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Problem Statement

This is a continuation of the autumn 2012 project "Towards an energy efficient task
pool implementation for OmpSs" by Thomas B. Marthinsen. The project contributes
to NTNUs participation in the PRACE project[1]. It involves detailed studies of the
OmpSs programming environment and it’s scheduling of tasks.

It is a goal to develop at least one alternative scheduling-plugin which is designed
to improve the energy efficiency, and evaluate it against existing plugins. Evaluations
can use synthetic benchmarks but should also use all OmpSs benchmarks the CARD
group has access to, including the Mont Blanc applications. One possibility that should
be investigated is online monitoring of the active threads serving the OmpSs task pool.
The number of threads used in an OmpSs application are determined before execution,
and will have the same configuration until the application is completed. Complex ap-
plications may consist of several phases, where the preferred number of threads may
vary due to differences in resource contention and scalability. If one is able to identify
the different phases in an application it may be possible to apply energy efficient tech-
niques or even modify the thread configuration at runtime. The student is also free to
investigate other possibilities within the overall goal.

As execution platforms we can continue to use Intel core i7 multicores; quad core
Sandy Bridge and Ivy Bridge, the Sandy Bridge-EP server and maybe also the Vilje
supercomputer.

Main supervisor: Professor Lasse Natvig (CARD-group, IDI)
Technical co-supervisor: PhD Jan Christian Meyer (High Perf. Computing Section,
NTNU - IT Dept.)
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Abstract

The European Mont-Blanc project aims to build future exascale systems using energy
efficient low-power devices. Exascale systems built using low-power devices will re-
quire a large number of processors to achieve competitive performance against state-of-
the-art supercomputers. The project relies on the OmpSs programming model and its
runtime system, in order to handle the complexity of such a massively parallel system.

In this study, an alternative scheduling-plugin has been developed to improve
the energy efficiency of the OmpSs runtime system. The proposed scheduling policy
from the paper ’Process Cruise Control’ has been extended for multi-core systems and
integrated into the developed scheduling-plugin. The scheduling-plugin improves the
energy efficiency by continuously monitoring the workload, in order to identify situa-
tions where it would be beneficial to adjust the frequency through dynamic voltage and
frequency scaling.

The solution has been evaluated on Sandy Bridge-EP with 17 OmpSs application
kernels. Energy consumption is measured for the processor package through the Run-
ning Average Power Limit interface on Sandy Bridge. The results shows that energy
savings can reach up to 30% in memory intensive applications, with limited impact on
performance.
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Sammendrag

Det europeiske Mont-Blanc prosjektet tar sikte på å bygge fremtidige exascale-systemer
ved hjelp av energieffektive enheter. Exascale-systemer bygget ved hjelp av energi-
effektive enheter vil kreve et stort antall prosessorer for å oppnå konkurransedyktig
ytelse mot state-of-the-art superdatamaskiner. Prosjektet er avhengig av programmer-
ingsmodellen OmpSs og dets runtime system for å administrere kompleksiteten til et
slikt massivt parallelt system.

I dette studiet har det blitt utviklet en alternativ scheduling-plugin for å forbedre
energieffektiviteten i runtime systemet til OmpSs. Den foreslåtte planleggingspolitikken
fra artikkelen ’Process Cruise Control’ har blitt utvidet for flerkjernesystemer og inte-
grert i den utviklede scheduling-pluginen. Scheduling-pluginen forbedrer energief-
fektiviteten ved kontinuerlig overvåking av arbeidsmengden for å identifisere situ-
asjoner hvor det vil være gunstig å justere frekvensen gjennom dynamisk spenning og
frekvensskalering.

Løsningen har blitt evaluert på Sandy Bridge-EP med 17 OmpSs applikasjonskjerner.
Energiforbruket er målt for prosessorpakken gjennom Running Average Power Limit
grensesnittet på Sandy Bridge. Resultatene viser at løsningen kan spare opp til 30%
energi for minne-intensive applikasjoner, med begrenset innvirkning på ytelsen.
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Chapter 1

Introduction

1.1 Motivation

Energy efficiency is one of the major concerns for design of supercomputers, and it
is unanimously recognized that if future exascale systems should be affordable, the
power consumption of current petascale systems must be reduced[2]. The Mont-Blanc
project[3] is a European project that aims to achieve breakthroughs towards energy ef-
ficient designs of new supercomputers. The project is coordinated by the Barcelona
Supercomputing Center(BSC)[4], and receives financial support from EU and other Eu-
ropean partners. The system architecture relies on energy efficient components found
in embedded and mobile devices. The project depends on the OmpSs runtime layer to
manage the architectural complexity, in order to provide a simple parallel programming
interface.

The aim of this research has been to investigate how one can integrate energy effi-
cient techniques into the OmpSs runtime layer. This study is part of a series of research
projects carried out by master students at NTNU to examine and evaluate the OmpSs
environment[5][6]. This is the first study in the series that aims to develop a component
that can be integrated into the OmpSs runtime layer, to improve the energy efficiency
of the system.

In current systems the processor can use a large portion of the total energy con-
sumption. Measurements made in ’Analyzing the Energy Efficiency of a Database Server’[7]
demonstrates that the processor can consume over 50% of the energy in database servers.
The energy consumption of the processor varies with the frequency. If the processor
must stall for outstanding memory requests, it can be energy efficient to decrease the
frequency, since the latency of the main memory will be reduced.

In this study, an intelligent agent has been integrated into a scheduling-plugin
which can be used from the OmpSs runtime layer. The agent is responsible for ad-
justing the frequency based on the processor state, in order to maximize the energy
efficiency. This type of scheduling-plugin can have applications in systems with en-
ergy constraints[8]. If the system is not capable of utilizing the maximum frequency
of all cores at the same time, then the scheduling-plugin can prioritize how the avail-
able energy should be distributed. The benefit of implementing this mechanism in a
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scheduling-plugin is that the runtime layer will be able to take into account the priority
of different tasks when adjusting the frequency.

1.2 Research Questions

The following questions guided the research:

1. How can the different phases in an application be identified?

2. Is it possible to adjust the thread configuration at runtime?

3. How can knowledge of the phases in an application be used to apply energy effi-
cient techniques?

4. How should the measurements be carried out for evaluating the developed scheduling-
plugin?

The first research question deals with the issue of identifying the different phases
in an application. The aim is to make the runtime system aware of underlying phases
in tasks, so that energy efficient techniques can be applied based on this knowledge.

The second question addresses whether it is possible to modify the thread config-
uration at runtime. The aim is to investigate whether the OmpSs environment supports
functionality to adjust the current thread configuration.

The third question deals with the problem of how energy efficient techniques
should be applied. It is a goal to develop at least one alternative scheduling-plugin,
so it must be investigated how energy efficient techniques can be integrated.

The fourth question addresses how the energy efficiency of the scheduling-plugin
should be evaluated. The evaluation process will use benchmarks from the Mont Blanc
application kernels and The Barcelona OpenMP Task Suite. Measurements obtained
from the specialization project [9] indicated that the Distributed Breadth First(DBF)
scheduler provided the best overall energy efficiency of the scheduling-plugins that
were already implemented in the OmpSs environment. The developed scheduling-
plugin will be evaluated against DBF, because it will extend functionality from this
plugin.

1.3 Contributions

The main contributions of this work are:

1. A prototype of an alternative scheduling-plugin for the OmpSs environment is
developed to improve the energy efficiency of the runtime layer.

2. The proposed energy-aware scheduling policy from the paper ’Process Cruise Con-
trol’[10] is extended for multi-core processors.

3. The scheduling-plugin is trained on four different metrics, in order to find out
which metric that provides the best energy efficiency for solutions that use dy-
namic voltage and frequency scaling.

2
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4. The report highlights potential problems with the current implementation of the
OmpSs runtime layer that have been discovered through this study.

1.4 Report Outline

Below is a short summary of the content in the different chapters.

Chapter 2 Background presents the OmpSs environment, metrics and techniques
for energy efficiency, the dwarfs of parallel computing, governors, the concept of
an intelligent agent, and related work.

Chapter 3 Design of scheduling-plugin describes the ideas and decisions behind
the scheduling-plugin and how it has been implemented.

Chapter 4 Methodology covers the application kernels used for benchmarking,
the experimental setup, and methodology.

Chapter 5 Results presents how the developed scheduling-plugin affects perfor-
mance and energy consumption for the different application kernels.

Chapter 6 Discussion interprets the results and compares them with findings
from related work.

Chapter 7 Conclusion and Further Work concludes with a summary of the results
and discusses opportunities for further work.
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Chapter 2

Background

2.1 Task-based programming

Task-based programming is a parallel programming model based on Task-Level Paral-
lelism. There are several reasons why it is advantageous[11][12] to express the paral-
lelism in an application in terms of tasks:

• Correspondence between parallelism and the available resources

• Minimize the overhead of starting and terminating a thread

• Opportunities for runtime optimizations

• Increased programmability through abstraction

The fact that parallelism is expressed in terms of tasks creates an abstraction layer,
and enables use of intelligent runtime systems that can perform optimizations. The
runtime system can limit the number of active threads to the number of cores, reuse
threads, improve load balancing, prefetch, and perform replication management.

2.2 OpenMP SuperScalar (OmpSs)

OpenMP SuperScalar(OmpSs) is a task based programming model under development
by Barcelona Supercomputing Center(BSC). Explicit message passing has widely been
used for communication and exchange of data between nodes in a cluster. Challenges
such as variability in application types and resource availability have called for less
structured and more asynchronous execution models. OmpSs addresses this problem
by exposing the programmer to a virtual shared memory model, where it creates the
illusion of a task based model on a single address space. Directionality clauses are used
to specify how data is accessed by each task, so the runtime system can compute depen-
dencies, automatically handle data movements, and create an asynchronous dataflow.
Listing 2.1 provides an example of how tasks are expressed, and Figure 2.1 illustrates
its associated dependency graph.
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Listing 2.1 Example of task-based programming with OmpSs

1 /* header */
2 #pragma omp task output(a)
3 void A(int* a);
4

5 #pragma omp task output(b)
6 void B(int* b);
7

8 #pragma omp task input(a) inout(b)
9 void C(int* a, int* b);
10

11 #pragma omp task input(b)
12 void D(int* b);
13

14 /* source */
15 int main(int argc, char *argv[]) {
16 int* a = new int[1000];
17 int* b = new int[1000];
18

19 A(a);
20 B(b);
21 C(a, b);
22 D(b);
23 }

a b

b

Figure 2.1: Dependency Graph for the OmpSs example illustrated in Listing 2.1

6
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2.2.1 Nanos++ runtime library

Nanos++ is the runtime used by the OmpSs programming model. It is an extensible run-
time library designed to support parallel environments. The main purpose of Nanos++
is to be used for research in parallel programming environments, so it is extensible by
various forms of plugins. Mercurium is a source-to-source compiler, that transforms
specified #pragmas to runtime calls.

Figure 2.2: Overview of the Nanos++ runtime[13]

2.2.2 Overview of Nanos++ class hierarchy

System

System acts as the interface to the runtime library, and defines the functionality that can
be used by parallel programming models. The class is responsible for initializing data
structures, and ensures that the system shuts down in a controlled manner.

WorkDescriptor

WorkDescriptor is the class that is responsible for keeping the necessary information
and data for a given task. It contains the executable code, dependencies and other
properties that are necessary to meet the OpenMP requirements. According to OpenMP
3.0[14], tasks can be specified as either tied or untied. A tied task can not be stolen after
it starts executing on a particular thread due to scheduling restrictions, whereas untied
tasks can move freely between threads for load balancing. OpenMP supports tied tasks,
since certain functions require that a task is restricted to a single thread in order to make
the implementation thread-safe.

DependenciesDomain

DependenciesDomain is a graph node that keeps track of dependencies between tasks,
and is part of the internal dependency graph in Nanos++. The DependenciesDomain
contains a WorkDescriptor, and prevents it from being submitted to the runtime system
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until its dependencies are satisfied. When a task is completed, the dependency graph
is updated. If all the dependencies for a task are satisfied, it will be submitted to the
scheduler.

Schedule

Schedule encapsulates functionality from the scheduling-plugin, and provides basic in-
frastructure common to every scheduler. A WorkDescriptor which contains the sched-
uler code is assigned to each thread during the initialization. When a thread completes
its current work, it will always return to the scheduler code for further assignments.
The scheduler code consists of an infinite loop that calls various functions from the
scheduling-plugin, to ensure progression in the dataflow. Nanos 0.6 does not support
sleep mode for threads that have been idle for a longer period. This issue is handled in
the development of version 0.7.

Processingelement and Accelerator

Processingelement and Accelerator are abstract classes that describe the devices avail-
able in the system. They contain functionality for transporting data and initializing the
threads that will use the device.

BaseThread

BaseThread is an abstract class that defines functionality for initializing a thread and ex-
ecuting the code contained in a WorkDescriptor. The default thread implementation in
Nanos++ 0.7a uses POSIX Threads, however it is possible to support other customiza-
tions by inheriting from BaseThread. Each thread contains a data structure which is
defined in the scheduling-plugin.

WDDeque

WDDeque is a data structure that can store WorkDescriptors. It is thread-safe by enforc-
ing synchronization when accessed. WorkDescriptors can be added and removed from
both sides of the queue.

2.2.3 Plugins

Nanos++ has an extensible design by means of plugins. The plugin is a class that
provides an interface to register configurations and code that should be added to the
runtime library. Examples of functionality that can be extended through plugins are
Scheduling policies, Throttling policies and Barrier algorithm. A plugin should be linked as
a shared library after compilation, since Nanos++ makes use of libraries through run-
time options.

Scheduling-plugin

The scheduling-plugin defines the policy for how tasks that have satisfied their depen-
dencies should be executed. The policy must determine in which order tasks should

8
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be executed, and how they should be distributed between threads. The most important
functions found in the scheduling-plugin are atSubmit and atIdle. The scheduling-plugin

Property Description

atSubmit The response of the scheduler when a new task has satisfied its dependencies
atIdle What should the scheduler do when the current thread has no task

Table 2.1: Scheduling-plugin functions

can assign one of two data structures to each thread, either ScheduleTeamData or Sched-
uleThreadData. The data structure can be customized inside the plugin, so there is no
limit to what information that can be stored per thread.

Class Description

ScheduleTeamData Shared data structure between all threads in the same team
ScheduleThreadData Per-thread data structure

Table 2.2: Data structures accessible from the scheduling-plugin

Distributed Breadth First scheduler

The Distributed Breadth First scheduling-plugin implements a local WDDeque per thread.
Each thread inserts and retrieves tasks from its local queue in a LIFO order (Last In First
Out, Stack). If the local queue is empty, the thread will try to execute the parent of its
current task. If the parent task can not be executed the thread will try to steal from other
queues. The stealing is done in FIFO order (First In First Out).

2.3 Contention for Shared Resources in Multi-core processors

Multi-core processors have several shared devices integrated on the same die. Figure 2.3
shows a conceptual example of how a multi-core can be organized. Both the last-level
cache, prefetcher and the front-side bus controller are shared between the two cores. It has
become more important to be aware of the underlying hardware when carrying out
parallel programming than what was necessary with the uniprocessor. For multi-cores,
the programmer must not only make sure that each core performs well on its own, but
must also consider how the cores uses the shared resources. If too many cores experi-
ence a large number of last-level cache misses, it may indicate that there are conflicts
over the cache blocks, and the temporal locality may be reduced as a result. In addi-
tion, multiple active cores may increase the need for keeping the shared data in private
caches updated, so the interconnection network will waste energy by performing work
on behalf of the coherency protocol.
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L1 CACHE L1 CACHE

Core 0 Core 1

Last-level cache

Front-side bus
controller

pre-fetch
hardware

Figure 2.3: Conceptual overview of a multi-core

2.4 Energy efficiency

Power issues are the toughest challenges the computer industry faces in order to main-
tain a steady growth in performance [15]. Traditionally, time-consumption has been
used as the metric to measure the effectiveness of an application. However, since energy
consumption has become a major constraint, it is natural that new metrics will emerge.
When developing techniques to make a system more energy efficient, the power con-
sumption is often categorized into two groups: Dynamic power dissipation and Static
power dissipation. Dynamic power dissipation is the power used when transistors are
turned on and off, while static power dissipation is the leakage current in transistors.

Equation

Powerdynamic = Frequency ∗ Voltage2 ∗ Capacitance
Powerstatic = Currentstatic ∗ Voltage
Powertotal = Powerdynamic + Powerstatic

Table 2.3: Definitions of equations for reasoning about energy consumption

2.4.1 Metrics

In computer architecture, energy efficiency refers to the goal of maximizing the ratio
Performancen

Watt [15], where n can be selected with regard to how much the metric should
emphasize performance over energy consumption. In the article ’Models and Metrics to
Enable Energy-Efficiency Optimizations’ [16], Suzanne Rivoire et al. present several metrics
to measure the energy efficiency of a system. This section presents two essential metrics
discussed in the article for measuring the energy efficiency: Operations per Joule and
Energy Delay Product.

10



2.4. ENERGY EFFICIENCY 11

Operations per Joule

If performance is measured as Operations
Second then Performance

Watt can be rewritten as Operations
Joule ,

since 1 Watt = 1 Joule
Second . The metric is suitable for situations where energy consumption

is the main concern.

Energy Delay Product

Horowitz et al.[17] argued that the use of Operations per Joule as the only metric for
measuring energy efficiency may result in designs that favor low performance micro-
processors. Reduction of the voltage required to operate the transistors leads to lower
energy consumption, but the propagation delay will increase and reduce the frequency.
The Energy Delay Product ( Performance2

Watt ) was proposed as the appropriate metric for com-
paring two processor designs. Consequently, the metric favors architectures that reduce
energy consumption and still maintain high performance.

2.4.2 Energy efficient techniques

In the article ’Green Computing: Saving Energy by Throttling, Simplicity and Paralleliza-
tion’[18], Lasse Natvig and Alexandru C. Iordan presented an overview of several tech-
niques that are used to make computers more energy efficient. They introduced the con-
cept of the "5 Ps of parallel processing": performance, predictability, power-efficiency,
programmability and portability. Figure 2.4 illustrates how the properties of a parallel
application may have conflicting goals, so it is important to be aware of the impacts
caused by applying energy efficient techniques.

Figure 2.4: 5 Ps of parallel processing[18]
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Dynamic power dissipation

Examples of techniques that aim to reduce dynamic power dissipation are: Dynamic
Voltage and Frequency Scaling, Sleep modes and Overclocking. The techniques manage
power consumption by adaptively adjusting the frequency and voltage in response to
changing conditions in workload or environment.

