NTNU - Trondheim
Norwegian University of

Science and Technology

Interpreting chain of events for safety
analysis

Safoura Shamsolketabi

Master in Information Systems
Submission date: June 2013
Supervisor: Tor Stalhane, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

NTNU
Norwegian University of
Science and Technology

Interpreting Chains of Events for Safety
Analysis

TDT4900 - Information Systems, Master Thesis

Safoura Shamsolketabi

Supervisor: Tor Stalhane

Spring 2013

Abstract

Because of difficulties of safety analysis in large systems and the complexities of managing
large amount of data in these systems, the need for a supporting system has become an
important area of research. Managing requirements, components and failure modes of a large
system for safety analysis without tool support is difficult and could result in skipping or
missing details which may cause an accident.

The main goal of this project is to develop a system model for safety analysis facilitation.
Sequences of events in a system and its environment may cause an accident in the system’s
environment. People often have problem following long cause-consequence sequences of
events, while accidents with a short path from initiating event to accident are easy to identify.
The system model developed in this project enables automatic generation of event sequences
that can cause an accident to the environment of a system. For this purpose, the system model
uses the domain ontology as its knowledge base. This ontology must contain cause-
consequences reported from a safety expert. A rule engine is used for reasoning about these
cause-consequence concepts and generating event chains. The process of developing this
system model, how the system model uses a domain ontology as its knowledge base and how
the cause-consequence concepts should be added to the domain ontology are described in this
project. Finally, the developed system model is tested with a real world example (a simplified
steam boiler) and the expected event chains generated automatically.

Preface

This report has been written by Safoura Shamsolketabi as part of the subject TDT 4900 —
Computer and Information Science, master thesis and was produced during the spring of
2013. It was written at the Department of Computer and Information Science at the
Norwegian University of Science and Technology (NTNU).

The purpose of this report is facilitating safety analysis by developing a system model which
enables interpreting event chains for a selected domain.

I would like to thank my supervisor Tor Stalhane for great inputs and helpful guidances
throughout the project.

Trondheim, 10.06.2013

Safoura Shamsolketabi

vi

Table of contents

T INErOAUCTION ...ttt ettt e e e 1
1. 1. Project backgroundcocoioiiiiiiiiiie e 1

1. 2. Project deSCIIPLIONcceeiiiuiiriieiieie ettt ettt et ente st e sbeeee e e neennes 2

1. 3. PIOJECE PUIPOSE .uveeieiitiitietieiietieitet ettt ettt sttt ettt est et e st et et e e eesteebeseeebeeneeneeneeneas 3

1. 4. ResCarcCh qUESTIONS ...eeouiiuieieieiieie ettt ettt ettt ettt ee st e aeete e seeeneeenees 4
1.5, Project OULIINEGcceevviiiiiiiiiiece ettt ettt ste e te e e eaessaesbaesseessesssesseennas 4

2 Preliminary STUAYoccooiiiiiiiii e st 5
2.1. What iS “REASONING™?7 ...ccueeiiieieitieriieiieiestesteeteeteete et esseeseeseessaesseenseesaesssesseensesnses 5
2.2, What iS an ONtOlOZY?ccueiuiiiie ittt ettt 5
2.3, EXPEIt SYSLEIMIS. c...eiiiiieiiieeiie ettt ettt ettt ettt e st sbe e e sate e bt s bt e st esabeesabeesabeeaeeens 6
2.4, RUIE ENGINEoiitiiiiiiiciece ettt ettt et e st et e essaesssesaennas 6
2.4.1. Production SYSTEM.........ceeierieriieiietiestteie ettt sttt enee e 6

2.4.2. Forward chaining and backward chainingccccccevevevieciiiceneeneeiceeeen, 7

2.5. The Rete algorithim........coccoiieiiiiiee e 12

3 MethOOIOYooouviiiiiiiiiiiieeeeee ettt ettt et sttt sttt ebeeeas 14
3.1. Reasoning MEthodSoooieiiiiriiee ettt 14

3.2, Method SEIECHIONcueiiiiiieiiiieicee ettt st 16

4 Existing systems for supporting “forward chaining” method 18
4.1. Important CharacteriStICSoivrruireiiieiiere et ettt 18
4.2, AlZEIMION......eciieeieetieiieie e ete sttt ettt e st e saeesaeesaesseesseesseesseesseeseesseesseesaensaeseenseansans 19
4.3, J@SS/TESSTAD ...ttt et 19
3110 JESS ettt e 19

4320 JESSTAD .ttt ettt aes 20

4.4, ConcluSiOn ON @SSESSIMENLeeuuerueerriereerierienteeseeeeeeseesseeseeeneeeneeeseesseenseenseensenseens 20

5 Developing an event chains generation SYStem..............cccccoecieniiieriiieniieeniiienie e 22
5.1. Description 0f the SYStEIMccueeiieiiiieiieieee et 22
S.LT. INEOQUCHION ...ttt 22

5.1.2. SYSLEM PETSPECLIVE ...c.veviuieeieuienieieietestesteete bt et ete et eneete e e e steseesbesaeeeeeneeneenes 23

5.1.3. SyYStem fEAtUIESc.ecvvieiieieeiiecieie ettt ee ettt et et et e sseebeesseesaesseensens 24

5.1.4. SySterm aSSUMPLIONSecueeuieuieieieierterteeteeteeteeteeueeseeseensessessessessessessesseeseeneeneenes 25

5.1.5. SyStem CONSIIAINTS......eecveerieeieriierieeieetestesteesteereseee e eeeenresseesseesesssesseenseensens 26

5.2, General TEQUITCIMENLSc..ccueereerriereerereesreesseesesseseesseesessaesseesseesseessesseessesssenssenns 26
52,10 PIOE@E....neeieeeee ettt ettt et e ae ettt ens 26

5220 TS ettt e ettt ettt ettt e 27

5.2.3. XSLT StYle SREELS. .. .eruiitiieiieieiieieieee ettt 27

5.3. Designing an ONtOlOZYccevieriieierierieiieieetesteeieetestte st essesaesaeseeeseensesaesneenns 28
5.4, HOW d0eS JESS WOTK?c.eiiiiiieiieeee ettt e 31
5.5. Transforming an OWL file (in XML syntax) to a set of Jess assertions.................. 33
5.6, SYSIEM AESIZN ..eoviiiieiieeieetieciieie ettt et et et eebeebestaesteessessaessaesseesseensesnsenseenns 36
5.7. Areal world eXamplecoooiiiiiiii e 38

vii

5.7.1. StEAM DOILET........oviiieieie e 38

5.7.2. Testing the developed system with the steam boiler example 39

5.7.3. Forward chaining algorithmccccceviriiiiiiiniee e 41

574, FINAL TESUIL...ccueiiiiiiiiiieieee ettt s 44

6 Conclusions and further WOrks................ccoocooiiiiiiiiiii e 47
6.1, CONCIUSIONS ..ouiiieiiieite sttt et ettt ettt e bbbt bt bbb enee 47

6.2, FUrther Worksooouioiieeee e 48

2 10) FT0] 321 o) 1 7 PSSR 50
Appendix A — Jess Rule Engine requirements 52
Appendix B — Developed codes 53
Appendix C — Test results 60

viii

List of figures

Figure 1.1: Illustration of cause-effect chain ..o 2
Figure 1.2: Chain Of @VENLScc.iiiriiiiieieeeeeee ettt 3
Figure 2.1: High-level view of an inference engine, rules and factscccceccvevevieniinnnnnns 7
Figure 2.2: Forward chaining algorithimccocveviieiiiiiinieicieceeeeeee e 8
Figure 2.3: Forward Chaining PrOCESSceeeierieierienieriesteeie st eteeie et eieeie et seeae e eeseeseeeaes 10
Figure 2.4: Backward chaining PrOCESSccevoeeruieiiieiiieieriienieeteeteeiteeeeee et ee e seee e e sae e 11
Figure 2.5: Pattern matChing PrOCESScuevvieriierieiierierieeieeteetesteesteeseeseesseesseesseessesssessnensens 13
Figure 2.6: Pattern matching: rules, facts and agendacoccooceiiiiiinieneieieeeeee, 13
Figure 3.1: Cause-consequence connections and the manually created event chains.............. 15
Figure 3.2: Forward chaining implementation...............coccvereeriieiesiesienieereeeeseesseeseeseseeens 15
Figure 3.3: Backward chaining implementationcccoceeierieiieienieniereee e 15
Figure 5.1: Event chains generation SYStem OVETVIEWcoeverieruereeieeentenienenesreneseneens 23
Figure 5.2: Example of a chain that cannot be generated by the systemccoecvevvennennnn. 26
Figure 5.3: Illustration for ontology components which includes event concepts................... 29
Figure 5.4: Illustration of CanCause relationship of Event class to itself..........c..ccccocereeccnnene 29
Figure 5.5: Illustration of CanCause property, its domain and rangeccceeevveveevereennen. 30
Figure 5.6: Steam boiler ontology which contains cause-consequence concepts 30
Figure 5.7: INfErence PTOCESScc.eoeiiriiiriieiieieteeeee et 31
Figure 5.8: Presentation of facts in the console view in Eclipse........cccceveeieiiiinencncncnene 33
Figure 5.9: Ontology transformation OVET VIEWc..cocceerererireeienienienientesiesenieeieeeeneennens 33
Figure 5.10: XML file of selected ONtOlOZYccvevvieiieiiiieiiieieeie ettt 35
Figure 5.11: Adding a new tag to the XML file of selected ontologycccccecevererencnncnne. 35
Figure 5.12: Jess assertions after transforming the ontology annotationsccccceeeerurnnen. 36
Figure 5.13: TTIPIE fACES ...eouiiieieiee ettt s eas 37
Figure 5.14: Event facts @XtraCtioncccoeeerieriieiieeieiieieeie ettt enee e 38

Figure 5.15: Illustration for a simple steam boiler SyStem...........ccceevveveerierierierieeieeieeeens 40
Figure 5.16: Steam boiler ontology which contains cause-consequence concepts.................. 40
Figure 5.17: Some event chains for steam boiler SYStemcoccoeeeerierieiieiiinieneeeeeeee. 41
Figure 5.18: Applying Rule 1 to the factsccceoveviininininiiiiccccccccens 42
Figure 5.19: Applying Rule 2 t0 the factscccooeiiiiriiieeee e 43
Figure 5.20: Applying Rule 3 to the factscceoveviiniriniiiniiicceeececene 44
Figure 5.21: Rule activations for the steam boiler example...........cccecevenenienininencnienene 45
Figure 5.22: Generated evens chain after inserting the initial event............ccccoocevvirceninnncne. 46
Figure 6.1: A chain With “N” @VENTScc.coiiiiiiiiieiiieneeeect ettt 49

1 Introduction

This chapter provides some introductory information to the thesis project “Interpreting chain
of events for safety analysis”.

1.1 Project background

Safety is a system quality characteristic and a safe system behaves in such a way that it does
not harm people, equipment or the environment in which the system is placed. Safety
analysis is important and should be performed by people who have experience and knowledge
in the related area. As systems grow, analyzing safety requires large amounts of resources.
Many components that work together, failure modes and environment effects on the system
should be properly controlled, checked and analyzed in order to prevent accidents. These
issues clarify the need for a tool which can systematically perform at least part of the safety
analysis.

All potentially dangerous events (hazards), the events consequences and its cause should be
identified for safety analysis. For this purpose several methods of hazard identification and
risk assessment have been used such as FMEA, HazOp and FTA [1]. Currently a tool called
DODT [2] provides some safety analysis. Using the DODT tool it is possible to generate part
of a FMEA table. The GNLQ [3] tool is a knowledge-based, guided requirements elicitation
environment. This tool can also be used for performing safety analysis. GNLQ is developed to
semi-automate requirement elicitation process. In GNLQ the combination of ontologies,
boilerplates and HazOp templates allow to the tool to provide support for a quality check of
the requirements and a functional HazOp of the system, especially in the early phases. In this
regard, three concepts have been used — boilerplates, ontologies and generic failure modes.
Boilerplates and ontologies are used for requirements analysis and the generic failure modes
are added for safety analysis.

My task is to provide a solution which may facilitate semi-automation of safety analysis, at
least to some extent. By implementing safety analysis semi-automatically, managing a large
set of components would be performed accurately and we will not skip or forget details. In
addition, resource consumption will be reduced. Semi-automation of safety analysis also
allows people who have limited safety analysis experience to identify hazards in a system.
This is especially important in the early phases of a system development.

“Performing hazard identification requires; 1) Knowledge about the domain, 2) Experience
and creativity with linking system failures to environment effects and 3) Persistency to follow
all effects through from system to environment. These issues cannot be fully automated but a
computerized tool can provide assistance” [4].

1.2 Project description

This project is related to the master thesis “Interpreting chains of events for safety analysis”,
which aims to facilitate safety analysis by reasoning about chains of events and generating
event chains for a system. This will be done in the context of a development project to make a
realistic prototype for a real-world system. In order to claim that a system is safe, we should
be able to identify possible hazards in the system and prevent these hazards from having an
unwanted effect on the environment, for example humans or building.

The sequences of dependent events or the event chains describes how the effect of a specific
failure is the cause of another failure, for example Figure 1.1 shows the effect of failure A,
causes failure B and the effect of failure B, causes failure C. In other word, A causes B and B
causes C or, A causes C.

failure | cause | effect
@ _|—> failure | cause | effect

s O
= A>C

s> c ©

failure | cause | effect

Figure 1.1: Illustration of cause-effect chain

For instance, for a steam boiler, the fire can occur because the hot vessel is located near
combustible material. Therefore the cause of fire is the hot vessel and combustible material in
the environment. This example shows that in order to be able to identify possible accidents in
the system’s environment; we need information about the system itself and also information
about the environment where a specific system will be placed. Each event chain starts with an
initial event and may ends with an accident. For a complex system that contains many
components, each with a set of failure modes, following all cause—consequence chains is not
doable manually, while accidents identification with a short path from initiating event to
accident in a simple system is easy to perform. Figure 1.2 shows a chain of events (A, B and
C) causes “Too hot vessel”, these events occur in the system. Too hot vessel and combustible
material (in the environment) causes a fire.

In order to construct these event chains for a system, we need to have information about the
system’s environments where the system will be placed. This information can be stored as
system or environments ontologies. An ontology formally represents knowledge as a set of
concepts within a domain, and the relationships between them. It can be used to model a
domain and support reasoning about entities. More details about how ontologies will be used
in the process of creating chains of events will be discussed in Chapter 5.

C——» Too hot vessel _5—> Too hot and —» Fire

y h
e o 5 =
! i ' combustible I
|A_>B : I . :
! \ . material !
1 ']
\\ --------------- D- ____________________ . /, ‘\\ ----------------------- /I
System Environment

Figure 1.2: Chain of events

The GNLQ is a knowledge-based, guided requirements elicitation environment; this tool also
can be used for performing safety analysis. For this purpose GNLQ needs to be upgraded.
Currently reasoning about chains of events is not implemented in the tool. Therefore, in this
project, I will describe an algorithm for reasoning about chains of events. One idea for
describing this algorithm can be to use fault tree analysis. But, conventional fault tree analysis
requires that the basic events in the tree occur independently. This is not satisfied when
failures occur sequentially.

