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how these can be utilized in database queries. The task is to study existing techniques
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algorithms, and experimental evaluation.
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Abstract

The focus of this thesis is on investigating efficient database algorithms and meth-
ods for modern multi-core processors in main memory environments. We describe
central features of modern processors in a historic perspective before presenting a
number of general design goals that should be considered when optimizing relational
operators for multi-core architectures. Then, we introduce the skyline operator and
related algorithms, including two recent algorithms optimized for multi-core pro-
cessors. Furthermore, we develop a novel skyline algorithm using an angle-based
partitioning scheme originally developed for parallel and distributed database man-
agement systems. Finally, we perform a number of experiments in order to evaluate
and compare current shared-memory skyline algorithms.

Our experiments reveals some interesting results. Despite of having an expensive
pre-processing step, the angle-based algorithm is able to outperform current best-
performers for multi-core skyline computation. In fact, we are able to outperform
competing algorithms by a factor of 5 or more for anti-correlated datasets with
moderate to large cardinalities. Included algorithms exhibit similar performance
characteristics for independent datasets, while the more basic algorithms excel at
processing correlated datasets. We observe similar performance for two small real-life
datasets. Whereas, the angle-based algorithm is more efficient for a work-intensive
real-life dataset containing more than 2M 5-dimensional tuples.

Based on our results we propose that database research targeted at shared-memory
systems is focused not only on basic algorithms but also more sophisticated tech-
niques proven effective for parallel and distributed database management systems.
Additionally, we emphasize that modern processors have very fast inter-thread com-
munication mechanisms that can be exploited to achieve parallel speedup also for
synchronization-heavy algorithms.





Sammendrag

Fokuset i denne oppgaven er å forske p̊a effektive algoritmer og metoder rettet
mot moderne flerkjernearkitekturer i en databasesammenheng. Vi beskriver sen-
trale aspekter ved moderne prosessorer i et historisk perspektiv, før vi presenterer
en rekke generelle konstruksjonsmål for relasjonsoperatorer i flerkjernesystemer.
Deretter beskriver vi skyline-operatoren med relaterte algoritmer og utvikler en ny
skyline-algoritme som bruker en vinkelbasert partisjoneringsmetode nylig publisert
i sammenheng med parallelle og distribuerte databasesystemer. Avslutningsvis gjør
vi en rekke eksperimenter for å evaluere og sammenligne skyline-algoritmer kjørt p̊a
moderne prosessorer.

Til tross for et tidskrevende preprosesseringstrinn, er den vinkelbaserte algoritmen
i stand til å utkonkurrere de meste effektive skyline-algoritmene optimalisert for
flerkjerneprosessorer. Faktisk er vi i stand til å utkonkurrere den beste algoritmen
med en faktor p̊a fem eller mer for anti-korrelerte datasett med moderate til store
kardinaliteter. Algoritmene oppn̊ar lignende ytelseskarakteristikker for datasett med
uavhengig distribusjon, mens de mer grunnleggende algoritmene utmerker seg ved
behandling av korrelerte datasett. Samtlige algoritmer oppn̊ar noenlunde lik ytelse
for to små ikke-syntetiske datasett, mens den vinkelbaserte algoritmen er mer effektiv
for et arbeidskrevende ikke-syntetisk datasett.

Basert v̊are resultater, foresl̊ar vi at databaseforskning relatert til flerkjernesyste-
mer ikke bare fokuseres p̊a grunnleggende algoritmer, men ogs̊a p̊a mer omfattende
teknikker fra parallelle og distribuerte databasesystemer. I tillegg understreker vi at
moderne prosessorer er veldig effektive p̊a kommunikasjon mellom parallelle tr̊ader,
og dermed bedre egnet til parallell utførelse av synkroniseringstunge algoritmer enn
mer tradisjonelle parallelle og distribuerte systemer.
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Chapter 1

Introduction

Algorithms used in databases management systems (DBMS) have traditionally fo-
cused on external factors like I/O-operations. Disk access is an order of magnitude
slower than memory access and minimizing I/O-access is a necessity working on
datasets exceeding main memory capacity. However, a rapid increase in main mem-
ory capacity are making memory based algorithms more relevant.

There are two main areas for memory based algorithms in database systems: main
memory database management systems (MMDB) and disk resident database man-
agement systems (DRDB) with very large caches. MMDBs keep all data in memory
and thereby completely avoid the I/O bottleneck, consequently traditional algo-
rithms can not be regarded as optimal for these systems without close examination.
Main memory bandwidth and compute capacity are becoming dominant factors in
algorithm performance. In addition, DRDBs with large caches can complete many
operations without intermediate I/O-access. This leads to a need for algorithms that
use memory bandwidth efficiently and are capable of optimal cache patterns without
making compromises to minimize I/O access.

For a long time, processor manufacturers increased compute power by increasing the
operating frequency and placing transistors closer together. Unfortunately, this is
no longer an option, because increasing operating frequency further achieves dimin-
ishing performance gains compared to associated power requirements. The so-called
power wall has been reached, and processor manufacturers have been forced to find
other ways to utilize chip-transistors. Nevertheless, Moore’s law is still valid, the
number of transistors per chip continue to increase. To better utilize these resources
manufacturers have started increasing the number of cores per processor. This is an
efficient method of increasing compute power without exponentially increasing the
processors power consumption.

Another trend is that processors are providing greater capacity for data parallelism
in the form of single instruction multiple data (SIMD) processing. SIMD allows
one operation to be performed for multiple inputs without additional CPU cycles,
e.g. multiply four values at the price of one. For instance both Intel and AMD are
supporting streaming SIMD extensions 4 (SSE4), providing many opportunities for
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data parallelism. Currently, general purpose processors have limited SIMD support,
SSE4 supports signed multiplication of no more than four 32-bit integers in one
operation. However, a speedup of four in an inner loop, with practically no increase
in work are definitely worth pursuing. By combining task- and data parallelism, one
can achieve significant performance gains in suitable algorithms.

In [43], Stonebraker compares the three primary parallel architectures: shared-memory
(SM), shared-disk (SM), and shared-nothing (SN). In SM systems, all processors (or
cores) share a common central memory. Each processor in a SM system has private
memory, while all processors share a collection of one or more external disks. For
SN systems, nothing is shared, this is the case of distributed systems and have been
the primary focus in database management systems (DMBS). Stonebraker argued
that SM systems did not scale to a large number of processors, hence they were
less interesting than the other systems. He also observed that SD systems does not
excel in any area compared to the other two, and concluded that SN systems is
the primary target for DBMS. Not only did SN show the best characteristics for
scaling, it also matched the current marketplace interest, distributed database man-
agement systems. At the time (1985), this was the obvious contender for further
research. However, with recent trends in processor- and memory development, SM
systems are becoming more prominent. Multi-core processors are highly-popular SM
systems, and developers must resort to SM programming to utilize the increasing
parallel compute capacity.

The increased interest in SM programming has led to an number of frameworks
[30] to help programmers gradually parallelize existing algorithms, and to develop
completely new methods. These frameworks address some of the issues mentioned
by Stonebraker in [43], for instance, frameworks provide practical solutions for con-
currency control and management of hot spots. OpenMP is a popular choice for
incrementally adding parallelism to an algorithm, this framework allows the devel-
oper to tag parallel regions as parallel using compiler directives. Critical sections
can be tagged as critical to provide a simple concurrency control.

Memory based databases are also obtaining increased interest. Commercial products
like IBM solidDB and Oracle TimesTen are examples of high-performance relational
MMDBs in use today. By managing data in memory, and optimizing data structures
and access algorithms accordingly, database operations execute with maximum effi-
ciency, achieving dramatic gains in responsiveness and throughput [33].

For the join operator, Blanas et al. [4] evaluate hash based algorithms [6] in a shared-
memory context and find that algorithms are most efficient with no pre-partitioning.
This somewhat surprising, because the partitioning phase improves cache locality
for subsequent phases [42], thereby increasing algorithm performance in a sequential
system. Similar results are reported in [37], where they achieve impressive perfor-
mance using a linear partitioning scheme instead of exploiting well-known geometric
properties for multi-core 1 skyline computation. However, the compute-intensive sky-
line algorithm has not yet been tested with a sophisticated partitioning technique

1We use the terms multi-core and shared-memory interchangeably to describe a multi-core
shared-memory system
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in the multi-core context.

In this thesis we explore the multi-core landscape in a database context by developing
and evaluating a novel algorithm for the skyline operator. Furthermore, we perform
several experiments in order to evaluate and compare the current best-performing
skyline algorithms optimized for multi-core architectures. Based on our results, we
perform the first comprehensive comparison between current multi-core skyline al-
gorithms, revealing some interesting characteristics along the way. We address the
following research questions:

RQ1 How can we efficiently exploit multi-core architectures when implementing
database operators? Are there cases where this is impossible?

RQ2 How can we determine if an algorithm or an operator is viable for multi-core
optimizations?

RQ3 Is it reasonable to regress into more basic algorithms in order to exploit the
increasing parallel compute power in modern processors?

RQ4 Can pre-processing techniques from parallel and distributed systems be ef-
ficient in a shared-memory context where inter-thread communication is an
order of magnitude less expensive?

The thesis is organized as follows. First, modern processor architectures are described
in a historical perspective, and a number of design goals for multi-core algorithms in
a database context are presented. Second, the skyline operator is introduced with as-
sociated sequential and parallel algorithms. Third, we develop an efficient algorithm
for skyline computation based our design goals. Fourth, we compare our algorithm
to state-of-the-art skyline algorithms developed for multi-core architectures using a
variety of experiments, and discuss the implication of the results. Finally, we present
our conclusions, and suggest a direction for further research.
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Chapter 2

Modern processor architectures

In this chapter, we introduce modern processor architectures and suggest a number
of design goals that should be considered when developing database algorithms for
multi-core processors.

2.1 von Neumann architecture

Modern processors are increasingly complex constructions, and come in many forms.
Vendors like Intel, Sun and ARM have focused on different markets and optimized
their architectures for a range of uses (desktop, mobile, server, and so on). However,
most of the architectures use a similar architecture based on the von Neumann
architecture [52] shown in Figure 2.1.

Memory

CU ALU

Input

Output

Figure 2.1: von Neumann architecture

The von Neumann architecture consists of a control unit and an arithmetic logic
unit (ALU). The control unit (CU) fetches the code of all the instructions in the
program and directs the operation of the ALU. Meanwhile, the ALU does the actual
calculation. The input and output units are allows a person to interact with the
machine using registers. Program and data is stored in the memory unit. Due to the
fact that the architecture is sequential in nature, and has a well known data transfer
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bottleneck, it is not used in practice without modifications. It is described here as a
basis for the more complex architectures.

To overcome the von Neumann bottleneck, the shared data and instruction bus has
been replaced by multiple buses (in a simple architecture there are typically three
buses: instruction, data, and control). By using multiple buses, instructions and data
can be fetched from memory simultaneously, resulting in a significant performance
boost.
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st

ru
ct

io
ns

Clock cycles
F D E W
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Figure 2.2: Instruction flow of a sequential processor. The letters F, D, E, W indicates
fetch, decode, execute, writeback respectively

2.2 Cache structures

In order to decrease latency and contention while accessing data, modern proces-
sors use deep cache hierarchies. Both instructions and data are cached close to the
processing unit so that frequently used data can be read without slow memory op-
erations. Figure 2.5 shows a processor with two level caching, L1 is smaller and
faster than L2, which is smaller and faster than main memory. Processors use both
temporal and spatial locality to determine which values should be placed in cache.

Tag 0 Data 0

Tag 1 Data 1

Tag 2 Data 2

Tag 3 Data 3

Cache lines

Higher bits Lower bits

Memory address

=

Hit: Use data from cache line 2

Miss: Fetch data from memory into cache line 2

index

Figure 2.3: Cache lookup. Line is first found using the lower bits as an index into
cache, higher parts of memory address is subsequently compared with tag to deter-
mine if a match is found
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Data is transferred from main memory to cache in blocks (i.e. cache lines) to en-
sures spatial locality, values close to each other are fetched at the same time and
put in the same location (even if they have not been requested yet), see Figure 2.3.
Temporal locality is ensured by keeping recently addressed data in cache. Typically
a cache allows data from a particular memory address to be placed at a handful
of predetermined cache lines, allowing very fast lookups. A potential problem with
this technique is cache conflicts: If a program repeatedly access two memory loca-
tions which happen to map to the same cache line, the cache must keep storing and
loading from main memory and the cache hierarchy actually decrease overall per-
formance. To avoid this problem, most processors use set-associative caches, where
each memory location can map to a number of different cache lines. However, cache
conflicts are still possible, therefore one needs to consider locality and association
when developing performance critical code.

