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Abstract

This thesis investigates the use of Echo State Networks (ESNs) in unsupervised
learning environments, by employing Evolutionary Algorithms (EAs) to evolve
ESNs to control an agent that performs a novel, minimally-cognitive learning
task. The task employed in this thesis is a modified version of the classic video
game Frogger. ESNs are investigated since they promise to combine the temporal
abilities seen in other Recurrent Neural Networks (RNNs) with a straightforward
method to train the network. However, previous work employing ESNs in un-
supervised environments is lacking.

The evolved ESNs are compared to feed-forward Artificial Neural Networks (ANNs)
as well as ESNs trained with regular supervised learning, in a comparative perfor-
mance measure to find out which method is best suited to control Frogger.

The results from this thesis show that not only do ESNs work well with EAs,
but they surpass traditional feed-forward ANNs on the Frogger task. Addition-
ally, it is shown that for the Frogger task, evolved ESNs also outperform ESNs
trained with supervised learning. The results from this work should serve as an
encouragement to use ESNs for more tasks in the future, due to their competitive
performance and ease of setup.
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Sammendrag

This is a Norwegian translation of the abstract.

Denne avhandlingen undersøker bruken av Echo State Nettverk (ESNer) i miljøer
med uoverv̊aket læring, ved å bruke Evolusjonære Algoritmer (EAer) til å utvikle
individer for å kontrollere en agent som utfører en ny, minimalt-kognitiv lærings-
oppgave. Læringsoppgaven brukt i denne avhandlingen er en modifisert versjon
av det klassiske videospillet Frogger. ESNer er undersøkt fordi de lover å kom-
binere de temporale egenskapene sett i andre Tilbakevendende Nevrale Nettverk
(RNNer) med en ukomplisert måte å trene nettverket p̊a. Imidlertid er tidligere
arbeid med å bruke ESNer i miljøer med uoverv̊aket læring mangelfullt.

De utviklede ESNene blir sammenlignet med “feed-forward” kunstige nevrale
nettverk (ANNer) s̊a vel som ESNer trent med overv̊aket læring, i en komparativ
ytelsesmåling for å finne ut hvilken metode som er best egnet til å kontrollere
Frogger.

Resultatene fra denne avhandlingen viser ikke bare at ESNer fungerer med EAer,
men at de ogs̊a overg̊ar tradisjonelle “feed-forward” ANNer p̊a Frogger-oppgaven.
I tillegg er det vist at utviklede ESNer ogs̊a overg̊ar ESNer trent med overv̊aket
læring p̊a Frogger-oppgaven. Resultatene fra dette arbeidet bør sees p̊a som en
oppfordring til å bruke ESNer mer i fremtiden, p̊a grunn av deres konkurranse-
dyktige ytelse og enkle oppsett.
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Chapter 1

Introduction

This Chapter provides an introduction to the project, lists goals and research
questions, and also covers contributions and thesis structure.

1.1 Background and Motivation

This thesis discusses the usage of echo state networks in a novel minimally cog-
nitive unsupervised learning task.

Minimally cognitive behavior is described by Beer [1996] as the simplest possible
agent-environment systems that raise issues of genuine cognitive interest. In a
minimally cognitive task, the focus is not on realism, but rather on what kind of
behavior results from solving the task.

Evolutionary Algorithms (EAs) are a class of heuristic optimization algorithms
inspired by biological evolution. These algorithms attempt to “evolve” solutions
by applying genetic operators such as crossover and mutation to a “population”
of individuals. There are many sub-areas of EAs, one of which is Neuroevolution
(NE). Neuroevolution attempts to use EAs to evolve Artificial Neural Networks
(ANNs). An artificial neural network consists of an interconnected group of
artificial neurons which are inspired by the inner workings of biological neural
networks.

Echo State Networks (ESNs) belong to a subset of ANNs called Recurrent Neural
Networks (RNNs). These networks di↵er from normal feed-forward ANNs in that
they allow recurrent connections inside the network [Wikipedia, 2012b]. This
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gives the network a distinct advantage compared to feed-forward ANNs in that
it can remember its own state, but it also brings with it the disadvantage that
training and analyzing the network behavior becomes much more complex. While
they are still equally di�cult to analyze, echo state networks avoid the problem
of training by only training the output links, leaving the rest of the network
connections static and randomly generated. This combination of a network that
can remember state while at the same time being easy to train makes ESNs a
promising and interesting part of RNN research.

The main motivation for this thesis stems from the fact that while echo state
networks already show great promise in a variety of supervised learning tasks,
their use in unsupervised learning tasks remain largely unexplored. There have
been some publications looking into unsupervised or reinforcement learning of
ESNs, but not enough to conclusively decide upon their usefulness in these envi-
ronments. This thesis aims to explore the use of ESNs in unsupervised learning
tasks by applying evolutionary algorithms to ESNs in an attempt to solve a novel
minimally cognitive unsupervised learning task, a modified version of the classic
video game Frogger.

This project is an extension of the autumn project undertaken by the author
in the autumn of 2012. For this reason, part of the background knowledge was
obtained and small parts of implementation was completed before the start of
the master’s project.

1.2 Goals and Research Questions

The main goal of the thesis is stated as follows.

Investigate the use of echo state networks in unsupervised environ-
ments by evolving artificial neural networks to control the classic
video game Frogger.

Along with the main goal, some research questions are stated.

Research question 1 What is the best method for solving the task of con-
trolling the minimally cognitive learning task Frogger: evolved echo state
networks, evolved feed-forward artificial neural networks, or echo state net-
works trained with supervised learning?

Research question 2 Will evolved ESNs yield equal or better performance
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than ESNs trained through supervised learning when applied to motor con-
trol tasks?

1.3 Research Method

The goals and research questions will be addressed by designing a system in
order to do simulations, then designing a set of experiments meant to answer the
research questions, and lastly analyze the results of the experiments. The system
to be used will be based upon an already existing toolkit for evolving artificial
neural networks, called SEVANN. The methodology used will be a mix between
a model/abstraction model, and a design/experiment model.

1.4 Contributions

This project aims to contribute with a better understanding of the concep-
tual relationship between echo state networks, evolutionary algorithms, and un-
supervised learning. The project will also provide a comparative performance
measure between evolved echo state networks and other methods such as feed-
forward artificial neural networks when applied to a minimally cognitive task.
In addition to this, the project also aims to make the SEVANN toolkit a more
robust framework for evolving artificial neural networks.

1.5 Thesis Structure

This thesis is organized as follows.

Chapter 1 introduces the problem domain, goal, and research questions.

Chapter 2 provides the state of the art of the fields covered in the thesis, specif-
ically Reservoir Computing and Neuroevolution. In addition, this Chapter
covers the structured literary search protocol, as well as the motivation for
working with the project.

Chapter 3 describes the architecture used for the experiments. This amounts
to a description of the implemented system used for the experiments.

Chapter 4 presents the experimental plan, setup, and finally results from the
experiments.
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Chapter 5 evaluates and concludes the thesis.



Chapter 2

Background Theory and
Motivation

This Chapter aims to provide the reader with the background knowledge required
to understand the research area in this project, specifically that of Neuroevolution
and Reservoir Computing. In addition to covering background theory and related
work, the Chapter also covers the structured literature review protocol used to
find literature during the project, as well as discussing the motivation behind the
project.

2.1 Background Theory

This Section presents background theory obtained during the course of the project.
Some of this information was also obtained during the autumn project undertaken
before this project.

2.1.1 Neuroevolution

Neuroevolution is a form of machine learning which focus on using Evolutionary
Algorithms to train Artificial Neural Networks. There are many approaches to
doing this. This Section first presents some recurring themes in neuroevolution,
and then describes some of the techniques used. Yao provides a comprehensive,
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but somewhat dated, overview of some algorithms used in neuroevolution in [Yao,
1999].

Neuroevolution algorithms can be split into two logical groups, those that evolve
connection weights in an ANN with a static (in most cases fully connected) topol-
ogy, and those that evolve the topology of the ANN along with the weights [James
and Tucker, 2004]. When it comes to the group that evolve both topology and
weights, this group is further divided between those that evolve the topology and
weights at the same time, and those that evolve them separately.

Representation

When adapting ANNs to be used with EAs, one can choose between either a
direct or an indirect encoding of the ANN. Most algorithms use a direct repre-
sentation. However, in recent times, indirect representations have become more
popular.

In a direct representation, the genotype in the EA is exactly the same as the
phenotype, and the entire neural network is specified in the genotype. In an
indirect representation however, the genotype specifies rules that define how an
ANN should be constructed.

The simplest direct representation is the binary representation. Here, each weight
of a fixed topology ANN is represented by a number of bits, and the EA used
does not need any modifications from a standard EA. Other direct representations
range from representing weights as real numbers, to more advanced representa-
tions like the one used in NEAT [Stanley and Miikkulainen, 2002] which contain
additions such as the innovation number.

Indirect representations allow the algorithm freedom to not specify the ANN di-
rectly in the genotype, but rather let the genotype be a “recipe” for how to create
the ANN, and creating the actual ANN in the phenotype. this kind of represen-
tation is used in HyperNEAT [Gauci and Stanley, 2010], where the genotype is
a Compositional Pattern-Producing Network (CPPN) and the phenotype is an
ANN.

NEAT

NEAT is a neuroevolutionary method introduced by Kenneth O. Stanley in
2002 [Stanley and Miikkulainen, 2002]. It was not the first neuroevolutionary
method to try evolving both the topology and the weights of a neural network
at the same time, it was however, one of the first methods with relative success.
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NEAT builds upon some novel ideas within the field of neuroevolution which has
proven to be highly e↵ective, and NEAT outperforms other neuroevolutionary
approaches on e.g. the double pole balancing task [Stanley and Miikkulainen,
2002].

NEAT is comprehensively described in its introductionary article [Stanley and
Miikkulainen, 2002]. The next Sections briefly explain ideas in NEAT which
were novel at the time, and are essential to NEATs e↵ectiveness.

Gene tracking through historical markings One of the novel ideas pre-
sented in NEAT is the use of historical markings to track the origin of the genes
in an ANN. This idea is grounded in the fact that there already exists unex-
ploited information in any evolution that tells us exactly which genes match up
with which [Stanley and Miikkulainen, 2002].

