
Analyzing Contextual Bias of Program
Execution on Modern CPUs

Lars Kirkholt Melhus

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Rune E. Jensen, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

i

Problem Description
Variations in execution context has been shown to affect performance of programs
on recent CPUs. Previous work has looked at offsetting the stack and changing link
order – biasing performance measurements towards certain configurations. Variables
such as the placement of stack, heap and text segments in memory, combined with
memory access instructions, can impact program performance quite significantly.

The goal of this project is to model some of these effects for common use cases,
and methods for avoiding them, in order to avoid bias and achieving peak perfor-
mance. These effects might be highly platform dependent, so to limit the scope we
will focus on a particular architecture, the Intel Core i7 “Ivy Bridge”. Case studies
will include small isolated programs, and ideally also “real” applications such as
FFT algorithms.

Abstract

Seemingly innocuous properties of the environment, such as the contents of sys-
tem environment variables, or different link orders, can impact the performance of
computer programs. Variations in external properties like these can bias programs
towards certain configurations. These effects have been shown to be a significant
issue in performance analysis, but unpredictable and difficult to deal with.

This thesis focuses on the underlying reasons for bias effects that can be ex-
perienced for example by changing environment variables, or using different link
orders. Both of these factors can lead to differences in memory layout of either
code or data, which in turn interacts with various hardware mechanisms. Through
experimentation and careful measurements using performance counters, we identify
several potential sources of bias on the Intel Core i7 “Ivy Bridge” architecture. Lim-
itations imposed by the Loop Stream Detector is revealed, along with effects from
4K address aliasing. We show that bias is in fact not completely unpredictable, and
discuss measures for avoiding it.

Our case studies show that even highly optimized Fourier transform and linear
algebra libraries are prone to bias. We find that stack alignment significantly affects
the performance of FFTW, and that in some cases more than 30 % performance gain
can be made by avoiding address aliasing in ATLAS’ matrix-vector multiplication.
Our results show that an awareness of program layout in memory is important,
especially for users and developers of performance critical software.

Sammendrag

Ytelsesvurdering av programvare er påvirket av mange forskjellige, og tilsynelatende
uviktige, egenskaper ved maskinen man gjør målinger på. For eksempel kan innhold-
et i miljøvariabler, eller rekkefølgen programfiler lenkes, være signifikant. Variasjoner
i ytelse som følge av eksterne egenskaper som dette introduserer bias. Slike effekter
kan være signifikante, men er også funnet å være vanskelige å forutse eller motvirke.

Denne oppgaven dreier seg om å studere underliggende årsaker til ytelsesforskjeller
som kan forekomme for eksempel av å endre miljøvariabler, eller rekkefølgen på
lenking av programfiler. Den egentlige årsaken til endringer i ytelse viser seg å være
forskjeller i organiseringen av programkode og data minne. Gjennom eksperimenter
og nøyaktig måling ved bruk av “performance counters”, kan vi identifisere konkrete
arkitekturspesifikke egenskaper ved prosessoren som fører til bias. Vi ser spesifikt
på Intel Core i7 “Ivy Bridge”-arkitekturen. Begrensninger i “Loop Stream Detec-
tor”, samt en effekt kjent som “4K aliasing” studeres i detalj. Vi viser at bias ikke
nødvendigvis er uforutsigbart, og illustrerer metoder for å unngå dårlig ytelse som
følge av slike effekter.

Undersøkelser av programvare for Fourier-transformasjoner og lineær algebra,
viser at særlig alias-effekter ofte kan gi signifikante ytelsesforskjeller i praksis. Både
FFTW og ATLAS viser seg å være sårbare mot bias. For eksempel kan riktig plasser-
ing av data i minne gi over 30 % forbedring av allerede høyt optimaliserte rutiner for
matrise-vektor-multiplikasjon. Å ta høyde for plassering av kode og data i minnet
er viktig, særlig for utviklere og brukere av programvare hvor ytelse står sentralt.

iii

Acknowledgements
I would like to thank my supervisor Anne C. Elster for her support during this
past year. A special thanks to my co-supervisor Rune E. Jensen, whose continuous
assistance and expertise on performance counters helped me navigate through this
challenging topic.

The HPC-lab at NTNU provided the hardware and resources necessary to com-
plete this work, for which I am grateful. I would also like to thank the other master
students there, for providing a great work environment and invaluable feedback.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 3

2 Background and Related Work 5
2.1 Observer Effect and Measurement Bias 5

2.1.1 Causes of Measurement Bias 6
2.1.2 Dealing with Bias . 7

2.2 Exploiting Bias for Optimization . 7
2.2.1 Blind Optimization . 7
2.2.2 Assembly-Level Optimizations 8

2.3 Hardware and Performance Monitoring 9
2.3.1 “Ivy Bridge” Microarchitecture 9
2.3.2 Performance Counters . 12
2.3.3 Using perf . 14

2.4 The Execution Context . 15
2.4.1 Virtual Memory Layout . 15
2.4.2 Memory Context of C Programs 18

3 Methodology and Experimental Setup 21
3.1 Setup and Configuration . 21
3.2 Performance Analysis . 22
3.3 Approach . 23

4 Sources of Measurement Bias 25
4.1 Address Alias Effects (4K Aliasing) 25

4.1.1 Bias from Environment Size 27
4.1.2 Heap Address Aliasing . 33
4.1.3 Bias from Dynamic Libraries 39
4.1.4 Summary . 41

4.2 The Loop Stream Detector . 42
4.2.1 Properties of the Loop Stream Detector 43
4.2.2 Hitting the Chunk Fetch Limit 46

v

vi CONTENTS

4.2.3 Bias from Link Order . 48
4.2.4 Other Triggers of Bias Effects 51
4.2.5 Summary . 52

5 Case Studies 53
5.1 FFTW . 53

5.1.1 Analysis of Aliasing Effects 56
5.1.2 Eliminating Bias at the Kernel Level 58
5.1.3 Eliminating Bias at the User Level 61
5.1.4 Bias in Other Kernels . 63
5.1.5 Discussion . 64

5.2 ATLAS . 65
5.2.1 Address Aliasing in Matrix-Vector Multiplication 66
5.2.2 Dealing With Aliasing . 68
5.2.3 Discussion . 69

6 Conclusions and Future Work 71
6.1 Contributions . 72
6.2 Directions for Future Work . 73

6.2.1 Compiler Optimizations . 73
6.2.2 Alias-free Allocators . 74
6.2.3 Library Optimizations . 74
6.2.4 Other Architectures . 75

6.3 Final Words . 75

Bibliography 75

A List of Performance Counters 81

B Benchmark Script 85

Chapter 1

Introduction

Optimizing for performance is an important topic in computer science, and high
performance computing (HPC) in particular. A great amount of research and effort
is put into designing better algorithms and compiler optimizations, in order to pro-
duce an “optimal” executable. However, performance of computer programs is not
just a function of the collection of machine instructions executed. Various external
properties, such as the operating system, or even room temperature, can have have
an impact on how fast programs execute: Modern microchips can be sensitive to
temperature, possibly operating on higher clock rates in cold environments. Char-
acteristics of the operating system can decide things like the placement of code and
data in memory, which in turn interacts with various hardware mechanisms. Corner
cases in hardware introduces potential performance cliffs; If for example a memory
access happens to cross a page boundary, the cost of an additional TLB miss can
be significant. The set of conditions under which a program executes is called the
execution context, which includes virtual memory layout in particular. Variations
within contexts can lead to programs being biased towards certain configurations.
Measuring performance of the same program on two machines with identical hard-
ware can sometimes yield very different results, an effect known as measurement
bias.

Previous work has studied parameters such as the size of Unix environment
variables and program link order [18, 17]. Both are found to potentially have a
significant effect on performance, even in standardized benchmarks. Unfortunately,
the effects also appear to be unpredictable, and therefore difficult to deal with. This
poses a problem for researchers and performance analysts, who will need to account
for effects of measurement bias with more rigorous methodologies and statistical
methods.

In this thesis, we will try to unveil the actual causes of bias that can be experi-
enced by altering memory layout. Both the size of environment variables and link
ordering ultimately has an effect on memory layout of running processes. We will
not look at things like cache efficiency, which often can be the reason for bad perfor-
mance under certain memory contexts. Instead, we look at effects from less known

1

2 CHAPTER 1. INTRODUCTION

optimizations in the out-of-order execution engine and instructions fetch pipeline.
Because bias effects are intrinsically connected to various hardware features, we
will focus on the Intel® Core™ i7 “Ivy Bridge” architecture specifically. The goal
is to identify specific hardware features that causes measurement bias, and model
how they interact with software programs. With a better understanding of intri-
cate properties of the CPU, we show how one is able to not only predict, but also
explicitly optimize for beneficial memory layouts.

1.1 Motivation
In the paper appropriately named “Producing Wrong Data Without Doing Anything
Obviously Wrong” by T. Mytkowicz et al. [17], the authors show how simple changes
to the execution environment can have an impact on performance. One of the
parameters they studied was the size of Unix environment variables. Environment
variables contain various information about the system, for instance the name of the
currently logged in user, home- and current directory path. It seems unlikely that
the contents of these variables should have any significance on program performance,
yet previous work show that the effects can be enormous.

static int i, j, k;

int main () {
int g = 0, inc = 1;
for (;g <65536; g++) {

i += inc;
j += inc;
k += inc;

}
return 0;

} 0 50 100 150 200
Bytes added to environment

650,000

700,000

750,000

800,000

850,000

900,000

CPU Cycles

Figure 1.1: A simple C program with significant performance variations under dif-
ferent Unix environment sizes. The example is adapted from [17], with performance
measurements updated for the Ivy Bridge processor.

This article is particularly interesting because of an intriguing little C program,
which is reproduced here in Figure 1.1. The authors observed that this program was
noticeably affected by changes to the environment variables, performing much worse
(in terms of cycle count) for some environment sizes. Interestingly, we are able to
reproduce very similar results for our newer Ivy Bridge architecture. Plotting the

1.2. OUTLINE 3

number of cycles executed for different environment sizes, we see that the cycle count
suddenly increases by more than 20 %. The length of your name – by extension
you user login – could in principle be the tipping point between good and bad
performance when running this program.

What is the “correct” number of cycles here? One could say that in most cases, it
should be around 700,000, although on average it is somewhat higher. On a machine
with just the right environment size, one might declare that the cycle count is about
850,000. This illustrates how external properties can bias performance towards
certain environments. Previous work focuses mostly on how to mitigate effects of
bias, and avoid drawing the wrong conclusions based on misleading measurements
[16, 17]. Our goal is to gain a better understanding of exactly what mechanisms of
the processor causes these effects. With more accurate models of how bias occur, we
will be able to actively avoid these “spikes” in performance, and gain a real speedup
on average.

1.2 Outline
The remaining parts of this thesis structured as follows:

Chapter 2 presents some of the previous work done on measurement bias, show-
ing its severity as well as proposed solutions to mitigate or compensate for
it. A brief overview to the Ivy Bridge microarchitecture and use of hardware
performance monitoring is given as background material. We also introduce
important concepts in virtual memory layout on 64 bit Linux systems, ex-
plaining the memory execution context.

Chapter 3 discusses the experimental setup and methodology used in the next
chapters.

Chapter 4 investigates several potential causes of bias, showing how certain hard-
ware features are sensitive to changes in virtual memory layout. Specifically,
we show how 4K address aliasing and the Loop Stream Detector can explain
effects observed by increasing environment size or changing link order.

Chapter 5 applies knowledge of bias effects from the previous chapter, looking
at how they apply to real world applications. We take an in-depth look at
FFTW, showing how even this highly optimized Fourier transform library can
be affected by memory layout. We also show how to get significant performance
gains for BLAS matrix-vector routines, by actively avoiding address aliasing
of heap-allocated memory.

Chapter 6 summarizes results from previous chapters, and provides directions for
future work.

4 CHAPTER 1. INTRODUCTION

The appendices contain supplementary and reference material:

Appendix A lists the subset of the available performance counters on Ivy Bridge
that are relevant to our discussion.

Appendix B lists the script that is used for collecting performance metrics under
varying environments.

Chapter 2

Background and Related Work

This chapter presents some of the previous work done on measurement bias in per-
formance analysis. A brief overview of the Intel Core “Ivy Bridge” architecture is in-
cluded, introducing performance counters, and highlighting some of the features and
hardware optimizations that can cause performance cliffs. An introduction to vir-
tual memory, linking and loading on 64 bit Linux systems is provided as background
material – explaining important factors of the program execution environment.

2.1 Observer Effect and Measurement Bias
Several papers dealing with bias in performance analysis have been published. Mytkow-
icz et. al. provide an excellent introduction to measurement bias, together with the
closely related phenomenon of observer effect, in the paper “Observer Effect and
Measurement Bias in Performance Analysis” [18], and “We have it easy, but do
we have it right?” [16]. The authors draw parallels to the social and natural sci-
ences, scientific fields where considerable care is taken to avoid observer effect and
bias in experimental setups. They argue that the methodology currently employed
in analysis of software is lacking. Because observer effect and bias in experiments
is often ignored (or improperly accounted for), performance analysis suffers from
“poor-quality data”. In literature surveys, they find that very few authors considers
these effects when evaluating results.

Observer effect

Observer effect occurs when the act of observing something changes its characteris-
tics. In performance analysis, we are interested in observing a variety of properties;
A useful property for evaluating a database application might be the number of
transactions per second, while the cycle count or number of cache misses might be
more relevant when implementing a hash function. Many low level metrics, such as
the number of CPU cycles used, can be acquired (or observed) using hardware per-

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

formance counters. In other cases, we need to add instrumentation to the program
being measured, for example in the form of incrementing counter variables for every
function call. Mytkowicz et al. [18] show that both strict use of hardware counters,
as well as adding software instrumentation, is vulnerable to observer effects. De-
spite using techniques with minimal intrusion and overhead to the original program,
observer effects can sometimes significantly skew performance measurements.

Measurement bias

The performance characteristics of software changes not only from observations, but
also from external properties of the experimental setup. Two, seemingly innocuous,
properties of the execution environment are discussed:

• Link order of object files: The order of which the .o files are provided to the
linker. Usually more than one valid permutations exist, and different orderings
produce functionally identical programs.

• Shell state, specifically environment variables. The contents of environment
variables on a given system depends on many factors, such as the user cur-
rently logged in (stored as “USER” in Linux), or which programs are currently
installed, adding directories to the “PATH” variable.

The authors study how program performance for different compiler optimization
levels is affected by adding characters to environment variables or changing program
link order. Their results show that standardized SPEC benchmarks are sensitive to
both of these properties. Different conclusions about O2’s efficiency versus O3 can
be drawn depending on the environment.

There are many other properties one could consider as possible sources of bias.
With link ordering causing performance variations, one must also consider the differ-
ent versions of compilers or linkers used. Different compiler versions might generate
different code – resulting in variations in memory layout of code and data. In gen-
eral, the exact implementation of any software system that interacts with program
execution must be considered, including compiler toolchain and operating system
used.

2.1.1 Causes of Measurement Bias
In a following paper by Mytkowicz et al. [17], the effects previously presented are
reiterated, along with a more detailed analysis of measurement bias. In addition
to pointing out sensitivity in large benchmark programs from the SPEC suite, the
authors also present a small, isolated C program with very high sensitivity to change
in environment size. We discuss this particular program in the introduction chapter,
showing that similar bias effects appear on newer architectures as well.

For both changing environment variables and link order, the authors point to
changes to the virtual memory layout being the real cause of performance variations.

2.2. EXPLOITING BIAS FOR OPTIMIZATION 7

• Changing environment variables has an effect on where the stack is placed
in memory at runtime. A copy of the environment is loaded into virtual
address space before the call stack starts, thus increasing the environment
size offsets the initial stack address. The authors suggest that altering the
addresses of stack-allocated variables at runtime can have an impact on things
like alignment in cache.

• Changing link order can change the virtual addresses of instructions. Using
hardware simulators, the authors show that performance also depends on code
alignment in memory. For instance, when a hot loop fits entirely in a single
cache line, the number of accesses to instruction cache can be reduced. The
authors speculate that the “Loop Stream Detector” might cause bias on the
Intel® Core™ 2, a hardware optimization that is supposed to speed up in-
struction fetching of hot loops.

Despite demystifying the causes of bias to some degree, this paper provides no
satisfactory explanation of exactly how or what hardware mechanisms causes bias.

2.1.2 Dealing with Bias
Previous work conclude that measurement bias is unpredictable, and difficult to avoid
in experimental setups. In literature surveys, Mytkowicz et al. find that almost
no papers account for measurement bias [18, 17]. This is problematic, because
conclusions reached from running biased experiments can easily be misleading, or
even outright wrong. Measures have to be made to ensure the results obtained by
performance analysis are valid. The authors provide some guidelines for how to
conduct sound experiments:

• Diversify benchmarks, using statistical methods over a set of diverse bench-
marks will help cancel out bias. Their study of the SPEC suite shows that
currently widely used benchmark suites are not diverse enough.

• Randomize experimental setup, performing multiple measurements under dif-
ferent configurations of variables that are known to cause bias.

2.2 Exploiting Bias for Optimization
So far we have pointed out the problems bias causes for performance analysis. A
different perspective on these effects is to look at it as a potential for optimization.

2.2.1 Blind Optimization
An optimizing compiler needs to have some sort of abstract model of the target
processor or machine, in order to emit an “optimal” set of instructions. As CPUs

8 CHAPTER 2. BACKGROUND AND RELATED WORK

become more and more sophisticated, creating a good model for optimization is
difficult. Additionally, with bias effects deemed unpredictable, creating an accu-
rate model becomes impossible. In “Blind Optimization for Exploiting Hardware
Features” by D. Knights et al. [14], the authors take a different approach to opti-
mization, disregarding the model altogether. Using automatically generated program
variants, finding an optimal program can be reduced to a searching problem within
a variant space. The authors consider instruction alignment of functions and global
variables as the variant space. New program variants are generated by inserting
alignment directives in the assembly, changing the memory addresses of each func-
tion or variable independently. A subset of program variants are generated, and
evaluated by measuring execution time. Using blind optimization, the authors are
able to achieve up to 12.6 % speedup on some SPEC benchmarks, compared to
compiler optimized code.

A related concept to blind optimization is feedback directed optimization [22].
The idea behind this technique is for compilers to use empirical data to determine
the optimal optimization parameters to apply. Parameters are determined through
multiple iterations of compiling and profiling. This is useful for instance in deter-
mining the number of loop iterations to unroll, different register allocations, and
code layout.