1.3 Project purpose

Performing safety analysis becomes complex in large systems and small mistakes can cause
serious problems. The main goal of this project is to facilitate safety analysis by developing a
system model which enables automatic generation of event chains for a defined domain. The
developed system, enables generating sequential events in a given domain by using the
ontology of this domain as a knowledge base. This ontology contains safety expert knowledge
such as cause-consequence chains for the selected domain-information about cause event
leading to consequence event:

Cause event — Consequence event
For example:

Event A - Event B
Event B & Event C
Event C = EventD

Using the developed system model, indirect connections will be inferred automatically and
finally the complete event chains from the initial event to the final event will be generated:

Event A — Event B — Event C — Event D
The event chains generation system can assist in:

1) (Re) use of safety expert knowledge

)

) Improvement of the current safety knowledge
) Increasing the accuracy of safety analysis
)
)

H W N

Reduction in faults which results from manually safety analysis

(9}

Reduction in required resources for safety analysis performance

1.4 Research questions
1) Is it possible to develop a system model which enables automatic generation of event
sequences for a selected domain?
2) Is it possible to use ontologies as knowledge-base for developing this system?
3) How can we use available methods for developing this system?
4) How can we add cause-consequence concepts to an ontology?

1.5 Project outline

This report is divided into six chapters. Chapter 1 describes the project motivation and
background and describes the purpose of this project. Chapter 2 presents the literature study
of available methods and technologies for developing an event chains generation system.
Chapter 3 discusses the available methods explained in Chapter 2 for selecting an appropriate
method in this project. Chapter 4 describes existing systems for supporting “forward
chaining” method and provides a discussion on how to select the better system based on a
defined set of criteria. Chapter 5 explains the development process of the evens chains
generation system. In addition the test description of the developed system against a real
world example is provided in this chapter. Chapter 6 gives the conclusions of the project and
discusses some features for improving the developed system in further work of this project.

2 Preliminary study

In order to use the information of a system and be able to reason about event chains which
occur in the system or its environment, a set of concepts are used. In this chapter, we will
describe the introductory concepts for event chain creation.

2.1 Whatis “Reasoning”?

A set of processes that enables inferring more data from the given data, is called “Reasoning”.
A system which performs Reasoning is a “Reasoner”. A Reasoner uses available information
for inference. For example, a system that performs reasoning can use the following data and
infer about them:

Given data: A is mother of B, B is mother of C
Inferred conclusion: A is ancestor of C

In this way; reasoning enables us to improve our knowledge of a specific domain. The
reasoning process is something that we do all the time, usually unconsciously. But our brain is
not so good when reasoning about a large amount of data. If we do that, we will forget and
skip data and the result would not be accurate and reasonable. For this reason, getting help
from a system that performs reasoning provides large benefits.

A system is able to infer from data if the data is in a machine understandable format. One tool
that enables us to store our data in a machine understandable format is Protégé [5]. This tool
will be described in Chapter 5. Using Protégé we can develop ontologies and a reasoner can
find facts that are implicit in the given ontology. The ontology is explained in the next
section.

2.2 What is an ontology?

"An ontology is a description (like a formal specification of a program) of the concepts and
relationships that can formally exist for an agent or a community of agents. This definition is
consistent with the usage of ontology as set of concept definitions, but more general. And it is
a different sense of the word than its use in philosophy." (Gruber 1993)

Using ontology, we can specify concepts of a domain and relationships that exists between
concepts, in a formal and machine-understandable format which enables better knowledge
management. In addition, an ontology defines a common vocabulary for people who need to
share information in a domain. The main reasons why someone needs to develop an ontology
are: (1) To share common understanding of the structure of information among people, (2) To
enable reuse of domain knowledge, (3) To make domain assumptions explicit and (4) To

analyze and improve domain knowledge [6]. Description of how ontologies used in the
process of creating event chains, will be provided in Chapter 5.

2.3 Expert systems

Artificial Intelligence (Al) is a wide area of research. The main focus of Al is to make
computers reason like people. In Artificial Intelligence, an Expert System is a computer
system that uses knowledge representation to enable codifying the knowledge into a
knowledge base, which can be used for reasoning. We can process data with this knowledge
base to infer conclusions. A knowledge Base (KB) is a special kind of database for knowledge
management. A knowledge base is an information repository that provides a means for
information to be collected, organized, shared, searched and utilized. Expert Systems are also
known as Knowledge-Based Systems.

Expert Systems convert the knowledge of an expert in a specific domain into software. This
can be used for answering questions and solving problems. Expert systems usually contain
three parts: a knowledge base, an Inference engine and an Interface. The knowledge base
contains the information acquired by interviewing experts, and a set of logic rules that govern
how that information is applied. The Inference engine interprets the submitted problem
against the rules and information stored in the knowledge base. The interface of a knowledge
base allows the user to express the problem.

2.4 Rule Engine

A Rule Engine is a system that uses rules, in any format that can be applied to data, to
produce a result. A Production Rule System is a kind of Rule Engine and also an Expert
System. The advantage of using Rule Engines is that rules can make it easy to express
solutions to difficult problems and thus have those solutions verified. Rules are much easier to
read than code. Tools such as Eclipse enable editing and managing rules and getting
immediate feedback, validation and content assistance [7].

2.4.1 Production System

A Production Rule System uses a knowledge representation to express propositional and first
order logic in an easy-to-understand way. The Production Rules System uses an Inference
Engine for inferring new data from available data. The Inference Engine is able to manipulate
a large number of rules and facts. This engine matches facts and data against Production
Rules to infer conclusions which result in actions. A Production Rule has two parts and uses
the First Order Logic for reasoning over knowledge representation [7].

e [f<conditions> then <actions>
The process of matching facts against Production Rules is called Pattern Matching, which is

performed by the Inference Engine. The pattern matching process will be described in the
following sections. There are a number of algorithms used for pattern matching by Inference

Engines, but the “Rete” algorithm [8] used in this project. This algorithm will be explained in
Section 2.5.

In a Rule Engine, the rules are stored in the Production Memory. The facts that the Inference
Engine matches rules against are kept in the Working Memory. Facts are inserted into the
working memory, where they may be modified. A system with a large number of rules and
facts may result in many rules being true for the same fact; we say that these rules are in
conflict. Figure 2.1 represents a high level view of an Inference Engine.

Inference Engine
(Rete0Q0 / Leaps)

Pattern }\fwklng
) Matcher filemory
(facts)

Agenda

Figure 2.1: High-level view of an inference engine, rules and facts [7]

2.4.2 Forward chaining and backward chaining

There are two methods of execution for a Rule System: Forward Chaining and Backward
Chaining. Systems that implement both forward and backward chaining are called Hybrid
Chaining Systems. Understanding these two methods of execution help us to understand how
a Rule System works. In the following, the two methods together with an example for each
method are described.

Forward chaining

The forward chaining method starts with the available data and uses rules to extract more
data, until a goal is reached. An inference engine that uses forward chaining, searches the
rules until it finds one rule in which the If-clause (condition) is satisfied. When this rule is
found, the engine can conclude, or infer, the Then-clause (condition); this will result to
adding, removing or modifying information (facts) to its working memory. The inference
engine will iterate this process until it reaches to the goal (Wikipedia). Figure 2.2 displays the
algorithm of forward chaining process.

Rule
Base

Determine
paossible rules to
fire

Working
Memory

Conflict Set

- Confiict
Fule .

—Exit If specified by rul

Figure 2.2: Forward chaining algorithm [7]
The rules are in the following form [9]:
left hand side (LHS) -> right hand side (RHS)

LHS is a collection of conditions which should be matched in the working memory, for the
rule to be executed. The RHS contains the actions to be taken if the LHS conditions are met.
The execution cycle is:

1) Select a rule whose left hand side conditions match the current state of the working
memory.

2) Execute the right hand side of that rule. This may result in a change to the current state
of the working memory (by adding, removing or modifying facts).

3) Repeat until there are no rules applicable.

Suppose that in a survey the goal is to conclude the monthly bonus of a person named “Jan”,
given the following knowledge base (a set of rules and facts). Assume these facts are
available:

e Jan has age 62

o Pitter has age 59

e Jan has monthly-income > 12000

e Pitter has monthly-income < 12000

The rule base contains following rules:

e If X has age > 60 - Then X is a “Senior Citizen”

e If X has age <= 60 - Then X is a “Junior Citizen”

e If X is a “Senior Citizen” and monthly-income < 12000 - Then monthly-bonus =
2000

o If X s a “Senior Citizen” and monthly-income >= 12000 - Then monthly-bonus =0

e If X is a “Junior Citizen” and monthly-income < 12000 - Then monthly-bonus = 1000

e If X is a “Junior Citizen” and monthly-income >= 12000 - Then monthly-bonus = 0

Now we want to perform forward chaining by following the pattern of an inference engine as
it infer from the rules. With forward reasoning, the inference engine can derive that Jan is a
“Senior Citizen”. This new fact is added to the working memory. Therefore we have the new
fact:

e Janis a “Senior Citizen”
Now having the new fact and the previous fact:

e Janis a “Senior Citizen”
e Jan has monthly-income > 12000

The inference engine derives:

Jan is a “Senior Citizen” and monthly-income >= 12000
Then referring to the rule 4, the inference engine can derive:
monthly-bonus = 0

Therefore the monthly bonus of Jan is “0” and by iterating this process for Pitter, the rule 7
would be satisfied and we get the monthly—bonus of pitter = 1000. This process is shown in
Figure 2.3 and we see that this is a bottom—up process. This is the method which the inference
engine uses for reaching the answer. The inference engine starts from the data and uses rules
to infer over those data and reach the answer, thus this method is called “data—driven”. We
can also say that this method is a bottom-up method for the reason that it initiates from
introductory data to reach to the final goal.

Monthly - bonus =0 ‘ ‘ Monthly - bonus = 1000

Janis a “Senior Citizen” Pitteris a “Junior Citizen”

Jan has age 62 Jan has monthly-income >12000 Pitter has age 59 Pitter has monthly-income <12000

Figure 2.3: Forward chaining process

Backward chaining

Backward chaining is "goal-driven"; therefore its process is the opposite of the forward
chaining process. For backward chaining we start with a goal which the inference engine tries
to satisfy. If the main goal cannot be satisfied, then the engine searches for goals that it can
satisfy; these are known as sub goals. Satisfying sub goals will help to reach the current goal.
This process continues until the initial goal is confirmed. The following example clarifies the
process of backward chaining.

Suppose that these data are given:

e UMNW=>Y
o Z"Y=>X
e O=>W

e P=>W

The question or goal is X=?. Using backward chaining in order to reach the main goal we
need the answer of two sub goals: Z and Y. There is no sub goal for Z, but in order to reach
the second sub goal, Y, its sub goals, U and W should be satisfied. This procedure continued
until no other sub goals remain. Preparing the answer for all the sub goals, will result in initial
or main goal satisfaction. Figure 2.4 illustrates this process from left to right.

The logical representation for the result would be: X = Z. (U. (O+P)). This result is acquired
step by step:

X=Z.Y > X=Z.(U.W) = X=Z.(U.(+P))

10

X=? X:? X:?

Y=? Z =2 Vi Y=? zZ
N TN
u W=? U w=?
N
0 P

Figure 2.4: Backward chaining process

This process also can be explained with the previous example which we made for forward
chaining. As before, we have the following rules:

e If X has age > 60 - Then X is a “Senior Citizen”

e If X has age <= 60 - Then X is a “Junior Citizen”

o If X is a “Senior Citizen” and monthly-income < 12000 - Then monthly-bonus =
2000

o If X s a “Senior Citizen” and monthly-income >= 12000 - Then monthly-bonus =0

e If X is a “Junior Citizen” and monthly-income < 12000 - Then monthly-bonus = 1000

e If X is a “Junior Citizen” and monthly-income >= 12000 - Then monthly-bonus = 0

Using backward chaining we want to reach to the goal: “Citizens who has monthly-bonus =
1000”. We use the available data and try to satisfy sub goals in order to reach to the main
goal. Available facts are:

e Jan has age 62

e Pitter has age 59

e Mike has age 28

e Jan has monthly-income >12000

e Pitter has monthly-income <12000
e Mike has monthly-income >12000

We start from the main goal: “monthly-bonus = 1000”. In order to satisfy this goal, we have
two sub goals: “monthly-income < 12000 “and “is a “Junior Citizen””, that both of them
should be satisfied. The sub goal: “is a “Junior Citizen”, has a sub goal itself: “has age <=
60”. Using the available data, for this sub goal: “has age <= 60, we got the answer: Pitter and
Mike (“Junior citizen”), while for the sub goal: “monthly-income <12000 “, we come to the
answer: Pitter. Thus the result for the goal: “Citizens who has monthly-bonus = 1000”, would
be: Pitter.

11

2.5 The Rete algorithm

The Rete algorithm is a pattern matching algorithm designed by Dr Charles L. Forgy of
Carnegie Mellon University [8]. Rete is an efficient algorithm which enables matching facts
against patterns described in rules. The algorithm can be used for systems containing anything
from a few to many patterns and objects. The Rete algorithm uses concepts such as Rule set,
Rules and Facts. A rule set is a knowledge base consisting of one or more rules. Every rule in
the rule set represents some additional knowledge and is usually in the form of if = then.
Here is a simple rule, where if, then and assert are keywords:

o If GMAT score >= 600 Then assert status = “passed”

The If-part represents a condition and the Then-part represents an action. In a rule, we can
have more than one condition and in that case the conditions should be joined by the logical
operators: AND or OR. The Then-part also can contain one or more actions. The above rule
example means that if the GMAT score of a person is equal to or larger than 600, then his
status for the GMAT test is passed. In order to check someone’s status, we need the person’s
score at the GMAT test and this data is called a fact. The following example represents a rule
which has more than one condition: GMAT score >= 600 and age < 30.

If GMAT score >= 600 and age < 30 Then Admit student to MBA program

To check the above rule we need two data or facts: one for score and one for age. Therefore,
in order to admit a student to the MBA program, his score should be equal or larger than 600
and his age should be less than 30. This is a simple rule and in our real life we may use many
facts where the rules should manage them.

A complete rule-set should be given to the Rule Engine. The Rule Engine matches each rule
in the rule set with given facts to decide whether to fire (execute) the rule or not. For example,
considering a set of facts for some applicants for a MBA program, presented at the left side of
Figure 2.5, after applying this rule” If GMAT score >= 600 and age < 30 Then Admit student
to MBA program”, the rule will be fired for applicant 4 and the action “Admit student to
MBA program” will be performed for this applicant (displayed at the right side of Figure 2.5).

This process is called pattern matching. In each pattern matching process, the list of facts may
be modified by adding or removing facts from the list. These changes may cause previously
not fired patterns to be fired. During each cycle, the rules that are fired should be maintained
and updated. If a Rule Engine checks each rule for all the facts although they are not
modified, this will slow down the process. By maintaining what it has already matched from
cycle to cycle and then computing only the changes for the added or removed facts, the
process can be performed faster, which is done by the Rete algorithm [8].

