©@NTNU

Det skapende universitet

Protegé

Contents

L INErOQUCTION ...ttt e e s bt e st e s re e e sme e e sar e e ebeeesmreesneeennreas 1
2. REOUITEMENTES ...ttt et e e ettt e e e e e sttt et e e e e e e s aaa bbbt e e eeeesassasnbaaaeeeessaaassbeaaeaeesssnnssnees 2
3. Protégeé INSLAllationc..ooiiiiiiiii e e e e et e e e et b e e e e rre e e e e nraeeeennees 3
S A oYY Lo =T I o o £=Y - SPSPPSP 3

I A V1 =1 o o o= = TSP SPPSR 4

3.3 GraphViz INSLAllationcc.uvie it e e et e e e e e tae e e e earae e e sentaeeeeans 5

A. Prot@E OVEIVIEWc.eeviiiiiiiiie e ecieee ettt e e ettt e e ettt e e e e e tte e e e eeabeeeeeetteeeeeastaeeeeaataeaeestaseseasseseeensteeeeassasesansres 7
4.1 Components Of OWL ONtOIOZIES ...ccccvviiiiiiiiieieiiie ettt e et e e e e e e e e e abaeeesnaaee s 7

5. How to create an ontology (ACC EXaMPIE)c..eeeeiiiiiiieiie ettt ettt e e eave e sree e 10
5.1 Creating an OWL ONTOIOZY ...uvuiei ittt e e e e et e e e e e e et re e e e e e e e e ennenaaees 10

5.2 NAMEA ClASSES «.eeeeueeeiiiieiiiie ettt ettt ettt e ste e e ette e st e sttt e sabeesbeeesabeesabeeesabeesabeesbeeesaseesseeesanens 11

oI T DT o1 [o A @ - 1Y RSP 13

5.4 Using Create Class Hierarchy To Create Classesccccvccveieiiiiieeeiiiieeeciieeeeesveeeessivveessvnee s 15

R O LYV I 0T o 1= = 19

oI S VL= Y= o 0] o= o =T 22

5.7 Object Property CharacteriStiCscccuiiiiiiee et e et e e e e e e 25

LI 8 R U1 ot d oY o =1 I o e o 1= =Y PSSR 25

5.7.2 Inverse FUNCLioNal Propertiescceeivcieee ittt et 27

5.7.3 SYMMETIIC PrOPEITIES wuvvuviiiieiiiiiiiiiiiitiitititiatttetat ettt abaeaaeeesssssebeberasesaranares 27

5.7.4 ASYMMELIIC PrOPEITIES ..vvvvviririeieiittitietttutrtutetraaertraerererererererererere———————————————————————————. 27

5.8 Property DOmMain @nNd RANEE.....cccocuuiiiiiiiee ettt e e eectrtee e e e e e e e trte e e e e e e e s enanta e e e e e e e e s nnenenees 28

5.9 Property RESTFICLIONS ..oueeeiiiiieeiee ettt et e e s e e e e e s s s sbbbe e e e e e e e s ssannnees 32

5.9.1 Existential RESTIHCLIONSocciiiriiieiiieiiie ettt ettt 32

5.9.2 Universal RESTIHCLIONSooiiiiiieiieiieiee et 37

6. WAt iS REASONEI? ...ttt s b e e e smne e s be e e sbeeesmbeesaneeesaneesas 41
6.1 INVOKING The REASONETuuiiiiiiieei ettt et e e e e e e st e e e e e e s et te e e e e e e e sanssataeeeeeeessnnnsnsnnes 41

6.2. Necessary And Sufficient Conditions (Primitive and Defined Classes):ccccccvevereeerveennen. 43

6.3 Primitive ANd DefiNEd CIaSSES ...uuuueeeeeeeeee s s

6.4 Automated ClassSifiCatioNueeiiiiiiiiiieee e e e e et e e e e e s et b e e e e eeeaaaaaas

6.5 Closure Axi

7. Creating Individuals

[0

1. Introduction

Using ontology it is possible to capture knowledge about some domain. An ontology describes
the concepts in the domain and also the relationships that hold between those concepts.
Protégé is a free, open source ontology editor and knowledge-base framework. The Protégé
platform supports two main ways of modeling ontology via the Protégé-Frames and Protégé-
OWL editors. Protégé ontology can be exported into a variety of formats including RDF(S), OWL,
and XML Schema. One of the advantages of using protégé in complex concepts is reasoner,
which can check whether or not all of the statements and definitions in the ontology are
consistent and can also recognize which concepts fit under which definitions.

ACC system stands for Adaptive Cruise Control system, and it is a system to control vehicle
speed adaptively to a forward vehicle by using information about: (1) ranging to forward
vehicles (2) the motion of the subject (ACC equipped) vehicle and (3) driver commands. Based
on these information acquired, the controller sends commands to actuators for carrying out its
longitudinal control strategy and it also sends status information to the driver.

This guide introduces Protégé 4 for creating OWL ontology. As an example, during this guide,
ontology for ACC System will be created and the creation process is explained step by step.

http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://protege.stanford.edu/overview/protege-frames.html

2. Requirement

In order to follow this tutorial you need to install Protégé 4.1. The web page you can download
the Protégé and the instruction for installation are described in section 3. To see your
classification hierarchies of the domain more visualised, you can use the OWLViz plugin that is
also described in section 3. You can install more Protégé Plugins which are available via the
Protégé ' s website.

http://protegewiki.stanford.edu/wiki/Protege_Plugin_Library

3. Protégé Installation

3.1. Download protégé

At the first step, in order to download Protégé go to this webpage , then select the compatible
Protégé, based on your platform.

As for some platforms in order to run Protégé, it is required version 1.5 of the Java Virtual
Machine has been installed before, please choose from 'Includes Java VM', which will install
JVM on your computer simultaneously, otherwise select from 'without Java VM' (Figure 3.1).

protégé

Protege 4.1 (build 239)

Recommended Installation for Your Platform:
71 Download Installer for Windows... I ¥ Include a VM in download —

Stallonield Lo, Inc
Nvailable Installers &

Platform l includes Java VM l l without Java VM I Instructions
MacOSX ownload (18.1M) View

> Windows 64bit Download (39.7M) Download (18.7M) View
> Windows Download (44.2M) Download (18.7M) View
Linux 64bit Download (58.4M) Download (18.5M) View

Linux Download (67.5M) Download (18.5M View

Any Unix Platform nl 18.5M View

N Solaris Download (18.5M) View
HPUX Download (81.2M) Download (18.5M) View

AIX Download (77.2M) Download (18.5M) View

Other Java-enabled Platforms Download (18.6M) View

Figure (3.1)

http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/

3.2 Install Protégé

After downloading Protégé, double-click 'install_Protégé_4.1.exe' then:
1. A window will open, and you have to follow the installation steps by selecting 'Next'.

2. Inthe 'Choose Install Folder' step select the path you want to install the Protégé and
click 'Next'.

3. Inthe 'Choose Shortcut Folder' step select a place you want to create product icon
and then click 'Next' button and follow.

4. Inthe 'Choose Java Virtual Machine' step, select the first option 'Use the Java VM
installed with this application'.

5. Inthe next step please read the summary and select install button.

6. Then the installation will start automatically, at the end press 'Done' button to finish
installation.

3.3 Graphviz Installation

Graphviz has been designed to represent your classification hierarchies of the domain more
visualized. If you want to use Graphviz, you have to install it. Graphviz installation can be start,
after installing Protégé.

First you have to go to this web page and based on your platform, download the compatible
installation package of Graphviz. For example (Figure 3.2), represents the available installation
package for windows.

windows

O {‘ Warning: We received an isolated report of a problem said to be caused by installing Graphviz on Windows?7. It
f‘, was reported that Graphviz wiped out the system PATH variable. Since thousands of people did not encounter
"“’)i this, we're not sure what's wrong. Our advice is (1) make sure to create a checkpoint or backup, especially if
‘JOWN there is anything different about your Administrator account, the location of the installation directory, etc. (2) not
¢ ‘)()AV to overreact, since this was a bug we saw several years ago, and we thought we had corrected it. (3) Possibly
s an old package was installed inadvertently. The installer basically just unzips the executables, and sets the
PATH to include this -- nothing fancy. If you encounter this problem, please contact gviz-bugs.

Note: As of version 2.26, the Visual Studio packages provide both the Release and Debug versions of the
libraries.

Warning for Vista users: Even if you are logged in as adminstrator, double-clicking on the MSI file or running
the MSI file from a command prompt may still not may not provide sufficient privileges. You have to run

msiexec /a graphviz-x.xXx

from a command prompt.

graphviz current stable release
Windows [graphviz-2.28.0.msi]

development snapshot
graphviz-2.29.2012.07.03.msi

If you encounter problems running or building the Windows version, submit a bug report or contact Arif Bilgin.

Figure (3.2)
1. After downloading, double-click on the file that you have downloaded and select
'Run’.

2. Follow the installation steps and pay attention to the path that you select as an
installation folder. This path will be required later.

When Graphviz installation completed, Protégé will make an educated guess about where to
find graphviz depending on your operating system, but if it does not get it right you will need to

configure this yourself:

These settings can be finding in the File ---> preferences, OWLViz tab. As shown in the

http://www.graphviz.org/Download..php
http://www.graphviz.org/Download..php

(Figure 3.3), specify the path where you have installed Graphviz to the dot executable file in the
appropriate place.

Example: C:\Program Files\Graphviz 2.28\bin\dot

| Préferenc@s

New Ontologies | OWLViz | Plugins | Reasoner | Renderer | Save | Tree preferences |
‘ Annotations [t General I New Entities |

[General Options |

Dot Application Path

-[pam[c:wrogram Files\Graphviz 2 28\in\ot | Browse |

Spacing

romrs [asfZ

S—

@® track selection radius| 2]

() create graph manually

I| [ok || cancer |

Figure (3.3)

The following error may be occurs when you want to use OWLViz (Figure 3.4), if:

1) You did not installed Graphviz and/or
2) You did not specify the path where you have installed Graphviz in the preferences.

DOT Error] ﬂ

An error related to DOT has occurred.