2.2.2 Assembly-Level Optimizations
Recognizing that current hardware models are lacking, Hundt et al. [8] presents
MAO, an “Extensible Micro-Architectural Optimizer”. This is an assembly-to-
assembly translator, containing architecture-specific rules to optimize machine code
emitted by the compiler for x86 and x86-64 architectures. Many rules attempt to
fix “sloppy” code generated by GCC (or other compilers), for instance redundant
test instructions. The following example can be shortened by removing the last
instruction, as condition flags are set implicitly by the sub instruction.

sub 16, %rax
test %rax , %rax

Many more of these rules are encoded in MAO, resulting in reduced code size and
use of more efficient instructions.

In addition to optimizing for the ISA, the code is also tuned for specific properties
of Intel microarchitectures. As an example, MAO considers instruction address
alignment for hot loops, inserting additional alignment directives if necessary. By
aligning frequently executed code segments to 16 byte boundaries, the instructions
are more likely to fit in decode “chunks”, which are 16 B on the Intel Core 2. In
previous work on measurement bias by Mytkowicz et al, the Loop Stream Detector
is suggested as a potential cause of bias. The authors identifies that this hardware
optimization depends on 16 byte instruction alignment on the Core 2 architecture.

2.3. HARDWARE AND PERFORMANCE MONITORING 9

MAO uses this knowledge to align code to fit in as few decode chunks as possible,
allowing the LSD to kick in and avoid instruction fetch for some hot loops. Another
interesting architecture specific optimization considers available execution ports in
the Core 2 when scheduling instructions.

Inspired by the blind optimization technique introduced by Knights et al. [14],
MAO also attempts to insert nop instructions at random. This has the effect of
moving surrounding code around, possibly hitting some optimal configuration not
modeled or caught by any of the other optimization rules.

This paper is particularly interesting, because it shows that modeling complex
hardware mechanisms is in fact feasible. By encoding highly architecture-specific
knowledge on things like optimal instruction alignment, the authors are able to
improve on compiler-optimized code.

2.3 Hardware and Performance Monitoring
Bias effects generally depend on specific processor features, and “performance cliffs”
caused by them. A rudimentary understanding of the underlying hardware is nec-
essary in order to understand why performance varies during different execution
contexts. We limit our study to the Intel Core “Ivy Bridge”, currently the most re-
cent Intel architecture. Of course, a comprehensive introduction to the inner working
of any processor is way beyond the scope of this thesis. Instead, we will provide
a brief overview of some architectural features, and in particular those that might
cause bias due to differences in virtual memory layout. For a general introduction
to concepts in computer architecture, refer to [19].

To gain accurate measurements and diagnostics, we will use hardware perfor-
mance counters. Intel architectures have extensive monitoring capabilities, and we
give a brief overview of how this can be utilized.

2.3.1 “Ivy Bridge” Microarchitecture
The name “Ivy Bridge” is a code name for what is also referred to as the “3rd Gen-
eration Intel Core Microarchitecture”, or alternatively “Intel Core Microarchitecture
Code Name Ivy Bridge”. These are the terms that are used in the manuals, but we
will refer to architectures mostly by code name throughout the rest of the thesis.
Preceding Ivy Bridge is “2nd Generation Intel Core Microarchitecture” with code
name “Sandy Bridge”. Many of the architectural features found in Ivy Bridge can
also be found in Sandy Bridge and earlier Core architectures.

For our purposes, a general overview and idea of what happens during program
execution is sufficient. Figure 2.1 shows a high level view of the processor pipeline,
consisting of a front end, out of order engine, execution core, and cache hierarchy.
We will give a brief overview of each component, while a comprehensive reference
can be found in the vendor manuals [11, 10].

10 CHAPTER 2. BACKGROUND AND RELATED WORK

L1 Instr. cache

32 KiB

Pre-
decode

Instr.
queue

Decoders

Decoded ICache
up to 1526 micro-ops

Renamer

Scheduler

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

S
h
a
re

d
 L

2
 C

a
ch

e

2
5
6
 K

iB

ALU ALU ALU Load Load Store

Memory Control

L1 Data Cache

32 KiB, 8 ways Store buffers

Branch Predictor

Load buffersLine fill

buffers

Micro-op Queue
56 entries

Front End

Out-of-Order Engine and Execution Core

Retirement

MSROM

Figure 2.1: Ivy Bridge pipeline, adapted from [10]

Front End

The front end is responsible for fetching and decoding instructions, feeding the
execution pipeline with a constant stream of micro-operations. The branch predictor
is used to fetch instructions speculatively, along the most likely path of execution.

There is an important distinction between IA-32 (or Intel 64) instructions1 and
micro-operations (“micro-ops”): Assembly instructions emitted by a compiler are
decoded into micro-operations used internally in the processor. The x86 ISA is
a complex instruction set computer (CISC) architecture, as opposed to a reduced
instruction set architecture (RISC). Complex instruction set architectures support
more sophisticated operations, such as combinations of memory accesses and arith-
metic operations in a single instruction [19]. For historical reasons and sake of
backwards compatibility, the x86 instruction set has been constantly expanded with
new functionality. To manage the complexity of a CISC ISA, the processor reduces
complicated instructions to much simpler micro-operations. The micro-operations
allow the processor to be organized more like a RISC architecture internally.

Decoding assembly instructions is a costly operation in hardware, and a lot of
logic in the front end is dedicated to avoid this stage as much as possible. The
Decoded ICache is a cache holding recently executed micro-operations, containing
up to 1526 entries. When the next block of code to execute is determined by the

1Intel uses IA-32 and Intel 64 for what is also commonly known as x86 and x86-64 instruction
set architectures. We will use these terms interchangeably.

2.3. HARDWARE AND PERFORMANCE MONITORING 11

branch predictor, the micro-op cache is searched first. Intel claims that typical hit
rates exceed 80 %, and approaching 100 % for hot spots [10]. If not found in the
micro-op cache, the “legacy” fetch-decode pipeline is used. New blocks of instruction
memory goes through several decode stages, before finally being ready to execute
as micro-ops. To fill “holes” in the instruction stream, a queue of micro-ops sits
between the front end and the rest of the pipeline.

Macro-Fusion To increase the number of instructions that can be executed each
cycle, pairs of instructions can sometimes be fused by the front-end into one equiv-
alent, more complex, operation. With macro-fusion, certain pairs of assembly in-
structions can be combined to a single micro-operation. This is restricted to pairs
where the first instruction modifies condition flags (such as test or cmp), and the
other is a conditional jump. Pairs like these appear often in practice, improving the
instructions per cycle metric when macro fusion is applied.

Loop Stream Detector The Loop Stream Detector is, with some restrictions,
able to detect software loops in the micro-op stream. It analyzes micro-ops resid-
ing in the Micro-op Queue, and identifies chains of repeatedly executed operations.
When a loop is detected, the LSD locks the micro-ops in the queue, disabling any
further ICache lookup as well as the whole decode pipeline. Micro-ops are streamed
directly from the queue, until a branch mispredict causes normal operation to re-
sume. This optimization can save power by disabling logic, but also give a perfor-
mance gain in cases where the front end is a bottleneck.

Out-of-Order Engine and Execution Core

One of the key features of modern processors is instruction level parallelism. A
great amount of logic is dedicated to be able to issue multiple instructions per cycle,
increasing the throughput. Micro-ops are delivered sequentially and in-order from
the front end. The out-of-order engine then views the stream of micro-ops as a
dataflow problem. A window of available micro-ops are analyzed for potential data
dependencies, and issued for execution accordingly. Multiple operations can be
issued simultaneously, as long as there are no dependency violations. There are six
execution ports, giving a maximum of six micro-operations issued by the scheduler
each cycle.

Cache Hierarchy

Each processor core has an L1 data and instruction cache of 32 KiB2 each, and a
unified L2 cache of 256 KiB holding both data and instructions. The Line Fill Buffer

2To avoid any confusion with SI units, we will use KiB (kibibyte), MiB etc for numbers with
base 2. 1 KiB is 1024 bytes, 1 MiB is 1024 KiB, and so on.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

(LFB) is a component of the L1 data cache, serving as a buffer for pending loads
between L1 and L2. An L3 cache of 8 MiB, also known as last level cache (LLC), is
shared among all cores via a ring connection.

Prefetching Cache lines are loaded speculatively by prefetching, based on a pre-
diction of what data the program will request in the future. There are several
prefetchers, operating between different cache levels. Prefetching is particularly
helpful for streaming applications, with linear data accesses. With prefetching,
the next cache lines can be loaded before the program requests them, improving
performance by masking memory latency. There is also a software mechanism for
prefetching, allowing programmers to give hints to what data should be preloaded
into cache.

Store Forwarding If a load follows a store to the same memory location, the
store value can be forwarded to the load operation directly. Store forwarding avoid
accesses to data cache, allowing loads to execute faster.

Memory Disambiguation In cases where a store operation is followed by load,
there is a dependency if both instructions refer to the same memory address. The
processor can not safely issue the load operation before the store (out of order)
until the addresses are calculated, and determined to not overlap. A conservative
approach is to block all load instructions until previous store addresses are resolved.
With memory disambiguation, the hardware makes a prediction about whether a
conflict will occur, scheduling loads speculatively [6, 26]. Loads that are predicted
not to have any dependencies are allowed to read data from L1 cache, before previous
store addresses are resolved. The predictions are later verified before retirement, re-
executing instructions that were affected by actual conflicts.

Load and store buffers hold the values of speculatively executed memory opera-
tions, sometimes collectively referred to as Memory Order Buffer.

2.3.2 Performance Counters
Modern CPUs have build-in support for performance monitoring in hardware. Per-
formance counters are special-purpose registers that can be configured to count var-
ious hardware events. The processor contains a dedicated Performance Monitoring
Unit (PMU), which can be programmed to count things like cycle count, number of
branch misses, or retired micro-operations. Intel CPUs have had this functionality
for many generations. Performance counter metrics are commonly used for detailed
tuning and profiling of software. There are many benefits of using hardware support
for performance monitoring, including accuracy and minimal overhead. Problems
with observer effects and bias are avoided, because performance monitoring does
not interfere with software.

2.3. HARDWARE AND PERFORMANCE MONITORING 13

Table 2.1: Examples of performance counters available on Ivy Bridge. The official
reference can be found in [12], and a collection of the most relevant events for this
thesis is included in Appendix A.

Event Umask Mnemonic Description

0x3C 0x00 CPU_CLK_UNHALTED.
THREAD_P

Counts the number of thread cycles
while the thread is not in a halt state

0xC0 0x00 INST_RETIRED.ANY_P Number of instructions at retirement

0xA2 0x01 RESOURCE_STALLS.ANY Cycles Allocation is stalled due to
Resource Related reason

Performance events are identified by two numbers, called event code and unit
mask. Events are also referred to by names, or mnemonics. A few examples are
listed in Table 2.1, including cpu_clk_unhalted.thread_p counting number
of cycles, and inst_retired.any_p for counting number of dynamic instructions
executed. About 200 different events are available on Ivy Bridge [12].

Event CodeUnit MaskCMASK

7 08152431

User mode

OS mode

Invert

Figure 2.2: Performance event select register. Adapted from [12]

Counters are configured up by writing to 32 bit event select registers. Figure 2.2
illustrates the bit field for initializing counters on Ivy Bridge.

• Unit mask and event code are written to the lower two least significant bytes.
As an example, looking at Table 2.1 we find the values for instr_retired.
any_p to be 0x00 and 0xC0 respectively.

• The remaining bits can be toggled to impose various constraints on what is
counted. We will typically toggle OS mode and user mode such that statistics
is reported from code executing in user mode only. Counters are updated each
cycle, adding the number of events occurring to a cumulative value. An invert
bit can be set to count cycles where an event does not occur.

• On each cycle, the event count is compared to the value specified for counter
mask (CMASK). The performance counter is not incremented if the value is

14 CHAPTER 2. BACKGROUND AND RELATED WORK

below what is specified for counter mask. For instance, counting instr_ret-
ired.any_p with a counter mask of 2, will count the number of cycles where
at least two instructions are retired.

On Ivy Bridge, there are three fixed and eight general-purpose counter registers, for
a maximum of 11 performance events monitored simultaneously on each core. The
fixed counters are set to count retired instructions, CPU cycles and reference cycles.
With some restrictions, the remaining general-purpose registers can be programmed
to count arbitrary events. The official documentation of available performance coun-
ters and their usage can be found in Volume 3B of the Software Developer’s Manual
[12]. A shorter reference is included in Appendix A, listing only counters that are
relevant to the discussion throughout the remainder of this thesis.

2.3.3 Using perf

There are multiple ways of accessing the processor’s performance monitoring facil-
ities from software. Support is needed from the operating system, as kernel mode
privileges are needed to manage the low level PMU hardware. Linux systems pro-
vide a kernel interface called perf_events, which can be used along with the perf3
tool. Perf is a utility program for interfacing performance counters from user code
on Linux. It is relatively easy to use, with support for many performance counters
by mnemonics such as “cycles”, “instructions”, and “branch-misses”. We will mostly
use the stat command, which takes a list of performance counters and a program
to benchmark as arguments. As an example, the following command reports the
total cycle count from executing ls (listing files and directories).

perf stat -e cycles ls

Not all counters are available as mnemonics. Arbitrary performance events can
be used by specifying their respective unit mask and event code, available in the
documentation [12]. Perf uses the event select bit-format fairly explicitly, meaning
we can provide a hexadecimal number corresponding to the desired register value
to specify which counter to use. The perf code for resource_stalls.any is
“r01A2”, with 0x01 and 0xA2 for unit mask and event code respectively. An initial
’r’ character signifies that a “raw” counter value is specified. The user mode bit can
be toggled by appending a ’u’ character, as in event:u.

perf stat -e r01a2:u ls

Simply concatenating unit mask and event code and appending a trailing :u is
what we want to do in most cases.

3perf: Linux profiling with performance counters, https://perf.wiki.kernel.org

https://perf.wiki.kernel.org/index.php/Main_Page

2.4. THE EXECUTION CONTEXT 15

2.4 The Execution Context
In order to understand why bias effects occur, it is necessary to look at some of the
low-level aspects of how processes and memory is managed by the operating system.
In particular, we will see that changes to memory layout in virtual address space
is an important factor. Some knowledge of ELF executables and virtual memory is
necessary for the remainder of the thesis. We will provide a brief overview of how
code and data is mapped to virtual memory on 64 bit Linux systems. For a more
comprehensive reference to topics in operating systems, refer to [23].

2.4.1 Virtual Memory Layout
Virtual memory is an abstraction over the physical memory (RAM), allowing every
program operate within its own isolated address space. Virtual addresses are orga-
nized into pages of 4 KiB, and a page table managed by the operating system defines
a mapping to frames in physical memory [23].

0x7fff'ffffffff

0x0

0x0

0x7fff'ffffffff

0xffffffff'ffffffff

Unused

Available
to user
programs

Reserved
for OS

0xffff7fff'ffffffff
Shared libraries

Environment variables
and program arguments

.stack

.text

.data

.bss

.heap

Figure 2.3: Organization of virtual memory of a running process on a typical 64
bit Linux system

The memory image of a running process in virtual address space is illustrated in
Figure 2.3. Code and data of executable programs are divided into several sections,
the most important being stack, heap, bss, data and text.
stack Stack frames, containing function parameters and local variables. Located

somewhere around the top (address 0x7fff’ffffffff) and expanding downwards.

heap Dynamically allocated area. Located above the uninitialized data segment
(bss), and growing upwards as more space is required. Calls to malloc and
related functions can be used to request heap memory from the operating
system.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

bss Uninitialized data, containing program variables with no value specified. This
area is implicitly initialized to zero once the program is loaded.

data Initialized data, containing program variables that have some assigned value
at compile time.

text Executable binary code, located at the lower end of the virtual address space.

On 64-bit machines, addresses range from 0 to 264. Note that effectively only 48 out
of 64 available bits are used for addressing. The lower 0x0 through 0x7fff’ffffffff is
addressable to user programs, while the upper segment of addresses from 0xffff8000’
00000000 through 0xffffffff’ffffffff is reserved for the operating system. This leaves
a large gap of addresses that are not used, as current hardware does not actually
support addressing the whole 64 bit range [15].

Environment Variables

As discussed in previous work on measurement bias [17], the size of Unix envi-
ronment variables can affect the placement of stack. Environment variables are
allocated above the stack, pushing the initial stack address downwards. Because
of this, the position of stack can be manipulated by manually changing environ-
ment variables. Note that program arguments are also located above the stack, thus
providing different arguments can potentially lead to similar effects.

Executable File Format

Modern Unix systems represent executable program files in the Executable and
Linkable Format (ELF) [2]. The same format also handles object files (.o) and
shared libraries (.so). The different steps in a typical compilation process leading
up to an ELF executable is shown in Figure 2.4. One or more source files (for
example written in C) are first translated to assembly code by a compiler. An
assembler translates the assembly code into machine code, wrapped in an ELF file
format. Multiple object files can be linked together, forming a single executable file.
The linker resolves any symbols and dependencies between the object files.

ELF files are structured in a set of sections, such as “.text”, “.data” and “.symtab”.
Some sections are allocable, meaning their contents are copied into virtual memory
before the program is executed. An example of an allocable section is the text area,
which contains all the executable machine code. The data section is also alloca-
ble, typically storing things like constants and initialized static variables. Virtual
addresses of code or data stored in allocable section are determined statically, and
can be found by reading the contents of the ELF file. The following example shows
disassembly of the first few instruction in the main function of a program, which in

2.4. THE EXECUTION CONTEXT 17

foo.c

bar.c

foo.o

bar.o

foobar

ELF object

 files

ELF executablefoo.s

bar.s

LinkerAssemblerCompiler

Assembly

code

Figure 2.4: Overview of important steps of the compilation process

this case starts at address 0x400544 4.

0000000000400544 <main >:
400544: 55 push %rbp
400545: 48 89 e5 mov %rsp ,% rbp
400548: 48 83 ec 10 sub $0x10 ,% rsp
40054c: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(% rbp)
400553: bf 04 00 00 00 mov $0x4 ,% edi

Before a program can be executed, it needs to be loaded into virtual memory in
some way. The ELF executable file includes the path to an interpreter, a program
that is responsible for loading code and data, setting up a stack, and loading any
dependencies. Files compiled for execution on a 64 bit Linux platform will typically
point to a loader in /lib64/ld-linux-x86-64.so.2. This file can be a symbolic link
to the actual program. The loader maps each allocable section of the object file
into virtual address space, such as the text and data areas. Stack, heap and bss
areas are initialized, resulting in a process image like the one shown in Figure 2.3.
Dynamically linked and shared libraries are mapped into virtual memory as well,
appearing somewhere between the stack and heap segments.

Address Space Layout Randomization (ASLR)

The process of mapping sections to virtual memory is not necessarily deterministic.
If addresses can be known a priori, programs will be more vulnerable to buffer
overflow attacks [21]. If an attacker manages to inject malicious code, he can use
the known virtual addresses to access data or call specific functions. One technique
known as “return to libc” attacks uses this knowledge to call functions in the C
standard library, which will be loaded in most scenarios. If dynamic libraries are

4Output is generated using the objdump utility, part of GNU Binary Utilities. readelf is another
useful program for analyzing ELF files.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

always mapped to the same range of virtual addresses, locations of functions in libc
can be easily determined.