• Dynamic Voltage and Frequency Scaling (DVFS). Computers often experience peri-
ods with varying activity where there is no need to operate at the highest fre-
quency. Microprocessors often provide a set of available clock frequencies, and
DVFS is a technique that makes it possible to switch between frequencies at run-
time.

• Sleep modes. In some cases, parts of the system may be disabled during periods to
conserve energy. Sleep modes provide opportunities to control which parts of a
system that should be enabled, and may have great impact in general computing
when the number of devices that can be activated simultaneously is limited by the
total energy consumption.

• Overclocking. To conserve energy, it may in several cases be an advantage to com-
plete a task quickly so the system can shut down or enable sleep modes. If it is safe
to run at a higher clock rate for a short period, it may conserve energy since the
computation time decreases and overall static power dissipation may be reduced.

Static power dissipation

Static power dissipation is caused by leakage in transistors, important factors that may
reduce the leakage are material properties, operational voltage and the initial design of
components.

• Power gating. This technique involves turning off the power supply of inactive
devices to control loss due to leakage.

• Near Threshold Computing. When transistors operate at low voltage the energy
demand can be reduced significantly. However the frequency of the processor
must be lowered due to increased propagation delay.

• Simpler designs and Asymmetric Multi-core. In the article, ’Extending Amdahl’s Law
for Energy-Efficient Computing in the Many-Core Era’[19] it was illustrated that Asym-
metric Multi-core is the most energy efficient multi-core design. By focusing on
maximizing performance

transistor the overall energy spent on leakage may be reduced. When
multiple simpler cores are combined, their static power dissipation will be lower
than what state-of-the-art superscalar processors can achieve. However in situa-
tions where parallelism is limited, it may turn out that powerful processors are
most energy efficient. Therefore, Asymmetric Multi-core systems which consists
of many small cores combined with state-of-the-art superscalar processors may be
the most energy efficient design.

12
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2.5 Hardware performance counter

Hardware performance counters are a type of control registers that can be accessed in
modern microprocessors. These registers can be used to monitor the condition of the
processor, as they can be set to count how many times specific events occur during ex-
ecution. Examples of some events that can be monitored are cache misses, snoop requests,
mispredicted branches and instructions completed. Current processors support only that a
limited number of performance counters can be monitored at the same time.

2.5.1 Performance Application Programming Interface (PAPI)

PAPI is a portable library which provides a consistent interface towards the hardware
performance counters in most of the major microprocessors. Both predefined high-level
events and more processor-specific events are supported by the library. Each thread in
an application can register a private EventSet that keeps track of which performance
counters that should be monitored. The ability to read, start and stop the performance
counters is supported through high-level functions. At context switch, the status of the
performance counters are stored just like other private states.

2.6 Intelligent agent

From the field of artificial intelligence in computer science, an intelligent agent refers
to anything capable of observing the environment through sensors and acting upon it
through actuators. Agents can be categorized into several types based on their tasks.
The simplest agents act upon their environment based on current observations where
the available actions are determined from static rules, others may incorporate some
form of memory to capture previous observations, while more advanced agents may
even be able to learn new actuators based on experience and performance feedback.

Figure 2.5: Overview of an Intelligent Agent[20]
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2.7 The Landscape of Parallel Computing: Dwarfs

The article ’A View of the Parallel Computing Landscape’[21], provides insight into the chal-
lenges that comes with parallel computing. Scientists from Par Lab at Berkeley believe
that research prototypes should be built on the basis of needs in practical applications.
Instead of traditional benchmarks, one should use dwarfs identified from real applica-
tions when designing and evaluating prototypes. A dwarf is an algorithmic method
that captures a pattern of computation and communication. Figure 2.6 provides an
overview of 12 dwarfs found in real applications areas.

Figure 2.6: The color of a cell indicates the presence of the computational pattern in an
application: red/high; orange/moderate; green/low; blue/rare. The figure originates
from ’A View of the Parallel Computing Landscape’[21]

Finite State Machines

The computation is represented as a finite state machine that has interconnected states
with transitions between one another.

Combinational Logic

Functions which exploit bit-level parallelism to obtain high throughput. This compu-
tational pattern is often found in algorithms that performs simple operations on large
datasets.

Graph Traversal

Graph algorithms traverse a number of objects and examine them as they are traversed.
Characteristic of graph traversal applications is that they often require indirect lookups
and little computation.

14



2.7. THE LANDSCAPE OF PARALLEL COMPUTING: DWARFS 15

Structured Grids

The data is arranged in a regular multidimensional grid. Computational steps update
all points using data from the neighborhood around each point.

Dense Linear Algebra

Dense Linear Algebra consists of classic vector and matrix operations. The data is typi-
cally laid out in continuous arrays.

Sparse Linear Algebra

Matrices have a large number of zero entries, so it becomes advantageous to compress
the matrix representation.

Spectral Methods

Spectral Methods consists of spectral domain computations transformed from either
temporal or spatial domains. The Fast Fourier Transform algorithm is typically used in
this field.

Dynamic Programming

Dynamic Programming is a problem solving paradigm which consists of algorithmic
techniques that computes solutions by solving simpler overlapping subproblems. So-
lutions to previous subproblems are stored to avoid repeating the calculations.

N-Body Methods

N-Body methods involve calculations that depend on ineractions between discrete points
or particles. The calculations can often be simplified by using hierarchical methods.

Backtrack and Branch-and-Bound

Branch-and-bound algorithms are effective for solving search and global optimization
problems. Dynamic load balance is one of the major challenges in order to gain efficient
parallel algorithms.

Graphical Models

Graphical models are graphs that represent random variables as nodes and conditional
probabilities as edges. Hidden Markov models and neural networks are examples of
graphical models.

Unstructured Grids

The data is arranged in a irregular grid. Computational steps update all points using
data from the neighborhood around each point.
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MapReduce

The data can be processed independently in parallel, however the results need to be
merged.

2.8 Governors

The Linux kernel CPUfreq subsystem provides the ability to control the processor fre-
quency through the use of CPUfreq governors. The governor defines the rules for how
the frequency should be adjusted. Table 2.4 gives an overview of the supported gover-
nors in CPUfreq 3.8.12-100.fc17. The cpu load is calculated on the basis of how many
jiffies the cpu has used to execute processes. A jiffy is the duration between successive
system timer interrupts. The value of a jiffy typically varies between 1 ms and 10 ms.

Module Description

Performance Run the cpu at the highest frequency
Powersave Run the cpu at the lowest frequency
Ondemand Adjusts the frequency between minimum and maximum based on the cpu load
Conservative The frequency is gradually adjusted base on the cpu load
Userspace Enables userspace applications to specify the cpu frequency

Table 2.4: Description of CPUfreq Governors

2.9 Related Work

2.9.1 Towards an energy efficient task pool implementation for OmpSs

In the specialization project ’Towards an energy efficient task pool implementation for OmpSs’[9],
Thomas B. Martinsen carried out initial experiments to examine how an energy efficient
scheduling-plugin for Nanos++ could be developed. The study evaluated the perfor-
mance and energy efficiency for the different scheduling policies already implemented
in the Nanos++ runtime environment. Experiments revealed that the performance and
energy efficiency of the scheduler was mainly influenced by five parameters: search
strategy, use of local or global task pool, work-stealing, throttle-policy and the num-
ber of active threads. A case-study presented how to develop scheduling-plugins for
Nanos++.

2.9.2 Evaluating Scalability of Multi-threaded Applications on a Many-core
Platform

In the article ’Evaluating Scalability of Multi-threaded Applications on a Many-core Plat-
form’[22], Gupta, Kim and Schwan performed a scalability analysis of parallel applica-
tions on a 64-threaded Intel Nehalem-EX server. The authors measured how the hard-
ware was used through performance counters, and used the acquired measurements to
demonstrate that application performance can be limited due to contention for shared
resources. While additional threads are active, the contention for shared resources can

16
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increase, and the application may experience stagnation or slowdown in performance.
The authors discussed two possibilities to reduce the energy consumption if the appli-
cation performance is limited due to contention for shared resources. By regulating the
number of threads, contention for shared resources can be reduced, and fewer cores
need to be enabled. The authors argued that this method could reduce the energy con-
sumption of the executed benchmarks with 59%. If an application must stall due to
outstanding memory requests, DVFS can be applied to reduce the power consumption
with minimal impact on performance. By applying DVFS, the authors stated that they
could reduce the energy consumption of the executed benchmarks with 17%.

2.9.3 Monitoring of Cache Miss Rates for Accurate Dynamic Voltage and
Frequency Scaling

In their article, ’Monitoring of Cache Miss Rates for Accurate Dynamic Voltage and Frequency
Scaling’[23] Singleton, Poellabauer and Schwan described an energy-aware scheduler
that predicts which frequency consumes the least energy, and still satisfies deadlines in
real-time systems. The authors proposed a linear regression model that could predict
the execution time of an application based on CPU frequency, memory frequency and
cache misses. The linear regression model is presented in Equation 2.1.

texecution = CCPU(fCPU) + (
data cache misses

instructions executed
∗ Cbus(fbus)) (2.1)

The equation estimates the execution time where CCPU(fCPU) is a constant that depends
on the CPU frequency, and Cbus(fbus) is a constant that depends on the bus frequency.
In order to train the regression model, the authors designed a test program that could
be used to generate a specific miss rate by performing memory accesses on a large ar-
ray. The test program was executed with different miss rates, and the execution time
was measured for each run. This procedure was carried out for each available clock fre-
quency. Although the model is trained with a specific test program, the ratio between
different texecution can be used to estimate how DVFS will affect the performance by ad-
justing the frequency. Once the model is trained, the scheduler can use it at runtime in
order to select the most energy-efficient frequency that still meets deadlines.
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2.9.4 Process Cruise Control

In the paper ’Process Cruise Control’[10], Weissel and Bellosa proposed an energy-aware
scheduling policy for non-real-time operating systems. The scheduler reads informa-
tion from performance counters and utilizes it to determine the approperiate clock fre-
quency for each running process. The approperiate clock frequency was defined to be
the lowest frequency where the performance only suffered with 10% compared to the
execution time with the highest clock speed. The authors argued that instructions per
clock cycle(IPC) and memory requests per clock cycle(MRPC) were appropriate events to
identify how the hardware is used by a process. It would be desirable to have a function
f(IPC, MRPC) that returned the appropriate frequency, however, finding an analytical
expression for this function may be challenging. Therefore, the authors suggested to
represent the parameter space of the function in form of a precomputed lookup table as
illustrated in Figure 2.7.

Figure 2.7: Lookup table for determining the approperiate clock frequency based on the
current state of the system[10]

The lookup table was trained with six synthetic benchmarks with different char-
acteristics in order to cover the parameter space. The lookup table was integrated into
the Linux scheduler, where it was used to predict the optimal frequency for a process at
each context switch.

18
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2.9.5 Green Governors: A Framework for Continuously Adaptive DVFS

In the article ’Green Governors: A Framework for Continuously Adaptive DVFS’[24], Spiliopou-
los, Kaxiras and Keramidas developed energy efficient governors that adjusted the fre-
quency based on information from performance counters. The governors are effective
for memory intensive applications, since reducing the processor frequency will lower
the main memory latency. The governors were evaluated on Intel i7 and AMD Phenom
II. The authors used three equations to determine whether the frequency should be ad-
justed. The equations were evaluated for each possible frequency in order to estimate
the minimum Energy Delay Product that could be achieved. Equation 2.2 provides the
total energy consumption for an interval based on models trained for estimating the
dynamic and static energy used by the system. The governors were configured to be
called periodically every 50ms.

Energypredicted = Dynamicmodel(ipc)+Staticmodel(frequency, temperature)∗50ms (2.2)

Equation 2.3 calculates the expected execution time that the processor will achieve
based on frequency and stalls due to non-overlapping last level cache misses. The
model relies on knowledge about the last level cache miss penalty in order to estimate
the number of non-overlapping last level cache misses.

Timepredicted = Stallmodel(stalls, frequency) (2.3)

Equation 2.4 computes the predicted Energy Delay Product.

EDPpredicted = Energypredicted ∗ Timepredicted (2.4)
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Chapter 3

Design of scheduling-plugin

Several benchmarks were used in the specialization project[9] in order to identify situ-
ations where a scheduling policy is more energy efficient than others. The benchmarks
were compiled with Mercurium 1.3.5.8, and Nanos++ 0.6a was used as runtime sys-
tem. The benchmarks were executed on a Sandy Bridge-EP server, which consists of
two Intel Xeon CPU E5-2670. Results from the study indicated that there was variation
between the scheduling policies, however, it also appeared that the thread configura-
tion had an impact on the energy efficiency. In some cases it was optimal to activate all
the cores, while at other times the performance stagnated or even decreased when addi-
tional threads were added due to increased resource contention. If the thread configura-
tion can be adjusted at runtime, it may be possible to search for an optimal configuration
guided by information from hardware performance counters, as described in ’Feedback-
driven threading: power-efficient and high-performance execution of multi-threaded workloads
on CMPs’ [25] and ’Thread Reinforcer: Dynamically Determining Number of Threads via OS
Level Monitoring’ [26]. It was investigated whether Nanos++ supported functionality
to suspend and resume threads during execution. The underlying thread implementa-
tion in Nanos++ 0.7a-2013-02-22 uses POSIX Threads for executing tasks on symmetric
multiprocessors (SMP). The native POSIX thread library in Linux does not support func-
tionality to suspend and resume threads, because it may be unsafe to block threads that
currently hold locks. The POSIX thread implementation in RTLinux supports pthread_-
suspend_np and pthread_unsuspend_np. It may be possible to modify the thread im-
plementation and compiler so Nanos++ can identify whether it is safe to suspend a run-
ning thread, however, it will require extensive knowledge about Nanos++, Mercurium
and the Linux kernel, which is beyond the scope of this project.

Although it is not possible to adjust the thread configuration at runtime, the en-
ergy efficiency can be increased by changing the processor frequency according to the
workload. If the speedup begins to stagnate or decrease as more threads are added, it
may be efficient to lower the frequency in order to reduce the dynamic power dissipa-
tion. However, both the execution time and the static power dissipation may increase as
a result. When the frequency is lowered, the processor will spend fewer cycles waiting
for outstanding requests, since the memory latency will be reduced. If the performance
is limited due to contention for shared resources, the energy saved by reducing the dy-
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namic power dissipation may outweigh the increased static power dissipation.

In this study, the Distributed Breadth First scheduler has been extended with an
intelligent agent that observes the state of the system, and applies dynamic voltage and
frequency scaling (DVFS) in order to make Nanos++ more energy efficient. DVFS is a
technique which enables the frequency of the microprocessor to automatically be ad-
justed at runtime. The userspace governor allows userspace applications to set the pro-
cessor frequency explicitly, however Intel Xeon CPU E5-2670 enforces that each core
must have the same frequency. This means that if the frequency of a core is adjusted it
will affect all the cores on the same socket.

22
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3.1 The Intelligent Agent

An intelligent agent has been designed to observe the system and apply DVFS if the cur-
rent frequency is ineffective. The agent reads information from hardware performance
counters at regular intervals through the PAPI interface, and uses it to predict the most
energy efficient frequency based on the current state of the system. Figure 3.1 provides
an overview of how the agent has been designed. The agent uses Instructions per cycle
(IPC), Last level cache misses per cycle (LLCMPC) and the number of active cores as indices
into a lookup table that contains the frequency which is estimated to be the most energy
efficient for this state.

Sensors

Read IPC

How many
cores are active?

What frequency

Apply DVFS

Look up in table

ActuatorsAgent

Worker threads

should be applied?

Read LLCMPC

Figure 3.1: Overview of the Intelligent Agent

3.1.1 Ideas and decisions behind the intelligent agent

It was determined that the intelligent agent should be designed to leverage DVFS, since
it was not possible to adjust the thread configuration at runtime. The organization of
the task environment in Nanos++ limits which algorithms the agent can use to decide
if DVFS should be applied or not. The agent is restricted to algorithms that do not
rely on a fully observable task graph or knowledge about task durations. This study
considers extensions of one of the energy-aware schedulers proposed in ’Monitoring of
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Cache Miss Rates for Accurate Dynamic Voltage and Frequency Scaling’[23], ’Green Governors:
A Framework for Continuously Adaptive DVFS’[24] and ’Process Cruise Control’[10]. None
of these schedulers rely on knowledge about task durations or the task graph.

In the article, ’Monitoring of Cache Miss Rates for Accurate Dynamic Voltage and Fre-
quency Scaling’ it was proposed that the scheduler should determine which frequency
consumes the least amount of energy, and still satisfies deadlines in real-time systems.
In order to do this the scheduler uses a linear regression model to estimate the relative
performance between frequencies. Nanos++ is not a real-time system, and the task du-
rations are unknown. However, the relative performance between frequencies can still
be useful to determine which frequency is most energy efficient. If one measures the en-
ergy efficiency in terms of the lowest energy consumption, then the original regression
model can be extended by multiplying texecution with Powerfrequency.

texecution∗Powerfrequency = (CCPU(fCPU)+(
data cache misses

instructions executed
∗Cbus(fbus)))∗Powerfrequency

Powerfrequency can be estimated at runtime with a power model[27] based on per-
formance counters. The agent can select the frequency with the lowest estimated en-
ergy consumption when DVFS should be applied. However, when benchmarks were
executed in order to collect data, it appeared that the cache miss rate gave a poor esti-
mate of how efficiently the processor could utilize the frequency to execute instructions.
The study was originally carried out with an Intel XScale PXA255 evaluation board.
From ’Intel® XScale™ Microarchitecture for the PXA255 Processor User’s Manual’[28], it
was found that the XScale PXA255 pipeline is scalar and single issue. Although XS-
cale PXA255 has three pipelines, Intel Xeon CPU E5-2670 is a more advanced processor
which is able to hide memory latency by out of order execution. Therefore, cache misses
on the Intel Xeon CPU E5-2670 may give an inaccurate estimate for which frequency is
most energy efficient.

The problem with the algorithm proposed in ’Monitoring of Cache Miss Rates for Ac-
curate Dynamic Voltage and Frequency Scaling’ was that it solely relied on the cache miss
rate. As long as the processor does not need to stall for outstanding memory requests,
it can continue to do useful work even though the cache miss rate is high. In the paper,
’Process Cruise Control’, it was proposed that the scheduler should use information about
both the IPC and memory requests in order to determine the appropriate clock frequency.
The advantage of combining IPC and memory requests is that the scheduler gains more
accurate insight about the processor state. A high IPC indicates that the processor still
can do useful work, even if it experiences a large number of cache misses. The scheduler
relies on a lookup table that has been trained to contain frequencies which are optimal
in relation to a particular metric. In the original study, the metric was defined to be the
lowest frequency where the performance only suffered with 10% compared to the exe-
cution time with the highest clock speed, however, the metric may as well be Operations
per Joule or Energy Delay Product. In the article, ’Green Governors: A Framework for Con-
tinuously Adaptive DVFS’, it was suggested to combine the IPC and the last level cache
miss penalty in order to predict the most energy efficient frequency. Due to insufficient
information about the last level cache miss penalty on Sandy Bridge-EP, it was decided
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to extend the solution proposed in ’Process Cruise Control’.