This error was probably because OWLViz could not
find the DOT application. Please ensure that the
path to the DOT application is set properly

Figure (3.4)

6

4. Overview

Ontologies are generally used to describe some domain of interest by capturing knowledge
about the domain, containing a set of concepts and the relationship between them. The Web
Ontology Language (OWL) is the most recent standard language for modeling ontologies which
is developed by [W3C Web Ontology Working Group]. The current version of OWL which has
published as 'OWL 2' in 2009 is presented with three different level of expressiveness including
OWL Lite, OWL DL and OWL Full. Despite researchers’ effort to create languages in the hope of
developing a Semantic Web, there is still lack of understanding of a standard. According to
definition of Protégé in its website, 'Protégé is a free, open source ontology editor and
knowledge-base framework' which was developed by Stanford Center for Biomedical
Informatics Research at the Stanford University School of Medicine, in order to editing and
designing models in various Semantic Web Languages.

4.1. Components of OWL Ontology

The components used in OWL have equivalent substitutes in Protégé. But terminologies used to
describe these components are not same in OWL and Protégé. The OWL consists of three
elements of Individuals, Properties, and Classes, which in Protégé frames respectively are
defined as Instances, Slots and Classes.

Individuals

In OWL Individual represent basic components of ontology which known as objects in the
domain of interest. li addition to use different term to represent object, there is an important
difference between OWL and Protégé that OWL does not use the Unique Name Assumption
(UNA). In other words, in OWL an individual may be referred by more than one name. For
instance in the domain of Operating Systems, 'Windows', 'Microsoft Windows', 'Windows os'
and 'Microsoft’s os' might all refer to the same individual. So it should be precisely stated that
different individual are the same as each other or different to each other. In this tutorial
individuals are represented as squares in diagrams. In (Figure 4.1) some individuals of some
domain are represented.

http://www.w3.org/2001/sw/WebOnt/
http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://bmir.stanford.edu/
http://bmir.stanford.edu/
http://www-med.stanford.edu/

Cambridge Oxtord
U
NTNL il -
[
Harvard KTH
m il
Peter John
= Maria .
|
Figure (4.1)

4.2. Properties

Properties are binary relations. It means every relation is between only two things. In OWL
three distinguished relationships are defined:

¢ Object properties: The relationship between two individuals. For example, the property
studyln might connect the individual Peter to the individual NTNU, or the property
isFriend might connect individual Maria to individual John.

o Datatype properties: The relationship between an individual and a data values.

e Annotation properties: Annotation properties are used to add metadata (information of
data about data) to classes, individuals and datatype properties.

4.3. Classes

In OWL classes are considered as sets containing individuals. All the individuals in a class has
some properties in common which these properties are exactly requirements for those
individuals that are members of that class. For example the University class contains all
universities in our domain of interest like NTNU, Harvard, KTH and so on. (Figure 4.2) shows a
representation of some classes containing individuals and the relationship between individuals.
In this figure classes are represented as circles and properties as directed arrows. Classes can be
organized into a hierarchy of superclasses-subclasses. For instance consider the classes

8

University and Department - all the Departments are members of University so being
department implies that it is a member of an University. (Figure 4.3) shows a representation of

a class hierarchy.

KTH
L

NTNU

Peter

Cambridge Harvard

Oxtord

puaLi{si

studyln

Figure (4.2)

University

h 4

Departmanl Departman 2 Departman...

Figure (4.3)

5. How to Build OWL Ontology (ACC Example)

5.1. Create a New Owl Ontology

We previously described what ACC system is and how it works; here we describe how to define
the ontology of ACC system by protégé. We will capture different concepts and relationships in
the ACC domain. Create a new OWL Ontology:

1. Start Protégé.

2. When the ‘Welcome to Protégé’ dialog box appears, press the ‘Create New OWL
Ontology'.

3. A ‘Create Ontology URI Wizard’ will appear. Every ontologies is named using a
Unique Resource ldentifier (URI). Replace the default URI with
‘http://www.ACC.com/ontologies/ACC.owl’ and press ‘continue’.

4. You may want to save your Ontology to a file on your PC. So you can browse your
hard disk and save your ontology to a new file, you can name your file ‘ACC.owl’.

5. After pressing ‘continue’, you can select the format in which the ontology will be
saved (e.g. You can select ‘OWL functional syntax’) then press ‘Finish’.

Now you have been created a new empty Protégé file. The ‘Active Ontology Tab’ shown in
(Figure 5.1) will be visible.

In the active ontology tab we can add annotations on the ontology such as some comments to
describe ACC system ontology. Press ‘Add’ icon and write some comment. For example:
“Adaptive Cruise Control (ACC) ontology that describes an automotive feature. It allows a
vehicle's cruise control system to adapt the vehicle's speed to the traffic environment,
considering time gap to a forward vehicle and the set speed. “

10

< ACC (http://www. ACC.com/ontologies/ACC.owl) - [C\Users\Safoura\ontologies\ACC\ACC.owi

File Edit View Reasoner Tools Refactor Window Help

<3| o> | ® acc (http: ity ACC comfontologies/ACC owl) v| i::) | l

[Active Ontology | Entities | Classes | Object Properties | Data Properties | Individuals | OWLViz | DL Query | OntoGrat

Ontology annotations:

-C'-nn-:-tatlcvnSO - ‘Add’ icon

comment

"Adaptive Cruise Control (ACC) ontology that describes an automotive feature. It allows a vehicle's cruise control system
to adapt the vehicle's speed to the traffic environment, considering time gap to a forward vehicle and the set speed.”

| Ontology imports (Ontoeraf‘lrnporliﬁew‘ I Ontology Prefixes " General class axioms

Imported ontologies:

Direct Imports

Indirect Imponrts

To use the reasoner click Reasoner-=Start reasoner Showy Inferences

Figure (5.1)

5.2. Named Classes

Ontology contains classes and various relations between these classes. In Protégé 4, editing of
classes is carried out using the ‘Classes tab' shown in (Figure 5.2) The empty ontology contains
one class called ‘Thing’. All classes that we create will become subclasses of Thing.

Now we want to start defining some classes to the ACC ontology in order to clarify how ACC
system works.

Create classes 'ACC_System' and 'Time_Gap":

1. Ensure that the ‘Classes tab’ is selected.

11

2. Press the ‘Add' icon shown in (Figure 5.2). This icon creates a new class as a subclass
of the selected class. So if you select ‘Thing’ class, and then press ‘add Subclass’ you
will add a subclass of ‘Thing’.

Classes tab

1= Acc (ttp://wwew ACC.comvonfologies/ACC.ow) - [CAUsers\Safoura\ontologies\ACCVACC.owl] -

File Edt View Reasoner ools Refactor Window Help

QD> ‘QACC."’M ACC comiortoiogiesfACE o ~ 08

Delete Class

[Enis | Cinsses || ObiectProperies | DetaPioperies | nviunis | OWLVz | DL Gusry, | Ontodral

Add Sibling class Clﬁ_iiomc Class histarchy (infarred) | Annotations | Usage
Add Subclass 1
v "T'hlng
Acc_System
©Time_Gap
Figure (5.2)

3. A dialog will appear for you to name your class, enter ACC_System and press ‘Ok’
(Figure 5.3).

<¢ Create a new OWLClass @

Please enter a class name

\ |

["] Ignore entity crestion preferences

hitp:/Aman ACC.comiontologiesf/ACC. owl#

|

Figure (5.3)

4. Repeat the previous steps to add the class ‘Time_Gap’, ensuring that Thing is
selected before the 'Add' icon is pressed so these classes are created as subclasses
of Thing.

12

Instead of selecting ‘Thing’ class, you can also select ACC_System class and press the icon for
‘add sibling class’ which is next to ‘add class’ icon (Figure 5.2). This is another way to create the
class ‘Time_Gap’ as subclass of ‘Thing’ and a sibling class of ‘ACC_System’. The class hierarchy
should look like (Figure 5.2).

To make it more understandable, we recommend that all class names start with a capital letter
and not contain spaces, you can also use underline to join words together. For example
Time_Gap.

5.3. Disjoint Classes

OWL Classes are assumed to ‘overlap’; it means that by default individuals from one class may
be also from another class. Therefore we cannot assume that an individual is only a member of
a particular class simply because it has been asserted to be a member of that class.
In order to ‘separate’ a group of classes we must make them disjoint from one another. This
ensures that an individual who has been asserted to be a member of one of the classes in the
group cannot be a member of any other classes in that group.

In ACC example, ACC_System and Time_Gap classes should be disjoint from each other. In ACC
domain it would make no sense for an individual to be an ACC_System and a Time_Gap! This
means that it is not possible for an individual to be a member of a combination of these classes.
So now, we need to make the ACC_System and Time_Gap classes disjoint from each other.

1. Select the ACC_System in the class hierarchy.

2. Press the ‘Disjoint classes' at the bottom in the ‘class description’ view (Figure 5.4).

13

[Annotations | Usage |
Annotations: ACC_System mE=E
Ciass hierar: ACC Syste/ MBEE

E.]@ @ Annotations €3

v @ Thing
ACC_System
@ Time_Gap

Description: ACC_System DEEE

Equivalent classes £
Superclasses £
Inherited anonymous classes

Members £

Disjoint union of Y

To use the click Start Show

(Figure 5.4)

This will bring up a window where you can select multiple classes to be disjoint from
ACC_System class. If in this window, ACC_System and Time_Gap classes are not

present, double click ‘Thing’ class to make ACC_System and Time_Gap classes
become visible (Figure 5.5).

Class hierarchy | Expression ecitor

%3] X

v @ Thing
~~@ACC_System

~-@Time_Gap

Figure (5.5)

3. The disjoint classes’ window now displays ACC_System and Time_Gap classes. Select
the class ‘Time_Gap’ and then ‘Ok’.

14

Notice that the disjoint classes view displays the class that is now disjoint to
ACC_System, which is Time_Gap (Figure 5.6)

Disjoint classes
oTime.osp |

Disjoint union of

To use the reasoner click Reasoner-=Start reasoner [Vl Show Inferences

Figure (5.6)

5.4. Using Create Class Hierarchy to Create Classes

In this section we will use the ‘Create Class Hierarchy’ tool to add some more subclasses of the
class ‘Thing’. This is a useful way to add classes and subclasses when there are many classes and
subclasses to add.