2.3 Instruction-level parallelism

An issue with the von Neumann model that it is using an inherently sequential exe-
cution model. Instructions are executed one after another as depicted in Figure 2.2.
By closer examination, one will notice that each instruction has at least four steps,
fetch, decode, execute, and writeback. Modern processors use pipelined execution
to perform each step in parallel as depicted in Figure 2.4. This method is referred
to as instruction-level parallelism (ILP) and has been widely used since the 1970s.
Deeper pipelines can be constructed by further subdividing instructions and use so-
called superpipelining. However, subdividing instructions has a cost, therefore it is
uncommon to have very deep pipelines. Because the execute step actually consists
of a number of different operations such as floating-point and integer calculation,
performance can also be increased using superscalar pipelining. That is, executing
multiple instructions in parallel, each in its own functional unit. Today, virtually
every processor is superpipelined-superscalared.
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Figure 2.4: Instruction flow of a pipelined processor. The letters F, D, E, W indicates
fetch, decode, execute, writeback respectively

ILP is a great advance from the vanilla von Neumann model, but it is has some
issues. The main limiting factors for ILP is instruction dependencies and branches.
Instructions that depend on each other can not be executed in parallel, and will not
experience any performance gain from pipelining. For branching instructions, the
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processor has no way of knowing which operation will be next and can not load the
relevant instruction into the pipeline before the branch has been resolved. To over-
come the branching issue, processors typically use some form of branch prediction
algorithm to load the most likely instruction. This instruction is executed in the
pipeline, and if the prediction was correct the processor can continue as normally. If
the prediction was wrong, however, the processor have just wasted a bunch of cycles
and has to go back to the branch and perform the correct instruction. An approach
to avoid the branching problem is to use predicated instructions like conditional
move. Predicated instructions are executed as normal, but will only commit itself if
condition is true. In any case, ILP will have unused cycles when one instruction is
waiting for a branch or dependency. This is somewhat alleviated using out-of-order
execution (OOE; instructions are reordered to allow for improved ILP processing),
but OOE is an expensive solution and only provides a limited speedup.

2.4 Task parallelism

Simultaneous multithreading (SMT; or Hyper-Threading) have been introduced to
further increase available resources. If additional instructions are not available from
the current thread, instructions from other (independent) threads can be placed in
the pipeline and execute in parallel. To achieve this, processors typically present one
physical processor core as two or more logical processors to the operating system.
SMT is relatively cheap to implement and, in some cases, introduce an significant
performance gain. A weakness of this technique is that multiple threads executed
on the same core may cause contention for some resources (like the bus and cache
structures), this can limit performance gain, or in the worst case reduce overall
performance.

Multi-core processors are similar to SMT in that multiple threads can run in parallel.
However, in multi-core processors, the entire core is duplicated, including registers
and cache, see Figure 2.5. This solves the contention problem in many cases, but
shared components are not eliminated entirely and some contention can still occur
(e.g. shared-memory bus and lower level cache). To allow cores to communicate,
lower level cache is normally shared, while keeping higher level cache private. There
are many variations of this scheme, some processors may have completely indepen-
dent cores, not sharing any cache. Processors can also combine SMT and multi-core
in creative ways, like the AMDs Bulldozer design where the processor includes mul-
tiple independent cores for integer operations, and shared units for floating-point
operations.
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L2 cache
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Memory

L1 cache
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Core 2
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PU

Core 3

Figure 2.5: Multi-core processor with shared L2 cache and uniform memory access.
PU is short for processing unit, including fetch, decode, execute and writeback com-
ponents

2.5 Data parallelism

Techniques to exploit parallel potential mentioned thus far have focused mainly on
task parallelism, that is to execute different tasks in parallel. Another approach is
to look for ways to perform the same operation on multiple values in parallel to
induce data parallelism. This idea was extensively used in the old supercomputers,
with special purpose processors. It is commonly called vector processing, or single
instruction, multiple data (SIMD) and have been increasingly integrated into modern
processors. SIMD operations are available for a subset of the operations supported
by a processor and, in most cases, has to be explicitly programmed. The end result
is that multiple values processed using SIMD can be performed the same number of
CPU cycles as a single value without SIMD, see Figure 2.6.
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Figure 2.6: SIMD operator to process four values in one cycle

SIMD operations are implemented based on observations like the fact that four 8
bit additions can be performed using a modified 32 bit add. Both AMD and Intel
provides SIMD support in their processors which they call 3DNow! and streaming
SIMD extension (SSE) [22] respectively.

2.6 Shared memory systems

Multi-core processors are typically configured as a shared-memory system: a col-
lection of independent cores connected to a memory system via an interconnect
network. There are two principal types of shared-memory systems: uniform memory
access (UMA), and non-uniform memory access (NUMA) [34].

Processor 0

Core 0 Core 1

Processor 1

Core 0 Core 1

Memory

Interconnect

Figure 2.7: UMA architecture with two processors

In UMA systems all processors are connected directly to main memory, see Figure
2.7. Each core can access data from all of the other cores directly. Access to all
memory locations are the same for each core. UMA systems main advantage in
relation to NUMA systems is their simplicity.
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Memory Memory

Interconnect Interconnect

Figure 2.8: NUMA architecture with two processors

In NUMA systems each processor is directly connected to a block of main memory,
and the processors can reach each others data through special hardware built into the
processors, see Figure 2.8. A memory location that a processor is directly connected
to can be accessed faster than a memory location that must be accessed through
another chip [34]. Advantages of the increased complexity is that the system can
address a larger memory space, and directly memory access typically is faster than
in UMA systems. It is common to use UMA for the cores in one processor, and
NUMA between processors using a fast bus.

It is also common for multi-core processors to include a limited capacity for data
parallelism. Typically, there are a set of float-point and integer operations that can
be executed simultaneously using specialized data structures as explained in Section
2.5

2.6.1 False sharing

False sharing is a performance-degrading usage pattern that can occur in systems
with coherent caches. If a thread periodically access data that will never be altered
by any other thread, but that data shares a cache block with data that is altered
by other threads, the caching protocol may force the first thread to reload the
whole cache line [40]. In other words, the first thread will bear the caching overhead
required by true shared access of a resource, despite of being the only thread that
actually modifies the cached data.

There are several techniques for avoiding false sharing. A simple approach is to pad
data structures so that each instance is exactly one cache line. When two threads
work on different padded data structures, data are placed in different cache lines,
thus avoiding false sharing. Another technique is to keep a thread private copy of
the data being worked on. In most divide-and-conquer based algorithms, the latter
occurs automatically by data partitioning.
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2.7 Algorithm design

Shared-nothing is by far the dominating architecture in parallel and distributed
database management systems today [38, 57, 51, 46]. However, recent advances in
processor technology are leading to a new generation of algorithms based on shared-
everything in-memory processing [1, 54, 25].

Multi-core processors are most efficient for CPU-intensive tasks that require little
synchronization. However, multi-core processors are also efficient for inter-thread
communication [31]. Specifically, Meneghin et al. shows that fine grained paral-
lelism, with unit of work in the order of a few microseconds, can be implemented
efficiently on modern architectures. This indicates that algorithms should be able to
utilize shared data structures for CPU-intensive tasks. In order to develop efficient
algorithms optimized for modern processor architectures, we propose the following
design goals:

Paralleism To utilize the potential of multiple cores, it is essential that algorithms
are designed with a high degree of parallelism. Independent tasks should be
identified and executed in parallel wherever possible. In the terms of Amdahl’s
law [2, 21], we would like to maximize the parallel part of the algorithm so
that we are be able to utilize an great number of parallel cores.

Scalability Algorithms should scale up to a large number of threads [26]. It should
not be necessary to modify algorithms to support an increased number of cores.

Communication Communication between different threads of execution will gen-
erally reduce the parallel portion of an algorithm due to synchronization costs
and should be limited. However, in some cases shared data structures can be
used to reduce memory requirements or to avoid expensive merging phases.
Shared data structures should not be discarded without carefully considering
the performance impact of an alternative solution.

Memory Memory bandwidth, volume, and locality should always be considered
when designing an algorithm [19]. Generally, one should limit bandwidth and
volume as much as possible, avoid random reading/writing, and place related
data close together to achieve good data locality. Additionally, threads should
be designed to avoid cache-conflicts. Specifically, threads should avoid writing
to memory areas close to memory areas written by other threads. It is often an
advantage to keep a private copy of the data being worked on in each thread
in order to avoid false sharing.

Fairness Workloads should be evenly distributed among available threads. In a
worst-case scenario, one thread is assigned all of the work, making it impossible
to exploit any parallel compute power.

Note that we did not include IO-operations in the proposed design goals. This is
because we target in-memory computations, where all data is placed exclusively in
main memory, making IO-operations irrelevant. This is consistent with trends in
shared-memory database research, and is useful for evaluating algorithms targeted
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at systems with an increasingly large main memory capacity.
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Chapter 3

The skyline operator

Consider a database containing price and locality information about hotels. If a user
wants to find the cheapest hotel that is closest to the city centre, the DBMS cannot
always return one simple answer. The price typically increase as distance decrease,
leaving the user with multiple possibilities that are equally ”good” as illustrated
in Figure 3.1. No matter how the user weigh his personal references towards price
or distance, the best hotel will be placed in the skyline (the dashed line in Figure
3.1). Specifically, the best hotel will be as good or better than all other hotels in all
dimensions.

Skyline

Hotel

Price

D
ist

an
ce

Figure 3.1: Skyline of Hotels, searching for minimal price and distance. Each point
indicates a hotel while the dashed line traverse all hotels contained in the skyline

The skyline operator selects all interesting tuples in an input relation, i.e. tuples
which are not dominated by any other tuple [5]. A tuple dominates another tuple if
it is as good in all dimensions, and better in at least one. The skyline of a relation
D is formally described in Definition 3, while the relationship between tuples are
described in Definitions 1 and 2. The skyline operator is also known as the maximal
vector problem [5, 18, 17], however, this name is rarely used in a database context.

Definition 1. A tuple p dominates another tuple q if p is as good or better than
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p in all dimensions and better than q in at least one dimension. We write p   q
to mean that tuple p dominates tuple q, and p ¢ q to mean that tuple p does not
dominate tuple q

Definition 2. A tuple p is incomparable to another tuple q if q ¢ q and q ¢ p. We
use p  ¡ q to mean that p is incomparable to q

Definition 3. For a relation D, a tuple p P D that is not dominated by any other
tuples q P D is considered as a skyline tuple. The skyline of D consists of all skyline
tuples in D

In subsequent sections, we describe a number of algorithms for skyline computation.
All of these algorithms exploit the fact that, when comparing two tuples p and q,
there are three possible outcomes:

1. p   q

2. p ¡ q

3. p  ¡ q

In case 1, we know that q is not part of the skyline because it is dominated by p,
therefore q can be discarded. Whereas, in case 2 we know that p is not part of the
skyline and p can be discarded. In case 3, p and q are incomparable, therefore we
need to keep p and q as potential skyline tuples until we can be sure they are a part
of the skyline, or that they are dominated by some other tuple and can be discarded.

3.1 Sequential algorithms

This section describes common sequential algorithms for skyline computation. We
focus mainly on algorithms related to parallel methods evaluated in this thesis.
However, we also include important state-of-the-art sequential algorithms to provide
an overview of the subject.

3.1.1 Block-nested-loops

The block-nested-loops algorithm repeatedly reads the set of input tuples, keeping
a window of incomparable tuples in main memory. When a tuple p is read from
the input, p is compared to all tuples of the window. Based on this comparison,
p is either discarded, placed in the window or into a temporary file that will be
considered in the next iteration [5]. The following cases can occur:

1. Some window tuple dominates p. In this case, p cannot be part of the skyline
and is discarded

2. One or more window tuples q1, . . . , qn are dominated by p. In this case, q1, . . . , qn
cannot be part of the skyline and are discarded. Furthermore, p is inserted into
the window
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3. All tuples in the window are incomparable with p. If there is room in the
window, p inserted into the window. Otherwise, p, is written to a temporary
file to be further processed in the next iteration

At the end of each iteration, tuples that have been compared to all tuples written
to the temporary file are guaranteed to be part of the skyline and can be output.
Other tuples of the window can be output if they are not eliminated during the
next iteration. Specifically, when we read a tuple from the temporary file, all tuples
inserted to the window before this tuple was written to the temporary file is part of
the skyline. In order to keep track of the order, each tuple is marked by a timestamp
at the time they are inserted to the window or into the temporary file. See Algorithm
1 for a detailed description.

