

Protégé

Contents

1. Introduction .. 1

2. Requirements .. 2

3. Protégé Installation ... 3

3.1 Download protégé ... 3

3.2 Install Protégé .. 4

3.3 Graphviz Installation .. 5

4. Protégé Overview .. 7

4.1 Components of OWL Ontologies .. 7

5. How to create an ontology (ACC Example) ... 10

5.1 Creating an OWL ontology ... 10

5.2 Named Classes ... 11

5.3 Disjoint Classes .. 13

5.4 Using Create Class Hierarchy To Create Classes ... 15

5.5 OWL Properties ... 19

5.6 Inverse Properties ... 22

5.7 Object Property Characteristics ... 25

5.7.1 Functional Properties ... 25

5.7.2 Inverse Functional Properties .. 27

5.7.3 Symmetric Properties .. 27

5.7.4 Asymmetric properties .. 27

5.8 Property Domain and Range .. 28

5.9 Property Restrictions ... 32

5.9.1 Existential Restrictions .. 32

5.9.2 Universal Restrictions ... 37

6. What is Reasoner? .. 41

 6.1 Invoking The Reasoner ... 41

 6.2. Necessary And Sufficient Conditions (Primitive and Defined Classes): 43

 6.3 Primitive And Defined Classes ... 47

 6.4 Automated Classification ... 48

 6.5 Closure Axioms .. 50

7. Creating Individuals .. 57

1

1. Introduction

Using ontology it is possible to capture knowledge about some domain. An ontology describes

the concepts in the domain and also the relationships that hold between those concepts.

Protégé is a free, open source ontology editor and knowledge-base framework. The Protégé

platform supports two main ways of modeling ontology via the Protégé-Frames and Protégé-

OWL editors. Protégé ontology can be exported into a variety of formats including RDF(S), OWL,

and XML Schema. One of the advantages of using protégé in complex concepts is reasoner,

which can check whether or not all of the statements and definitions in the ontology are

consistent and can also recognize which concepts fit under which definitions.

ACC system stands for Adaptive Cruise Control system, and it is a system to control vehicle

speed adaptively to a forward vehicle by using information about: (1) ranging to forward

vehicles (2) the motion of the subject (ACC equipped) vehicle and (3) driver commands. Based

on these information acquired, the controller sends commands to actuators for carrying out its

longitudinal control strategy and it also sends status information to the driver.

This guide introduces Protégé 4 for creating OWL ontology. As an example, during this guide,

ontology for ACC System will be created and the creation process is explained step by step.

http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://protege.stanford.edu/overview/protege-frames.html

2

2. Requirement

In order to follow this tutorial you need to install Protégé 4.1. The web page you can download

the Protégé and the instruction for installation are described in section 3. To see your

classification hierarchies of the domain more visualised, you can use the OWLViz plugin that is

also described in section 3. You can install more Protégé Plugins which are available via the

Protégé ’ s website.

http://protegewiki.stanford.edu/wiki/Protege_Plugin_Library

3

3. Protégé Installation

3.1. Download protégé

At the first step, in order to download Protégé go to this webpage , then select the compatible
Protégé, based on your platform.

As for some platforms in order to run Protégé, it is required version 1.5 of the Java Virtual
Machine has been installed before, please choose from 'Includes Java VM', which will install
JVM on your computer simultaneously, otherwise select from 'without Java VM' (Figure 3.1).

Figure (3.1)

http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/
http://protege.stanford.edu/download/protege/4.1/installanywhere/Web_Installers/

4

3.2 Install Protégé

After downloading Protégé, double-click 'install_Protégé_4.1.exe' then:

1. A window will open, and you have to follow the installation steps by selecting 'Next'.

2. In the 'Choose Install Folder' step select the path you want to install the Protégé and
click 'Next'.

3. In the 'Choose Shortcut Folder' step select a place you want to create product icon
and then click 'Next' button and follow.

4. In the 'Choose Java Virtual Machine' step, select the first option 'Use the Java VM
installed with this application'.

5. In the next step please read the summary and select install button.

6. Then the installation will start automatically, at the end press 'Done' button to finish
installation.

5

3.3 Graphviz Installation

Graphviz has been designed to represent your classification hierarchies of the domain more
visualized. If you want to use Graphviz, you have to install it. Graphviz installation can be start,
after installing Protégé.

First you have to go to this web page and based on your platform, download the compatible
installation package of Graphviz. For example (Figure 3.2), represents the available installation
package for windows.

Figure (3.2)

1. After downloading, double-click on the file that you have downloaded and select

'Run'.

2. Follow the installation steps and pay attention to the path that you select as an
installation folder. This path will be required later.