Address Space Layout Randomization is a technique employed by the operating
system to make it more difficult to compromise programs. By default, the placement
of stack, heap and location of dynamically linked libraries will vary between each
run of a program. For a controlled execution environment, we will need to manually
disable address randomization in many cases. This can be done by overwriting the
“randomize_va_space” system property.
$ sudo bash -c ’echo 0 > /proc/sys/ kernel / randomize_va_space ’

The default value is 2, indicating full randomization5. To disable heap ran-
domization only, a value of 1 can be written instead. We will use zero to disable
all randomization, making virtual memory layout completely deterministic between
each run.

2.4.2 Memory Context of C Programs
The C programming language will be used for code examples throughout the re-
mainder of the thesis, as it is both widely known and provides only a thin layer of
abstraction over virtual memory. We use the program in Listing 2.1 to illustrate
how variables in C programs map to different memory segments. The program con-
tains four variables, utilizing both initialized and uninitialized data, dynamically
allocated data on heap, and stack allocated variables.

• Variable c and d are stack-allocated automatic variables [13]. Their run-time
addresses depend on where the stack segment is initialized in virtual memory,
and can in general not be known ahead of time.

• The address returned by malloc and stored in variable d, points to a location
on the heap. The exact address depends on the implementation of malloc,
as well as the initial position of the heap segment, and is also impossible to
predict in general.

• Global variables a and b should be placed in bss and data segments respec-
tively. Variable a is not explicitly initialized, thus it is not necessary to store
any value in the executable file. The C standard specifies that static variables
are guaranteed to be initialized to zero [13], which will happen by default if
allocated in the bss segment. The value 42 is allocated for variable b in the
data section of the executable. Virtual addresses of static variables are deter-
mined at compile time, and can be found in the ELF object file’s symbol table
[2].

5A description of the different values can be found in the documentation for sysctl,
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

2.4. THE EXECUTION CONTEXT 19

Listing 2.1 Simple C program with data allocated in four different segments of
virtual memory

include <stdlib .h>
include <stdio.h>

static int a; /* .bss */
static int b = 42; /* .data */

int main () {
int c = 0; /* .stack */
int *d = malloc (sizeof (int)); /* .heap */
printf ("stack: %p heap: %p bss: %p data: %p \n", &c, d, &

a, &b);
return 0;

}

Executing the same program multiple times with ASLR enabled will yield dif-
ferent output for stack and heap addresses. Each variation constitutes a different
execution context, with potentially different performance characteristics. Below is
an example output.
stack: 0 x7fffffffe1ec heap: 0 x602010 bss: 0 x601040 data: 0 x601028

Chapter 3

Methodology and Experimental
Setup

This chapter presents the test setup and experimental methodology used to identify
sources of bias in Chapter 4, and case studies in Chapter 5. When studying bias
effects, carefully controlling all relevant properties of the environment is crucial. We
first describe how our experimental setup is configured with respect to operating
system settings, and use of “best practices” in performance analysis. Methods used
for acquiring and analyzing performance counter measurements is also described.

3.1 Setup and Configuration
Measurement bias is by definition a product of variations in the execution envi-
ronment. To produce reliable results, we need to properly control every variable
that can affect measurements. Previous work on measurement bias and observer ef-
fect describes a set of best practices for how the measurement infrastructure should
be configured [18, 17]. Based on this, we make the following configuration to our
experimental setup:

• Unless specified otherwise, address space layout randomization (ASLR) is kept
disabled. This is necessary when testing effects from changing memory context,
and often required to make results reproducible.

• Hyper threading is disabled, ensuring that only one thread runs simultane-
ously on each core. Two threads competing on hardware resources is another
potential source of bias, which we will not be studying.

• System load is kept at a minimum to avoid interference with other processes
and tasks.

• Automatic CPU frequency scaling is disabled, keeping the clock rate constant.

21

22 CHAPTER 3. METHODOLOGY AND EXPERIMENTAL SETUP

Table 3.1: Experimental setup

Processor Intel® Core™ i7-3770 @ 3.40 GHz
Family: 0x06, Model: 0x3A

Memory 16 GB @ 1333 MHz
Operating System 64-bit Ubuntu 12.04 LTS (3.2.0-41)

Toolchain GCC 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

Hardware and software configuration of our test machine is shown in Table 3.1.
It features an Intel Core i7-3770 “Ivy Bridge” processor and 16 GB RAM. The
operating system is Ubuntu version 12.04, which at the time of writing is the most
recent release with long term support. We use GCC version 4.6.3 as our compiler
toolchain.

3.2 Performance Analysis
We use perf stat to acquire hardware performance counter statistics, which should
introduce minimal overhead and observer effect. In many cases we need to collect
a large number of counters for the same program, while there is a limit to the
number of performance counters collected simultaneously (see Chapter 2). We use a
Python script to encapsulate repeated invocations of perf stat. Being only a thin
wrapper around invocations of perf, this script does not affect program execution
or introduce any bias by itself. Measurements are aggregated over several runs,
enabling us to collect all of the about 200 performance counters available on our
architecture [12]. The implementation can be found in Appendix B. A reference to
performance counters discussed in the remaining chapters can be found in Appendix
A.

Environment Size Previous work points to changes in environment variable size
as a cause of bias, and we will study this effect in detail. Unless otherwise specified,
we use a minimal environment for all our benchmarks1. A script is used for collecting
performance counters under varying environment sizes. To measure statistics with
n bytes added to the environment, we set a dummy variable to 0n (repeated zero
characters n times).

Correlation Many experiments consists of collecting a large number of perfor-
mance counter statistics over a series of different execution contexts, for example
incrementing environment variable size. To filter out events that are likely to explain
any bias effects, we will use the Pearson correlation coefficient [25]. The correlation

1A completely empty environment is not possible, because perf stat itself adds some variables
to the environment.

3.3. APPROACH 23

coefficient is a numerical value between −1 and 1, which can be used to determine
the linear relationship between two data series X and Y . Values close to +1 or −1
indicates strong positive or negative correlation, respectively, while values close to 0
indicate no correlation. With multiple series of performance counter measurements,
a linear correlation coefficient serves as a crude indication of possible relationships
between counter values. To filter out indicators of bias, we will look at correlation
between cycle count and other counter values in particular.

Cache Analysis Cache conflicts can in many cases be a potential explanation
for bias effects observed by changing memory layout. If some memory configuration
causes contention on a particular cache line, then repeated misses can reduce perfor-
mance. Bias caused by cache issues is not the focus of this thesis. However, cache is
generally a likely explanation of performance variations. In our experiments, we will
carefully monitor various cache metrics in order to rule out cache as the underlying
cause of bias. Relevant events include the hit rates of load micro-ops for each level
of cache, which can be monitored by the following performance counters [10]:

• MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS

• MEM_LOAD_UOPS_RETIRED.L1_HIT_PS

• MEM_LOAD_UOPS_RETIRED.L2_HIT_PS

• MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS

• MEM_LOAD_UOPS_RETIRED.LLC_MISS_PS

Together, these events account for all cache accesses for load operations within a
single core. Every cache access is either a hit in Line fill buffer, L1, L2 or L3, or an L3
miss. Changes to hit rates for different levels of cache is relevant when evaluating
cache performance. Note that it is also possible for load operations to hit cache
lines in other processor cores. This is scenario is mostly relevant for multithreaded
applications, which we will not study.

Visualization Plots are generated with Python’s matplotlib package [9], using
the csv exported data from our benchmark script.

3.3 Approach
Our goal is to investigate possible causes of measurement bias, and if possible how
this can be used for optimization. We have chosen to approach this problem from
two angles; first through low-level analysis of smaller examples, and then later with
more high-level case studies of real applications.

24 CHAPTER 3. METHODOLOGY AND EXPERIMENTAL SETUP

In Chapter 4, we present results from experimental work, trying to identify hard-
ware and software mechanisms that can lead to bias. Smaller synthetic code exam-
ples are used, which are easy to analyze. Bias triggers identified in previous work
will be used as a starting point, in particular environment size and link order [17].
Extensive measurements using hardware performance counters are performed. Us-
ing correlation techniques, we can filter out events that are likely to explain bias.
The goal is to develop a solid understanding of the underlying hardware mechanisms
that can trigger bias.

Results and experiences from the experimental work is transferred to case studies
in Chapter 5. With a detailed understanding of architectural features causing bias,
we can look for specific effects in larger applications. We choose to focus on already
highly optimized numerical libraries. Performance critical applications are more
likely to already have considered architecture specific optimizations to account for
bias effects. If we can find any additional opportunity for improvement, there will
probably be incentive to update or enhance these libraries.

Chapter 4

Sources of Measurement Bias

Modern microprocessors are extremely complex in design and functionality. Some
features of recent Intel processors includes several layers of cache to camouflage
slow memory, multiple prefetchers, speculative out-of-order execution and branch
prediction, just to name a few. Hardware features and optimizations interact with
memory layout of program code and data in various ways. In this chapter, we will
unveil characteristics about two different architectural features in Ivy Bridge, and
show how they can bias performance towards certain memory contexts.

First we will look at an aliasing effect between memory addresses of loads and
stores, causing false dependencies in the out-of-order execution pipeline. This effect
can be triggered for example by changing stack position, and can explain bias from
altering environment variables. Secondly, we will look at the Loop Stream Detector,
which in previous work on measurement bias has been suggested as a possible ex-
planation. We therefore choose to study this particular optimization in detail, and
show how measurement bias can occur from changing link order.

4.1 Address Alias Effects (4K Aliasing)
An effect known as “4K aliasing” can occur when the addresses of a store instruction
followed by a load instruction differ by a multiple of 4 KiB. Consider the following
example, first writing a value to the memory address stored in %rax, before reading
from the address stored in %rbx

mov %r10 , (% rax) /* store to address in %rax */
mov (% rbx), %r11 /* load from address in %rbx */

If for example %rax is 0x601010 and %rbx is 0x604010, the memory accesses
are said to be aliased. The difference between the two addresses is 0x3000, which
is a multiple of 4096, or 0x1000 in hexadecimal. The memory system issues load
and store operations speculatively and out of order to increase throughput and
parallelism. Some analysis is done to determine which operations are safe to issue

25

26 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

out of order. In the above example, the processor could very well issue the load before
the store, as they refer to different addresses. However, on recent Intel architectures
only the last 12 address bits are used to determine if operations refer to the same
address [10]. The last twelve bits of 0x601010 is 0x010, or 0000’0001’0000 in binary
– the same as for 0x604010. Only doing a partial address compare, dependencies
between load and store operations are sometimes falsely detected. These events can
be counted by the following performance counter:

LD_BLOCKS_PARTIAL.ADDRESS_ALIAS False dependencies in Mem-
ory Order Buffer due to partial compare on address.

The Memory Order Buffer refers to a collection of load/store buffers within the
L1 data cache. It buffers loads and stores of not yet retired instructions, enabling
speculative and out of order execution while ensuring that no dependencies are
violated [5, 10]. The optimization manual provides a more concrete explanation of
the counter, stating it “Counts the number of loads that have partial address match
with preceding stores, causing the load to be reissued” [10]. False dependencies due
to address aliasing can have a negative effect on performance due to loads being
reissued.

Intel Optimization Guidelines Performance implications of 4K aliasing is dis-
cussed to some extent in the optimization manual from Intel. There are also some
concrete suggestions for how to deal with it:

User/Source Coding Rule 8. (H impact, ML generality)
Consider using a special memory allocation library with address offset
capability to avoid aliasing [10]

This rule concerns heap allocated memory, which can be vulnerable to address alias-
ing if the implementation of for example malloc often returns memory with identical
12 bit address suffixes. This rule is classified as high (H) impact and medium/low
generality, suggesting that it occurs relatively often, and with significant perfor-
mance implications. In Section 4.1.2 we will study the effects of aliasing of heap
allocated memory. Alternative allocator implementations is explored in Section
4.1.3, identifying dynamic libraries as a potential source of measurement bias.

The second rule concerning address aliasing introduces the concept of padding
variable declarations.

User/Source Coding Rule 9. (M impact, M generality)
When padding variable declarations to avoid aliasing, the greatest benefit
comes from avoiding aliasing on second-level cache lines, suggesting an
offset of 128 bytes or more [10]

Aliasing can in some cases be accounted for in software by explicitly handling mem-
ory location of variable declarations. We will use this technique to avoid aliasing

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 27

for both stack- and heap allocated memory. Notice that Intel considers these as a
“User/Source Coding” rules. This suggests that optimizing for address aliasing is
something that should be considered not only by compilers, but also by program-
mers.

Outline We will study the effects of 4K address aliasing through a set of examples
and small case studies. The purpose is to show how aliasing can explain measurement
bias. In Section 4.1.1 we connect address aliasing with changes to environment size
– showing how variations in stack addresses can trigger address collisions. Section
4.1.2 discusses common aliasing issues with heap allocated memory. We choose to
focus on a limited set of concrete code examples, illustrating how aliasing can affect
real programs. Additionally, we show how to use padding or similar techniques to
programmatically avoid bias in each case. Finally, in Section 4.1.3 we introduce
dynamic libraries as another source of bias. In addition to environment variables,
we find that different configurations or versions of memory allocators can cause
measurement bias by triggering address aliasing.

4.1.1 Bias from Environment Size

As shown in previous work, changing the Unix environment variables can sometimes
significantly affect program performance [17]. It is typically not the content of
environment variables that are important, but rather the effect their size has on
stack position. Environment variables are allocated before the stack when programs
are mapped into virtual memory, essentially offsetting all the following call frames
and stack allocated variables.

Listing 4.1 Small C program with bias towards certain environment sizes. Adapted
from [17].

static int i, j, k;

int main () {
int g = 0, inc = 1;
for (; g < 65536; g++) {

i += inc;
j += inc;
k += inc;

}
return 0;

}

28 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Analysis of Micro Kernel

We begin by showing how address aliasing can explain measurement bias for the
micro kernel presented in [17], reproduced here in Listing 4.1. This example is
interesting for several reasons:

• The bias effects are significant and easily reproducible

• The example code is simple and easy to analyze

• No satisfactory explanation as to what causes bias was given in the original
paper

As outlined in Chapter 3, we use perf and an automated script to collect perfor-
mance counter statistics over a series of runs, incrementally increasing environment
size using a dummy variable. The program is compiled using GCC with no opti-
mization. Note that any optimization would likely disregard most of the function
as redundant code, and reduce it to return zero immediately. Collecting the cycle
count performance counter, we observe a distinct spike over a period of 16 bytes
under increasing environment size. Illustrated in Figure 4.1, the difference is over
20 % between the worst and best case.

0 64 128 192 256
Bytes added to environment

650,000

700,000

750,000

800,000

850,000

900,000

Cycle count, cycles:u

Figure 4.1: Performance variations from offsetting stack position by changing
environment size

As a starting point in trying to analyze the potential cause for these effects, we
look at data provided by other performance counters. We run the program several
times under each environment configuration, collecting all available counters. The
most interesting metrics are filtered out by linear correlation coefficient, as described

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 29

Table 4.1: Performance counters with more than 0.3 positive or negative linear
correlation to cycle count.

Performance Counter Perf code Correlation

UnHalted Core Cycles cycles:u 1

UnHalted Reference Cycles bus-cycles:u 0.9999957522

LD_BLOCKS_PARTIAL.ADDRESS_ALIAS r0107:u 0.9941211321

RESOURCE_STALLS.ANY r01a2:u 0.9922818774

CYCLE_ACTIVITY.CYCLES_LDM_PENDING r02a3:u 0.9879579406

CPL_CYCLES.RING123 r025c:u 0.9844339013

CYCLE_ACTIVITY.CYCLES_NO_EXECUTE r04a3:u 0.9200557425

UOPS_DISPATCHED_PORT.PORT_4 r40a1:u 0.7546588979

UOPS_DISPATCHED_PORT.PORT_5 r80a1:u -0.5346383723

UOPS_DISPATCHED_PORT.PORT_1 r02a1:u -0.9308766294

UOPS_DISPATCHED_PORT.PORT_0 r01a1:u -0.9707469127

RESOURCE_STALLS.RS r04a2:u -0.986720269

in Chapter 3. The set of counters that most closely follows the cycle count is shown
in Table 4.1. Among all the performance counters supported on our architecture,
only a few shows significant correlation to cycle count:

• Address aliasing (ld_blocks_partial.address_alias) have a near per-
fect correlation, indicating that false memory dependencies causes a perfor-
mance hit.

• Positive correlation with resource stalls supports the aliasing hypothesis. Loads
blocked by preceding stores due to false dependence is likely generating stalls.
resource_stalls.any counts stalled cycles from “resource related reasons”
[12]. cycle_activity.cycles_ldm_pending is a related metric, counting
the number of cycles with pending memory loads.

• The remaining counters appears to be less interesting. cpl_cycles.ring123
and bus cycles will naturally correlate with cycle count. There are differences
in the way micro-operations are scheduled between dispatch ports, which seems
more like a by-product of the other events.

Figure 4.2 shows a plot of resource stalls, pending loads and alias, overlaid on cycle
count. We see that ld_blocks_partial.address_alias reports zero almost
everywhere, and spikes in perfect correlation with cycle count. A higher amount of

30 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

resource stalls and pending loads seems like a natural consequence of stalling due
to aliasing.

0 64 128 192 256
Bytes added to environment

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Cycles, cycles:u

Alias, r0107:u

Resource stalls, r01a2:u

Pending loads, r02a3:u

Figure 4.2: Cycle count correlating with resource stalls, pending memory loads
and address alias performance counter events.

To find out which memory accesses collide, we need to know the memory ad-
dresses of each variable at run time. Referring to Listing 4.1; statically allocated
variables i, j and k have their virtual addresses determined at compile time, and
are not affected by offsetting stack address. Inspecting the symbol table section of
the ELF object file1, reveals that the addresses of i, j and k are 0x601028, 0x60102c
and 0x601030, respectively.
Symbol table ’.symtab ’ contains 66 entries :

Num: Value Size Type Bind Vis Ndx Name

42: 0000000000601028 4 OBJECT LOCAL DEFAULT 25 i
43: 000000000060102 c 4 OBJECT LOCAL DEFAULT 25 j
44: 0000000000601030 4 OBJECT LOCAL DEFAULT 25 k

Variables g and inc are stack allocated local automatic variables, which will be
affected by changing initial stack position. It is difficult to observe their correct
addresses without introducing observer effects. Simply adding a call to printf for
instance, completely changes the program behavior with respect to bias. Instead,
we use a small amount of assembly code to calculate the addresses and print the
numbers directly using system calls. We find that the spike in cycle count occurs
when the address of g and inc are 0x7fffffffe028 and 0x7fffffffe02c, respectively.