Algorithm 1 BNL
Require: D is the input relation,
Ensure: R contains the skyline of D
W Ð tu � Limited window in memory
T Ð tu � Temporary file
AÐ D
countInÐ 0
countOutÐ 0
for all p P A do

p.timestampÐ countOut
W Ð W Y tpu
for all q P W do � Discard non-skyline tuples

if p ¡ q then
W Ð W � tpu
break

else if p   q then
W Ð W � tqu

if W is full then � Temporarily save incomparable tuples
T � T Y tpu
countOutÐ countOut� 1

if p is last tuple of D then � Load next temporary file
AÐ T
T Ð tu
countInÐ 0
countOutÐ 0

for all r P W do � Save results
if r.timestamp � countIn then

W Ð W � tru
RÐ R Y tru

countInÐ countIn� 1
RÐ R YW
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Börnzsönyi et al. suggests two variants of the BNL algorithm in order to more
quickly eliminate non-skyline tuples. The first one maintains the window as a self-
organizing list, where dominating tuples are moved to the beginning of the list.
The idea is that dominating tuples have a greater pruning power than other tuples
and are more likely to be able to eliminate subsequently read tuples. When a new
tuple is read, it is compared to the dominating tuples first, making it more likely
for an early elimination. Based on the same principle, the second variant works by
replacing tuples in the window by the most dominating set, thereby ensuring early
eliminating of new tuples read. These strategies are particularly effective for skewed
datasets, where a few tuples dominate large portions of the dataset.

Algorithms of the BNL class are likely the most prominent algorithms for computing
skylines. There have been published several algorithms based on the same principle
[10, 41, 55], and the basic operation of collecting maxima during a single scan of
the input data can be found at the core of many state-of-the-art skyline algorithms
[14, 36, 3].

3.1.2 Divide-and-conquer

The basic divide-and-conquer (D&Q) algorithm [5, 27, 13] subsequently divides the
input into partitions until each partition contains only one (or a few) tuples. When
this is done, the partitions are merged to compute the overall skyline. The merging
step removes tuples dominated by other tuples. Input is divided by calculating the
median m in some dimension and placing all tuples better than m in the left parti-
tion, and tuples worse than m in the right partition. There are different strategies
for partitioning the input, however, most can be categorized as some form of grid
partitioning as shown in Figure 3.2. A neat feature of this arrangement is that some
partitions can be discarded without processing the nodes within, e.g. the upper right
partition in Figure 3.2 can be discarded because it is guaranteed to be dominated by
all tuples in the lower left partition. Algorithm 2 describes the basic D&Q algorithm.

S1,1

S1,2

S2,1

S2,2

Price

D
ist

an
ce

Figure 3.2: Grid partitioning
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Note that the basic variation achieves poor performance unless the entire com-
putation can be done in main memory. The reason being that the input is read,
partitioned, written to disk, reread to be partitioned again, and so on several times
until a partition fits into main memory. This is alleviated using m-way partitioning
in such a way that every partition is expected to fit into main memory. Instead of
the median, α-quantiles are computed in order to determine partition boundaries.

Algorithm 2 BasicDQ
Require: D is a d-dimensional relation
Ensure: R contains the skyline of D

function skyline(M,d)
if |M | � 1 then

return M
pÐ medianpM,dq
M1,M2 ÐpartitionpM,d, pq
S1 ÐskylinepM1, dq
S2 ÐskylinepM2, dq
return S1YmergepS1, S2, dq

function partition(M,d, p)
S1 Ð tp PM |pd   pu
S2 Ð tq PM |qd ¥ pu
return S1, S2

function merge(S1, S2, d)
if S1 � tpu then � Trivial case

return tp P S2|p ¢ qu
else if S2 � tqu then

RÐ S2
for all p P S1 do

if p   q then
return tu

return S2
else if d � 2 then � Low dimension

minÐ minimumpS1, d� 1q
return tq P S2|q1   minu

else � General case
pÐ medianpS1, d� 1q
S1,1, S1,2 ÐpartitionpS1, d� 1, pq
S2,1, S2,1 ÐpartitionpS2, d� 1, pq
R1 ÐmergepS1,1, S2,1, dq
R2 ÐmergepS1,2, S2,2, dq
R3 ÐmergepS1,1, R2, d� 1q
return R1 YR3

RÐskylinepD, dq
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3.1.3 SSkyline

SSkyline, also known as Best [47], is an algorithm for skyline computation where the
entire input relation is assumed to be placed in main memory [37]. In contrast to
BNL and other external algorithms, SSkyline does not need to consider temporary
files and disk delays. Instead, it is optimized to exhibit good memory access patterns,
and is considered a highly efficient cache conscious in-memory algorithm for small
to moderate input relations.

...

...

head tail

i

head tail

i

head

tail

Figure 3.3: SSkyline example. Black boxes are part of the skyline, white boxes are
undetermined, and gray boxes are dominated (i.e. gray boxes are not part of the
skyline)

SSkyline takes an input relation D containing n tuples as input, and returns the
skyline of D. The skyline is computed using two nested loops and three indices:
head, tail, and i. Intuitively the inner loop searches for the next skyline tuple, while
the outer loop repeats the inner loop until all skyline tuples have been found. Figure
3.3 shows an example run of SSkyline. In the first iteration head points to the first
tuple, i to the second, and tail to the last. Confirmed skyline tuples are placed left of
head and colored black, confirmed non-skyline tuples are placed to the right of tail
and marked with gray, while tuples in-between are still under consideration and will
at some point be pointed to by head if they are part of the skyline. Each iteration
of the outer loop confirms one skyline tuple by moving head to the right, and the
inner loop may discard many non-skyline tuples by moving tail to the left. When
head � tail, the algorithm terminates and returns all skyline tuples. At this point,
head and tail points to the last skyline tuple, while i has been discarded. Algorithm
3 describes SSkyline in detail.
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Algorithm 3 SSkyline
Require: D is the input relation, n is number of tuples in D
Ensure: R contains the skyline of D
headÐ 1
tail Ð n
while head   tail do

iÐ head� 1
while i ¤ tail do

if Dhead   Di then
Di Ð Dtail

tail Ð tail � 1
else if Di   Dhead then

Dhead Ð Di

Di Ð Dtail

tail Ð tail � 1
iÐ head� 1

else
iÐ i� 1

headÐ head� 1
RÐ D1, . . . , Dhead

3.1.4 Index based

There are a number of skyline algorithms that exploit index structures in some way
[45, 35, 5, 36]. For instance, branch-and-bound is the best performing disk-based
algorithm. Index based methods are not central to this thesis, however, we include a
superficial explanation of the nearest-neighbor (NN) and branch-and-bound (BBS)
algorithms for the sake of completeness.

Nearest-neighbor algorithm and branch-and-bound skyline algorithm use indexing
(R-trees) in order to eliminate dominance tests for a block of tuples at once. NN
use the results of nearest neighbor search to partition the input data recursively [5].
NN was proven to outperform other algorithms in [5], however, it has some short-
comings that was addressed in [36]. Specifically, NN lacked a duplicate elimination,
introduced multiple node visits and had large space requirements. BBS is a state-
of-the-art skyline algorithm based on NN. BBS is IO-optimal, meaning it visits only
the nodes that may contain skyline points, and it does not access the same node
twice, and can be considered the successor of NN.

3.2 Parallel algorithms

In this section we present parallel skyline algorithms, including traditional algo-
rithms targeted at parallel and distributed systems, and recent algorithms developed
for multi-core architectures.
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3.2.1 Parallel divide-and-conquer

The parallel divide-and-conquer algorithm consists of three phases: partition, local
skyline computation, and merge. The partition phase divides tuples into distinct
sets and can be performed using a number of different techniques. In the local sky-
line phase, each thread independently computes the local skyline for its designated
partition Di. Finally, local skylines are merged to produce the global skyline R.
Algorithm 4 shows an overview of parallel D&Q.

Algorithm 4 PDQSkyline
Require: D is the input relation, N is number of partitions
Ensure: R is the skyline of D
D1, . . . , DN Ð Partition(D,N)
S1, . . . , SN Ð LocalSkyline(Di, . . . , DN)
RÐ Merge(S1, . . . , SN)

In a shared-nothing architecture, there typically exists one central server, called
coordinator, which is responsible for a set of N servers. In a basic parallel D&Q
skyline algorithm, a coordinator delegates the local skyline computation to N servers
by sequentially partitioning the data based on some criteria. After local skylines have
been computed, each server sends the result to the coordinator, which performs a
sequential merge.

Parallel D&Q is based on the fact that, for any decomposition of the set D into
subsets D1, . . . DN , the global skyline is equal to the skyline of the union of all local
skylines [11]: SkylinepDq � SkylinepSkylinepD1qY . . .YSkylinepDNqq. This means
that we can use any sequential skyline algorithm to calculate the local skylines.
Additionally we can use the same sequential skyline algorithm to merge the results.

In [11] they propose a parallel D&Q algorithm use random partitioning to ensure
that each server get a similar workload. For local skyline computation they use BBS.
In the merge phase, they use all-to-all communication to provide a more efficient
elimination of non-skyline tuples. We refer to the original article for a detailed
explanation.

There are a wide range of partitioning techniques available for skyline computation.
For instance, one can use grid or angular partitioning to exploit geometric properties
of the dataset, random partitioning can be used to achieve fairness in uniform data
distributions, or one can simply divide data based on its location in memory without
any consideration for skyline-specific traits or heuristics. In subsequent sections we
describe selected partitioning techniques that are related to work done in this thesis.

Linear partitioning

In a linear partitioning strategy, data is distributed without no geometric con-
siderations. The input set is simply divided into the n equal sized parts D1 �
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rd1, . . . , dCardpDq{ns, . . . , Dn � rdCardpDq{npn�1q, . . . , dCardpDqs. This strategy is illus-
trated in Figure 3.4.

D4

D3

D2

D1

Figure 3.4: Linear partitioning strategy into 4 partitions for a 3-dimensional dataset

Linear partitioning is easy to implement, distributes tuples fairly, and can be per-
formed very efficiently. In some cases, data can be processed without explicitly cre-
ating separate partitions, thus saving memory volume and bandwidth. However, it
does not exploit operator-specific features such as geometric properties.

Angle-based space partitioning

Angle-based partitioning is an efficient geometric partitioning technique. It is a big
step from linear to angle-based partitioning, and one may expect random- or grid
partitioning to be intermediate steps. However, all space partitioning techniques
incur similar memory bandwidth and locality costs. Specifically, each point needs
to be mapped to its designated partition by inspecting its value, which translates
into consecutive read operations and random write operations. We therefore choose
to go directly for the most efficient (and complex) partitioning technique for skyline
computation.
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(b) Angle partitioning

Figure 3.5: Partitioning example using 4 partitions

21



The motivation behind angle-based partitioning is best explained by an example
from [48]. We use the classical hotel distance-price scenario where one would like
to find hotels that have the lowest possible price and distance. Figure 3.5 shows all
possible hotels as points, where black points are included in the global skyline, and
local skylines are dashed. The global skyline consists of 5 points: c, a, k, h, and
b. Using a grid-based partitioning, the local skyline computation phase will return
11 points as potential candidates, all which need to be processed in the merging
phase. In contrast, the angle-based method return only 6 points to the merge phase
reducing workload by 45% compared to the grid-based technique. Indeed, the angle-
based technique generate a set of local skylines that closely resemble the end result,
differing only by a single point.

Another feature that is worth mentioning is the pruning power of the average local
data point. Looking at 3.5b), one can see that points a and k dominate all other
points in their partition, significantly reducing the work required for local skyline
computation. We refer to [48] for a detailed analysis on pruning power.

In order to compute partitioning bounds and distribute points, an angle-based par-
titioning technique maps the cartesian coordinate space into a hyperspherical space,
and partitions the data space based on angular coordinates into N partitions.

r �
b
x2
n � x2

n�1 � . . .� x2
1

tanpφ1q �
a
x2
n � x2

n�1 � . . .� x2
2

x1
...

tanpφd�2q �
a
x2
n � x2

n�1

xn�2

tanpφd�1q � xn
xn � 1

(3.1)

Coordinates are mapped to the hyperspherical space using Equation 3.1, resulting
in d� 1 angular dimensions for a d-dimensional dataset. Subsequently, the angular
coordinates are used to divide the space into N partitions using a grid partitioning
technique. This leads to a partitioning where all points that have similar angular
coordinates fall into the same partition. In effect, each local skyline computation
will get an increasingly correlated dataset as the number of partitions increase. The
end-result is that local skylines are of a small cardinality and that most skyline
algorithms perform well on them.