This tracking of historical information allows NEAT to e↵ectively bypass the
Competing Conventions Problem [Montana and Davis, 1989]. The competing con-
ventions problem, also called the permutation problem, states that many permu-
tations of the same vector essentially represent the same functionality, so ANNs
with nodes in di↵erent orders can have very di↵erent genotypes even though their
phenotype has the exact same functionality.

Another advantage given by the tracking of historical origins of the genes are
that it allows crossover of genomes with di↵erent sizes, something which earlier
NE algorithms had struggled with. When NEAT crosses over, the genes in both
genomes with the same historical markings are lined up, and NEAT has rules
controlling what to do with disjoint and excess genes.

Speciation One problem with evolving topology along with weights in an ANN
is that in most cases, adding a neuron or connection to a network will not give
the resulting network a good fitness initially. Thus, in a regular EA, the new
network would be almost instantly disregarded, even though its added neuron
or connection could eventually result in a network stronger than the current
best.

NEAT solves this problem by speciating the population, such that an individual
in the population compete within its own species rather than competing with
the whole population. This speciation allows the individual to live longer, and
eventually maybe evolve to be the global best network. NEAT allows speci-
ation by explicit fitness sharing [Goldberg and Richardson, 1987]. In explicit
fitness sharing, each organism in the same species must share the fitness of their
niche [Stanley and Miikkulainen, 2002]. An added bonus is that this also ensures
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that even if a species is performing well, its population can not grow infinitely
and take over the population.

Complexification Another problem with many other neuroevolution algo-
rithms that evolve both topology and weights, is that in many cases, the solutions
they provide are overly complex and contain nodes and layers which are unneces-
sary. This is because many algorithms start with an initial population of random
topologies, and have to remove nodes during the running of the EA. NEAT has
a di↵erent approach.

NEAT starts out with a minimal neural network which only consists of every
input being connected to every output, and no hidden layers. From that starting
point, NEAT continuously complexifies the network to suit the problem it is
presented with. This incremental complexification of the network means that the
solutions NEAT provide should be minimally, or close to minimally, complex.
Another advantage of the continuous complexification is that NEAT does not
have to remove nodes as it runs, since unneeded nodes do not exist.

The next Sections describe some of the many extensions based upon NEAT which
has been created in recent years.

HyperNEAT

Hybercube-based NEAT, or HyperNEAT, is an extension to the original NEAT
method described in the previous Section. In HyperNEAT, NEAT is altered to
evolve indirect representations of ANNs called CPPNs.

As pointed out in [Gauci and Stanley, 2010], NEAT cannot explicitly learn ge-
ometric regularities due to its direct representation of a solution. An example
is when a checkers piece in one square is threatened by another in an adjacent
square. In the checkers domain, NEAT cannot evolve a pattern of connectivity,
such as one piece threatening another, that extends across the entire board, and
is left having to solve the same problem multiple times. This is due to its di-
rect representation. Because HyperNEAT represents each ANN indirectly in a
CPPN, this theoretically means that HyperNEAT is able to discover such pat-
terns of connectivity, and extend them across the board, instead of having to learn
the solution several times. Instead of evolving ANNs like NEAT, HyperNEAT
evolves CPPNs, which are described in the next Section.

CPPNs Compositional pattern-producing networks, or CPPNs, are networks
composed of a variety of activation functions [Risi and Stanley, 2010]. The idea
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1) Query each potential
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2) Feed each coordinate pair into CPPN
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between (x1,y1) and (x2,y2) 
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Figure 2.1: ANN encoding in a CPPN. A collection of nodes in an ANN,
called a substrate, is assigned to coordinates in a given range (in this case �1 to
1) in all dimensions. (1) Every possible connection in the substrate is queried
to check if it exists, the dark lines in the figure denote example queries. (2)
The CPPN is queried with each pair, and determines which activation functions
are connected to the pair. (3) The CPPN outputs the connection weight of the
connection (0 if it doesn’t exist). When all possible connections are queried, the
result is the complete ANN.

is that this network acts as a pattern generator which outputs a pattern of con-
nection weights within the geometry of the ANN. When HyperNEAT constructs
an ANN, it queries the CPPNs for every possible connection among a pre-chosen
set of points in geometric space. If a CPPN has the inputs x1, y1, x2, and y2, the
resulting value when this point is queried is the weight between the two points
(x1, y1) and (x2, y2). Each point is a neuron in an ANN. When every possible
connection has been queried, the result is a complete ANN. An example of this
is provided in Figure 2.1 In e↵ect, the CPPN is painting a pattern on the inside
of a four-dimensional hypercube, which is interpreted as the isomorphic connec-
tivity pattern [Risi and Stanley, 2010]. This explains the origin of the name
hypercube-based NEAT.

Because HyperNEAT can detect patterns in geometric space, the user can e.g.
place the sensors of a robot in left to right in the same order they exist on the
robot, and HyperNEAT can create CPPNs that correspond to the geometry of the
robot. For a complete overview of HyperNEAT, the reader is referred to [Stanley
et al., 2009].
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Adaptive HyperNEAT

Adaptive HyperNEAT is another extension to the original NEAT-method, or
more specifically, an extension to the HyperNEAT-method. In this extension,
HyperNEAT is altered to evolve learning rules. Adaptive HyperNEAT was in-
troduced by Sebastian Risi and Kenneth O. Stanley in [Risi and Stanley, 2010].
Adaptive HyperNEAT is grounded in the idea that regular HyperNEAT requires
local learning rules to be discovered separately for each connection in the net-
work. The idea is that since HyperNEAT already finds patterns in geometric
space, it should also be able to find patterns of learning rules for the links in the
same space. This should result in an adaptive ANN, which is able to change its
own weights while the network is running, and not only during learning.

In Adaptive HyperNEAT, the evolved CPPNs are extended with the capability to
not only evolve connectivity patterns, but also evolve patterns of learning rules.
They use three di↵erent models to evolve learning rules, one general iterated
model, a less general Hebbian ABC model, and lastly a plain Hebbian model,
which all adds outputs to the CPPNs evolved. During runtime, the CPPN is
queried, and a new ANN is created, possibly with di↵erent weights. They used
a T-Maze domain, where the location of the reward sometimes changed, and
obtained some fairly good results. The conclusion however, is that because the
CPPN must be re-queried for each ANN connection, the current approach is too
computationally expensive.

ESP and SANE

Enforced Subpopulations (ESP) is a neuroevolution method that extends the
Symbiotic, Adaptive Neuroevolution algorithm (SANE) [Gomez and Miikku-
lainen, 2003]. Both ESP and SANE di↵er from other NE algorithms in that they
evolve partial solutions or single neurons instead of evolving the entire network
at once. SANE selects neurons from a single subpopulation to form ANNs, while
ESP uses explicit subtasks where a separate subpopulation is allocated for each
neuron in the network, and a given neuron can only be recombined with mem-
bers of its own subpopulation [Gomez and Miikkulainen, 2003]. The evolution
in SANE is characterized as symbiotic evolution in [Moriarty and Miikkulainen,
1997]. They define symbiotic evolution as a type of coevolution where individuals
explicitly cooperate with each other and rely on the presence of other individuals
to survive.

Both of these approaches are grounded in the idea that if each neuron can be
optimized to do its own task well, the entire network should also work well, given
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that every “best neuron” is selected from the population. ESP is comprehensively
described in [Gomez and Miikkulainen, 1997] while SANE is covered in [Moriarty
and Miikkulainen, 1996].

In [Fan et al., 2003], Fan, Lau, and Miikkulainen extended ESP to utilize prior
knowledge in ESP, with a new system they called Rule-based ESP (RESP). They
took inspiration from knowledge-based ANNs to transform a set of rules into
an ANN, which they trained using the ESP method. In their Prey Capture
domain, they were able to obtain better results than ordinary ESP given their
prior knowledge of the domain.

CMA-ES

CMA-ES stands for Covariance Matrix Adaptation Evolution Strategy [Hansen
and Ostermeier, 2001]. It is a popular Evolution Strategy (ES) for use in op-
timization problems. For every step in CMA-ES, a set number of individu-
als � > 1 are generated by sampling a multivariate normal distribution x =
m

t + �

t ⇥N (0, Ct) where m

t is the average fitness of the best individuals in the
previous generation, N (0, Ct) is a normal distribution with mean 0 and covari-
ance matrix C

t, and �

t is a scaling parameter. The individuals are then tested
and sorted according to their fitness, and a new set of individuals are gener-
ated. CMA-ES is an almost parameter-free algorithm, and, only the number of
o↵springs � is crucial to a successful evolution. CMA-ES has previously been
applied to evolutionary ESN tasks with good results.

2.1.2 Reservoir Computing

Reservoir Computing (RC) is a field within Artificial Intelligence (AI) working
with recurrent neural networks [Wikipedia, 2012b]. As opposed to a feed-forward
neural network, a connection in an RNN may form a directed cycle, meaning that
any node in the network can connect to nodes either in front of, or behind it in
the network. A node may also be connected to itself. This type of connection
topology gives an RNN the possibility of having an “internal state”, or in layman’s
terms, “memory”.

RNNs are much better than feed-forward networks at solving temporal problems,
problems in which the network receives input from a stream of data where each
data point is a state at some given time, such as weather or financial data. Tempo-
ral problems are possible to solve using normal feed-forward network structures,
but it requires the use of extra input parameters, and introducing an artificial
time horizon [Schrauwen et al., 2007].
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Reservoir Computing has its origin through the observation that when an RNN
has certain generic properties, training internal weights are not necessary, and
only training of a single readout layer is necessary to get excellent performance
in many tasks [Lukoševičius et al., 2012]. This observation is important, due to
the fact that training of internal weights in RNNs have always been much more
di�cult than training feed-forward structures.

When training RNNs with classical gradient descent methods, the gradual change
of network parameters during learning drives the network dynamics though bi-
furcations [Doya, 1993]. These bifurcations can in some cases create instabilities
in the gradient information, where a small change in the direction of the gradi-
ent descent may lead to a completely di↵erent network solution, instead of the
normal gradually decreasing error when running gradient descent. This in turn
means that methods such as Back-Propagation (BP [Russell and Norvig, 2009,
pg. 733-736]) cannot guarantee convergence when used with RNNs.