1. Select the class ‘Thing’ in the class hierarchy.
2. From the ‘Tools’ menu on the Protégé menu bar select ‘Create Class Hierarchy...’.

3. The tools shown in (Figure 5.7) will appear. Here we have to select the class, which
we want to create subclasses under that. Since we preselected the class ‘Thing’, the
first class at the top of the tool should be prompting us to create the classes under
the class ‘Thing’. If we want to create subclasses for another class we have to select
it here. All the classes under ‘Thing” will become visible by double clicking on ‘Thing’
class. Because we want to add subclasses for ‘Thing’, so we just select ‘Thing’.

15

Pick root class

Please select the root class

b8 Thing

Figure (5.7)

Press the ‘continue’ button on the tool. Now we have to write the subclasses of
‘Thing’ that we want to create. In the large text area, type the class name ‘ACC’ and
‘ACC_Deactivation’ and also ‘ACC_Stop_and_Go’. Now it should be like (Figure 5.8) If
we had to create a lot of classes that had the same ‘prefix’ or ‘suffix’ we could use
the options to automatically adding prefix and suffix to the class names that we

entered.

16

Enter hierarchy

Please enter the hierarchy that you want to create. You should use tabs to indent names!

Prefix ‘ l

Suffix | |

/

I
|Acc

ACC_Deactivation

|ACC_Stop_and Go

(;oBack” [Cor?nue-\ lHCance!i

Figure (5.8)

5. Click the ‘Continue’ button on the tool. The names entered should be consistent
with the naming style that has been mentioned before (No spaces etc.). Also all the
created classes should be unique (no two classes with the same name), If there are
any errors in the class names, they will be presented on this page, along with
suggestions for corrections.

6. In order to make the new made classes ‘Disjoint’, ensure the tick box for ‘Make all
new classes disjoint’ is ticked, this automatically makes new classes disjoint.

7. Then press ‘Finish’. Now the tool creates the classes and makes them disjoint from
each other.

The ontology should now have ‘ACC’, ‘ACC_Sytem’, * ACC_Deactivation’, ‘ACC_Stop_and_Go’,
‘Time_Gap’ as subclasses of ‘Thing’. So ‘Create Class Hierarchy’ tool would simplify the process
of adding classes, when we have a lot of classes to add to the ontology. After each modification
make sure to press ‘ctrl+s’ and then click ‘Ok’ to save modifications that you have made.

17

For an instance you can create a new class and name it ‘State’. ACC has different states such as:
‘Active state’, ‘Standby state’, ‘Off state’, ‘On state’ and ‘Disabled state’. These states can be
grouped as subclasses for class ‘State’.

In order to add these classes, you have to follow the above mentioned steps. Notice that we
want to add subclasses for ‘State’, so after you create class ‘State’, you have to select this class
to add subclasses. You can use the suffix row, to add subclasses with the same suffix. (Figure
5.9) Shows how you can use suffix row.

[creme e viercy S,

Enter hierarchy

Please enter the hierarchy that you want to create. You should use tabs to indent names!

Prefix l J

Suffix |__State |

Active
Oon ’
off

Stand By
Disabled

l Go Back | | Continue |] Cancel I

Figure (5.9)

The class hierarchy should now look similar to (Figure 5.10). The ordering of classes may be
slightly different.

18

r Claszz hierarchy r Clasz hierarchy (inferred)

""" UMISS1on -
------ Preceeding_Vehicle

------ Primary_Target Selection_Algorithm
------ Radar_Sensor

------ Radiater

------ Remote_Sensing_Technology

------ Residential_Area

------ Selection_Criteria

------ Sensor
Lo Signal
------ Speaker
[Speed

¥ S5tate

- Stand_By_State
Active State
Disabled_ State
On_5State

Off State

...... stuck

b0 System_State

------ Time_Gap

------ Traffic

b Vehicle

------ Vehicle_Dynamics_System
------ Velocity

------ Velocity Range

------ Work_Load -
------ engine_power_ control =

Figure (5.10)

5.5. OWL Properties

There are three main types of properties, ‘Object properties’ and ‘Data type properties’ and
‘Annotation properties’. In this tutorial we will focus on Object properties. Object properties
are relationships between two individuals that link an individual to an individual.

(Figure 5.11) depicts an example of Object property. This figure shows that an object property
linking the individual ‘NTNU’ to the individual ‘Peter’.

19

NTNU Peter
hasStudent

>
>

Figure (5.11)

Properties can be created using the ‘Object Properties’ tab shown in (Figure 5.12).

(€ ACC (http://www ACC.com/ontologies/ACC.ow) - [CAUsers\Safoura\Ontologies\ACCVACC.owi]
;Flie Edt View Reasoner Tools Refs

Window Help

- | a

Properties | | s | OWLViz | DL Guery | OntoGref |
[Annotations | Usage |
IEJ (= @ Annotations: topObjectProperty

-topObjectPropen.y Annotations

Characte: (D5 S Bl Description: topObjectProperty

D Functional Domains (intersection) |
] inverse functiol
Ranges (intersection)
[_] Transtive
E]Symnelric Equivalent object properties
D Asymmetric
Super properties
|| Reflexive
|1 rreflexive

Inverse properties

Disjoint properties

=

To use the reasoner click Reasoner->Start reasoner (V] Show Inferences

Figure (5.12)

(Figure 5.13) shows the buttons located in the top left hand corner of the ‘Object Properties’
tab that are used for creating OWL properties.

20

Add sub property

Add sibling property

Delete selected properties

Ob ect j roperty hierarchy: topObjectProperty
=4 PR |
%] = | X

m=topObjectProperty

Figure (5.13)
Here we will create an object property called ‘hasltem’:
1. Switch to the ‘Object Properties’ tab.

2. After selecting ‘topObjectProperty’ in the object property tab, Use the ‘Add sub
property’ button see (Figure 5.13) to create a new property.

3. In the ‘Create a new ‘OWLObjectProperty’ window which is opened, type the
property name ‘hasltem’ and press ‘Ok’, as shown in (Figure 5.14).

<€ Create a new OWLObjectProperty @

Please enter an object property name

'hasttem]

[Ignore entity crestion preferences

http:fAn ACC.comfontologiesfACC . owl#hasitem

| OK H Cancel ’

Figure (5.14)

Now this property should be added to the list of the properties in the Object Properties tab.

For naming a property, although there is no strict naming rule for properties, we recommend
you to start property names with a lowercase letter, have no spaces and have the remaining

21

words capitalised. We also recommend that properties are starts with the word ‘has’, or the
word ‘is’, for example ‘hasltem’, ‘isltemOf’.

Now we can add more properties to develop some relationships in the ACC domain. (Figure
5.15) shows some properties that have been added to the ACC ontology. For example, the
property ‘SameAs’ is defined to relate two individuals that has the same concepts. For instance
‘ACC’ and ‘ACC_Syetem’.

= O$o|}>gy1270064]:49 e i

File Edit ‘iew Reasoner Tools Refactor Window Help
Ontology1270064149 (hitp: ivwesewy owl-ontologies .comf2010/Ortology1 270064149 .ovl) v
| <G> (@ 68
I’Aaiveomo:ogy | Entities | Classes | Object Properties | Data Properties | Individuals | OWLYiz | DL Query | OntoGrat |
Object property hierarchy: topOhjectProperty [/ﬁ\nnotaﬁons "—'Usage I
T |l G | | D Annotations: topObjectProperty
v mstopOhjectProperty &[] || Annotations
-~ mContradicts
- EENA
-~ EmSameAs
-~ #mSubClass
-SuperCIass
mabout
~mmaccelerates
- adjust Character B EE il Description: topObjectProperty
Y -attaChed_to D Functional Domains (intersection)
-~ Wmcools
- || Inverse functio
decelerates Ranges (intersection)
Wdetects_a || Transttive
-de:en:"nes [Symmetric Equivalent object properties
mextends
~mmfrom [] Asymmetric
Super properties
-~ magets || Reflexive
] i
gets_speed_signal_from = | T irefiexive R —
-~ #=hasltem
~-uis_a
.mmleads to Disjoint properties
#maintains
-protects Property chains
~#mprovide_longitudinal_control_of
- mmprovides ~ || |[«I=zzz] Ty
To use the reasoner click Reasoner-=Start reasoner Show Inferences

Figure (5.15)

5.6. Inverse Properties

For each object property we can have a corresponding inverse property. If some property links
individual ‘A’ to individual ‘B’ then its inverse property will link individual ‘B’ to individual ‘A’.
(Figure 5.16) shows the property ‘hasStudent’ and its inverse property ‘studyln’. If NTNU

22

hasStudent Peter, then because of the inverse property, we can conclude that Peter studyln
NTNU.

NTNU r—— Peter
asStuden
P > I
studyln
Figure (5.16)

To make it more clear, we will create an inverse property for the property ‘hasltem’ that we
created previously by using the ‘Inverse properties’ button shown in (Figure 5.17).

€ Ontology1270064149 (http://www.owl-ontologies.com/2010/Ontol

File Edt View Reasoner Tools Refactor ‘indow Help
[
<> |@ Ontology12700641489 (hitp: M owl-ortologies comi201 0/0ntolagy1 2700641 49 .awl) '| ﬁ| I
"Actw_' e Ontalogy | Erfiies | Classes | Object Properties | Data Properties | Inclividuals | OWLViz | DL Query | OntoGraf |
Object property hierarchy: topObjectProperty r et |/Usaga I
b, A3 N m Annotations: topObjectProperty
v mstopObjectProperty [| Arnotations
mContradicts
WENA
mSameAs
‘#mSubClass
--mmSuperClass
mmabout
Wmaccelerates
‘madjust Character B EE i Description: topObjectProperty
mmattached_to [Functional Domains (intersection)
mcools al e
nverse functiol
Wdecelerates Ranges (intersection)
-detects_a || Transitive
"determines || symmetric Equivalent object properties
Wmextends
mifrom] Asymmetric
Super properties
‘mgets || Reflexive
- Z
-ﬂetft_speed_ﬂgnal_from = | T irvatiexive [T
asitem SA—
is_a
mjeads to Disjoint properties
®maintains
-protects Property chains
mprovide_longitudinal_control_of
mprovides v
To use the reasoner click Reasoner-=Start reasoner Show Inferences

Figure (5.17)

23

1. The same as what we did in the section 5.5, use the ‘Add sub property’ button on
the ‘Object Properties’ tab to create a new Object property called ‘isltemOf’, this will
become the inverse property of ‘hasltem’.