12

Check for conditions

GMAT score Age
Applicant 1 400
Applicant 2 32
Applicant 3 150 30
Applicant 4 Q5>
facts

After applying the rule: “If
GMAT score >= 600 and age <

30 then admit student to MBA”.

The rule will be fired for
applicant 4.

Perform action

Admit student
to MBA

Figure 2.5: Pattern matching process

The inference cycle for the Rete algorithm
In the Rete algorithm for applying each rule an inference cycle should be performed. Each
inference cycle involves three main actions: match, select and execute. In the matching phase,

the conditions of the rules are matched against the facts to see which rules are to be executed.
The rules that their conditions satisfied are stored in a list called agenda for firing. From the
list of rules, in the agenda, one of the rules is selected for execution by performing the actions

on the right hand side of the rule. The action may be an assertion, execution etc. Figure 2.6
illustrates a high level view of rules, facts and agenda for performing pattern matching [8].
For more details about building of the Rete network refer to [10].

~mm—

Figure 2.6: Pattern matching: rules, facts and agenda [8]

13

3 Methodology

The goal of this section is to give an overview of the reasoning method used in this project for
developing an event chains generation system, and the reasons for selecting that method.

3.1 Reasoning methods

Forward and backward chaining methods are two main methods of reasoning. These two
methods can be used in this project for reasoning over cause-consequence information
represented as an ontology. The methods have been explained in Chapter 2. Considering the
advantages and disadvantages of these methods, one of them should be selected for reaching
to the expected goal (generating event chains automatically). The following information
explains how these methods can be applied in this project and then the methods are compared
for selecting the better choice.

Forward chaining implementation

In the forward chaining method the inference engine uses a bottom—up process for reaching to
the answer. In this method the inference engine starts form the data and uses rules to infer
over those data to reach a certain goal, and for this reason this method is called “data—driven”.
To explain how this method can be applied in this project, consider the following example.

Assuming Information about direct connections between events, the cause-event leading to
the consequence-event, for a selected system is available. Connecting these connections
manually results in a set of event chains which have been illustrated in Figure 3.1. It is
expected that the developed system will be able to generate some of these chains
automatically. Desired chains should end with a specific goal. In this example we assume that
the event “E” is the final goal. The result of implementing the forward chaining method on
direct cause-consequence connections of Figure 3.1 is shown in Figure 3.2. As can be seen in
Figure 3.2 the forward chaining process executed in seven phases over event connections to
reach the answer (“E”).

Backward chaining implementation

Backward chaining is "goal-driven"; therefore its process is the opposite of the forward
chaining process. This method starts from the main goal and, using a set of rules, goes back to
reach an answer. Figure 3.3 illustrates implementing backward chaining over available events
connections. Backward chaining is also performed during different phases (three phases) to
reach the answer in this example.

14

Direct connections between events: Manually created events chains:

Cause - Consequence

A—>B G
A—>C
B— D—* E

B>D A<:
D>E > s H

C>F
B>G
F>H

Goal:E

Figure 3.1: Cause-consequence connections and the manually created event chains

@ B @ B @ B/ G @ Biz @ B/—’b(li
A/ A<C A<C A<:C A<C—b ;
G G

Answer: R /

Figure 3.2: Forward chaining implementation

) ® ®

D<— E Bs«s— D <— E B«— D <— E

B«—D<—E

Answer:
A /

Figure 3.3: Backward chaining implementation

15

Forward chaining vs. backward chaining [11]
In this part, these two methods will be compared and the advantages and disadvantages of
each method will be discussed.

Forward chaining advantages:

1) Forward-chaining is better than backward-chaining since by adding new data, new
inferences will be made. The reason for this is that during the inference process,
additional information is provided and, this will be used for new inferences. This is an
important feature for dynamic situations in which conditions are likely to change.

2) Forward chaining works well when the problem starts with gathering information and
resulting in final conclusion.

3) Forward chaining works well for specific type of problem solving such as monitoring,
control and interpretation.

Forward chaining disadvantages:
One disadvantage of forward chaining is that the system traverses all possible rules,
even though it only needs to go over a few rules to reach to the conclusion.

Backward chaining advantages:

1) Because backward chaining focuses on the given goal, so only the rules that are
related to the goal are traversed and it only searches that part of the knowledge base
which is relevant to the current problem.

2) Using one of the benefits of backward chaining is that the user doesn't have to
explicitly write rules for the sub goals. The Rule Engine generates the sub goal for
each object.

3) Backward chaining is useful for cases in which we have a hypothesis (final goal) and
we want to check if it can be proven.

4) Backward chaining is a useful technique for solving problem such as diagnostics,
prescription and debugging.

Backward chaining disadvantages:
Backward chaining implementation is complex.

3.2 Method selection

After comparing these two methods, we need to decide whether we should use a forward
chaining method or a backward chaining method. The choice between these methods depends
on what kinds of problems we are going to solve. Based on the above information, both
methods can be used in this project for generating a set of event chains.

As described in the previous section, using forward chaining method is effective for dynamic
situations in which conditions are likely to change. The reason for this is that during forward
chaining all possible connections are created. Then by applying any changes to the conditions
(for example modifying the final goal) desired chains can be generated using the previously

16

created connections. One disadvantage of using forward chaining method is that, the system
traverses all possible rules, even though it only needs to go over a few rules to reach the
conclusion. This disadvantage is important for systems that have resource limits. The example
in Section 3.1 demonstrates this feature of forward chaining. Using forward chaining we
reached the answer after seven phases while, using backward chaining the answer is obtained
after three phases.

In this project, sequential dependent events of a system (steam boiler) have been selected,;
only some of these sequential events end with an accident event (final goal). Like the
example in Section 3.1, applying backward chaining can be useful in this project, since
backward chaining focuses on the given goal (the accident event), thus only the rules that are
related to the goal are traversed and the result will be provided faster; but the main argument
against selecting this method is its implementation complexity. Since implementing forward
chaining is simpler than implementing backward chaining and backward chaining is complex
and more time consuming; the forward chaining method has been selected as a reasoning
method in this project. Existing systems that supports forward chaining implementation will
be discussed in the next chapter.

17

4 Existing systems for supporting “forward
chaining” method

In the previous chapter we compared the forward and backward chaining methods and we
decided that applying the forward chaining method would be the best choice for this project;
The main reasones being that forward chaining can be implemented simpler and faster than
backward chaininng. The forward chaining method should be implemented using an inference
system. Due to time limitations in this project, selecting a system which enables us to
implement a forward chaining method in 3-4 month (considering the time needed to learn
how to use the system) is important. Some inference systems that support forward chaining
method are Jess/JessTab, Algernon, OOPS and Drools. These inference systems are evaluated
with respect to important characteristics that are required for this project. Finally Jess/JessTab
and Algernon rule-based inference systems were selected. In this chapter these inference
systems (Jess/JessTab and Algernon) will be explained and evaluated based on the required
characteristics for this project and finally the more appropriate system is selected for
implementing the forward chaining method.

4.1 Important characteristics

When an inference system shall be used for reasoning over a knowledge base, there are
important characteristics that should be considered. The following characteristics are
evaluated for the Jess/JessTab and Algernon inference systems in Section 4.2 and 4.3 and then
based on these evaluation in Section 4.4 a choice is made.

Functionality
e The system supports forward chaining implementation.
e Using the system it is possible to call external functions.

User experience
e The system should be obtained and installed easily.
e The syntax should be readable.
e To learn how to use the system a complete documentation should be available.

Engineering
e In this project we use an ontology, developed using Protégé as a knowledge base. The
system must thus be able to operate on ontologies.
e The selected system should be robust.

18

4.2 Algernon

Algernon is a rule-based inference system which is implemented in Java and interfaced with
Protégé (a Protégé tab plugin). Algernon performs forward and backward reasoning over
frame-based knowledge bases and efficiently stores and retrieves information from ontologies
and knowledge bases [12]. Algernon syntax has two main parts: Paths and Clauses. A clause
represents a relation, for example: (name “Jane”). A path is a sequence of clauses, for
example: ((name “Jane”)(family “Wei”)).

System evaluation

Functionality
e Algernon supports forward chaining rules.
e Using Algernon it is possible to call Java functions for non - knowledge base
calculations.
e [t can be integrated with java.

User experience
e Algernon can be obtained from the link: (http://algernon-j.sourceforge.net/). Some
problems occured during Algernon installation.
o It has an Interpretive scripting language.
e A good tutorial is available for the system.

Engineering

e Algernon has a concise way to retrieve information from a knowledge base.

e It has the ability to read and write Protégé knowledge bases and has straightforward
access to ontology classes and instances.

e Algernon operates directly on the Protégé knowledge bases rather than requiring a
mapping operation.

e This system operates directly on Protégé frames.

e Using Algernon it is possible to have access to multiple concurrent knowledge bases.

4.3 Jess/JessTab

4.3.1 Jess

Jess (Java Expert System Shell), is a Rule Engine for the Java platform. Using Jess, it is
possible to build Java software that has the capacity to "reason" about given knowledge using
a set of declarative rules. It provides a complete environment for the construction of rule
and/or object based expert systems. Jess uses Common LISP (CLIPS) type syntax to describe
rules and facts. To use it, we should specify logic in the form of rules using one of two
formats: the Jess rule language or XML. In addition some data should be provided for the
rules to operate on. Jess is one of the fastest Rule Engines available. Its powerful scripting

19

language gives access to all of Java's APIs. Jess includes a full-featured development
environment based on the Eclipse platform [13].

System evaluation

Functionality
e Jess supports forward chaining implementation.
e Jess uses the Rete algorithm to process rules, which improve the speed of forward
chaining by limiting the effort required to re compute connections after a rule is fired.
e Jess can manipulate and reason about Java objects, and it is also a powerful Java
scripting environment, which enables creating Java objects, call Java methods, and
implement Java interfaces.

User experience
e Jess is available at no cost for academic use and can be installed easily.
e The Jess syntax is readable.
e All data is structured as lists and is therefore easy to understand.
e A complete documentation is available for learning the system.
e Easy to learn and use.

Engineering
e Using Jess, it is possible to operate on ontologies.

4.3.2 JessTab

JessTab has all the features mentioned for the Jess expert system, since JessTab is a tab plug-
in for running Jess inside Protégé. It is a bridge between Protégé and Jess. JessTab is a
translator between two formats: Protégé format and Jess format. It mirrors Jess definitions in
Protégé knowledge bases and enables Jess programs to manipulate the Protégé knowledge
bases. This is achieved by mapping the Protégé knowledge bases to Jess assertions [14].
These features can be added for the JessTab:

e Protégé — Jess integration, JessTab provides Rule-based reasoning in Protégé.
e There is no support for JessTab plug-in in version 4 of Protégé; it is supported in
version 3.

4.4 Conclusion on assessment

After explaining the Jess/JessTab and Algernon inference systems and evaluating them based
on the required characteristics for this project, an appropriate system can be selected. Using
the selected system, it should be possible to implement the forward chaining method in the
limited time of this project. In this period, the knowledge for using the system should be
acquired. Based on the above evaluation of the systems (Jess/JessTab and Algernon) and the
following information:

20

e Algernon syntax is readable, but defining forward chaining rules which can be applied
over cause-consequence concepts is more understandable using Jess language.

e Some problems during Algernon installation occurred, but the Jess is installed easily.

e Developing the Jess rules in the Eclipse platform makes the interaction between java
codes and Jess rules easier than using the JessTab and developing rules in Protégé. It
is therefore more efficient to use the Jess than JessTab.

It can be concluded that, implementing forward chaining using the Jess inference system is
the better choice in this project.

21

5 Developing an event chains generation system

In this chapter we explain how we can generate a set of hazardous event chains for a system
automatically, using the information of the system stored as an ontology. For this purpose, a
system is developed and the developing process is described in full details. In addition, the
developed system is tested with a real world example (a simplified steam boiler) to explain
how the system works using an ontology (steam boiler ontology) to generate a set of event
chains. Automatically identifying event chains can facilitate safety analysis for a complex
system. Identifying these event chains that end with an accident can help us to prevent them
from occurring.

5.1 Description of the system

5.1.1 Introduction

The main focus of this project is facilitation of safety analysis by reasoning about causes and
consequences concepts of a system. The system developed in this project enables generating a
set of event chains for a specific domain using a pre-defined ontology for that domain.
Finally, the developed system will be tested with a real-world example.

Domain experts possess great knowledge about a specific domain, the domain rules and its
processes. They can express the logic of the domain in their own terms and know the relations
between the terms. Using the knowledge of a domain expert for a specific domain would be
useful for safety analysis. Domain experts know the facts in their domains (what can cause a
failure and the consequence of a specific failure to the system). Using this knowledge of a
domain and together with experiences for a domain similar to this domain provides the safety
analyst with information that can be used efficiently for identifying possible hazardous events
for this system. But the main challenge is that how this knowledge can be manipulated.

Reasoning is a method for improving and manipulating knowledge of a specific domain. In
this project we use a reasoner to improve and manage the domain knowledge of a system.
The reasoner enables generating a set of event chains by manipulating the knowledge of a
system that has been stored as an ontology. Since the main focus of this project is safety
analysis, the safety knowledge of the domain (knowledge about causes and consequences
concepts) is the main part which is used for reasoning.

All potentially dangerous events, the events’ consequences and the events’ cause need to be
identified for safety analysis. The sequence of these dependent events or the event chains
describes how the effect of a specific failure is the cause of another failure. Each event chain
starts with an initial event and ends with a final event. We assume that the final event is an
unwanted event that occurs in the system’s environment, for instance to a building or to

22

humans. It can be assumed that the final event is the unwanted accident. Thus, in the system
which is developed in this project, each event chain starts with an initial event and ends with a
final event which may be an accident.

5.1.2 System perspective
This section describes the developed system (event chains generation system) and its
development process. Figure 5.1, gives an overview of the event chains generation system.

event A > eventB > eventC > ...

SH

ss Event chains

Domain Expert Jess engine

l

Ontology —T >
OWL or RDF/XML file

Transformed

ontology to Jess facts

XSLT style
sheet

Figure 5.1: Event chains generation system overview
In this project the following four main actions need to be performed.

1) Creating an ontology

This task should be done by the domain expert. The domain expert specifies the
concepts of a domain and relationships that exists between these concepts in a formal
way. An ontology enables us to perform more actions over knowledge of a specific
domain. In addition, an ontology defines a common vocabulary for people who need
to share information in a domain and enables reusability of information. The
developed ontology is used as a knowledge base, a mean for storing our data (facts) of
a specific domain, which further reasoning will be performed over them. However,
because the main focus of events chain generation system is facilitation of safety
analysis, the concepts which are related to the accident reports and hazardous events
should be contained in the ontology. These concepts should be provided by a safety
expert. For this purpose, in Section 5.3, creating an ontology which contains event
cause-consequence concepts will be described. In order to perform forward chaining
over the ontology concepts, the cause-consequence concepts of events should be
defined in a specific way which is explained in Section 5.3. In this project, the Protégé
tool has been used for developing an ontology and the created ontology can be saved
as an OWL or RDF/XML file.