Given the number of partitions N and a d-dimensional data space D, angle-based
partitioning assigns to each partition a part of the data spaceDi, defined by Equation
3.2. Note that we assume that points are non-negative in all dimensions.

Di � rφi�1
1 , φi1s � . . .� rφi�1

d�1, φ
i
d�1s

φ0
j � 0

φNj �
π

2

1 ¤ j ¤ d, 1 ¤ i ¤ N (3.2)
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Vlachou et al. suggests two methods of defining partitioning bounds: equi-volume
and dynamic. In the original article, this technique is used in a disk-based shared-
nothing parallel DBMS context. However, we focus on multi-core shared-memory
systems, and will use angle partitioning as an integral part of our experiments.
Consequently, we explain each method as if the entire relation, and all partitions
can be stored in main memory. Angle-based partitioning algorithms presented in
following sections are based on textual explanations in [48], and source code received
from the authors.

Equi-volume partitioning

Equi-volume partitioning aims to derive the grid boundaries in such a way that the
points are equally distributed to partitions, assuming an independent data distribu-
tion. With an independent data distribution, a partitioning scheme that generates
partitions of equal volume will ensure an approximately equal number of points in
each partition. If V is the volume of the d-dimensional space and N the available
number of cores, the volume of each partition should be V

N
.

The equi-volume strategy is described by Algorithm 5. Partitioning bounds are rep-
resented by a collection of N pd� 1q-dimensional structures that includes the lower
and higher bounds for each angle. Similar to [48], bounds are calculated by dividing
the data space independently by each angle creating approximately equal volume
for each partition. In order to divide the data space into N equi-volume parts based
on one angular dimension φ, a binary search on the interval r0, . . . , π2 s is performed.
In each step the volume of the current partition is evaluated and compared to the
target volume of V

d�1 When the volume is sufficiently close, bounds are accepted,
and bounds for the next angle are calculated.

Algorithm 5 ComputeBounds
Require: d is the number of dimensions in the input relation, N is the total number

of partitions, N0 . . . Nd�1 is the number of partitions per dimension,
Ensure: R is the bounds for each angle

for all j Ð 1 to d� 1 do � each angular dimension
φ0
j � 0
φNj � π

2
for all iÐ 1 to Nj do � each partition

Vi Ð calcV olumepφi�1
j , φij, dq

while |Vi � V
N
| ¡ thresholdpV q do � binary search

if Vi   V
p

then

φij Ð φij �
φi

j�φ
i�1
j

2
else

φij Ð φij �
φi

j�φ
i�1
j

2

Vi Ð calcV olumepφi�1
j , φij, dq

RÐ @i,jpφij
��0 ¤ i ¤ N, 0 ¤ j   dq � all calculated boundaries
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We use Algorithm 6 in order to determine the number of partitions possible per
dimension. For the simplest case, each dimension incur an equal number of splits,
resulting in a symmetric partitioning where each dimension is split into Ð t d�1

?
N u

parts. If this is impossible, due to non-cubic partition count we resort to an asym-
metric strategy as described in the while loop of 6. Number of partitions in each
dimension is increased progressively until the total partition is equal to N .

Algorithm 6 CountPartitions
Require: N is the total number of partitions, d is the number of dimensions
Ensure: R contains the number of partitions for each angle
N1, . . . , Nd�1 Ð t d�1

?
pu

achievedÐ pN1qd�1

changeÐ True
while achieved   N ^ change do � asymmetric partitioning

changeÐ False
for all iÐ 1 to d� 1 do

if achieved
Ni

� pNi � 1q ¤ N then
Ni Ð Ni � 1 � increase partition count for angular dimension i
achievedÐ achieved� 1
changeÐ True

RÐ Ni, . . . , Nd�1

When the boundary values have been computed, all points are distributed by Algo-
rithm 7. This algorithm give each partition a unique identifier. A point is allocated
to its designated partition by looping through all partitions and checking if the point
is confined in the pre-computed bounds for all angular dimensions.

Algorithm 7 MapPointToPartition
Require: p is a point of d dimensions, N is number of partitions, . . . , φij, . . . is the

partitioning bounds
Ensure: R is the partition id for p
p1, . . . , pd�1 Ð angular coordinates for p
for all iÐ 1 . . . N do � each partition

NextPartition:
for all j Ð 1 to d� 1 do � each angular dimension

if  pφi�1
j   pj ¤ φijq then

goto NextPartition
R � j

Dynamic partitioning

A weakness of static schemes like equi-volume partitioning is that non-uniform data
distributions may be unevenly distributed. In the worst-case, all work may be dis-
tributed to one single thread, prohibiting the algorithm for utilizing any parallel
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resources. Dynamic partitioning alleviate this problem by splitting the space ac-
cording to the data distribution.

Figure 3.6 shows an example of a non-uniform distribution where equi-volume par-
titioning is particularly inefficient. In this case one partition holds 92% of the input
data, while the other three are more or less empty, clearly not a fair distribution. In
contrast, the dynamic technique are able to distribute the same dataset quite well,
resulting in the following distribution: 29%, 21%, 29%, 21% (clockwise).

x-axis

y-
ax

is

(a) Equi-volume
x-axis

y-
ax

is

(b) Dynamic

Figure 3.6: Equi-volume versus dynamic partitioning in a non-uniform dataset

Dynamic partitioning works by progressively splitting the data space into smaller
partitions as shown in Algorithm 8. Starting with one partition, Algorithm 8 dis-
tributes points until the maximum number of tuples per partition is reached for
the current partition. At this point, the partition is split in angular dimension 1,
and points are redistributed into two partitions based on the new boundaries. To
ensure an even distribution among the new partitions, the split is made at the mean
(or median) value in angular dimension 1 of all points in the partition being split.
Subsequent splitting is done similarly. The angular split dimension is chosen in a
round robin fashion.

Note that we use Algorithm 7 when mapping coordinates. However, partitioning
boundaries has to be specified in tuples rlow, highs as they are no longer ordered in
such a way that we can use a simple list. To make this clear, we use a slightly differ-
ent boundary specification where θ indicates bound low, and φ indicates boundary
high. Additionally, we use Φ and Θ to indicate all low-, and high boundary values
respectively.

25



Algorithm 8 DynamicPart
Require: D is the input relation of d dimensions, N is the number of partitions,
nmax is maximum partition size

Ensure: D1, . . . Dp is N disjoint partitions of D
Nachieved Ð 1
θ1

1,...,d Ð 0
φ1

1,...,d Ð π
2

j Ð 1
for all p P D do � distribute points

iÐMapPointToPartitionpp,Nachieved,Θ,Φq
Di Ð Di Y tpu
if CardpDiq ¡ nmax then � split partition

Nachieved Ð Nachieved � 1
θNachieved

1,...,d Ð θi1,...,d
φNachieved

1,...,d Ð φi1,...,d

θNachieved
j Ð p1

j , . . . , p
CardpDiq
j � mean value in angular dimension d

φij Ð θNachieved
j

j Ð j � 1
for all q P Di do � redistribute points

Di Ð Di � tqu
k ÐMapPointToPartitionpp,Nachieved,Θ,Φq
Dk Ð Dk Y tpu

3.2.2 PSkyline

The PSkyline algorithm, is a D&Q based algorithm optimized for multi-core pro-
cessors. In contrast to most existing divide-and-conquer algorithms for skyline com-
putation that divide into partitions based on geometric properties, PSkyline simply
divides D linearly into smaller blocks using the partitioning scheme described in
Section 3.2.1. Im et al. evaluate PSkyline and parallel versions of BBS, SFS, and
SSkyline on a sixteen core machine in [37]. In their experiments, PSkyline consis-
tently had the best utilization of multiple cores, however, algorithms were evaluated
based on parallel speedup only, and were not compared in terms of performance.

Algorithm 4 describes the general structure of PSkyline. First, the input relation is
D is split into N partitions sequentially. Second, the local skyline is computed for
each partition in parallel using Algorithm 3. Finally, local skylines are merged in
parallel using Algorithm 9 repeatedly until all local skylines have been merged.
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Algorithm 9 PMerge
Require: S1 is a local skyline, S2 is another local skyline
Ensure: R is skyline of S1 Y S2

1: T1 Ð S1
2: T2 Ð tu
3: function f(y)
4: for all x P T1 do
5: if y   x then
6: T1 Ð T1 � txu
7: else if x   y then
8: return
9: T2 Ð T2 Y tyu

10: parallel for y P S2 do
11: f(y)
12: RÐ T1 Y T2

Figure 3.7 shows two possible merging strategies: balanced and unbalanced. The
balanced strategy are able to utilize more coarse-grained parallelism than the unbal-
anced strategy [28]. However, as pointed out in [37], this strategy will be increasingly
sequential as number of local skylines decrease (and the size of each local skyline
increase). In other words, relying solely on a balanced merge strategy is not sufficient
to efficiently utilize parallel compute power when its needed the most.

(a) Balanced (b) Unbalanced

Figure 3.7: Parallel merge strategies

To avoid the problems associated with coarse-grained parallelism, Algorithm 9 use a
more fine-grained parallelism by allowing threads to fetch tuples from S2 in a round
robin fashion until skylines S1 and S2 have been merged. In a distributed or par-
allel system this would have been very inefficient due to expensive communication
through a slow interconnect. However, in a shared-memory system, where commu-
nication costs are relatively small [31], the algorithm is able to utilize a great degree
of parallelism with minimal overhead by working on the same data structure. PSky-
line use the unbalanced merge strategy illustrated in Figure 3.7b), which is easier
to implement in most shared-memory frameworks [12, 39, 7, 53] than the balanced
strategy .
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3.2.3 ParallelBNL

In [41], Selke et al. suggests a parallel version of BNL using a shared linked list for
the skyline window. This is a straightforward approach, where a sequential algorithm
is parallelized without big modifications. However, there are some issues related to
concurrent modification of the shared list.

Three variants of list synchronization are suggested in the article: continuous, lazy,
and lock-free. With continuous locking, each thread will acquire a lock on the next
node before processing, lazy locking [20] only locks nodes that should be modified
(or deleted), while lock-free are an optimistic approach that does not use any lock-
ing. Lazy and lock-free variants need to verify that iterations have been correctly
performed and restart iterations that fail. ParallelBNL algorithms with each of the
mentioned synchronization techniques are tested and the lazy locking scheme is
shown to be most efficient. When we write ParallelBNL later in this thesis, we refer
to parallel BNL using the lazy locking scheme, defined in Algorithm 10.

Each thread in ParallelBNL continuously process points fetched from the input
relation. Fetching is done in a round robin fashion so that each thread receives
similar work loads. Synchronization is only needed when the shared list needs to
be modified. ParalellBNL uses a binary flag deleted to guarantee that no adjacent
nodes are modified concurrently, which might otherwise result in violating pointer
integrity.
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Algorithm 10 ParallelBNL
Require: D is an input relation of d dimensions N is available number of cores
Ensure: R is skyline of D

function bnlthread(head,tail)
NextRecord:
while aÐ D.nextpq do

TraverseList:
predÐ head
curr Ð pred.next
while curr � tail do

if curr.item   a then � discard a
goto NextRecord

else if a   curr.item then � try to discard curr
lock pred
lock curr
if validateppred, currq then

curr.deletedÐ True
pred.nextÐ curr.next
ulock curr
ulock pred

else � list has been modified, restart
ulock curr
ulock pred
goto TraverseList

curr Ð curr.next
else

predÐ curr
curr Ð curr.next

lock pred � try to append a
if validateppred, currq then

new Ð Nodepaq
pred.nextÐ new
new.nextÐ tail
ulock pred

else � list has been modified, restart
ulock pred
goto TraverseList

function validate(pred, curr)
return  pred.deleted^ curr.deleted^ pred.next � curr

headÐ Nodepq
tail Ð Nodepq
parallel for i P 1, . . . , N do

bnlthreadphead, tailq
RÐ head
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Chapter 4

APSkyline

In this chapter we develop an efficient skyline algorithm optimized for multi-core
architectures. The algorithm is specifically designed in order to answer RQ3, whether
an elaborate pre-processing phase can be efficient also in a multi-core context.