When Graphviz installation completed, Protégé will make an educated guess about where to
find graphviz depending on your operating system, but if it does not get it right you will need to
configure this yourself:

These settings can be finding in the File ---> preferences, OWLViz tab. As shown in the

http://www.graphviz.org/Download..php
http://www.graphviz.org/Download..php

6

(Figure 3.3), specify the path where you have installed Graphviz to the dot executable file in the
appropriate place.

Example: C:\Program Files\Graphviz 2.28\bin\dot

Figure (3.3)

The following error may be occurs when you want to use OWLViz (Figure 3.4), if:

1) You did not installed Graphviz and/or
2) You did not specify the path where you have installed Graphviz in the preferences.

Figure (3.4)

7

4. Overview

Ontologies are generally used to describe some domain of interest by capturing knowledge

about the domain, containing a set of concepts and the relationship between them. The Web

Ontology Language (OWL) is the most recent standard language for modeling ontologies which

is developed by [W3C Web Ontology Working Group]. The current version of OWL which has

published as 'OWL 2' in 2009 is presented with three different level of expressiveness including

OWL Lite, OWL DL and OWL Full. Despite researchers’ effort to create languages in the hope of

developing a Semantic Web, there is still lack of understanding of a standard. According to

definition of Protégé in its website, 'Protégé is a free, open source ontology editor and

knowledge-base framework' which was developed by Stanford Center for Biomedical

Informatics Research at the Stanford University School of Medicine, in order to editing and

designing models in various Semantic Web Languages.

4.1. Components of OWL Ontology

The components used in OWL have equivalent substitutes in Protégé. But terminologies used to

describe these components are not same in OWL and Protégé. The OWL consists of three

elements of Individuals, Properties, and Classes, which in Protégé frames respectively are

defined as Instances, Slots and Classes.

Individuals

In OWL Individual represent basic components of ontology which known as objects in the

domain of interest. Ii addition to use different term to represent object, there is an important

difference between OWL and Protégé that OWL does not use the Unique Name Assumption

(UNA). In other words, in OWL an individual may be referred by more than one name. For

instance in the domain of Operating Systems, 'Windows', 'Microsoft Windows', 'Windows os'

and 'Microsoft’s os' might all refer to the same individual. So it should be precisely stated that

different individual are the same as each other or different to each other. In this tutorial

individuals are represented as squares in diagrams. In (Figure 4.1) some individuals of some

domain are represented.

http://www.w3.org/2001/sw/WebOnt/
http://protege.stanford.edu/download/download.html
http://www.mozilla.org/MPL/MPL-1.1.html
http://bmir.stanford.edu/
http://bmir.stanford.edu/
http://www-med.stanford.edu/

8

Figure (4.1)

4.2. Properties

Properties are binary relations. It means every relation is between only two things. In OWL

three distinguished relationships are defined:

 Object properties: The relationship between two individuals. For example, the property
studyIn might connect the individual Peter to the individual NTNU, or the property
isFriend might connect individual Maria to individual John.

 Datatype properties: The relationship between an individual and a data values.
 Annotation properties: Annotation properties are used to add metadata (information of

data about data) to classes, individuals and datatype properties.

4.3. Classes

In OWL classes are considered as sets containing individuals. All the individuals in a class has

some properties in common which these properties are exactly requirements for those

individuals that are members of that class. For example the University class contains all

universities in our domain of interest like NTNU, Harvard, KTH and so on. (Figure 4.2) shows a

representation of some classes containing individuals and the relationship between individuals.

In this figure classes are represented as circles and properties as directed arrows. Classes can be

organized into a hierarchy of superclasses-subclasses. For instance consider the classes

9

University and Department - all the Departments are members of University so being

department implies that it is a member of an University. (Figure 4.3) shows a representation of

a class hierarchy.

Figure (4.2)

Figure (4.3)

10

5. How to Build OWL Ontology (ACC Example)

5.1. Create a New Owl Ontology

We previously described what ACC system is and how it works; here we describe how to define
the ontology of ACC system by protégé. We will capture different concepts and relationships in
the ACC domain. Create a new OWL Ontology:

1. Start Protégé.

2. When the ‘Welcome to Protégé’ dialog box appears, press the ‘Create New OWL
Ontology'.

3. A ‘Create Ontology URI Wizard’ will appear. Every ontologies is named using a
Unique Resource Identifier (URI). Replace the default URI with
‘http://www.ACC.com/ontologies/ACC.owl’ and press ‘continue'.

4. You may want to save your Ontology to a file on your PC. So you can browse your
hard disk and save your ontology to a new file, you can name your file ‘ACC.owl’.

5. After pressing ‘continue’, you can select the format in which the ontology will be
saved (e.g. You can select ‘OWL functional syntax’) then press ‘Finish’.