23

2)

3)

4)

Ontology transformation to the Jess facts

Using Protégé we can develop an ontology and a reasoner can find facts that are
implicit in the given ontology and then makes further actions over those facts. Jess is
an inference engine and will be described later. We use the Jess inference engine for
reasoning about domain knowledge which are stored as an ontology. But the Jess
engine cannot infer the knowledge in the format of an ontology (for instance an OWL
file). The Jess inference engine uses .clp files. Therefore the ontology must be
translated to the Jess format, and the Jess engine can then be used for reasoning. This
transformation is done using XSLT style sheets [15]. The transformation process will
be explained in Section 5.5.

Extracting hazardous cause-consequence facts from the transformed ontology
The transformed ontology to the Jess facts contains all the ontology information, but
we need only the information about events. Facts that give information about causes
and consequences concepts must be extracted from other facts. The extracted cause-
consequence facts can be used for forward chaining. Details of this process are
described in Section 5.6. A related task have been done in [16], where the system
architecture (components and connections), internal states of the components and state
transitions are extracted and modeled using the results of text mining which performed
in [17].

Forward chaining

Based on the discussions in Chapter 3, the forward chaining method is selected as a
reasoning method in this project for reasoning over cause-consequence concepts. The
main reason for this selection was that forward chaining implementation is simpler
than backward chaining. Although backward chaining method has some advantages
which can result in faster performance of the system, but its implementation is
complex and forward chaining method is the better choice for this project. The
transformed ontology, from which we extract cause-consequence facts, now is ready
to be used by the Jess engine to perform forward chaining. Forward chaining is
implemented by defining a set of rules and applying these rules to the Jess facts. In
this project, Jess rules has written in the Jess rule language and developed on the
Eclipse platform. Details of forward chaining implementation will be described in
Section 5.7. Implementing forward chaining over Jess facts result in generating a set
of chains.

5.1.3 System features

The system can extract event cause-consequence concepts (event instances and
their “CanCause” relationships) form the ontology. The system extracts event
concepts from the ontology if the ontology is developed based on the specified format
- the ontology which contains an Event class, event instances and CanCause property.
Then the forward chaining can be performed over the extracted events.

24

The system can generate a set of event chains based on the inserted initial event.
In Eclipse, when the run button is pressed the system performs forward chaining over
the Jess facts in the working memory. This forward chaining is performed based on
the defined rules. After pressing the run, the user must insert an event as the initial
event. The Jess engine then traverses the facts in the working memory based on the
rules. When this process is complete, the event chains that start with the inserted initial
event and ends with an accident will be displayed.

In case of ontology modification, the event chains can be updated automatically.
When the ontology is modified by adding or removing events or event relationships,
event chains must be updated based on the ontology modification. This can be done
easily in this system. After saving the modified ontology, the only task is to transform
XML syntax of the OWL file to the Jess assertions. Then the forward chaining process
will be performed automatically over the modified ontology. This may result in
generating new chains or modification to the previously generated chains. Performing
this task (modifying an ontology and updating event chains) manually for a large
system with various events and events relationships is difficult.

Multiple ontologies can be used simultaneously for reasoning. Related chains will
be generated based on the inserted ontologies. This feature would be useful when we
require to use more than one ontology simultaneously for safety analysis, for example
a domain ontology and an environment ontology.

5.1.4 System assumptions
To develop the event chains generation system the following assumptions have been made:

An ontology which contains cause—consequence concepts

The system performs forward chaining over the events based on a given ontology.
This can be performed if the ontology contains event cause-consequence concepts
provided. These event concepts are developed based on a specific format; the ontology
which contains an Event class, event instances and CanCause property. For example,
to define the following concept in the ontology:

“event A can cause event B” or “event A ----<ancaus_____ > event B”

First we create a new “Event” class, and then we add the two events (event A and
event B) as instances of this class. For making a relationship between these two event
instances we define a CanCause property.

The most harmful event to the environment is named an accident in the ontology

The system generated events chain based on the inserted Initial event and final event
that is an accident. Therefore, in the ontology, the most harmful event that occurs in
the system’s environment and causes an unwanted effect is named an accident in the

25

ontology. Therefore an events chain which starts with the inserted initial event (event
A) and ends with the final event (accident) would be like the following:

Intiltal event-> event B-> event C-> event D-> accident

5.1.5 System Constraints

Currently the system can print event chains with limited number of events in a chain. The
rules for creating all connections in a chain are already defined; therefore we only require
defining a rule which enables printing unlimited number of events in a chain. This rule can
use the event connections created form other defined rules, for printing.

Also, when the system is tested with some examples, we identified if the cause-consequence
concepts in the ontology contains connections between events, like:

CanCaus
event A can cause event B, event A --=-—-"-------- > event B

event B can cause event A, event B CanCaus event A
This will result in generating incorrect chains with the event chains generation system. For
example, the event chain presented in Figure 5.2 cannot be generated by the system, since
there is an inverse connection between event B and event C.

event A —»event B —» event C

Figure 5.2: Example of a chain that cannot be generated by the system

5.2 General requirements

In order to develop an event chains generation system there are some requirements that should
be available to the user. This section describes these requirements, and explains how they are
essential for this system.

5.2.1 Protégé

For developing ontologies in the OWL format, the Protégé tool has been used as an ontology
development tool. Protégé is a free, open-source platform that provides constructing domain
models and knowledge-based applications with ontologies. Protégé can be customized to
provide domain-friendly support for creating knowledge models and entering data. An
ontology describes the concepts and relationships that are important in a particular domain,
providing a vocabulary for that domain as well as a computerized specification of the
meaning of terms used in the vocabulary. In recent years, ontologies have been adopted in
many business and scientific communities as a way to share, reuse and process domain
knowledge. Ontologies are now central to many applications such as scientific knowledge
portals, information management and integration systems, electronic commerce, and semantic
web services [5].

26

Using Protégé OWL ontologies can be developed. For describing the process of developing
an ontology using Protégé, we wrote a manual which can be found in [18]. A reasoner can
find facts that are implicit in the developed ontology and then makes further actions over
those facts. An ontology enables us to specify concepts of a domain in a machine-
interpretable format. An OWL ontology may include descriptions of classes, properties and
their instances.

For this project the version 4 of the Protégé software has been used and the download link is:
http://Protégé .stanford.edu/download/registered.html#p4.3

5.2.2 Jess

Jess is a Rule Engine for the Java platform, more explanation about this Rule Engine is
provided in Section 4.3. To use Jess, we should specify logic in the form of rules using one of
two formats: the Jess rule language or XML. In this project, the Jess rule language has been
used for logic specification. Also some data should be provided for the rules to operate on.
When we run the Rule Engine, rules are applied to the provided data and may result in
creating new data. More details about how the Jess engine works will be described in Section
5.4 Jess language codes can be developed in any text editor, but Jess comes with a full
featured development environment based on the Eclipse platform. Jess uses the Rete
algorithm to process rules. This algorithm was described in Chapter 2. For using Jess Rule
Engine, there are some requirements which are specified in Appendix A.

Jess licensing

Jess can be licensed for commercial use, and is available at no cost for academic use
(licensing terms can be asked from Craig Smith at casmith@sandia.gov). A trial download is
also available [19].

The Jess Developer's Environment

Jess 7 includes an Eclipse-based development environment. There is an editor, a debugger,
and a Rete network viewer. The Jess Developer's Environment can be installed using the
instructions specified in: http://www jessrules.com/jess/docs/71/eclipse.html#.

5.2.3 XSLT style sheets

Since we use the Jess inference engine for reasoning and the Jess engine cannot use
knowledge in the form of an ontology (OWL file) thus, the ontology must be translated to the
Jess format (.clp file), so that the Jess engine can reason about it. This transformation from
OWL file to .clp file is done using XSLT style sheets. Details about how this transformation
can be done will be provided in Section 5.5.

XSL stands for “Extensible Stylesheet Language” and XSLT stands for XSL
Transformations. XSLT style sheets are used for transforming XML documents into other
type of documents. In this project we use XSLT style sheets to transform the XML syntax of
an OWL file to the Jess assertions, and the Jess engine is then able to reason about

27

transformed ontologies and annotations. It should be noted that two XSLT style sheets may
required:

1) An XSLT style sheet that transforms a file with OWL schema (in XML syntax) into a
set of Jess assertions based on the OWL meta-model. The resulting assertions can be
loaded into the Jess engine.

2) An XSLT style sheet that transforms a file with OWL annotations (in XML syntax)
into a set of Jess assertions based on the OWL meta-model.

The resulting assertions can then be loaded into the Jess engine. For performing this
transformation a file describing the OWL meta-model in the Jess language is also required. It
is to be loaded directly into the Jess engine [15]. These two XSLT style sheets and the OWL
meta-model file can be downloaded from: http://mcom.cs.cmu.edu/OWL/OWLEngine.html.

5.3 Designing an ontology

The ontology that we want to use as a knowledge base in the event chains generation system
should contain possible accidents and causes and consequences concepts of the selected
domain. Using Protégé we can develop OWL ontology and a reasoner can find facts that are
implicit in the developed ontology. An OWL ontology may include descriptions of classes,
properties and their instances. As we are going to use the information stored as an ontology
for reasoning using the Jess inference engine, it is required that this ontology contains the
following components:

an Event class - a CanCause property - event instances

Figure 5.3 shows each instance of the class Event has a CanCause relationship to itself. For
example, event A has a CanCause relationship to event D: event A CanCause event D. An
Event class that has the CanCause relation to itself is presented in Protégé in Figure 5.4.

All possible events in the domain should be defined as instances of the class Event. These
event instances are related to each other with the “CanCause” property. Because each event
instance can only has a relationship with another event instance, thus, the domain and range of
the class Event should be itself, the class Event (Figure 5.5).

28

Event class

[l eventD
B eventa

. event C CanCause

B eventB I evente

B Eventinstance
O Object property

Figure 5.3: Illustration for ontology components which includes event concepts

File Edit ‘“iew Reasoner Toolz Refactor Window Help

E > | | © ortology! 270084143 -] 8]

Active Ontology | Entities | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Guery | OntoGrat

(Class hierarchy rCIass hierarchy (inferrad) | (Annotations rUsage |

(%3] ['

. The “Event” class
v-@Thing

...... Boiler /
------ Feeding Pump

------ Heating_Element
------ Minimum_Water_Level

...... Predefined_Maximum_Wate|| The “CanCause” property =
------ Pressure_Indicator

...... Pump .’Ju|.\e|c|:|ss/
...... Steam

; CanCause only Event

""" Temperature_Indicator I v

""" Yessel ; . -
______ Water_LeveI_Indicator Inherited anonymous classes The event instances

Members /

@ accident

Bad-welding

Faulty_Command_of_Controller
Feeding_pump_failure

D

Give less hot by heating element

1]

Figure 5.4: Illustration of CanCause relationship of Event class to itself

29

File Edit

Wiew Reasoner Tools Refactor

Windows Help

<o o> |@Orﬂology12?0084149

o]

F Object Properties || Data Properties | Individusls | OWLiz | DL Guery || OntaGrat |

Active Ontalogy

[=le]

Annotations

Entities

Usage |

Clazzes |

topOhjectProperty

‘ Annotations

Char IHEE

Domains (intersection)

CanCause only Event

Ranges (intersection)

CanCause only Event

Figure 5.5: Illustration of CanCause property, its domain and range

Class hierarchy (inferred)

Class hierarchy |

BIENEY

Fhing

Boiler
Control_Unit
Event
Feeding_Pump
Heating_Element
Minimum_Water_Level
Predefined_Maximum_|
Pressure_Indicator
Pump

Steam
Temperature_|ndicator
Yessel
Water_Level_Indicator|

Potive Ortology r Entities r Clazses r Ohject Properties r Dats Propetties r Individuals r CWWLVIZ r DL Guery rOmoGraf |

[Memberslist | Members list (inferred) |

[#][x]

4 Bad-welding
4 Faulty Command_of_Controlle
4 Feeding_pump_failure

4 Give_less_hot_by heating_g|

Over_pressure

Over_pressure_not_indicated
Pressure_indicator_failure

Pump_no_action_while_should
¥ Tempeture_indicator_fault

Too_hot_vessel

4 Too_low water_level

Water_level_exceeds_max

4 Water_level_indicator_fault

4 accident

leaking

pump_action_while_should_no

[7 IC

{1 I [»

[Annotations || Usage

Annotations

Types

Event

Same individuals

Different individuals

g | RIRRpEEY

mCanCause

Data property assertions

Negative object property assertions

Negative data property assertions

Figure 5.6: Steam boiler ontology which contains cause-consequence concepts

Over_pressure CanCause accident

30

Figure 5.6 shows an example for the steam boiler ontology in Protégé (the steam boiler
system will be described later) with the cause-consequence concepts added. First the Event
class is defined in the ontology. Then a set of individuals are added to this class. Finally the
CanCause property is defined as an object property. Based on the available cause-
consequence data of the domain, each event instance relates to another event instance via a
CanCause property. For example, considering the two event instances: “Over_pressure” and
“accident”, these two events relate to each other via the CanCause property:

This explains that the “Over pressure” event can cause an “accident” event in the given
domain.

5.4 How does Jess work?

Jess developed at Sandia National Laboratories by Dr. Ernest J. Friedman-Hill for creating
rule-based expert systems. Rule-Based Expert Systems contains a rule base, a working
memory (fact base) and an inference engine (Rule Engine). An inference engine has a pattern
matcher, which should decide what rules to fire and when. In an inference engine an agenda
schedules the order in which activated rules will fire and execution engine is responsible for
firing rules and executing functions.

The inference Process

Figure 5.7 illustrates an overview of the inference process. The working memory contains a
list of facts, which have previously been defined or will be asserted during the inference
process. An inference engine matches the facts against the rules. Rules are in the following
form:

LHS -> RHS
If LHS then RHS

If any fact in the working memory matches the LHS of a rule then the rule is activated and
inserted to the agenda. Rules may be deactivated and removed from the agenda, if the
matching facts are removed from working memory. Next step is rule execution or rule firing.
A rule fires, if Jess executes the actions of RHS. This action may be a fact
assertion/removal/modification to the working memory or it can be any function call. The
sequence of actions is determined by agenda [9].

Match ? /’f \

T _\I\L R1 1> r1
“ t” fact2 " “ "
asser fact? HS H RHS |:_7___ . RO run

\
fact3 X !
R2 1 | —
: (s] ™ {ms] | |
1
factn
Factlist Agenda

Working Memory

Figure 5.7: Inference Process [9]

Jess uses the Rete algorithm (described in Chapter 2) to match patterns.