1Output is generated using the readelf utility, part of GNU Binary Utilities

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 31

0x601028
0x60102c
0x601030

0x7fff'ffffe028
0x7fff'ffffe02c

g
inc

k
j
i

USER=lars;SHELL=/
bin/bash;PWD=/home
(...)

.stack

.bss

Figure 4.3: Stack allocated variables end up with the same address suffixes as
static variables as a result of environment size.

Notice that the last twelve bits (three hexadecimal digits) for g and inc are the
same as for i and j. The two aliasing pairs are illustrated in Figure 4.3.

(g, i) → (0x7fffffffe028, 0x601028)
(inc, j) → (0x7fffffffe02c, 0x60102c)

There is a period of 16 byte of environment size where cycle count spikes (see
Figure 4.2). This can be explained by a default stack alignment of 16 byte in
GCC, meaning addresses of stack variables will only change in multiples of 16. It
is therefore impossible to have only one aliasing pair of variables in this case. The
next address suffixes of g and inc will be 0x038 and 0x03c, aliasing with neither i,
j or k. The effect is periodic; with increasing environment size, the spike in cycle
count happens every 4096 byte.

Relation to Previous Architectures

When presenting similar results for the Core 2, the authors mentions the per-
formance counter load_block.overlap_store, which is not available on Ivy
Bridge, as a potential indication of what causes of bias effects [16]. The documen-
tation states that this counter triggers on loads blocked by a preceding store due to
a variety of reasons, including the following case:

“The load and store have the same offset relative to the beginning of
different 4-KByte pages. This case is also called 4-KByte aliasing.” [12]

32 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

It appears that effects of 4K aliasing emerge as a case of failed store forwarding in
earlier architectures. Address aliasing between static and automatic variables was
probably the underlying cause of bias in the original paper as well.

Avoiding Aliasing – A Proof of Concept

Addresses of automatic variables can not be determined statically, because the po-
sition of stack at runtime is generally unknown. In addition to being offset by
environment variables, the stack address can also be perturbed by other factors
such as address layout randomization. Although we can not easily know if a colli-
sion is going to happen for a given environment, we can try to change the program
to account for possible alias effects. The following strategy is a proof of concept of
how alias-free code can be generated in cases like this.

1. Variable addresses can be accessed in C, thus we can read out the addresses
to check if there are any collisions between (g, i) and (inc, j).

2. If the addresses do alias, branch to an alternative but semantically equivalent
code path. Allocate a new set of variables to avoid aliasing.

A complete implementation is shown in Listing 4.2. Note that only one pair of
variables needs to be checked in this case. If inc and j alias (which is checked), then
g and i will alias as well.

0 1024 2048 3072 4096
Bytes added to environment

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Cycles, cycles:u

Alias, r0107:u

Resource stalls, r01a2:u

Pending loads, r02a3:u

Figure 4.4: Performance counter statistics for modified code, showing stable values
over a full 4 KiB range of possible stack addresses modulo 4096

Figure 4.4 shows that all performance counter statistics are stable through 4096
byte of offset. This covers a whole period of 12 bit address suffixes, showing that the

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 33

Listing 4.2 Modified code with explicit check for aliasing between inc and j. The
alternative loop contains no aliasing, and this program does not suffer from bad
performance due to address aliasing for any environment size.

static int i, j, k;

int main () {
int g = 0, inc = 1;

if ((((long)& inc) & 0xfff) == (((long)&j) & 0xfff))
{

int dummy = 0, t1 = g, t2 = inc;
for (; t1 < 65536; t1 ++) {

i += t2;
j += t2;
k += t2;

}
g = t1;

}
else
{

for (; g < 65536; g++) {
i += inc;
j += inc;
k += inc;

}
}

return 0;
}

aliasing is not merely moved to another offset. With only negligible overhead from
additional code size and instructions executed, we are able to completely remove
negative bias effects caused by stack position for this program.

4.1.2 Heap Address Aliasing

Address aliasing can be caused by conflicting pairs of load/store operations to any
part of memory. The previous section looked specifically at an example of collision
between stack variables and static data. Another important scenario to consider
is collisions in dynamically allocated memory. In this section, we will look at how
aliasing in heap allocated memory can impact performance. In particular, functions
that operate on pairs of contiguous arrays can be vulnerable to 4K aliasing [10].

34 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Many algorithms work in a “sliding window” fashion; reading some data from an
input buffer, do some computation, and write the result to an output buffer. Sample
usages that fit this pattern include:

• Copy or moving data

• Vector operations

• Image filtering

A typical worst case for this group of functions is when each buffer have the same
addresses modulo 4096. For example, iterating over some data from a buffer starting
at 0x601020 and writing the result to another buffer starting at 0x865020 is likely
to generate aliasing. We will study one such program in detail, and show how
variations in heap addresses can give performance variations of more than 50 %,
even for compiler optimized programs. To provide a little more background, we will
first look more closely at where dynamically allocated memory is located in virtual
address space.

Addresses of Heap Allocated Memory

Whether or not heap areas alias will depend on properties of the memory allocator
used. On our system, the default memory allocator is found in GNU libc 2. Acquiring
dynamic memory at run time is usually done by calling malloc, which takes a
number of bytes to allocate and returns a pointer to that area.

brk

0x7fff'ffffffff

0x0

Page-aligned area

allocated by mmap

for larger requests

Normal heap area,

smaller requests

Figure 4.5: Heap memory spread out in virtual memory between mmap and sbrk
requests

Depending on the size of the request, malloc uses two different strategies for how
to allocate memory. For smaller allocations, malloc uses the “normal” heap area.
As illustrated in Figure 2.3, the heap is placed after static code and data segments

2The GNU C Library (glibc) http://www.gnu.org/software/libc/

http://www.gnu.org/software/libc/

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 35

Table 4.2: Addresses of three consecutive heap allocations, for small and large
request sizes.

Request size (B) Heap addresses

10 0x1541010 0x1541030 0x1541050
1,000,000 0x7ff1b13ce010 0x7ff1b0e12010 0x7ff1b0d1d010

in virtual memory, extending upwards. Every process has a “break” position, which
marks the heap address limit currently available to the process. The sbrk system
call is used to increase the available heap space. For larger requests, heap allocation
is typically done with mmap. This system call creates a mapping between memory
address space and the contents of a file. Memory allocators use mmap with the
MAP_ANONYMOUS flag specified for larger requests, creating an allocation that is not
backed by a file. There is a threshold value M_MMAP_THRESHOLD for the minimum
request size to allocate outside the normal heap, but mmap is also sometimes used
for smaller requests than this value 3. Memory returned by mmap is disjoint from
the normal heap area, typically located on higher addresses and closer to the stack.
Organization of different heap areas in virtual memory is illustrated in Figure 4.5.

One of the properties of mmap is that it guarantees page-alignment. Because
the page size is 4096 bytes, memory returned from larger requests will always have
alias on the last 12 bits – at least in all cases where mmap is used internally. Note
that this property of malloc is not affected by address randomization. Table 4.2
illustrates the difference between addresses pointing to the normal heap or to areas
allocated by mmap.

Example of Aliasing from Aligned Heap Areas

As an example of a “sliding window” program working on pairs of memory buffers,
consider the function shown in Listing 4.3. It computes the convolution between
an input array and a fixed kernel, writing the result to another array (endpoints
skipped for simplicity).

This function is sensitive to aliasing between heap areas. Using malloc to allocate
float arrays of size N , both input and output will alias in cases where mmap is used
internally. For sufficiently large values of N , this will always be the case. Compiling
with optimization O3 and N = 0x100000, a very large number of alias events and
resource stalls are generated compared to cycle count. The performance counter
statistics from running perf is shown in Table 4.3, under column “No padding”.

Because malloc is using mmap and returns page-aligned data, a read from
input[i] will always alias with a write to output[i] in convolve. Although distinct
memory locations, the processor assumes there are dependencies between them.

3http://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html

http://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html

36 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Listing 4.3 Convolution kernel which is vulnerable to aliasing between input and
output arrays.

static float kernel [5] = {0.1 , 0.25 , 0.3, 0.25 , 0.1};

void convolve (int size , float *input , float * output)
{

int i, j;
for (i = 2; i < size - 2; ++i)
{

output [i] = 0;
for (j = 0; j < 5; ++j)

output [i] += input[i -2+j] * kernel [j];
}

}

int main () {
float *input = malloc (N* sizeof (float));
float * output = malloc (N* sizeof (float));
convolve (N, input , output);
return 0;

}

Table 4.3: Performance counter statistics for convolution kernel with two different
heap address alignments. No padding is default page aligned buffers returned by
malloc.

No padding Padding 16

Cycle count, cycles:u 12,024,235 5,570,808
Address alias, r0107:u 9,195,816 1,175
Resource stalls, r01a2:u 7,742,251 1,290,946
Instructions, instructions:u 11,166,765 11,166,802

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 37

Padding Data Aliasing can be accounted for in software by offsetting one of the
arrays before calling convolve. The main function is modified slightly, to make sure
address suffixes of input and output differ by a variable amount. We allocate some
extra padding for output, and use pointer arithmetic to adjust the initial address.
int main () {

float *input = malloc (N* sizeof (float));
float * output = malloc ((N + x)* sizeof (float));
convolve (N, input , (output + x));
return 0;

}

The address difference modulo 4096 between input and output arrays now be-
comes 4x bytes. Plotting this for increasing values of x shows that virtually all
aliasing is removed after offsetting with 12 or more elements. Figure 4.6 shows the
amount of aliasing is steadily decreasing on larger offsets. The best parameter is
found to be at a 16 or more elements difference (at least 64 bytes). Collecting the
same performance counters with offset 16, we see that aliasing is almost eliminated,
and number of resource stalls is significantly reduced. The results are shown in
Table 4.3. By simply altering the default addresses given by malloc, we are able to
reduce the cycle count by more than 50 %.

0 5 10 15 20
Padding elements added to output array

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

Cycles, cycles:u

Address alias, r0107:u

L1 hit, r01d1:u

Figure 4.6: Performance statistics for convolution with variable amounts of
padding for output array. convolve(N, input, (output + x)) is executed for
increasing values of x, separating array addresses by x float elements (or 4x bytes).

Cache Efficiency Given that we are working with relatively large amounts of data
(more than what fits in L1 or L2 cache), one might suspect that cache misses impacts

38 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

the cycle count. Measuring all the relevant cache related counters, as described in
Chapter 3, we find that cache behavior appears to be completely unaffected by
aliasing. L1 hits is shown in Figure 4.6, with no correlation to cycle count. We
also measure hits in the Line fill buffer (LFB), L2 hits, LLC hits and LLC misses,
but they all have stable values. Most of the memory access operations hit the L1
cache, which suggests the hardware prefetcher is able to keep up. No cache related
events show any significant correlation to cycle count. We can therefore safely rule
out cache as a contributing factor.

Architectural Optimization Address aliasing is an artifact of intricacies in the
processor architecture. Ideally, one would like the compiler to create efficient code
without having to manually offset heap pointers. On optimization O3 however, the
compiler will optimize for a “generic” machine. One could hope that aliasing effects
are considered when the compiler is asked to target our Intel architecture specifically,
which can be done by specifying -march=native4. This includes using instructions
that are not necessarily portable, for example AVX instructions.

We can provide additional information to the compiler’s optimizer by using the
restrict qualifier, explicitly stating that no pointer aliases exists. By marking input
and output as restrict, we guarantee they are the only pointers to their respective
memory areas, and not accessed through any other (aliased) pointers. This benefits
code generation and optimization, potentially improving performance. Additionally,
the input array should be specified as const, guaranteeing that only read operations
are done to that array.

void convolve (int size , const float * restrict input ,
float * restrict output)

Together with the function signature changes, we find that the following compile
parameters gives the best performance.

gcc -O3 -std=c99 -march=native

Compared to only using O3, the speedup is quite significant (as before, we use
N = 0x100000). Specifying restrict seems to have the most impact on performance.
Nevertheless, we still see a fairly high alias event count. As shown in Table 4.4, there
are more than 250,000 alias events with the default heap alignment. Compared
to the much lower cycle count, this is still a significant amount. Attempting to
manually offset the output array again, we find the best parameter to be 48 or more
(a minimum difference of 192 bytes). Separating the heap buffers eliminates almost
all aliasing, while also significantly improving cycle count.

Even with every opportunity given to the compiler to account for aliasing, we are
still able to squeeze out a speedup of 14 % by manually adjusting memory addresses.
This speedup is also consistent through other input sizes.

4http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/i386-and-x86_002d64-Options.html

http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/i386-and-x86_002d64-Options.html#i386-and-x86_002d64-Options

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 39

Table 4.4: Performance counter statistics for convolution example compiled with
GCC, using modified function signature and optimal compiler optimization flags.
Showing statistics for default (page aligned) heap addresses, and programmatically
offset of output buffer by 48 float elements.

No padding Padding 48

Cycle count, cycles:u 3,451,031 3,028,162
Address alias, r0107:u 259,605 236
Resource stalls, r01a2:u 948,047 525,796
Instructions, instructions:u 3,302,429 3,302,444

Other Compilers In addition to GCC, we made similar experiments with LLVM’s
clang5 version 3.0, and Intel’s icc6 version 13. The behavior of Clang is similar to
GCC with respect to offsets to minimize alias. Only 16 padding elements is needed
to get rid of aliasing, but the change in cycle count is not as clear. With almost ten
times as many dynamic instructions executed, a much higher cycle count probably
masks the added cost of aliasing. Code produced from Intel’s icc is not free from
aliasing on default page aligned heap memory either. A similar alias event count as
GCC, about 260,000 for N = 0x100000, is generated with no padding. Aliasing can
be eliminated almost completely, but that requires an offset of 160.

For this particular example, we found that GCC generated the most efficient
code, executing in fewer cycles than both clang and icc. The effect of aliasing was
also most significant in GCC, providing the most speedup when padding output
buffer. Even when provided with architecture-specific optimization flags, none of
the compilers we tested generated code that could not be improved by manually
offsetting heap area.

4.1.3 Bias from Dynamic Libraries
Heap address conflicts discussed in the previous section does not show measurement
bias per se, but rather an artifact of the particular implementation of malloc used.
A perfectly legal implementation of malloc could insert offsets on every other large
request, avoiding bad performance in cases when mmap is used internally. Variations
between different versions of libc, or local configurations on parameters such as
M_MMAP_THRESHOLD, could have a huge impact on performance. In general, one
must consider dynamic libraries as an important part of the execution context. In
this section, we will briefly study how some alternatives to the default allocator in
libc behaves.

5clang: a C language family frontend for LLVM, http://clang.llvm.org/
6http://software.intel.com/en-us/intel-compilers/

http://clang.llvm.org/
http://software.intel.com/en-us/intel-compilers/

40 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Table 4.5: Addresses returned when allocating two float arrays of the same size,
examples of possible sources of 4K alias conflicts highlighted. Tests were run with
ASLR disabled for reproducible results, but we get similar results with randomiza-
tion enabled.

Array length Default (ptmalloc) TCMalloc Hoard

3840 0x603010 0x695000 0x2aaaac000070
0x606c20 0x699000 0x2aaaac004000

4660 0x603010 0x69d000 0x2aaaac010070
0x6078f0 0x6a2000 0x2aaaac014d38

65535 0x2aaaaaad1010 0x6a7000 0x2aaaac020070
0x2aaaaab12010 0x6e7000 0x2aaaac070070

16702650 0x2aaaab091010 0x8b57000 0x2aaaac030070
0x2aaaaf049010 0xcb2f000 0x2aaaafff0070

Alternative Memory Allocators

In the case of memory allocators alone, there are several alternatives to libc. One of
the key issues different allocators tries to address is contention in a multi-threaded
environment. Heap management is a natural bottleneck for multi-threaded appli-
cations, as all threads share the same address space. A naive allocator will force
serialization of calls to malloc and free from different threads [3].

The implementation used in GNU libc is called ptmalloc, which is based on
Doug Lea’s malloc7. We will look at two alternatives, Hoard8 and TCMalloc9, both
explicitly targeting multi-threaded code. Implementations of malloc and related
functions are typically provided as shared libraries. Both Hoard and TCMalloc can
be used as drop-in replacements for already compiled code using the LD_PRELOAD
environment variable. Directories specified this way will be searched first by the
dynamic linker, resolving references to malloc to the alternative library.
$ LD_PRELOAD =~/ Allocators /Hoard/ libhoard .so ./ test

For each of the allocator implementations, we observed the addresses returned
when sequentially allocating two equally large float arrays. Table 4.5 shows a
comparison for different request sizes.

• The default implementation (ptmalloc) is consistently using the regular heap
(non-aligned low addresses) for smaller allocations, and mmap for larger re-
quests.

7Doug Lea, A Memory Allocator, http://g.oswego.edu/dl/html/malloc.html
8The Hoard Memory Allocator, http://www.hoard.org/
9Thread-Caching Malloc, http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html

http://g.oswego.edu/dl/html/malloc.html
http://www.hoard.org/
http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html

4.1. ADDRESS ALIAS EFFECTS (4K ALIASING) 41

• TCMalloc seems to be using the normal heap area exclusively. Interestingly,
memory is aligned on page boundaries also for small sizes, always returning
addresses ending in 0x000.

• Hoard also tends to align on page boundaries for larger requests, with addresses
ending in 0x070. Unlike the other two, it looks like Hoard never utilizes normal
heap area.

Each library produces very different results, and potential for address alias conflicts
depends on the particular implementation of malloc used. There are several exam-
ples of cases where switching library can eliminate alias by changing address suffixes.
For the convolution example, using ptmalloc or Hoard is very likely to outperform
TCMalloc for arrays of length 4660.

Most allocators seem focus mostly on efficiency in a multi-threaded environ-
ment, and we find that none of the alternatives tested attempts to solve the aliasing
problem for aligned arrays.

4.1.4 Summary
In this section we have studied how address aliasing can affect program performance
under different memory layouts. This effect is caused by the way speculative and
out-of-order memory operations are handled by the CPU, only considering the last
12 address bits to resolve conflicts load and store operations. We have shown how
aliasing can cause measurement bias for the following cases:

• Variations in environment size: Analyzing the example provided in [17], we
determined that collisions between stack variables and static data caused alias-
ing for certain stack positions. Variations in environment size changes virtual
addresses of stack allocated data, and measurement bias observed by this can
in some cases be attributed to address aliasing.

• Properties of heap allocators: Different versions or implementations of memory
allocators can introduce measurement bias. We presented a code example
with extreme sensitivity of data alignment, with more than 50 % performance
variation between different memory layouts.