Now you have been created a new empty Protégé file. The ‘Active Ontology Tab’ shown in
(Figure 5.1) will be visible.

In the active ontology tab we can add annotations on the ontology such as some comments to
describe ACC system ontology. Press ‘Add’ icon and write some comment. For example:
“Adaptive Cruise Control (ACC) ontology that describes an automotive feature. It allows a
vehicle's cruise control system to adapt the vehicle's speed to the traffic environment,
considering time gap to a forward vehicle and the set speed. “

11

Figure (5.1)

5.2. Named Classes

Ontology contains classes and various relations between these classes. In Protégé 4, editing of
classes is carried out using the ‘Classes tab' shown in (Figure 5.2) The empty ontology contains
one class called ‘Thing’. All classes that we create will become subclasses of Thing.

Now we want to start defining some classes to the ACC ontology in order to clarify how ACC
system works.

Create classes 'ACC_System' and 'Time_Gap':

1. Ensure that the ‘Classes tab’ is selected.

‘Add’ icon

12

2. Press the ‘Add' icon shown in (Figure 5.2). This icon creates a new class as a subclass
of the selected class. So if you select ‘Thing’ class, and then press ‘add Subclass’ you
will add a subclass of ‘Thing’.

Figure (5.2)

3. A dialog will appear for you to name your class, enter ACC_System and press ‘Ok’
(Figure 5.3).

Figure (5.3)

4. Repeat the previous steps to add the class ‘Time_Gap’, ensuring that Thing is
selected before the 'Add' icon is pressed so these classes are created as subclasses
of Thing.

13

Instead of selecting ‘Thing’ class, you can also select ACC_System class and press the icon for
‘add sibling class’ which is next to ‘add class’ icon (Figure 5.2). This is another way to create the
class ‘Time_Gap’ as subclass of ‘Thing’ and a sibling class of ‘ACC_System’. The class hierarchy
should look like (Figure 5.2).

To make it more understandable, we recommend that all class names start with a capital letter
and not contain spaces, you can also use underline to join words together. For example
Time_Gap.

5.3. Disjoint Classes

OWL Classes are assumed to ‘overlap’; it means that by default individuals from one class may
be also from another class. Therefore we cannot assume that an individual is only a member of
a particular class simply because it has been asserted to be a member of that class.

In order to ‘separate’ a group of classes we must make them disjoint from one another. This
ensures that an individual who has been asserted to be a member of one of the classes in the
group cannot be a member of any other classes in that group.

In ACC example, ACC_System and Time_Gap classes should be disjoint from each other. In ACC
domain it would make no sense for an individual to be an ACC_System and a Time_Gap! This
means that it is not possible for an individual to be a member of a combination of these classes.

So now, we need to make the ACC_System and Time_Gap classes disjoint from each other.

1. Select the ACC_System in the class hierarchy.

2. Press the ‘Disjoint classes' at the bottom in the ‘class description’ view (Figure 5.4).

14

(Figure 5.4)

This will bring up a window where you can select multiple classes to be disjoint from
ACC_System class. If in this window, ACC_System and Time_Gap classes are not
present, double click ‘Thing’ class to make ACC_System and Time_Gap classes
become visible (Figure 5.5).

Figure (5.5)

3. The disjoint classes’ window now displays ACC_System and Time_Gap classes. Select
the class ‘Time_Gap’ and then ‘Ok’.

15

Notice that the disjoint classes view displays the class that is now disjoint to
ACC_System, which is Time_Gap (Figure 5.6)

Figure (5.6)

5.4. Using Create Class Hierarchy to Create Classes

In this section we will use the ‘Create Class Hierarchy’ tool to add some more subclasses of the
class ‘Thing’. This is a useful way to add classes and subclasses when there are many classes and
subclasses to add.

1. Select the class ‘Thing’ in the class hierarchy.

2. From the ‘Tools’ menu on the Protégé menu bar select ‘Create Class Hierarchy...’.

3. The tools shown in (Figure 5.7) will appear. Here we have to select the class, which
we want to create subclasses under that. Since we preselected the class ‘Thing’, the
first class at the top of the tool should be prompting us to create the classes under
the class ‘Thing’. If we want to create subclasses for another class we have to select
it here. All the classes under ‘Thing’ will become visible by double clicking on ‘Thing’
class. Because we want to add subclasses for ‘Thing’, so we just select ‘Thing’.

16

Figure (5.7)

4. Press the ‘continue’ button on the tool. Now we have to write the subclasses of
‘Thing’ that we want to create. In the large text area, type the class name ‘ACC’ and
‘ACC_Deactivation’ and also ‘ACC_Stop_and_Go’. Now it should be like (Figure 5.8) If
we had to create a lot of classes that had the same ‘prefix’ or ‘suffix’ we could use
the options to automatically adding prefix and suffix to the class names that we
entered.