In this study, the idea of using a lookup table to predict the most energy efficient
frequency is extended to multi-core processors by adding a new dimension for the num-
ber of active cores. The new dimension is able to capture how the frequency is affected
by factors as the ratio between static power dissipation and dynamic power dissipation and
increased leakage current as additional cores are enabled. Instead of implementing the
lookup table in the Linux scheduler, it is integrated in a scheduling-plugin that can
be used in Nanos++. The Intel Sandy Bridge Microarchitecture does not support per-
formance counters to monitor the number of memory requests, therefore, the number
of last level cache misses is selected as a replacement, since requests that access main
memory have the highest miss penalty.

Figure 3.2 illustrates how the number of enabled cores affects which frequency is
most energy efficient. The results show the relative energy consumption between four
different frequencies where Distributed Breadth First(DBF) is selected as scheduling-
plugin. While additional threads are activated, lower frequencies become more en-
ergy efficient. The results are from a synthetic benchmark that only utilizes the private
caches, and is configured to generate an identical task for each thread. This suggests
that the optimal choice of frequency for energy efficiency is influenced by more factors
than contention for shared resources. The measurements are made for the processor
package.

Figure 3.2: Relative energy consumption between four different frequencies

It is assumed that the ratio between static power dissipation and dynamic power dissipa-
tion and increased leakage current affects the frequency that is most energy efficient, since
these factors are influenced by the number of enabled cores.
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The ratio between static power dissipation and dynamic power dissipation

Intel Xeon CPU E5-2670 contains eight cores and various shared resources. As can be
seen from Figure 3.3, the shared resources must be enabled if one of the cores are acti-
vated.

Figure 3.3: Block Diagram of the Intel Xeon Processor E5-2600 Family[29]

Equation 3.1 describes the energy consumption for the processor package.

Energypackage = Energycores + Energyshared resources (3.1)

The goal is to minimize Energypackage, however, minimization of Energycores and
Energyshared resources represents a conflict. If Energycores is reduced, it leads to increased
execution time, which affects Energyshared resources. When few cores are active, Energyshared resources

dominates Energycores. In this case, a high frequency can be tolerated even if the proces-
sor must stall frequently due to outstanding memory requests. Similar ideas are used
in ’Intel® Turbo Boost Technology’[30], which is a technology that dynamically increases
the frequency based on the number of active cores, estimated current consumption, es-
timated power consumption, and the processor temperature.
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Increased leakage current

In the article, ’Leakage Current: Moore’s Law Meets Static Power’[31] an equation for cal-
culating the subthreshold leakage current it is presented:

Isub = K1 ∗W ∗ e
−Vth
n∗VΘ ∗ (1− e

−V
VΘ ) (3.2)

In this equation, Isub is the subthreshold leakage current. K1 and n are empirically de-
termined, W is the transistor width, while VΘ in the exponents is the thermal voltage
which increases linearly with the temperature. The authors argue that if the subthresh-
old leakage current builds up heat, VΘ will start to rise, further increasing the leakage
current and possibly causing thermal runaway.

The temperature of the system increases with the number of cores that are enabled,
therefore, the subthreshold power leakage may influence which frequency that is most
energy efficient. Lm-sensors (Linux monitoring sensors) provides tools and drivers for
monitoring temperatures, voltage, and fans. Lm-sensors was used for measuring tem-
perature on the processor package. Figure 3.4 illustrates how the temperature is affected
by the frequency and the number of active cores. It is assumed that the system’s tem-
perature increases when two sockets are enabled, however, the exact temperature is not
measured since the evaluated system has no off-chip temperature sensors that can be
accessed through lm-sensors.

Figure 3.4: The temperature of the processor package depends upon the frequency and
the number of active cores
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3.1.2 Design of the lookup table

The lookup table from the article ’Process Cruise Control’ has been extended with a new
dimension to account for the number of active cores as seen in Figure 3.5.

Cache misses per cycle

CoresInstructions

Per Cycle

Figure 3.5: The lookup table models the frequency domain with instructions per cycle,
cache misses per cycle and the number of active cores

The dimension for the number of active cores is discrete, while the dimensions
for IPC and LLCMPC are continuous. Figure 3.6 illustrates how the parameter space
is divided into discrete bins. Each bin contains a frequency and covers an area in the
parameter space. When the intelligent agent should select a frequency from the lookup
table, it will pick the bin that covers the current combination of IPC, LLCMPC and
number of active cores.

Parameter space Parameter space

Discretization

Transform
sensor data
into index

Retrieve
frequency

Agent
into bins

Figure 3.6: The agent retrieves the most energy efficient frequency based on the current
state of the system
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Training phase

Each bin in the lookup table is initialized with the highest available frequency. The
lookup table needs to be trained before it can be used to predict the most energy effi-
cient frequency based on IPC, LLCMPC and the number of active cores. In this study
the lookup table has been trained with seven different application kernels described in
Section 4.3. The training phase is an offline process, and is illustrated in Figure 3.7.

Execute kernel
Threads

Frequency
Figure 3.7: Overview of the procedure for training the lookup table

Each kernel is executed with every combination of frequencies and thread config-
urations available to the system. Energy consumption, IPC and LLCMPC are measured
and stored in a temporary matrix. The matrix is indexed with the thread configuration
and the frequency that were used during the execution of the kernel. The measured
energy consumption can be used to indicate which frequency that is most energy ef-
ficient if Operations

Joule is applied as metric, since the number of operations stays constant
when only the frequency is adjusted. For each thread configuration in the matrix, the
most energy efficient frequency will be selected and stored in a column. When the
lookup table is updated with the selected frequencies, the table will be indexed with
their corresponding IPC, LLCMPC and thread configuration. Figure 3.8 presents three
of the matrices that have been produced in the training phase. The matrices illustrates
how IPC and LLCMPC affect which frequency that is most energy efficient. Table 3.1
provides an overview of the selected application kernels. Note that the listed IPC and
LLCMPC are calculated with the harmonic mean over all runs.

Application kernel IPC LLCMPC

N-body 1.2027 0.0000
Merge Sort 1.0501 0.0002
Histogram 0.5173 0.0064

Table 3.1: Three application kernels used for training

Each row in the matrix represents a thread configuration and each column a fre-
quency. The energy consumption is normalized within each thread configuration to the
range 0 - 100, where the frequency with the lowest value is the most energy efficient.
The matrices show that the most energy efficient frequency depends on IPC, LLCMPC
and the number of active cores. Appendix 7.2.6 provides an overview of all the matrices
that have been used to train the lookup table.
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(a)

(b)

(c)

Figure 3.8: Matrices from the application kernels listed in Table 3.1. In this example,
Operations per Joule is applied as metric for energy efficiency. a) = N-body, b) = Merge
Sort and c) = Histogram.
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If the lookup table is large, the accuracy for selecting the most energy efficient
frequency will increase. However, it may take a long time to fill each bin in the table
since it would require execution of (IPCbins ∗LLCMPCbins ∗Cores∗Frequencies) kernels.
To simplify how the table is filled, it is assumed that certain bins will be dominated by
others. A bin dominates another bin if it is as good or better in all dimensions. In this
case, it is good to have high IPC, low LLCMPC and a low number of active cores.

Definition 1. The definition of the dominance property.

BinA is dominated byBinB ↔ (BinA.IPC ≤ BinB.IPC∧BinA.LLCMPC ≥ BinB.LLCMPC∧
BinA.Cores ≥ BinB.Cores)

BinA is dominated by BinB ↔ (BinA.F requency ≤ BinB.F requency)

The principle of the dominance property is illustrated in Figure 3.9. The parameter
space is divided into discrete bins, where the white bins are dominated by the blue bins.
The dominance property enforces that the frequencies of the white bins must be lower
or equal to the frequencies of the blue bins since their IPC are lower and their LLCMPC
are higher.

IPC

LLCMPC

Figure 3.9: The dominance property enforces that the frequencies of the white bins must
be lower or equal to the frequencies of the blue bins

The dominance property enforces that a bin will never have lower frequency than
the bins it dominates. The advantage of this property is that bins will be updated al-
though none of the kernels never covered their area explicitly. The algorithm for adding
a new frequency to the lookup table is given in Algorithm 1.



32 CHAPTER 3. DESIGN OF SCHEDULING-PLUGIN

Algorithm 1 Procedure for updating the lookup table
procedure UPDATETABLE(IPC, LLCMPC, Cores, Frequency)

for Bin ∈ Bins do
if Bin.IPC ≤ IPC ∧Bin.LLCMPC ≥ LLCMPC then

if Bin.Cores ≥ Cores ∧Bin.Frequency > Frequency then
Bin.Frequency = Frequency

end if
end if

end for
end procedure

3.1.3 Implementation of the intelligent agent

The intelligent agent is implemented as a pthread. The algorithm used by the agent is
given in Algorithm 2. The agent sleeps while the performance counters collect data from
the worker threads. When the agent wakes up, it will calculate the harmonic mean of
IPC and LLCMPC from the running worker threads. In the article, ’Green Governors: A
Framework for Continuously Adaptive DVFS’ [24] the authors also averaged the data from
the performance counters, since the Intel i7 can only apply DVFS to the whole chip. The
IPC, LLCMPC and number of running threads are used as indices into the lookup table,
to pick the preferred frequency for the current state. The number of running threads in-
dicates how many cores are active as long as Hyper-threading is disabled. It is assumed
that Nanos++ is the only running application; if this is not the case, the implementation
must be extended to take into account the total number of active cores. In the imple-
mentation, the lookup table contains indices which can be converted to frequencies in
order to reduce the memory consumption. The agent will call cpufrequtils through a
shell command if the frequency should be adjusted. The time it takes for the CPU to
switch between two frequencies is 10µs. The idea of determining if DVFS should be
applied on the basis of the system’s current state is also used in [23], [10] and [24].

Algorithm 2 Intelligent Agent
procedure INTELLIGENTAGENT

loop
Sleep(Interval)
ipc = readInstructionsPerCycle()
llcmpc = readLastLevelCacheMissesPerCycle()
frequency = table[ipc][llcmpc][runningThreads()]
if frequency != currentFrequency then

DVFS(frequency)
currentFrequency = frequency

end if
end loop

end procedure
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Chapter 4

Methodology

This chapter provides a detailed description of how the research has been carried out:

• Section 4.1 describes the application kernels that have been used during the re-
search.

• Section 4.2 presents the setup of the experiments.

• Section 4.3 covers the experiment methodology which has been used in the study.

4.1 Benchmarks

This section provides an overview of the kernels that have been selected for benchmark-
ing in this study.

4.1.1 Mont Blanc application kernels

The Mont-Blanc project aims to design "The Next Generation Supercomputer", and re-
lies on the OmpSs programming model to handle hardware challenges. This section
presents nine Mont Blanc application kernels that the CARD-group has access to. The
kernels have been ported to OmpSs by the High Performance Computing Group from
Universitat Politècnica de Catalunya[32].

Merge sort

The kernel sorts a random permutation of n integers with a parallel version of merge
sort. The algorithm divides an array in two halves, sorting each recursively. For each
recursive call a new task is generated. The merge is parallelized with a divide-and-
conquer algorithm.

Histogram

The algorithm computes a histogram for the number distribution from an array of in-
tegers. Subsets of the array can be processed independently, however, the histograms
must be merged at the end.
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2D convolution

In image processing, the convolution operator is used as a filter to change the charac-
teristics of an image. The kernel divides the image into blocks that can be processed in
parallel. For each pixel, a filter that requires access to the neighboring pixels in order to
compute the convolution is used.

3D stencil

3D stencil updates each element in a regular multidimensional grid according to the
values from neighboring elements. The grid can be partitioned in order to be processed
in parallel.

Dense matrix multiplication

Dense matrix multiplication computes the matrix product C = A • B. The kernel par-
titions the matrices in blocks that can be processed in parallel. The matrix product of
each block is computed with functionality from cblas, which is a C language interface to
Basic Linear Algebra Subroutine(BLAS) libraries.

Sparse matrix vector multiplication

The kernel multiplies a compressed matrix with a vector. The problem size is divided
in subsets that can be processed in parallel. The compressed matrix consists of pointers
to non zero elements in the primary matrix.

Vector operation

Vector operation computes the sum of two vectors. The vectors are divided in subsets
that can be processed independently.

N-body

N-body calculates the interaction between particles in a system. The algorithm com-
putes the acceleration, velocity and future position of each particle in parallel.

Reduction

The kernel calculates the sum of all values in an array. Subsets of the array can be
processed independently, however the results must be merged at the end.

4.1.2 The Barcelona OpenMP Task Suite

The Barcelona OpenMP Task Suite(BOTS)[33] provides a set of benchmarks targeting
task level parallelism in OpenMP.

FFT

The Cooley-Tukey algorithm computes the one-dimensional fast fourier transform on
a vector of n complex numbers. The algorithm recursively breaks down the Discrete
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Fourier Transform into smaller problems, and for each division it generates additional
tasks.

Fib

The algorithm calculates the nth fibonacci number by recursive parallelism. This is not
an effective solution, however, the algorithm tests how well deep and balanced task
trees can be parallelized.

SparseLU

The kernel computes the LU decomposition over sparse matrices. A primary matrix is
composed of pointers to submatrices, however, a pointer is not allocated if the corre-
sponding submatrix consists only of zeros. Each submatrix is a separate task that can
be executed in parallel.

NQueens

The n queens puzzle is the problem of placing n chess queens on a nxn chessboard so
that no queens attack each other. The algorithm relies on backtracking and pruning in
order to find all possible solutions to the puzzle. For each recursive call a new task is
generated, however, it can be specified that the algorithm should inline tasks after a
certain depth.

Strassen

The Strassen algorithm is a divide-and-conquer algorithm which computes the matrix
product C = A •B, where it is required that n is an exact power of 2 in each of the n x n
matrices. For each recursive step a new task is generated.

4.1.3 Others

Black Scholes

The Black Scholes model is a mathematical model of a financial market, which gives the
price of an option over time. In finance, an option is a contract of selling and buying
an underlying asset at a specified strike price prior to a given date. The Black-Scholes
equation is a partial differential equation. The equation can be solved in parallel by
partitioning the problem. The computational pattern of the algorithm is similar to what
found in dense linear algebra.

Quick Sort

The algorithm sorts a random permutation of n integers with a parallel version of quick
sort. For each of the recursive calls in the algorithm a new task will be generated.
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Unstructured 3D stencil

The kernel updates each element in an irregular multidimensional grid according to the
values from neighboring elements. Neighboring elements must be accessed through
indices, since the grid is unstructured. The grid can be partitioned into independent
tasks in order to be processed in parallel.

36



4.2. EXPERIMENTAL SETUP 37

4.2 Experimental Setup

This section presents the hardware and software packages used in the research. Ad-
ditionally, it provides an overview of how software packages, benchmarks and the
scheduling-plugin have been compiled.

4.2.1 Hardware

Experiments were run on Sandy Bridge-EP, a research computer designed to resemble
a node from the Vilje supercomputer[34]. Figure 4.1 provides a conceptual overview of
how cores and caches are organized.
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Figure 4.1: Diagram of caches, cores and hyper-threads on Sandy Bridge-EP
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For an overview of the similarities and differences between Sandy Bridge-EP and
a node from Vilje, see Table 4.1.

Sandy Bridge-EP Vilje Node

Processor 2 * Intel® Xeon® CPU E5-2670 2 * Intel® Xeon® CPU E5-2670
Motherboard ASUS Z9PE-D8WS SSI-EEB ASUS Z9PE-D8WS SSI-EEB
DRAM 2 * Corsair Vengeance DDR3 1600MHz Corsair Vengeance DDR3 1600MHz
OS Fedora 16(x86_64) with Linux kernel 3.5.3 SuSE SLES11

Table 4.1: Similarities and differences between the Sandy Bridge-EP and a node in Vilje

Hardware specifications for Intel® Xeon® CPU E5-2670 are listed in Table 4.2. In-
formation about the processor is obtained from /proc/cpuinfo and Intel ARK[35]. Informa-
tion about the internal cache system is retrieved from /sys/devices/system/cpu/cpu0/cache/index*.

Property Value

CPU model Intel® Xeon® CPU E5-2670
Model # 45
Stepping 7
Manufacturing process 32nm
Clock frequency (min-max) 1.20GHz - 2.60GHz
Max Turbo Frequency 3.30GHz
Number of physical cores 16
Number of logical cores 32
Scalability 2 Sockets

Table 4.2: Specification for Intel® Xeon® CPU E5-2670

Cache Size Ways of Line size
associativity

Level 1 32KB(Data)/32KB(Instr) 8 64B
Level 2 256KB 8 64B
Level 3 20MB (shared) 20 64B

Table 4.3: Cache information for Intel® Xeon® CPU E5-2670
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4.2.2 Software and Libraries

Table 4.4 lists the software and libraries used in the research.

Software Version Licence Website

g++ 4.6.3 GNU GPL
gcc 4.6.3 GNU GPL
Nanos++ 0.7a-2013-02-22 GNU LGPL http://pm.bsc.es/nanox-downloads
Mercurium 1.3.5.8 GNU LGPL https://pm.bsc.es/projects/mcxx
ATLAS 3.10.1 BSD Licence http://math-atlas.sourceforge.net
PAPI 4.4.0.0 BSD Licence http://icl.cs.utk.edu/papi

Table 4.4: Software and libraries used in the research

4.2.3 Compilation

Nanos++ and Mercurium require gcc 4.6.3, M4, FLEX and GPERF in order to compile.
The software packages listed in Table 4.4 includes Makefiles, so compiling and linking
are performed automatically.