4.1 Algorithm overview

APSkyline is a D&Q based algorithm that use the structure defined in Algorithm
4. It consists of three phases: partition, local skyline computation, and merge. The
partition phase divides tuples into distinct sets using an angle based partitioning
scheme [48, 24]. The local skyline computation phase computes the local skyline for
each partition using Algorithm 3. And, the merge phase combines local skylines to
produce final result using the parallel merging strategy defined in Algorithm 9.

The basic idea is to add a state-of-the art partitioning scheme to the currently best
performing multi-core skyline algorithm, PSkyline, in order to improve its capability
to efficiently handle anti-correlated datasets.

4.2 Partition phase

The partition phase is responsible for dividing data evenly among threads and is an
essential contributor overall performance. In general, partitioning should ensure that
we achieve a decent degree of parallelism, good scalability, and fair work scheduling
in subsequent phases. Additionally, we consider skyline-specific criteria like size of
intermediate and equi-sized local skylines [48].

In contrast to PSkyline, we would like to exploit geometric properties in the dataset
even though it may require additional pre-processing costs. We therefore choose the
angle-based partitioning scheme published in [48], which has been shown to be the
most efficient partitioning scheme currently known for skyline computation.
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Vlachou et al. propose two schemes: equi-volume and dynamic in [48]. We will use
equi-volume as defined in 3.2.1 with minor modifications to allow for parallelism in
the partitioning phase. Because the dynamic scheme requires a substantial amount
of memory move operations, it will be quite expensive in a multi-core context. We
therefore suggest to use a sample-dynamic partitioning technique that will signifi-
cantly reduce the costs associated with a dynamic scheme.

Because of the high computational costs associated with angle partitioning, it is
essential that we utilize parallel compute power not only in phases that compute
the actual skyline, but also in the partitioning phase. We propose straight-forward
techniques for parallelizing equi-volume and sample-dynamic partitioning schemes
in Section 4.2.3. Additionally, we propose a hybrid partitioning technique that utilize
geometric properties in combination with random partitioning in order to prioritize
a fair workload.

4.2.1 Sample-dynamic partitioning

In a dynamic partitioning scheme, each partition split induce an expensive redis-
tribution cost. Specifically, each time a partition is split nmax

2 or more tuples needs
to be moved from one memory location to another. This is reasonable in a paral-
lel or distributed environment where IO-operations (including communication be-
tween nodes) are the dominating factor. However, in a shared-memory system such a
method consumes a significant amount of the overall runtime. For instance, if we were
to split the dataset into four partitions each containing at most nmax � V {N tuples,
a dynamic partitioning scheme need to move 3

2 � nmax � 3
2 � V4 � 0.375V � 37.5% of

the dataset to achieve a perfectly fair data distribution. In the linear and equi-volume
schemes this cost will not occur. Therefore, we propose a sample-based scheme where
we use a smaller portion of the data in order to determine the partitioning bound-
aries before actual partitioning is performed.

We use Equation 4.1 to calculate the cost of splitting. Obviously this is a simplifica-
tion and will not be completely accurate in all cases. Nevertheless, it provides some
value when comparing the efficiency of dynamic and sample-dynamic partitioning.

Csplit � N � 1
2 � nmax (4.1)

In the sample-dynamic partitioning scheme, a configurable percentage s of the
dataset is used to pre-compute the partitioning boundaries. In the simplest case,
one can simply use a small nmax so that partitioning boundaries are defined at an
early point. To increase the likelihood of picking significant sample points, we pro-
pose to choose samples in a uniform matter, as illustrated by Figure 4.1. In general,
one can choose a number of different strategies, like random picking or choosing
points based on domain-specific knowledge.
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Figure 4.1: Sample points

To compare dynamic and sample-dynamic partitioning, we assume that dynamic
partitioning use nmax � V

2 and sample-dynamic use nmax � Vs

2 , where Vs is the
sample size. By replacing nmax Equation 4.1 with respective values, we get the
following costs estimations as number of threads increase to infinity:

Cdynamic � lim
NÑ8

N � 1
2 � V

N
� 0.5V

Csample � lim
NÑ8

N � 1
2 � Vs

N
� 0.5Vs

We observe that the additional cost of dynamic partitioning will never be more than
50% of the dataset, while the additional cost of sample-dynamic partitioning will
never be more than 50% of the sample size. This indicates that a sample-dynamic
scheme can reduce partitioning costs significantly if configured correctly. In order
to achieve a fair distribution, one must find a compromise between accuracy and
speed. We propose a sample size of 1-10%, which requires a modest splitting cost of
0.5%� 5%, greatly reducing the cost of dynamic partitioning.

4.2.2 Geometric-random partitioning

For distributions where neither equi-volume nor sample-dynamic partitioning are
able to achieve a fair workload APSkyline will not be able to efficiently utilize
parallel compute power. For example, datasets that include many equal rows will in
most cases cause a skewed workload, and cannot be fairly distributed by geometric
partitioning alone. To handle such cases we suggest a hybrid approach of angle- and
random partitioning.

The idea is to modify geometric partitioning schemes like equi-volume and sample-
dynamic by limiting the size of each partition. When we reach the predefined limit
for a partition, overflow points are placed in some other partition using one of the
following strategies:

1. Place overflow points in a random partition

2. Place overflow points in the partition with most available space

3. Place overflow points in the first seen non-full partition

4. Use a progressively smaller subset of the angular dimensions to place overflow
points in partitions similar to their original placement

This strategy can be performed during the point distribution or as a subsequent step
where points are redistributed as needed. The former avoids moving points in mem-
ory, thus saving memory bandwidth. However, it may cause random partitioning
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to interfere with the geometric scheme. Specifically, points that are randomly dis-
tributed may fill partitions that otherwise could have held geometrically distributed
points, resulting in a more expensive merge phase. For the latter, geometric distri-
bution first priority. Because all points are distributed geometrically in a first step,
overflow points will not interfere with the original partitioning scheme. Obviously,
this comes at a price, namely memory bandwidth in the re-distribution step.

Depending on costs associated with sub-optimal partitioning, it is likely that both
methods are viable for selected data distributions. Nevertheless, we believe that that
avoiding a re-distribution step can be advantageous in a multi-core context in order
to save memory bandwidth in the partition phase.

When placing overflow points, alternative 1 is low-cost and ensures that all partitions
achieve an approximately equal workload. Additionally, we distribute the possible
interference to all partitions as opposed to alternative 3, where a few partitions risk
being filled by random points at an early stage. Alternative 4 has the advantage
of keeping some geometric properties also for overflow points, however, for skewed
datasets we risk placing overflow points in the original partition, voiding our effort
to induce a fair workload. If partitioning is done sequentially, we would most likely
choose alternative 1 or 4 (with some modifications to ensure that points are indeed
fairly distributed), however, when utilizing parallelism in in the partitioning phase,
alternative 1 will ensure that threads to an increasing degree can write to different
partitions, reducing synchronization costs.

Algorithm 11 GeometricRandomPointDistributor
Require: Di is partition i of input relation D, N is requested number of partitions,
p is the point being distributed

Ensure: p is distributed to a non-full partition for the majority of cases
iÐMapPointToPartitionp. . .q
if Di is full then � Add to random partition

j Ð randp1, Nq
Dj Ð Dj Y tpu

else
Di Ð Di Y tpu

Algorithm 11 use alternative 1 during the point distribution phase to prioritize a
fair workload over a strictly geometric partitioning scheme.

4.2.3 Parallelism in the partition phase

In contrast to algorithms directed at parallel and distributed systems, a shared-
memory algorithm needs to have a highly optimized partitioning phase. Blanas et
al. shows that, for hash join, the partitioning costs were sufficiently high compared
to overall runtime that a simple algorithm with no partitioning outperformed a more
sophisticated algorithm with a partitioning phase [4]. Therefore we suggest to utilize
the capability of low-cost communication to induce parallelism in this phase.
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Algorithm 12 shows the parallel partitioning algorithm that are repeatedly executed
by each thread. We use N threads in order to partition a relation into N partitions.
Obviously, we need some way of determining which points each thread should dis-
tribute. This can be done in a round robin fashion, or using a linear partitioning
scheme to define read boundaries without physically partitioning points. In our im-
plementation we use the linear scheme. To split data into two partitions, thread
1 process tuples r1, . . . , n{2s and thread 2 process tuples rn{2, . . . ns. Both threads
place tuples into multiple shared collections (partitions). In the ideal case, thread 1
only writes to partition 1, while thread 2 writes to partition 2, avoiding the need for
any synchronization. In practice, some collisions will occur and threads will some-
times have to wait for locks. However, the number of partitions increase with the
number of threads, making synchronization gradually more fine-grained, reducing
the likeliness of collisions. This property should allow the algorithm to scale well
with an increasing degree of parallelism, thereby making it a good match for future
architectures.

Algorithm 12 PointDistributor
Require: Di is partition i of input relation D, p is the point being distributed
Ensure: p is distributed to the correct partition according to partitioning scheme
iÐMapPointToPartitionp. . .q
lock Di

Di Ð Di Y tpu
ulock Di

In the linear and equi-volume partitioning schemes this strategy can be used di-
rectly. The boundaries are pre-determined, threads can therefore easily distribute
data with a low amount of synchronization. For the sample-dynamic partitioning
scheme, partition boundaries will change before the requested partitioning count
has been reached. In this case we suggest a two-step process, where partitioning
boundaries are calculated sequentially using 1% - 10% of the input relation before
parallel partitioning is used as described by Algorithm 12. We could use a similar
strategy for the dynamic scheme, but that would only allow parallel computation for
a small portion if the relation. Instead, we propose the modified version described
by Algorithm 13.

35



Algorithm 13 DynamicPointDistributor
Require: Di is partition i of input relation D, p is the point being distributed
Ensure: p is distributed to the correct partition according to partitioning scheme
V before

1,...,N Ð V1,...,N
iÐMapPointToPartitionp. . .q
lock Di

if Vi � V before
i then � partition is unchanged, safe to add point

Di Ð Di Y tpu
if Di is full then

nextÐ getNextPartitionIdpq � atomic fetch-and-increment
split Di into Di, Dnext

Vi Ð Vi � 1
Vnext Ð 1 � initially equal to 0

ulock Di

In Algorithm 13, we use V1,...,N to store the current version of each partition. When
a partition is changed (split), we increment the version number by one using atomic
operations. It is worth noting that splitting a partition will not affect any of the
remaining partitions, therefore threads working on other partitions can continue as
usual. If a point is mapped to partition Di by thread 1, and Di split by thread 2
before thread 1 gets a lock, thread 1 will detect that the version has changed and
restart. This ensures that the algorithm does not add points to incorrect partitions
even if boundaries are concurrently modified. Partitions with version number 0 is
not considered in the mapping algorithm, thereby avoiding the usage of incomplete
boundary values.

4.3 Local skyline computation phase

In [48], BBS and SFS are used to compute the local skylines, however, in a multi-
core context it may be beneficial to use simpler algorithms optimized for in memory
execution. In our experiments, we use the SSkyline algorithm introduced in 3.1. In
the APSkyline algorithm, each thread executes an instance of Algorithm 3 using its
private partition as input to compute the local skyline independently.

4.4 Merge phase

When the local skylines have been computed, Algorithm 9 is executed in a for loop
until all partitions S1, . . . , SN has been merged into the global skyline. Note that
Algorithm 9 exploit parallel compute power to a great degree by utilizing efficient
inter-thread communication mechanisms in modern processor architectures [37].
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4.5 Adaptive algorithm

The cost of skyline computation is highly dependent on input data characteristics.
Specifically, input data that produce a large skyline can be very compute-intensive,
while input data that produce a small skyline can be processed quite fast using simple
algorithms. However, an angular partitioning technique requires the costly operation
of transforming every tuple into the hyperspherical space, regardless of the input
data. For correlated datasets, APSkyline is likely to spend more time partitioning
than it would take a simpler algorithm to produce a result, whereas, APSkyline may
excel for anti-correlated input data. In order to achieve efficient skyline computation
for a wider range of data input, we present an adaptive algorithm that use skyline
cardinality estimation to select the most efficient method for each case.

Algorithm 14 describes an adaptive algorithm. It takes the dataset D, and a set of
algorithms A with their optimal range of computation C. By computing an estimate
of the skyline size and comparing to ranges in C, the best algorithm is selected.
For datasets where an optimal algorithm is unknown, we use the default algorithm
Adefault.