17

Figure (5.8)

5. Click the ‘Continue’ button on the tool. The names entered should be consistent
with the naming style that has been mentioned before (No spaces etc.). Also all the
created classes should be unique (no two classes with the same name), If there are
any errors in the class names, they will be presented on this page, along with
suggestions for corrections.

6. In order to make the new made classes ‘Disjoint’, ensure the tick box for ‘Make all
new classes disjoint’ is ticked, this automatically makes new classes disjoint.

7. Then press ‘Finish’. Now the tool creates the classes and makes them disjoint from
each other.

The ontology should now have ‘ACC’, ‘ACC_Sytem’, ‘ ACC_Deactivation’, ‘ACC_Stop_and_Go’,
‘Time_Gap’ as subclasses of ‘Thing’. So ‘Create Class Hierarchy’ tool would simplify the process
of adding classes, when we have a lot of classes to add to the ontology. After each modification
make sure to press ‘ctrl+s’ and then click ‘Ok’ to save modifications that you have made.

18

For an instance you can create a new class and name it ‘State’. ACC has different states such as:
‘Active state’, ‘Standby state’, ‘Off state’, ‘On state’ and ‘Disabled state’. These states can be
grouped as subclasses for class ‘State’.

In order to add these classes, you have to follow the above mentioned steps. Notice that we
want to add subclasses for ‘State’, so after you create class ‘State’, you have to select this class
to add subclasses. You can use the suffix row, to add subclasses with the same suffix. (Figure
5.9) Shows how you can use suffix row.

Figure (5.9)

The class hierarchy should now look similar to (Figure 5.10). The ordering of classes may be
slightly different.

19

Figure (5.10)

5.5. OWL Properties

There are three main types of properties, ‘Object properties’ and ‘Data type properties’ and

‘Annotation properties’. In this tutorial we will focus on Object properties. Object properties

are relationships between two individuals that link an individual to an individual.

(Figure 5.11) depicts an example of Object property. This figure shows that an object property

linking the individual ‘NTNU’ to the individual ‘Peter’.

20

Figure (5.11)

Properties can be created using the ‘Object Properties’ tab shown in (Figure 5.12).

Figure (5.12)

(Figure 5.13) shows the buttons located in the top left hand corner of the ‘Object Properties’
tab that are used for creating OWL properties.

21

Figure (5.13)

Here we will create an object property called ‘hasItem’:

1. Switch to the ‘Object Properties’ tab.

2. After selecting ‘topObjectProperty’ in the object property tab, Use the ‘Add sub
property’ button see (Figure 5.13) to create a new property.

3. In the ‘Create a new ‘OWLObjectProperty’ window which is opened, type the

property name ‘hasItem’ and press ‘Ok’, as shown in (Figure 5.14).

 Figure (5.14)

Now this property should be added to the list of the properties in the Object Properties tab.

For naming a property, although there is no strict naming rule for properties, we recommend
you to start property names with a lowercase letter, have no spaces and have the remaining

22

words capitalised. We also recommend that properties are starts with the word ‘has’, or the
word ‘is’, for example ‘hasItem’, ‘isItemOf’.

Now we can add more properties to develop some relationships in the ACC domain. (Figure
5.15) shows some properties that have been added to the ACC ontology. For example, the
property ‘SameAs’ is defined to relate two individuals that has the same concepts. For instance
‘ACC’ and ‘ACC_Syetem’.

Figure (5.15)

5.6. Inverse Properties

For each object property we can have a corresponding inverse property. If some property links
individual ‘A’ to individual ‘B’ then its inverse property will link individual ‘B’ to individual ‘A’.
(Figure 5.16) shows the property ‘hasStudent’ and its inverse property ‘studyIn’. If NTNU

23

hasStudent Peter, then because of the inverse property, we can conclude that Peter studyIn
NTNU.

Figure (5.16)

To make it more clear, we will create an inverse property for the property ‘hasItem’ that we
created previously by using the ‘Inverse properties’ button shown in (Figure 5.17).

Figure (5.17)

24

1. The same as what we did in the section 5.5, use the ‘Add sub property’ button on
the ‘Object Properties’ tab to create a new Object property called ‘isItemOf’, this will
become the inverse property of ‘hasItem’.

2. Press the ‘Add’ button which is next to ‘Inverse properties’ on the property
‘Description’ view (Figure 5.17). A window will become open and you can select a
property from the property list. Select the ‘hasItem’ property and press `OK' (Figure
5.18).

Figure (5.18)

The property ‘hasItem’ should now be displayed as inverse property for ‘isItemOf’ property in
the property ‘Description’ view (Figure 5.19).

25

Figure (5.19)

5.7. Object Property Characteristics

In OWL, object properties can have different characteristics. In this section we will discuss some
of these characteristics.

