.” http:
//msdn.microsoft.com/en-us/library/windowsphone/develop/
jj206943(v=vs.105).aspx, 2013. Accessed: 2013-05-14.

[59] “Chevronwp7.” http://www.chevronwp7.com/. Accessed: 2013-05-14.

[60] T. Brix, “Reflecting on 2012: scale and oppurtunity.” http:
//blogs.windows.com/windows_phone/b/wpdev/archive/2012/
12/26/reflecting-on-2012-scale-and-opportunity.aspx, 2012.
Accessed: 2013-05-14.

[61] “Windows phone api reference.” http://msdn.microsoft.com/en-
us/library/windowsphone/develop/ff626516(v=vs.105).aspx,
2013. Accessed: 2013-05-14.

[62] “Windows phone community.” http://dev.windowsphone.com/en-us/
community. Accessed: 2013-05-14.

[63] “Reddit windows phone 7 dev subreddit.” http://www.reddit.com/r/
wp7dev. Accessed: 2013-05-14.

[64] “Windows phone 8 security and ecryption.” http://www.
windowsphone.com/en-us/business/security. Accessed: 2013-
05-14.

[65] “Apple’s app store marks historic 50 billionth download.”
http://www.apple.com/pr/library/2013/05/16Apples-App-Store-
Marks-Historic-50-Billionth-Download.html, 2013. Accessed:
2013-05-21.

[66] S. Mitha, “Google i/o 2013 day 1: All you need to know.”
http://www.thinkdigit.com/Internet/Google-IO-2013-Day-
1-All-you_14664.html, 2013. Accessed: 2013-05-21.

[67] M. Stroh, “Windows phone blog.” http://blogs.windows.com/
windows_phone/b/windowsphone/archive/2013/05/10/the-wait-
is-over-lumia-928-for-verizon-wireless-launches-may-16-
for-under-100.aspx, 2013. Accessed: 2013-05-21.

[68] “Gartner says worldwide sales of mobile phones declined 3 percent in
third quarter of 2012; smartphone sales increased 47 percent.” http:
//www.gartner.com/newsroom/id/2237315, 2012. Accessed: 2013-05-
21.

121

[69] “Gartner says worldwide sales of mobile phones declined 2.3 percent
in second quarter of 2012.” http://www.gartner.com/newsroom/id/
2120015, 2012. Accessed: 2013-05-21.

[70] “Gartner says worldwide sales of mobile phones declined 2 percent in first
quarter of 2012; previous year-over-year decline occurred in second quar-
ter of 2009.” http://www.gartner.com/newsroom/id/2017015, 2012.
Accessed: 2013-05-21.

[71] “Gartner says worldwide smartphone sales soared in fourth quarter of
2011 with 47 percent growth.” http://www.gartner.com/newsroom/
id/1924314, 2012. Accessed: 2013-05-21.

[72] “Surveymonkey.” http://www.surveymonkey.com/. Accessed: 2013-05-
14.

[73] Gartner, “Gartner says free apps will account for nearly 90 percent of
total mobile app store downloads in 2012.” http://www.gartner.com/
newsroom/id/2153215, 2012. Accessed: 2013-05-14.

122

A User Survey

123

124

125

126

127