2. Press the ‘Add’ button which is next to ‘Inverse properties’ on the property
‘Description’ view (Figure 5.17). A window will become open and you can select a
property from the property list. Select the ‘hasltem’ property and press "OK' (Figure
5.18).

I X topObjectPropert‘ M

—

4 | — \)ﬂ

mmextends
- m_from
mgets
. mgets speed_signal_from
mis_a
Wleads_to
Emaintains
Wprotects 7
mprovide longitudinal_control o
mprovides
Wreduces
Wrequires_a
~Wmresponds_to
s 2. off -

Figure (5.18)

The property ‘hasltem’ should now be displayed as inverse property for ‘isltemOf’ property in
the property ‘Description’ view (Figure 5.19).

24

1]
-SuperCIass
.mmabout Charactet MBEE Wl Description: istemOf DBEE
~-mmaccelerates I Functional Domains (intersection) |~
m—adjust || Inverse functio
~-mmattached_to i ntersection
.mmcools | Transttive
W=decelerates | Symmetric Equivalent object properties
Wdetects_a —)
Wdetermines = arminoc Sier e ey
- mmextends I] Reflexive SRR Sy A
m=from = :
: Irreflexive Inverse properties
mgets i
~-mmgets speed_signal_from "=hasitem
-~ #mhasitem
-is_a Disjoint properties Py
~-mmleads_to = [z D B
To use the reasoner click Reasoner-=Start reasoner [V Show Inferences
Figure (5.19)

5.7. Object Property Characteristics

In OWL, object properties can have different characteristics. In this section we will discuss some
of these characteristics.

5.7.1. Functional Properties:

When for an individual, there can be at most one individual that is related to the individual via

the property, so we define this property as ‘Functional’. (Figure 5.20) shows an example of a
functional property.

Anna

means that Anna and Maggi should be the same
individuals.

Maggi

Figure (5.20)

If we say that an individual Peter hasBirthMother Anna, and also Peter hasBirthMother Maggi
then because hasBirthMother is a ‘Functional’ property, and for each person there can exist just

25

one birth mother, so we can conclude that Anna and Maggi must be the same individuals
otherwise we would face inconsistency.

To make a property ‘Functional’:

1. In the ‘Object Properties’ tab, first we have to select the property, for example
‘gets_speed_signal_from’ property, as shown in (Figure 5.21).

2. Then select ‘Functional’, using the ‘Characteristics’ view. (Figure 5.21) shows that
because ACC_Sytem can get speed signal only from one individual of ‘Driveshaft’, so
‘gets_speed_signal_from’ property is a ‘Functional’ property.

< Ontology1270064149 (http://www.owl-ontologies.com/2010/Ontology1270064
File Edit View Reasoner Tools Refactor Window Help
< | > | [© ontology1270084149 (htp:fiwyww owl-antologies cam/2010/0ntology1 270064143 ow) ~| 8|]
‘Active Ontology | Entties | Classes | Object Properties | DataProperties | Individuals | OWLViz | DL Guery | OntoGraf |
Object property hierarchy: gets_speed_signal_from HDEEE I'W?’Wel
N
W=detects_a [a]| | | Annotations
mdetermines 1 label
mextends "gets_speed_signal_from"@en
m=from
mgets
mugets_speed_signal_from |
®shasitem -
misitemOf Description: gets_speed_signal_from
= ||
is_a |v! Functional Domains (intersection)
m=|eads_to
M maintains || Inverse functio L
Ranges (intersection)
~mmprotects |_] Transttive
m=provide_longitudinal_control_of :
i -Provides D Symmetric Equivalent object properties
mreduces || Asymmetric
i : Super properties
mrequires_a] Reflexive IRELREY
W=responds_to
s 2. off] rrefiexive T
ms.a._on
-~ mmsafety function Disjoint propeies
®unable_to_start
myarns Property chains
msarne of /
To use the reasoner click Reasoner->Start reasoner @ Show Inferences
Figure (5.21)

26

5.7.2. Inverse Functional Properties:

When a property is ‘Inverse functional’ then it means that the inverse property is functional.
For better explanation we can consider the example we had for functional property,
‘hasBirthMother’. The inverse property for this property is ‘isBirthMotherOf’ and since
‘hasBirthMother’ is functional, ‘isBirthMotherOf’ is inverse functional. If we say that Anna is the
birth mother of Peter, and we also say that Maggi is the birth mother of Peter, so we can
conclude that Anna and Maggi are both the same individuals.

5.7.3. Symmetric Properties:

When individual A relates to individual B with property P, and also individual B relates to
individual A with property P, therefore property P is a ‘Symmetric’ property.

(Figure 5.22) shows an example of a symmetric property. If the individual Peter is related to the
individual Bob via the hasSibling property, then we can infer that Bob must also be related to
Peter via the hasSibling property. Because when Peter is a sibling of Bob, so Bob is also a sibling
of Peter. Therefore hasSibling is a ‘Symmetric’ property.

Peter hasSibling Bob

hasSibling

Figure (5.22)
In the ACC system ontology, the property ‘Contradicts’ can be considered as a symmetric
property , because the Brake contradicts Clutch and also Clutch contradicts Brake, therefore the
contradict property is a ‘Symmetric’ property. ‘SameAs’ property is also a ‘Symmetric’ property.
To make a property ‘Symmetric’, we should first select the property and then use the

‘Characteristics’ view, the same as what we did for making a property functional but here we
select symmetric instead.

5.7.4 Asymmetric properties:

If a property P is ‘Asymmetric’, then the relation we defined in the above cannot exist. For
example for the property ‘isChildOf’, when Peter isChildOf Anna, it is not possible to say that

27

Anna is also child of Peter, and this relation is not exist. It is not correct to say that Peter
isChildOf Anna, and also Anna isChildOf Peter because ‘isChildOf’ property is not a ‘Symmetric’
property and it is an ‘Asymmetric’ property. (Figure 5.23) shows an example of an ‘Asymmetric’

property.
Peter i<ChildOf Anna
- E— >
isC of
Figure (5.23)

In the ACC system ontology, the property ‘adjust’ is an ‘Asymmetric’ property. Because we can
say that ACC_System adjust Velocity, but the relation Velocity adjust ACC_Sytem is not exist.
(Figure 5.24) shows that ‘Asymmetric’ characteristic is selected for ‘adjust’ property.

T = - — ~— —W‘ - ” = . f = ;
¢ Ontology1270064149 (http://www.owl-ontologies.com/2010/Ontalogy: 49.awD:[C:\Users\Safoum\DropmeQege\A -_System.owl] LE‘@M
File Edt ‘iew Reasoner Tools Refactor Window Help
’<= <> | © ontology1270084149 (rip ogies comi201 0/0rtology 270064149 owly ~| & |
“Active Ontology | Entiies | Classes | Object Properties | Deta Properties | Individuals | OWLViz | DL Query | OntoGraf |
Object property hierarchy: adjust ’- Rrnolatione Usage |
S| | Annotations: adjust DEEE
v -tDpObjECtperErty = Annotations
#EContradicts label
BENA "adjust'@en
ESameAs
#=hasSubClass
#=hasSuperClass
=about
#maccelerates Characteri: DB EE WMl Description: adjust
mmadjust : =
mmattached to [Functional Domains (intersection) kel
mcools || Inverse function{ | @ ACC_System
mudecelerates [Transiive
mudetects_a Ranges (intersection)
o [] Symmetric
Wudetermines @ Vvelocity
mmextends Asymmetric
= L
from | Reflexive Equivalent object properties
mgets
mgets speed_signal_from I ireflexive)
shasitem Super properties
misitemOf
——— Inverse properties
Wleads_to -
3 2 || Disjoint propetties [
=maintains = = ‘
To use the reasoner click Reasoner-=Start reasoner Show Inferences IJJ

Figure (5.24)

28

5.8. Property Domain and range

In OWL properties may have domain and range. In other words properties link individuals from
domain to range. For example in University ontology the studyln property links individuals from
Student’s class to individuals in University class. In this example Student is domain and
University is range. In situations that two property are inverse, like studyln and hasStudent in
University ontology, domain of studyln property is range of hasStudent and vice-versa. It is
shown in (Figure 5.25).

NTNU

-
s~y

-

Cambridge Harvard
| [

Oxford
<

studyln

hasStudent

University Class Student Class

Figure (5.25)

In order to specify domain and range for a property please follow the steps:

Specifying the range for a property:

1. Select Object property tab in Protégé at first and then select 'adjust' property in
property hierarchy

2. In the property description view window press the 'Add' icon next to the 'Range’.

29

3. In the opened dialog you can choose a class from ontology class hierarchy. Select
Velocity and press 'ok' button. So Velocity should now be displayed in the range list.

All these three steps are shown in (Figure 5.26).

Fle ER View Reasoner Tools Refactor Wndow Hep

Qe @&wnmm Tt e owi-ontologies com201 0ntologyt 270064149 ow v @

| Acive Ortokogy | Enfbies | Cissses | ObjectProperies | DefaProperbies | hrvidusls | OWLViz | DL Guery | OnloGrof |

Tonsitios |

Annotabions: adust

Y- metopObjectProperty [a] || Assotatens

wContradicts label

=NA *adjust @en

WSameds

mSubClass 1

mguperClass

=about 1

Waccelerates

Wadjust

-a:iached_to Characteristics: acust TESE I Descripton adust

=cools W Freaca

®decelerates B e i

Tinend b s treseio(()) — 2
®determines ranstive ‘

Wextends [symeic \

=from
mgets [Asymmetric | Equivalent object prapeties 3
®gets_speed_signal_from [Refisive

®hasitem

mis 2

ieads _to

=maintains

Wprotects
®provide_longitudinal_control_of
Sprovides | Propesych
®reduces
Wrequires_a
Miraenande ta

| brefiexive

K0}

No Reasoner set Select a reasoner from the Reasoner meny V] Show Inferences

Figure (5.26)

It is possible to specify multiple classes as the range for a property. In Protégé multiple classes
as the range is interpreted to be the intersection of the classes.