5.7.1. Functional Properties:

When for an individual, there can be at most one individual that is related to the individual via
the property, so we define this property as ‘Functional’. (Figure 5.20) shows an example of a
functional property.

Figure (5.20)

If we say that an individual Peter hasBirthMother Anna, and also Peter hasBirthMother Maggi
then because hasBirthMother is a ‘Functional’ property, and for each person there can exist just

26

one birth mother, so we can conclude that Anna and Maggi must be the same individuals
otherwise we would face inconsistency.

To make a property ‘Functional’:

1. In the ‘Object Properties’ tab, first we have to select the property, for example
‘gets_speed_signal_from’ property, as shown in (Figure 5.21).

2. Then select ‘Functional’, using the ‘Characteristics’ view. (Figure 5.21) shows that
because ACC_Sytem can get speed signal only from one individual of ‘Driveshaft’, so
‘gets_speed_signal_from’ property is a ‘Functional’ property.

Figure (5.21)

27

5.7.2. Inverse Functional Properties:

When a property is ‘Inverse functional’ then it means that the inverse property is functional.
For better explanation we can consider the example we had for functional property,
‘hasBirthMother’. The inverse property for this property is ‘isBirthMotherOf’ and since
‘hasBirthMother’ is functional, ‘isBirthMotherOf’ is inverse functional. If we say that Anna is the
birth mother of Peter, and we also say that Maggi is the birth mother of Peter, so we can
conclude that Anna and Maggi are both the same individuals.

5.7.3. Symmetric Properties:

When individual A relates to individual B with property P, and also individual B relates to
individual A with property P, therefore property P is a ‘Symmetric’ property.

(Figure 5.22) shows an example of a symmetric property. If the individual Peter is related to the
individual Bob via the hasSibling property, then we can infer that Bob must also be related to
Peter via the hasSibling property. Because when Peter is a sibling of Bob, so Bob is also a sibling
of Peter. Therefore hasSibling is a ‘Symmetric’ property.

Figure (5.22)

In the ACC system ontology, the property ‘Contradicts’ can be considered as a symmetric
property , because the Brake contradicts Clutch and also Clutch contradicts Brake, therefore the
contradict property is a ‘Symmetric’ property. ‘SameAs’ property is also a ‘Symmetric’ property.

To make a property ‘Symmetric’, we should first select the property and then use the
‘Characteristics’ view, the same as what we did for making a property functional but here we
select symmetric instead.

5.7.4 Asymmetric properties:

If a property P is ‘Asymmetric’, then the relation we defined in the above cannot exist. For
example for the property ‘isChildOf’, when Peter isChildOf Anna, it is not possible to say that

28

Anna is also child of Peter, and this relation is not exist. It is not correct to say that Peter
isChildOf Anna, and also Anna isChildOf Peter because ‘isChildOf’ property is not a ‘Symmetric’
property and it is an ‘Asymmetric’ property. (Figure 5.23) shows an example of an ‘Asymmetric’
property.

Figure (5.23)

In the ACC system ontology, the property ‘adjust’ is an ‘Asymmetric’ property. Because we can
say that ACC_System adjust Velocity, but the relation Velocity adjust ACC_Sytem is not exist.
(Figure 5.24) shows that ‘Asymmetric’ characteristic is selected for ‘adjust’ property.

Figure (5.24)

29

5.8. Property Domain and range

In OWL properties may have domain and range. In other words properties link individuals from

domain to range. For example in University ontology the studyIn property links individuals from

Student’s class to individuals in University class. In this example Student is domain and

University is range. In situations that two property are inverse, like studyIn and hasStudent in

University ontology, domain of studyIn property is range of hasStudent and vice-versa. It is

shown in (Figure 5.25).

Figure (5.25)

In order to specify domain and range for a property please follow the steps:

Specifying the range for a property:

 1. Select Object property tab in Protégé at first and then select 'adjust' property in

 property hierarchy

 2. In the property description view window press the 'Add' icon next to the 'Range'.

30

 3. In the opened dialog you can choose a class from ontology class hierarchy. Select

 Velocity and press 'ok' button. So Velocity should now be displayed in the range list.

 All these three steps are shown in (Figure 5.26).

Figure (5.26)

It is possible to specify multiple classes as the range for a property. In Protégé multiple classes

as the range is interpreted to be the intersection of the classes.

Specifying domain for a property:

 1. Select Object property tab in Protégé at first and then select 'adjust' property in

 property hierarchy.

31

 2. In the property description view window press the ‘Add’ icon next to the

 'Domain'.

 3. In the opened dialog you can choose a class from ontology class hierarchy. Select

 'ACC_System ' and press 'ok' button. So 'ACC_System ' should now be displayed in the

 'Domain' list. All these three steps are shown in (Figure 5.27).