Any change to virtual memory layout of data can potentially introduce bias effects
from address aliasing. We find that compilers, even when provided with architecture
specific optimization flags, still generates code that suffers from aliasing. Typical
heap allocators are found to often use page-aligned memory, which is the worst case
with respect to aliasing for many algorithms. Despite recommendations from Intel,
we are not aware of any allocators that specifically addresses this issue. We show
how manual padding of variables, and alternative alias-free code paths, can be used
to avoid aliasing at run time. This means that an understanding of 4K address
aliasing is sometimes needed to achieve optimal performance.

42 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

4.2 The Loop Stream Detector
Typical software spends most of the time executing the same instructions repeatedly
in a loop, where the same branches are taken, and the same instructions are fetched
and decoded. The Loop Stream Detector (LSD) is a front-end hardware optimization
that is able to detect small software loops [20]. Instead of repeatedly fetching and
decoding the same instructions, loops can be streamed directly from a queue of
already decoded micro operations. Normal fetch/decode operation is resumed once
a branch mispredict occurs.

Disabled

Instr.
queue

Decoders

Decoded ICache
up to 1526 micro-ops

Micro-op Queue
56 entries

Loop Stream

Detector

Figure 4.7: Loop Stream Detector circumvents branch prediction, fetch and decode
for hot loops, streaming directly from the micro-op queue

This optimization is affecting both performance and power efficiency. Power
savings come from disabling front-end components such as fetch and decode when
the LSD is active. In cases where instruction fetch is the bottleneck, streaming
already decoded micro-operations can also increase performance.

In the documentation, we find two hardware performance counters that can
measure the utilization of the LSD [12].

LSD.UOPS Counts the number of micro-ops delivered by loop stream detector.

LSD_OVERFLOW Counts number of loops that can’t stream from the instruc-
tion queue.

Note that none of these are listed in the non-architectural counters supported by Ivy
Bridge. However, we find that using the event codes given for previous architectures
seems to work regardless, and gives reasonable results. We suspect that the official
reference is either not complete or misleading in this case.

We choose to study this hardware feature specifically, because it has been sug-
gested in previous work as a potential source of measurement bias [17]. The Loop
Stream Detector is dependent on code layout, which can change with external fac-
tors such as variations in link ordering. Interacting with the alignment and position
of instructions in memory, the LSD can cause performance differences for programs
with otherwise identical instruction sequences.

Some effort has been made to model properties of the LSD on previous Intel
architectures [8], as an aid in low-level optimization. In this section we will uncover

4.2. THE LOOP STREAM DETECTOR 43

important characteristics of the Loop Stream Detector on Ivy Bridge. With an
understanding of its limitations, we show an example of how measurement bias
from link ordering can be explained. We also discuss other external factors that can
alter code layout, possibly triggering performance variations from interacting with
the LSD.

4.2.1 Properties of the Loop Stream Detector
Loops can only be recognized by the Loop Stream Detector under certain conditions.
The Optimization Manual lists the following restrictions for the “Sandy Bridge”
Loop Stream Detector [10]:

1. Up to eight chunk fetches of 32 instruction-bytes

2. Up to 28 micro-ops (~28 instructions)

3. All micro-ops are also resident in the Decoded ICache

4. Can contain no more than eight taken branches and none of them can be a
CALL or RET

5. Cannot have mismatched stack operations. For example, more PUSH than
POP instructions

The capabilities of the LSD is changing between processor generations. In particular,
the limits to chunk fetches, maximum number of micro-ops and taken branches seem
to continuously increase [20, 1]. An increase in the limit of micro-ops, from 28 to
56, is listed as an enhancement to the Ivy Bridge front-end over Sandy Bridge [10].
It is not clear whether the remaining limitations from Sandy Bridge are valid for
the Ivy Bridge, as it is not explicitly stated in the manual.

Table 4.6: Properties of the Ivy Bridge Loop Stream Detector, determined empir-
ically by a series of micro benchmarks.

HT off HT on

Chunk fetches 12 12
Micro-ops 56 28

Taken branches 12 12

We create a series of micro benchmarks to manually verify what the actual
limitations are. The updated Loop Stream Detector limitations for Ivy Bridge is
summarized in Table 4.6. We find that the limitation to chunk fetches, as well as
taken branches, has increased from previous generations.

44 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Chunk fetches

The documentation states that a maximum number of eight 32 byte “chunks” of
instruction data can be fetched in each loop. Our interpretation of this is that
instruction data is somehow organized into blocks of 32 bytes, aligned to multiples
of 0x20 in virtual address space. To test this limit, we need loops that execute
instructions spanning a variable amount of chunks. The micro kernel we used is
shown in Listing 4.4, written in GNU x86-64 assembly.

Listing 4.4 Micro kernel for testing chunk fetch limit. Additional (cmp, je, lea,
lea, lea, add) blocks of exactly 32 bytes are inserted until lsd.uops shows the
Loop Stream Detector is no longer active.

. section .text

.globl main
main:

mov $0x1234567 , %eax
mov $0 , %ebx
. p2align 5

.l0:
cmp $0 , %ebx
je .l1
lea 0x100 (% rsp), %ecx
lea 0x100 (% rsp), %ecx
lea 0x100 (% rsp), %ecx
add $0x100 , %ecx

.l1:
(...)

.l11:
cmp $0 , %eax
jne .l0
ret

The idea is to execute a minimal amount of instructions at the start of each
block, and immediately jump on to the next. Blocks are labeled .l0, .l1, . . . , .ln,
and the first block is explicitly forced to align on a 32 byte boundary (5 bits) by the
.p2align directive. Virtual addresses of code and static data can be read from the
ELF binary after compilation. A disassembled portion of the code is shown below10.
400500: 83 fb 00 cmp $0x0 ,% ebx
400503: 74 1b je 400520 <.l1 >
400505: 8d 8c 24 00 01 00 00 lea 0x100 (% rsp),% ecx
40050c: 8d 8c 24 00 01 00 00 lea 0x100 (% rsp),% ecx

10Output is generated by the objdump utility, part of GNU Binutils

4.2. THE LOOP STREAM DETECTOR 45

400513: 8d 8c 24 00 01 00 00 lea 0x100 (% rsp),% ecx
40051a: 81 c1 00 01 00 00 add $0x100 ,% ecx

We see that the first compare instruction starts on address 0x400500, aligned to
32 byte. Because %ebx is always zero, the branch is taken every time. The remaining
lea and add instructions are added to fill the remaining bytes in the chunk. Only
the first 3 + 2 instruction bytes occupied by cmp and je are executed, while the
remaining 27 bytes is dead code. After a number of repeated blocks like these, the
counter is incremented before jumping back to .l0. The final sub, cmp and jne
instructions occupy 12 bytes, so it is possible to insert another 20 bytes of padding
to completely fill the last chunk as well.

400674: 83 e8 01 sub $0x1 ,% eax
400677: 83 f8 00 cmp $0x0 ,% eax
40067a: 0f 85 80 fe ff ff jne 400500 <.l0 >

For every loop iteration, a total of 2N + 3 instructions are executed, spanning
N + 1 chunks of 32 bytes. The cmp and je instructions should be fused to a single
micro-op, so we should not be hitting the micro-op limit. We find that the lsd.uops
counter reports high values through N = 11, meaning the Ivy Bridge Loop Stream
Detector must support at least 12 chunk fetches.

Taken branches

The fourth requirement states that a loop can contain no more than eight taken
branches. The chunk fetch limit example already uses 12 branches, so we can imme-
diately conclude that at least 12 taken branches is supported. We experiment with
more than one branch target in each chunk, but are not able to increase the number
any further. All of our example programs with more than 12 taken branches results
in low values for lsd.uops.

Micro-operations

The second requirement states that each loop can only contain a maximum of 28
micro-operations. This is no longer true for Ivy Bridge, because of changes to
the Micro-op Queue. In previous generation(s), the micro-op queue was statically
partitioned with 28 entries for each logical core. One of the Front-end enhancements
in Ivy Bridge is that all 56 entries in the queue can be used when only a single logical
core is active, i.e. hyper-threading is disabled [10].

We verify this restriction by measuring lsd_overflow and lsd.uops for loops
of increasing size, adding instructions one by one until the performance counter
statistics report the LSD is inactive. Our micro-kernel is shown in Listing 4.5. We
find that the LSD is active with as many as 54 add instructions. The loop logic is
implemented with a sub, cmp and jne instruction. With macro-fusion of the last

46 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Listing 4.5 Micro kernel for testing LSD micro-instruction limit. Additional add
instructions are inserted until LSD.UOPS shows the Loop Stream Detector becomes
inactive.

. section .text

.globl main
main:

mov $0x1234567 , %eax
. p2align 5

.loop:
add %ebx , %ecx
add %ebx , %ecx
(...)
add %ebx , %ecx
sub $1 , %eax
cmp $0 , %eax
jne .loop
ret

cmp + jne, the total is exactly 56 micro-operations per loop. With hyper-threading
enabled, the number is cut in half to 28, as expected.

4.2.2 Hitting the Chunk Fetch Limit
Knowing the parameters, we can construct programs that are on the limit of what
the Loop Stream Detector accepts. Listing 4.6 shows a simple loop that generates
code much like the micro kernel used to test chunk fetch limit. Each of the if
statements occupies exactly 32 byte in instruction memory when compiled with gcc
and no optimization. Including the instructions needed to compare and increment
variable i, the loop code covers just under 12× 32 bytes in the compiled binary.

0x4004c0

0x400500

0x400540

0x400580

0x4005c0

0x400600

0x400640

0x400680

13 chunks 12 chunks

Figure 4.8: Depending on alignment, code can span either 12 or 13 chunks of 32
byte instruction memory

4.2. THE LOOP STREAM DETECTOR 47

Listing 4.6 Loop spanning 13 chunks of 32 bytes when compiled with gcc, but only
12 chunks with the printf statement uncommented.

include <stdio.h>
define B27 a=b, a=b, a=b, a=b, a=b, a=b, a=b, a=b, a=b
int main () {

register int i = 0, a = 1, b = 1;
// printf (" What is going wrong ?");
while (i++ < 0 x12345678) {

if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;
if (a != b) B27;

}
return 0;

}

Even though we are within the limit, a quick test with perf reveals that the
Loop Stream Detector is not enabled. Only a negligible amount of micro-ops are
delivered by the LSD, as reported by lsd.uops. Inspecting the compiled binary, we
see that the loop instructions span virtual addresses 0x4004d3 through 0x400648.
The first byte in a chunk have address ending in 0x00, 0x20, 0x40, 0x60, 0x80, 0xa0,
0xc0 or 0xe0, meaning the first instruction belongs to the 0x4004c0 chunk, and the
last is just within the 0x400640 chunk. Despite covering less than 12 × 32 byte of
instruction addresses, this specific alignment causes the code to span not 12 but 13
chunks, exceeding the limitation.

We can create a different alignment by inserting some code before the loop. By
uncommenting the printf statement, we see that the LSD is able to deliver micro-ops,
giving a huge speedup. The performance counter statistics for each of these programs
is shown in Table 4.7.Looking at the binary again, we find that the loop now only
covers 12 chunks, spanning addresses 0x400529 through 0x40069e. The difference
between the two configurations is illustrated in Figure 4.8. When no optimization
flags are used, GCC does not try to align loops in any strict way, meaning that
differences like these depend on surrounding code. We will use a similar approach
to show how bias from link ordering can be explained by the LSD, presenting an
example that also works with optimization enabled.

48 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Table 4.7: Performance counter statistics for loop spanning 12 or 13 chunks of
instruction memory.

13 chunks 12 chunks

Cycle count, cycles:u 7,636,642,008 3,665,689,143
LSD.UOPS, r01a8:u 10,921 4,581,309,568
Instructions, instruction:u 8,246,427,939 8,246,428,712

4.2.3 Bias from Link Order
Different link orders affects the relative position of code and static data within the
final compiled binary file. Interacting with limitations of the Loop Stream Detector,
variations in instruction addresses can bias programs towards certain link orders.
We will look at an example of exceeding the chunk fetch limit depending on link
order, which works on GCC with optimization O3. Bias from hitting limitations of
the Decoded ICache is also discussed.

Chunk fetches

With a few modifications to our previous example, we can create a program that
utilizes the LSD only for certain link orders. Our program is shown in Figure 4.7,
containing three files; main.c, foo.c and loop.c.

In the example from Listing 4.6, we exploited weak alignment guarantees from
GCC, sometimes spilling loop code over 13 chunks. One might hope that with
the proper optimization flags, compilers will fix such alignment flaws. There is an
“align-loops” flag in GCC11, enabled by default in O2 and O3, which allows the
assembler align loops by inserting necessary padding. On optimization O3, the
following assembly directives are inserted before the first instruction that is part of
the loop in loop.c12.

. p2align 4,,10

. p2align 3

The first directive tries to align to four address bits, inserting at most 10 bytes
for padding. If that does not work, the next directive forces loops to be aligned to
three bits – meaning addresses ending in 0x0 or 0x8. Within a 32 byte instruction
block, the first loop instruction can end up being offset by 0x00, 0x08, 0x10 or 0x18.
The loop itself spans 379 instruction bytes when compiled in our example, just shy of
the 12× 32 = 384 bytes that can maximally fit in the LSD. Out of the four possible

11Optimize Options – Using the GNU Compiler Collection (GCC),
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

12The GNU Assembler, http://tigcc.ticalc.org/doc/gnuasm.html

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://tigcc.ticalc.org/doc/gnuasm.html

4.2. THE LOOP STREAM DETECTOR 49

Listing 4.7 Program with measurement bias from link order, favoring (main, foo,
loop) over (main, loop, foo) when compiled with GCC and optimization level O3

foo.c:
int foo(int n)
{

int a = 1;
return a;

}

main.c:
include <stdio.h>

int main ()
{

int i = loop (10);
int f = foo (10);

printf (" Loop: %d\n",i);
printf (" Foo : %d\n",f);

return 0;
}

loop.c:
define B22(n) b += i*i*a + 1
volatile int i = 42;

int loop(int a) {
register int b = i==42 ? 1 : 0;
do {

if (!i) B22 (1);
if (!i) B22 (2);
if (!i) B22 (3);
if (!i) B22 (4);
if (!i) B22 (5);
if (!i) B22 (6);
if (!i) B22 (7);
if (!i) B22 (8);
if (!i) B22 (9);
if (!i) B22 (10);
if (!i) B22 (11);

} while (i++ < 0 x12345678);
return b;

}

alignments, only zero offset into a chunk will work in our case. Performance counter
statistics for two different link orders are shown in Table 4.8.

• Link order main.c, loop.c, foo.c: The first loop instruction is aligned to
0x400590, an offset of 0x10 into the 0x400580 chunk. Covering 13 chunks,
the Loop Stream Detector can not be utilized.

• Link order main.c, foo.c, loop.c: The first loop instruction is aligned to
0x4005a0, right at the start of a chunk. Cycle count is reduced by more
than 50% from utilizing the LSD.

We see that measurement bias from link order can in some cases be explained by hit-
ting the chunk fetch limit of the Loop Stream Detector. Even when compiling with
sensible optimization flags, GCC does not always hit the optimal loop alignment,
causing code to spill over additional chunks. A possible solution in this scenario
could be to manually specify the loop alignment to 32 byte, with -falign-loops=32.

50 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

Table 4.8: Performance counter statistics for different link orders.

main.c, loop.c, foo.c main.c, foo.c, loop.c

Cycle count, cycles:u 7,636,374,873 3,665,668,196
LSD.UOPS, r01a8:u 10,998 8,246,350,119
Instructions, instruction:u 11,606,047,809 11,606,046,865

Decoded ICache Limitations

Any property of the Loop Stream Detector that depends on the code layout in
memory can potentially be triggered by different link orders. This is not limited to
the number of chunk fetches, but also includes properties of the Decoded ICache.
One of the LSD requirements states that all micro-ops must be present in the De-
coded ICache. The manual describes additional restrictions to what micro-ops can
be stored in this cache, imposing limitations to the number of branches per block,
and other alignment properties [10]. Consider the C program from Listing 4.8.

Listing 4.8 Loop using LSD only for certain alignments when compiled with GCC
and no optimization, likely hitting limitations in Decoded ICache

include <stdio.h>
volatile static int color;

int main () {
printf (" Fixing colors ");
for (int i = 0; i < 10000000; ++i) {

if (color == 0x000)
color = 0xaaa;

else if (color == 0xaaa)
color = 0xfff;

else if (color == 0xfff)
color = 0x000;

}
return 0;

}

Compiling with cc -std=c99 and no optimization, the binary code generated by
this function spans far less than 12 chunks. Counting LSD.UOPS, we see that the
Loop Stream Detector is not in use. However, by removing the printf statement the
loop alignment is moved from 0x400517 to 0x4004c1, and the LSD is enabled. We
did not investigate the actual cause of this any further, but speculate that specific
alignments prevents all micro-ops to reside in ICache simultaneously.

4.2. THE LOOP STREAM DETECTOR 51

4.2.4 Other Triggers of Bias Effects
The focus of previous work, and elaborated in this section, is measurement bias
caused by altering link ordering. The important factor is not the process of linking
itself, but the effect it has on final code layout in the compiled binary. Any inter-
action that affects code layout can potentially trigger performance cliffs caused by
the LSD. The following briefly discusses some additional properties to consider.

The order of functions within a source file

As with link order, the order of functions within a source file usually determines their
relative position in the text segment of the compiled binary. Given a program with
functions foo and bar, listing foo before bar and vice versa generates two “different”
programs with respect to memory layout. GCC prints functions to the text segment
in the order they appear in the source code.

Length of external symbols

Symbols such as function names are placed in a symbol table section in the ELF
file. When running readelf or objdump, the names are used to print nice output.
Symbols that needs to be resolved dynamically are allocable, and mapped to virtual
address space before the text segment. This means that names of external sym-
bols resolved at run-time does affect code layout. Longer function names (or more
external dependencies) will offset the text segment because the size of allocable seg-
ments related to dynamic linking changes. This includes the “dynsym”, “dynstr”,
and “rela” sections in an executable made with GCC. Details for each of the ELF
sections can be found in the man pages 13.

Some particularly devious “bugs” can occur from this. Consider a scenario where
a program does not align correctly to utilize the Loop Stream Detector. For some
debug purpose, assume a printf statement is added to a completely unrelated part
of the code. The additional external symbol offsets instruction alignment such that
the LSD can be used, giving a huge speedup. Later removing the printf statement
will reduce the size of external dependencies, and result in worse performance again.