Algorithm 14 AdaptiveSkyline
Require: D is the input relation, A is a set of skyline algorithms where Adefault is

the default choice, C contains the optimal skyline size ranges for algorithms A
Ensure: R is the skyline of D
eÐ estimate of cardpDq
for all c P C do

if c.min   e ¤ c.max then
RÐ AcpDq
return

RÐ AdefaultpDq � No optimal algorithm found

Cost estimation for the skyline operator is addressed in [56, 8, 16]. In order to
estimate skyline size, Chaudhuri et al. suggest a sample based method based on
sampling, log sampling (LS). They modify statistical methods for independent data
distributions in order to be able to estimate size of other data distributions. Specifi-
cally, they observe that skyline size of independent data distributions increase loga-
rithmically with the input cardinality. For anti-correlated distributions, the skyline
size will be larger than this value, whereas for a correlated dataset it will be smaller.
This observation is used to generate relatively accurate measures of skyline size with
low computational costs. However, as pointed out in [56], computing an estimate for
non-independent distributions using statistical methods designed for independent
distributions can in some cases lead so large estimation errors. Zhang et al. propose
a kernel based (KB) method in order to estimate skyline cardinality based on a
small sample from the data set. KB use more sound statistical methods, thereby
achieving high accuracy for a variety of real and synthetic datasets, even where LS
fails.
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In an adaptive algorithm running in a shared-memory environment, it is essential
that the cardinality estimate that can be computed efficiently. If we spend a signifi-
cant time estimating, performance gains will be lost for lest cost-intensive datasets.
The kernel based method proposed in [56] is the most accurate method, however
it requires a substantial amount of numeric calculations. Therefore, it may be rea-
sonable to use a more basic method, like the simpler log-sampling method proposed
in [8] in this case. An adaptive method can simply default to an algorithm effi-
cient in the computation of low to moderate skyline cardinalities and use APSkyline
for the most compute-intensive cases. As long as we are able to detect the most
compute-intensive cases efficiently, an adaptive algorithm should perform well for
most datasets.

We need some way to determine the range of each algorithm. This can be done
manually based on a set of empirical experiments. However, this would require a
substantial amount of manual labour in order to map each algorithm to its optimal
skyline range. Instead, we suggest to use data sets representing a wide variety of
distributions to calibrate the algorithm automatically when it is installed. Another
advantage of this approach is that the algorithm can adapt to different DBMSs by
automatically choosing the method best suited for a certain dataset in its current
execution environment [15].

Algorithm 15 Calibrate
Require: D is the input relation, A is a set of skyline algorithms, D is datasets

used to estimate the optimal range for algorithms, C maps skyline ranges to each
data set

Ensure: R specifies the most efficient algorithm for each skyline cardinality range
for all Ci P C do

bestÐ 8
algorithmÐ Null
for all Aj P A do

startT imerpq
for all Dk P D|j P Ci.datasets do

AjpDkq
tÐ endT imerpq
if t   best then

algorithmÐ Aj
bestÐ t

Ci.algorithmÐ algorithm

Algorithm 15 estimates the best algorithm for each case based on runtime mea-
surements executed on datasets representative for each skyline cardinality range.
We are now able to map each range to the best-performing algorithm simply by
defining a standard set of datasets that can be used to evaluate current, and future
algorithms. Our method can be improved by measuring additional parameters, like
memory used. We use runtime in because it is an objective measurement on perfor-
mance that give us good indications as to which algorithm is most efficient for each
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case. To ensure that mappings are sufficiently accurate it may be appropriate to run
algorithms multiple times and use average runtime measurements.
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Chapter 5

Experiments and results

In this chapter, we study the performance of the alternative skyline algorithms
presented in Chapter 3 and 4. For our experiments, we use synthetic and real-life
datasets. Furthermore, we vary the number of threads available, and input cardinal-
ity and dimensionality.

5.1 Experiment setup

All our experiments are carried out on a single node of a cluster running Debian
Linux 7.0. The node used is equipped with two Intel Xeon X5650 2.67GHz six-core
processors, thus providing a total of 12 physical cores at each node. Our algorithms
are implemented using the Java programming language version 1.6 running on the
OpenJDK (IcedTea6) runtime environment. We include an overview of the test
environment in Table 5.1.

Processors 2x Intel Xeon X5650 @ 2.67 GHz
Cores per processor 6
Contexts per core 2
Cache size, sharing 12MB L3, shared
Memory 128GB
Operating system Debian 7.0 (wheezy/sid)
Kernel 3.2.0-39-generic
Java runtime Java version 1.6.0 27 running on OpenJDK (IcedTea6 1.12.5)

Table 5.1: Platform characteristics

The Intel Xeon X5650 processor has 6 physical cores which can run up to 12 hardware
threads using hyper-threading technology. Each core is equipped with private L1 and
L2 caches, and all cores on one die share the bigger L3 cache, which is last level cache
(LLC) for this architecture.
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If not stated otherwise, each experiment is executed using values displayed in bold
in Table 5.2. A tuple has d attributes of type single-precision float. The values of the
d float values of a tuple are generated randomly in the range of r0, 1q for synthetic
data distributions. Input cardinality and dimensionality for synthetic distributions
are included in Table 5.2, whereas real-life datasets are described in Section 5.1.2.

Parameter Values
Data distribution Independent, Anti-correlated, Correlated
Dataset Synthetic, NBA, Household, Zillow5D, Zillow6D
Input cardinality 50k, 100k, 500k, 1M, 5M, 10M, 15M
Input dimensionality 2, 3, 4, 5
Thread count 1, 2, 4, 6, 12, 24, 32, 64, 128, 256, 512, 1024

Table 5.2: Test parameters

Each experiment is executed ten times and we use the median values when reporting
results. Before taking any measurements, we perform a dry-run of the algorithm
being tested. After each execution we verify the algorithm output by comparing all
tuples to the output computed by a sequential execution of BNL. Additionally, we
measure variance, minimum, and maximum values in order to ensure that results
are sufficiently accurate. For synthetic datasets, new input is generated for each of
the ten executions. In cases where we achieve unexpected results we repeat affected
experiments to rule out external factors.

S � T1{Tp (5.1)

In order to calculate parallel speedup [44], and to compare algorithms in general,
we use Equation 5.1. When comparing sequential to parallel performance, S is the
speedup, T1 is runtime for a sequential execution, and Tp is runtime for a parallel
execution using p threads. When comparing two algorithms, regardless of parallel
speedup, T1 refers to the runtime of one algorithm, while Tp refers to the runtime
of another algorithm. Specifically, when we state that one algorithm A outperforms
algorithm B by a factor of X, T1 is replaced by the runtime of algorithm B, whereas
Tp is replaced by the runtime of algorithm A, and the factor X is equal to S in
Equation 5.1.

5.1.1 Algorithms

We perform experiments on current state-of-the-art multi-core algorithms, in addi-
tion to three variations of our newly developed APSkyline algorithm. Specifically,
we implement the following variants:

ParallelBNL Parallel version of BNL described in Section 3.2.3

PSkyline Parallel D&Q-based algorithm described in Section 3.2.2
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APSEquiVolume Parallel D&Q-based algorithm using the angle-based partition-
ing scheme as explained in Section 3.2.1

APSSampleDynamic Parallel D&Q-based algorithm using the sample-dynamic
partitioning scheme described in Section 4.2.1

APSSampleDynamic+ Parallel D&Q-based algorithm using the sample-dynamic
partitioning scheme described in Section 4.2.1 in combination the geometric-
random modification explained in Section 4.2.2. We set the limit for each
partition to be cardpDq

N
� 0.1 and place overflow points into random partitions.

Overflow handling is done during the initial distribution, avoiding extra mem-
ory bandwidth costs

Due to time restrictions, we do not implement the adaptive algorithm, however
experiments will still give indications of its applicability by testing how different
algorithms respond to different data distributions.

Note that when we often refer to APSEquiVolume, APSSampleDynamic, and APSSam-
pleDynamic+ collectively as APSklyine. When all variations of APSkyline achieve
similar performance characteristics we refer to APSkyline as one algorithm. Whereas,
we refer to each variation individually when characteristics differ.

ParallelBNL and PSkyline implementations are based on source code published by
Selke et al. in [41]. However, we removed some some testing code and abstractions in
order to improve performance. For all cases our implementations performs equally
good, or better than original implementations. We also examined the code used by
Park et al. in [37] to ensure a fair comparison.

Relations are represented as encapsulated low-level floating-point arrays of one di-
mension. We use a class named PointSource to encapsulate input relations, and
partitions. Each time a point is read from a PointSource instance, it is copied into
a separate float array so that it can be worked on independently.

5.1.2 Input data

The skyline operator is very sensitive to correlations among attributes [8]. When the
attributes have perfect positive correlation, the skyline is a single tuple. Whereas,
for a perfectly anti-correlated dataset, the skyline is the whole table. In general, it
can be anywhere in between. We therefore perform experiments with a variety of
real-life and synthetic datasets.

For the synthetic datasets, we study three different data distributions that differ
in the way values are generated. Figure 5.1 shows a visual representation of each
distribution in two dimensions.
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Figure 5.1: Data distributions in 2 dimensions with 10k points

The skyline is fairly small for correlated data distributions, increases sharply for
anti-correlated data distributions, and is somewhere in-between for independent
data distributions [5]. Synthetic datasets are generated as follows:

• For independent distributions, all attribute values are generated independently
using a uniform distribution

• For correlated distributions, points which are good in one dimension are also
good in the other dimensions

• For anti-correlated, points which are good in one dimension are bad in one or
all of the other dimensions

We study four real-life datasets that differ in cardinality, dimensionality, and data
distribution as explained below. Note that we do not explicitly state the correlation
for any of these datasets. However, a casual analysis using the Pearson product-
moment correlation coefficient indicates positive correlation of varying degree for all
of our real-life datasets.

• Household is a 6-dimensional dataset containing approximately 130k entries,
where each entry records the percentage of an annual income spent on six
types of expenditures. All values are in the range of r0, 10000q

• NBA is a 5-dimensional dataset containing approximately 17k entries, where
each entry records performance statistics for a NBA player. All values are in
the range of r0, 10000q

• Zillow5D is a 5-dimensional dataset containing more than 2M entries about
real estate in the United States. Each entry includes number of bedrooms and
bathrooms, living area, lot area, and year built. All values are in the range of
r0, 661371480q

• Zillow6D is a 6-dimensional dataset containing more than 2M entries about
real estate in the United States. Each entry includes number of bedrooms and
bathrooms, living area, lot area, year built, and tax value. All values are in
the range of r0, 661371480q
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Zillow datasets are also used in [48], however, we use different attributes in our ex-
periments. Specifically, Vlachou et al. use a 5-dimensional subset of Zillow6D which
includes tax value, whereas we exclude tax value from the Zillow5D dataset to test
different aspects of the algorithms, namely a more cost-intensive real-life distribu-
tion. Nevertheless, we recognize the importance of balancing tax value against lot
area and other aspects of real estate by including all attributes in the Zillow6D
dataset.

5.2 Effect of programming language

Database systems are commonly implemented in low-level compiled languages like
C or C++ and it would be reasonable to implement experimental algorithms in the
same (or very similar) languages to produce realistic results. Nevertheless, higher-
level languages like Java provide some convenient features that can make algorithm
implementation less error-prone and allow the code to be closer to the algorithm
specification. For instance, automatic garbage collection makes it much easier to
implement some concurrent data structures, like a lazy linked list, where deletions
can be made simply by removing a reference as opposed to removing the reference,
queuing it for deletion and finally delete the node after ensuring that all threads
have released the resource.

If the performance characteristics are sufficiently similar, it would be a preferable
to use Java. This will most likely avoid hours of debugging, and it allows for a fair
comparison to the results published in [41], which are written in Java and publicly
available.
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Figure 5.2: Performance comparison of C and Java implementations of ParallelBNL

To determine the feasibility of writing experiments in Java, a microbenchmark was
run. The benchmark compares two equivalent implementations of ParallelBNL-
LazyList as described in [41]. Figure 5.2 shows that both implementations have
similar performance characteristics, and more or less the same speedup when thread
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count is increased. Based on this result, it seems reasonable to implement our ex-
periments in Java.

5.3 Effect of inter-CPU communication

In this experiment we examine the effects of inter- vs. intra-CPU communication.
The test environment consists of two CPUs connected by a fast interconnect, how-
ever, it is unlikely that this interconnect is as efficient as communication between
cores on one chip. We compare runtime and speedup for ParallelBNL running on
one CPU exclusively to the same algorithm running on both CPUs.