When an RNN is given the properties mentioned earlier, one may call it a reser-
voir, and this idea has given rise to reservoir computing. Figure 2.2 compares
regular RNN training methods with RC.

(i)

Input
Output

(ii)

Input
Output

Figure 2.2: Regular RNN training vs. RC training. (i) Traditional
gradient-descent methods change all the connection weights (bold arrows) to
adapt to the training error. (ii) Using reservoir computing, only the output
weights need to be trained.

Reservoir computing are mainly comprised of Liquid State Machines (LSNs) and
echo state networks, however, many other related methods such as Backprop-
agation Decorrelation (BPDC) and temporal RNNs are also considered part of
reservoir computing. A complete overview can be found in [Lukoševičius and
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Jaeger, 2009]. This thesis will only cover LSMs and ESNs, so for an overview the
reader is referred to the mentioned article.

Liquid State Machines

Liquid State Machines are one of the two pioneering methods in reservoir com-
puting, the other being ESNs. The theory behind LSMs was developed inde-
pendently from ESNs, and was introduced by [Maass et al., 2002]. LSMs were
developed from a computational neuroscience background, aiming at elucidating
the principal computational properties of neural microcircuits [Lukoševičius and
Jaeger, 2009]. Due to its computational neuroscience background with the use of
spiking neurons, LSMs use more biologically plausible neuron models in its reser-
voir. In LSM literature, the reservoir is often referred to as the liquid, to infer
the metaphor of excited states as ripples on the surface of water [Lukoševičius
and Jaeger, 2009].

2.1.3 Echo State Networks

Echo state networks are the first pioneering method in reservoir computing. ESNs
were introduced by [Jaeger, 2001]. Just like regular RC, ESNs are grounded in
the observation that if an RNN has certain generic properties, only the output
layer needs to be trained. When utilizing supervised learning, the weights of
the output layer can be trained using linear regression, and this will in many
cases provide excellent performance. The part of an ESN that is untrained is
called a dynamical reservoir, and the states of the reservoir are called echoes of
its input history [Lukoševičius and Jaeger, 2009]. Lukoševičius [2012] provides a
comprehensive guide for practical uses of ESNs, but unfortunately the guide is
mainly focused on supervised learning.

Figure 2.3 shows a basic setup for an echo state network. Echo state net-
works have already been applied to real world tasks such as speech recogni-
tion, handwriting recognition, robot motor control, financial forecasting, and med-
ical [Lukoševičius et al., 2012].

Node Activation

Node activation in an echo state network is done through matrix calculations.
Given an ESN with K input nodes, N reservoir nodes, and L output nodes such
as the one shown in Figure 2.3, its connection weights are contained within the
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Wout

Win W Wback

Input
Nodes

Output
Nodes

Reservoir Nodes

Figure 2.3: A basic echo state network. The network consists of K input
nodes connected to N reservoir nodes through a weighted connection matrixW

in .
The reservoir has an internal connection matrix W . W

back is an optional back-
projection matrix connecting the output to the reservoir. Finally, the weights
between the input and reservoir nodes to the L output nodes are collected in the
matrix W

out . In the figure, the solid lines are static and randomly generated
weights, while the dashed lines are trained weights.

matricesW in , W , W out , and optionallyW

back . W in is aK⇥N matrix containing
the weights between the input and the reservoir nodes. W is an N ⇥ N matrix
containing the weights between the reservoir nodes. W

out is an L ⇥ (K + N)
matrix containing the weights between both the input- and reservoir-nodes, and
the output nodes. And finally W

back is an optional N ⇥L matrix containing the
feedback weights between the output and the reservoir. W back is not required for
an ESN to function properly, and it has not been applied in this thesis.

At time n = 1, 2, . . . , n
max

, the inputs are the vector u(n), and the output of the
network is y(n). For each time step, the activations of the reservoir nodes are
collected in an N ⇥ 1 vector x(n) = (x1(n), . . . , xN (n)). The standard way of
updating the reservoir nodes is as follows.

x(n+ 1) = f(Wx(n) +W

in

u(n+ 1) +W

back

y(n)) (2.1)

Where f is a sigmoid function such as tanh or logistic sigmoid. However, several
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modifications exist to this standard update function, Lukoševičius [2012] recom-
mends introducing a leaking rate ↵ to the reservoir with the intent of controlling
the speed of the reservoir dynamics (how dynamic the reservoir update is when
receiving new input). The reservoir node update function then becomes

x(n+ 1) = (1� ↵)x(n) + ↵x(n+ 1) (2.2)

This is the update function used in this thesis. Having calculated x(n + 1), one
can use W

out to calculate the network output as follows

y(n+ 1) = W

out [u(n+ 1);x(n+ 1)] (2.3)

where [u(n + 1);x(n + 1)] is a serial concatenation of the input vector and the
reservoir activation state.

Parameters and Network Creation

Before creating the network, some global parameters must be selected by the user.
The most important parameters are the size of the reservoir N , spectral radius of
the reservoir ⇢(W ), and leaking rate ↵. Other parameters are the input scaling of
W

in , and the sparsity of the reservoir (the amount of internal connections inside
the reservoir).

The spectral radius ⇢(W ) of the reservoir is the most central of the global pa-
rameters in an ESN. Setting it correctly is required for the network to have the
“Echo State Property” (ESP). Jaeger [2001] noted that under certain conditions,
the network states become asymptotically independent of initial conditions and
depend only on input history. Given this type of behavior, an ESN is said to
have the “echo state property”. Roughly put this means that if the network has
been run for a long time, its current state is uniquely defined by its input history,
and is independent of its initial network state. This property is governed by the
value of the spectral radius ⇢(W ). A small ⇢(W ) means that the echoes from
the input history will die out fast, while a larger ⇢(W ) will make the network
keep the echoes of its input history longer. This means that the spectral radius
should be larger in tasks requiring longer memory of the input [Lukoševičius,
2012]. Even so, it is often hard to know how long input history a given task
requires, which means that this parameter often require some trial and error to
be set correctly. Lukoševičius [2012] recommends the spectral radius to have a
value of less than 1.
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As mentioned earlier, the leaking rate ↵ of the reservoir is used with the intent
of controlling the speed of reservoir dynamics, or how dynamic the reservoir is
in terms of prioritizing new input. A small leaking rate induces slow dynamics,
which can increase the short term memory of an ESN, and a large leaking rate has
the opposite e↵ect. While the leaking rate is not necessary for the ESP to hold,
and its functionality seems relatively similar to that of the spectral radius, Jaeger
et al. [2007] shows that using a leaking rate and optimizing it to the dynamics of
the task at hand did provide better accuracy for the tasks they tested, and since
it adds relatively little complexity to the ESN specification, literature generally
recommends applying it. Lukoševičius [2012] recommends the leaking rate be set
to match the speed of the dynamics in the input data. This is a rather vague
recommendation, so much trial and error are required in setting the leaking rate
correctly.

The main di↵erence between the spectral radius and the leaking rate is that the
spectral radius controls how long an ESN will keep a memory of previous states
in its memory, while the leaking rate determines how much new input will a↵ect
the current network state. The spectral radius should be looked at as a way
of controlling the amount of previous time steps the network should remember,
while the leaking rate should be looked at as a way of stating to the ESN how
much its internal state should change when given new input.

Lukoševičius [2012] provides some other best practices for generating an ESN,
these are: (i) W should be a sparse matrix, (ii) the mean value of weights should
be around zero, and (iii) N should be large enough to introduce new features for
prediction performance. As with the other parameters, N will have to be chosen
with some trial and error, and should be balanced with runtime performance and
task complexity in mind.

The creation of an ESN with the “echo state property” is normally done with
the following procedure.

• Generate W as a sparse matrix from a uniform distribution over [�1, 1]

• Normalize W to the spectral radius by scaling W with ⇢(W )/|�
max

|, where
|�

max

| is the largest absolute value of the eigenvalues of W

• Now the untrained network has the echo state property regardless of how
W

in and W

back are chosen.

After generating W , W in and W

back are typically also generated from a uniform
distribution over [�1, 1].
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Supervised Learning of Echo State Networks

Using ESNs with supervised learning tasks are by far the most common way of
applying them. When an ESN is used with supervised learning, the user typically
supplies a dataset of inputs U and expected output values Y

target . This allows
an error to be measured, and the W

out matrix is typically created by using
linear regression on the output error. The original method for using ESNs with
supervised learning follows the following steps:

1. Generate a random ESN following the procedure in the previous Section

2. Run the network using the training input u(n), and collect the correspond-
ing reservoir activation states x(n) into a state-activation matrix X

3. Compute the linear readout weights W

out from the reservoir using linear
regression, minimizing the error measure between y(n) and y

target(n)

4. Use the trained network on new input data u(n) computing y(n) using the
trained output weights W out

Pseudocode for the first three steps of the process are shown in Algorithm 1. Step
four of the process consists of using the network normally, as shown in the end
of Algorithm 1, except there is no need for keeping track of the expected outputs
in Y

target .

Normally, the initial reservoir state of a newly generated network is set to 0.
This creates an unnatural starting state, which is unlikely to be visited once the
network has “warmed up” to the task. For this reason, the first steps of u(n) are
normally discarded and not used for training W

out . The network is run normally,
except the states are not collected into X. Once the network has “warmed up”,
the network is run normally, collecting the states.

Step 3 in the procedure above is calculating the readout weights W

out using
linear regression. This can be done in several ways. The normal way of doing
this is called the Wiener-Hopf solution. Using the Wiener-Hopf solution, W out

is calculated as follows. Let R = X

0
X be the correlation matrix of the collected

reservoir states, and P = X

0
Y

target be the cross-correlation matrix between the
states and the desired outputs.

W

out = (R�1
P )0 (2.4)

When R is ill-conditioned, Equation 2.4 is not numerically stable. An ill-conditioned
matrix is numerically unstable. This means that when trying to inverse the ma-
trix, one may end up with an unexpected solution due to numerical instabili-
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Algorithm 1 Running of an ESN with supervised learning.
The  symbol denotes setting of a variable, while the ! symbol denotes either
a function call or a variable access.