31

Template, Fact and Rule in Jess

In this section we describe how templates, facts and rules should be defined in Jess. Jess
manages a list of known facts. The following defines a Jess fact sample which gives some
information about an event:

(deffacts my_facts
(my_event
(event name "Over pressure")
(event_status "active")))

Each fact should correspond to a template. A template is defined as following:

(deftemplate my event "A sample deftemplate"
(slot event name)
(slot event_status))

Assume that many hazardous events may occur in a steam boiler system. Using Jess rules we
need to find special event facts and as response some actions should be performed. For
example to explain the following rule:

If LHS Then RHS
IF the event “Over_pressure” is activated THEN the response is to open the safety valve
First, the relevant templates should be defined:

(deftemplate my event "A sample deftemplate"
(slot event name)
(slot event_status))

and

(deftemplate response '"response template"
(slot action))

then, defining the rule:

LHS -> RHS
(defrule safety action "A sample rule"
(my_event
(event name "Over pressure")
(event_status "active"))
=>
(assert (response
(action open_safety valve))))

32

Thus, the Jess engine matches the facts against the rule, the rule is activated because the fact
(LHS of the rule) exists in the working memory and after firing, and the action on the RHS is
executed. The result of the execution would be an assertion of a new fact: (response (action
open_safety valve)) to the working memory. Therefore, after execution, there are two facts
in the working memory and these facts are displayed in the console view in Eclipse. Figure
5.8 shows the displayed facts in the console view of Eclipse.

f-0 (MAIN::my_event (event_name "Over_pressure") (event_status "active"))
f-1 (MAIN: :response (action open_safety valve))

For a total of 2 facts in module MAIN.

Figure 5.8: Presentation of facts in the console view in Eclipse

5.5 Transforming an OWL file (in XML syntax) to a set of Jess

assertions [15]
As described in Section 5.2.3, in this project we use XSLT style sheets to transform the XML
syntax of an OWL file to the Jess assertions. The Jess engine is then able to reason about
transformed ontology and annotations. To perform this transformation, three main files are
required, two XSLT style sheets and an OWL meta-model in the Jess language:

1) Ontology Style sheet (OWLOntology2Jess.xsl): An XSLT style sheet that transforms a
file with OWL schema (in XML syntax) into a set of Jess assertions.

2) Annotation Style sheet (OWLAnnotation2Jess.xsl): An XSLT style sheet that
transforms a file with OWL annotations (in XML syntax) into a set of Jess assertions.

3) OWL Meta-model (OWL.clp): A file describing the OWL meta-model in the Jess
language. It should be loaded directly into the Jess engine.

Figure 5.9 shows ontology and ontology annotation transformation to the CLIPS format
(which is used by the Jess engine) via these three files.

Source files
R R e, - i
eTrrTTTETT TETTTTTYEY provided herein

: OWL Meta-model
§ st aci i iniGIIPS s e
Ontology |3 [Ontology 12 K~ Ontology
in OWL . | stylesheet 13 in CLIPS
Annotation ?— Annotation l: __ Annotation _
in OWL .| stylesheet - 13 in CLIPS

go
L]
<
@ -
w
=
@
2

mjs
=
(b,
i
o
w

XSLT Engine JESS

Figure 5.9: Ontology transformation over view [15]

33

In the ontology events are defined as following:

cause - consequence
event A - event B
event A CanCause event B

This explains that event A can cause event B or the cause for event B is event A or the
consequence of event A is event B. After transforming the ontology, the ontology is converted
to the Predicate-Subject-Object (PSO) triples. All events concepts (causes and consequences)
are also transformed to the triple format. These triples can be asserted to the working memory
and the Jess engine can infer about them. A template with three slots, Predicate, Subject and
Object can be defined like this:

(deftemplate triple "Template representing a triple"
(slot predicate (default ""))
(slot subject (default "))
(slot object (default "")))

It can be used for explaining:
Subject > Object or Subject ----------—-- Predicate ------------ > Object

This will be used further for mapping the causes and consequences concepts to PSO triples.
Each slot should be filled with a string, this includes the namespace declarations. Namespaces
provide a method to avoid element name conflicts. Namespace declarations are used as
precise indications of what specific vocabularies are being used. A standard initial component
of an ontology includes a set of XML namespace declarations enclosed in an opening
rdf:RDF tag. These provide a means to unambiguously interpret identifiers and make the rest
of the ontology presentation much more readable. A sample of this triple is shown below:
(triple

(predicate ""http://www.owl-ontologies.com/2010/Ontology1270064149.owl#CanCause')

(subject"http://www.owl-ontologies.com/2010/Ontology1270064149.0wl#Over_pressure')

(object "http://www.owl-ontologies.com/2010/Ontology1270064149.owl#accident'))

The above triple represents the following concepts in the ontology:
Over_pressure---------- CanCause------------ > accident

After transformation, these concepts can be asserted to the working memory and will be ready
for forward chaining. In this project we need to transform the ontology annotation to Jess
assertions. Since the event instances and their relationships in the ontology should be used for
forward chaining, the “Ontology Style sheet” is not required and only the “Annotation Style
sheet” is used. Other ontology information is not required, so we do not transform them. The
transformation process is described in this section.

34

First of all, the OWL Meta-model (OWL.clp) file is loaded directly to the Jess. Next step is
using the XML file of the selected ontology (Figure 5.10) for adding a new tag to it. This new

tag “<?xml-stylesheet type="text/xsl" href="OWLAnnotation2Jess.xsl"?> > should be inserted to the
XML file(Figure 5.11).

File Edit Format View Help
<?xm] wversion="1.0"7> -
<!DOCTYPE rdf:RDF [{'ENTITY owl "htt //www w3.org/2002/07 fowl#" = <!
5.com/2005,/08/07 /xsp. xmins:swrl="http:// wew.w3. org/2003/11/SWF1#
./////////////////////////////// /i // object Properties / /////
</Restriction= fs:range> </0ObjectProperty> <!--
I&pl Control_unit' /> ﬁ/Restr1ct1on> <,/rdfs:subClassof> <
| - <l - p:// wew -ontologies. com/2009/5teamBoiler. owl#Temperatu
<l-- //////////////////////////// //////////////////////////////////////
||lump_failure -— <NamedIndividual rdf:about="&0ntologyl270064149; Feeding_p
4149;Event” /> <Onto1ogy12?0064149 cancCause rdf: resource_ &Onto1ogy12?
0gy12?0064149;Event”/} <Unt010?y1270064149:cancause rdf :resource="&0n
Iy12?0064149;Pump_no_action_wh11e_shou d_action"> <rdf:type rdf:resour
amedIndividual> <l-= http://www.0w1—0nt01091es.com/2010/0nt010gy12?00
medIndividuals <l - httq://www.0w1—0nt010g1es.com/ZUlO/onto1ogy12?UUE
ccident” /> </NamedIndividual> <!-- http://www.owl-ontologies. com/2
http://owlapi.sourceforge. net -->
4| om | k

Figure 5.10: XML file of selected ontology

| steamBoilerTransformation - Notepad Elﬂlg

File Edit Format WYiew Help
<?xml version="1.0"7>

»

<?xm]-stylesheet type="text/xs1" href="0OWLAnnotation2Jless.xs1"7> '

<!DOCTYPE rdf:RDF [ﬁ'ENTITY ow1 "http://www.w3.org/2002/07 fowl#" > <!
es. com/2005/08/07 /xsp. 1n5:5wr1=”http://www.w3.0ﬁg/2003/11/5wr1#“ |
//////////////////////////////// /o // object Properties / e
</Restriction> </rdfs:range> </0bjectProperty= <l-- ‘
&pl control_unit™ /> 4/Restr1ct1on> <,/rdfs:subClassof>
p"/= <!-— http://www. owl-ontologies. com/2009/5teamBoi ler. owl#Temperat
<l-- ///////////////////////////// ///////////////////////////////////// |
ump_failure -—> <NamedIndividual rdf:about="&0ntologyl270064149;Feeding_| p
4149; Event"” /> <Unt0109y12?0064149 canCause rdf:resource= &ontoWogyl |
ogy12?0064149;Event”/> <0nto1o?y12?0064149:cancause rdf :resource="8&0n
y1270064149; Pump_no_action_while_shouTld_action"> <rdf:type rdf:resour
amedIndividual> <l - http://www.0w1—0nt01091es.com/2010/0nt010gy12?00‘—
medIndividuals <! - httq://www.ow1—ont010g1es.com/ZOlU/ontoWogylZ?OOﬁ
ccident” /> </NamedIndividual> <!-- http://www.owl-ontologies.com/2 ~

4| 2

m

Figure 5.11: Adding a new tag to the XML file of selected ontology

After adding the new tag, this file should be saved as a new XML file (for example
Transformation.xml). The new XML file transforms the ontology annotations to Jess
assertions. When the new XML file is executed, the result would be a set of facts that can be
loaded to the Jess and the inference engine can use them for inference. Figure 5.12 shows an
example of ontology which is transformed to some Jess assertions. It is important that, all
three files, the Annotation Style sheet (OWLAnnotation2Jess.xsl), the ontology XML file and
the XML file which a new tag added to it, are stored in the same folder.

35

(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type") (subject "http://www.owl-
ontologies.com/2010/0Ontology1270064149.ow!") (object "http://www.w3.0rg/2002/07/owl#Ontology")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type") (subject "http://www.owl-
ontjlibgies.com/2009/SteamBoiler.owl#delivers") (object
"htjR//www.w3.0rg/2002/07/owl#0ObjectProperty"))) (assert (triple (predicate

"h /www.w3.0rg/1999/02/22-rdf-syntax-ns#type") (subject "http://www.owl-

(assert (triple
(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")

(subject "http://www.owl-ontologies.com/2010/Ontology1270064149.owl")
(object "http://www.w3.0rg/2002/07/owl#Ontology")))

(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type") (subject
"http://www.owl-ontologies.com/2010/Ontology1270064149.owl#Over_pressure") (object

LI AR I R D A~ IINNY INT [Aaviil HN A AAd LA A A Al))

Figure 5.12: Jess assertions after transforming the ontology annotations

This transformation contains many Jess assertions, but we need only the triples that give
information about causes and consequences concepts to perform forward chaining over them.
Thus, these triples should be extracted from other Jess triples.

5.6 System design

This chapter explains the design of the complete system, including an overview of developed
Jess files and their interactions. As described, the Jess inference engine is used in this project
to manipulate and improve our knowledge of a specific domain. After building the ontology,
the XML syntax of it should be transformed to the Jess assertions and the result of this
transformation would be a set of Jess assertions which the inference engine can use them for
inference. When we are sure that the Jess Developer's Environment installed correctly in
Eclipse, we can start developing the events chain generation system. The event chains
generation system contains three files:

OntologyTransformation.clp

This file contains the OWL metamodel which defines all the required templates and rules that
used in the transformed OWL file. In addition, the transformed ontology annotations (Jess
assertions) should be inserted into the specified part in the code. The result of executing this
file would be a set of triple facts. Some of these facts are displayed in Figure 5.13.

36

f-0 (MAIN::triple (predicate "http://www.w3.org/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2010/Ontology 1279.owl1")
(object "http://www.w3.0rg/2002/07/owl#Ontology"))

-1 M ::triple (predicate "http:/www.w3.org/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontolgies.com/2009/SteamBoiler.owl#delivers")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty"))

f-2 (MAIN::triple (predicate "http://www.w3.org/22-rdf-syntax-ns#type")

(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#has_a")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty"))

f-3 (MAIN::triple (predicate "http://www.w3.org/22-rdf-syntax-ns#type")
(subject "http://www.owlntologies.com/2010/Ontology1270064149.owl#CanCause")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty"))

f-4 (MAIN::triple (predicate "http://www.w3.0rg/2000/01/rdf-schema#range")
(subject "http://www.owlntologies.com/2010/Ontology 1270064 149.owl#CanCause")
(object "http://www.w3.0rg/2002/07/owl#IDATBOZB"))

Figure 5.13: Triple facts

EventExtraction.clp

The asserted facts to the working memory contain all the ontology annotation information, but
we need only the information about events. Therefore, via EventExtraction file, we extract
only facts that give information about event causes and consequences which have the
"CanCause" predicate. For example the following fact should be extracted:

Without namespace declarations:

(triple (predicate "CanCause')
(subject " Vessel rupture')
(object "leaking"))

With namespace declarations:

(triple (predicate ""http://www.owl-ontologies.com/2010/Ontologyl.owl#CanCause'')
(subject "http://www.owl-ontologies.com/2010/Ontologyl.owl# Vessel rupture')
(object "http://www.owl-ontologies.com/2010/Ontology1.owl#leaking'))

This fact explains: Vessel rupture — CanCause — leaking. When all facts with CanCause
predicate are extracted, the extracted facts are converted to other facts and all the namespace
declarations are removed. Forward chaining can be implemented easier over these facts than

the triple PSO facts. For instance the above fact converts to the following fact and all the
namespace declarations are removed:

(event_route (from " Vessel rupture") (to "leaking'))

Figure 5.14 illustrates the result of this event facts extraction.

37

Ontologies and their elements are identified using Internationalized Resource Identifiers
(IRIs) [20]. The ontology IRI identifies a particular version from an ontology series — the set
of all the versions of a particular ontology identified using a common ontology IRI. The "IRI"
of the related ontology should be entered in this file (in the specified location in the code).
The ontology IRI should be inserted only the first time that we want to use a selected ontology
for generating event chains. When we want to update the ontology and then the chains, it is
not required to insert the ontology IRI again.

f-203 (from “Water_level indicator_fault™) (to "pump_action_while_should not_action™))
f-204 (from "Water_level indicateor_fault™) (to "Pump_no_action_while_ should_action™))
f-2@5 (from "Water_level exceeds_max") (to "accident™))

f-206 (from “Vessel rupture”) (to "leaking"))

f-206 (MAIN::event_route (from "Vessel_rupture") (to "leaking"))

f-218 (MAIN::event_route (from "Tempeture_indicater_fault") (to "Give_less_hot_by_heating_element"))
f-211 (MAIN::ewent_route (from “Pump_no_action_while_should_action™) (to "Too_low_water_level™))
f-212 (MAIN::event_route (from "Pressure_indicator failure™) (to "Over_pressure_not_indicated"))
f-213 (MAIN::ewvent_route (from “Over_pressure_not_indicated") (to "No_protective_action™))
f-214 (MAIN::event_route (from “Over_pressure") (to "accident™))
f-215 (MAIN::event_route (from "Ne_protective_action™) (to "accident™))
f-216 (MAIN::ewent_route (from “Give_more_hot_by_heating_element") (to “"Too_hot_vessel™))
f-217 (MAIN::event_route (from "Give_more_hot_by_heating element™) (toc "Over_pressure"))
f-218 (MAIN::ewvent_route (from “Give_less_hot_by_heating_element™) (to “Not_enough_steam_produced”))
f-219 (MAIN::event_route (from “Feeding_pump_failure”) (to “pump_action_while_should_not_action™))
f-228 (MAIN::event_route (from “"Feeding_pump_failure") (to "Pump_no_action_while_should_action™})

¢

f-221 MAIN::event_route (from “Faulty Command_of_Controller”) (to "pump_action_while_should_not_action"))

Figure 5.14: Event facts extraction

ForwardChaining.clp

As described, forward chaining is one of the main methods of reasoning. For developing this
file the forward chaining algorithm is used. In this file, previously created facts (extracted
event cause-consequence facts from the transformed ontology) are used for reasoning. After
running this file, the result would be a set of event chains which starts from an initial event
(the initial event should be inserted by the user) to a final accident. Each chain may contain
two or more events. Description for implementing the forward chaining algorithm is provided
in Section 5.7.3.

5.7 A real world example

The developed system is tested with a real world example (Steam Boiler system); to see if the
expected chains based on the inserted initial event can be generated with the prototype
system. This section contains description of a simple steam boiler, testing the prototype
system with the steam boiler example, forward chaining algorithm and the final result of the
implemented test.