Specifying domain for a property:

1. Select Object property tab in Protégé at first and then select 'adjust' property in
property hierarchy.

30

2. In the property description view window press the ‘Add’ icon next to the
‘Domain’.

3. In the opened dialog you can choose a class from ontology class hierarchy. Select
'ACC_System ' and press 'ok' button. So 'ACC_System ' should now be displayed in the
'Domain' list. All these three steps are shown in (Figure 5.27).

 Ortology 270064143 (g ww ononto:
Fie Edt View Ressonsr Tools Refactr Window Hep

|Gl meusnm v owhontologies com201 BOntology 270054143 owl v ﬂ‘

Acive Ortcgy | Entbes | Clssses | OtiectPropertes | Dete Propertes | nfviduals | OMLVz | DU Query | Ontotrat |

‘ ooerty hisrarchy: adiust R —
Objer l"{‘ﬂ!--’.hv acjust BE8E (Aaneistions ,‘""I

Annctabons. adust

v-mtopObjectProperty
W Contradicts
WNA

mSameAs

®SubClass 1
mSuperClass

Wabout

maccelerates |
Madjust

m3ttached to
Wcools

I»

label
“adjust@en

Descripbon: adust

i | Dtmlm(lnku:ﬁo(?!’
Widecelerates il) |
mdetects 2 s Anckos \

mdetermines [Transtive

mextends S s koisonns

wfrom [: S Ovelocity 3
gets [asymetric

Wgets_speed_signal_from [Refiexive

hasitem

s 3

mjeads to

®maintains

Wiprotects
®iprovide_longitudinal_control_of
provides

Wreduces

Mrequires_a

Miraenande ta.

.

N Reasoner set. Select & reasner fromthe Reasoner menu [V Show Inferences

Figure (5.27)

31

5.9. Property restriction

A restriction describes a class of individuals based on the relationships that members of the
class participate in. In other words a restriction is a kind of class, in the same way that a named
class is a kind of class. As it represented before properties are binary relationship between
individuals that object properties describe relationship between individuals and data properties
describe relationship between individuals and data values. In OWL all restrictions fall into
three main categories:

e Quantifier Restrictions
e Cardinality Restrictions
e hasValue Restrictions

Quantifier restriction is categorized into existential restriction and universal restriction.

5.9.1. Existential Restriction:

Existential restrictions describe classes of individuals that participate in at least one relationship
along a specified property to individuals that are members of a specified class. For example,
'safety_function some Active_Control_Recractor' describes all of the class of individuals that
have at least one (some) 'safety_function' relationship to members of
Active_Control_Recractor'. In Protégé the keyword 'some' is used to denote existential
restrictions . In (Figure 5.28) some existential restrictions are represented. Existential
restrictions may be denoted by the existential quantifier (3). They are also known as
‘'someValuesFrom' restrictions in OWL speak.

1- Existential restrictions are also known as Some Restrictions, or as some values from restrictions.

32

4 Ontology 12700641 .
Fie ER View Reasoner Tools Refactor Window Hep
; > | [Ontology1270064149 res Ay w trdcloges comi201 0NCrEobogy 1 270064143 v ﬂ‘
| Active Ortclogy | Entbes | Cissses | ObiectProperties | DetaProperfes | hdividusls | OWLVZ | DLQuery | OrloGraf |
[blm;mxhiy" .Cl.mir((ldmlj“] Annotations | Wl
 ACC Siop_wnd GO ! Il Arvotations: 40C Stop snd Go [ECE
v-@Thing] {comment ’
oace *Uses additional short range radar co cover wider field of view in front of the ACC equipped vehicle. |
©ACC Deactivation ‘ ‘ The increased field of view enables a limited ‘automatic 9o function within 3 second without driver intervention’ @en '
TACC_Stop_and Go label
SACC_System Al *ACC_Stop_and_Go"@en
DACC_System_Failure subClassOf]
@ Active_Control_Retractor B AALLD o2 A DA kbl AOLD o AAASMOAS SAMA i M|
DActive_State
© Adaptive Brake_Assist
DAlert |
© Amplifier
©Audio_Warning upeiclasses
;:xn.to::ﬂc_imer gency_Braking ©hasitem only Limited_Automatic_Go |
10| = ‘
©Axiom1 ©hasitem some Detection_Range i
©Bad_Weather ©hasltem some Velocity Range |
K ::::' @ safety function only Automatic_Emergency Braking
e _Light = -
©Brake_Light Signal @ safety_function only Collision_Warning
@ Brake_System_Failure @ safety_function some Active_Control_Retractor |
©Braking_System @ safety_function some Adaptive_Brake_Assist Some Existential Restrictions @ —
©Bumper skirts_grille = ———
®cluteh @ safety_function some Distance_Warning
@ Clutch_Pedal
@ Collision
@ collision_Avoidance System vl =
No Reasoner st Select a reasoner from the Reasoner menu V: Show Inferences

Figure (5.28)
In order to add existential restrictions please follow these steps:

1. Select 'ACC_stop_and_go' from the class hierarchy on the 'Classes' tab. (Figure
5.29).

2. Select the 'Add' icon next to 'Superclasses' header in the 'Class Description
View' (Figure 5.29). This will open a text box where we can enter our restrictions (Figure
5.30).

The create restriction text box allows you construct restrictions using class, property
and individual names. You can drag and drop classes, properties and individuals into
the text box or type them in, the text box with check all the values you enter and alert
you to any errors. To create a restriction we have to do three things:

e Enter the property to be restricted from the property list.

e Enter a type of restriction from the restriction types e.g. 'some' for an
existential restriction.

e Specify afiller for the restriction

33

Select 'Class expression editor' tab at first (Figure 5.30).

. You can either drag or drop ‘safty_function’ from the property list into the create

restriction text box, or type it in (Figure 5.30).

Now add the type or restriction, we will use an existential restriction so type 'some'
(Figure 5.30).

Specify that the filler is 'Active_Control_Recractor'. to do this either: type
'Active_Control_Recractor' into the filler edit box, or drag and
drop'Active_Control_Recractor' into the text box (Figure 5.30).

Press 'Ok' button to create the restriction (Figure 5.30). If all information was entered
correctly the dialog will close and the restriction will be displayed in the 'Class
Description View' (Figure 5.31). If there were errors they will be underlined in red in the
text box, or popup will give some hints to the cause of the error. If this is the case,
recheck that the type of restriction, the property and filler have been specified correctly.

34

88 herarchy

v-@Thing

~—®acc
DACC_Deactivation
DACC_Stop_and_Go
9ACC_System
~®ACC_System_Failure
@Active_Control_Retractor
~OActive_State
OAdaptive_Brake_Assist
Ohlert
@ Amplifier

—®Audio_Warning
© Automatic_Emergency_Braking
Ohxiomo
OAxiomt

~@Bad_Weather

» OBrake

—®Brake_Light

~@Brake_Light Signal
©Brake_System_Failure
©Braking_System

@ Bumper_skirts_grille
~OClutch

~@Clutch_Pedal
D collision
@ collision_Avoidance_System

I

<[

comment

*Uses additional shart range radar co cover wider field of view in front of the ACC equipped vehicle.

The increased field of view enables a limited ‘automatic go'function within 3 second without driver intervention”@en

label
“ACC_Stop_and_Go"@en

subClassOf

[ACC Step and Go

Equivalentclasses ()

() D

Inhestted anonymous classes

uembes)
ke)

Disjoint classes o
OAce_Deactivation, ACC

Disjoint union of o

000

(Figure 5.29)

35

safety_function|seme JActive_Control_Retracto

111

'o«||lcm|

(Figure 5.30)

36

Fie ER View Ressonsr Tools Refactr Wndow Hep

EJQ | © Ortology1 270064143 (rs ik owh-ontokogies com2 OXOntiogy! 270064143 owl) v n“

s e | Gl by et | ot ||
Class herarchy, ACC. Stop 804G WE8E |l 2reotsions: ACC Steo 30 Go TEEE

!.'|:~ ’g‘l Annotations) Al
v-@Thing oomment JWUU
®acc *Uses additional short range radar co cover wider field of view in front of the ACC equipped vehicle.
LT The increased field of iew enables a limited ‘automatic 0o’ function within 3 second without driver infervention®@en
@ACC Deactivation 9 - @

.Acc_mp_m‘_oo b7 label
BACC_System Al 1| "ACC_Stop_and_Go"@en
BACC_System_Failure subClessOf aTxTo M
O Active_Control_Retractor e g 4 B e i a4 . =
@ Active_State
O Adaptive Brake Assist
Dhlert Equivalent olasses ()
O Amplifier
—®audio_Warning ; .
OAutomatic_Emergency_Braking safety_function some Active_Control_Retractor @x[o
O Axiomo -
©Axiom
©Bad_Weather
» OBrake
OBrake_Light
@Brake_Light Signal "
©Brake_System Failure At
@ Braking_System -
O Bumper_skirts_grille Disjointelasses (3 |
O Clutch B ACC_Deactivation, ACC alx]o)
~@Clutch_Pedal
@ Collision Disointsnion o)
Ocollision_Avoidance_System ‘

Inhesited anonymous ¢lasses

Members Y
e 4'\1\‘1

<

No Ressoner set Sekect a reasoner from the Ressonzr menu V] Show inferences

(Figure 5.31)

5.9.2. Universal restriction:

Universal restrictions describe classes of individuals that for a given property only have
relationships along this property to individuals that are members of a specified class. For
example, 'the class of individuals that only have 'safty_function' relationships to members of
'Automatic_Emergency_Breaking'. In Protégé the keyword 'only' is used to denote universal
restrictions.

In compare to existential restriction, we could use an existential restriction 'safety_function
some Active_Control_Recractor' to describe the individuals that have at least one relationship
along the property safety function to an individual that is a member of the class
ACC_stopp_and_go. This restriction does not imply that all of the safety_function relationships
must be to a member of the class Active_Control_Recractor. To restrict the relationships for a
given property to individuals that are members of a specific class we must use a universal

37

restriction. Universal restrictions are given the symbol(V) . Universal restrictions are also
known as AllValuesFrom Restrictions.

In order to add an existential restriction please follow these steps:

1. Making sure that ACC_stop_and_go is selected, click on the ‘Add' icon next to
the 'Superclasses' header in the 'Class Description View'. (Figure 5.32).