Figure (5.27)

32

5.9. Property restriction

A restriction describes a class of individuals based on the relationships that members of the

class participate in. In other words a restriction is a kind of class, in the same way that a named

class is a kind of class. As it represented before properties are binary relationship between

individuals that object properties describe relationship between individuals and data properties

describe relationship between individuals and data values. In OWL all restrictions fall into

three main categories:

 Quantifier Restrictions
 Cardinality Restrictions
 hasValue Restrictions

Quantifier restriction is categorized into existential restriction and universal restriction.

5.9.1. Existential Restriction:

Existential restrictions describe classes of individuals that participate in at least one relationship
along a specified property to individuals that are members of a specified class. For example,
'safety_function some Active_Control_Recractor' describes all of the class of individuals that
have at least one (some) 'safety_function' relationship to members of
Active_Control_Recractor'. In Protégé the keyword 'some' is used to denote existential
restrictions . In (Figure 5.28) some existential restrictions are represented. Existential
restrictions may be denoted by the existential quantifier (). They are also known as
`someValuesFrom' restrictions in OWL speak.

1- Existential restrictions are also known as Some Restrictions, or as some values from restrictions.

33

Figure (5.28)

In order to add existential restrictions please follow these steps:

1. Select 'ACC_stop_and_go' from the class hierarchy on the 'Classes' tab. (Figure
5.29).

 2. Select the 'Add' icon next to 'Superclasses' header in the 'Class Description
 View' (Figure 5.29). This will open a text box where we can enter our restrictions (Figure
 5.30).

 The create restriction text box allows you construct restrictions using class, property
 and individual names. You can drag and drop classes, properties and individuals into
 the text box or type them in, the text box with check all the values you enter and alert
 you to any errors. To create a restriction we have to do three things:

 Enter the property to be restricted from the property list.

 Enter a type of restriction from the restriction types e.g. `some' for an
existential restriction.

 Specify a filler for the restriction

34

3. Select 'Class expression editor' tab at first (Figure 5.30).

4. You can either drag or drop ‘safty_function’ from the property list into the create

restriction text box, or type it in (Figure 5.30).

5. Now add the type or restriction, we will use an existential restriction so type 'some'

(Figure 5.30).

6. Specify that the filler is 'Active_Control_Recractor'. to do this either: type

 'Active_Control_Recractor' into the filler edit box, or drag and

 drop'Active_Control_Recractor' into the text box (Figure 5.30).

7. Press 'Ok' button to create the restriction (Figure 5.30). If all information was entered

correctly the dialog will close and the restriction will be displayed in the 'Class

Description View' (Figure 5.31). If there were errors they will be underlined in red in the

text box, or popup will give some hints to the cause of the error. If this is the case,

recheck that the type of restriction, the property and filler have been specified correctly.

35

(Figure 5.29)

36

(Figure 5.30)

37

(Figure 5.31)

5.9.2. Universal restriction:

Universal restrictions describe classes of individuals that for a given property only have

relationships along this property to individuals that are members of a specified class. For

example, 'the class of individuals that only have 'safty_function' relationships to members of

'Automatic_Emergency_Breaking'. In Protégé the keyword 'only' is used to denote universal

restrictions.

In compare to existential restriction, we could use an existential restriction 'safety_function

 some Active_Control_Recractor' to describe the individuals that have at least one relationship

along the property safety_function to an individual that is a member of the class

ACC_stopp_and_go. This restriction does not imply that all of the safety_function relationships

must be to a member of the class Active_Control_Recractor. To restrict the relationships for a

given property to individuals that are members of a specific class we must use a universal

38

restriction. Universal restrictions are given the symbol . Universal restrictions are also

known as AllValuesFrom Restrictions.

In order to add an existential restriction please follow these steps:

 1. Making sure that ACC_stop_and_go is selected, click on the `Add' icon next to

 the 'Superclasses' header in the 'Class Description View'. (Figure 5.32).

 2. Select 'Class expression editor' tab at first (Figure 5.33).

 3. Type 'safty_function' as the property to be restricted (Figure 5.33).

 4. Type 'only' in order to create a universally quantified restriction (Figure 5.33).

 5. Specify that the filler is 'Automatic_Emergency_Breaking'. to do this either: type

 'Automatic_Emergency_Breaking' into the filler edit box, or drag and drop

 'Automatic_Emergency_Breaking' into the text box (Figure 5.33).

 6. Press 'OK' to close the dialog and create the restriction. If there are any errors (due to

 typing errors etc.) they will be underlined in red (Figure 5.33).