Interpreter path

When executing an ELF binary, the first thing that happens is to load and run an
interpreter/dynamic linker. The interpreter is responsible for unpacking the object
file and map all the allocable sections to virtual memory, as well as loading any
external dependencies. The path to the interpreter itself is located in the ELF
“.interp” section, which is allocable and loaded first. On our system, this defaults to
“/lib64/ld-linux-x86-64.so.2”. Other loaders can be specified, either at compile time

13http://linux.die.net/man/5/elf

http://linux.die.net/man/5/elf

52 CHAPTER 4. SOURCES OF MEASUREMENT BIAS

or by patching the object file14. Specifying an alternative interpreter at compile
time can be done with a linker flag, for example:
-Wl ,-dynamic -linker ,/ home/me/very/long/path/to/an/ alternative

/ loader . symlink .so.2

The string containing the path to the interpreter is actually allocated to virtual
memory, before the text segment. This means that the string length (in characters)
can offset code addresses. This bias trigger is more of a curiosity, and probably not
a very likely scenario in practice.

4.2.5 Summary
The Loop Stream Detector can provide significant speedup, but subtle changes to
code layout sometimes prevents this optimization to be utilized. In this section
we have shown that simply adding (or removing) a printf statement, or changing
the link order, can have a severe performance impact. Programmers rarely care, or
even know, about intricate details such as the addresses and alignment of code. We
expect, and probably rightfully so, that sensible compilers and linkers will organize
code somewhat optimally. In cases where this is not true, weird effects that might
be categorized as “bias” occurs. For developers, it is useful to be aware of the fact
that any change to instruction addresses can potentially have a huge impact on
performance.

14http://nixos.org/patchelf.html

http://nixos.org/patchelf.html

Chapter 5

Case Studies

In this chapter, we show how bias effects discussed previously can affect real software.
The goal is to identify possible instances of bias, and also investigate how to apply
new knowledge of these effects for optimization purposes. We choose to focus on
already highly optimized numerical applications for our case studies, because the
real world impact of bias is most relevant for performance critical applications. If
only a minor improvement can be made by avoiding some memory alignment issue,
the cost of implementing an architecture specific optimization in a high performance
numerical library will probably be worth it.

Two applications are studied: In Section 5.1 we will look at FFTW [7], a widely
used library for computing discrete Fourier transforms. We show that for smaller
input sizes, there is potential for bias towards certain stack positions. In Section 5.2
we look at ATLAS [28], which is an implementation of the BLAS API [4] for linear
algebra routines. We find that matrix-vector multiplication is sensitive to address
aliasing, and show how to significantly improve worst case performance by padding
data.

5.1 FFTW
As an integral part of applications such as signal and image processing, a huge
amount of work has been done over the years to optimize and tweak the perfor-
mance of the Fast Fourier Transform (FFT). Today, there are a plethora of excellent
implementations available, among them FFTW1, an acronym for “Fastest Fourier
Transform in the West”. Its design goal is to be portable, yet achieve close to opti-
mal performance across a wide variety of platforms [7]. The library is not optimized
specifically for any processor or architecture, but uses automatic tuning to adapt to
the underlying hardware [24]. Provided that a speedup on average can be achieved,
explicitly handling of context bias could be a realistic addition to FFTW.

1FFTW Home Page,http://www.fftw.org/

53

http://www.fftw.org/

54 CHAPTER 5. CASE STUDIES

Listing 5.1 C program snippet for computing the Fourier transform of N double
precision complex numbers X times.

int main ()
{

fftw_complex *in = fftw_malloc (sizeof (fftw_complex)*N);
fftw_complex *out = fftw_malloc (sizeof (fftw_complex)*N);

fftw_plan p = fftw_plan_dft_1d (N, in , out , FFTW_FORWARD ,
FFTW_ESTIMATE);

for (int i = 0; i < X; ++i)
fftw_execute (p);

fftw_destroy_plan (p);
fftw_free (in), fftw_free (out);
return 0;

}

Installation and Configuration We used the currently most recent version 3.3.3
of FFTW in all our tests, compiled from source and built as a shared library. The
configure script is invoked with the following parameters:
./ configure CC=" gcc -march= native " --enable - shared --enable -

sse2 --enable -avx

For optimal performance on our machine, we explicitly enable support for SSE2
and AVX instructions. In addition, we set the “arch” compiler flag to “native”,
allowing the GCC to specifically tune generated code to our architecture.

Setup and Methodology FFTW is a very comprehensive library with lots of
functionality. Our approach will be to concentrate on smaller transform sizes, and
identify specific examples where bias is easily measurable. We create a small C
program, shown in Listing 5.1, with two parameters; N , the number of elements
to transform, and X, the number of times to repeat the transform. The iteration
count is used to amplify any bias for smaller input sizes. The API calls made in the
example are explained below.

fftw_malloc is a wrapper around the standard malloc, returning heap-allocated
data. This is supposed to provide a stronger alignment guarantee than malloc
does, needed for vectorized code. The system’s default malloc might not align
data on wide enough boundaries, although reasonable implementations do.

fftw_plan_dft_1d creates a plan for how to most efficiently compute a discrete
Fourier transform of size N . The plan is a recipe for how to decompose the

5.1. FFTW 55

work into several kernels. A kernel is a function that can compute the Fourier
transform for one particular input size. Kernel implementations are automat-
ically generated C programs, which are also called codelets. The planning
step encapsulates the auto-tuning part of FFTW, as plans can be constructed
based on actual measurements and benchmarks done on the current machine.
Knowledge of well performing plans can be stored as wisdom, which is used to
construct other plans later.

fftw_execute performs the computations specified by the given plan, calculating
the Fourier transform of “in” and writing the result to “out”.

This setup is used to identify sensitivity to, or bias from, changes in environment size.
The assumption is that stack alignment when calling fftw_execute can potentially
introduce bias. This program resembles the example we studied in Chapter 4, where
address aliasing caused bias for certain environment sizes. Specifically looking for
a similar effect here, the most relevant performance metrics are cycle count and
address aliasing (r0107:u). For all our experiments, we use the same machine and
methodology as outlined in Chapter 3.

0 1024 2048 3072 4096 5120 6144 7168 8192
Bytes added to environment

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

Cycle count, cycles:u

Address alias, r0107:u

Figure 5.1: Performance counter measurements for computing complex DFT of
size N = 16, repeated X = 200,000 times. Address aliasing under some environment
sizes negatively impacts cycle count.

Environment Bias in Small Transforms A quick search through possible con-
figurations is done manually, by specifying different values for iteration count and
transform size. We find that computing transforms of size 16 have noticeable bias.
Figure 5.1 shows the relation between address alias and cycle count for repeated

56 CHAPTER 5. CASE STUDIES

benchmarks under increasing environment size. The effect is amplified by executing
the same plan X = 200,000 times, resulting in significant performance variations.

We choose study this particular case in depth, with the purpose of finding out
why aliasing occur and how it can be avoided. The call graph and generated assembly
code is analyzed in detail in Section 5.1.1, to identify where aliasing occur. In
sections 5.1.2 and 5.1.3 we discuss two possible optimizations that can be made to
avoid aliasing. The first describes possible improvements to the implementation of
FFTW itself, while the second option is to account for aliasing at the user level.
Bias is not exclusively a problem for this particular input size, and we show how
similar patterns also occur in other kernels.

5.1.1 Analysis of Aliasing Effects
The first step in determining the cause of aliasing is to look at exactly what code
is executed. An overview of which kernels are used to execute a plan can be found
by calling fftw_print_plan. In the case of input size N = 16, the plan consists of a
single kernel called “n1fv_16”, compiled with AVX instructions enabled. Valgrind
2 is used to analyze the call graph from fftw_execute, shown in Figure 5.2. There
is a chain of calls, eventually leading to the actual kernel invocation.

main

fftw_execute

fftw_dft_solve

apply_extra_iter

n1fv_16

Figure 5.2: Call graph showing the actions taken after calling fftw_execute for the
16 element transform.

The kernel itself is located in the file dft/simd/common/n1fv_16.c, which con-
tains an automatically generated C program for computing a 16 element DFT3. The
function signature gives an idea of how the kernel works. There are 9 parameters,
where the most interesting are input buffer (“ri”) and output buffer (“ro”).

2http://valgrind.org/
3There are actually two separate implementations provided, one specifically optimized for ar-

chitectures supporting fused multiply-add instructions. FFTW is compiled with FMA disabled in
our case, as there are no such instructions on Ivy Bridge.

http://valgrind.org/

5.1. FFTW 57

void n1fv_16 (const R *ri , const R *ii , R *ro , R *io , stride
is , stride os , INT v, INT ivs , INT ovs)

Conflicting memory accesses within this function are causing bias effects. Look-
ing at the generated assembly, we find three areas of memory whose address suffixes
can potentially overlap:

• Heap allocated input and output buffers, parameters “ri” and “ro” respectively.
These are pointers previously returned by calls to fftw_malloc, addresses in
general unpredictable by the kernel, except for some alignment constraints.

• Stack allocated function parameters and local automatic variables. Compiled
with optimization, the six first arguments will be passed in registers. The
remaining three are pushed on stack.

• Statically allocated constants in memory. Three floating point constants are
statically built into the object file, and their locations in memory are deter-
mined at runtime by the dynamic linker.

The static constants are loaded initially, using only a few load instructions. Because
most memory access instructions are either to temporary stack variables or to heap,
it is a fair assumption that address alias happens when stack accesses collide with
heap addresses. Under synthetic testing with address randomization disabled, all
parameters are fixed and deterministic. For our particular test, the heap allocated
input and output buffers always reside in virtual addresses 0x602040 and 0x601c0
respectively – on the low end of a 4K segment of suffixes between 0x000 and 0xfff.

0x000 0xfff

ri ro

%rsp

Figure 5.3: Position of stack (%rsp register) can be aligned anywhere within the
space of virtual addresses modulo 0x1000. With ASLR disabled, the last 12 bits of
ri and ro are 0x040 and 0x1c0 respectively.

As illustrated in Figure 5.3, the potential for overlap between stack and heap
accesses will depend on where the stack is aligned, and the position of stack will vary
with environment size. Alias effects likely occur when addresses of stack variables
overlap with heap accesses. The program becomes biased to certain environment
sizes, as it can execute with a “good” configuration with few collisions, or a “bad”
configuration as in one of the periodic peaks illustrated in Figure 5.1.

58 CHAPTER 5. CASE STUDIES

5.1.2 Eliminating Bias at the Kernel Level
Assuming aliasing occurs from conflicts between stack and heap, bias can be elim-
inated by altering addresses of memory accesses to either of these areas. Once
fftw_execute is called, the only thing we can control is the placement of stack allo-
cated variables. Our solution idea is to programmatically adjust the stack in such
a way that accesses do not collide (alias) with heap memory. We outline a naive
solution, which exploits the fact that heap addresses are fixed with ASLR disabled.
In our case, both heap allocated input and output buffers have address suffixes close
to 0x000. A reasonable placement of stack is then on the other side of the spectrum,
close to 0xfff and expanding towards lower addresses. The concept is illustrated in
Figure 5.4.

0x000 0xfff

ri ro

%rsp

Figure 5.4: Collisions can be avoided by reseting the stack pointer to an address
that does not conflict with the heap allocated areas.

Looking at the call graph from Figure 5.2 again, we have several options for where
to programmatically align stack on a suitable address. In order to be transparent
to the user, the adjustments must happen in either fftw_execute, fftw_dft_solve,
apply_extra_iter or n1fv_16. Modifying fftw_execute or fftw_dft_solve will af-
fect execution of all DFT plans, while we only want to target aliasing within a
single kernel. A fix could be applied to n1fv_16 directly, but we choose to modify
apply_extra_iter instead. As the name suggests, this function actually calls the
kernel twice.

The modified function is shown in Listing 5.2. The andq instruction will zero
out the last 12 bits of the stack pointer (%rsp register), effectively subtracting
some number between 0 and 4096. The stack grows downwards, thus subtracting
any (reasonably small) amount will not overwrite other data. We run the same
benchmark again, with the results shown in Figure 5.5. We see that the modified
version is much less sensitive to stack placement, removing almost all the bias from
previously. Table 5.1 shows a reduction in cycle count by 11.8 % for the worst case,
but unfortunately there is no significant speedup on average.

Even though we are able to remove most of the alias effects, performance did not
improve as much as we had hoped. The constant overhead added by inserting the
extra instructions in apply_extra_iter consumes any aliasing improvement. About
1 million dynamic instructions are added to our example in the modified version, an
increase of 1.3 %.

5.1. FFTW 59

Listing 5.2 Modified apply_extra_iter, aligning stack to a 4K boundary. The
hidden function body makes two calls to the n1fv_16 kernel. Implementation is
located in the file dft/direct.c.

static void apply_extra_iter (const plan *ego_ , R *ri , R *ii ,
R *ro , R *io)

{
void *rsp;
asm volatile (

"movq %%rsp , %0;"
"andq $ -4096 , %% rsp ;"
: "=r"(rsp) : :);

/* original implementation */

asm volatile (
"movq %0, %% rsp ;"
: : "r"(rsp) :);

}

0 1024 2048 3072 4096 5120 6144 7168 8192
Bytes added to environment

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

Cycle count, cycles:u

Address alias, r0107:u

Figure 5.5: Performance counter statistics after stack alignment fix is added to
apply_extra_iter, almost all bias removed.

60 CHAPTER 5. CASE STUDIES

Table 5.1: Cycle count statistics over 512 runs, sampling uniformly over two 4 KiB
environment size periods. Mean and maximum is improved with forced alignment,
while the constant overhead impacts expected (median) performance.

Min Median Mean Max

Default version 30,337,010 30,445,740 31,051,690 37,349,700
Kernel modification 30,760,320 30,885,300 30,947,460 32,909,300

Evaluating the Worst Case Scenario

With address randomization disabled, both stack and heap locations will be fixed
for all environment sizes. This is exploited in the kernel-level stack alignment fix we
have outlined, which only works when input and output buffers are close to 0x000. If
however heap buffers happen to reside on the opposite end of a 4 KiB segment, both
stack and heap addresses will be close considering the last 12 bits. By allocating
another buffer of 7400 B using malloc before calling fftw_malloc, the input and
output arrays are pushed to 0x604da0 and 0x604f00 respectively. The relative
position between each memory segment in this scenario is shown in Figure5.6.

0x000 0xfff

ri ro

%rsp

Figure 5.6: Offsetting heap addresses to always overlap with fixed stack pointer.

With both heap and stack addresses suffixes located on the “high” end, there
will always be aliasing. The effect of this change is shown in Figure 5.7. A constant
number of alias events are added across all environment sizes, resulting from the
worst case memory alignment.

A Generic Solution

The static rule of aligning stack to page boundary only works with ASLR disabled,
and because our fftw_malloc happens to place “ri” and “ro” close to the lower end
of a 4 KiB range of address suffixes. A complete solution would require a function
at least these three parameters to calculate the optimal stack offset:

f (input, output, stack position)→ offset

A plausible solution to the worst case scenario from Figure 5.6 would be to
align stack to start at input pointer, no longer overlapping any heap segments.

5.1. FFTW 61

0 1024 2048 3072 4096 5120 6144 7168 8192
Bytes added to environment

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

Cycle count, cycles:u

Address alias, r0107:u

Figure 5.7: Worst case scenario when resetting stack pointer to 0x000. Overlap
with heap alignment results in aliasing consistently across all environment sizes.

However, given the somewhat discouraging results from our simple static fix, we did
not attempt to implement a function like this for the n1fv_16 kernel. Using inline
assembly, the cost of additional dynamic instructions will quickly cancel out any
speedup we might get.

5.1.3 Eliminating Bias at the User Level
The ideal solution to aliasing would be a transparent one, where library users do
not need to worry about optimal stack alignment. However, when trying to account
for aliasing within FFTW itself in the previous section, we found that too many
dynamic instructions are added in the process. The reason for this is that the
stack correction is implemented inside the hot loop, where fftw_execute is called
repeatedly. A possible user level modification would be to align stack before the
loop, which should add only a negligible overhead. The relevant parts of a modified
main function is shown in Listing 5.3.

With ASLR disabled, keeping the heap addresses constant through all runs, we
are now able to avoid all alias effects for the n1fv_16 kernel. If we were to plot
the results, the graph for cycle count and alias events would be completely flat. As
shown in Table 5.2, the average cycle count is reduced from 31,051,690 to 30,425,240,
a speedup of 2 %.

62 CHAPTER 5. CASE STUDIES

Listing 5.3 Modified test program with forced stack alignment in main. Stack
pointer is saved to a temporary variable before aligned to a 4 KiB boundary, then
restored once we are done.

void *rsp;
__asm__ volatile (

"movq %%rsp , %0;"
"andq $ -4096 , %% rsp;"
: "=r"(rsp) : :);

for (int i = 0; i < X; ++i)
fftw_execute (p);

__asm__ volatile (
"movq %0, %% rsp;"
: : "r"(rsp) :);

Table 5.2: Cycle count statistics over 512 runs, sampling uniformly over two 4KiB
environment size periods. With stack alignment in main, the program performs
equally well for all environment sizes.

Min Median Mean Max

Default 30,337,010 30,445,740 31,051,690 37,349,700
Kernel modification 30,760,320 30,885,300 30,947,460 32,909,300
User modification 30,350,120 30,427,600 30,425,240 30,585,470

5.1. FFTW 63

5.1.4 Bias in Other Kernels

FFTW consists of a quite large collection of automatically generated codelets. While
we have only looked extensively at one particular kernel, similar bias effects can be
experienced for other plans and input sizes. We find that alias effects are apparent
in all kernels we tried, a selection of them shown in Figure 5.8. Each kernel shows a
different pattern, with clear bias towards some environment sizes (stack alignments)
that performs noticeably better than others.

0 1024 2048 3072 4096
0

5

10

15

20

25
n1fv 8 avx

0 1024 2048 3072 4096
0

5

10

15

20

25

30

35

40

45
n1fv 15 avx

0 1024 2048 3072 4096
0

10

20

30

40

50
n1fv 20 avx

0 1024 2048 3072 4096
0

10

20

30

40

50

60

70

80
n1fv 32 avx

Figure 5.8: Cycle and alias counts for four additional kernels, for 8, 15, 20 and
32 element complex DFTs respectively. Plot shows X = 200,000 iterations of the
kernel, incrementing environment size (horizontal axis) between each run, up to 4096
bytes. Vertical axis is given in millions.

64 CHAPTER 5. CASE STUDIES

5.1.5 Discussion
In this section, we have shown how bias from environment size can affect small
kernels in FFTW. The n1fv_16 kernel was studied in detail, showing how aliasing
occur from collisions between stack and heap areas. There is clearly a potential
for speedup by accounting for aliasing, and we show how manually aligning stack
can be a possible solution. With the modification to kernel invocation, we were
able to remove almost all of the bias effects. Unfortunately, our solution suffers
from overhead of additional dynamic instructions. Having library users consider
bias is shown to be feasible, and we prove that there is at least a possibility of 2
% improvement on average for the n1fv_16 kernel. However, requiring users of the
library to manually adjust stack before calling fftw_execute is not a satisfactory
solution. A more reasonable approach would be to incorporate these ideas in the
steps performed prior to executing a plan.