2. Select 'Class expression editor' tab at first (Figure 5.33).

3. Type 'safty_function' as the property to be restricted (Figure 5.33).

4. Type 'only' in order to create a universally quantified restriction (Figure 5.33).

5. Specify that the filler is 'Automatic_Emergency_Breaking'. to do this either: type
'Automatic_Emergency_Breaking' into the filler edit box, or drag and drop

'Automatic_Emergency_Breaking' into the text box (Figure 5.33).

6. Press 'OK' to close the dialog and create the restriction. If there are any errors (due to
typing errors etc.) they will be underlined in red (Figure 5.33).

38

Fle ER Vew Ressoner Tools Refactr Window Hep

- DActive_State
© Adaptive_Brake_Assist
Oalert
© Amplifier
@ Audio_Warning
© Automatic_Emergency_Braking
O Axiomo
©Axiomt
©'Bad_Weather
» OBrake
©Brake_Light
@ Brake_Light_Signal
©Brake_System_Failure
@ Braking_System
O Bumper_skirts_grille
O Clutch
O Clutch_Pedal
@ Collision
@ Collision_Avoidance_System

E > [9 Ortobogy1 21006149 o v oortcogies com 2 0Ertoogy1 270054143 0w) v
| cthe Ctoy | Ertes | Cosses | O Pretes | DlaPropetes | bl | OWVe | DX usy | Onocet |
s ety | Cas achy et | sontatars | Vg |
Clsss hierarchy: ACC_Stop_and_Go Annctations: ACC_Stop ard Go 1588
ﬂﬂ @ Ansstatiges £ =
|Y-@Thing B
vace *Uses additional short range radar co cover wider field of view in front of the ACC equipped vehicle.
ACC Deactivation The increased field of iew enables a limited ‘automatic go'function within 3 second without driver intervention” @en
1ACC_Stop_and_Go | 1 el
ACC_System *ACC_Stop_and_Go"@en
GACC_System_Failure subClassOf OO0
O Active_Control_Retractor e o e e A o e . M

Description: ACC_Stop_and Go

Equivalest classes)
quivalent classes ()

e

(U safety function some Active_Control_Retractor

Inherited anonymous classes

Memsbers O

Disjoint classes £3

(G ACC_Deactivation, ACC

Disjoint union of (:‘

No Ressoner set. Sekect 3 reasoner from the Ressoner menu V! Shaw Inferences

Figure (5.32)

39

ator | Class hierarchy '[r Class expression edtor || Data restriction creator

) S

safety functlon

]

Automatic_Emergency_Braking

Figure (5.33)

40

6. What is Reasoner?

One of the key features of ontologies that are described using OWL-DL is that they can be
processed by a reasoner. One of the main services offered by a reasoner is to test whether or
not one class is a subclass of another class. By performing such tests on the classes in an
ontology it is possible for a reasoner to compute superclass-subclass relationships
(subsumption relationships) automatically to infer ontology class hierarchy. Another standard
service that is offered by reasoners is consistency checking. Based on the description
(conditions) of a class the reasoner can check whether or not it is possible for the class to have
any instances. A class is deemed to be inconsistent if it cannot possibly have any instances. So
reasoner can help to maintain the hierarchy correctly.

6.1. Invoking The Reasoner:

It is possible to plug in various OWL reasoners to Protégé 4. Two versions of reasoner are
shipped with Protégé are named FaCT++ and HermiT 1.3.6. In order to compute the
classification hierarchy and also to check the logical consistency of the ontology automatically
you can use the reasoner. (Figure 6.1) In Protégé 4 the ‘'manually constructed' class hierarchy is
called the asserted hierarchy. The class hierarchy that is automatically computed by the
reasoner is called the inferred hierarchy. (Figure 6.2). If a class has been reclassified (i.e. if it's
superclasses have changed) then the class name will appear in a blue color in the inferred
hierarchy. If a class has been found to be inconsistent it's icon will be highlighted in red.

41

Annotations ()

—@ACC_Deactivation
-@ACC_Stop_and Go
—@ACC_System
~@Active_Control_Retractor
—@Adaptive_Brake_Assist
—@Alert

;—OAmplmr

@ Audio_Waming
—@Automatic_Emergency_Braking
—@Axiomo

—OAxiomi

ﬂ!nko

-@Brake_Light
~@Braking_System

—@Clutch

—@Clutch_Pedal

—@Collision
r~@Collision_Avoidance_System
~@Collision_Warning
—@Commission
—@Concept
—@Detection_Range
~@Distance
~@Distance_Warning

comment m

*Acrorym for Adaptive Cruise Control@en

e @en

Equivalent classes °

Superclasses °

©5ameAs only ACC_System

@5ameAs only Distronic_ACC

@5ameAs only Intelligent_Cruise_Control

Inhesited anonymoss ¢lasses

Members °
Keps °

Disfolnt elasses °

OACC_Stop_and_Go, ACC_Deactivation

Figure (6.1)

42

Fie EH View Ressoowr Toos Refockr Wndow Heb

|¢|:°] {9 oricogy 270064149 v ot ontiogles com2010Kniclogy 1 270064143 0w) - ['| |
|/t Oy | e | s | et Properes | Do et | i | OALVE | Doy | Crocet |
I: 1] Aanotations ﬁ
Ansatatices ()
v [ring 2 feomment 000
EWE_— Infefred-Hierarehys
~|@ACC Deactivation .
TS Assertedhierarchy
~@ACC_System
~@Active_Control_Retractor
~@Adaptive_Brake Assist
—@Alert
~@Amplifier ———
.-.Au"o-w‘mlw Equivalent classes °
~@Automatic_Emergency_Braking
—OAxiom0 Supesclasses °
::::'I;““ 5ames only ACC_System
-—OBnk: Light @52ameAs only Distronic_ACC
- @Braking System @5ameAs only Intelligent_Cruise_Control
~@Clutch
---OCIM_Podal Inbarited anonymoes elasses
~@Collision
~—@Collision_Avoidance_System Membes)
~@Coliision_Warning
~@Commission xen @
~@Concept
;. nmn-km'. Disfoint elasses °
~@Distance
- @Distance_Warning j' @ACC_Stop_and_Go, ACC_Deactivation

Figure (6.2)

6.2. Necessary And Sufficient Conditions (Primitive and Defined
Classes):

All of the classes that we have created so far have only used necessary conditions to describe
them. Necessary conditions can be translated as, (If something is a member of this class then it
is necessary to fulfill these conditions. in other words, with necessary conditions alone, we
cannot say that, If something fulfils these conditions then it must be a member of this class.
Those classes that only has necessary conditions are known as Primitive Classes. Let’s describe
this with an example. At first we need to create Grille class and its subclass Bumper_skirts_grille
as it described in section 5.2. Then as it has explained in section 5.9.1 a property restriction
(protects some Radiator) has specified like the picture shown in (Figure 6.3).

43

2 Ontology 270064145 it/ o cntloges com/2010/ ntology 210064183) - CAUserAWANDNDroporProtege A5 yter o - .5

Fle Efl View Ressoner Tooks Refocke Wndow Hep

<21 &> | [Oriokogy1270064143 i ow-rtckogs con201 0Ortsogy1 70064143 0m) - |
[i rdogy | Etes | Cosses | Ot Popres | Dt | v | OV | 0L Gy | riotet |
Cisss herarchy: orlle | giabions. Grile
| R " @ ‘ | | Anaotations °
= Tabel
~—@0n_State 2 o
~@Stand By State Il
—@Stuck comment
v-@5ystem _State *An opening on the body of a vehicle. Contains several slits tayed side by side in a wall or metal sheet or ofher barrier, usually o Iet air or water enter
—@5teady State System andlor leave but keep larger objects in or out"@en
—@Transient State_System subClassOf B

~@Unsteady_State_System

~@Time_Gap
—@Traffic
Y-@vehicle Equivalent classes o
~—@Ego_Vehicle [
—@Moving_Yehicle Supesclases |
—@stationary _Vehicle @protects some Radiator 000
~@Vehicle_Dynamics_System A
i ’.VQMCM Inherited anamymaus classes
—@Velocity Range
~@Work_Load S
Keys °
—@Fender_grille
—@Hood_scoop_grille Oioin clases)
~@Radiator_grille :
~—@Roof_grille Disjoint unian of o
—@objects

<]

~—@preset_minimum_ime_gap

Tousety ek St ¥ stow

Figure (6.3)

Our current description of Bumper_skirt_grille says that if something is a Bumper_skirt_grille it
is necessarily a Grille and it is necessary for it to have at least one Protects that is a kind of
Radiator. We have used necessary conditions to say this. Now consider some (random)
individual. Suppose that we know that this individual is a member of the class Grille. We also
know that this individual has at least one kind of Radiator. However, given our current
description of Bumper_skirt_grille this knowledge is not sufficient to determine that the
individual is a member of the class Bumper_skirt_grille. To make this possible we need to
change the conditions for Bumper_skirt_grille from necessary conditions to necessary AND
sufficient conditions. This means that not only are the conditions necessary for membership of
the class Bumper_skirt_grille, they are also sufficient to determine that any (random) individual
that satisfies them must be a member of the class Bumper_skirt_grille.

44

A class that has at least one set of necessary and sufficient conditions is known as
a Defined Class. Also necessary conditions are simply called Superclasses in Protégé 4.
Necessary and sufficient condition are called Equivalent classes.

In order to convert necessary conditions to necessary and sufficient conditions, the conditions
must be moved from under the 'Superclasses' header in the class description view to be under
the 'Equivalent classes' header. This can be done with the 'Convert to defined class' option in
the 'Edit' menu.