OmpSs Packages Compiler Compiler
suite flags

Bison gcc -O2

Nanos++ runtime gcc -O2

Mercurium gcc -O2

Other Packages

ATLAS gcc

PAPI gcc

Table 4.5: Compiler flags for software and libraries used in the study

OmpSs Packages ./configure flags

Mercurium --enable-tl-openmp-nanox

--enable-ompss --enable-tl-superscalar

--with-superscalar-runtime-api-version=5

Table 4.6: Configure flags for Mercurium

The benchmarks have been compiled with Mercurium 1.3.5.8. If performance
counters should be used to gather data for the lookup table presented in Section 3.1.2,
it is necessary to link with PAPI and PFM.

http://pm.bsc.es/nanox-downloads
https://pm.bsc.es/projects/mcxx
http://math-atlas.sourceforge.net
http://icl.cs.utk.edu/papi


40 CHAPTER 4. METHODOLOGY

Software Compiler Compiler
suite flags

Mont Blanc applications

Merge sort sscc --ompss -lpapi -lpfm -fopenmp

Reduction sscc --ompss -lpapi -lpfm -fopenmp

Histogram sscc --ompss -lpapi -lpfm -fopenmp

2d convolution sscc --ompss -lpapi -lpfm -fopenmp

3d stencil sscc --ompss -lpapi -lpfm -fopenmp

Dense matrix multiplication sscc --ompss -lpapi -lpfm -fopenmp -lcblas

Sparse matrix vector multi-
plication

sscc --ompss -lpapi -lpfm -fopenmp

Vector operation sscc --ompss -lpapi -lpfm -fopenmp

N-body sscc --ompss -lpapi -lpfm -fopenmp

BOTS

FFT sscc --ompss -lpapi -lpfm -fopenmp

Fib sscc --ompss -lpapi -lpfm -fopenmp

SparseLU sscc --ompss -lpapi -lpfm -fopenmp

NQueens sscc --ompss -lpapi -lpfm -fopenmp

Strassen sscc --ompss -lpapi -lpfm -fopenmp

Others

Black Scholes sscc --ompss -lpapi -lpfm -fopenmp

Quick Sort sscc --ompss -lpapi -lpfm -fopenmp

Unstructured 3d stencil sscc --ompss -lpapi -lpfm -fopenmp

Table 4.7: Compiler flags for application kernels

Compilation of scheduling-plugin

The developed scheduling-plugin must be compiled to a shared library before it can be
accessed from Nanos++. If the shared library is named libnanox-sched-agent.so, then
the developed scheduling-plugin can be set with the command line flag: --schedule
agent. Listing 4.1 provides instructions for how the developed scheduling-plugin can
be integrated with Nanos++.

Listing 4.1 Compilation of scheduling-plugin

1 g++ −fpic −c agent_sched.cpp
2 g++ −shared −o libnanox−sched−agent.so agent.o −lpapi −lpfm
3 mv libnanox−sched−agent.so "PATH"/NANOS/lib/performance/
4 OMP_NUM_THREADS=threads NX_ARGS="--schedule agent" ./application
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4.3 Experiment Methodology

This section describes how the experiments have been conducted. In addition, it ex-
plains how performance and energy efficiency have been measured.

4.3.1 Training the lookup table

The lookup table must be trained before it can be utilized by the intelligent agent to pre-
dict the most energy-efficient frequency. Two choices are important to consider when
the lookup table should be trained:

• Which metric should the table optimize for?

• How should the table be trained?

In this study, four lookup tables have been trained. One of the lookup tables
optimizes for the metric Operations

Joule , another tries to minimize the Energy Delay Product,

whereas the last two optimizes for the metrics Operations
Joule and Energy Delay Product, but

under the constraint that performance cannot suffer by more than 10% compared to the
execution at the highest frequency. This choice is made in order to test how the agent
performs for various metrics.

The way the lookup table should be trained depends on how it will be used by
the agent. The lookup table can either specifically be trained on ’entire libraries of kernels
used in HPC applications’ or it can be trained to recognize ’the computational patterns found
in the most common applications’. Training the lookup table to recognize entire libraries
may provide the highest accuracy if applications consist solely of known kernels, but
the lookup table may be inflexible and make poor predictions for unknown kernels. The
lookup table can become more robust against unknown kernels if it is trained to recog-
nize the most common computational patterns found in real applications, however it
may lack the accuracy one can obtain by tuning the table to recognize specific kernels.

Table 4.8 provides an overview of the computational patterns that are found in
each kernel used in this study. In addition, it lists whether the kernel has been used for
training the lookup table.

4.3.2 Experiments

The experiments have been carried out without the use of hyper-threading or Intel
Turbo Boost. The temperature can affect the leakage current[36]. Therefore, before
starting any experiments, the temperature of the processors were raised to 40 degrees
Celsius in order to create equal conditions for each experiment. Distributed Breadth
First(DBF) is used as scheduling-plugin for each experiment that obtained data for the
lookup table. Execution time, energy, IPC and LLCMPC have been measured for all
possible frequency/thread pairs for a given kernel. ’Process Cruise Control’ and ’Green Gov-
ernors: A Framework for Continuously Adaptive DVFS’ apply a similar procedure to gather
data for each kernel used in the research.
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Kernel Dwarf Selected for training

Dense matrix multiplication Dense Linear Algebra Yes
Sparse matrix vector multiplication Sparse Linear Algebra Yes
3d stencil Structured Grids Yes
N-body N-body Methods Yes
FFT Spectral Methods Yes
NQueens Backtrack and Branch-and-Bound Yes
Histogram Map Reduce / Unstructured Grids Yes
Merge Sort Graph Traversal Yes
Quick Sort Graph Traversal No
Reduction Map Reduce / Dense Linear Algebra No
Black Scholes Dense Linear Algebra No
Vector operation Dense Linear Algebra No
Fibonacci Graph Traversal No
Strassen Dense Linear Algebra No
SparseLU Sparse Linear Algebra No
2d Convolution Structured Grids No
Unstructured 3d stencil Unstructured Grids No

Table 4.8: Classification of the computational patterns in the selected kernels

The developed scheduling-plugin has been run with each kernel. The benefit of
such an approach is that it tests whether the agent is capable of accurately predicting
the frequency for both known and unknown kernels. If the agent predicts the frequency
of known kernels with a high accuracy, it demonstrates that the developed scheduling-
plugin can be successful if the lookup table is trained to recognize ’entire libraries of ker-
nels used in HPC applications’. The lookup table has been trained with kernels that have
different computational patterns. If the agent is capable of predicting the frequency
of the unknown kernels with a high accuracy, it indicates that the lookup table can be
trained to recognize computational patterns.

To measure the accuracy of the intelligent agent, the predicted frequency has been
compared against the optimal frequency found for each kernel. Note that the predicted
frequency is calculated as the average of all frequencies predicted by the agent while
an experiment has been run. The intelligent agent has been configured to sleep for an
interval of 250ms before it predicts what will be the most energy efficient frequency for
the next period. By considering intervals ranging from 50ms to 1000ms, it was found
by trial and error that an interval of 250ms provided the best balance between accuracy
and overhead for invocation of the intelligent agent.
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4.3.3 Experiment configurations

This section provides an overview of how the experiments have been configured. Three
factors have influenced how the parameters have been set for each benchmark:

• When should tasks be throttled?

• How should idle threads be handled?

• Which problem size should be used?

The throttle policy determines if tasks should be created as entities that can be
scheduled in the runtime system for asynchronous execution, or if the code should be
executed immediately. All benchmarks in this study have been configured to use the
throttle policy taskdepth. The throttle policy taskdepth stops creation of new entities
after the depth of a task has passed a certain threshold. The depth of a task will always
be one more than the parents depth.

If there are insufficient available tasks to keep all the threads occupied, one must
consider whether idle threads should be busy waiting or enter a sleep-mode. The ad-
vantage of busy waiting is that threads will quickly be able to start on new tasks that
become available in the system, but as a consequence busy waiting results in unneces-
sary waste of energy and contention for shared resources. An idle thread can relinquish
its processing resources by entering a sleep-mode. If the system has more cores than
available tasks, the redundant cores can be commanded to enter a low-power mode to
reduce the energy consumption. However, if a thread has entered a sleep-mode it will
not be able to start on a new task until its specified sleep time has expired. Nanos++
combines the use of busy waiting and putting idle threads to sleep. How long a thread
should busy wait or sleep can be configured with the command ’--spins INTEGER --
sleep-time INTEGER’ before starting an OmpSs application. In this study, experiments
have been made with both busy waiting and letting idle threads sleep for longer peri-
ods. The choice of letting idle threads sleep was made on the basis of trial and error for
each benchmark.

It is important that the problem size for each benchmark is selected in such a
way that measurements becomes stable. Variation in the measurement tools will have
greater impact on applications with short execution time. However if the execution time
is too long, the energy measurements will give erroneous results due to overflow. How
energy measurements are performed are discussed in Section 4.3.5. Several problem
sizes have been used for each benchmark in order to ensure that the results are stable.
For a detailed overview of the configuration to the experiments see Appendix 7.2.6.
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4.3.4 Lookup table

This section provides an overview of how the lookup tables have been configured. Ta-
ble 4.9 lists the configuration of the lookup tables that have been trained in this research.

Property Value

IPCrange 0.000 - 2.625
LLCMPCrange 0.000 - 0.00375
Cores 16
IPCbins 35
LLCMPCbins 5

Table 4.9: Configuration for the lookup tables

Figure 4.2, 4.3, 4.4 and 4.5 illustrates how the frequency varies with IPC and LL-
CMPC when the number of cores are 16. Appendix 7.2.6 provides an overview of all
core configurations.

Figure 4.2: Lookup table for optimizing Operations per Joule for core configuration 16

Figure 4.3: Lookup table for optimizing Energy Delay Product for core configuration 16
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Figure 4.4: Lookup table for optimizing Operations per Joule under the constraint that
performance cannot suffer by more than 10% compared to the execution at the highest
frequency for core configuration 16

Figure 4.5: Lookup table for Energy Delay Product under the constraint that perfor-
mance cannot suffer by more than 10% compared to the execution at the highest fre-
quency for core configuration 16

Values that are outside the range of what the table can cover will be clamped to
maximum IPC or LLCMPC. The size of the parameter space and the number of bins
have been selected with trial and error in order to find a configuration that are suffi-
cient to resist variance from the measurement tools. Figures 4.6, 4.7, 4.8 and 4.9 present
the problems that can occur due to variance in the measurements. The frequency do-
main illustrated in Figure 4.6 represents the optimal lookup table. The optimal size
of the parameter space and the number of bins are affected by how many application
kernels that are available for training the lookup table. Small bins are preferable if the
training set is large. However, small bins can perform poorly due to variance in the
measurements if the training set contains few samples as illustrated in Figure 4.7. The
application kernels used during the training phase will index the lookup table with IPC,
LLCMPC and the number of active cores. It is unlikely that an application will generate
the exactly same IPC and LLCMPC twice, therefore, one must ensure that the bins are
large enough to allow for a certain variation in the measurements. Large bins makes it
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easier to cover the parameter space with few application kernels, however the number
of collisions when updating the lookup table can increase.

Figure 4.6: Optimal frequency domain

Figure 4.7: The agent predicts wrong due to variance in measurements and small bins

Figure 4.8: The agent predicts correct, however the bins are too large to replicate the
optimal frequency domain
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Figure 4.9 illustrates an alternative strategy to make the training phase more robust
against variations in the measurements. One can ensure that small variations in the
measurements will be less significant on the overall result if every bin within a certain
radius are updated. Further work could examine how to develop software for auto-
tuning of the lookup table configuration based on the number of application kernels
available for training.

Figure 4.9: The agent predicts correctly since the training phase takes the variation in
the measurements into account
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4.3.5 Measurement tools

Execution time

Execution time is measured with omp_get_wtime(). The function is part of the OpenMP
API, and calls the POSIX function gettimeofday() in order to return the elapsed wall
clock time in seconds represented with double-precision floating point. The Linux man
page specifies that the resolution of gettimeofday() is in microseconds.

Performance counters

The Intel Sandy Bridge Microarchitecture has the ability to measure four performance
counters simultaneously per thread. In this study, three performance counters were
measured through the PAPI interface. Table 4.10 lists the performance counters that
have been measured, for more information about the performance counters in Sandy
Bridge see ’Intel Architecture Developer’s Manual Volume 3B, Appendix A’[37].

PAPI event Description

PAPI_TOT_INS Instructions completed
PAPI_L3_TCM Level 3 cache misses
PAPI_TOT_CYC Total cycles

Table 4.10: Performance counters used in the research

Energy

A software library has been developed at NTNU which is capable of reading the en-
ergy consumption of the processor. The library is based on the utility program rdmsr,
which reads the energy consumption through Running Average Power Limit(RAPL)
Model-specific register(MSR). RAPL is available in the Sandy Bridge microarchitecture,
and provides sensors to measure energy consumption of the processor components. Ta-
ble 4.11 lists the MSRs read by the library. The MSRs are accessible from the device file
located at /dev/cpu/*/msr after loading the msr module.

MSR Description

MSR_PKG_ENERGY_STATUS Reports measured energy usage for the processor die
MSR_PP0_ENERGY_STATUS Report actual energy usage to the processor cores

Table 4.11: MSRs used for energy measurement

According to ’Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3B’[38], the MSRs are updated every ~1 msec, and have a wraparound time of 60 secs
when power consumption is high, otherwise it may be longer. The library takes one
wraparound into account, therefore, the library can keep track of energy consumption
for 120 seconds. The energy measurements from the MSRs are expressed in Joules, scal-
ing must be applied in order to make the measurements meaningful in a finite number
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of bits. It is specified that the scaling factor is 15.3 micro-Joules. Equation 4.1 describes
how the library converts values read from RAPL MSRs to millijoules.

Millijoules =
MSR_ENERGY_STATUS ∗ 15.3

1000
(4.1)

The motherboard, main memory and hard drive also consume power, however,
MSR_PKG_ENERGY_STATUS only reports the energy consumption of the processor die.
It is possible to measure the energy consumption of the entire system with devices such
as Yokogawa WT210 that are connected between the power supply and the computer.
In the paper ’Improving energy efficiency through parallelization and vectorization on Intel®
Core i5 and i7 processors’, Juan M. Cebrián, Lasse Natvig and Jan Christian Meyer mea-
sured the average total power consumption for different combinations of processors,
vectorization technologies and thread configurations. It will only be energy efficient
to adjust the frequency for I/O intensive tasks when the total power consumption of
Sandy Bridge-EP is considered. The experiments performed in this study only mea-
sured the energy consumption of the processor die, in order to create situations where
it is energy efficient to adjust the frequency due to outstanding memory requests. Mea-
surements for Intel® Core i5 indicate that the processor accounts for larger parts of the
total energy consumption in systems initially designed for energy efficiency. From the
experiments that have been carried out in this study it has been measured that 75% of
the energy consumption of Intel® Xeon® CPU E5-2670 is spent on the cores while the
rest on shared resources when the processor operates at 2600 MHz.
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Figure 4.10: Power Measurements for different combinations of processors, vectoriza-
tion technologies and thread configurations[39]
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Chapter 5

Results

This chapter presents the results for how the developed scheduling-plugin performed
for each of the 17 application kernels that have been used during the research. The ac-
curacy of the developed scheduling-plugin has been measured by comparing the pre-
dicted frequency against the optimal frequency found for each application kernel. The
results present how the developed scheduling-plugin performs compared to the Dis-
tributed Breadth First scheduler running at 2600 MHz in terms of performance and
energy consumption. The chapter covers the results for two thread configurations in
order to keep the content clear. A complete overview of the results is presented in Ap-
pendix 7.2.6. In this study, four lookup tables have been trained that optimize towards
various metrics. Therefore, the chapter has been divided into four sections that present
the results for each of the metrics:

• Section 5.1 presents the results for the metric Operations
Joule .

• Section 5.2 shows the results for when the Energy Delay Product is applied as met-
ric.

• Section 5.3 presents how the agent performs when Operations
Joule is applied as metric

with an additional constraint that performance cannot suffer by more than 10%
compared to the execution at the highest frequency.

• Section 5.4 presents how the agent performs for the metric Energy Delay Product
with the additional constraint that performance cannot suffer by more than 10%
compared to the execution at the highest frequency.

5.1 Results for the metric Operations per Joule

Reducing the energy consumption will be prioritized when the agent optimizes for the
metric Operations

Joule . It will be energy efficient to lower the frequency while the dynamic
power dissipation accounts for most of the power consumption, even if performance
declines. As can be seen from the results, there is greater potential to save energy when
several cores are active, since the static power dissipation will be small compared to the
dynamic power dissipation.
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5.1.1 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 1700 MHz 1713 MHz 0.76 %
Reduction 1700 MHz 1758 MHz 3.41 %
Histogram 1200 MHz 1689 MHz 40.75 %
2d convolution 1900 MHz 1700 MHz 10.53 %
3d stencil 1700 MHz 1704 MHz 0.24 %
Dense matrix multiplication 1700 MHz 1722 MHz 1.29 %
Sparse matrix vector multiplication 2100 MHz 1849 MHz 11.95 %
Vector operation 1700 MHz 1600 MHz 5.88 %
N-body 2000 MHz 1700 MHz 15.00 %
FFT 1600 MHz 1400 MHz 12.50 %
SparseLU 1800 MHz 1933 MHz 7.39 %
NQueens 1800 MHz 1600 MHz 11.11 %
Strassen 1800 MHz 1600 MHz 11.11 %
Black Scholes 1800 MHz 1927 MHz 7.06 %
Fibonacci 1400 MHz 1738 MHz 24.14 %
Quick Sort 2100 MHz 1964 MHz 6.48 %
Unstructured 3d stencil 1200 MHz 1360 MHz 13.33 %
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5.1.2 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2000 MHz 2000 MHz 0.00 %
Reduction 1900 MHz 2019 MHz 6.26 %
Histogram 1400 MHz 1892 MHz 35.14 %
2d convolution 2000 MHz 2061 MHz 3.05 %
3d stencil 1900 MHz 2083 MHz 9.63 %
Dense matrix multiplication 2000 MHz 2010 MHz 0.50 %
Sparse matrix vector multiplication 2000 MHz 2104 MHz 5.20 %
Vector operation 1700 MHz 2000 MHz 17.65 %
N-body 2000 MHz 2060 MHz 3.00 %
FFT 1700 MHz 1644 MHz 3.29 %
SparseLU 1900 MHz 2093 MHz 10.16 %
NQueens 2000 MHz 2000 MHz 0.00 %
Strassen 1800 MHz 2000 MHz 11.11 %
Black Scholes 1900 MHz 2132 MHz 12.21 %
Fibonacci 2300 MHz 2051 MHz 10.83 %
Quick Sort 2100 MHz 2103 MHz 0.14 %
Unstructured 3d stencil 1500 MHz 1612 MHz 7.47 %
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5.2 Results for the metric Energy Delay Product

The metric Energy Delay Product assigns equal weight to both energy and performance.
This means that the agent can not lower the frequency as long as the reduction in perfor-
mance is greater than the energy saved. The results indicate that only the applications
with computational patterns similar to ’Unstructured Grids’ will be able to save energy.
The overhead of the intelligent agent in terms of energy consumption becomes more
prominent when there are few opportunities to reduce the frequency.