Because ParallelBNL use a shared list to store the results, it requires a substantial
amount of inter-thread communication. Therefore it is a good algorithm for testing
the effect of CPU communication.
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Figure 5.3: Performance comparison between ParallelBNL executed with one and
two CPUs enabled

Figure 5.3 shows the results. The speedup graph shows the same speedup that for 6
threads or less, which is to be expected because each CPU has exactly 6 cores. When
thread count is increased to 12 we see a big difference between one and two CPUs.
Specifically, ParallelBNL-1CPU achieves only a modest increase in speedup, which
can be attributed Hyper-Threading, while ParallelBNL-2CPU achieves a speedup
close to 11. If the algorithm were run on one CPU with 12 cores, we would expect
both algorithms to experience a speedup of exactly 12 when 12 threads were used.
However, it is evident that inter-CPU communication comes at a cost. Using two
identical CPUs is at most 1.75 times faster than using one CPU in our experiments.
That is, we lose about 25% parallel speedup compared to one CPU with the same
number of cores.

46



5.4 Effect of thread count

In this experiment, we examine the effect of using multiple cores on the speed of
ParallelBNL, PSkyline, and APSkyline. We go from 1 to 1024 threads. It is ex-
pected to reach peak performance at 24 threads, which is the maximum number
of hardware threads available (12 physical cores + hyper-threading). As number of
threads increase beyond 24, we expect that performance will gradually decrease due
to increased synchronization costs without additional parallel compute power.

We test the worst-case scenario of skyline computation using an anti-correlated
dataset. The skyline of anti-correlated datasets generally have a high cardinality,
requiring algorithms to handle large local- and global skylines.

ParallelBNL is expected to be inefficient because skyline tuples are stored in a large
shared linked list that need to be iterated through for every input tuple. PSkyline
should be able to better utilize parallel compute power with independent local sky-
line computations. However, because PSkyline does not exploit geometric properties
of the dataset in order to limit local skylines, it will most likely do more work than
necessary in the merge phase. APSkyline has the same advantages as PSkyline in
addition to a strategic partitioning scheme that should limit the size of local skylines,
thereby reducing merge costs. This experiment will give insight into RQ4 by inves-
tigating if the expensive partitioning phase in APSkyline is able to leverage skyline
computation in such a way that APSkyline is given a real performance advantage
compared to the trivial scheme used in PSkyline.
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Figure 5.4: Comparison of algorithms running with a different number of threads

Figure 5.4 shows the results. Speedup for each algorithm is relative to the same
algorithm run with one thread, not to a common reference point. This was done so
that results can be easily compared related articles [37, 41].

For a low thread count ParallelBNL is inefficient compared to the D&Q based algo-
rithms. This is most likely due to the fact that D&Q based algorithms use SSkyline
for for local skyline computation, which, in contrast to ParallelBNL, use an array

47



for storing results. The linked list used in ParallelBNL is not as memory efficient as
an array structure for sequential computations.

ParallelBNL has a good speedup as thread count is increased. This is in line with
results presented in [41], and shows that a basic algorithm can be quite effective
when parallel compute power and low-cost synchronization constructs are available.
Using all cores , ParallelBNL shows a performance very close to PSkyline.

PSkyline shows a modest speedup compared to the other algorithms. Surprisingly,
independent local skyline computations is not sufficient to beat ParallelBNL to
any great degree, even for a worst-case scenario. Figure 5.5 shows the segmented
runtime for PSkyline. Local skyline computation shows diminishing performance
gains as available parallel compute power increase. This supports our expectations
regarding the lack of geometric partitioning. As number of threads increase, PSkyline
will produce an increasing amount of local skyline tuples that are discarded in the
merge phase.
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Figure 5.5: Segmented runtime for PSkyline and APSEquiVolume

APSkyline clearly outperforms other algorithms in this experiment. When all cores
are in use (24 threads), APSkyline is 4.2 times faster than PSkyline and 5.2
times faster than ParallelBNL. Figure 5.5 shows that the partitioning technique
used in APSkyline is more expensive than the one used in PSkyline. Nevertheless,
time spent partitioning is more than compensated for in subsequent phases. In Fig-
ure 5.4 we can see that APSkyline achieves super-linear speedup for up to 12 threads.
Obviously, super-linear speedup cannot be explained parallelism alone, we therefore
attribute positive results to a combination of an increased parallel compute power,
an increase in high-level cache (each core contributes with its private cache), and
smaller input cardinalities for SSkyline. That is, SSkyline does not receive its optimal
input cardinality for low thread counts, therefore perceived speedup cannot be at-
tributed parallel compute power alone. APSkyline is able to utilize parallel compute
power in every phase as shown by Figure 5.5. Unsurprisingly, there is no significant
performance differences between variations of APSkyline. For an anti-correlated all
proposed APSkyline variations achieve are able to distribute data fairly.
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In summary, we observe that ParallelBNL is very inefficient for a low thread count
compared to D&Q-based algorithms. However, as the number of available threads
increase, ParallelBNL shows performance characteristics comparable to PSkyline.
Furthermore, all variations of APSkyline achieve great speedup and outperforms
other algorithms in a significant degree.

5.5 Effect of data dimensionality

Unlike selections where adding a new selection can only decrease the cardinality,
adding a new dimension can increase the skyline cardinality, indeed up to the size of
the entire relation [8]. This means that an increase in dimensionality will not only
increase the input volume in terms of an additional column, it will also increase the
number of rows that need to be produced by the operator. It is likely that a small
increase in dimensionality will create profound effects on algorithm performance.

To test the effect of different dimensionality, algorithms are run with input dimen-
sions ranging from 2 to 5. We expect APSkyline to be increasingly efficient compared
to other algorithms as the input dimensionality increases. For a low dimensionality,
the data volume may not be large enough to take advantage of the more expensive
pre-processing (partitioning phase) used in APSkyline, giving the other algorithms
an advantage.
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Figure 5.6: Comparison of algorithms running with varying dimensionality

Figure 5.6 shows the results and confirms our expectations. For a dimensionality
of 3 or less, ParallelBNL is the most efficient algorithm, while APSkylineSample-
Dynamic+ is the least efficient. For a dimensionality of 4, APSEquiVolume and
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APSSampleDynamic outperform other algorithms by a small margin. With 5 dimen-
sions or more, all variations of APSkyline significantly outperform other algorithms.
In contrast to earlier algorithms, APSkyline scale well with dimensionality, and we
expect the same pattern to continue as dimensionality is further increased.
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Figure 5.7: Segmented runtime for PSkyline and APSkyline. For APSkyline, results
from equi-volume, sample-dynamic, and geometric-random partitioning are shown
for each dimensions with equi-volume as the leftmost, and geometric-random as the
rightmost bar

Interestingly, the equi-volume partitioning scheme is faster than sample-dynamic
and geometric-random schemes. By investigating each phase separately (see Figure
5.7), we observe a performance difference in all phases. This is most likely due to
sub-optimal partitioning caused by the greedy partitioning technique used in both of
the dynamic partitioning schemes. That is, when we specify partitioning boundaries
based on only 1% of the input set, the algorithm may choose a subset that does not
accurately represent the dataset as a whole. By inducing random partitioning we
make matters worse, causing each partition not only to have sub-optimal partitioning
boundaries, but also a number of tuples that are distributed with no consideration
for geometric properties. Nevertheless, all variations of APSkyline achieve superior
performance compared to PSkyline and ParallelBNL for sufficiently big datasets,
and it is likely that sample-dynamic and geometric-random schemes may be more
effective for real-life datasets.

In conclusion, ParallelBNL and PSkyline are more efficient for datasets with low
dimensionality, while APSkyline are more efficient for datasets with high dimen-
sionality. Furthermore, performance differences increase as dimensionality increase,
causing APSkyline to be significantly more efficient than competing algorithms for
a 5-dimensional dataset.
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5.6 Effect of data cardinality

In this experiment we examine how algorithms scale with an increasing cardinality.
Obviously, we expect the runtime for all algorithms to increase with the cardinality.
However, we also expect different algorithms to respond differently to cardinality
changes. Specifically, we expect ParallelBNL to be most efficient for low cardinalities
with PSkyline as a close runner up. Furthermore, we expect APSkyline to be most
efficient for high cardinalities.
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Figure 5.8: Comparison of algorithms running with varying cardinality

Card APS-EV APS-SD APS-SD+ PSkyline ParallelBNL
50k 162ms 168ms 198ms 309ms 388ms
100k 222ms 352ms 382ms 757ms 803ms
500k 1.00s 1.33s 1.81s 3.39s 3.24s
1M 1.85s 2.51s 3.02s 5.55s 6.65s
5M 5.57s 6.71s 10.18s 24.22s 31.75s
10M 8.30s 10.46s 16.78s 43.40s 91.55s
15M 10.61s 13.74s 22.92s 61.97s 167.5s

Table 5.3: Test results for cardinality experiment. APS-EV is short for APSEquiV-
olume, APS-SD for APSSampleDynamic, and APS-SD+ for APSSampleDynamic+

To expose details hard to notice in the graph, we supplement with tabular represen-
tations. Test results are presented in Table 5.3 and Figure 5.8.

In contrast to our expectations, we observe that APSkyline achieve the best runtime
for all input sizes. Table 5.4 shows that small datasets have a large percentage of
skyline tuples. This means that, even with small datasets, skyline algorithms have to
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process a relatively large number of skyline tuples, which will give an advantage to
D&Q-based algorithms. APSkylineEquiVolume, the most efficient APSkyline variant
for this experiment, are significantly more efficient than competing algorithms for
big cardinalities, and outperform ParallelBNL and PSkyline by factors of 15.8 and
5.9, respectively.

Cardinality Skyline size
50k 18.25%
100k 12.48%
500k 5.35%
1M 3.64%
5M 1.31%
10M 0.82%
15M 0.62%

Table 5.4: Test results for cardinality experiment

Figure 5.9 shows the time used per skyline tuple by each algorithm. It is evident
that ParallelBNL does not handle big cardinalities well. Time used per skyline tuple
should ideally be unchanged (or decreasing) as cardinality increase. However, since
the percentage of skyline tuples are substantially reduced with a bigger cardinality,
it is acceptable with a modest increase in processing time per skyline tuple. In
this regard, APSkyline is quite successful. Processing time per tuple increase very
slowly compared to the other two algorithms, and it is likely that we will see the
same behaviour as the cardinality increase further. This is a great example of the
applicability of an angle-based partitioning scheme in parallel environments. We
attribute APSkylines success to its ability to eliminate non-skyline tuples early. The
same reason can be used to explain why the geometric-random partitioning scheme,
favoring fairness over geometric heuristics, is somewhat less efficient than the other
schemes.
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Figure 5.9: Runtime per tuple with increasing cardinality

In summary, ParallelBNL achieves acceptable performance for low cardinalities, but
scales poorly for cardinalities greater than 1M, where processing time per tuple
increases steeply. PSkyline exhibit the similar behavior as ParallelBNL as we reach
cardinalities of 1M or higher, however, not same degree. All variants of APSkyline
scales well with increasing cardinality, and are most efficient for all datasets in this
experiment.

5.7 Effect of data distribution

In this experiment we compare algorithms in terms of data distribution. Börzsöny et
al. states that the skyline is fairly small for correlated input, whereas the skyline size
for anti-correlated input increases sharply. The size of the skyline for independent
input is somewhere in between [5]. We execute each algorithm with three synthetic
datasets with correlated, independent, and anti-correlated distributions. Addition-
ally, we execute each algorithm for the three real-life datasets NBA, Household, and
Zillow.

We expect ParallelBNL and PSkyline to be best for the correlated and to some degree
for the independent datasets. For the anti-correlated dataset, we expect APSkyline to
be most efficient. Skyline computation for correlated datasets are in general a simple
problem, requiring little work, therefore simple algorithms with less partitioning
costs may have an advantage. As stated in [48], the anti-correlated dataset is most
interesting, since the skyline operator aims to balance contradicting criteria [32,
48]. For the real-life datasets, we expect algorithms to have similar performance.
However, they are quite small, which can give an advantage to ParallelBNL and
PSkyline.
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(c) Correlated

Figure 5.10: Segmented runtime for synthetic datasets

Figure 5.10 shows the results for synthetic datasets. We present the segmented run-
time for each algorithm so that the reader can easily see how each phase responds
to the different data distributions. Test results match well with our expectations.
ParallelBNL and PSkyline are clearly most efficient for the correlated dataset, while
APSkyline is superior for the anti-correlated dataset. For the independent dataset
algorithms achieve more similar performance characteristics, however, PSkyline and
ParallelBNL are noticeably faster than APSkyline.