39

Figure (5.32)

40

Figure (5.33)

41

6. What is Reasoner?

One of the key features of ontologies that are described using OWL-DL is that they can be

processed by a reasoner. One of the main services offered by a reasoner is to test whether or

not one class is a subclass of another class. By performing such tests on the classes in an

ontology it is possible for a reasoner to compute superclass-subclass relationships

(subsumption relationships) automatically to infer ontology class hierarchy. Another standard

service that is offered by reasoners is consistency checking. Based on the description

(conditions) of a class the reasoner can check whether or not it is possible for the class to have

any instances. A class is deemed to be inconsistent if it cannot possibly have any instances. So

reasoner can help to maintain the hierarchy correctly.

6.1. Invoking The Reasoner:

It is possible to plug in various OWL reasoners to Protégé 4. Two versions of reasoner are

 shipped with Protégé are named FaCT++ and HermiT 1.3.6. In order to compute the

classification hierarchy and also to check the logical consistency of the ontology automatically

you can use the reasoner. (Figure 6.1) In Protégé 4 the `manually constructed' class hierarchy is

called the asserted hierarchy. The class hierarchy that is automatically computed by the

reasoner is called the inferred hierarchy. (Figure 6.2). If a class has been reclassified (i.e. if it's

superclasses have changed) then the class name will appear in a blue color in the inferred

hierarchy. If a class has been found to be inconsistent it's icon will be highlighted in red.

42

Figure (6.1)

43

Figure (6.2)

6.2. Necessary And Sufficient Conditions (Primitive and Defined

Classes):

All of the classes that we have created so far have only used necessary conditions to describe

them. Necessary conditions can be translated as, (If something is a member of this class then it

is necessary to fulfill these conditions. in other words, with necessary conditions alone, we

cannot say that, If something fulfils these conditions then it must be a member of this class.

Those classes that only has necessary conditions are known as Primitive Classes. Let’s describe

this with an example. At first we need to create Grille class and its subclass Bumper_skirts_grille

as it described in section 5.2. Then as it has explained in section 5.9.1 a property restriction

(protects some Radiator) has specified like the picture shown in (Figure 6.3).

44

Figure (6.3)

Our current description of Bumper_skirt_grille says that if something is a Bumper_skirt_grille it

is necessarily a Grille and it is necessary for it to have at least one Protects that is a kind of

Radiator. We have used necessary conditions to say this. Now consider some (random)

individual. Suppose that we know that this individual is a member of the class Grille. We also

know that this individual has at least one kind of Radiator. However, given our current

description of Bumper_skirt_grille this knowledge is not sufficient to determine that the

individual is a member of the class Bumper_skirt_grille. To make this possible we need to

change the conditions for Bumper_skirt_grille from necessary conditions to necessary AND

sufficient conditions. This means that not only are the conditions necessary for membership of

the class Bumper_skirt_grille, they are also sufficient to determine that any (random) individual

that satisfies them must be a member of the class Bumper_skirt_grille.

45

A class that has at least one set of necessary and sufficient conditions is known as

a Defined Class. Also necessary conditions are simply called Superclasses in Protégé 4.

Necessary and sufficient condition are called Equivalent classes.

In order to convert necessary conditions to necessary and sufficient conditions, the conditions

must be moved from under the 'Superclasses' header in the class description view to be under

the 'Equivalent classes' header. This can be done with the 'Convert to defined class' option in

the 'Edit' menu.

In order to convert the necessary condition for Bumper_skirt_grille into necessary and

sufficient conditions please follow these steps:

1. Ensure that Bumper_skirt_grille is selected in the class hierarchy.

2. Select ‘protects some Radiator’ property restriction in description view.

3. Right click on ‘protects some Radiator’, and then select ‘Convert selected rows to defined

class’, shown in Figure 6.4, or you can go to Edit in menu bar and select the ‘ Convert to defined

class ’ shown in Figure 6.5

Figure (6.4)

46

Figure (6.5)

After conversion the class description view should look like picture shown in Figure 6.6.

How is this useful in practice? Suppose we have another class B, and we know that any

individuals that are members of class B also satisfy the conditions that define class A. We can

determine that class B is subsumed by class A. In other words, B is a subclass of A. Checking for

class subsumption is a key task of a description logic reasoner and we will use the reasoner to

automatically compute a classification hierarchy in this way.

47

Figure (6.6)

6.3 Primitive And Defined Classes

Classes that have at least one set of necessary and sufficient conditions are known as defined

classes. They have a definition, and any individual that satisfies the definition will belong to the

class. Classes that do not have any sets of necessary and sufficient conditions (only have

necessary conditions) are known as primitive classes. In Protégé 4 defined classes have a class

icon with three horizontal white lines in them. Primitive classes have a class icon that has a

plain yellow background. It is also important to understand that the reasoner can only

automatically classify classes under defined classes - i.e. classes with at least one set of

necessary and sufficient conditions.