5.2.1 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2490 MHz 4.23 %
Reduction 2600 MHz 2505 MHz 3.65 %
Histogram 2000 MHz 2224 MHz 11.20 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2500 MHz 2598 MHz 3.92 %
FFT 2500 MHz 2363 MHz 5.48 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2549 MHz 1.96 %
Strassen 2400 MHz 2600 MHz 8.33 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2462 MHz 5.31 %
Unstructured 3d stencil 2100 MHz 2067 MHz 1.57 %
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5.2.2 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2434 MHz 2.64 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2300 MHz 2600 MHz 13.04 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2248 MHz 6.33 %
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5.3 Results for the metric Operations per Joule under the constraint
that performance cannot suffer by more than 10%

The agent tries to minimize the energy consumption under the constraint that perfor-
mance cannot suffer by more than 10%. However, there exist situations where the agent
is unable to satisfy the performance constraint. The agent will only be invoked every
250ms, which limits the reaction time for how quickly the frequency can be adjusted.
In addition, if the agent predicts incorrect frequency for an application it can result in
performance loss greater than 10%.

5.3.1 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2393 MHz 0.29 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 2000 MHz 2197 MHz 9.85 %
2d convolution 2400 MHz 2400 MHz 0.00 %
3d stencil 2400 MHz 2400 MHz 0.00 %
Dense matrix multiplication 2400 MHz 2405 MHz 0.21 %
Sparse matrix vector multiplication 2500 MHz 2432 MHz 2.72 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2500 MHz 2403 MHz 3.88 %
FFT 2200 MHz 2100 MHz 4.55 %
SparseLU 2400 MHz 2425 MHz 1.04 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2300 MHz 2242 MHz 2.52 %
Black Scholes 2400 MHz 2422 MHz 0.92 %
Fibonacci 2600 MHz 2418 MHz 7.00 %
Quick Sort 2600 MHz 2410 MHz 7.31 %
Unstructured 3d stencil 2200 MHz 2102 MHz 4.45 %
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5.3.2 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2400 MHz 0.00 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 2500 MHz 2220 MHz 11.20 %
2d convolution 2400 MHz 2400 MHz 0.00 %
3d stencil 2400 MHz 2401 MHz 0.04 %
Dense matrix multiplication 2400 MHz 2402 MHz 0.08 %
Sparse matrix vector multiplication 2400 MHz 2423 MHz 0.96 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2400 MHz 0.00 %
FFT 2500 MHz 2135 MHz 14.60 %
SparseLU 2400 MHz 2424 MHz 1.00 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2400 MHz 2238 MHz 6.75 %
Black Scholes 2600 MHz 2431 MHz 6.50 %
Fibonacci 2300 MHz 2400 MHz 4.35 %
Quick Sort 2500 MHz 2419 MHz 3.24 %
Unstructured 3d stencil 2200 MHz 2100 MHz 4.55 %
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5.4 Results for the metric Energy Delay Product under the constraint
that performance cannot suffer by more than 10%

The agent will minimize EDP under the constraint that performance cannot suffer by
more than 10% compared to the execution at the highest frequency. The metric main-
tains quality of service, and ensures that there will be a balance between the energy
saved and performance loss.

5.4.1 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2493 MHz 4.12 %
Reduction 2600 MHz 2505 MHz 3.65 %
Histogram 2000 MHz 2250 MHz 12.50 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2500 MHz 2598 MHz 3.92 %
FFT 2500 MHz 2363 MHz 5.48 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2549 MHz 1.96 %
Strassen 2400 MHz 2600 MHz 8.33 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2462 MHz 5.31 %
Unstructured 3d stencil 2200 MHz 2138 MHz 2.82 %
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5.4.2 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2435 MHz 2.60 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2300 MHz 2600 MHz 13.04 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2253 MHz 6.12 %
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Chapter 6

Discussion

This chapter interprets the results from the research and discusses the limitations of the
static thread configuration in Nanos++ 0.7a-2013-02-22.

• Section 6.1 addresses the computational complexity and accuracy of the devel-
oped scheduling-plugin.

• Section 6.2 analyzes the results from the Histogram application kernel.

• Section 6.3 compares the performance and energy consumption of the developed
scheduling-plugin with the results from related work.

6.1 Computational complexity and accuracy of the developed
scheduling-plugin

This section discusses the computational complexity and accuracy of the developed
scheduling-plugin. Table 6.1 lists the time and space complexity of the scheduling-
plugin.

Resource Complexity

Time O(Cores)
Space O(IPCbins ∗ LLCMPCbins ∗ Cores)

Table 6.1: Computational complexity of the developed scheduling-plugin

The intelligent agent considers how many cores are active before it applies DVFS.
The time complexity of the solution scales linearly with the number of cores the lookup
table must take into account. Linear scalability can be an issue if the solution should
be extended for distributed environments. However, the space complexity can become
the primary limitation as the number of cores on a multicore increases. One solution
to this problem can be to only train each core configuration that is a multiple of n, and
interpolate the values that are between two layers in the lookup table.
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Table 6.2 lists the average error rate for how much the predicted frequencies differs
from the frequencies which have been estimated to be the most energy efficient for the
various metrics that have been tested in this study. The error rates are lower for the
application kernels that have been used to train the lookup tables, than what they are for
the unknown kernels. In addition, if the metric allows for a large variety of frequencies
it often leads to higher error rate. The metric Operations

Joule contains frequencies in the range
2600 MHz to 1200 MHz, while the Energy Delay Product includes frequencies in the
range 2600 MHz to 2000 MHz.

Known kernel Unknown kernel Total
Metric average error average error average error

Operations per Joule 5.20% 6.29% 5.77%
Energy Delay Product 1.34% 1.53% 1.44%
Operations per Joule with 10% limit 2.29% 2.84% 2.58%
Energy Delay Product with 10% limit 1.31% 1.54% 1.43%

Table 6.2: The accuracy of the agent for the various metrics

Figure 6.1 provides an overview of how the average accuracy varies with the num-
ber of running threads. A large variety of frequencies will often lead to higher error rate.
The dynamic power dissipation increases with the number of active cores. The range
of energy efficient frequencies will increase as the dynamic power dissipation starts to
dominate the static power dissipation.

Figure 6.1: The accuracy of the agent decreases as the number of active cores increases
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6.2 Analysis of the results from the Histogram application kernel

The results from the Histogram kernel stand out from the rest of the application kernels.
Not only is the error rate high, but the developed scheduling-plugin is able to increase
the performance over DBF that operates at the maximum frequency. This section inter-
prets the results and provide explanations for the observations.

The results presented in Chapter 5 shows that the Histogram kernel has an error
rate of 40% for the metric Operations

Joule with 16 active threads. The reason why the error rate
is so high is because the optimal frequency is found with an exhaustive search which
only applies one frequency throughout the execution of an application. However, the
Histogram kernel consists of both parallel and sequential phases. Figure 6.2 illustrates
how the agent adjusts the frequency through the execution of the Histogram application
kernel. As can be seen from the figure, the agent is capable of adjusting the frequency
based on whether the current phase is parallel or sequential. This behavior increases
the error rate although the the energy efficiency is improved.

Figure 6.2: The agent is able to identify the parallel and sequential phases in the
Histogram application kernel

The developed scheduling-plugin is able to increase the performance over DBF
that operates at the maximum frequency for certain results. The performance does not
increase for Unstructured 3d stencil, although it has the same computational pattern as
Histogram. The behavior of these applications have been analyzed with performance
counters in order to determine how the developed scheduling-plugin improves the per-
formance. Table 6.3 lists the IPC and LLCMPC for Histogram and Unstructured 3d
stencil for the metric Operations

Joule , under the constraint that performance cannot suffer by
more than 10% with 16 active threads.
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Scheduling-plugin Application kernel IPC LLCMPC

Developed Unstructured 3d stencil 0.3662 0.0035
DBF Unstructured 3d stencil 0.3264 0.0032

Developed Histogram 0.4126 0.0057
DBF Histogram 0.2237 0.0055

Table 6.3: Analysis of the behavior of Histogram and Unstructured 3d stencil

The analysis indicates that Histogram has higher memory intensity than Unstruc-
tured 3d stencil. In addition, it shows that the IPC of DBF is approximately halved
compared to the IPC of the developed scheduling-plugin for the Histogram applica-
tion kernel. The resource-related stalls have been analyzed in order to identify why the
IPC decreases at the maximum frequency for Histogram and not for Unstructured 3d
stencil.

PAPI native event Description

RESOURCE_STALLS:ANY Cycles stalled due to Resource Related reason
RESOURCE_STALLS:LB Cycles stalled due to lack of load buffers
RESOURCE_STALLS:RS Cycles stalled due to no eligible

reservation station entry available

Table 6.4: Performance counters used to analyze resource-related stalls

Figure 6.3 illustrates the distribution of resource-related stalls for Histogram and
Unstructured 3d stencil. The measured stall cycles from the performance counters have
been divided by the total number of cycles needed to complete the application kernel.

Figure 6.3: Resource-related stalls for each application kernel
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Intel® Xeon® CPU E5-2670 can achieve higher IPC than the number of stalls in-
dicates because it is a superscalar processor which is capable of executing multiple in-
structions every clock cycle. However, the measurements can still provide valuable
insights needed to interpret the observations. Measurements from the performance
counters indicate that the processor must stall if there are insufficient available load
buffers or eligible reservation station entries. High-performance out-of-order proces-
sors can decide to speculatively execute certain loads and stores out of order, and later
determine if the loads and stores were correctly executed. Lowering the frequency can
reduce the number of speculations because the processor will spend less time waiting
for outstanding memory requests. The increase in performance can be explained if low-
ering the frequency reduces the amount of speculative memory requests occupying the
load buffer.

The article ’Feedback-driven threading: power-efficient and high-performance execution
of multi-threaded workloads on CMPs’ [25] illustrates how the performance of the His-
togram application kernel can be improved by dynamic control of the number of run-
ning threads. The Histogram kernel divides the total work across n tasks, where each
task is assigned to calculate a local histogram of size total work

n . The local histograms will
ultimately be merged into a global histogram in a sequential task. Functions such as
omp_get_num_threads() are often used when an application should be parallelized.
For OmpSs applications omp_get_num_threads() will return the number of threads
that are available in the runtime system. Additional threads beyond the optimal thread
configuration can decrease the performance of an application if it is limited by con-
tention for shared resources. Programmers can define the number of tasks explicitly
instead of using functions like omp_get_num_threads(), however, the programmabil-
ity and portability will be reduced. An alternative strategy for limiting contention for
shared resources could be to disable cores from the Linux kernel, however, such an
approach can lead to increased cache pollution since the threads would still share the
available cores.

Figure 6.4 illustrates that the optimal thread configuration for the Histogram ker-
nel consists of 11 worker threads. The developed scheduling-plugin reduces the con-
tention for shared resources by lowering the frequency when the optimal thread config-
uration is exceeded. It would be desirable if the runtime system supported functionality
to transfer every tasks from one thread to another. A thread can safely be suspended if it
does not hold any locks. However, such functionality was not supported by Nanos++ as
mentioned in Chapter 3. Even if it were possible to transfer every task from one thread
to another, the runtime system will need to ensure that the OpenMP specification is not
violated. The OpenMP specification requires that tied tasks are executed by one thread
in order to ensure that certain functions will remain thread-safe.
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(a)

(b)

Figure 6.4: Overview of performance and energy consumption for the Histogram
kernel. The results are only for 3-16 threads since these configurations provide the clear-
est color map. a) = performance and b) = energy consumption
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6.3 Comparison with results from related work

This section compares the results with the previous findings from ’Process Cruise Con-
trol’ and ’Green Governors: A Framework for Continuously Adaptive DVFS’. Table 6.5 lists
information about the hardware and how the energy has been measured for the various
solutions.

Solution Level System Energy measurement

Developed scheduling-plugin Thread Sandy Bridge-EP Package
Process Cruise Control Process XScale 80200 Power Supply
Green Governors Process Core i7 Motherboard

Table 6.5: Hardware and energy measurements for the different solutions

The previous solutions have been restricted to only consider the process level,
since they have been implemented in the Linux scheduler. The developed scheduling-
plugin is able to read the performance counters from each thread since it is part of
Nanos++. Decisions made at the thread level can further improve the energy efficiency
for systems where the frequency of the cores can be changed separately.

The developed scheduling-plugin has been evaluated on a dual processor Sandy
Bridge-EP system, and the energy measurements were made from the processor pack-
age. The fact that Sandy Bridge-EP is designed for high-performance limits the amount
of energy that can be saved by lowering the frequency. The memory hierarchy of
the system is optimized for performance and the static power dissipation is relatively
high compared to the dynamic power dissipation. Due to these conditions only His-
togram and Unstructured 3d stencil saves a significant amount of energy as illustrated
in Figure 6.5.

Figure 6.5: Results for the metric Energy Delay Product with 10% limit when 16 threads
are running
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The energy-aware scheduler from the paper ’Process Cruise Control’ was tested on
an Intel XScale 80200 processor with the IQ80310 evaluation board. The energy was
measured between the evaluation board and the power supply. The study found that
one could save significant amounts of energy for memory intensive applications as il-
lustrated in Figure 6.6. Memcpy swaps blocks of memory, free db release memory and fill
string dumps a word database with strcat. The lookup table from ’Process Cruise Control’
was trained on microbenchmarks, while the lookup tables used in this study have been
trained to recognize computational patterns found in real applications.

Figure 6.6: Results from ’Process Cruise Control’[10]

The governors developed in ’Green Governors: A Framework for Continuously Adap-
tive DVFS’ were tested on a Core i7 and the energy measurements were done from the
motherboard. The governors optimized towards the Energy Delay Product under the
constraint that performance cannot suffer by more than 10%. The results presented in
Figure 6.7 indicates that multiple applications can improve their energy efficiency if the
frequency is dynamically adjusted according to the workload. The application kernels
used in ’Green Governors: A Framework for Continuously Adaptive DVFS’ are from the
SPEC2006 benchmark suite, however, they have not been classified into computational
patterns.

Figure 6.7: Results from ’Green Governors: A Framework for Continuously Adaptive DVFS’[24]
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The Mont-Blanc project will replace the typical Intel Xeon found in supercomput-
ers with energy efficient components from embedded and mobile devices. Results from
related work suggest that the developed scheduling-plugin will have greater potential
to further improve the energy efficiency if low-power devices such as laptops, mobile
components or embedded devices are used as computational platform. In addition,
the results indicate that the proper metric to optimize for should be the Energy De-
lay Product under the constraint that the performance cannot suffer by more than a
certain percentage. Although the metric limits the opportunities to save energy, the sit-
uations where the energy savings are minimal compared to the performance loss will
be avoided.
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Chapter 7

Conclusion and Further Work

7.1 Conclusion

This research has examined how energy efficient techniques can be integrated into the
Nanos++ runtime system. An energy-aware scheduling-plugin has been proposed,
which is able to adjust the frequency on the basis of the different phases in an appli-
cation by utilizing information from performance counters. The solution proposed in
the article ’Process Cruise Control’ has been extended for multi-core systems and imple-
mented in a scheduling-plugin which builds on DBF. The developed scheduling-plugin
makes use of a lookup table that models the parameter space for the most energy effi-
cient frequencies according to a particular metric. The table has been trained to identify
computational patterns found in common applications. The results show that the devel-
oped scheduling-plugin can improve the energy efficiency for applications with com-
putational pattern similar to unstructured grids. Findings from related work suggests
that dynamic adjustment of the frequency based on the workload will further improve
the energy efficiency when low-power devices are used as computational platform. The
fact that the Mont-Blanc project will be based on embedded power-efficient technology
indicates that the energy-aware scheduling-plugin will have greater opportunities to
improve the energy efficiency in future supercomputers. In the specialization project it
was suggested that ’Online monitoring of active threads’ should be examined in order to
reduce contention for shared resources. The fact that the thread configuration could not
be modified at runtime will be a problem as more cores are added on a multi-core sys-
tem, because the programmer must be aware of situations where contention for shared
resources can occur. Whether an idle thread should busy wait or sleep was also found
to be an issue that will escalate as the number of cores increases. The findings from this
research suggest that further studies should continue to investigate how energy efficient
techniques can be integrated into the Nanos++ runtime system, in order to enhance the
energy efficiency while maintaining programmability and portability.
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7.2 Further Work

7.2.1 Improve the accuracy of the intelligent agent

In this study, a model that uses IPC, LLCMPC and the number of active cores has been
trained to predict the frequency which will be the most energy efficient. Further work
could try to improve the model by discovering additional features that are highly cor-
related with the frequency. In addition, one could consider the advantages and disad-
vantages of replacing the lookup table with other machine learning algorithms.

7.2.2 Test the intelligent agent on a system where the frequency of the cores
can be changed separately

If the frequency of the cores can be modified separately, it is possible to simulate systems
with energy constraints. One can decide that the total frequency of the system should
not exceed a certain threshold. The intelligent agent is then responsible for distributing
the frequency in order to maximize energy efficiency. Priority of tasks can influence how
the agent distributes the frequency. An example of a processor that supports separate
adjustment of the frequency for each core is AMD Phenom II.

7.2.3 Determine whether Intel® Turbo Boost Technology is energy efficient

Intel® Turbo Boost Technology is a technology developed by Intel that dynamically
increases the frequency based on the number of active cores, estimated current con-
sumption, estimated power consumption and the processor temperature. Turbo boost
can overclock the processor to higher frequencies than can be set from the userspace
governor. If one can determine whether Intel® Turbo Boost Technology is energy effi-
cient, it could be considered if it is possible to shift the governor when the number of
cores are below a certain threshold in order to enable turbo boost.

7.2.4 Investigate the pros and cons between busy waiting and putting an
idle thread to sleep

Further work could investigate the pros and cons between busy waiting and putting
an idle thread to sleep. An alternative method for dealing with idle threads is to use
conditional variables and signaling, however, it is unclear whether this is more energy
efficient than combining busy waiting with sleep. There is a certain amount of over-
head for a core to enter a low-power mode, therefore, it should be investigated how the
energy efficiency is influenced by the length of the sleep interval. In addition, one could
consider the possibility of adjusting these parameters dynamically at runtime based on
the characteristics of the running application.

7.2.5 Implementation of an asymmetric aware intelligent agent

Nanos++ ensures that every worker thread has unique affinities in order to minimize
thread migration. When the cores are homogeneous, this is an effective strategy since it
helps to preserve the data in caches. However, for asymmetric multi-cores it is uncertain
whether it is better to migrate threads to stronger cores than preserving the cache data.
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If a task has been scheduled to a weak core, it may be energy efficient to migrate the
thread to a stronger core in order to increase the performance. It is uncertain whether
the operating system is able to detect this situation, if not, it can be implemented an
asymmetry-aware intelligent agent in Nanos++ that can adjust the affinites at runtime.
Figure 7.1 gives a conceptual overview of the asymmetry-aware intelligent agent. The
adjustment can be as simple as swapping the affinity between two worker threads. The
big.LITTLE system from ARM [40] is an example of an asymmetric multi-core. It is
specified that one can influence which cores are active based on DVFS. The big core
can operate at high frequencies, however the small core is more energy efficient if the
workload is low. It would be interesting to examine how the use of thread affinites and
userspace governor act in such a system.