5.7.1 Steam boiler

A steam boiler is a device used to create steam by applying heat to water. A simple steam
boiler contains components such as: vessel, heating element, controller, feeding pump, water
level sensor and pressure sensor. The water level and steam pressure in the vessel should
remain to specific values. The controller receives pressure readings from the sensors and
adjusts the heater state. The pressure of the vessel should not exceed a predefined value. If

38

steam pressure exceeds this predefined value, the controller should turn off the heater and the
heater should be turned on if the steam pressure goes below it lowest value. Failure to
pressure sensors can cause an explosion. Water level sensors control the water level in the
vessel and sends signals to the controller. If water level exceeds the predefined value, the
controller turns off the feeding pump. If water level goes below its lowest level, controller
turns on the feeding pump. The steam boiler shown below is a simplified version of an
industrial steam boiler. For having a simple system, important components such as the feeding
tank and the blow down valve are left out [21]. Figure 5.15 is an illustration for a simple
steam boiler system.

5.7.2 Testing the developed system with the steam boiler example

In order to examine the developed system and observe if it works as expected and the desired
result can be produced, a test is performed. For implementing this test, we created an ontology
with the specified format for the steam boiler system, in which an Event class is created,
different event instances are added and then, information about direct connections between
event cause to the consequence event is defined, an even instance to another event instance
(Figure 5.16). Some of these direct connections between causes and consequences for the
steam boiler system are presented here:

Vessel_rupture > leaking

leaking = accident

Pressure_indicator failure > Over pressure_not_indicated
Over_pressure_not_indicated - No_protective_action
No_protective action = accident

These events are added to the ontology as event instances (individuals) of the “Event” class.
Then, the related “CanCause” relationships are created between different event instances. For
example:

Vessel rupture CanCause leaking

Figure 5.17 illustrates a number of sequential events for the steam boiler system. Some of
these sequential events cause an accident in the environment (1, 2, and 4). It is expected that
the prototype system will be able to generate these chains after inserting the initial event; but
the chains which do not terminate to an accident event should not be generated by the system
(for example the third chain). After running the program, the user should insert the initial
event. Then the system performs forward chaining over the Jess facts and the expected chains
are created.

39

Feed water

230V AC

To air

Process
_N' Steam
|
Control
Unit Control
Unit

Figure 5.15: Illustration for a simple steam boiler system [21]

File

<A| > | @ Ontology1 2700641 49 (hittp: e cvvl-ontalogies comi20l DJOMWBM 49 vl

Eclit iews

Reazoner

Toolg

Refactor Window Help

Active Ontology r Entities r Clazses r Ohiject Properties r Data Properties

Class hierarchy (inferred) |
Class hiararehy

V- Thing

Eoiler
Control_Unit
Event
Feeding_Pump
Heating_Element
Minimum_Water |
Predefined_Maxi
Pressure_lIndicat
Pump
Steam
Temperature_Ind
Vessel
Water_Level_Ind

indivicusts) GWLYiz || DL Guery || OntoGraf

[Memberslist | Members list infened) |

ol

Faulty_Command_of_Control/*
Feeding_pump_failure
Give_less_hot_by_heating_e
4 Give_more_hot_by_heating_
No_protective_action
4 Not_enough_steam_produce
Over_pressure
Over_pressure_not_indicate|
Pressure_indicator_failure
4 Pump_no_action_whils”Shoy
4 Tempeture_indiga®r fault

[Annotations [Usage |

pture

Annotations

Same individuals

Different individuals ohject property assertions

Vessel_rupture
4 water_level_exceeds_max
4 Water_level_indicator_fault

+

Negative data praperty assertions

leaking
4 pump_action_while_should_r,|

1

\ [»

/] I [

Figure 5.16: Steam boiler ontology which contains cause-consequence concepts

40

1 Pressure_indicator_failure 9 Over_pressure_not_indicated 9 No_protective_action 9 accident

2 Vessel_rupture > leaking = accident

Give_less_hot_by_heating > Not_enough_steam_produced

3,4 Tempeture_indicator_fault <§

Give_more_hot_by_heating 9 Over_pressure 9 accident

Figure 5.17: Some event chains for steam boiler system

5.7.3 Forward chaining algorithm [9]
Forward chaining is implemented by defining a set of rules and applying these rules to the

Jess facts. These rules are in the following format:
If LHS Then RHS

For example:
(defrule R1 (A) => (assert (B)))
R1: If A is in working memory then assert B to working memory

Rules fire when their LHS are satisfied or matched by facts in the working memory. When
rules fire, additional knowledge is gained. The consequent of the rules may be an assertion of
new facts to the working memory. When rules fire, they may create a situation where other
rules can fire as well. This form of inference is called forward chaining [9]. In this project, we
need to perform forward chaining over cause—consequence facts. These facts give Information
about direct connections between events:

Cause event > Consequence event
event A > Event B

The facts are asserted to the working memory in the following form:
event_route (from "event A")(to "event B")

For example:

event_route (from "Tempeture_indicator_fault") (to “Give_more_hot_by_heating_element")
event_route (from "Give_more_hot_by_heating_element") (to "Over_pressure")

event_route (from "Over_pressure") (to "accident")

A set of rules is then defined to generate chains from initial event to accident. A fact in which

the initial event (inserted by the user) and the final event(accident) are stored, should be
created. The following template is used for this purpose:

41

(deftemplate my_event_chain (slot InitialEvent)(slot FinalEvent))

The “FinalEvent” slot is set to “accident”, because we want to generate chains with accident
as the final event. When the user inserts the initial event, this event is stored as the
“InitialEvent” slot in the “my_event_chain” template and a new fact asserts to the working
memory. For example:

my_event_chain (InitialEvent "Feeding pump failure") (FinalEvent "accident")

After inserting the initial event, the following rules are executed over the “event route” facts
to test whether a chain can be created from the initial event to accident. These rules are taken
from the “Flight Advisor” example in [9], but some modifications are made in the rules for
using them in the event chains generation system.

Rule 1:
(defrule from-start
(my_event_chain (InitialEvent ?start))
(event_route (from ?start)(to ?intermediate-location))
=
(assert (reachable (from ?start)(to ?intermediate-location))))
Based on this rule if any “event route” facts in the working memory exist which have the
“from” slot as the inserted initial event, then new facts will be asserted to the working
memory. These new asserted facts correspond to the following template:

(deftemplate reachable(slot from)(slot to))

and gives information about all consequence events that occurred because our initial event is
occurred. For example Figure 5.18 presents a set of event route facts. It can be seen that
applying rule 1 to these facts causes two activations, B and C.

A—B G
A—C

B—D A<:

C—F
B—-G
Initial event: A B
ApplyingRule1: (1) A <
Final event: E C

Figure 5.18: Applying Rule 1 to the facts

42

Rule 2:
(defrule to-intermediate
(reachable (from ?start)(to ?intermediate-locationl))
(event_route (from ?intermediate-locationl)(to ?intermediate-location2))
=
(assert (reachable (from ?intermediate-location])(to ?intermediate-location2))))

This rule uses our new facts created in the rule 1 and our event route information for creating
all the outgoing events from any of these found events. Applying rule 2 to the previous
example (Figure 5.18) would result in two phase of activations. It can be seen in Figure 5.19
that after applying rule 2, all the events that had the root B or C have been detected

G
e

ApplyingRule2: (1) B~——» 1D

C—>» F

@) D—»E

Figure 5.19: Applying Rule 2 to the facts

Rule 3:
(defrule to-destination
(my_event_chain (InitialEvent ?start)(FinalEvent ?destination))
(reachable (from ?start)(to ?intermediate-locationl))
(event_route (from ?intermediate-location1)(to ?destination))
=>
(printout t " (" ?start ") > (" ?intermediate-locationl ") 2> (" ?destination") " crlf))

This rule tests whether any of new asserted facts (“reachable” facts) has the “from” slot as the
inserted initial event and if there is any “event route” facts that has the “to” slot as accident.
If these two facts exist, then a chain can be generated and printed. The rule 3 prints a chain
which contains three events. Similar to this rule, other rules are defined in the main program
for printing chains with more events. Currently the system can print event chains with limited
number of events in a chain. The rules for creating all connections in a chain are already
defined; therefore we only require defining a rule which enables printing unlimited number of
events in a chain. Figure 5.20 presents after applying rule 3, the desired event routes from the
initial event to the final event are identified.

43

G

7

B
— > D—>E printed chain:A—> C—> F
ApplyingRule3: A <:
c—>» F

Figure 5.20: Applying Rule 3 to the facts

5.7.4 Final result

The result of the test was generation of a set of event chains. As expected forward chaining
performed over Jess facts correctly and the rules are activated and fired truly. Figure 5.21
shows an example of rule activations for steam boiler example, after inserting the initial event
“Vessel rupture”. Finally the following chain will be generated:

Vessel_rupture— leaking — accident
Figure 5.22 presents this event chain that is printed to the Eclipse console view after inserting

the initial event “Vessel rupture”. More tests performed to the system. The results of these
tests with some snapshots are provided in Appendix C.

44

a|dwexa 13]10q weadls 3y} 40§ SUOIIeA}Ie JNY :TZ'S d4nSi4

€ 3|
Suid|dde uaye
$108} pa12312Q

1 2! Zanl
SuiA|dde 1ayye SuiAdde sayye
e} pausssy 1oe} papassy
—_—
JUaA3 |BULY
puUe Juaia
[BRIUIS3I0NS k1 eay~Aq 30y 30w aATD,,
1ey1oeyay] f 2TIyw uor3de ou dung,
Joys aTTym uotioe dund,

‘NIVW 2[NpPow UT S3DR} Z@Z 4O [0} © JO
- ((,3u2pT20, 03) (,Buryear, wouy) arqeydeau:

((.uot3oe pTnoys aTTym uoTide ou dund, 03) (. aunyrey dund Surpaad, wouy)
((,uot3oe j0u"prnoys a[Tym uotride dwnd, 03) (,aJnyres dund Sutpaai, wody)
((.pa>npoad wea3s ydnoua 3oN, 03) (,I3uawa? Sutieay Aq 3oy $S3] 2ATO, wWOJ})
((,2anssaud uang, 03) (,3uawaTa Butieay AQ 30y 2J0W IATD, WOJ4)
((.1355aA 304 00}, 03) (,3uawaa Surieay Aq 304 3Jow IATID, wWOJy)
((.3uaprooe, 03) (,uoT3de aAT3Ida30ud oOpN, wouy)
((.3uaptode, 03) (,24nssaud JanQ, wouy)
((,uot3oe aAT3ida30ud on, ©03) (.pa23ed>Tpur 3Jou aunssaud JanQ, wouy)
((.pa3e>Tput 30U aunssaud Jang, 03) (,24NTTE4 JOIBITPUT 2JNSSISd, WOJL)
((,.TanaT s23em moT o0y, 03) (,UOT3IDE PTNOYS a[TYM UOT3IDR ou duwngd, WOJ})
((.3uawata Burieay Aq 3oy ssay aAa1o, 03) (.3I[Nes Jo3edTpuUT aJunladwa), woiy)
((,3uawata Sutieay Aq 3oy adow an1o, 03) (,3[nes Jo3edTpur aJniadwa), wouy)
((.3uaptooe, 03) (19553 304 00, WOJ})
((.1@ssan 3oy ooy, 03) (,.[2A3] Jajem MOT 0O], WOJ})
((,8utyeat, 03) (.aun3dnu Tassap, wouy)
((,3uapTode, 03) (, Xew Spaadxa [aA3] Jaiepm, woJ})
((,uoT3>R pINOYS FTTYM UOTIOR ou duwnd, 03) (,3ITNeS JOIRDITPUT [IAI] JI3eM, WoJy)
((.uot3de 30U prnoys aTTym uotride dund, 03) (,3TNe4 JOIEDTPUT TIAIT J3jeM, wouy)

((.3uapra2e, 03) (,Bupyear, wouy)

((, xew Spaadxa TaAI] J23eM, 03) (,uoT3de Jou PINOYs ITTYM uoride dund,k wouy)

» ((.8uryear, 03) (,.24nidnu Tassap, wouy) arqeydead:
- ((,3UIPTOOR, JUIAITRUTL) (,.24n3dnu 3SS3A, JUSAITRTITUI) uTeyd Juanad Aw:
3eay Aq 3oy ssSaT 2ATD, 03) (,JAIT043U0) 4O puewwo) AJ[ned, woJj)
031) (,43770243u0) 40 puewwo) A3[ned, wouy)
03) (. J42TT043uU0) 4O pueuwwo) A3[ned, woJj)
03) (,JaTT043u0) 40 puewwo) A3[ned, wodj)

21N0J JUIAI:
231N0J JU3AI:
23N0J JUaA:
23N0J JUIAI:
21N0J4 JUAA:
23N0J JUaAI:
23N0J JUIAI:
23N0J4 JUIAI:
33N0J JUIAI:
23N0J4 JUIAI:
23N0J JUIAI:
21N0J JUAA:
23N0J4 JUIA:
23IN0J JUIAI:
21N0J4 JUaA2:
23N0J4 JU3AI:
23N0J JUIA:
23N0J4 JUIAI:
23N0J JUIAI:
23N0J JUIAI:
23IN0J4 JUIAI:
23N0J JUIAI:
23N0J4 JUAA:
21N0J JUIAI:

INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
INIVW)
TNIVW)
INIVW)
INIVW)
INIVW)
INIVW)
TNIVW)
INIVW)
INIVW)
INIVW)
INIVW)

45

EEERFEREEREE RN R R R R R R R e o o e o ok e o ok e o oo e o e ke o e e o e i o e e o e i o e o e e o o e o e e o e e o e ke o e ke ol ke ke ol ke ke o e ke o ke ke o
*

* With the initial event: Vessel_rupture D The following event chain can be infered:
*®

*{Vessel_rupturgy- ->

*®

e o e e o e e o e e o e e o e o ok e o o e o o e o o e o e e o e ke o e i o ok i o ke ke o e ke o e ke o e i o e ke e e i e e i e e o e e o e e ol o e ol ol e ol ke ke ol ke ke o ke ke o e ke o ke e of

Figure 5.22: Generated evens chain after inserting the initial event

6 Conclusions and further works

In this chapter we first present summary and some concluding comments of this project. After
this, we discuss some further work.

6.1 Conclusions

The goal of this project was to facilitate safety analysis by developing a system model which
enables semi-automatically generation of event chains for a selected domain using an
ontology of the domain which contains safety expert knowledge (cause-consequence
concepts). The following points summarize the outcomes of this project.

To achieve the goal, related information and methods were collected and studied. During this
information gathering, we learned that a semantic reasoner should be used for developing a
system which can reason about cause-consequence concepts of a domain and generates
related event chains. We then performed a survey of available methods for reasoning. The
survey identified several methods of reasoning which could be used in this project. After
reviewing these methods, the forward chaining method was selected for reasoning due to its
particular features - which was described in Chapter 3 - such as its implementation simplicity.