48

6.4 Automated Classification

Being able to use a reasoner to automatically compute the class hierarchy is one of the major

benefits of building an ontology using the OWL-DL sub-language. Indeed, when constructing

very large ontologies (with upwards of several thousand classes in them) the use of a reasoner

to compute subclass-superclass relationships between classes becomes almost vital. Without a

reasoner it is very difficult to keep large ontologies in a maintainable and logically correct state.

In cases where ontologies can have classes that have many superclasses (multiple inheritance)

it is nearly always a good idea to construct the class hierarchy as a simple tree. Classes in the

asserted hierarchy (manually constructed hierarchy) therefore have no more than one

superclass. Computing and maintaining multiple inheritance is the job of the reasoner. This

technique helps to keep the ontology in a maintainable and modular state. Not only does this

promote the reuse of the ontology by other ontologies and applications, it also minimises

human errors that are inherent in maintaining a multiple inheritance hierarchy.

Having created a definition of a Bumper_skirt_grille we can use the reasoner to automatically

compute the subclasses of Bumper_skirt_grille.

In order to use reasoner and please follow these steps:

1. Select Reasoner in menu bar.

2. Select Start reasoner as shown in Figure 6.7.

After pushing reasoner the inferred hierarchy is computed and you can see the result in

inferred hierarchy window as shown in Figure 6.8.

49

Figure (6.7)

50

Figure (6.8)

6.5 Closure Axioms

A closure axiom on a property consists of a universal restriction that acts along the property to

say that it can only be filled by the specified fillers. The restriction has a filler that is the union of

the fillers that occur in the existential restrictions for the same property. For example, the

closure axiom on the about property for Information is a universal restriction that acts along

the about property, with a filler that is the union of Alert, Collision, Distance, Failure and

Preceding_Vehicle.

In order to add a closure axiom on the ‘about’ property for ‘Information’ follow these steps:

1. Select Information class in class hierarchy on the class tab. (Figure 6.9).

51

2. Press the 'Add' icon next to the 'Superclasses' section of the 'Class Description' view to open

the edit text box. (Figure 6.9).

3. Type about as the property to be restricted. (Figure 6.10).

4. Type ‘only’ to create the universal restriction. (Figure 6.10).

5. Open brackets and type 'Alert or Collision or Distance or Failure or Preceding_Vehicle' and

then close bracket. (Figure 6.10).

6. Press 'OK' to create the restriction and add it to the class Information. (Figure 6.10).

7. The result on description view should be like picture in Figure 6.11.

52

Figure (6.9)

53

Figure (6.10)

54

Figure (6.11)

There is another way to add a closure axiom on a property for a class that is easier and faster to

do. In following steps you can find how to do it on 'about' property for 'Information':

1. Make sure that you have selected Information in class hierarchy. (Figure 6.12).

2. Select one of the about property restrictions on the property description view. (Figure 6.12).

3. Right click on the selected property restriction and then choose Create closure axiom.(Figure

 6.12).

4. The result on description view should be like picture in (Figure 6.13).

55

Figure (6.12)

56

Figure (6.13)

57

7. Creating Individuals

In OWL we can define individuals. Consider we wanted to define different companies which
have been offered ACC systems. In order to do that, first we have to create a class namely
‘Company’, then we can define different company instances (individuals) for class ‘Company’
such as ‘Mitsubishi’, ‘Toyota’, ‘ Lexus’, ‘Jaguar’, Audi‘’ and … . Notice that instances are different
from subclasses. To create individuals in Protégé 4 the ‘Individuals Tab’ is used.

Now we will create a class called ‘Company’ and populate it with some individuals:

1. Create Company as a subclass of Thing. Shown in (Figure 7.1).

Figure (7.1)

58

2. Switch to the ‘Individuals Tab’.

3. Press the ‘Add individual’ button.

4. Name the new individual ‘Mitsubishi’, press ‘Ok’.

5. In the individual ‘Description’ view located at the centre of the Individual tab, make
sure that the class ‘Company’ to be the ‘Type’ for this individual. If it’s ‘Type’ is not
Company, select the ‘Add’ icon next to the ‘Types’ header from the individual
‘Description’ view, choose class ‘Company’ from the class hierarchy, this will make
‘Mitsubishi’ an individual of the class Company (Figure 7.2).

Figure (7.2)

Repeat the above steps to create some more individuals that are members of the class
Company. After adding individuals, the member list should be like (Figure 7.3). Using ‘Delete
individuals’ button next to ‘Add individuals’ button, you can delete previously created
individuals.

59

Figure (7.3)

60

Reference:

Protégé web site: http://Protégé.stanford.edu/

http://protege.stanford.edu/