ESN  generate reservoir
num init runs  user defined
run number  0
U,num training cases,num test cases  load dataset
X  empty matrix
Y

target  empty matrix

for u(x) IN U [0 : num training cases] do
input  (u(x)! input)
expected output  (u(x)! output)

x(n) (ESN ! calc new reservoir state(input))

if run number is larger than num init runs then
append x(n) to X

append expected output to Y

target

end if
increment run number

end for

(ESN !W

out) calculate output weights(X,Y

target)

Y  empty matrix
Y

target  empty matrix

for u(x) IN U [num training cases : num training cases + num test cases] do
input  (u(x)! input)
expected output  (u(x)! output)

ESN ! calc new reservoir state(input)
output  (ESN ! calc output)

append output to Y

append expected output to Y

target

end for

error  calc error(Y, Y target)
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ties [Cheney and Kincaid, 2008, pg. 321]. If this is the case, another solution is
also possible using the pseudoinverse of X.

W

out = (X†
Y

target)0 (2.5)

The solution in Equation (2.5) is numerically stable, but it is slower than Equa-
tion (2.4). A third solution is also proposed, called Tikhonov regularization or
ridge regression [Jaeger et al., 2007]. W out is then calculated as

W

out = (R+ ↵

2
I)�1

P (2.6)

where ↵2 is a non-negative smoothing number, and I is the identity matrix.

Following the four steps mentioned will in many tasks give excellent performance.
However, this way of training a network is limited due to its requirement that an
expected output exists, this is not always the case in a real world scenario, which
means some other way of training the network will be required.

Unsupervised Learning of Echo State Networks

When modifying the standard ESN specification to utilize unsupervised learning,
the problem mainly consist of optimizing the weights in W

out representing the
output weights of the network. The amount of dimensions in the problem are
therefore directly related to the amount of input and reservoir nodes, so in these
cases the user must balance the amount of problem dimensions to the complexity
of the problem at hand. In addition to the values of W out , some other parameters
may also be added to the training, such as spectral radius, leaking rate, and input
scaling.

When creating an ESN for use with unsupervised learning, the W

out matrix is
typically also generated over a uniform distribution, and its weights are optimized
throughout the running of the learning algorithm. This kind of problem is well
suited for use with an evolutionary algorithm. When running the ESN one no
longer needs to collect the reservoir states, and can instead calculate the output
directly using Equations (2.2) and (2.3). Just like with supervised learning, the
network is usually run for a number of initialization steps in order to “warm up”
the network before actually calculating any output.
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2.2 Related Work

This Section presents work that directly relates to the problem covered in this
thesis.

2.2.1 Minimally Cognitive Learning Tasks

Figure 2.4: Basic design of a visually-guided agent. The agent consists of
an eye (gray lines), two motors (filled rectangles), and a transparent arm (solid
line) with an opaque hand (filled circle). The arm can rotate around the center
of the agent and the hand can rotate around its attachment point with the arm.
Figure adapted from [Beer, 1996].

Minimally cognitive behavior is described as the simplest possible agent-environment
systems that raise issues of genuine cognitive interest [Beer, 1996]. In a minimally
cognitive task, the focus is not on realism, but rather on what kind of behavior
results from solving the task.

Beer normally applies Continuous Time Recurrent Neural Networks (CTRNNs)
to his work with minimally cognitive behavior. A CTRNN is a dynamical sys-
tems model of biological neural networks. CTRNNs use a system of di↵erential
equations to model the e↵ects on a neuron in the network. Like ESNs, this way
of modelling neural input is very e�cient since one does not have to model each



Background Theory and Motivation 21

neuron in detail, instead resorting to a general model of neural activation up-
dates. The normal way of applying CTRNNs for use with minimally cognitive
behavior is to evolve them using a standard EA, and then later model the behav-
ior that results from evolution. CTRNNs were originally proposed by [Hopfield,
1984].

An example of an agent used for minimally cognitive behavior is shown in Fig-
ure 2.4. Variations of this agent is used for tasks such as avoiding obstacles,
identifying objects and catching them, and avoiding certain objects while catch-
ing others. Slocum et al. [2000] explore minimally cognitive behavior further,
and evolve agents that can judge the passability of objects relative to their own
body size, discriminate between visible parts of themselves and other objects
in their environment, predict and remember the future location of objects in
order to catch them blind, and switch their attention between multiple distal
objects.

Most commonly, agents used for minimally cognitive behavior have a two dimen-
sional environment, and are restricted to a single relatively simple task, with the
intent of measuring the behavior exhibited by the agent after evolving a solution
to the problem. This description of a minimally cognitive task fits well within the
scope of many arcade games developed during the 70s, so games such as Frog-
ger should (with a small amount of changes) also exhibit interesting minimally
cognitive behavior.

2.2.2 Evolutionary Algorithms and Echo State Networks

Attempts to use ESNs along with evolutionary algorithms remain a relatively
untested field. Some attempts at evolving ESNs have been done, however, the
attempts are mainly restricted to supervised learning [Schmidhuber et al., 2007].
This Section presents a few attempts made at coupling EAs with ESNs.

Jiang et al. [2008] study the usage of ESNs with supervised learning for motor
control tasks. They use the CMA-ES algorithm to evolve ESNs for use with both
the double pole balancing problem and the univariate time series example from
Jaeger’s initial paper [Jaeger, 2001]. On both examples they obtained competitive
results, and they also report better performance if more than just the output
weights of the ESN are optimized by the ES.

Devert et al. [2007] use ESNs along with CMA-ES in a study of multi-cellular arti-
ficial embryogeny. They compare the performance of ESNs evolved with CMA-ES
to the performance of NEAT when trying to evolve target pictures. Their results
show that ESNs clearly outperform NEAT on the disc-problem. However NEAT
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is much more evenly matched on the half-disc problem they also tested. In the
end however, the combination of ESNs and CMA-ES manages to get a better
average performance than NEAT in their experiments.

Chatzidimitriou and Mitkas [2010] use NEAT for evolving ESNs. They adapt
NEATs ideas such as historical markings, complexification and speciation to the
specifics of ESNs. They try to optimize all parameters of the reservoir along
with the output weights using NEAT, starting with a reservoir containing a sin-
gle neuron. They use this combination both for supervised and reinforcement
learning. They test supervised learning using the Mackey-Glass system [Glass
and Mackey, 2010], while reinforcement learning is tested using a Mountain Car
task [Whiteson and Stone, 2006] as well as the single and double pole balancing
tasks. They report that their methodology worked on all tasks, and conclude
that reservoir optimization is an area which needs further research.

Despite the fact that most of these articles report good performance in the variety
of tasks tested, not enough research has has been done when applying ESNs to
EAs for use with unsupervised learning tasks. This thesis attempts to rectify at
least some part of this.

2.3 Structured Literature Review Protocol

This Section describes the structured literary search protocol used to find litera-
ture during the project.

2.3.1 Search Procedure

One of the requirements of the project was to use a systematic and comprehensive
search protocol to, as e↵ectively as possible, end up with the background litera-
ture needed for achieving the rest of the goals for the project. In this regard, a
search procedure was set up.

Search Keywords: “reservoir computing”, “neural networks”, “artificial neu-
ral networks”, “reservoir computing”, “echo state networks”, and “liquid state
networks” were used as search terms. They were combined with the terms “evolv-
ing”, “neuroevolution”, “robot control”, “unsupervised learning”, “reinforcement
learning” to form the keywords used in the search procedure.

The following sources were used for the search:
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Evolving Neural Networks [Miikkulainen, 2005] This lecture, of which the
slides were given to me by Keith Downing, provided a comprehensive overview
of neuroevolution, in addition to providing a range of sources which proved
useful.

Google Scholar Because NTNU has a custom Google Scholar page, the search
engine was used extensively along with the keywords mentioned above to
find relevant articles.

Google In addition to Google Scholar, google was used to have a broader scope
of potential matches.

Wikipedia sources Relevant wikipedia articles were used to find article sources.

2.3.2 Selection Criteria

After having compiled studies which matched the search keywords, the studies
to read were selected according to these criteria:

• It had to be published in the last 20 years

• It had to have reasonably good results.

• It had to be understandable enough to be possible to implement given my
limited resources.

After having selected articles based on these criteria, I further communicated
with my advisor to form a final set of articles to be read.

2.3.3 Results of the Literary Search

After having searched and selected articles according to the selection criteria
mentioned above and communicated with my advisor on the initial selection, a
total of 15 articles were selected and read for further study. The selected articles
provided a good background for the field of study.

2.4 Motivation

This project looked very interesting to me because it covers an area which is
almost completely uncovered by previous work. During the literary search only
a few articles were found which even mention having tried echo state networks
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in unsupervised environments, and this meant that there was a lot of potential
in this project to bring something new to the Reservoir Computing community.
Echo state networks have as previously mentioned been shown to give good results
in a number of supervised learning tasks, and given that they easily adapt to
unsupervised learning, it is strange that they haven’t been tried more. Very
few real world tasks are completely supervised, so if echo state networks behave
well when applied to reinforcement and unsupervised learning tasks they can
potentially be applied to more realistic tasks in the future.



Chapter 3

Architecture

This Chapter aims to describe the architecture used to fulfill the project goal.
During the project, a lot of implementation has been done. During the autumn
project, a client for the old arcade game Frogger was implemented, and during
the master project, the SEVANN toolkit has been expanded both with support
for evolving echo state networks, as well as with general enhancements which aim
to make it easier to expand in the future.