In order to convert the necessary condition for Bumper_skirt_grille into necessary and

sufficient conditions please follow these steps:

1. Ensure that Bumper_skirt_grille is selected in the class hierarchy.

2. Select ‘protects some Radiator’ property restriction in description view.

3. Right click on ‘protects some Radiator’, and then select ‘Convert selected rows to defined
class’, shown in Figure 6.4, or you can go to Edit in menu bar and select the ‘ Convert to defined
class’ shown in Figure 6.5

File Edt View Reasoner Tools Refactor Window Help

<a| 2> | [© ortology1270084148 (ritp:iiwww.owl-ortologies com/2010/Ortology1 270054143 o) ~| & J|

Class hierarchy [(0% y 4) |(“Annotations |((zagen]|
Class hierarchy: Bun [Aootstions: Bumper s _aile
e [‘ Annotations @)
label 000

ID

-
--@Detection_Range
- @Distance
@Distance_Warning
@Distronic_ACC
®Driver
®Driveshaft
> @ Driving_Environment
@ Electric_Park_Brake_Assist

"Bumper_skitts_grille"@en

Description: Bumper_skirts_grille

- @Engine —
> .Fai?ure Equivalent classes ()
@Forward_Collision_Warning_|
@®Forward_Vehicle Sunesolasses @
®Global_Positioning_System @®crille
Y- @crille . - | @protects some —
@Bumper_skirts_grille Switch to defining ontology
“@Fender_grille . Inherited anonymous classes ullinto active ontolog
~®Hood_scoop_grille Move axiom(s) o ontology...
@ Radiato r_grille Members € Convert selected rows to defined class
@®Roof_grille
S Create new defined class
@information
: « K "
@Intelligent_Cruise_Control Q) Create closure axiom

@ Limited_Automatic_Go

@ Multi_Target_Tracking_Filter
- @ Omission

@®Preceeding_Vehicle Disjoint union of)
- @Primary Target Selection Algorithm b

Disjoint classes)

To use the reasoner click Reasoner-»Start reasoner Show Inferences:

Figure (6.4)

45

Fie [E View Ressoner Tools Refoctor Window Hep

U e com20100rtrogy1 270064143 0w) B
Redo CuisStift-Z S

%! Deles.. Cokuidi Annotations o
[] " B 000
*Bumper_skits_grille"@en
Creste new N
Creste chid vtk Sash
Creste sking ot Stash
Duplcate seiected class.. CuleSift-C =
i Qr-? -
7 ke T Description’ Bumper_stils_ogris
- - - - - Equivalent classes o
Make af indhiduss distnet %
Superclasses °
Make prmdive stings disoint (]
Ocrille 000
Remove disiorts for subclasses
“WElectric_Park Brake Assist
P .Engine Inherited anonymous ¢lasses
» OFailure
@Fonward_Collision_Warning_Mechanism uemhes)
~@Forward Vehicle
—@Global Positioning System ke Q)
OGrille
- @ Bumper_skirts_grille isjintclases)
—OFender_grille
@Hood_scoop_grille isointnion of)
ORadiator_grille &

To use the ressaner click Reasoner>Start reasoner (Vi Show hferences

Figure (6.5)

After conversion the class description view should look like picture shown in Figure 6.6.
How is this useful in practice? Suppose we have another class B, and we know that any
individuals that are members of class B also satisfy the conditions that define class A. We can
determine that class B is subsumed by class A. In other words, B is a subclass of A. Checking for
class subsumption is a key task of a description logic reasoner and we will use the reasoner to
automatically compute a classification hierarchy in this way.

46

& CrtologyZTOOGALE /gt crtoloes o010 Ontoogy 27006145 ow) - (e WATIAvopbic Profege ACC, Syt 6

Fle ER View Ressoner Tooks Refsctor Window Hep

J

@o [@ Ortolgy 270054148 (1t e contloges om0 0Wtclogy 1270054143 0w) v @)]

(Rt ety | e | s

|l ety | Gl (oesed | ot

Class hierarchy. Bumper_skirls orile Annolations: Burper_sirts_arile DEEE

Oclutch bt 000

~@Clutch_Pedal “Bumper_skirts_grile"@en

@ collision
@ Collision_Avoidance_System
@ collision_Warning
@ Commission
@ Company
~@Concept
@Detection_Range
3 *.Distance Equivalent classes o
@Distance_Warning || ®protects some Radiator axle
~ @Distronic_ACC - J
O0river supoctases)
@0riveshaft
» ®Driving_Environment Se 000
~@Electric_Park_Brake_Assist
@Engine
» OFailure
@Forward_Collision Waming_Mechanism Henbes ()
~—@Forward_Vehicle
O Global_Positioning_System ven Q)
v-OGrille
om_gm _grille Disoint casses ()
@Fender_grille
@Hood_scoop_grille Disointsnion of)
ORadiator grille

i»

b o TEEE

Inhesited anonymous classes

<]

Toussthe Stor reasoner (i Show hferences

Figure (6.6)

6.3 Primitive And Defined Classes

Classes that have at least one set of necessary and sufficient conditions are known as defined
classes. They have a definition, and any individual that satisfies the definition will belong to the
class. Classes that do not have any sets of necessary and sufficient conditions (only have
necessary conditions) are known as primitive classes. In Protégé 4 defined classes have a class
icon with three horizontal white lines in them. Primitive classes have a class icon that has a
plain yellow background. It is also important to understand that the reasoner can only
automatically classify classes under defined classes - i.e. classes with at least one set of
necessary and sufficient conditions.

47

6.4 Automated Classification

Being able to use a reasoner to automatically compute the class hierarchy is one of the major
benefits of building an ontology using the OWL-DL sub-language. Indeed, when constructing
very large ontologies (with upwards of several thousand classes in them) the use of a reasoner
to compute subclass-superclass relationships between classes becomes almost vital. Without a
reasoner it is very difficult to keep large ontologies in a maintainable and logically correct state.
In cases where ontologies can have classes that have many superclasses (multiple inheritance)
it is nearly always a good idea to construct the class hierarchy as a simple tree. Classes in the
asserted hierarchy (manually constructed hierarchy) therefore have no more than one
superclass. Computing and maintaining multiple inheritance is the job of the reasoner. This
technique helps to keep the ontology in a maintainable and modular state. Not only does this
promote the reuse of the ontology by other ontologies and applications, it also minimises
human errors that are inherent in maintaining a multiple inheritance hierarchy.
Having created a definition of a Bumper_skirt_grille we can use the reasoner to automatically
compute the subclasses of Bumper_skirt_grille.

In order to use reasoner and please follow these steps:

1. Select Reasoner in menu bar.

2. Select Start reasoner as shown in Figure 6.7.

After pushing reasoner the inferred hierarchy is computed and you can see the result in
inferred hierarchy window as shown in Figure 6.8.

48

File

Edt View |Reasoner Tools Refactor Window Help

[<]o| o4

Class hierarohy

(e[| s

R

omi2010/Ontology1270064149.0wl)

<] | & |

Configure...

hier.

Y

DEEE

~@Cluteh MNore

@ Collision_Avoidance_System

@ Collision_Warning
@ Commission
@ Company

Concept
@®Detection_Range
®Distance
Distance_Warning

@ Distronic_ACC

- @Driver

- @Driveshaft
@®Driving_Environment
@Electric_Park_Brake_Assist
@®Engine

®Failure

.Fomnrd:\Iehlcle

@ Global_Positioning_System

Bumper_s
@®Fender_grille
~@Hood_scoop_grille
@ Radiator_grille

-

Annotations ()

"Bumper_skirts_grille"@en

Equivalent classes o

Superclasses °

@Grille

Inherited anonymous classes
Members)

Keys o

Disjoint classes o

Disjoint union of °

To use the reasoner click Reasoner-=Start reasoner Show Inferences

Figure (6.7)

49

Annctations: Bumper shirts grle

v-@Thing
dace
DACC_Deactivation
—@ACC Stop_and_Go
ACC _System
~@Active_Control_Retractor
O Adaptive_Brake_Assist
Dhlert
9 Audio_Waming
@ Automatic_Emergency_Braking
» OBrake
©Brake_Light
©Braking System
~@Clutch
OClutch_Pedal
@ Collision
@ collision_Avoidance_System
~@Collision_Warning
@ commission
O company
@cConcept
@Detection_Range
O Distance_Warning
@ Distronic_ACC
~@Driver
- @Driveshaft
»- @ Driving_Environment
L BFlastric Park Rrake Accict

I»

aus

<[

Annatations 0
el 000

“Bumper_skirts_grille*@en

Description Bumper_shirts grils

Equivalent clases)

| 0Grile 000

@protects some Radiator 000

Supesclasses O

Inhasited anonymous ¢lasses

Membes)
Keys o
Disointctasses)

Disjointunion of)

Reasoner active V] Show nferences

6.5 Closure Axioms

Figure (6.8)

A closure axiom on a property consists of a universal restriction that acts along the property to

say that it can only be filled by the specified fillers. The restriction has a filler that is the union of

the fillers that occur in the existential restrictions for the same property. For example, the

closure axiom on the about property for Information is a universal restriction that acts along

the about property, with a filler that is the union of Alert, Collision, Distance, Failure and

Preceding_Vehicle.

In order to add a closure axiom on the ‘about’ property for ‘Information’ follow these steps:

1. Select Information class in class hierarchy on the class tab. (Figure 6.9).

50

2. Press the 'Add' icon next to the 'Superclasses' section of the 'Class Description' view to open
the edit text box. (Figure 6.9).

3. Type about as the property to be restricted. (Figure 6.10).

4. Type ‘only’ to create the universal restriction. (Figure 6.10).

5. Open brackets and type 'Alert or Collision or Distance or Failure or Preceding_Vehicle' and
then close bracket. (Figure 6.10).