Planning for Alias A realistic solution for handling bias is to give this responsi-
bility to the planner. Note that the heap addresses of input and output are already
required when computing a plan.

fftw_plan_dft_1d (N, in , out , FFTW_FORWARD , FFTW_ESTIMATE);

As we have shown, the optimal stack position for each kernel depends on the
memory addresses of input and output arrays, but the component that is missing is
stack position. In principle, planning using a more thorough planner which considers
empirical timings (for example using FFTW_MEASURE) could cancel out bias if the
following were true:

1. Multiple alternative kernels with varying alias characteristics exists.

2. The call chain is the same during benchmarking in the planner as when the
plan is later executed. Stack addresses during planning must be the same.

The planner can not know the stack depth of which a user calls fftw_execute with
a given plan. Bias could however be handled, if the plan considered stack alignment
at the time of execution. Alternative code paths after calling fftw_execute could be
chosen depending on the current stack position.

Allocating Alias-free FFTW comes with fftw_malloc, which is a wrapper around
regular malloc with stronger alignment guarantees. The purpose of using this is to
optimize for SIMD instructions. In cases where address conflicts between heap data
can occur, extending fftw_malloc to avoid returning aliased heap segments would
be a realistic solution. For the n1fv_16 kernel, we found that alias in heap addresses
did not matter. However, this is not necessarily true for all kernels. Looking into
possible improvements here might be worthwhile.

5.2. ATLAS 65

Compiler Code Generation Our attempts at aligning stack at the kernel level
introduced overhead from adding inline assembly. The compiler already does some
stack alignment operations, which we more or less discard by overwriting the stack
pointer. An alternative solution could be to give the responsibility to the compiler.
All the information necessary is available at compile time; the compiler knows every
instruction and memory access, and can in principle predict where aliasing might
occur. The compiler could then implement dynamic stack alignment based on con-
sidering both heap buffers and current stack pointer – like the “generic solution”
that was previously discussed.

Conclusions

Despite being highly optimized and automatically tuned, kernels in FFTW still
suffers from bias effects. The auto tuning mechanism is designed to deal with ar-
chitecture specific optimizations, but it fails to account for aliasing stack accesses.
Further work on address aliasing issues in FFTW could lead to real performance
improvements.

5.2 ATLAS
For our second case study, we will look at alias effects in ATLAS4 (Automatically
Tuned Linear Algebra Software) [28]. ATLAS is an implementation of the BLAS
API[4] for linear algebra routines, and a critical component in many high perfor-
mance applications.

BLAS Basic Linear Algebra Subroutines (BLAS), is the de facto standard API for
high performance linear algebra routines5. The functionality is divided into three
categories:

Level 1 Scalar and vector operations, such as dot product and vector addition.

Level 2 Matrix-vector operations, such as gemv for general matrix-vector multipli-
cation.

Level 3 Matrix-matrix operations, including the widely applied gemm routine for
general matrix-matrix multiplication.

Many highly optimized implementations of BLAS exists, ATLAS being a widely
used and open source alternative. One of the key features of ATLAS is that it uses
automatic tuning to optimize for cache efficiency [27].

4Automatically Tuned Linear Algebra Software (ATLAS), http://math-atlas.sourceforge.net/
5BLAS (Basic Linear Algebra Subprograms) http://www.netlib.org/blas/

http://math-atlas.sourceforge.net/
http://www.netlib.org/blas/

66 CHAPTER 5. CASE STUDIES

Installation and Configuration We use the currently latest version 3.10.1 of
ATLAS, built as a shared library from source. The automatic tuning happens during
the build process. A series of test programs are run to determine cache edges and
other properties of the hardware, which in turn affects the resulting binary.

Methodology The experimental setup and methodology described in Chapter 3
is applied. Carefully monitoring cache is particularly important in this case study, as
BLAS performance heavily relies on cache efficiency. Relevant performance statistics
for cache hit ratios will be considered to rule out cache as the cause of any bias effects.

Potential for Bias The idea is to reproduce similar scenarios to what we saw
in Section 4.1.2, where aliasing was caused by linear accesses to pairs of aligned
heap allocated data. Functions operating on vectors, from BLAS Level 1 or 2,
seems most likely to have potential for similar characteristics. Using heap allocated
memory, address aliasing is an artifact of the allocator used. With different versions
or configurations of memory allocators, any performance impact from aliasing can
qualify as measurement bias. In the following sections, we will study bias from
address aliasing in the Level 2 function gemv specifically, which computes matrix-
vector multiplication.

5.2.1 Address Aliasing in Matrix-Vector Multiplication
Consider matrix-vector multiplication of the form y = Ax. Let A be of size M ×N ,
where M is the number of rows.

a0,0 a0,1 a0,N

a1,0
. . .

aM,0 aM,N

x0
x1
...

xN

 =

y0
y1
...
yM

The corresponding BLAS function is the level 2 gemv routine, computing the
more general matrix-vector product given as

y = αop (A) x + βy

Here, α and β are constants, and op (A) is an optional transpose or complex conju-
gate of the matrix. A typical invocation of this routine is shown in Listing 5.4. We
set α = 1, β = 0 and op (A) = A to reduce the formula to y = Ax. Note that A
is declared as CblasColMajor, meaning we impose a column major ordering of the
data. The prefix indicates data type, in this case d for double precision.

Benchmarking this program with matrix dimensions N = M = 8192 and itera-
tion count K = 1, we see that performance varies quite significantly with different

5.2. ATLAS 67

Listing 5.4 Computing double precision matrix-vector multiplication y = Ax using
cblas_dgemv

int main () {
const double alpha = 1.0, beta = 0.0;

double *A = malloc (sizeof (double) * M * N);
double *x = malloc (sizeof (double) * N);
double *y = malloc (sizeof (double) * M);

for (int i = 0; i < K; ++i)
cblas_dgemv (CblasColMajor , CblasNoTrans , M, N, alpha ,

A, M, x, 1, beta , y, 1);
return 0:

}

Table 5.3: Performance counter statistics for a simple program invoking ATLAS’
cblas_dgemv with matrix size 8192 × 8192. Cycle count and aliasing varies with
different heap addresses for A, x and y.

&A &x &y Cycles (cycles:u) Alias (r0107:u)

(a) 0x2aaaac292010 0x607010 0x617020 195,155,171 34,095,566
(b) 0x2aaaac292010 0x607010 0x6170b0 186,788,588 5,724,675
(c) 0x2aaaac292010 0x6073d0 0x6173e0 180,778,001 37,555

heap addresses of A, x and y. The performance counter statistics for three different
address configurations is shown in Table 5.3. As might be suspected, the worst case
seems to be when all memory buffers align closely on the same 12 address bit suffix.

Because of overhead from calls to malloc making large heap allocations, these
measurements do not represent the true cost of aliasing in dgemv. To better be able
to assess the effects of aliasing, the call to gemv needs to be isolated. We use the
program from Listing 5.4 to make two benchmarks, one with iteration count K = 1
and another with K = 101. The approximated cost for a single invocation of dgemv
can be expressed as

testimate = tK=101 − tK=1

100

where t represents some metric, such as the number of cycles. Subtracting theK = 1
run removes the constant overhead from the K = 101 run. Dividing by 100 averages
the values from the remaining iterations. Other iteration counts could have been
used as well.

68 CHAPTER 5. CASE STUDIES

Table 5.4: Estimated cost of a single invocation of cblas_dgemv with matrix size
8192 × 8192 in ATLAS. Each column shows statistics for different heap addresses.
The 12 bit address suffixes for A, x and y in each case is (0x010, 0x010, 0x020) for
column a, (0x010, 0x010, 0xb0) for b and (0x010, 0x3d0, 0x3e0) for c.

(a) (b) (c)

UnHalted Core Cycles 60,578,750 51,654,310 46,059,028

ld_blocks_partial.address_alias 33,444,229 3,805,742 2,322

mem_uops_retired.stores 16,781,370 16,781,370 16,781,370

mem_uops_retired.loads 58,745,150 58,745,734 58,745,216

mem_load_uops_retired.hit_lfb 6,106,659 7,942,348 6,043,806

mem_load_uops.retired.l1_hit 52,189,609 49,964,781 51,675,427

mem_load_uops.retired.l2_hit 448,620 838,025 1,025,608

mem_load_uops.retired.llc_hit -29 531 178

mem_load_uops.retired.llc_miss 7 61 18

load_hit_pre.hw_pf 14,425,267 13,428,234 6,332,654

cycle_activity.cycles_ldm_pending 121,057,180 103,250,874 91,998,759

Estimated performance counter statistics for each of the three heap address con-
figurations are shown in Table 5.4. In addition to cycle count and alias events, a
number of relevant metrics related to cache activity are also included. Notice that
almost all load micro-ops are served by either the line fill buffer or L1 cache in all
cases. Only a small amount of loads come from L2, and almost none from L3. The
hit rate for L1 actually decreases somewhat (considering LFB as well) with better
execution time. This could be explained by less time for prefetchers to feed the L1
cache with data. The hardware prefetch counter indicates more hits in cases a and
b. Again, we find that cache efficiency does not explain the performance cliffs we
observe.

Our results show that address aliasing between matrix and vector heap buffers
can significantly impact performance of dgemv in ATLAS. Variations in heap ad-
dresses alone can give a speedup of more than 31 %.

5.2.2 Dealing With Aliasing
For the particular case we investigated, a good heuristic is to align heap segments
“far apart” within the 4 KiB area of 12 bit suffixes. More specifically, it appears
that address suffixes of A and y are the most important to separate.

As described in Section 4.1.2, aliasing cases like these can be accounted for in

5.2. ATLAS 69

software using padding techniques. A possible run time solution to adjust heap
addresses can be realized as follows:

1. Allocate some extra space for one of the vectors when calling malloc, for in-
stance sizeof(double) * (M + 0x100) for y.

2. Check the returned pointers for potential alias, i.e. the difference between &A
and &y. Offset using pointer arithmetic into the array with extra padding at
the end, i.e. y += 0x100.

Another option is to explicitly account for “worst cases” in the implementation of
routines that are vulnerable to aliasing. Addresses can be explicitly checked for
potential conflicts in cblas_dgemv, and if possible branch to code that will not
suffer from aliasing.

5.2.3 Discussion
We briefly looked at potential bias effects in linear algebra routines, and found that
matrix-vector multiplication in ATLAS suffered from heap address aliasing. Close
alignment within a 4K segment of address suffixes can have a significant performance
penalty, with more than 31 % difference between the worst and best case. It becomes
necessary to consider effects of address aliasing when optimizing programs that rely
on ATLAS’ implementation of dgemv.

The extent of aliasing issues within other function in ATLAS, or among other
BLAS implementations, is still an open question. Because of time limitations, we
were not able to investigate other potential aliasing cases. However, it seems very
likely that similar problems are prevalent for linear algebra implementations in gen-
eral. There is probably a significant potential for speedup in many BLAS imple-
mentations by actively avoiding bad address alignment. Our results should motivate
further work to address these issues.

Chapter 6

Conclusions and Future Work

In this thesis, we have studied effects of contextual bias on the Intel Core “Ivy
Bridge” architecture, and shown how avoiding bias can also improve performance.
The premise for our work relies heavily in previous work done by Mytkowicz et al.
Their study of measurement bias in earlier architectures showed that changes to en-
vironment variables and link order could heavily impact performance. Furthermore,
the effects were concluded to be unpredictable and difficult to account for. Ques-
tions of what actually causes bias are left largely unanswered, which leaves room for
valuable research. Our goal was to gain a better understanding of the mechanisms
causing bias effects, and if possible use this knowledge to improve performance of
real world applications.

As a starting point for our research, we chose to study the micro-kernel first
presented in [17]. It was not clear whether bias effects were even an issue on our
architecture, as previous work studied mostly Core 2 and earlier processors. Being
able to reproduce similar effects from changing environment size motivated contin-
ued exploration. In Chapter 4, we presented an in-depth study of what was causing
bias for that particular program. Through careful measurements using hardware
performance counters, we found that address aliasing between local and static vari-
ables could explain what was happening.

With an understanding of the possible performance penalties incurred from alias-
ing, we explored what other use cases might be affected by this. The fact that malloc
often allocates on page boundary by default proved to be troubling, essentially guar-
anteeing bad performance from aliasing in many cases. The convolution example
exploited this synergy between heap allocation and 4K aliasing, showing that some
knowledge of the hardware could provide massive speedups.

The Loop Stream Detector had been previously mentioned as a possible cause of
bias. Studying the LSD proved to be challenging, because most of the documentation
was either incomplete or misleading. Using several hand coded assembly programs,
we were able to identify the correct parameters for the Ivy Bridge LSD. Interestingly,
the capacity was improved compared to previous generations, not reflected in the
documentation. With a clear understanding of the chunk fetch limit, we were able

71

72 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

to identify cases where link ordering caused serious bias effects. The underlying
reason proved to be code layout with respect to 32 byte chunks, where a maximum
of 12 chunks would fit in the LSD cache.

In our case studies, we chose to concentrate on highly optimized numerical li-
braries. The reasoning behind this was that these kind of applications are more
likely to incorporate extremely processor specific optimizations in order to achieve
the maximum possible performance. We chose to focus on address aliasing effects as
opposed to the Loop Stream Detector when looking for instances of bias. Compared
to altering code layout by changing link order, it was more convenient to experiment
with changes to the environment size or heap alignment for large applications. We
were able to identify bias towards certain stack positions for small kernels in FFTW,
caused by 4K aliasing. Attempts were made to align stack dynamically in the ker-
nels, but the added dynamic instructions quickly incurred too large of an overhead
to be worth it.

Lastly, we wanted to investigate whether BLAS libraries also suffered from bias.
We suspected that certain operations might be sensitive to aliasing between heap
buffers, similar to the effects pointed out in Chapter 4. The impact of address
aliasing in matrix-vector multiplication proved to be huge, even for an automatically
tuned ATLAS installation. By manually adjusting alignment of matrix and vector
buffers, speedups of more than 31 % could be achieved for invocations of dgemv.

6.1 Contributions
Previous work identified environment variables and link order as potential triggers
of bias effects in performance analysis [17]. The main purpose of this work was to
gain an understanding of the underlying effects causing measurement bias. We have
identified and documented two such architecture-specific properties of the Intel Core
“Ivy Bridge”:

• 4K address aliasing: Alias on the last 12 bits can cause false conflicts in the
memory ordering system, biasing performance towards certain data layouts.

• Loop Stream Detector: Limitations in micro-op caches favors code with certain
static memory layouts.

It is important to point out that limitations of the LSD and the existence of 4K
aliasing is not new or unknown. Although scarcely documented, both of these issues
are discussed to some extent in the processor vendor manuals. However, modern
CPU architectures are tremendously complicated, and very few people would even
care to read the manuals for arcane details of these topics.

Our work extends to the documented processor behavior, and links these prop-
erties to the concept of measurement bias. We show how code and data layout in
memory can affect program performance, finally providing satisfactory explanations

6.2. DIRECTIONS FOR FUTURE WORK 73

of measurement bias that can be observed from changing link order or environment
variables. We also present other bias triggers not mentioned in previous work. Func-
tionality of heap allocators is important for address aliasing, and bias effects can
occur from using different versions or implementations. In addition to link order-
ing, other properties that changes code layout can affect usage of the Loop Stream
Detector. Things like the order of functions within a source file, or the length of
external symbols, can be significant.

Unlike stated in previous work, we found that bias is in fact not entirely un-
predictable. Furthermore, a clear understanding of what causes bias is necessary in
order achieve optimal performance in real applications. Our results are relevant to
anyone who care about optimizing program performance on modern Intel architec-
tures.

6.2 Directions for Future Work
Studying sources of bias effects proved to be complicated and challenging. One of
the main problems was lack of accurate documentation, making the processor a kind
of “black box”. We believe that we have only scratched the surface when it comes
to interesting and lesser known architectural features. The optimization manual
[10] is a good starting point for further research, describing how various hardware
features interact and operate. Some of the features we think might be worthwhile
to investigate include;

• Decoded ICache limitations: We observed corner cases of the Loop Stream
Detector that were probably related to micro-ops not being cached. Figuring
out the exact parameters for the micro-op cache could help compilers generate
optimal code layout.

• Hyper-threading: This feature was disabled throughout our testing to avoid
any interference. We imagine there are many interesting performance implica-
tion occurring from threads competing about resources. For example, the LSD
micro-op limitation being shared between logical cores is clearly a potential
source of bias towards systems without hyper-threading enabled.

Further work is needed to lift more of the knowledge buried among technical details
in official manuals. With increased awareness of these effects, there is clearly a
potential for improving performance of existing programs.

6.2.1 Compiler Optimizations
The most natural place to encode architectural-specific knowledge used for opti-
mization is of course in compilers. In an ideal world, programmers would not need
to care about intricate corner cases in hardware to achieve the best performance.

74 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Optimizing code layout for maximal usage of the Loop Stream Detector could be a
worthwhile endeavor. We did not investigate to what degree this is handled by mod-
ern compilers other than GCC, but would not be surprised if there is considerable
room for improvement.

Generating alias-free code could potentially also be done by the compiler. We
show how aliasing can be avoided by adding alternative code paths in Chapter 4,
which at least in principle shows that compilers could handle this in some cases.
Code that relies on heap-allocated buffers seems like a particularly difficult thing to
optimize for. A starting point could be to detect functions that might suffer from
aliasing via some static analysis, perhaps issuing a warning.

Using profiling information could be another way of identifying potential bias
related issues. GCC has support for two-stage compilation, using profiling infor-
mation from an instrumented version of the program to aid in optimization of the
final compilation. Encoding knowledge of for example 4K aliasing in a profiling step
seems feasible.

6.2.2 Alias-free Allocators
We show that typical memory allocators are prone to cause aliasing in all cases,
because heap memory is often page aligned. As far as we know, there are no malloc
implementations that specifically handles aliasing issues. Developing good heuris-
tics on the optimal heap addresses to return from malloc would be an interesting
topic for further research. An obvious improvement would be to perturb addresses
of allocations done with mmap, avoiding identical 12 bit address suffixes of large
allocations.

6.2.3 Library Optimizations
In our case studies, we found that bias effects from address aliasing affected both
FFTW and ATLAS. For highly optimized numerical libraries in particular, there
should be incentive to account for address aliasing to improve performance.

In cases where aliasing depend on heap allocated memory, a possible solution
could be to provide special-purpose wrappers around malloc. FFTW already has
fftw_malloc, which would be a perfect place to encode knowledge about aliasing.
We did not find any effects from conflicts between heap areas in the particular
kernel we studied, but other kernels or code within FFTW might be sensitive to
this. Providing a similar function for BLAS implementations is also an option.

There is probably also opportunities for writing code that is less sensitive to data
alignment. In the case of matrix-vector multiplication, it might be possible to access
data in a different order depending on heap addresses. By explicitly checking the
addresses of input parameters, different code paths can be chosen to avoid aliasing.
With potential for more than 31 % performance improvement in the worst case, the
added cost and complexity is probably acceptable.