3.1 SEVANN

Scripted Evolving Artificial Neural Networks, or SEVANN, is a general frame-
work for evolving bio-inspired neural networks [Downing, 2010]. SEVANN uses
scripts to allow the user to define both the neural networks to train, and the
bio-inspired parameters used to evolve them. The user is free to decide which of
the parameters that should be evolved and which are static, so a user can say
that one hidden layer should contain e.g. 3 hidden nodes, while another should
contain an evolved amount of nodes. SEVANN also contains functionality to let
the user visualize the behavior of the evolved ANNs. All of this makes SEVANN
a very flexible toolkit to use when attempting to solve a task with neural net-
works, and the user can theoretically begin using it without extensive knowledge
of the science behind artificial neural networks. Figure 3.1 provides an overview
of the functionality in SEVANN.
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Figure 3.1: An overview of SEVANN. (i) The user defines an EVANN -script
containing the parameters of the EA, topology of the ANN etc. (ii) The script
is fed into the Evolutionary Algorithm Core, which uses a proxy ANN script
to generate an ANN which is then fitness-tested, and, if good enough, brought
along for the next generation. The Evolutionary Algorithm Core can display a
graph-overview of the fitness of the population for each generation. SEVANN also
includes functionality to visualize ANN behavior. Figure used with permission
of author [Downing, 2010].
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3.1.1 Scripts

To use SEVANN, the user has to define three scripts, an eva-script, a topology-
script, and a niomap.

eva This is the main script. This script first defines the parameters of the evo-
lutionary algorithm to be used, such as population size and number of
generations. The script then defines the type of ANN to be evolved, and
which file to read the initial topology from. Finally, the location of the
niomap is defined.

topology This script defines the topology ANN to be trained. In this script, the
user defines which parameters should be defined by evolution, and which
are fixed. The user is free to let evolution determine almost all the pa-
rameters, with the exception of the input and output layers, which require
the user to determine the number of nodes. Layer execution order and
back-propagation training order are also defined in this script

niomap This script defines the inputs and outputs of the ANN to be evolved.
It is possible to use a dataset for inputs and outputs to train the network,
as well as an “agent” that provides the data to the inputs using a function
defined in this script. The this thesis has used an “agent”-setup.

When the user has defined the scripts, SEVANN does the rest, evolving an ANN
suited for the task. A preliminary description of the entire system can be found
in [Downing, 2010].

3.1.2 Visualization

In addition to plotting normal fitness graphs over the course of an EA run,
SEVANN has a Graphical User Interface (GUI) which allow the user to visualize
runs of ANNs after evolution is complete. In addition to doing this directly
after an EA run, the user may select a previously saved ANN for use with the
visualization tools. The visualization tools allow the user to add probes to an
ANN which record certain node or link values over time, such as activation value
or membrane potential. The tools then graph the selected values over time in
either a continuous- or a grid plot. The visualization tools in SEVANN are
intended to allow the user to analyze why a given network behaves the way it
does. An example of the visualization graphs available to the user can be seen in
Figure 3.2.
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(a) Fitness graph. (b) Grid plot. (c) Continuous plot.

Figure 3.2: Available visualization graphs in SEVANN. These are some
example visualization graphs that are used when probing an ANN with SEVANN.
Figure a shows a standard fitness graph for the generations of an EA, Figure b
shows a grid plot of reservoir weights in an ESN, and Figure c shows a continuous
plot of the first 100 output activations over time in an ESN. Notice that during
the first steps in Figure c there is no activation of the nodes, as these are ESN
initialization steps.

3.1.3 SEVANN Extensions

During the course of the project, several modifications and enhancements to
the SEVANN toolkit has been made, both in order to allow easier extension of
SEVANN in the future, and also to allow the use of ESNs. The most important
enhancements made will be described in the following Sections. In addition to
the features described below, preliminary support for supervised learning has also
been implemented. However, the supervised learning implementation is mainly
directed towards ESNs for now.

Abstraction

In earlier versions of SEVANN, nodes and arcs were represented by objects, and
each layer or link had a set of node or arc objects that were used to pass activa-
tion values through the network. This works for many ANN types, but not for
all. An ESN is one example of an ANN that is better suited using a di↵erent
representation of links and arcs. For this reason, SEVANN was extended with
abstraction in mind.

In the new version of SEVANN, an ANN layer or link can have its nodes or
arcs represented in one of two ways, it can either have the normal list of node-
or arc-objects, or a list of numbers describing the node activation levels or arc
weights. This allows SEVANN to both represent ANN types which does a lot of
calculation at the node level, or ANN types which higher level equations for node
activation updates, such as matrix calculations. The addition of lists of numbers
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for nodes and arcs in SEVANN are done through the notion of abstract layers
and links.

The addition of abstract layers and links to SEVANN brings with it several ad-
vantages. First, it allows easier extension of SEVANN with ANN types that does
not need explicit node or arc objects, and in addition, it makes a lot of the compu-
tation run a lot faster, as function calls to objects are a relatively costly operation
in Python. The ESN implementation described in the Section 3.1.4 is the first
implementation making use of abstract layers and links in SEVANN.

Subclassing

Another important extension done to SEVANN during the project period was to
allow for easier subclassing of the ANN implementation. With the new imple-
mentation, all that needs to be done to implement a custom ANN-specification
is to subclass SEVANNs implementation of the desired class, and add the new
class to the python-path. The ability to subclass the main classes of the ANN im-
plementation made it a lot easier to extend SEVANN with support for ESNs, as
reimplementing existing functionality was no longer required to extend it.

API

During the project, SEVANN was extended with Application Programming Inter-
face (API) support for saving and loading previously saved ANNs. API support
for re-running a loaded ANN was also implemented.

Implementing an API for SEVANN was done for several reasons. The main reason
was to allow flexibility when evolving. Previous versions of SEVANN required
the use of the GUI during evolutionary runs in order to access the visualization
GUI. Since SEVANN is intended to be used in a variety of configurations, this
was not optimal. As an example, the runs done for this thesis were done using
a Linux server with no access to the GUI, so the visualizations had to be done
after evolution was complete and the evolved ANN was saved.

The API was implemented along with extensions to the visualization interface to
allow visualization of previously saved ANNs. The ability to rerun a given ANN
via an API makes it easy to visualize runs using agents, and also enables the
user to easily test an evolved ANN in environments that di↵er from the one it
was originally evolved in. The ANN-API for SEVANN is intended as a first step,
and future versions of SEVANN will hopefully extend the API with many more
useful features, such as graphing or probing.
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3.1.4 Echo State Network Implementation

This Section describes the modifications done to implement support for echo state
networks in SEVANN. This Section should also serve as a tutorial for those who
would wish to extend SEVANN with new ANN-types in the future.

Due to the implementation of easy subclassing mentioned earlier, implementing
ESNs for use with SEVANN was relatively straightforward. All that needed to
be done was to subclass SEVANNs implementations of layers and links, modify
the parts that was special for ESNs, and then run SEVANN normally. The ESN
implementation was done using four classes.

To verify the implementation, the standard ESN-model was first implemented
outside SEVANN and verified to be working correctly using established super-
vised learning tasks. This external implementation was then routinely compared
against the SEVANN implementation using the same learning tasks, with the
intent of making sure SEVANN behaved similarly.

Classes

The classes used in the ESN implementation are as follows. All the implemented
classes subclass SEVANNs implementation.

esann This class is subclassed from ann.py, which is the main class of the ANN
implementation in SEVANN. The class contains the run-loops for an ANN,
and various resets to allow an ANN to be re-run at a later stage. The
implementation of supervised ESN learning is also contained within this
class.

esn link This class is subclassed from annlink.py, which contains SEVANNs
implementation of an ANN link. This class contains logic for initialization
of ESN specific links. This class initializes the ESN topology, doing input
scaling and spectral radius scaling as needed. The class also contains logic
to do linear regression when using supervised learning.

esn layer This class is subclassed from annlayer.py, which contains SEVANNs
implementation of a layer in an ANN. This class contains the logic required
to fire the reservoir in an ESN.

esn out layer Like esn layer, this class is also subclassed from annlayer.py. This
class contains the firing mechanism of the output in an ESN. This class
requires that it is connected to a single link, which in turn is connected to
an esn layer.
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Parameters

ESNs has a set of required parameters that are set before network creation. The
most important of which are reservoir size, number of reservoir connections, input
scaling, spectral radius, and leaking rate. All of these variables are implemented
in SEVANN, and are evolvable based on the user’s wishes.

For evolution of ESNs to work correctly, the input-to-reservoir and the reservoir-
to-reservoir weights have to remain static throughout evolution. Since SEVANN
by default recreates all links for every generation by generating networks from
the genotype, the ESN implementation uses a random seed to make sure the links
that are static remain static throughout evolution. The user specifies a random
seed in the script, and this seed is used to regenerate the same link weights
throughout the evolutionary run.

3.2 Frogger

Figure 3.3: The original Frogger game. The player controls the frogs, which
start out at the bottom of the screen, and the objective is to get all the frogs to
the top alive.

The minimally cognitive learning task selected as the learning task for the project
was a modified version of the old arcade game Frogger [Wikipedia, 2012a]. In the
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original game, the player starts out controlling a frog which is at the bottom of
the screen. The objective of the game is to bring the frog to the top of the screen
alive. The bottom half of the screen is a road which has a varying amount of
tra�c, consisting of cars, motor bikes, buses etc. while the top half is a river with
logs floating on it. The player has to avoid the cars, use the floating logs to get
across the river, and finally end up at the top of the screen safely. In the original
game, the player is given five frogs, and the goal is to get as many of them across
the screen as possible. Figure 3.3 shows a screenshot from the original Frogger
game.

3.2.1 Game Rules

While the general idea of the frog avoiding cars were the same, some modifications
to the rules were made with the intent of making the game more suited for
EAs.

Coins The original game has survival as the goal, and while this works well for a
video game, it has some flaws which make it less suited for use with an agent
controlled by an ANN. The fitness of the ANN controlling the frog would be
hard to determine, given that the only two states possible would be alive,
and dead, with an optional time alive. This makes it hard to calculate a
fitness, and determine how well the ANN is behaving. The notion of coins
was therefore introduced, and the goal of the game is no longer to get to
the top alive, but rather to pick up as many coins as possible within a given
timeframe. The game board contains one coin at all times. The coin can
either be placed on pre-selected positions, or be randomly placed around
the game board.

River The original game first requires the player to avoid cars, and then to
navigate the river by jumping on top of logs. A twofold task like this
was deemed too hard for the ANNs to handle, so the implemented version
contains only cars.

Cars In the original Frogger, the cars can have various sizes. Ranging from small
motorcycles, to buses. The implementation in this project assumes equal
lengths for all cars.