6. Press 'OK' to create the restriction and add it to the class Information. (Figure 6.10).

7. The result on description view should be like picture in Figure 6.11.

51

Fie Edt View Ressoner Tools Refoctr Window Hep

2]

'Qlol 9 ortkogy1 270064143 (s o atclopes com010Crckogy| 270084143 0w

e gy | Bt | cosses | Ot Prpete | ot roptes | s | 0t | o umy | oot |

—
ool

> OFailure
~@Forward_Collision_Wamning_Mechanism
—@Forward_Vehicle
~@Global_Positioning_System

» O Grill

telligent_Cruise_Control
~—@Limited_Automatic_Go
~@Multi_Target_Tracking_Filter
~@0mission

~—@Preceeding Vehicle
~—@Primary_Target Selection_Algorithm
—®Radar_Sensor

~@Radiator
~@Remote_Sensing_Technology
~®Residential Area
—@Selection_Criteria
~@Sensor

»-Osignal

—@Speaker

» OSpeed

> Ostate

~@Stuck

»-@System_State

—®Time_Gap

~@Traffic

>

comment 000
-gn

labed 000
“Information'@en

subChassOf 000

“Cls(@A434_ccb2MM_1233_4cbf_9968_b4110M629ck)™ string

Equivalent classes °

O A

@about some Alert
@ about some Collision

@ 2bout some Distance

@about some Failure

@about some Preceeding_Vehicle

@from only Radar_Sensor

@from only Yehicle_Dynamics_System

@from some Global_Positioning_System

Inherted anonymous classes

ey . |

>Siar reasoner (VA Sh

Figure (6.9)

52

[re for | Cl rarchy

bout enly (Alert or Collision or Distance or Failure or Preceeding_Vehicle)

Figure (6.10)

53

|

Fle Efl View Ressoner Tools Refscr Wndow Hep

,°E 2| [Ortoogy1270054148 s ootk com01 ety 1270064143 o)

{Bcive oy | it | Cosses | Coecropetes | DaProperes | s | OV | L Oury | i |

| s ety |l ey e | [onstatons 11
Clsss hietarchy. infoemation .0 Annctabons: nformsbon
@ Annotations o
[> ®Failure || comment
~@Forward_Collision_Warning_Mechanism | e
~@Forward_Vehicle Tabel
O Global_Positioning_System “Information"@en
¥ :c""'f subChassOf
SRR *C1s(@A434_ccb2M8_1233_4cbf_9968_b4110M629c0)™stin
Qintelligent_Cruise_Control il SR e LN

~@Limited_Automatic_Go
~—@Multi_Target Tracking_Filter

—@0mission Equivalent classes o
~@Preceeding_Vehicle
~@Primary_Target_Selection_Algorithm Superclames : |
:x:;f‘"’" | || @about only (Alert or Collision or Distance or Failure or Preceeding_Vehicle) 000
r
@Remote_Sensing_Technology ;
OResidential_Area ®about some Alert OOO%
—@Selection_Criteria ||| || @about some Coliision 060
Osensor | | @about some Distance 000
»-9signal ; o oo
-@Speaker Oaboutsome Failure e
» O5peed ©about some Preceeding Vehicle 000r
> :m @from only Radar_Sensor 000
1A .m:m state @from only Vehicle_Dynamics_System 000
®Tine G ©from some Glabal ositining System 000
O Traffic & =
>t reasoner [V Show inferences
Figure (6.11)

There is another way to add a closure axiom on a property for a class that is easier and faster to

do. In following steps you can find how to do it on 'about' property for 'Information':

1. Make sure that you have selected Information in class hierarchy. (Figure 6.12).

2. Select one of the about property restrictions on the property description view. (Figure 6.12).

3. Right click on the selected property restriction and then choose Create closure axiom.(Figure

6.12).

4. The result on description view should be like picture in (Figure 6.13).

54

BT bt o o3 o et o oY) oot i e i =l

Fle ER Vew Ressoner Tools Refactor Window Hep

¢|¢>1 [9 orckogy 270064149 (1t e it atcoes com201DCrtchogy 70064143) v }l[|
| et rdogy | e | Coss | ttProprtes | OotaPrpees | kb | OWLYe. | D ey | Cnoet |
Cumvonc | |
J Ciass herarchy: nioemation
[s[e][]
»-OFailure
~@Forward_Collision_Warning Mechanism e
—@Forward_Vehicle label 000
~@Global_Positioning_System “Information@en
ERE. g 000
g ST S CIs(@M34_cch2MM_123a_4cbi_ 9968 _b4110M620ct) sbing

—@Limited_ Automatic_Go
~—@Multi_Target_Tracking_Filter

~—@0mission Equivalent classes ° A

—@Preceeding_Vehicle

~@Primary_Target Selection_Algorithm superctasses)

—®Radar_Sensor

~—®Radiator I Swichio efiing otobgy

—@Remote_Sensing_Technology about some Collsion Pul ko actve ortoiog 000

~—@Residential Area @ about some Distance N a

~—@Selection_Criteria @ 2bout some Failure P i

—@Sensor - ‘

» Osignal @ about some Preceeding_Vehicle Create new defined cisss :

~—@Speaker & 000

»-@Speed @from only Vehicle_Dynamics_System 000

(B 000

. @stuck @from some Global_Positioning_System

»-@5ystem State

—®Time G'P Inhestted anonymous classes

~@Traffic =
| |Litemioe £

Figure (6.12)

55

7 af]

Class herarchy, Information

(]2 [x]

ODistronic_ACC
@ Driver
~ ODriveshaft
» ®Driving_Environment
OElectric_Park_Brake_Assist
OEngine
» OFailure
~@Forward_Collision_Warning_Mechanism
OFonward_Vehicle
@ Global_Positioning_System
> Ocrille
~ Uinformation
~@Intelligent_Cruise_Control
OLimited_Automatic_Go
O Multi_Target Tracking_Filter
©0omission
~ @Preceeding_Vehicle
OPrimary_Target Selection_Algorithm
~®Radar_Sensor
@ Radiator
~@Remote_Sensing_Technology
O Residential_Area
Oselection_Criteria
~®Sensor
» Osignal
O speaker

>

<«

Annotations: Information

Annotatiens 0

comment
-@en

label
“Information"@en

subClass0f
“Cls(@A434_ccb29_1233_4cbf_9968_b4110B29ck)™sking

Description: nformetion

Equivalent classes o

Supesciasses °
(6 about only 000
(Alert %
or Collision
or Distance
or Failure
or Preceeding_Vehicle)
©about some Collision 000
©about some Distance 000
| Oabout some Failure 000
@ about some Preceeding Vehicle OQO
Ofrom only Radar_Sensor 00055

Figure (6.13)

56

7. Creating Individuals

In OWL we can define individuals. Consider we wanted to define different companies which
have been offered ACC systems. In order to do that, first we have to create a class namely
‘Company’, then we can define different company instances (individuals) for class ‘Company’
such as ‘Mitsubishi’, ‘Toyota’, ‘ Lexus’, ‘Jaguar’, Audi” and Notice that instances are different
from subclasses. To create individuals in Protégé 4 the ‘Individuals Tab’ is used.

Now we will create a class called ‘Company’ and populate it with some individuals:

1. Create Company as a subclass of Thing. Shown in (Figure 7.1).

% Ontology1270064149 (hnp://www.owl-ontologiescom/ZOlO/Ontologyu7006_4g49.owl) - [C:\Users\Safoura\Dropbox\Protege\ACC_System.owl] =68 &8
File Edt View Reasoner Tools Refactor Window Help ‘

w.owi-ontologies ¢

]EJ <> [© ontology1270084148 (1t 1

Active Ortology | Entiies | Classes | Object Properties | Data Properties | individuals | OWLViz | DL Guery | OntoGraf |

) Class (inferred) | | Members list (infened) | [Annotations | Usage |

Class hierarchy LI Membess list |

@ Concept - 1

@ Detection_Range : <€ Create a new OWLNamedindividual

@ Distance |

@ Distance_Warning : Please enter an individual name

@ Distronic_ACC esubishi A

@ Driver ["] ignore entity creation :)veterences

@ Driveshaft Il bject property assertions

Fres < hitp fhawy.owd-ontologies.com/2010/Ontology 1270064149 owl...
GDrlvmg_En\nronmer 52 S i

@ Electric_Park_Brake
@ Engine
@ Failure [Negative object propery asserions
@ Forward_Collision_Y IL] L cocs J‘
@ Forward_Vehicle | —
@ Global_Positioning_
@ Grille
@information
@Intelligent_Cruise_C
@ Limited_Automatic_(
@ Multi_Target_Tracki
@ Omission

lﬂ;

[«

F

To use the reasoner click Reasoner->Start reasoner (v Show Inferences

Figure (7.1)

57

2. Switch to the ‘Individuals Tab’.
3. Press the ‘Add individual’ button.
4. Name the new individual ‘Mitsubishi’, press ‘Ok’.

5. In the individual ‘Description’ view located at the centre of the Individual tab, make
sure that the class ‘Company’ to be the ‘Type’ for this individual. If it’s ‘Type’ is not
Company, select the ‘Add’ icon next to the ‘Types’ header from the individual
‘Description’ view, choose class ‘Company’ from the class hierarchy, this will make
‘Mitsubishi’ an individual of the class Company (Figure 7.2).

& Ontology1270064149 (http://www.owl-ontologies.com/2010/Ontology1270064149.0wl) - [CAUsers\Safoura\Dropbox\Protege\ACC Systemowl] il o(=1: o)

—

File Edt View Reasoner Tools Refactor Window Help

‘ Q> | @ Ontology1270064149 (bt i owl-ontologies com/201 WOrtologyt 270084143 owl) v B ‘

Active Ontology | Entiies | Classes | Object Properties | DataProperties | Individuals | OWLViz | DL Guery | OntoGraf |

Class hisrarohy (inferred) | Members ist(infered) |
' [Members list |

ist: Msubishi DIEEE |

 Company | |# mitsubishi
@ Concept

@) Detection_Range

@ Distance

@ Distance_Warning
@ Distronic_ACC

@ Driver Description: Masubishi assertions: Mitsubishi
@ Driveshaft = Types Object piopenty assertions

@ Driving_Environmer ﬁ @ Company

@ Electric_Park_Brake ‘ Data propenty assertion

@ Engine Z Sama ihdiideals

O Failure ' N

egative ect property assert
@ Forward_Collision_\
@ Forward_Vehicle |-
@ Global_Positioning_|
@ Information
@Intelligent_Cruise_C
@ Limited_Automatic_¢
@ Multi_Target_Tracki
@ Omission

@ Preceeding_Vehicl

o q':
! PP RE]
777 Lr] |

To use the reasoner click Reasoner->Start reasoner (V! Show Inferences

Figure (7.2)

Repeat the above steps to create some more individuals that are members of the class
Company. After adding individuals, the member list should be like (Figure 7.3). Using ‘Delete
individuals’ button next to ‘Add individuals’ button, you can delete previously created
individuals.

58

|/ Members list

Members list:

(#] %

4 Audi

4 Jaguar

Lexus

4 Mitsubishi
4 Toyota

Figure (7.3)

59

Reference:

Protégé web site: http://Protégé.stanford.edu/

60

http://protege.stanford.edu/