6.3. FINAL WORDS 75

The extent and impact of bias in other libraries is also an open question. Of
the two we studied, we were able to identify address aliasing fairly easily. We
suspect that this is a common phenomenon, and worth investigating for developers
of performance critical applications.

6.2.4 Other Architectures
We limited our study to one specific architecture, the at the time of writing most
recent “Ivy Bridge” from Intel. An interesting question is how effects from Loop
Stream Detector limitations and 4K aliasing translate to other CPU architectures.
Effects from 4K aliasing are documented in architectures as far back as the first Core
processors [10]. Limitations of the LSD have changed throughout the last several
generations, suggesting that the particular examples we present might not behave
similarly on other Intel processors. Processor architectures change at a rapid pace,
and by the time this thesis is published the “Ivy Bridge” will have been replaced by
“Haswell”. More research is needed on sources of bias effects, both in previous and
future architectures.

6.3 Final Words
Our work shows that 4K aliasing and the Loop Stream Detector, both intricate and
highly architecture-specific properties of the processor, can have significant perfor-
mance impact in real software. Raising awareness of the importance of memory
layout of code and data is relevant to both users and developers of performance crit-
ical software. A continual effort to expand and update this knowledge for current
and future architectures is needed.

Bibliography

[1] Reference for processor events. Available from http://software.intel.com/
sites/products/documentation/doclib/stdxe/2013/amplifierxe/win/
ug_docs/reference.

[2] System V Application Binary Interface, Edition 4.1. Available from http:
//www.sco.com/developers/devspecs/gabi41.pdf, March 1997.

[3] Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R.
Hoard: A scalable memory allocator for multithreaded applications. SIGPLAN
Not. 35, 11 (November 2000), 117–128.

[4] Blackford, L. S., Demmel, J., Dongarra, J., Duff, I., Hammarling,
S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet,
A., Pozo, R., Remington, K., and Whaley, R. C. An updated set of
basic linear algebra subprograms (blas). ACM Trans. Math. Softw. 28, 2 (2002),
135–151.

[5] Doweck, J. Inside Intel® Core™ microarchitecture. Presentation, available
from http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/
3_Tues/HC18.S9/HC18.S9T4.pdf.

[6] Doweck, J. White paper: Inside Intel® Core™ microarchitecture and smart
memory access, 2006.

[7] Frigo, M., and Johnson, S. G. The design and implementation of FFTW3.
In Proceedings of the IEEE (2005), vol. 93, pp. 216–231.

[8] Hundt, R., Raman, E., Thuresson, M., and Vachharajani, N. Mao –
an extensible micro-architectural optimizer. In Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and Optimization
(Washington, DC, USA, 2011), CGO ’11, IEEE Computer Society, pp. 1–10.

[9] Hunter, J. D. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering 9, 3 (2007), 90–95.

[10] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual, April 2012.

77

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/amplifierxe/win/ug_docs/reference
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/amplifierxe/win/ug_docs/reference
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/amplifierxe/win/ug_docs/reference
http://www.sco.com/developers/devspecs/gabi41.pdf
http://www.sco.com/developers/devspecs/gabi41.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/3_Tues/HC18.S9/HC18.S9T4.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc18/3_Tues/HC18.S9/HC18.S9T4.pdf

78 BIBLIOGRAPHY

[11] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture, March 2013.

[12] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B: System Programming Guide, Part 2, January 2013.

[13] Kernighan, B. W., and Ritchie, D. M. The C Programming Language,
2nd ed. Prentice Hall Professional Technical Reference, 1988.

[14] Knights, D., Mytkowicz, T., Sweeney, P. F., Mozer, M. C., and
Diwan, A. Blind optimization for exploiting hardware features. In Proceedings
of the 18th International Conference on Compiler Construction: Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009 (Berlin, Heidelberg, 2009), CC ’09, Springer-Verlag, pp. 251–265.

[15] Lomont, C. Introduction to x64 assembly. Available from http://software.
intel.com/en-us/articles/introduction-to-x64-assembly, 2012.

[16] Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney, P. We have
it easy, but do we have it right? In NSF Next Generation Systems Workshop
(2008), pp. 1–5.

[17] Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney, P. F. Pro-
ducing wrong data without doing anything obviously wrong! In Proceedings
of the 14th international conference on Architectural support for programming
languages and operating systems (New York, NY, USA, 2009), ASPLOS XIV,
ACM, pp. 265–276.

[18] Mytkowicz, T., Sweeney, P. F., Hauswirth, M., and Diwan, A. Ob-
server effect and measurement bias in performance analysis, 2008.

[19] Patterson, D. A., and Hennessy, J. L. Computer Organization and De-
sign – The Hardware / Software Interface (Revised 4th Edition). The Morgan
Kaufmann Series in Computer Architecture and Design. Academic Press, 2012.

[20] Peri, R. Performance Monitoring on Intel® Core™ i7 Proces-
sors. Available from http://cscads.rice.edu/workshops/summer09/
slides/performance-tools/CSCADS_NHM_PMU.pdf, 2009.

[21] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and
Boneh, D. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM conference on Computer and communications security (New
York, NY, USA, 2004), CCS ’04, ACM, pp. 298–307.

http://software.intel.com/en-us/articles/introduction-to-x64-assembly
http://software.intel.com/en-us/articles/introduction-to-x64-assembly
http://cscads.rice.edu/workshops/summer09/slides/performance-tools/CSCADS_NHM_PMU.pdf
http://cscads.rice.edu/workshops/summer09/slides/performance-tools/CSCADS_NHM_PMU.pdf

BIBLIOGRAPHY 79

[22] Smith, M. D. Overcoming the challenges to feedback-directed optimization.
In Proceedings of the ACM SIGPLAN workshop on Dynamic and adaptive com-
pilation and optimization (New York, NY, USA, 2000), DYNAMO ’00, ACM,
pp. 1–11.

[23] Tanenbaum, A. S. Modern Operating Systems (3. ed.). Pearson Education,
2008.

[24] Vuduc, R., and Demmel, J. W. Code Generators for Automatic Tuning
of Numerical Kernels: Experiences with FFTW. In Semantics, Application,
and Implementation of Program Generation (2000), vol. 1924, Springer Berlin
Heidelberg, pp. 190–211.

[25] Walpole, R. E., Myers, R. H., and Myers, S. L. Probability & Statistics
for Engineers & Scientists (9th Edition). Prentice Hall, 2011.

[26] Wechsler, O. Inside Intel® Core™ microarchitecture: Setting new standards
for energy-efficient performance. Technology@Intel Magazine (2006).

[27] Whaley, C., Petitet, A., and Dongarra, J. J. Automated Empiri-
cal Optimization of Software and the ATLAS Project. In Parallel Computing
(2000), vol. 27.

[28] Whaley, R. C., and Dongarra, J. J. Automatically tuned linear alge-
bra software. In Proceedings of the 1998 ACM/IEEE conference on Supercom-
puting (CDROM) (Washington, DC, USA, 1998), Supercomputing ’98, IEEE
Computer Society, pp. 1–27.

Appendix A

List of Performance Counters

There are two categories of performance events; architectural events are defined
across families of microarchitectures, where the same event codes are supported on
a range of processors. Non-architectural events are specific to each architecture.
The following includes a reference of important counters discussed in this thesis.

Architectural Events
The following architectural events are supported on processors based on the In-
tel Core microarchitecture. Adapted from Table 19-1 in the Software Developer’s
Manual [12].

Event
num.

Umask
value

Event Mask Mnemonic Perf
mnemonic

Description

0x3C 0x00 UnHalted Core Cycles cycles

0x3C 0x01 UnHalted Reference Cycles bus-cycles

0xC0 0x00 Instruction Retired instructions

0x2E 0x4F LLC Reference cache-
references

Last level cache
references

0x2E 0x41 LLC Misses cache-misses Last level cache
misses

0xC4 0x00 Branch Instruction Retired branches Branch instruction at
retirement

0xC5 0x00 Branch Misses Retired branch-
misses

Mispredicted Branch
Instruction at
retirement

81

82 APPENDIX A. LIST OF PERFORMANCE COUNTERS

Non-Architectural Events
This following table contains a subset of the non-architectural performance counters
available on 3rd generation Intel Core “Ivy Bridge” processors. The official reference
can be found in Table 19-5 in the Software Developer’s Manual [12]. Note that
lsd_overflow and lsd.uops are included in this list, despite not being officially
supported.

Event
num

Umask
value

Event Mask Mnemonic Description

0x03 0x02 LD_BLOCKS.
STORE_FORWARD

Loads blocked by overlapping with
store buffer that cannot be
forwarded

0x07 0x01 LD_BLOCKS_PARTIAL.
ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address

0x20 0x01 LSD_OVERFLOW Counts number of loops that can’t
stream from the instruction queue

0x2E 0x4F LONGEST_LAT_CACHE.
REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

0x2E 0x41 LONGEST_LAT_CACHE.MISS This event counts each cache miss
condition for references to the last
level cache.

0x3C 0x00 CPU_CLK_UNHALTED.
THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency
may change from time to time due
to power or thermal throttling.

0x3C 0x01 CPU_CLK_THREAD_UN-
HALTED.REF_XCLK

Increments at the frequency of
XCLK (100 MHz) when not halted.

0x4C 0x02 LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches
that hit fill buffer allocated for
H/W prefetch.

0x5C 0x01 CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

0x5C 0x02 CPL_CYCLES.RING123 Unhalted core cycles when the
thread is not in ring 0

83

0xA1 0x01 UOPS_DISPATCHED_PORT.
PORT_0

Cycles which a uop is dispatched
on port 0

0xA1 0x02 UOPS_DISPATCHED_PORT.
PORT_1

Cycles which a uop is dispatched
on port 1

0xA1 0x0C UOPS_DISPATCHED_PORT.
PORT_ 2

Cycles which a uop is dispatched
on port 2

0xA1 0x30 UOPS_DISPATCHED_PORT.
PORT_ 3

Cycles which a uop is dispatched
on port 3

0xA1 0x40 UOPS_DISPATCHED_PORT.
PORT_ 4

Cycles which a uop is dispatched
on port 4

0xA1 0x80 UOPS_DISPATCHED_PORT.
PORT_ 5

Cycles which a uop is dispatched
on port 5

0xA2 0x01 RESOURCE_STALLS.ANY Cycles Allocation is stalled due to
Resource Related reason

0xA2 0x04 RESOURCE_STALLS.RS Cycles stalled due to no eligible RS
entry available

0xA3 0x01 CYCLE_ACTIVITY.
CYCLES_L2_PENDING

Cycles with pending L2 miss loads

0xA3 0x02 CYCLE_ACTIVITY.
CYCLES_LDM_PENDING

Cycles with pending memory loads

0xA3 0x08 CYCLE_ACTIVITY.
CYCLES_L1D_PENDING

Cycles with pending L1 cache miss
loads

0xA3 0x04 CYCLE_ACTIVITY.
CYCLES_NO_EXECUTE

Cycles of dispatch stalls

0xA8 0x01 LSD.UOPS Counts the number of micro-ops
delivered by loop stream detector

0xC0 0x00 INST_RETIRED.ANY_P Number of instructions at
retirement.

0xC4 0x00 BR_INST_RETIRED.
ALL_BRANCHES

Branch instructions at retirement.

0xC5 0x00 BR_MISP_RETIRED.
ALL_BRANCHES

Mispredicted branch instructions at
retirement.

0xD0 0x01 MEM_UOPS_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask
0x10, 0x20, 0x40, 0x80.

84 APPENDIX A. LIST OF PERFORMANCE COUNTERS

0xD0 0x02 MEM_UOPS_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
0x10, 0x20, 0x40, 0x80.

0xD0 0x80 MEM_UOPS_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 0x01,
0x02, to produce counts.

0xD1 0x01 MEM_UOPS_RETIRED.
L1_HIT

Retired load uops with L1 cache
hits as data sources.

0xD1 0x02 MEM_UOPS_RETIRED.
L2_HIT

Retired load uops with L2 cache
hits as data sources.

0xD1 0x04 MEM_UOPS_RETIRED.
LLC_HIT

Retired load uops whose data
source was LLC hit with no snoop
required.

0xD1 0x20 MEM_UOPS_RETIRED.
LLC_MISS

Retired load uops whose data
source is LLC miss

0xD1 0x40 MEM_UOPS_RETIRED.
HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss
to the same cache line with data
not ready.

Appendix B

Benchmark Script

A Python script is used as a wrapper around perf stat to collect performance
counters under varying execution contexts. A dummy variable “FOO” is used to
incrementally add bytes to the environment. The command line interface is similar
to perf, with the same syntax for specifying which events to monitor. The following
command gathers cycles:u and r0107:u (address alias) over 256 runs of “loop”, while
incrementing the environment by 16 bytes each time.
$./ lperf ./ loop -e cycles:u,r0107:u -n 256 --environment

- increment 16

The script relies on a file containing event codes and mnemonics, by default
called “counters”. Output is exported as comma separated values to “stat.csv”.

#!/ usr/bin/env python
import subprocess , argparse , sys , copy
from scipy import stats

Use at most 4 counters simultaneously
n_counters = 4

def disable_layout_randomization ():
subprocess .call(’sudo bash -c "echo 0 > /proc/sys/ kernel /

randomize_va_space "’, shell=True)

def benchmark (events , args):
for e in events :

e[’count ’] = [0]* args.num
e[’variance ’] = [0]* args.num

environment = {’FOO ’:’0’*args. environment_offset }
argument = args. argument_offset ;

for run in range(args.num):
tempfile = ’stat.tmp.’ + str(run) + ’.dat ’
subprocess .call(’cp /dev/null ’+tempfile , shell=True)

85

86 APPENDIX B. BENCHMARK SCRIPT

for batch in [events [i:i+ n_counters] for i in range (0, len(
events), n_counters)]:
e = ’,’.join(map(lambda x: x[’code ’], batch))
c = ’ ’.join ([’perf stat -r’, str(args. repeat), ’-x","’

, ’-e’, e, args.program , str(argument), ’0>>’,
tempfile])

p = subprocess .Popen(c, env= environment , shell=True)
p.wait ()

with open(tempfile , ’r’) as f:
for i in range(len(events)):

line = f. readline ().strip ().split(’,’)
if (line [0] == "<not counted >"):

continue
events [i][’count ’][run] = float(line [0])
if args. repeat > 1:

events [i][’variance ’] = float(line [2][: -1])
subprocess .call(’rm ’+tempfile , shell=True)

environment [’FOO ’] += ’0’*args. environment_increment
argument += args. argument_increment ;

return events

def correlation (events , reference_event):
reference = events [0]
for i in range(len(events)):

if events [i][’code ’] == reference_event or events [i][’
perfmn ’] == reference_event :
reference = events [i]
break

for e in events :
e[’pearson ’], _ = stats. pearsonr (reference [’count ’], e[’

count ’])

def export_csv (events , filename):
with open(filename , ’w’) as f:

for line in events :
row = [line[’mnemonic ’], line[’code ’]] + [line[’pearson

’]] + map(str , line[’count ’])
f.write(’,’.join(map(str , row)))
f.write(’\n’)

Read file containing performance event information
def read_file_events (filename):

events = []
with open(filename) as f:

for line in f:
code , perfmn , name = map(lambda s : s.strip (), line.

split(’\t’))

87

code = ’’.join ([’r’, code.lower (), ’:u’]) if perfmn ==
’’ else perfmn +’:u’

events . append ({’code ’: code , ’perfmn ’: perfmn , ’
mnemonic ’: name })

return events

Match events specified with "-e" flag with metadata from file
def filter_events (file_events , include):

if include == []:
return file_events

events = []
for e in include :

found = False
for s in file_events :

if s[’code ’] == e or s[’mnemonic ’] == e:
found = True
events . append (copy.copy(s))

if not found:
print " Adding unknown event", e
events . append ({’code ’: e, ’perfmn ’: ’’, ’mnemonic ’: ’’

})
return events

if __name__ == ’__main__ ’:
parser = argparse . ArgumentParser (description =’perf runner ’)
parser . add_argument (’program ’, help=’program , ex ./a.out ’)
parser . add_argument (’-e’, ’--events ’)
parser . add_argument (’-f’, ’--event -file ’, default =’counters ’)
parser . add_argument (’-o’, ’--output ’, default =’stat.csv ’)
parser . add_argument (’-n’, ’--num ’, type=int , default =2)
parser . add_argument (’-r’, ’--repeat ’, type=int , default =1)
parser . add_argument (’-c’, ’--correlate ’, default =’cycles :u’)
parser . add_argument (’--environment - offset ’, type=int , default

=0)
parser . add_argument (’--environment - increment ’, type=int ,

default =1)
parser . add_argument (’--argument - offset ’, type=int , default =0)
parser . add_argument (’--argument - increment ’, type=int , default

=0)
args = parser . parse_args ()

Make memory layout deterministic
disable_layout_randomization ()

List of event properties [[code , perfmnemonic , description]]
events = filter_events (read_file_events (args. event_file), [] if

args. events == None else args. events .strip ().lower ().split(
’,’))

events = benchmark (events , args)

Export result

88 APPENDIX B. BENCHMARK SCRIPT

correlation (events , args. correlate)
export_csv (events , args. output)

	Introduction
	Motivation
	Outline

	Background and Related Work
	Observer Effect and Measurement Bias
	Causes of Measurement Bias
	Dealing with Bias

	Exploiting Bias for Optimization
	Blind Optimization
	Assembly-Level Optimizations

	Hardware and Performance Monitoring
	``Ivy Bridge'' Microarchitecture
	Performance Counters
	Using perf

	The Execution Context
	Virtual Memory Layout
	Memory Context of C Programs

	Methodology and Experimental Setup
	Setup and Configuration
	Performance Analysis
	Approach

	Sources of Measurement Bias
	Address Alias Effects (4K Aliasing)
	Bias from Environment Size
	Heap Address Aliasing
	Bias from Dynamic Libraries
	Summary

	The Loop Stream Detector
	Properties of the Loop Stream Detector
	Hitting the Chunk Fetch Limit
	Bias from Link Order
	Other Triggers of Bias Effects
	Summary

	Case Studies
	FFTW
	Analysis of Aliasing Effects
	Eliminating Bias at the Kernel Level
	Eliminating Bias at the User Level
	Bias in Other Kernels
	Discussion

	ATLAS
	Address Aliasing in Matrix-Vector Multiplication
	Dealing With Aliasing
	Discussion

	Conclusions and Future Work
	Contributions
	Directions for Future Work
	Compiler Optimizations
	Alias-free Allocators
	Library Optimizations
	Other Architectures

	Final Words

	Bibliography
	List of Performance Counters
	Benchmark Script