Death In the original game, if a frog dies, the player has one less frog to move
to the top. In this implementation, the frog is moved back to the initial
position, and the gameplay continues. Note that if the frog attempts to
move into a grid square containing both a car and a coin, the frog will pick
up the coin and then immediately die.
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Movement In the original game, the player can move in all directions, and a
switch of direction always includes a jump in the new direction. So if a
player is facing forward at (x, y) location (2, 0) and presses the left key,
the location will be switched to (1, 0) with the frog facing left. In this
implementation, the switching of direction includes no jumps, so if the
same was done in this implementation, the frog would still be in location
(2, 0) facing left, and a forward key-press would move the frog to (1, 0).

Sight In the original game, the player has vision of the entire game board. For
this implementation, it was decided to give the frog a total of nine vision
sensors. The sensors are given an activation value of 0 if the square they
cover are not covered by a car, and 1 if there is a car there. The frog has a
total of 9 sensors. In addition to this, the frog has a boolean sensor which
is true if the coin is inside the frogs cone of vision. This provides a total of
10 input nodes to the ANN, one for each sensor, and one for the cone. A
visual explanation of the sensors is provided in Figure 3.4.

Loop around In this implementation, the frog is allowed to pass through the
edges of the game board. When the frog passes through the edge, it ends
up on the other side of the game board. The same principle applies to the
sight sensors, so the frog can sense the positions of the cars on the other
side of the board. However, the cone sensor does not wrap around the
game board. The reason for this is to encourage the evolved frogs not to
walk through the edges, but rather stay inside the boundaries of the game
board.

3.2.2 Implementation

A screenshot of the graphical user interface of the implemented game can be
found in Figure 3.4. The game is implemented using Python as the programming
language. When running the system, the user needs to specify a configuration
script, which is described in Section 3.2.3. To make it as easy as possible to
integrate the game into SEVANN, the game is very modular. In addition to
connecting the system to SEVANN, a hard-coded heuristic was also developed to
give a baseline performance, the hard-coded heuristic is described in Section 3.2.4.
The system is split into eight classes.

Frogger This class contains the main class of the system, which optionally sets
up the GUI, and initializes the game-grid according to the script provided
by the user.

Grid This class contains the logic governing the placements of the objects in the
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(a) Screenshot of implemented Frogger (b) The vision-cone of the frog.

Figure 3.4: The implemented Frogger game. Figure a shows a screenshot of
the version of Frogger implemented for this project. The frog can be seen in the
second to last row, and its sensors are the crosses. Each vision sensor has a value
of 0 if there is no car there, and a value of 1 if the square it covers is currently
occupied by a car. The coin can be seen as the filled circle. Figure b shows the
same screenshot, but displays the current cone of vision for the frog. If the coin
is inside this vision cone, the cone-sensor has a value of 1. Otherwise, it has a
value of �1.

game. Every time an object (e.g. the frog) wants to move, it queries the
grid, and the grid updates the position of the object. The grid also controls
events such as the frog dying or picking up the coin. When using the GUI,
the Grid is a thread which executes a step at a given interval to update the
game state.

Frog Contains the main logic for the frog. Such as calculating its current vision
cone, and also all the movement commands. The frog has a static set of
sensors. The vision cone of the frog has a value of �1 or 1 depending on
whether or not the coin is inside it.

Sensor The frog has a total of nine sensors. Each sensor has a coordinate relative
to the frog, and has an activation value of either 1 or 0 depending on the
contents of the square its covering. Whenever something moves on the grid,
the sensor values are updated accordingly.
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Lane The game-grid is split into lanes, and each lane can either be empty or
contain a moving train of cars. The number of lanes and the characteristics
of each lane (car speed, number of cars, etc.) are specified in the user
defined script.

Car Every lane has a set of cars that drive in it.

Coin The class defining the coin. The every time the coin is picked up by the
frog, the coin is asked to pop up at a new location on the grid.

Fitness This file contains the fitness function used to measure the performance
of a given frog.

FrogController This class is used to visualize runs coming from saved ANNs
generated by SEVANN. This class also contains the hard-coded heuristic
used as a baseline for fitness.
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3.2.3 Configuration Script

To make the game as flexible and easily configurable as possible, the environment
is controlled by a user defined script. The template used for the script is shown
in Figure 3.5.

Grid:

width,height,square_size

Lanes:

lane_pos_y,num_cars,direction,nap,start_X

...

Frog:

start_X,start_Y

(a) Template script

Grid:

9,10,24

Lanes:

0,3,0,1,0

2,3,0,1,2

4,3,0,1,4

6,3,0,1,6

9,3,0,1,8

Frog:

4,8

(b) Script used in Figure 3.4

Figure 3.5: The input script used to configure the game. Figure a shows a
template for the script setup. The user first defines the size of the grid, and the
square size of each square in the grid. The square size is only used when the GUI
is displayed. The user then defines a set of Lanes. Each lane has a position, a
number of cars running in it, a direction, a nap, and a start X -position. The nap
is a number defining how many steps the cars should remain stationary before
moving. A value of 1 means the cars move every step, while a value of 2 means
every other step etc. Finally, the user defines the starting position of the frog.
Figure b shows the script used to create the game board shown in Figure 3.4.
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3.2.4 Hard-coded Heuristic

The hard-coded heuristic implemented for the system was implemented to give
a basic baseline of performance that the evolved ANNs could be compared with.
The heuristic used is presented in Algorithm 2.

Algorithm 2 Hard coded heuristic for implemented Frogger.
The  symbol denotes setting of a variable, while the ! symbol denotes either
a function call or a variable access.

while true do
if (frog orientation is left OR frog orientation is right) AND front frog sensor
is activated then
select a direction at random
turn frog to selected direction
frog ! forward

else
cone  (frog ! calculate cone)
coin coords  (grid ! coin ! coords)
if coin coords 2 cone AND NOT front frog sensor is activated then

frog ! forward
else

select a direction at random
turn frog to selected direction

end if
end if

end while

3.2.5 Fitness Function

The fitness function used to determine the performance of the frog is very impor-
tant. In order for evolution to succeed, the fitness function has to be designed in
such a way that it gives the frogs partial credit for doing some subset of the total
task correctly, while still giving very well performing frogs a large enough fitness
to make them stand out of the crowd. The best method for controlling Frogger is
defined as the method which best balances the task of picking up coins with the
task of avoiding the cars, and this balance must be reflected in the fitness func-
tion. During the project, the fitness function was redesigned several times with
this in mind. The final fitness function used during the experiments is shown in
Equation 3.1. The fitness for a frog, denoted F , is given as



38 Frogger

F = 250 + (wP · P )� (wD ·D) + (wC · C) + (wMt ·Mt)� (wMa ·Ma) (3.1)

Where P denotes the amount of times the frog has picked up the coin, D denotes
the amount of times the frog has died, C denotes the amount of times the frog
faced with the coin inside its vision-cone (the amount of times the cone-sensor
returned true when queried), Mt denotes the amount of times the frog moved
towards the coin (moved forward with the coin inside its cone), and Ma denotes
the amount of times the frog moved away from the coin (moved forward with
the coin outside its cone). wP , wD, wC , wMt , and wMa are weights to adjust
the importance of each event. The reason the fitness starts at 250 is to avoid a
fitness-value lower than 0, since some selection mechanisms such as sigma scaling
doesn’t support negative fitness values. In addition to the raw fitness function,
the fitness is deducted by 400 points if only one output was fired (e.g. the frog
only moved forward). Also, a measure of the e�ciency of the coin pickups, called
the pickup-to-death (PDR) score was included in the fitness calculation, so if the
frog picks up more coins than a given threshold T , a PDR-score is added to the
fitness. the PDR-score is calculated as PDR = w

PDR

· (P/D) where w

PDR

is the
weight given to the PDR-score. The PDR threshold is added to allow evolution
to first focus on picking up as many coins as possible, and then later focus on
dying as little as possible. If the coin positions during the fitness measurement
were fixed, the PDR-score given is divided by 2, since running using fixed position
coins is viewed as an easier task than randomly positioned coins. Finally, after
potential additions and deductions, if the resulting fitness value is negative, it is
nulled.

3.2.6 Communication with SEVANN

As mentioned earlier, the implemented Frogger is set up to be used as an agent
in SEVANN. The only work needed to be done to accomplish this was to define
the scripts mentioned in Section 3.1, as well as defining the fitness-function for
the ANNs generated by SEVANN, which is used to determine the performance
of each ANN in the generated population.

After defining the scripts and the fitness-function, the communication with SE-
VANN is shown in Figure 3.6.
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F

Population
of ANNs

Sends
Sensor values

Controls
frog

SEVANN/EA

Assigns
fitness

Generates and
controls

Initializes

…………
…………
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…………
…………
………….

Scripts

Frogger

Figure 3.6: Communication between Frogger and SEVANN. The user
starts SEVANN providing the configuration scripts. SEVANN then initializes
Frogger, and a population of ANNs which are created according to the script
variables. For every ANN in the population, SEVANN determines its fitness by
using it to control the frog a given number of simulation steps. SEVANN first asks
for sensor inputs, and uses these as inputs to the network. The output from the
network is then used as a move-command in the game. After having controlled
each frog the given amount of steps, the game is reset for use with the next ANN.
SEVANN follows standard EA procedures such as crossover and mutation, and
repeats this process for every ANN in the population until a stopping criteria
such as maximum fitness or maximum number of generations is met.
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Chapter 4

Experiments and Results

This Chapter presents the experimental setup used to conduct the experiment in
the project, as well as describing the results obtained from the experiment.

4.1 Experimental Plan

To address the research questions in Section 1.2, an experiment was set up.
The goal of the experiment was first of all to see if evolved ESNs were able
to adequately control Frogger at all, and then compare the solution found by
the evolved ESNs to the performance of the the hard-coded heuristic, evolved
feed-forward ANNs, and finally supervised learning ESNs trained using linear
regression. This experiment was intended to answer both which method is best
suited for controlling Frogger, and also whether or not evolved ESNs can compete
with ESNs trained using linear regression in motor control tasks.