Angle-based partitioning is particularly efficient for the anti-correlated dataset,
where APSkyline achieves the best performance. We observe equi-volume partition-
ing is most efficient in this case. In an anti-correlated dataset, points will be more
or less perfectly distributed by an equi-volume scheme, ensuring fair workloads and
early elimination of skyline tuples. Our sample-dynamic scheme use only 1% of the
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input to generate partitioning boundaries, and may end up with a sub-optimal dis-
tribution. The same is true for the geometric-random strategy, in which overflow
points may interfere with the angle-based partitioning scheme, further degenerating
the angle-based partitioning strategy.

Interestingly, the sample-dynamic partitioning scheme is notably less efficient than
the equi-volume partitioning scheme for an independent data distribution. Most of
the difference can be accounted for in the partitioning phase, where the dynamic
strategy is more expensive. Nevertheless, we also observe that local skyline compu-
tation is faster when using equi-volume partitioning. We attribute this to the fact
that the sample-dynamic scheme use only a few sampling points to determine the
partitioning boundaries, which give a sub-optimal division of labour if the sample
points is insufficient to represent the dataset as a whole.

For the correlated dataset ParallelBNL and PSkyline are vastly more efficient than
APSkyline variants, which spend most of the time partitioning. For cases where the
skyline is small compared to input cardinality, basic algorithms can be very efficient.
The reason being that ParallelBNL is able to keep its list of potential skyline tuples
small, resulting in fast dominance testing, and that PSkyline are able to produce a
small local skylines that can be merged efficiently.

Figure 5.11 shows test results for the real-life datasets. We include only the sample-
dynamic partitioning schemes for APSkyline for datasets of dimensionality greater
than five because of implementation problems for equi-volume partitioning. This
should not be seen as a weakness of the partitioning strategy in itself, but rather an
unfortunate implementation detail that we were unable to solve before presenting
our results.
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(a) Household
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(b) NBA
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(c) Zillow5D
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(d) Zillow6D

Figure 5.11: Segmented runtime for real-life datasets

PSkyline achieves the best performance for NBA and Household. For these sets D&Q
based algorithms show similar performance in the local- and global (merge) skyline
computation phases. However, APSkyline spend too much time partitioning and
are therefore less efficient than PSkyline. In the NBA dataset, the sample-dynamic
partitioning schemes outperforms the equi-volume partitioning scheme. This can be
attributed the fact that the dynamic strategy is designed to respond to different
data distributions in such a way that work is more fairly distributed. In a real-life
dataset, a (sample-)dynamic partitioning scheme will necessarily be more robust
than a fixed scheme that does not adapt to its input.

For the Zillow5D dataset we see some interesting results. ParallelBNL is outper-
formed in an order of magnitude by all other algorithms. In fact, the best-performing
algorithm, APSSampleDynamic+ is 36 times faster than ParallelBNL for this case.
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Additionally, we observe that PSkyline and APSSampleDynamic+ is spends signif-
icantly less time in the local skyline computation phase than APSEquiVolume and
APSSampleDynamic.

We attribute ParallelBNLs performance decline to a high percentage of skyline tu-
ples, for a large dataset. About 4% of the overall dataset is part of the skyline.
However, as this is the case also for an anti-correlated dataset, and ParallelBNL
achieves better performance relative to other algorithms with synthetic datasets, it
is unlikely that skyline size is the only cause. The dominant performance factor in
ParallelBNL is number of tuples that need to be stored in the linked list, and the
duration in which they need to be stored. If, for some reason, this list is filled with
many points at an early stage due to a particularly hard data distribution, Paral-
lelBNL will achieve sub-optimal performance. We believe that this is the case for
the Zillow5D distribution.

The reason for APSEquiVolume and APSSampleDynamic spending so much time
in the local skyline computation phase when processing the Zillow dataset is lack
of a fair work distribution. We observed that most points were placed in only a few
partitions, causing the majority of threads being idle. PSkyline does not have this
problem, as it will always divide data fairly without the use of any heuristics. In
this case PSkyline performs very well despite of using a trivial partitioning tech-
nique. Nevertheless, APSSampleDynamic+ is able to outperform PSkyline with a
factor of 1.4 using an angle-based partition technique in combination with random
partitioning.

Another interesting observation is the significant performance gap between Zillow5D
and Zillow6D. The only difference between these two datasets is one dimension,
namely tax value. However, considering that tax value for a house necessarily is
bound to have some form of correlation with nearly all aspects of the house, it
is hardly surprising that results are affected. In fact, Zillow5D contains a massive
skyline comprised of 91152 tuples, whereas Zillow6D contains only 719 skyline tuples,
less than 1 percent of the former. Furthermore, we see distinct similarities between
the correlated dataset and Zillow6D. APSkyline spends the majority of the runtime
partitioning, while ParallelBNL and PSkyline take advantage of the simple dataset
to achieve superior performance.

In summary, algorithms based on angle-partitioning were most efficient for the time
consuming datasets, while ParallelBNL and PSkyline excelled for simpler cases.
PSkyline performed slightly better than APSkyline for two small real-life datasets
and was quite efficient for a work-intensive real-life dataset. Nevertheless APSSam-
pleDynamic+ was able to reduce runtime by approximately 30% compared to PSky-
line for the most work-intensive real-life dataset.

5.8 Implications

These results imply that the increasing parallel compute power in modern processors
can have a significant impact on performance in DBMSs. Not only for independent
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queries running in parallel, but also internally in relational operators.

A simple basic-nested-loop [41] was able to efficiently utilize parallel compute power
for synthetic datasets and moderately small real-life datasets. When all threads were
in use, ParallelBNL achieved performance comparable to PSkyline, even though
ParallelBNL performed significantly worse for low thread counts. This indicates
that, basic algorithms can be very efficient if they are able to utilize parallel compute
power to a sufficient degree.

The D&Q-based skyline algorithm presented in [37] achieved competitive perfor-
mance characteristics for wide variety of input, and was significantly more efficient
than ParallelBNL and APSkyline variations that exclusively used geometric proper-
ties in partitioning. However, a variant of APSkyline using geometric-random parti-
tioning to prioritize a fair workload was most efficient for this case. This illustrates
the importance of fairness in parallel algorithms. Furthermore it shows that, even
though an basic algorithm may exhibit great speedup when parallelized, there is no
guarantee that it will be able to compete with more sophisticated algorithms for
work-intensive input data.

We observed that an expensive pre-processing step was very effective for skyline
computation in a multi-core environment. Specifically, we were in some cases able to
significantly outperform competing algorithms by adapting a novel angle-based par-
titioning technique originally developed for parallel and distributed systems. We
therefore emphasize the importance of considering techniques known to be effi-
cient for traditional DBMSs also in a multi-core context, even though they may
be compute-intensive.

Each of the tested algorithms excelled for some situations, however, the D&Q-based
algorithms were more robust for a real-life input, and in general more stable than
ParallelBNL for a variety of datasets. Additionally, APSkyline was significantly more
efficient than competing algorithms for work-intensive datasets. In skyline computa-
tion, it is reasonable to use heuristics to choose between a number of algorithms in
order to maximize performance for all distributions. Therefore, it is important iden-
tify characteristics that can be used to determine which algorithm is best for a given
dataset, extending the work done in [8, 16, 23, 29] by also considering multi-core
algorithms in shared-memory environments.
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Chapter 6

Conclusions and future work

Recently multi-core processors have become wide-spread, and it is likely that this
this architecture will continue to thrive in the future. Even laptops are equipped
with processors of four cores or more. This have led to an increasing interest in
shared-memory programming and parallel algorithms. Efficient algorithms and data
structures running on shared-memory systems with multi-core processors are needed
to utilize the increased compute power.

In this thesis we explored the multi-core landscape in a database context by in-
vestigating existing methods and algorithms, developing a novel multi-core skyline
algorithm, and by conducting various experiments. In order to identify and explain
important design criteria for multi-core algorithms we introduced modern proces-
sor architectures in a historical perspective. Additionally, we described the skyline
operator, including associated state-of-the art sequential and parallel algorithms.
Finally, we conducted various experiments to evaluate how our proposed skyline al-
gorithm performed compared to the current state-of-the-art multi-core algorithms,
and discussed the implications of reported results.

6.1 Conclusions

We started this thesis by asking four research questions related to database operators
on multi-core architectures. In this section we discuss and answer each question based
on observations made in research, development, and experimentation.

RQ1 How can we efficiently exploit multi-core architectures when implementing
database operators? Are there cases where this is impossible?

In Section 2.7 we developed a number of design goals for shared-memory algorithms.
In short, to efficiently exploit multi-core architectures it is essential that algorithms
are designed with a high degree of parallelism and scalability. Algorithms should
minimize synchronization costs and memory usage, however, efficient inter-thread
communication can in some cases be used to improve performance [31] in a shared-
memory system. When inter-thread communication in use, there is a risk of false
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sharing, which can cause significant performance degradation. Consequently, devel-
opers must take special care to avoid memory access patterns causing false sharing,
as described in Section 2.6.1. Finally, algorithms should be designed to achieve a fair
workload among parallel threads, a parallel algorithm is only as fast as its slowest
thread.

RQ2 How can we determine if an algorithm or an operator is viable for multi-core
optimizations?

It is widely known that multi-core processors are ideally used for CPU-intensive
tasks like skyline computation. Nevertheless, by exploiting low inter-thread commu-
nication costs it is also possible to achieve performance gains for less CPU-intensive
operators like top-k and join [1, 4]. By analyzing algorithms, looking for independent
operations and other characteristics presented in Section 2.7, it should be relatively
easy to determine applicability for multi-core optimizations.

RQ3 Is it reasonable to regress into more basic algorithms in order to exploit the
increasing parallel compute power in modern processors?

Research done by Selke et al. in [41] suggests that the answer is yes, it may be reason-
able parallelize basic algorithms in order to outperform more elaborate algorithms
that is inherently sequential or require a substantial amount of pre-processing. Our
results indicated that, for CPU-intensive operators like the skyline operator, paral-
lelizing the most basic algorithms may not be sufficient. However, we also observed
that basic algorithm did excel for some inputs. Based on our observations, we con-
clude that regressing to more basic algorithms is reasonable in some cases, but not
as a general strategy

RQ4 Can pre-processing techniques from parallel and distributed systems be ef-
ficient in a shared-memory context where inter-thread communication is an
order of magnitude less expensive?

By adapting the partitioning scheme first published in [48] into a shared-memory
system we illustrated that pre-processing techniques directed at parallel and dis-
tributed systems can indeed be efficient in a shared-memory environment. We were
able to consistently outperform state-of-the-art shared-memory algorithms for sky-
line computation with anti-correlated data input. For correlated and independent
datasets our algorithm spent a considerable part of the runtime in the partition
phase, and was not as efficient as more basic algorithms. Nevertheless, observations
indicate that such pre-processing techniques have a use also in multi-core systems.

6.2 Future work

There is still much research that can be done for skyline computation, and in general,
related to effective utilization of modern processors in DBMSs. It is likely that related
operators like skyband [36, 9] and skyline cube [55] can be adapted into multi-core
environments using techniques similar to the ones in APSkyline. Additionally, we
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believe that our research can be used in the process of implementing other CPU-
intensive operators like reverse top-k [49, 50] on shared-memory systems.

In order to utilize data parallelism in APSkyline, it should be possible to use SIMD
operations when computing angular coordinates by performing multiple multiplica-
tions simultaneously (during a single point transformation). Additionally, we see a
potential for processing multiple points at the same time utilizing SIMD additions.
This requires blurring of the boundaries between points to some degree, however,
such details can easily be abstracted into a functions and data structures. If APSky-
line are able to more efficiently calculate angular coordinates, the algorithm may be
relevant also for less cost-intensive datasets.

The adaptive algorithm suggested in Section 4.5 can be implemented to create a
more robust skyline algorithm for shared-memory environments. As a variation, it
would be interesting to investigate the possibility of processing many small sample
sets using SSkyline in parallel, then combine sample cardinalities to estimate the
global skyline cardinality. This may well be inaccurate, however, by choosing small
sample sizes it can be done very efficiently by utilizing parallel compute power.

In this thesis, all experiments were executed on the Intel Nehalem architecture. It
possible that one would achieve different results by executing experiments on another
architecture, like the AMD Bulldozer. The AMD Bulldozer is equipped with a greater
number of cores, grouped pairwise into modules. Each pair sharing components like
the floating-point unit and early pipeline stages. Because our experiments make
heavy use of floating-point operations in order to calculate the skyline, such an
architecture may achieve sub-optimal performance.
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