Safety expert knowledge containing information on previous accident experiences and the
cause-consequence concepts in a specific domain stored as an ontology. The semantic
reasoner (Jess) used this ontology for reason about. For implementing the forward chaining
algorithm for reasoning over the ontology, a set of rules are defined in the Eclipse platform.
The result of applying these rules over the ontology was the generation of sequential events
(event chains) which end with an accident event. Automatically identifying event chains can
facilitate safety analysis for a complex system, reduce the amount of faults that results from
manually identifying sequential events, increase the accuracy of safety analysis and enables
(re)use of safety expert knowledge. Thus, when event chains that end with an accident event
are identified, we can change the system so that we can prevent them from occurring.

This system model implemented the necessary ontology for a real world example (steam
boiler).The causes and consequences concepts of the steam boiler system were added to its
pre developed ontology. This ontology file was then transformed for using in a Rule Engine
(Jess). Rules for implementing the forward chaining algorithm were defined and applied for
reasoning about causes and consequences concepts in the transformed ontology. The result of
this implementation was acceptable and the expected event chains were generated
automatically. Snapshots for this implementation can be found in the Appendix C.

Other benefits of using this system are:

1) Updating event chains after ontology modifications is easy. This updating may result
in the generation of new chains or modifications to the previously generated chains,

47

while manually tracking event sequences after a small modification to the ontology for
a large system is difficult. For example, if the event cause-consequence connections
modified in the ontology: (A CanCause B) is modified to (A CanCause C), the related
event chains will be updated automatically after transforming the modified ontology to
the Jess usable format.

Multiple ontologies can be used simultaneously for reasoning. Related chains will be
generated based on the inserted ontologies. This feature would be useful when we
need to use more than one ontology simultaneously for safety analysis, for example a
domain ontology and an environment ontology

The developed system will facilitate safety analysis by effective (re)use of safety expert
knowledge in the form of ontologies and improving safety knowledge of the selected domain.

6.2

Further works

Enhancing the event chains generation system with some features will increase its benefits for
safety analysis. Some of these features are explained in this section and considered as further
work of this project.

1)

The current event chains generation system is capable of generating chains which start
from an initial event and end with an accident event.

Initial event — — accident

But in the real world two independent events may cause a common accident (A or B)
or in another situation, two events occurring at the same time cause an accident (A and
B). The developed chains for these cases would be like following:

[(event A) and (event B)] — — accident
[(event A) or (event B)] — — accident

Implementing these features requires adding logical rules for reasoning to the current
system and defining these rules is not complex.

In a real world situation, the (A CanCause B) relation can be conditional on a third
event. This means that the event A can cause the event B if the event C already has
taken place. The system should be able to generate the relevant chains based on
existed conditions. For example the following connection will be part of an event
chain if its condition (“C”) is satisfied: ((A CanCause B) if C). For this purpose, our
idea is to add this conditional information - for example information about
dependency of the (A CanCause B) relation to the event “c” - to the ontology which
all the cause-consequence concepts are stored. The reasoning must then be performed
based on these conditions. If the condition for a CanCause connection satisfied, this
connection will be used for forward chaining.

48

3)

The enhanced system can import ontologies which can be used for reasoning via its
GUI. By enhancing the system with this feature, the OWL transformation to Jess
assertions will be performed automatically. Currently a software tool is developed
which enables automatically transforming OWL ontologies to COOL language of
CLIPS [22]. This software performs the transformation task very well, but the
transformed file should be modified in order to be usable with the Jess inference
system.

The current system can print event chains with a limited number of events in a chain.
The rules for creating all connections in a chain are already defined; therefore we only
need to define a rule which enables printing an unlimited number of events in a chain
(Figure 6.1). This rule can use the event connections created from other defined rules,
for printing.

Up to “n” events in a chain can be printed
—
Initial event 2> event1 2 event2 - eventn

Figure 6.1: A chain with “n” events

The GNLQ tool is a knowledge-based, guided requirements elicitation environment.
Since the GNLQ tool currently has some capabilities for safety analysis, we should see
if it is possible to upgrade this tool with the chaining algorithms that are used for
developing the event chains generation system. If this upgrading is possible, the
GNLQ tool is not only a knowledge-based guided requirements elicitation
environment, it will become also a knowledge based safety analysis environment.

49

Bibliography

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

Silvianita, Mohd. Faris Khamidi, Kurian V. John, “Critical Review of a Risk
Assessment Method and its Applications”, International Conference on Financial
Management and Economics, Singapore, 2011.

Tor Stélhane, Stefan Farfeleder, Olawande Daramola, "Safety analysis based on
requirements"”, Norwegian University of Science and Technology and Vienna
University of Technology, 2011.

Inah Omoronyia and Tor Stalhane, “Guided Natural Language and Requirement
Boilerplates”, TDT4242 Requirements and testing, Trondheim, Norway, 2012.

Tor Stalhane, “Safety Analysis and Boilerplates”, Presented in Technical University of
Wien and IFE - Halden, Wien, Austra, 27 November 2012.

National Institute of General Medical Sciences, (2013) “protégé website”, [Online]
Available from: http://protege.stanford.edu/ [Accessed 25.04.13].

Natalya F. Noy and Deborah L. Mc Guinness, “Ontology Development 101: A Guide
to Creating Your First Ontology”, Stanford University, [Online] Available from:
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html [Accessed 20.03.13].

The JBoss Drools team, “Drools Expert User Guide”, [Online] Available from:
http://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/index.html
[Accessed 25.04.13].

Robinson Selvamony, “Introduction to the Rete Algorithm”, SAP Labs, India, 17
December 2010.

Martin J. Kollingbaum, “Revision of Jess”, Programming Expert Systems with Jess
CS3019, Knowledge-Based Systems, Lecture 21, University of Aberdeen, United
Kingdom.

[10] Charles L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem*”, Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, U.S.A, April 1981.

[11] Yong-Hua Song, Allan Johns and Raj Aggarwal, Expert systems: An introduction. In

“Computational Intelligence Applications to Power Systems”, Beijing, Science Press
and Kluwer Academic, pp. 8-23.

50

[12] Micheal Hewett, (June 06, 2005) “Algernon - Rule-Based Programming”, [Online]
Available from: http://algernon-j.sourceforge.net/ [Accessed 10.05.13].

[13] Ernest J. Friedman-Hill, Sandia National Laboratories, (5 November 2008) “Jess®
the Rule Engine for the Java™ Platform”, Version 7.1p2, [Online] Available from:
http://www.jessrules.com/jess/docs/71/index.html [Accessed 25.04.13].

[14] Henrik Eriksson, “JessTab Tutorial”, Presented in the 11th International Protégé
Conference, Amsterdam, Netherland, 23 June 2009.

[15] Fabien L. Gandon and Norman M. Sadeh, (July 16, 2003) “OWL inference engine
using XSLT and JESS”, [Online] Available from:
http://mcom.cs.cmu.edw/OWL/OWLEngine.html [Accessed 01.04.13].

[16] Leonid Kof, “Using Application Domain Ontology to Construct an Initial System
Model”, Faculty of computer science, Technical University of Munich, Boltzmannstr,
Munich, Germany, 2004.

[17]1 L. Kof, “An Application of Natural Language Processing to Requirements
Engineering — A Steam Boiler Case Study”, Contribution to ICSE, 2004.

[18] Safoura Shamsolketabi and Majid Navaii, “An overview on Protégé manual”,
Department of Computer and Information Science, NTNU, Trondheim, Norway,
August 2012.

[19] Ernest J. Friedman-Hill, Sandia National Laboratories, (Last modified: 12 Oct 2012)
“Jess® the Rule Engine for the Java™ Platform”, [Online] Available from:
http://www.jessrules.com/ [Accessed 10.05.13].

[20] The World Wide Web Consortium (W3C), (11 December 2012) “OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntax (Second
Edition)”, [Online] Available from: http://www.w3.org/TR/owl2-syntax/ [Accessed
01.04.13].

[21] Tor Stalhane', Stefan Farfeleder’, Olawande Daramola’, “Safety analysis based on
requirements”, Norwegian University of Science and Technology1 and Vienna
University of Technology?, 2010.

[22] Georgios Meditskos, Nick Bassiliades, “Towards an Object-Oriented Reasoning

System for OWL”, Department of Informatics, Aristotle University of Thessaloniki,
Greece, 2005.

51

Appendix A — Jess Rule Engine requirements [19]

This appendix contains an overview of requirements that must be available for using the Jess.
Jess is a programmer's library written in Java. Therefore, to use Jess, you'll need a Java
Virtual Machine (JVM). Be sure your JVM is installed and working correctly before trying to
use Jess. To use the Jess DE integrated development environment, you'll need version 3.1 or
later of the Eclipse SDK from http://www.eclipse.org. Be sure that Eclipse is installed and
working properly before installing the Jess DE. The Jess language is a highly specialized form
of Lisp. The user must have a Java runtime system and know how to use it to:

e run a Java application
e deal with configuration issues like the CLASSPATH variable
e (optional) compile a collection of Java source files

Also the user must have general familiarity with the principles of programming.

52

Appendix B — Developed codes

This appendix contains all developed codes in this project. The codes are developed in three
files:

1) OntologyTransformation.clp
2) EventExtraction.clp

3) ForwardChaining.clp

The first part of the code in “OntologyTransformation.clp” is the “OWL Meta model” which
is taken from [15]. This OWL meta model defines templates that exist in an OWL ontology.

OntologyTransformation.clp

;535 OWL Meta model

;3; Declaring the triple template
(deftemplate triple "Template representing a triple"
(slot predicate (default ""))

(slot subject (default ""))

(slot object (default ""))

)

;;; Declaring facts of the meta-model of OWL -------------meeeeeem
(deffacts OWLModel "Facts of the meta-model of RDFS and OWL"

;;; Resource is a Class

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2000/01/rdf-schema#Resource")
(object "http://www.w3.0rg/2002/07/owl#Class")

)

;;; Class is a subtype of Resource

(triple

(predicate "http://www.w3.0rg/2000/01/rdf-schema#subClassOf")
(subject "http://www.w3.0rg/2002/07/owl#Class")

(object "http://www.w3.0rg/2000/01/rdf-schema#Resource")

)

;;; Class is a Class

53

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#Class")

(object "http://www.w3.0rg/2002/07/owl#Class")

)

;3; Thing is a Class

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#Thing")

(object "http://www.w3.0rg/2002/07/owl#Class")

)

;;; Nothing is a Class

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#Nothing")

(object "http://www.w3.0rg/2002/07/owl#Class")

)

;;; Property is a Class

(triple
(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property")
(object "http://www.w3.0rg/2002/07/owl#Class")

)

;;; Domain is a Property

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2000/01/rdf-schema#domain")
(object "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property")

)

;;; Range is a Property

(triple

(predicate "http://www.w3.0rg/2000/01/rdf-schema#range")
(subject "http://www.w3.0rg/2000/01/rdf-schema#domain")
(object "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property")

)

;3; 'Data Type Property' is a Class

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#DatatypeProperty")
(object "http://www.w3.0rg/2002/07/owl#Class")

)

54

;3; 'Object Property' is a Class

(triple

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#ObjectProperty")
(object "http://www.w3.0rg/2002/07/owl#Class")

)

;3; 'Object Property' is a subtype of Property

(triple

(predicate "http://www.w3.0rg/2000/01/rdf-schema#subClassOf")
(subject "http://www.w3.0rg/2002/07/owl#ObjectProperty")
(object "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property")

999)9
;35 The transformed ontology annotations should be entered here:

(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2010/Ontology1270064149.owl")
(object "http://www.w3.0rg/2002/07/owl#Ontology")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#delivers")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#has_a")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2010/Ontology1270064149.owl#CanCause")
(object "http://www.w3.0rg/2002/07/owl#ObjectProperty")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#Feeding Pump")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#Heating_Element")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com.owl#Minimum_ Water Level")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/.owl#Predefined Maximum_ Water Level")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#Pressure _Indicator")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#Pump")
(object "http://www.w3.0rg/2002/07/owl#Class")))

55

(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.SteamBoiler.owl#Temperature Indicator")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2009/SteamBoiler.owl#Vessel")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.w3.0rg/2002/07/owl#IDAFFIIB")
(object "http://www.w3.0rg/2002/07/owl#Restriction")))
(assert (triple (predicate "http:/www.w3.0rg/2002/07/owl#onProperty")
(subject "http://www.w3.0rg/2002/07/owl#IDAFFIIB")
(object "http://www.owl-ontologies.com/2010/Ontology1270064149.owl#CanCause")
)) (assert (triple (predicate "http://www.w3.0rg/2002/07/owl#allValuesFrom")
(subject "http://www.w3.0rg/2002/07/owl#IDAFFIIB")
(object "http://www.owl-ontologies.com/2010/Ontology 1270064 149.owl#Event")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2010/Ontology1270064149.owl#Steam")
(object "http://www.w3.0rg/2002/07/owl#Class")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-
ontologies.com/2010/.owl#Faulty Command of Controller")
(object "http://www.w3.0rg/2002/07/owl#NamedIndividual")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-
ontologies.com.owl#pump_action while should not action")
(object "http://www.owl-ontologies.com/2010/Ontology1270064149.owl#Event")))
(assert (triple (predicate "http://www.owl-
ontologies.com/2010/Ontology1270064149.owl#CanCause")
(subject "http://www.ontologies.com/2010 #pump_action_while should not action")
(object "http://www.owl-ontologies.com/.owl#Water level exceeds max")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ntologies.com/2010/Ontology12.owl#Vessel rupture")
(object "http://www.w3.0rg/2002/07/owl#NamedIndividual")))
(assert (triple (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(subject "http://www.owl-ontologies.com/2010/Ontology19.owl#Vessel rupture")
(object "http://www.owl-ontologies.com/2010/Ontology 1270064 149.owl#Event")))
;33 EOF

EventExtraction.clp

(require* OntologyTransformation)

535 Search for predicates that contain '"CanCause''.
(defquery search-by-predicate

"Finds triples with hasbase predicate"

(declare (variables ?predicate))

56

(triple (predicate ?predicate) (subject ?subject) (object ?object)))

;35 Each ontology document can be accessed via an IRI

;;;The "IRI" part of the related ontology should be entered here:

(bind ?result (run-query* search-by-predicate (str-cat "http://www.owl-
ontologies.com/2010/Ontology1270064149.owl" "#CanCause")))

(deftemplate event _routel (slot from1) (slot tol))
(while (?result next)
(assert (event_routel (from1 (?result getString subject)) (tol (?result getString object)))))

535 Asserted facts from the ontology are in the IRI format, therefore the "Event"
keywords should be extracted from it.
(deftemplate event route (slot from)(slot to))
(defrule upgrade routes
7R <- (event_routel (from1 ?a)(tol ?b))
=>
(retract ?R) ;we remove "event routel" facts and replace "event route" facts with required
keywords.
(assert (event_route
(from (sub-string (+ (str-index "#" ?a) 1) (str-length ?a) ?a))
(to (sub-string (+ (str-index "#" ?7b) 1) (str-length ?b) ?b)))

)

(run)
333 EOF

ForwardChaining.clp

(deftemplate event route (slot from)(slot to))

(deftemplate my event chain (slot InitialEvent)(slot FinalEvent))

(deftemplate reachable(slot from)(slot to))

(deftemplate detected chain (slot InitialEvent)(slot intermediate)(slot FinalEvent))
(watch all)

;35 Rule 1: create all chain legs for events reachable from our initial event.
(defrule from-start

(my_event_chain (InitialEvent ?start))

(event route (from ?start)(to ?intermediate-location))
=>

(assert (reachable (from ?start)(to ?intermediate-location)))

)

(require* EventExtraction)
;3;Get input function (Gets the initial event from the input)
(deffunction get-input()

57

“Get user input from console.”