4.1.1 Best Method for Controlling Frogger

To find the best method for controlling Frogger, SEVANN was used to evolve the
feed-forward ANNs and the evolved ESNs. SEVANN was also used to evolve the
parameters used to create the supervised learning ESNs. The di↵erent methods
were compared using the fitness measure described in Section 3.2.5. All well-
performing runs were visualized using the Frogger GUI to analyze their behavior.
In addition, the best evolved ANNs were probed with SEVANNs GUI to attempt
at analyzing their activation patterns.
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4.1.2 Supervised Learning ESNs

In order to create comparable ESNs using supervised learning, a dataset was
created by manually playing the game with random coin positions. Random
coin positions were used since a network solving the problem with random coin
positions is considered superior to one solving it with fixed coin positions. The
dataset contained 2000 steps of manual gameplay where the sensor input and
player output were saved for each step. This dataset was used to train the
supervised ESNs.

A lot of the performance of ESNs trained using supervised learning depend on
the chosen parameters (leaking rate and spectral radius). For this reason, the
parameters had to be optimized before the supervised learning ESNs were com-
pared against the other methods. As mentioned earlier, SEVANN was elected
to evolve the parameters of the ESNs. Each individual was created using the
evolved parameters, and was then trained using linear regression. After training,
the individual was tested using the rest of the data from the dataset and given an
error-fitness according to its test-error. The individuals with the best error-fitness
were then tested using the Frogger-fitness measure described in Section 3.2.5 to
compare them with the rest of the methods.

4.2 Experimental Setup

This section describes the experimental setup used to perform the experiment,
with the intention that the reader should be able to re-create the experiment.

4.2.1 Fitness and Game Setup

The parameter setup for the fitness function used in the experiment is shown in
Table 4.1. In addition to the parameters in the table, the maximum value of the
death score was set to 100 to avoid deaths taking over the fitness entirely, and to
give partial credit to networks that moved in the correct direction when dying a
lot. Every time the network was given new input, one game-step was executed.
All the cars were configured to move every other game-step. The script used to
configure the game is shown in Figure 4.1a, and a screenshot of the game used is
shown in Figure 4.1b.



Experiments and Results 43

Fitness Parameters
Pickup weight, wP 50
Death weight, wD 1
Cone weight, wC 0
Moved towards weight, wMt 0.1
Moved away weight, wMa 0.05
Pickup-to-death ratio weight, w

PDR

100
Pickup-to-death threshold, T 50

Table 4.1: Fitness parameters for experiment. Parameters for the fitness
function used in the experiment.

Grid:

9,10,24

Lanes:

1,3,0,2,1

3,3,0,2,6

5,3,1,2,5

7,3,0,2,3

9,3,0,2,8

Frog:

4,8

(a) Script used in Figure 4.1b (b) The game board used.

Figure 4.1: Game board used for experiments. Figure a shows the script
used to create the game board shown in Figure b. In this configuration, Only the
middle lane has a di↵erent direction than the rest, and all the cars move every
other game step. This is the game configuration used to measure the di↵erent
methods of controlling Frogger.

4.2.2 Best Method for Controlling Frogger

When evolving ANNs for the experiment, a standard evolutionary algorithm
which is part of SEVANN was applied. The parameters of the EA is shown in
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EA Parameters
Num generations 250
Population size 50
Crossover points 7
Mutation rate 0.025

Table 4.2: EA Parameters for experiment. Parameters of the evolutionary
algorithm applied in the experiment.

ANN Setup
Parameter Evo ESNs SL ESNs FF ANNs

Input nodes 10 10 10
Bias nodes 1 1 1

Hidden nodes 30 30 1 - 30
Output nodes 4 4 4

Spectral Radius Evolved Evolved N/A
Spectral Radius range 0.0 - 1.0 0.0 - 1.0 N/A

Leaking Rate Evolved Evolved N/A
Leaking Rate range 0.0 - 1.0 0.0 - 1.0 N/A

Input scaling 1.0 1.0 N/A
In ! Hidden connectivity Full Full Full

In ! Hidden weights Random Random Evolved
Hidden ! Hidden connectivity Random Random N/A

Hidden ! Hidden weights Random Random N/A
Hidden ! Outputs connectivity Full Full Full

Hidden ! Outputs weights Evolved Trained Evolved

Table 4.3: ANN Parameters for experiment. The parameters used for the
di↵erent ANNs evolved during the experiment. Unless a parameter was evolved,
it was fixed during the run of the EA. The leaking rate and the spectral radius of
the ESNs were evolved, but the input scaling was fixed. The output weights for
the evolved ESNs were evolved, while they for the supervised learning ESNs were
trained using linear regression. For the ESNs, 30 reservoir nodes were chosen
since this provided a good compromise between fitness performance and runtime
speed. As for the feed-forward ANNs, the EA evolved the amount of nodes
needed in one hidden layer. The weights between all evolved links were evolved
with values between �1.0 and 1.0.

Table 4.2. The complete parameter setup for the ANNs is shown in Table 4.3.
SEVANN uses the concept of an epoch to describe one complete run through a
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set of training data. Since ESNs require initial runs, the ESNs were run for 1025
simulation steps per epoch, where 25 of the steps were initialization steps. The
feed-forward ANNs were run for 1000 simulation steps per epoch. To measure
fitness both with fixed coin positions and random coin positions, each individual
was run for 11 epochs. In the first epoch the coin locations were fixed according
to 4 di↵erent locations on the game board. While in the final 10, the coin position
was random. After each epoch, the fitness was measured, and both the individual
and the game board were reset for the next epoch. In total, each individual was
run for 11000 time steps (11275 steps counting the initialization steps for evolved
ESNs.). The final fitness for the individual was the average fitness obtained over
the 11 epochs of running.

With this setup, each evolutionary run of 250 generations took between 18 to
30 hours to complete. For all tested methods, a total of 30 runs were com-
pleted.

In order to find the absolute best method for controlling Frogger, the five best
results from each method were compared by running them through 100 epochs
with random coin positions. The fitness, amount of pickups and amount of deaths
were then averaged over the 100 epochs, and the best result from each method
were compared to each other, using the hard-coded heuristic performance as a
baseline.

4.2.3 ESN Setup

Since the random seed used to generate the ESNs was kept equal across the
experiment, the ESNs generated are essentially the same network every time.
This gives both the evolved ESNs and the supervised learning ESNs a common
ground to start with. The network weights generated are shown in Figure 4.2.
Do note that the static weights only are contained within the input-to-reservoir
and reservoir-to-reservoir links. The reservoir-to-output weights are the ones that
change during evolutionary learning or linear regression training.
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(a) Weights from the

bias node to the reser-

voir

(b) Weights from the

cone sensor input to the

reservoir

(c) Weights from the visual

sensor input to the reservoir

(d) Weights inside the reservoir.

Figure 4.2: ESN setup for experiments. Due to the use of random seeding,
these weights were generated in the same manner across the experiment. Note
that the size of the weights inside the reservoir (Figure d) were scaled with the
spectral radius, this means that although the weight distribution was equal in all
runs, the exact size of the individual weights were not.
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4.2.4 Supervised Learning ESNs

When evolving the parameters for the supervised learning ESNs, the fitness func-
tion was defined as 1000� error , where error is the amount of times the network
output di↵ered from the expected output. The assumption was that if an ESN
trained with supervised learning has a low error on the dataset, it will also per-
form well in other unseen situations.

During evolution, each individual used 80% of the dataset as training, while the
remaining 20% was used to measure the testing error. This means that since
the dataset contained 2000 steps, the maximum possible error was 400. Ridge
regression was applied when calculating the output weights. Since most of the
runs here converged quite quickly toward an optimal fitness, the supervised ESN
evolutionary runs were only run for 10 generations each, as running for more
generations did not seem to make the fitness any better.

Unlike the setup for the evolved ESNs and the feed-forward ANNs, all of the
runs using supervised learning were run for the 100 epochs with random coin
positions. In addition, each run was also tested for 1 epoch with fixed coins. The
reason all of the runs were tested this way was to test the assumption that a low
dataset-error also leads to good general performance.

4.3 Experimental Results

This section presents the results obtained from the experiment. Out of the meth-
ods tested to control Frogger, evolved ESNs come out clearly on top. While the
other methods tested were able to grasp the task of picking up coins, none were
able to match the evolved ESNs when trying to balance the task of picking up
coins with the task of avoiding the cars. The next Sections describe method-
specific results, before summarizing the results and comparing them with the
hard-coded heuristic.

4.3.1 Evolved ESNs

The evolved ESNs seem very well suited for the task of controlling Frogger. Out of
the 30 runs conducted, the best obtained fitness was 11534.27, while the lowest
obtained fitness was 4731.75. All of the runs conducted were able to find a
solution where the frog on average picked up more coins than the amount of
times it died. The network with the best found fitness behaved almost perfectly,
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with the frog almost never dying while consistently picking up around 65 coins
per epoch.

Evolved ESN performance statistics
Number of runs 30
Best fitness 11534.27
Worst fitness 4731.75
Average fitness 8535.90
St. dev. Fitness 2454.42
Average coin pickups fixed coins 61.80
St. dev. coin pickups fixed coins 10.19
Average deaths fixed coins 0.03
St. dev. deaths fixed coins 0.18
Average coin pickups per epoch random coins 69.38
St. dev. coin pickups per epoch random coins 11.39
Average deaths per epoch random coins 8.36
St. dev. deaths per epoch random coins 12.55

Table 4.4: Run statistics for evolved ESNs. These statistics are across all
runs with evolved ESNs. The averages are calculated using the best individual
from each run.

The solutions found with evolved ESNs were split among runs that ended up stuck
at a local maxima of around 80 coin pickups and around 20 deaths per epoch,
and runs that picked up slightly fewer coins (around 65) while almost never
dying. The runs that got stuck with around 20 deaths per epoch consistently
had a better fitness-score with fixed coins than with random coins, while the
ones that almost never died consistently had worse fitness with fixed coins than
with random coins. These results suggest that a solution that performs well with
fixed coins learns a fixed movement pattern since it knows where to expect the
next coin. This in turn seem to make it less suited for situations with random
coin positions. However, looking at visualizations of these runs, this assumption
is hard to confirm.

The results were also split among the networks which used all four available
outputs, and those that only employed three of them to solve the task. The
e↵ectiveness of either approach are not clear, as well behaving networks both
consisted of those using all available outputs, and those only using three. None
of the found solutions utilized less than three outputs.