Sensors

Is the current threadLook up core

ActuatorsAgent

Worker threads

configuration ineffective?

Read thread

Adjust thread
affinity

configuration

configuration

Figure 7.1: Overview of the Asymmetric Agent

7.2.6 Standardize benchmark suite for task-based programming

A problem that often arises in research projects is shortage of benchmarks representing
real-world applications. Further work could standardize an OmpSs benchmark suite
based on the computational patterns found in real-world applications, this effort will
help increasing the efficiency and quality of research oriented around task-based pro-
gramming. In this study 17 application kernels have been used where 9 of 13 com-
putational patterns have been covered. Ideally, every computational pattern should be
covered, and one should have access to two or more application kernels which are repre-
sentative for each pattern. The input to each application kernel should be standardized
in relation to the degree of parallelism.
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Source Files - Scheduling-plugin

This appendix contains the source code of the developed scheduling-plugin. The way
Nanos++ cleans up its resources will have to be modified if the scheduling-plugin
should be used in a production environment. One can experience a segmentation fault if
the runtime system starts to delete its resources before the agent has been stopped. This
problem can easily be resolved by modifying the code for how Nanos++ deletes the re-
sources. However, the segmentation fault does not affect the results of the experiments,
since it only occurs when the job is finished. The source code of the scheduling-plugin is
the only part that has been modified in order to make the implementation independent
of the runtime system. In this way, the solution can easily be tested by others by simply
compiling the scheduling-plugin instead of the entire runtime system.

1 #include <pthread.h>
2 #include <papi.h>
3 #include <iostream>
4 #include <fstream>
5

6 #include "schedule.hpp"

7 #include "wddeque.hpp"

8 #include "plugin.hpp"

9 #include "system.hpp"

10

11 /** The number of available frequencies **/

12 #define FREQUENCIES 15
13

14 /**
15 * Number of performance counters used by

16 * the scheduling-plugin

17 */

18 #define PERFORMANCE_COUNTERS 3
19

20 /**
21 * The length of the interval the agents awaits before it tests

22 * if Nanos++ is initialized.

23 * The time is specified in microseconds

24 */
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25 #define INIT_TIME 100000
26

27 /**
28 * The length of the interval the agents sleeps before it gather

29 * data from the performance counters.

30 * The time is specified in microseconds

31 */

32 #define IDLE_TIME 250000
33

34 /** Macro for indexing the lookup table **/

35 #define INDEX(i, j, k, binLLCMPC, binIPC)
36 {i*binLLCMPC*binIPC)+(j*binIPC)+k}
37

38 /** Macro for reporting error **/

39 #define ERROR_RETURN(retval)
40 { fprintf(stderr, "Error %d %s:line %d: \n",
41 retval,__FILE__,__LINE__); }
42

43 /**
44 * global variable that determines whether

45 * the agent should run or not

46 */

47 bool running;
48

49 namespace nanos {
50 namespace ext {
51

52 class DistributedBFPolicy : public SchedulePolicy
53 {
54 private:
55 /** Data associated to each thread **/

56 struct ThreadData : public ScheduleThreadData
57 {
58 /** local queue of ready tasks to be executed **/

59 WDDeque _readyQueue;
60 /**
61 * variable to determine if papi

62 * has been initialized

63 */

64 bool papi_initialized;
65 /** papi event set **/

66 int EventSet;
67 /** pointer to idle task **/

68 WD* idleWD;
69
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70

71 ThreadData () : _readyQueue()
72 {
73 papi_initialized = false;
74 EventSet = PAPI_NULL; idleWD = NULL;
75 }
76

77 virtual ~ThreadData () {
78 long long values[8] = {0};
79 PAPI_stop(EventSet, values);
80 ensure(_readyQueue.empty(),
81 "Destroying non-empty queue");
82 }
83 };
84 /** pthread for the intelligent agent **/

85 pthread_t thread_handle;
86

87 /** disable copy and assigment **/

88 explicit DistributedBFPolicy

89 ( const DistributedBFPolicy & );
90 const DistributedBFPolicy & operator=
91 ( const DistributedBFPolicy & );
92

93 public:
94 /** constructor **/

95 DistributedBFPolicy() :
96 SchedulePolicy ( "Cilk" ) { initialize(); }
97

98 /** destructor **/

99 virtual ~DistributedBFPolicy() {
100 running = false; void *status;
101 pthread_join(thread_handle, &status); }
102

103 virtual size_t getTeamDataSize () const { return 0; }
104 virtual size_t getThreadDataSize () const {
105 return sizeof(ThreadData); }
106

107 virtual ScheduleTeamData * createTeamData ()
108 {
109 return 0;
110 }
111

112

113

114
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115 virtual ScheduleThreadData * createThreadData()
116 {
117 return NEW ThreadData();
118 }
119

120 /**
121 * Queue task

122 *
123 * @param thread Pointer to the thread to where the

124 * task should be enqueued

125 * @param wd Reference to the work

126 * descriptor to be enqueued

127 */

128 virtual void queue ( BaseThread *thread, WD &wd )
129 {
130 ThreadData *data;
131 if ( wd.isTied() ) {
132 data = ( ThreadData * ) wd.isTiedTo()−>
133 getTeamData()−>getScheduleData();
134 } else {
135 data = ( ThreadData * ) thread−>
136 getTeamData()−>getScheduleData();
137 }
138 data−>_readyQueue.push_front ( &wd );
139 }
140 /**
141 * Function called when a new task must be created

142 *
143 * @param thread Pointer to the thread to where the

144 * task should be enqueued

145 * @param wd Reference to the work

146 * descriptor to be enqueued

147 */

148 virtual WD * atSubmit ( BaseThread *thread, WD &newWD )
149 {
150 ThreadData &data = ( ThreadData & ) *thread−>
151 getTeamData()−>getScheduleData();
152 queue(thread, newWD);
153 return 0;
154 }
155

156 virtual WD *atIdle ( BaseThread *thread );
157

158

159
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160 /**
161 * This function is called when the thread

162 * data structure should be initialized

163 *
164 * @param thread Pointer to the thread that

165 * should be initialized

166 * @param data Reference to

167 * data associated with thread

168 */

169 virtual void init_thread( BaseThread *thread,
170 ThreadData &data )
171 {
172 init_papi_thread(data);
173 data.papi_initialized = true;
174 data.idleWD = thread−>getCurrentWD();
175 }
176

177 /**
178 * This function initializes papi

179 */

180 virtual void init_papi()
181 {
182 int retval;
183

184 retval = PAPI_library_init(PAPI_VER_CURRENT);
185

186 if (retval != PAPI_VER_CURRENT) {
187 ERROR_RETURN(retval);
188 }
189

190 retval = PAPI_thread_init(pthread_self);
191 if (retval != PAPI_OK) {
192 ERROR_RETURN(retval);
193 }
194

195 retval = PAPI_thread_id();
196 if ((retval == −1) || (retval == PAPI_EMISC)) {
197 ERROR_RETURN(retval);
198 }
199 }
200

201

202

203

204
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205 /**
206 * This function registers which events that should

207 * be tracked by performance counters

208 *
209 * @param EventSet Reference to papi event set

210 */

211 virtual void add_events_to_eventSet(int& EventSet)
212 {
213 int events[] = {PAPI_TOT_INS, PAPI_L3_TCM, PAPI_TOT_CYC};
214 int nevents = PERFORMANCE_COUNTERS;
215

216 for (int i = 0; i < nevents; i++) {
217 int retval;
218 /** query whether the event exists **/

219 if ((retval = PAPI_query_event(events[i])) != PAPI_OK) {
220 ERROR_RETURN(retval);
221 }
222 /** add events to the event set **/

223 if ((retval = PAPI_add_event(EventSet, events[i]))
224 != PAPI_OK) {
225 ERROR_RETURN(retval);
226 }
227 }
228 }
229

230 /**
231 * This function initializes papi per thread

232 *
233 * @param data Reference to

234 * data associated with thread

235 */

236 virtual void init_papi_thread(ThreadData &data)
237 {
238 int retval;
239 /** create the event set **/

240 if ((retval = PAPI_create_eventset(&(data.EventSet)))
241 != PAPI_OK) {
242 ERROR_RETURN(retval);
243 }
244

245 /** add events to the set **/

246 add_events_to_eventSet(data.EventSet);
247

248

249
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250

251 /** start counting **/

252 if((retval = PAPI_start(data.EventSet)) != PAPI_OK) {
253 ERROR_RETURN(retval);
254 }
255 }
256

257 /* This function initializes the intelligent agent */

258 virtual void init_IntelligentAgent()
259 {
260 running = true;
261 pthread_create(&thread_handle, NULL,
262 intelligentAgent, (void*)NULL);
263 set_affinity(thread_handle, 7);
264 }
265

266 /* This function initializes the scheduling-plugin */

267 virtual void initialize()
268 {
269 init_papi();
270 init_IntelligentAgent();
271 set_cpufreq(convertFrequency(FREQUENCIES−1));
272 }
273

274

275

276

277

278 /**
279 * This function sets the processor

280 * affinity of a thread

281 *
282 * @param thread_handle Handler for thread that

283 * should adjust affinity

284 * @param cpu Id to the processor where the

285 * thread should be tied

286 */

287 static void set_affinity(pthread_t thread_handle, int cpu)
288 {
289 cpu_set_t cpuset;
290 CPU_ZERO(&cpuset);
291 CPU_SET(cpu, &cpuset);
292 pthread_setaffinity_np(thread_handle,
293 sizeof(cpu_set_t), &cpuset);
294 }
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295

296 /**
297 * This function sets the processor frequency

298 *
299 * @param mHz New processor frequency

300 */

301 static void set_cpufreq(int mHz)
302 {
303 if (mHz >= 1200 && mHz <= 2600) {
304 std::stringstream ss;
305 ss << "sudo cpupower frequency-set -f "

306 << mHz << "MHz > /dev/null";
307 system(ss.str().c_str());
308 }
309 }
310

311 /**
312 * This function initializes the lookup table

313 *
314 * @param binIPC Reference to the number of IPC bins

315 * @param binLLCMPC Reference to the number

316 * of LLCMPC bins

317 * @param threads Reference to number

318 * of active cores

319 * @param binSizeIPC Reference to IPC range

320 * @param binSizeLLCMPC Reference to LLCMPC range

321 *
322 * @return Pointer to the lookup table

323 */

324 static char* initializeLookupTable(int &binIPC, int &
binLLCMPC,

325 int &threads, float &binSizeIPC,
326 float &binSizeLLCMPC)
327 {
328 /** open lookup table **/

329 std::ifstream file("table.data");
330 if (file.is_open() && file.good()) {
331 /** read configuration **/

332 file >> binIPC >> binLLCMPC >> threads

333 >> binSizeIPC >> binSizeLLCMPC;
334 int* table = new int[threads*binLLCMPC*binIPC];
335 /** read data **/

336 for (int i = 0; i < threads; i++) {
337 for (int j = 0; j < binLLCMPC; j++) {
338 for (int k = 0; k < binIPC; k++) {
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339 int data;
340 file >> data;
341 table[INDEX(i,j,k,binLLCMPC,binIPC)] = (char)data;
342 }
343 }
344 }
345 file.close();
346 return table;
347 } else {
348 return NULL;
349 }
350 }
351

352 /**
353 * This function reads the performance counters and

354 * registers how many threads that processes tasks.

355 * Data is averaged with the harmonic mean

356 *
357 * @param threads Reference to number

358 * of active cores

359 * @param ipc Reference to the processor ipc

360 * @param llcmpc Reference to processor llcmpc

361 */

362 static void readSensors(int &threads, float &ipc, float &
llcmpc)

363 {
364 threads = 0;
365 ipc = 0.0;
366 llcmpc = 0.0;
367

368 for (int i = 0; i < sys.getNumWorkers(); i++) {
369

370 long long deltas[PERFORMANCE_COUNTERS];
371

372 BaseThread* thread = sys.getWorker(i);
373 ThreadData &data = ( ThreadData & ) *thread−>
374 getTeamData()−>getScheduleData();
375

376 /** Check if papi has been initialized **/

377 if (data.papi_initialized == true) {
378 int retval = PAPI_read(data.EventSet, deltas);
379 PAPI_reset(data.EventSet);
380

381 /** Check if thread is not idle **/

382 if (data.idleWD != thread−>getCurrentWD()) {
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383 threads++;
384 ipc += 1.0/(((double)deltas[0])
385 /((double)deltas[2]));
386 llcmpc += 1.0/(((double)deltas[1])
387 /((double)deltas[2]));
388 }
389 }
390 }
391 if (ipc != 0.0 && llcmpc != 0.0) {
392 ipc = threads/ipc;
393 llcmpc = threads/llcmpc;
394 }
395 }
396

397 /** The agent will wait for papi to be initialized **/

398 static void waitForPapiToInitialize()
399 {
400 bool papi_initialized = false;
401 while (!papi_initialized) {
402 usleep(INIT_TIME);
403 BaseThread* thread = sys.getWorker(0);
404 ThreadData &data = ( ThreadData & ) *thread−>
405 getTeamData()−>getScheduleData();
406 papi_initialized = data.papi_initialized;
407 }
408 }
409

410 /* The agent will wait until Nanos++ is initialized */

411 static void waitForSystemToInitialize()
412 {
413 while (sys.getNumWorkers() == 0) {
414 usleep(INIT_TIME);
415 }
416 }
417

418 /**
419 * This function converts index to frequnecy

420 *
421 * @param index Internal representation of frequency

422 *
423 * @return Converted frequency

424 */

425 static int convertFrequency(int index) {
426 return (index * 100) + 1200;
427 }
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428

429

430

431

432 /**
433 * This function retrieves the frequency

434 * from the lookup table

435 *
436 * @param binSizeLLCMPC LLCMPC range

437 * @param binSizeIPC IPC range

438 * @param LLCMPC Observed llcmpc

439 * @param IPC Observed IPC

440 * @param binIPC Number of IPC bins

441 * @param binLLCMPC Number of LLCMPC bins

442 * @param thread Number of active cores

443 * @param table Pointer to the lookup table

444 *
445 * @return Frequency

446 */

447 static int lookupFrequency(float binSizeLLCMPC,
448 float binSizeIPC, float LLCMPC, float IPC,
449 int binIPC, int binLLCMPC, int thread, int* table) {
450

451 int indexIPC = std::min((int)(IPC/binSizeIPC),
452 binIPC−1);
453 int indexLLCMPC = std::min((int)(LLCMPC/binSizeLLCMPC),
454 binLLCMPC−1);
455

456 return (int)table[INDEX(thread, indexLLCMPC,
457 indexIPC, binLLCMPC, binIPC)];
458 }
459

460 static void * intelligentAgent(void * arg)
461 {
462 int binIPC = 0, binLLCMPC = 0, threads = 0;
463 float binSizeIPC = 0.0, binSizeLLCMPC = 0.0;
464 char* table = initializeLookupTable(binIPC, binLLCMPC,
465 threads, binSizeIPC, binSizeLLCMPC);
466

467 if (table != NULL) {
468 int currentFrequency = 2600;
469 waitForSystemToInitialize();
470 waitForPapiToInitialize();
471

472 while (true == running) {
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473

474 usleep(IDLE_TIME);
475

476 int threads = 0;
477 float ipc = 0.0;
478 float llcmpc = 0.0;
479

480 /**
481 * read performance counters

482 * and active cores

483 */

484 readSensors(threads, ipc, llcmpc);
485

486 int frequency = currentFrequency;
487 if (threads != 0) {
488 /** lookup new frequency **/

489 frequency = convertFrequency(
490 lookupFrequency(binSizeLLCMPC,
491 binSizeIPC, llcmpc, ipc, binIPC,
492 binLLCMPC, threads−1, table));
493 }
494

495 /** should the frequency be adjusted? **/

496 if (currentFrequency != frequency) {
497 set_cpufreq(frequency);
498 currentFrequency = frequency;
499 }
500 }
501

502 delete [] table;
503 }
504 }
505 };
506

507 /**
508 * This function will be called when

509 * a new task should be picked

510 *
511 * @param thread Pointer to the thread that

512 * should pick new task

513 *
514 * @return Pointer to new task

515 */

516 WD * DistributedBFPolicy::atIdle ( BaseThread *thread )
517 {
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518 WorkDescriptor * wd;
519 WorkDescriptor * next = NULL;
520

521 ThreadData &data = ( ThreadData & ) *thread−>
522 getTeamData()−>getScheduleData();
523

524 if (data.papi_initialized == false) {
525 init_thread(thread, data);
526 }
527

528 /**
529 * First try to schedule the thread

530 * with a task from its queue

531 */

532 if ( ( wd = data._readyQueue.pop_front ( thread ) ) != NULL ) {
533 return wd;
534 } else {
535 /**
536 * If the local queue is empty,

537 * try to steal the parent

538 * (possibly enqueued in the

539 * queue of another thread)

540 */

541 if ( ( wd = thread−>getCurrentWD()−>getParent() ) != NULL ) {
542 /**
543 * Try to remove from one queue:

544 * if someone move it, I stop looking

545 * for it to avoid ping-pongs

546 */

547 if ( wd−>isEnqueued() ) {
548 if ( wd−>getMyQueue()−>removeWD( thread, wd, &next ) )

{
549 return next;
550 }
551 }
552 }
553

554 /**
555 * If also the parent is NULL or if someone moved

556 * it to another queue while was trying to steal

557 * it, try to steal tasks from other queues

558 */

559 int thid = thread−>getTeamId();
560 int size = thread−>getTeam()−>size();
561 WorkDescriptor * wd = NULL;
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562

563 do {
564 thid = ( thid + 1 ) % size;
565

566 BaseThread &victim = thread−>
567 getTeam()−>getThread(thid);
568

569 if ( victim.getTeam() != NULL ) {
570 ThreadData &tdata = ( ThreadData & )
571 *victim.getTeamData()−>getScheduleData();
572 wd = tdata._readyQueue.pop_back ( thread );
573 }
574

575 } while ( wd == NULL && thid != thread−>getTeamId() );
576

577 return wd;
578 }
579 }
580

581 class DistributedBFSchedPlugin : public Plugin
582 {
583 public:
584 DistributedBFSchedPlugin()
585 : Plugin( "Distributed Breadth-First scheduling Plugin",1

) {}
586

587 virtual void config( Config& cfg ) {}
588

589 virtual void init() {
590 sys.setDefaultSchedulePolicy(NEW DistributedBFPolicy());
591 }
592 };
593

594 }
595 }
596

597 nanos::ext::DistributedBFSchedPlugin NanosXPlugin;
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Experiment configurations

This appendix provides an overview of the experiment configurations. Listing .1 presents
the command that has been used to run an experiment.