(bind ?s (read))

(return ?s))

(printout t "Please insert the initial event : " crlf)

(assert (my_event chain (InitialEvent (get-input))(FinalEvent "accident™))

;35 All cause-consequence links are created here!
535 Rule 2: creates all chain legs for new events reachable from currently reachable
events
(defrule to-intermediatel
(reachable (from ?start)(to ?intermediate-locationl))
(event route (from ?intermediate-locationl)(to ?intermediate-location2))
==
(assert (reachable (from ?intermediate-locationl)(to ?intermediate-location2))))
(run)
;35 Rule 3, this rule finds event chains with only two event nodes from "Initial Event" to
"accident".
(defrule to-destinationl
(my_event chain (InitialEvent ?start)(FinalEvent ?destination))
(reachable (from ?start)(to ?destination))

=>
(printout t " " crlf)
(printout t sk sk sk st skeosk sk sk sk sk sk sk sk skeoskosk skeskokokoskeskoskoskosk sksk Crlf)
(printout t "* " crlf)
(printout t "* With the initial event: (" ?start") The following event chain can be infered:

" crlf)
(printout t "* " crlf)
(printout t "* (" ?start ")->(" ?destination") " crlf)
(printout t "* " crlf)
(printout t 1034 sie sie sie sk sie sk sk she sk sfe she she sk she she sk sk sk sk s sk sk e sl sie sk she she sk sfe sk sk sk she sk sk sk sk sk skt st stk sk sk skoskeoskokoskokokokn Crlf)
(printout t " " crlf)

)
(run)

;33 Rule 4, this rule finds event chains with three event nodes.
(defrule to-destination2
(my_event chain (InitialEvent ?start)(FinalEvent ?destination))
(reachable (from ?start)(to ?intermediate-locationl))
(event_route (from ?intermediate-locationl)(to ?destination))

=>
(printout t " " crlf)
(printout t 10 sk sfe sie sk sk sk sk sk sk sk sie sk sk sk sk sk sk sk ske sk sk sk ske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeoskeosk sk skeoskoskosk skeoskoskok skeskokok sksk 1 Crlf)
(printout t "* " crlf)
(printout t "* With the initial event: (" ?start") The following event chain can be infered:

" crlf)
(printout t "* " crlf)

58

(printout t "* (" ?start ")->(" ?intermediate-locationl ")-> (" ?destination") " crlf)
(printout t "* " crlf)
(printout t 10 sk sfe sie sk sk sk sk sk sk sk ske sk sk sk sk sk sk sk ske sk sk sk ske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeoske sk sk skeoskosko sk skeoskosko sk skeskokok sksk Crlf)

(printout t " " crlf)

(run)

;33 Rule 5, this rule finds event chains with four event nodes.
(defrule to-destination3
(my_event_chain (InitialEvent ?start)(FinalEvent ?destination))
(reachable (from ?start)(to ?intermediate-locationl))
(event_route (from ?intermediate-locationl)(to ?intermediate-location2))
(event_route (from ?intermediate-location2)(to ?destination))
=>
(printout t " " crlf)
(printout t 103k s s skosk sk skosk sk sk skoskok sk skoskosk sk skoskoskosk sksk 1 Crlf)
(printout t "* " crlf)
(printout t "* With the initial event: (" ?start") The following event chain can be infered:
" crlf)
(printout t "* " crlf)
(printout t "* (" ?start ")->(" ?intermediate-locationl ")->(" ?intermediate-location2 ")->("
?destination™) " crlf)
(printout t "* " crlf)
(printout t 103 e sie sie she sie she she she she sfe she she she she sfe sfe sfe sfe st sk s sk e she she ske she she she sfe sk she she she sfe sfe sfe st st st sk sk sie sk ske sk ske sk sk sk kel skeoskeokn Crlf)

(printout t " " crlf)

)
(facts)

(run)
;3 EOF

59

Appendix C — Test results

This appendix contains some tests on the developed system model with the steam boiler
example. The purpose of the tests is to present that the system is able to generate relevant
event chains based on the cause-consequence concepts that are added to the ontology. The
following presents some event sequences for the steam boiler system that are created
manually using the cause-consequence concepts of the steam boiler system. These cause-
consequence concepts were added to the steam boiler ontology.

60

u3pnoe A uonde aARIAN0Id ON T panedipul lou”aunssaud N0 T 2JnjiejJO1ePUIINSSald
wapie €— supes [€— aimdniTRssan
® <==
@ @ P J1I0NU0Y 40 puRWWOY Aney
® < A
- R - ~ - <
wapie € xew spaancjamaliaem [€1 uomdeTi0u pinoys \o..-..g uonde dwnd |€ eI A
‘)) A
— - — - | - dwnd " 3u
wapine < pssanioy 00y | € pAaRem Mol 00y | € uonde pnoys 3y uonae ou”dwng €—— 2unrejdw P33
0\ — © A
uspde € ainssad a0 € wewape Suneay A 104" 10WBNID
e

A

painposd wea1s yanoua 10N

—

>

1ney 101edipui aumadwa |

0

JUSAS |eul

©

uRWaR Suneay AqQ 10y SS9 aMD

—

@

9

SVEVERTNINT

61

After running the program, the user must insert the initial event. Then forward chaining
performs over the cause-consequence concepts and expected chains will be created. The
chains that do not end with an accident should not be generated by the system.

Please insert the initial event : ‘

=» 1-214 (MAIN::my_event_chailn (InitialEvent "Tempeture_indicator fault™) (FinalEvent "accident™)
==» Activation: MAIN::from-start : +-214, ¥-197

== Activation: MAIN::from-start : f-214, f-193

MAIN: :to-intermediatel: +1+1=1+2+t

FIRE 1 MAIN::from-start f-214, f-198

==» f-215 (MAIN::reachable (from "Tempeture_indicator fault™} (to "Give_less_hot by heating_elemen
==» Activation: MAIM::to-intermediatel : +-215, T-286

FIRE 2 MAIN::to-intermediatel f-215, f-286

==» f-216 (MAIN::reachable (from "Give_less_hot_by_heating_element") (to "Mot_encugh_steam_produce
FIRE 3 MAIN::from-start f-214, f-197

==» f-217 (MAIN::reachable (from "Tempeture_indicator fault™) (to "Give_more_hot by heating_elemen
==» Activation: MAIM::to-intermediatel :; +-217, T-284

==» Activation: MAIN::to-intermediatel : F-217, f-285

FIRE 4 MAIN::to-intermediatel -217, f-285

==> f-218 (MAIN::reachable (from "Give_more_hot by heating element") (to "Over_pressure™))

==» Activation: MAIN::to-intermediatel : f-218, f-2@82

FIRE 5 MAIN::to-intermediatel f-218, f-282

==» f-219 (MAIN::reachable (from "Over_pressure™) (to "accident™))

FIRE 6 MAIN::to-intermediatel f-217, f-284

==» f-228 (MAIN::reachable (from "Give_more_hot_by_heating_element™) (to "Too_hot_vessel™))

==» Activation: MAIN::to-intermediatel : f-228, f-196

FIRE 7 MAIN::to-intermediatel -228, f-196

==> f-221 (MAIN::reachable (from "Too_hot_vessel™) (to "accident™))

MAIN::to-destinationl: =1=1=1+2+t

MAIN::to-destination2: =1=1=1+2=1+2+t

==» Activation: MAIN::to-destination3 : +F-214, f-217, f-284, f-196

== Activation: MAIN::to-destination3 : f-214, f-217, f-285, f-282

MAIN: :to-destination3: =1=1=1+2=1+2+2+t

FIRE 1 MAIN::to-destination3 f-214, f-217, f-285, f-282
P P P P **%****

E

With the initial event: (Tempeture_indicator_fault) the fellowing ewvent chain can be inferred:

1 (Tempeture_indicator fault)-»(Give_more_hot_by heating_element)->(0Over_pressure)-»(accident)

EEEE L EEE D EEE D EEE D EE R e e e e e

FIRE 2 MAIN::to-destination3 f-225, f-228, f-216, f-288

FH A E R * R * R * R o s e oo o e ke o o o e e o o e ke o o o e e o o o ko o o e o o o o ok o e HE kAR
*

T wWith the initial event: (Tempeture_indicator_fault) the following event chain can be inferred:
1
1

(Tempeture_indicater_fault)-»(Give_more_hot_by heating_element)->(Too_hot_vessel)-:(accident)

FH A E R * R * R * R e R L

62

pd _ prd o prd _ _
wapne < uonoe aadAoud oN | paiedipui lou aunssaud RAg | JNnjiej JOIRIPUI 2JNSSAld
P _
w3poe < Sunjea| aimdnuTEssan
® < I
m.u O A m J3||o3U0) JO” puewwo) Ay ney
uapiooe ¢ XBW™ SPa20Xa” [2A3[J21eM uolDe 10U pinoys” Ajiym uonde dwnd A] ANeJI0IBDIPUITRASIRIEM

|assaAT10y 00

[BA3| J21EM” MO| 00)

juapnle

anssaud JRA0

pacnposd wea1s y3noua 10N

&)

uonIE PINOYS 3|IYMuonde ou dwng

¢

ainjiey dwnd Suipaay

N

&)

Juono |eul

1UaWaR Suneay Ag 10y 553] 3AI9

O,

4

yney Joedipul aunadwa)

JuaAa |eniu|

63

Please insert the initial event : h

==» -214 (MAIN::my_event_chain (InitialEvent "Faulty Command_of Centroller”) (FinalEvent "accident™))

> Activation: MAIN::from-start : f-214, f-289

> Activation: MAIN::from-start : f-214, f-218

> Activation: MAIN::from-start : f-214, §-211

==> Activation: MAIN::from-start : T-214, T-212

MAIN: :to-intermediatel: +1+1=142+t

FIRE 1 MAIN::from-start f-214, T-212

==» f-215 (MAIN::reachable (from "Faulty Command_of_Controller™) (to "Give_less_hot_by heating_element™))
==> Activation: MAIN::to-intermediatel : -215, f-286

With the initial event: (Faulty_Command_of_Controller) the following event chain can be inferred:

A

(Faulty Command_of_Controller)->(pump_action_while_should_not_action)-»(Water_level exceeds_max)->{accident)

T4

FIRE 2 MAIN::to-destination3 f-225, f-228, f-217, f-214

3

With the initial event: (Faulty Command_of Controller) the following event chain can be inferred:

* % #

(Faulty Command_of_Controller)->(Give_more_hot_by_ heating element)->(0Over_pressure)->(accident)

FIRE 3 MAIN::to-destination3 f-225, f-228, f-216, f-2@8

¥

With the initial ewvent: (Faulty_Command_of_Controcller) the following event chain can be inferred:

T

(Faulty Command_of_Controller)->(Give_more_hot_by heating_element)->(Too_hot_vessel)->(accident)

== Activation: MAIN::to-destination4 : +-225, f-233, f-211, f-287, f-2@8
MAIN: :to-destinationd: =1=1=1+2=1+2+2+2+%
FIRE 1 MAIN::to-destinations f-225, f-233, f-211, f-287, f-288

T4

3

With the initial event: (Faulty_Command_of_Controller) the following event chain can be inferred:

* % #

(Faulty Command_of_Controller)->(Pump_no_action_while_ should_action)->(Too_low water_level)->(Too_hot_vessel)->(accident)

64

N

pa1e21pUl 10U~ 3INssaud JBAQ

N

uonle A0 ON

N

wapnie

2.N|IejJ01EJIPUI 3INSSAId

)

N

Wwapnie

Sunjea) < aimdni[3ssap

%

@@@@

J3||0NU0) J0” puewiwo)Alney

1

luapnoe XeW SPalddxa” [2A3] Ja1ep uoNJE 10U pINOYS” 3jIym-uonde dwnd

nej JOIRdIpUl” [2A3] J1BM

&)

le

¢

aunpie) dwnd Suipaaq

uonde pinoys 3jiym-uoide ou dwng

|3ssan" 10y 00} [2A3] J31eM” MO| 00)

E

juapdie inssaid 1aAQ

¢

nejio1edipul asmadwaj

pasnposd”wea1s ySnoua 10N Al

JUBWSIJR Suneay AqIoY SS3| aAI9

Juano |euly

¢

JUaA3 |eniu|

65

Please insert the initial event :«

==» t-225 (MAIN::my_event_chain (InitialEvent "Pressure_indicator_failure™) (FinalEvent “"accident™))
==» Activation: MAIN::from-start : +-225, f-212

MAIN::to-intermediatel: +1+1=142+t

FIRE 1 MAIN::from-start f-225, f-212

==» f-226 (MAIN::reachable (from "Pressure_indicator_failure") (to "Over_pressure_not_indicated"))
==> Activation: MAIN::to-intermediatel : f-226, f-213

FIRE 2 MAIN::to-intermediatel f-226, f-213

==» f-227 (MAIN::reachable (from "Over_pressure_not_indicated”) (to "No_protective_action™))

==» Activation: MAIN::to-intermediatel : +-227, T-215

FIRE 3 MAIN::to-intermediatel f-227, f-215

==» f-228 (MAIN::reachable (from "No_protective_action™) (to "accident™))

MAIN::to-destinationl: =1=1=1+2+%

MAIN::to-destination2: =1=1=1+2=1+2+t

==» Activation: MAIN::to-destination3 : f-225, f-226, f-213, f-215

MAIN::to-destination3: =1=1=1+2=1+2+2+t

FIRE 1 MAIN::to-destinatien3 f-225, f-226, f-213, f-215

fﬂ!
=

With the initial event: (Pressure_indicater_failure) the following event chain can be inferred:

(Pressure_indicator_failure)->(0Over_pressure_not_indicated)-»(No_protective_action)->(accident)

S e et

66

H

uonde aAnd0ld ON

21edipul jou"aInssaud A0

Jnjiey 101ed1pui” 3UNSSAld

juapoe A Sunyes) ¢ undni"[Rssap
<
® <==<
@ @ A J3Jjonuo) Jo” puewwo) Ayney
— — - ~. — - <
wapiie A. XeW ™ SPIRIXA~ [2A[J21eM T uoIde 10U pjnoys \ol_m.:.s uonde dwnd |4 AN I01eNPUITRASIIIEM

uapide [9SSaA 104 001

[PAR]J31eM MO| 00)

7&/\

©)

uonIe PINOYS 3jIym uonde ou"dwngd

©)

uapidoe

< -

aunssaxd JAAQ

M

WaWa2 uneay Aq 10y 3Jow 3AI19
P

I

1

aunpiey dwnd Suipaay

4

pasnposdweals ySnoua 10N

L&)

\/

1ney Jo1edipul aumadwa)

u

9A9 |euly

1URWje Suneay Ag 10y 553 319

—

©,

)

JUAA3 [elU|

67