Listing .1 Command to run an experiment

1 OMP_NUM_THREADS=threads
2 NX_ARGS="--schedule agent --throttle taskdepth
3 --throttle-limit 4" ./application

FFT, NQueens, Vector operation and Strassen have been configured with the ad-
ditional command ’--spins 1 --sleep-time 90000000’ added in NX_ARGS. This command
ensures that an idle thread will sleep for 9ms before it tries to steal a new task. Tables 1,
2 and 3 list the experiment configurations for each of the application kernels that have
been used during the research.

Application kernel Threads Iterations Parameters

Merge Sort 1 - 7 1 N = 1 GB, CUT_OFF = 64 KB
Merge Sort 8 - 16 1 N = 2 GB, CUT_OFF = 64 KB
Reduction 1 - 8 20 N = 1 GB, BSIZE = N / 1 KB
Reduction 9 - 16 40 N = 1 GB, BSIZE = N / 1 KB
Histogram 1 - 16 3 N = 1.5 GB

NUM_LOCAL_HISTOGRAM = 64
BSIZE = N / NUM_LOCAL_HISTOGRAM
HISTOGRAM_MAX = 1 MB

Table 1: Experiment configurations
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Application kernel Threads Iterations Parameters

2d convolution 1 - 6 1 IMAGE_WIDTH = 2 KB, NUM_TASKS = 32
IMAGE_HEIGHT = IMAGE_WIDTH
FILTER_WIDTH = 32
FILTER_HEIGHT = 32
INPUT_IMAGE_WIDTH =
IMAGE_WIDTH + FILTER_WIDTH
INPUT_IMAGE_HEIGHT =
IMAGE_HEIGHT + FILTER_HEIGHT

2d convolution 7 - 16 1 IMAGE_WIDTH = 4 KB, NUM_TASKS = 32
IMAGE_HEIGHT = IMAGE_WIDTH
FILTER_WIDTH = 32
FILTER_HEIGHT = 32
INPUT_IMAGE_WIDTH =
IMAGE_WIDTH + FILTER_WIDTH
INPUT_IMAGE_HEIGHT =
IMAGE_HEIGHT + FILTER_HEIGHT

3d stencil 1 - 7 5 Nx = 1 KB, Ny = 1 KB, Nz = 1KB
NUM_TASKS = 32

3d stencil 8 - 16 10 Nx = 1 KB, Ny = 1 KB, Nz = 1KB
NUM_TASKS = 32

Dense matrix multiplication 1 - 8 1 DIM = 16, BSIZE = 512
Dense matrix multiplication 9 - 16 1 DIM = 20, BSIZE = 512
Sparse matrix vector multi-
plication

1 - 8 4000 input = bcsstk32.mtx

Sparse matrix vector multi-
plication

9 - 16 8000 input = bcsstk32.mtx

Vector operation 1 - 8 25 N = 1 GB, BSIZE = N / 128
epsilon = 1.e-8f, T = float

Vector operation 9 - 16 50 N = 1 GB, BSIZE = N / 128
epsilon = 1.e-8f, T = float

N-body 1 - 8 1 N = 49152, NUM_TASKS = 32
FLOAT_TYPE = float
dT = 0.001f, damping = 0.995f
softeningSquared = 0.00125f

N-body 9 - 16 1 N = 65536, NUM_TASKS = 32
FLOAT_TYPE = float
dT = 0.001f, damping = 0.995f
softeningSquared = 0.00125f

Table 2: Experiment configurations
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Application kernel Threads Iterations Parameters

FFT 1 - 5 1 N = 64 MB
FFT 6 - 16 1 N = 256 MB
SparseLU 1 - 3 1 size = 35, size_1 = 100
SparseLU 4 - 6 2 size = 35, size_1 = 100
SparseLU 7 - 9 4 size = 35, size_1 = 100
SparseLU 10 - 12 8 size = 35, size_1 = 100
SparseLU 13 - 16 10 size = 35, size_1 = 100
NQueens 1 - 3 1 N = 13
NQueens 4 - 8 1 N = 14
NQueens 9 - 16 1 N = 15
Strassen 1 - 16 1 N = 4096
Black Scholes 1 - 5 5000 N = 64 KB
Black Scholes 6 - 16 20000 N = 64 KB
Fibonacci 1 - 8 1 N = 48
Fibonacci 9 - 16 1 N = 49
Quick Sort 1 - 7 1 N = 1 GB, CUT_OFF = 64 KB
Quick Sort 8 - 16 1 N = 2 GB, CUT_OFF = 64 KB
Unstructured 3d stencil 1 - 8 4 Nx = 512, Ny = 512, Nz = 512

NUM_TASKS = 32
Unstructured 3d stencil 9 - 16 8 Nx = 512, Ny = 512, Nz = 512

NUM_TASKS = 32

Table 3: Experiment configurations
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Training Phase - Application kernels

This appendix presents the matrices that have been generated during the training of the
lookup table. Each row represents a thread configuration, and each column a frequency.
The energy consumption is normalized, so the frequency with the lowest value is the
most energy efficient.

Histogram
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NQueens

3d stencil
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Dense matrix multiplication

N-body
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Sparse matrix vector multiplication

FFT
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Merge Sort
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Lookup table

Operations per Joule

16 active cores

15 active cores
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Operations per Joule under the constraint that performance can-
not suffer by more than 10%
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15 active cores

14 active cores
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Experiment results
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Results for the metric Operations per Joule

0.0.7 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 1700 MHz 1713 MHz 0.76 %
Reduction 1700 MHz 1758 MHz 3.41 %
Histogram 1200 MHz 1689 MHz 40.75 %
2d convolution 1900 MHz 1700 MHz 10.53 %
3d stencil 1700 MHz 1704 MHz 0.24 %
Dense matrix multiplication 1700 MHz 1722 MHz 1.29 %
Sparse matrix vector multiplication 2100 MHz 1849 MHz 11.95 %
Vector operation 1700 MHz 1600 MHz 5.88 %
N-body 2000 MHz 1700 MHz 15.00 %
FFT 1600 MHz 1434 MHz 10.38 %
SparseLU 1800 MHz 1933 MHz 7.39 %
NQueens 1800 MHz 1600 MHz 11.11 %
Strassen 1800 MHz 1600 MHz 11.11 %
Black Scholes 1800 MHz 1927 MHz 7.06 %
Fibonacci 1400 MHz 1738 MHz 24.14 %
Quick Sort 2100 MHz 1964 MHz 6.48 %
Unstructured 3d stencil 1200 MHz 1360 MHz 13.33 %
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0.0.8 Results for 15 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 1700 MHz 1800 MHz 5.88 %
Reduction 1800 MHz 1803 MHz 0.17 %
Histogram 1300 MHz 1756 MHz 35.08 %
2d convolution 2000 MHz 2018 MHz 0.90 %
3d stencil 1800 MHz 2016 MHz 12.00 %
Dense matrix multiplication 1700 MHz 1808 MHz 6.35 %
Sparse matrix vector multiplication 2000 MHz 1973 MHz 1.35 %
Vector operation 1700 MHz 1800 MHz 5.88 %
N-body 2400 MHz 2006 MHz 16.42 %
FFT 1400 MHz 1509 MHz 7.79 %
SparseLU 1800 MHz 1844 MHz 2.44 %
NQueens 1800 MHz 1800 MHz 0.00 %
Strassen 1800 MHz 1800 MHz 0.00 %
Black Scholes 1900 MHz 1982 MHz 4.32 %
Fibonacci 2100 MHz 1950 MHz 7.14 %
Quick Sort 2100 MHz 1967 MHz 6.33 %
Unstructured 3d stencil 1400 MHz 1596 MHz 14.00 %
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0.0.9 Results for 14 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 1900 MHz 1800 MHz 5.26 %
Reduction 1900 MHz 1808 MHz 4.84 %
Histogram 1300 MHz 1707 MHz 31.31 %
2d convolution 2100 MHz 2018 MHz 3.90 %
3d stencil 1800 MHz 2004 MHz 11.33 %
Dense matrix multiplication 1800 MHz 1818 MHz 1.00 %
Sparse matrix vector multiplication 1900 MHz 1985 MHz 4.47 %
Vector operation 1700 MHz 1800 MHz 5.88 %
N-body 2000 MHz 2006 MHz 0.30 %
FFT 1700 MHz 1539 MHz 9.47 %
SparseLU 2000 MHz 2005 MHz 0.25 %
NQueens 2000 MHz 1800 MHz 10.00 %
Strassen 1800 MHz 1800 MHz 0.00 %
Black Scholes 1900 MHz 2006 MHz 5.58 %
Fibonacci 2200 MHz 1940 MHz 11.82 %
Quick Sort 2100 MHz 1941 MHz 7.57 %
Unstructured 3d stencil 1500 MHz 1654 MHz 10.27 %
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0.0.10 Results for 13 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 1900 MHz 1900 MHz 0.00 %
Reduction 1900 MHz 1906 MHz 0.32 %
Histogram 1400 MHz 1823 MHz 30.21 %
2d convolution 2100 MHz 2092 MHz 0.38 %
3d stencil 2000 MHz 2108 MHz 5.40 %
Dense matrix multiplication 1800 MHz 2000 MHz 11.11 %
Sparse matrix vector multiplication 2000 MHz 2137 MHz 6.85 %
Vector operation 1700 MHz 1900 MHz 11.76 %
N-body 2000 MHz 2017 MHz 0.85 %
FFT 1500 MHz 1599 MHz 6.60 %
SparseLU 2000 MHz 2052 MHz 2.60 %
NQueens 1900 MHz 1900 MHz 0.00 %
Strassen 2000 MHz 1900 MHz 5.00 %
Black Scholes 2400 MHz 1995 MHz 16.88 %
Fibonacci 2000 MHz 2037 MHz 1.85 %
Quick Sort 2100 MHz 2023 MHz 3.67 %
Unstructured 3d stencil 1500 MHz 1560 MHz 4.00 %
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0.0.11 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2000 MHz 2000 MHz 0.00 %
Reduction 1900 MHz 2019 MHz 6.26 %
Histogram 1400 MHz 1892 MHz 35.14 %
2d convolution 2000 MHz 2061 MHz 3.05 %
3d stencil 1900 MHz 2083 MHz 9.63 %
Dense matrix multiplication 2000 MHz 2010 MHz 0.50 %
Sparse matrix vector multiplication 2000 MHz 2104 MHz 5.20 %
Vector operation 1700 MHz 2000 MHz 17.65 %
N-body 2000 MHz 2060 MHz 3.00 %
FFT 1700 MHz 1644 MHz 3.29 %
SparseLU 1900 MHz 2093 MHz 10.16 %
NQueens 2000 MHz 2000 MHz 0.00 %
Strassen 1800 MHz 2000 MHz 11.11 %
Black Scholes 1900 MHz 2132 MHz 12.21 %
Fibonacci 2300 MHz 2051 MHz 10.83 %
Quick Sort 2100 MHz 2103 MHz 0.14 %
Unstructured 3d stencil 1500 MHz 1612 MHz 7.47 %
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0.0.12 Results for 11 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2000 MHz 2000 MHz 0.00 %
Reduction 1900 MHz 2004 MHz 5.47 %
Histogram 1700 MHz 1921 MHz 13.00 %
2d convolution 2000 MHz 2000 MHz 0.00 %
3d stencil 2000 MHz 2000 MHz 0.00 %
Dense matrix multiplication 2000 MHz 2009 MHz 0.45 %
Sparse matrix vector multiplication 2200 MHz 2094 MHz 4.82 %
Vector operation 1800 MHz 2000 MHz 11.11 %
N-body 2000 MHz 2000 MHz 0.00 %
FFT 1700 MHz 1594 MHz 6.24 %
SparseLU 2000 MHz 2056 MHz 2.80 %
NQueens 2100 MHz 2000 MHz 4.76 %
Strassen 1900 MHz 2000 MHz 5.26 %
Black Scholes 1700 MHz 2084 MHz 22.59 %
Fibonacci 2300 MHz 2110 MHz 8.26 %
Quick Sort 2200 MHz 2102 MHz 4.45 %
Unstructured 3d stencil 1200 MHz 1754 MHz 46.17 %
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0.0.13 Results for 10 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2000 MHz 2000 MHz 0.00 %
Reduction 1900 MHz 2020 MHz 6.32 %
Histogram 1500 MHz 1920 MHz 28.00 %
2d convolution 2200 MHz 2120 MHz 3.64 %
3d stencil 2100 MHz 2126 MHz 1.24 %
Dense matrix multiplication 2000 MHz 2008 MHz 0.40 %
Sparse matrix vector multiplication 2200 MHz 2131 MHz 3.14 %
Vector operation 1800 MHz 2000 MHz 11.11 %
N-body 2200 MHz 2123 MHz 3.50 %
FFT 2000 MHz 1757 MHz 12.15 %
SparseLU 2100 MHz 2214 MHz 5.43 %
NQueens 2000 MHz 2000 MHz 0.00 %
Strassen 2100 MHz 2000 MHz 4.76 %
Black Scholes 2000 MHz 2149 MHz 7.45 %
Fibonacci 2600 MHz 2400 MHz 7.69 %
Quick Sort 2300 MHz 2086 MHz 9.30 %
Unstructured 3d stencil 1500 MHz 1878 MHz 25.20 %
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0.0.14 Results for 9 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2200 MHz 2200 MHz 0.00 %
Reduction 2100 MHz 2207 MHz 5.10 %
Histogram 1700 MHz 1951 MHz 14.76 %
2d convolution 2000 MHz 2286 MHz 14.30 %
3d stencil 2200 MHz 2292 MHz 4.18 %
Dense matrix multiplication 2000 MHz 2205 MHz 10.25 %
Sparse matrix vector multiplication 2300 MHz 2282 MHz 0.78 %
Vector operation 2000 MHz 2200 MHz 10.00 %
N-body 2200 MHz 2288 MHz 4.00 %
FFT 1700 MHz 1775 MHz 4.41 %
SparseLU 2400 MHz 2284 MHz 4.83 %
NQueens 2200 MHz 2200 MHz 0.00 %
Strassen 2100 MHz 2150 MHz 2.38 %
Black Scholes 2400 MHz 2302 MHz 4.08 %
Fibonacci 2400 MHz 2385 MHz 0.62 %
Quick Sort 2600 MHz 2254 MHz 13.31 %
Unstructured 3d stencil 1500 MHz 1813 MHz 20.87 %
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0.0.15 Results for 8 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2300 MHz 11.54 %
Reduction 2500 MHz 2300 MHz 8.00 %
Histogram 1700 MHz 1901 MHz 11.82 %
2d convolution 2500 MHz 2300 MHz 8.00 %
3d stencil 2400 MHz 2300 MHz 4.17 %
Dense matrix multiplication 2200 MHz 2300 MHz 4.55 %
Sparse matrix vector multiplication 2300 MHz 2329 MHz 1.26 %
Vector operation 2200 MHz 2300 MHz 4.55 %
N-body 2400 MHz 2303 MHz 4.04 %
FFT 1900 MHz 1861 MHz 2.05 %
SparseLU 2600 MHz 2318 MHz 10.85 %
NQueens 2600 MHz 2300 MHz 11.54 %
Strassen 2500 MHz 2300 MHz 8.00 %
Black Scholes 2600 MHz 2327 MHz 10.50 %
Fibonacci 2600 MHz 2331 MHz 10.35 %
Quick Sort 2500 MHz 2335 MHz 6.60 %
Unstructured 3d stencil 1800 MHz 1800 MHz 0.00 %
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0.0.16 Results for 7 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2500 MHz 2300 MHz 8.00 %
Reduction 2400 MHz 2325 MHz 3.12 %
Histogram 1900 MHz 1924 MHz 1.26 %
2d convolution 2500 MHz 2353 MHz 5.88 %
3d stencil 2600 MHz 2353 MHz 9.50 %
Dense matrix multiplication 2400 MHz 2306 MHz 3.92 %
Sparse matrix vector multiplication 2500 MHz 2355 MHz 5.80 %
Vector operation 2200 MHz 2300 MHz 4.55 %
N-body 2600 MHz 2355 MHz 9.42 %
FFT 1900 MHz 1876 MHz 1.26 %
SparseLU 2600 MHz 2425 MHz 6.73 %
NQueens 2500 MHz 2300 MHz 8.00 %
Strassen 2300 MHz 2300 MHz 0.00 %
Black Scholes 2600 MHz 2368 MHz 8.92 %
Fibonacci 2600 MHz 2375 MHz 8.65 %
Quick Sort 2400 MHz 2352 MHz 2.00 %
Unstructured 3d stencil 1700 MHz 1947 MHz 14.53 %
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0.0.17 Results for 6 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2500 MHz 2592 MHz 3.68 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 1800 MHz 2098 MHz 16.56 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2500 MHz 2600 MHz 4.00 %
Dense matrix multiplication 2300 MHz 2600 MHz 13.04 %
Sparse matrix vector multiplication 2500 MHz 2600 MHz 4.00 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2100 MHz 2094 MHz 0.29 %
SparseLU 2500 MHz 2511 MHz 0.44 %
NQueens 2600 MHz 2400 MHz 7.69 %
Strassen 2600 MHz 2400 MHz 7.69 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2427 MHz 6.65 %
Quick Sort 2100 MHz 2598 MHz 23.71 %
Unstructured 3d stencil 1900 MHz 2104 MHz 10.74 %
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0.0.18 Results for 5 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2590 MHz 0.38 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2000 MHz 2515 MHz 25.75 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2507 MHz 4.46 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2500 MHz 2595 MHz 3.80 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2200 MHz 2600 MHz 18.18 %
Unstructured 3d stencil 2000 MHz 2513 MHz 25.65 %



142 EXPERIMENT RESULTS

0.0.19 Results for 4 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2600 MHz 4.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2500 MHz 2600 MHz 4.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 1900 MHz 2600 MHz 36.84 %
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0.0.20 Results for 3 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2100 MHz 2600 MHz 23.81 %



144 EXPERIMENT RESULTS

0.0.21 Results for 2 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2200 MHz 2600 MHz 18.18 %
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0.0.22 Results for 1 thread

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2500 MHz 2600 MHz 4.00 %



146 EXPERIMENT RESULTS

Results for the metric Energy Delay Product

0.0.23 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2490 MHz 4.23 %
Reduction 2600 MHz 2505 MHz 3.65 %
Histogram 2000 MHz 2224 MHz 11.20 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2500 MHz 2598 MHz 3.92 %
FFT 2500 MHz 2389 MHz 4.44 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2549 MHz 1.96 %
Strassen 2400 MHz 2600 MHz 8.33 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2462 MHz 5.31 %
Unstructured 3d stencil 2100 MHz 2067 MHz 1.57 %
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0.0.24 Results for 15 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 1900 MHz 2272 MHz 19.58 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2596 MHz 0.15 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2350 MHz 2.08 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2555 MHz 1.73 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2500 MHz 2600 MHz 4.00 %
Unstructured 3d stencil 2100 MHz 2181 MHz 3.86 %



148 EXPERIMENT RESULTS

0.0.25 Results for 14 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2595 MHz 0.19 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2100 MHz 2357 MHz 12.24 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2395 MHz 0.21 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2594 MHz 0.23 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2200 MHz 2600 MHz 18.18 %
Quick Sort 2500 MHz 2600 MHz 4.00 %
Unstructured 3d stencil 2200 MHz 2183 MHz 0.77 %
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0.0.26 Results for 13 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2000 MHz 2411 MHz 20.55 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2572 MHz 1.08 %
Unstructured 3d stencil 2300 MHz 2270 MHz 1.30 %



150 EXPERIMENT RESULTS

0.0.27 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2434 MHz 2.64 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2300 MHz 2600 MHz 13.04 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2248 MHz 6.33 %
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0.0.28 Results for 11 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2400 MHz 2445 MHz 1.88 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2276 MHz 8.96 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2500 MHz 2600 MHz 4.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2000 MHz 2300 MHz 15.00 %



152 EXPERIMENT RESULTS

0.0.29 Results for 10 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2200 MHz 2439 MHz 10.86 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2341 MHz 2.46 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2200 MHz 2381 MHz 8.23 %
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0.0.30 Results for 9 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2412 MHz 3.52 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2339 MHz 6.44 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2400 MHz 2600 MHz 8.33 %
Fibonacci 2400 MHz 2600 MHz 8.33 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2340 MHz 2.50 %



154 EXPERIMENT RESULTS

0.0.31 Results for 8 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2300 MHz 2428 MHz 5.57 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2417 MHz 3.32 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2400 MHz 7.69 %

154



RESULTS FOR THE METRIC ENERGY DELAY PRODUCT 155

0.0.32 Results for 7 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2400 MHz 2433 MHz 1.38 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2410 MHz 0.42 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 2600 MHz 2443 MHz 6.04 %



156 EXPERIMENT RESULTS

0.0.33 Results for 6 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2433 MHz 6.42 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2414 MHz 7.15 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2500 MHz 2431 MHz 2.76 %
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0.0.34 Results for 5 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2600 MHz 4.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2600 MHz 8.33 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2200 MHz 2600 MHz 18.18 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %



158 EXPERIMENT RESULTS

0.0.35 Results for 4 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2500 MHz 2600 MHz 4.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.36 Results for 3 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %



160 EXPERIMENT RESULTS

0.0.37 Results for 2 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.38 Results for 1 thread

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %



162 EXPERIMENT RESULTS

Results for the metric Operations per Joule under the constraint
that performance cannot suffer by more than 10%

0.0.39 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2393 MHz 0.29 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 2000 MHz 2197 MHz 9.85 %
2d convolution 2400 MHz 2400 MHz 0.00 %
3d stencil 2400 MHz 2400 MHz 0.00 %
Dense matrix multiplication 2400 MHz 2405 MHz 0.21 %
Sparse matrix vector multiplication 2500 MHz 2432 MHz 2.72 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2500 MHz 2403 MHz 3.88 %
FFT 2200 MHz 2095 MHz 4.77 %
SparseLU 2400 MHz 2425 MHz 1.04 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2300 MHz 2242 MHz 2.52 %
Black Scholes 2400 MHz 2422 MHz 0.92 %
Fibonacci 2600 MHz 2418 MHz 7.00 %
Quick Sort 2600 MHz 2410 MHz 7.31 %
Unstructured 3d stencil 2100 MHz 2102 MHz 0.10 %
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0.0.40 Results for 15 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2400 MHz 0.00 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 1900 MHz 2218 MHz 16.74 %
2d convolution 2400 MHz 2466 MHz 2.75 %
3d stencil 2500 MHz 2468 MHz 1.28 %
Dense matrix multiplication 2400 MHz 2400 MHz 0.00 %
Sparse matrix vector multiplication 2400 MHz 2446 MHz 1.92 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2463 MHz 2.62 %
FFT 2200 MHz 2103 MHz 4.41 %
SparseLU 2400 MHz 2426 MHz 1.08 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2400 MHz 2209 MHz 7.96 %
Black Scholes 2400 MHz 2441 MHz 1.71 %
Fibonacci 2100 MHz 2454 MHz 16.86 %
Quick Sort 2300 MHz 2451 MHz 6.57 %
Unstructured 3d stencil 2200 MHz 2204 MHz 0.18 %



164 EXPERIMENT RESULTS

0.0.41 Results for 14 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2400 MHz 0.00 %
Reduction 2400 MHz 2404 MHz 0.17 %
Histogram 2000 MHz 2190 MHz 9.50 %
2d convolution 2400 MHz 2466 MHz 2.75 %
3d stencil 2400 MHz 2400 MHz 0.00 %
Dense matrix multiplication 2400 MHz 2400 MHz 0.00 %
Sparse matrix vector multiplication 2400 MHz 2448 MHz 2.00 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2463 MHz 2.62 %
FFT 2200 MHz 2132 MHz 3.09 %
SparseLU 2400 MHz 2427 MHz 1.12 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2400 MHz 2195 MHz 8.54 %
Black Scholes 2300 MHz 2421 MHz 5.26 %
Fibonacci 2200 MHz 2454 MHz 11.55 %
Quick Sort 2500 MHz 2440 MHz 2.40 %
Unstructured 3d stencil 2200 MHz 2202 MHz 0.09 %
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0.0.42 Results for 13 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2400 MHz 0.00 %
Reduction 2400 MHz 2404 MHz 0.17 %
Histogram 2200 MHz 2174 MHz 1.18 %
2d convolution 2400 MHz 2433 MHz 1.38 %
3d stencil 2400 MHz 2445 MHz 1.88 %
Dense matrix multiplication 2400 MHz 2400 MHz 0.00 %
Sparse matrix vector multiplication 2400 MHz 2445 MHz 1.88 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2431 MHz 1.29 %
FFT 2500 MHz 2127 MHz 14.92 %
SparseLU 2400 MHz 2419 MHz 0.79 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2300 MHz 2220 MHz 3.48 %
Black Scholes 2400 MHz 2425 MHz 1.04 %
Fibonacci 2600 MHz 2400 MHz 7.69 %
Quick Sort 2600 MHz 2441 MHz 6.12 %
Unstructured 3d stencil 2200 MHz 2142 MHz 2.64 %



166 EXPERIMENT RESULTS

0.0.43 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2400 MHz 0.00 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 2500 MHz 2220 MHz 11.20 %
2d convolution 2400 MHz 2400 MHz 0.00 %
3d stencil 2400 MHz 2401 MHz 0.04 %
Dense matrix multiplication 2400 MHz 2402 MHz 0.08 %
Sparse matrix vector multiplication 2400 MHz 2423 MHz 0.96 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2400 MHz 0.00 %
FFT 2500 MHz 2135 MHz 14.60 %
SparseLU 2400 MHz 2424 MHz 1.00 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2400 MHz 2238 MHz 6.75 %
Black Scholes 2600 MHz 2431 MHz 6.50 %
Fibonacci 2300 MHz 2400 MHz 4.35 %
Quick Sort 2500 MHz 2419 MHz 3.24 %
Unstructured 3d stencil 2100 MHz 2100 MHz 0.00 %

166



RESULTS FOR THE METRIC OPERATIONS PER JOULE UNDER THE CONSTRAINT THAT
PERFORMANCE CANNOT SUFFER BY MORE THAN 10% 167

0.0.44 Results for 11 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2395 MHz 0.21 %
Reduction 2400 MHz 2400 MHz 0.00 %
Histogram 2100 MHz 2235 MHz 6.43 %
2d convolution 2400 MHz 2405 MHz 0.21 %
3d stencil 2400 MHz 2400 MHz 0.00 %
Dense matrix multiplication 2400 MHz 2405 MHz 0.21 %
Sparse matrix vector multiplication 2400 MHz 2433 MHz 1.38 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2400 MHz 0.00 %
FFT 2300 MHz 2124 MHz 7.65 %
SparseLU 2400 MHz 2418 MHz 0.75 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2300 MHz 2228 MHz 3.13 %
Black Scholes 2600 MHz 2426 MHz 6.69 %
Fibonacci 2500 MHz 2436 MHz 2.56 %
Quick Sort 2500 MHz 2432 MHz 2.72 %
Unstructured 3d stencil 2100 MHz 2166 MHz 3.14 %



168 EXPERIMENT RESULTS

0.0.45 Results for 10 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2397 MHz 0.12 %
Reduction 2400 MHz 2403 MHz 0.12 %
Histogram 2000 MHz 2200 MHz 10.00 %
2d convolution 2400 MHz 2445 MHz 1.88 %
3d stencil 2400 MHz 2442 MHz 1.75 %
Dense matrix multiplication 2400 MHz 2403 MHz 0.12 %
Sparse matrix vector multiplication 2400 MHz 2448 MHz 2.00 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2447 MHz 1.96 %
FFT 2200 MHz 2121 MHz 3.59 %
SparseLU 2400 MHz 2426 MHz 1.08 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2300 MHz 2250 MHz 2.17 %
Black Scholes 2400 MHz 2437 MHz 1.54 %
Fibonacci 2600 MHz 2427 MHz 6.65 %
Quick Sort 2600 MHz 2431 MHz 6.50 %
Unstructured 3d stencil 2100 MHz 2212 MHz 5.33 %
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0.0.46 Results for 9 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2400 MHz 2396 MHz 0.17 %
Reduction 2400 MHz 2402 MHz 0.08 %
Histogram 2000 MHz 2193 MHz 9.65 %
2d convolution 2400 MHz 2445 MHz 1.88 %
3d stencil 2400 MHz 2447 MHz 1.96 %
Dense matrix multiplication 2400 MHz 2403 MHz 0.12 %
Sparse matrix vector multiplication 2500 MHz 2443 MHz 2.28 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2447 MHz 1.96 %
FFT 2400 MHz 2128 MHz 11.33 %
SparseLU 2400 MHz 2427 MHz 1.12 %
NQueens 2400 MHz 2400 MHz 0.00 %
Strassen 2400 MHz 2300 MHz 4.17 %
Black Scholes 2400 MHz 2427 MHz 1.12 %
Fibonacci 2400 MHz 2459 MHz 2.46 %
Quick Sort 2600 MHz 2430 MHz 6.54 %
Unstructured 3d stencil 2200 MHz 2140 MHz 2.73 %



170 EXPERIMENT RESULTS

0.0.47 Results for 8 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2393 MHz 7.96 %
Reduction 2500 MHz 2400 MHz 4.00 %
Histogram 1900 MHz 2171 MHz 14.26 %
2d convolution 2500 MHz 2400 MHz 4.00 %
3d stencil 2400 MHz 2401 MHz 0.04 %
Dense matrix multiplication 2500 MHz 2402 MHz 3.92 %
Sparse matrix vector multiplication 2500 MHz 2424 MHz 3.04 %
Vector operation 2400 MHz 2400 MHz 0.00 %
N-body 2400 MHz 2400 MHz 0.00 %
FFT 2300 MHz 2124 MHz 7.65 %
SparseLU 2600 MHz 2486 MHz 4.38 %
NQueens 2600 MHz 2400 MHz 7.69 %
Strassen 2500 MHz 2400 MHz 4.00 %
Black Scholes 2600 MHz 2427 MHz 6.65 %
Fibonacci 2600 MHz 2448 MHz 5.85 %
Quick Sort 2500 MHz 2426 MHz 2.96 %
Unstructured 3d stencil 2200 MHz 2118 MHz 3.73 %
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0.0.48 Results for 7 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2500 MHz 2500 MHz 0.00 %
Reduction 2400 MHz 2511 MHz 4.62 %
Histogram 2100 MHz 2245 MHz 6.90 %
2d convolution 2500 MHz 2518 MHz 0.72 %
3d stencil 2600 MHz 2519 MHz 3.12 %
Dense matrix multiplication 2400 MHz 2502 MHz 4.25 %
Sparse matrix vector multiplication 2500 MHz 2517 MHz 0.68 %
Vector operation 2400 MHz 2505 MHz 4.38 %
N-body 2600 MHz 2519 MHz 3.12 %
FFT 2100 MHz 2235 MHz 6.43 %
SparseLU 2600 MHz 2574 MHz 1.00 %
NQueens 2500 MHz 2500 MHz 0.00 %
Strassen 2500 MHz 2500 MHz 0.00 %
Black Scholes 2600 MHz 2520 MHz 3.08 %
Fibonacci 2600 MHz 2509 MHz 3.50 %
Quick Sort 2400 MHz 2518 MHz 4.92 %
Unstructured 3d stencil 2200 MHz 2263 MHz 2.86 %



172 EXPERIMENT RESULTS

0.0.49 Results for 6 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2500 MHz 2592 MHz 3.68 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2200 MHz 2350 MHz 6.82 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2500 MHz 2600 MHz 4.00 %
Dense matrix multiplication 2500 MHz 2600 MHz 4.00 %
Sparse matrix vector multiplication 2500 MHz 2600 MHz 4.00 %
Vector operation 2400 MHz 2600 MHz 8.33 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2300 MHz 2331 MHz 1.35 %
SparseLU 2500 MHz 2600 MHz 4.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2597 MHz 0.12 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2598 MHz 0.08 %
Unstructured 3d stencil 2200 MHz 2353 MHz 6.95 %
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0.0.50 Results for 5 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2592 MHz 0.31 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2200 MHz 2518 MHz 14.45 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2515 MHz 4.79 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2500 MHz 2597 MHz 3.88 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2200 MHz 2600 MHz 18.18 %
Unstructured 3d stencil 2200 MHz 2513 MHz 14.23 %
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0.0.51 Results for 4 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2600 MHz 4.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2500 MHz 2600 MHz 4.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 2200 MHz 2600 MHz 18.18 %
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0.0.52 Results for 3 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2200 MHz 2600 MHz 18.18 %
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0.0.53 Results for 2 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2200 MHz 2600 MHz 18.18 %
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0.0.54 Results for 1 thread

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2500 MHz 2600 MHz 4.00 %
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Results for the metric Energy Delay Product under the constraint
that performance cannot suffer by more than 10%

0.0.55 Results for 16 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2493 MHz 4.12 %
Reduction 2600 MHz 2505 MHz 3.65 %
Histogram 2000 MHz 2250 MHz 12.50 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2500 MHz 2598 MHz 3.92 %
FFT 2500 MHz 2363 MHz 5.48 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2549 MHz 1.96 %
Strassen 2400 MHz 2600 MHz 8.33 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2462 MHz 5.31 %
Unstructured 3d stencil 2100 MHz 2138 MHz 1.81 %
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0.0.56 Results for 15 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 1900 MHz 2314 MHz 21.79 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2330 MHz 2.92 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2555 MHz 1.73 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2500 MHz 2600 MHz 4.00 %
Unstructured 3d stencil 2400 MHz 2275 MHz 5.21 %
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0.0.57 Results for 14 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2100 MHz 2412 MHz 14.86 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2395 MHz 0.21 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2594 MHz 0.23 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2200 MHz 2600 MHz 18.18 %
Quick Sort 2500 MHz 2600 MHz 4.00 %
Unstructured 3d stencil 2200 MHz 2314 MHz 5.18 %
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0.0.58 Results for 13 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2200 MHz 2418 MHz 9.91 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2572 MHz 1.08 %
Unstructured 3d stencil 2300 MHz 2266 MHz 1.48 %
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0.0.59 Results for 12 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2435 MHz 2.60 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2400 MHz 7.69 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2300 MHz 2600 MHz 13.04 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2253 MHz 6.12 %
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0.0.60 Results for 11 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2400 MHz 2457 MHz 2.38 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2298 MHz 8.08 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2500 MHz 2600 MHz 4.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2100 MHz 2301 MHz 9.57 %
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0.0.61 Results for 10 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2200 MHz 2438 MHz 10.82 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2341 MHz 2.46 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2200 MHz 2383 MHz 8.32 %
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0.0.62 Results for 9 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2395 MHz 4.20 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2340 MHz 6.40 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2400 MHz 2600 MHz 8.33 %
Fibonacci 2400 MHz 2600 MHz 8.33 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2400 MHz 2336 MHz 2.67 %
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0.0.63 Results for 8 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2300 MHz 2428 MHz 5.57 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2500 MHz 2422 MHz 3.12 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2400 MHz 7.69 %
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0.0.64 Results for 7 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2400 MHz 2430 MHz 1.25 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2412 MHz 0.50 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 2600 MHz 2437 MHz 6.27 %
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0.0.65 Results for 6 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2433 MHz 6.42 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2417 MHz 7.04 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2500 MHz 2435 MHz 2.60 %
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0.0.66 Results for 5 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2500 MHz 2600 MHz 4.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2400 MHz 2600 MHz 8.33 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2200 MHz 2600 MHz 18.18 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.67 Results for 4 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2500 MHz 2600 MHz 4.00 %
Quick Sort 2400 MHz 2600 MHz 8.33 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.68 Results for 3 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2100 MHz 2600 MHz 23.81 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.69 Results for 2 threads

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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0.0.70 Results for 1 thread

Kernel Optimal Frequency Predicted Frequency Error

Merge Sort 2600 MHz 2600 MHz 0.00 %
Reduction 2600 MHz 2600 MHz 0.00 %
Histogram 2600 MHz 2600 MHz 0.00 %
2d convolution 2600 MHz 2600 MHz 0.00 %
3d stencil 2600 MHz 2600 MHz 0.00 %
Dense matrix multiplication 2600 MHz 2600 MHz 0.00 %
Sparse matrix vector multiplication 2600 MHz 2600 MHz 0.00 %
Vector operation 2600 MHz 2600 MHz 0.00 %
N-body 2600 MHz 2600 MHz 0.00 %
FFT 2600 MHz 2600 MHz 0.00 %
SparseLU 2600 MHz 2600 MHz 0.00 %
NQueens 2600 MHz 2600 MHz 0.00 %
Strassen 2600 MHz 2600 MHz 0.00 %
Black Scholes 2600 MHz 2600 MHz 0.00 %
Fibonacci 2600 MHz 2600 MHz 0.00 %
Quick Sort 2600 MHz 2600 MHz 0.00 %
Unstructured 3d stencil 2600 MHz 2600 MHz 0.00 %
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