In regards to the parameters evolved, there did not seem to be a correlation
between a given set of parameters and the performance of the network. Interest-
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ingly, some of the well behaving networks were evolved with a leaking rate of 0.0,
thereby skipping the reservoir entirely and only relying on the direct input-to-
output connections to make decisions. This was not a consistent trend however,
as some other very well performing networks seemed to have a rather high leaking
rate as well. The same trend could be seen with regards to the spectral radius,
with no specific value giving optimal results. The optimal parameters of the
reservoir seem to be intertwined with the chosen output weights.

The fitness plot of the best evolved ESN is shown in Figure 4.4, and fitness plots of
four other well performing evolved ESNs are shown in Figure 4.5. A summary of
the evolved ESN runs are shown in Table 4.4. The five fittest evolved ESNs were
run for 100 epochs with random coin positions. The best performing network
after 100 epochs had an average fitness of 11919.85 with a standard deviation
of 813.46. This network picked up an average of 66.79 coins with a standard
deviation of 4.43, while dying an average of 0.03 times with a standard deviation
of 0.17 over the course of the 100 epochs.

Visualization of the best runs showed that the frog had figured out both the task
of moving towards the coin, and the task of avoiding the cars well. The frog was
in most cases very careful when moving through lanes with tra�c, and if the coin
was on a tra�cked lane, the frog always made sure to move directly out of the
lane after having picked up the coin. The frog was also careful not to step directly
into oncoming tra�c, and in some instances waited for the tra�c to pass before
moving through a tra�cked lane. For a video of the visualization of the best found
evolved ESN, the reader is referred to http://youtu.be/2uP7J8wkfP8.

Probing the evolved ESNs to analyze their behavior proved to be a rather chaotic
task, and no direct patterns separating good behavior from bad were found. The
only correlation that was easy to spot was the correlation between the value of the
cone-sensor and the value of the forward-sensor in the outputs. A few simulation
steps from the probing of a well behaving ESN is shown in Figure 4.3.
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(a) Cone sensor. (b) Vision sensors. (c) Network output.

Figure 4.3: Probing of a well behaving ESN. These are the inputs and
outputs of a well behaving ESN. The y-axis is activation level, while the x -axis is
time steps. In figure c, the mapping towards the frog-commands are as follows:
Node 0 is mapped to forward, node 1 is mapped to left, node 2 is mapped to
right, and node 3 is mapped to wait. As can be seen from the graphs, it is hard to
determine exactly which inputs cause certain behavior. The only real conclusion
to be drawn from the probing is that there seems to be a clear correlation between
the value of the cone sensor and the value of node 0 of the output nodes. This is
the node which is mapped to the frog moving forward. This observation matches
the expected behavior we are looking for. The internal reservoir activation levels
are not included in this graph, as they are too chaotic to analyze.

Figure 4.4: Fitness plot of the best evolved ESN. This plot shows the best
solution found by evolving ESNs. The final fitness after 250 generations was
11534. The leaking rate was 0.92 and the spectral radius was 0.53



Experiments and Results 51

(a) Final fitness 11251, leaking rate 0.0,
spectral radius 0.28.

(b) Final fitness 11094, leaking rate 0.97,
spectral radius 0.24.

(c) Final fitness 10918, leaking rate 0.98,
spectral radius 0.66.

(d) Final fitness 10853, leaking rate 0.785,
spectral radius 0.48.

Figure 4.5: Fitness plots of other evolved ESN runs. These figures are the
four best performing evolved ESNs after the run shown in Figure 4.4
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4.3.2 Feed-Forward ANNs

The evolved feed-forward ANNs seem less suited than evolved ESNs for the task
of controlling Frogger. Out of the 30 runs conducted, the best obtained fitness
was 5282.43, and the lowest obtained fitness was 902.27. While all of the runs
found a solution where the frog seemed to grasp the concept of picking up the
coin, none of the solutions found by feed-forward ANNs were able to correctly
balance the task of picking up coins with the task of avoiding the cars. The
fittest evolved feed-forward ANN only slightly beat the worst found evolved ESN
solution. The majority of the evolved feed-forward ANNs ended up with between
10 and 20 hidden nodes.

Unlike the evolved ESNs, none of the feed-forward ANNs were able to obtain a
better fitness with random coins than with fixed coins. This suggests that the
feed-forward ANNs are unable to generalize the solution found to fit the problem
of random coin positions. Also unlike the evolved ESNs, the solutions found
by evolved feed-forward ANNs never utilized more than three of the available
output nodes, and some of them even went as far as to only utilize two. The best
performing runs with the feed-forward ANNs resembled the evolved ESN runs
that got stuck in the local maxima of 80 pickups with 20 deaths.

Feed-forward ANN performance statistics
Number of runs 30
Best fitness 5282.43
Worst fitness 902.27
Average fitness 2615.39
St. dev. fitness 1290.70
Average coin pickups fixed coins 77.93
St. dev. coin pickups fixed coins 17.24
Average deaths fixed coins 37.67
St. dev. deaths fixed coins 27.98
Average coin pickups per epoch random coins 41.80
St. dev. coin pickups per epoch random coins 30.18
Average deaths per epoch random coins 52.82
St. dev. deaths per epoch random coins 29.66

Table 4.5: Run statistics for feed-forward ANNs. These statistics are across
all runs with feed-forward ANNs. The averages are calculated using the best
individual from each run.

The fitness plot of the best evolved feed-forward ANN is shown in Figure 4.7,
and fitness plots of four other well performing feed-forward ANN runs are shown
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in Figure 4.8. A summary of the evolved feed-forward ANN runs are shown in
Table 4.5. As with the evolved ESNs, the five fittest evolved feed-forward ANNs
were run for 100 epochs with random coin positions. The best performing network
after 100 epochs had an average fitness of 4979.27 with a standard deviation
of 309.98. This network picked up an average of 85.98 coins with a standard
deviation of 5.42, while dying an average of 21.91 times with a standard deviation
of 4.08. These statistics bear resemblance to the ESNs that got stuck in a local
maxima.

(a) Cone sensor. (b) Vision sensors. (c) Network output.

Figure 4.6: Probing of a well behaving feed-forward ANN. These are the
inputs and outputs of a well behaving feed-forward ANN. The y-axis is activation
level, while the x -axis is time steps. In figure c, the mapping towards the frog-
commands are as follows: Node 0 is mapped to forward, node 1 is mapped to
left, node 2 is mapped to right, and node 3 is mapped to wait. As with the ESN
probing, it is hard to determine what kind of behavior is triggered by the vision
sensors. The two distinct behaviors seen are the same forward movement seen
in the evolved ESNs if the cone sensor is true, as well as the ANN completely
ignoring the wait-sensor. Otherwise, probing the ANN to view its behavior is too
chaotic a task.

Visualizing the best feed-forward ANN clearly showed that the network was lack-
ing the memory exhibited by the evolved ESNs. The network was clearly strug-
gling with the fact that it has no concept of state, so it was unable to realize
that cars were moving towards the frog. It also seemed less careful than the
evolved ESNs, and more focused on getting to the coin quickly even if it meant
dying in the process. The behavior exhibited by the best feed-forward ANN was
comparable to the behavior of the evolved ESNs that got stuck in local maximas.
For a video of the visualization of the best found evolved feed-forward ANN, the
reader is referred to http://youtu.be/fcA5-ifXpuE.

As with the evolved ESNs, probing the evolved feed-forward ANNs proved too
chaotic to give a good picture of which kinds of network structures resulted in
good behavior. A few simulation steps from the probing of a well behaving feed-
forward ANN is shown in Figure 4.6.
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Figure 4.7: Fitness plot of the best evolved feed-forward ANN. This plot
shows the best solution found by evolving feed-forward ANNs. The final fitness
after 250 generations was 5282.43. The amount of nodes in the hidden layer were
5.
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(a) Final fitness 5262.57, hidden nodes 11. (b) Final fitness 4627.55, hidden nodes 7.

(c) Final fitness 4617.67, hidden nodes 13. (d) Final fitness 4565.55, hidden nodes 16.

Figure 4.8: Fitness plots of other feed-forward ANN runs. These figures
are the four best performing evolved feed-forward ANNs after the run shown in
Figure 4.7



56 Experimental Results

4.3.3 Supervised Learning ESNs

Supervised learning ESN performance statistics
Number of runs 30
Best error-fitness 919
Worst error-fitness 917
Average error-fitness 918.36
St. dev. error-fitness 0.71
Best Frogger-fitness fixed coins 6885.15
Worst Frogger-fitness fixed coins 301.25
Average Frogger-fitness fixed coins 4919.54
St. dev. Frogger-fitness fixed coins 972.19
Average coin pickups fixed coins 83.33
St. dev. coin pickups fixed coins 16.99
Average deaths fixed coins 19.97
St. dev. deaths fixed coins 5.48
Best Frogger-fitness random coins 3734.91
Worst Frogger-fitness random coins 1112.06
Average Frogger-fitness random coins 2434.39
St. dev. Frogger-fitness random coins 617.60
Average coin pickups per epoch random coins 40.26
St. dev. coin pickups per epoch random coins 10.72
Average deaths per epoch random coins 25.88
St. dev. deaths per epoch random coins 10.59

Table 4.6: Run statistics for supervised learning ESNs. These statistics
are across all runs with supervised learning. The error-fitness is the fitness func-
tion described in Section 4.2.4, while the Frogger-fitness is the fitness function
described in Section 3.2.5.

As mentioned in Section 4.2.4 the supervised learning ESN runs converged quite
quickly towards an optimal error-fitness. However, as can be seen from Table 4.6
this did not always lead to optimal performance when measured with the Frogger-
fitness. While most of the networks seemed to get the idea of picking up coins,
none were competitive with the evolved ESNs in regards to dying as little as
possible.

Interestingly, the runs with the worst error-fitness after 10 generations proved to
have the best performance during the 100 random coin epochs. This could mean
that an optimal error with linear regression leads to overfitting to the dataset
used for supervised learning, and thereby leading to less generalization towards
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unseen situations.

Like the feed-forward ANNs, the supervised learning ESNs consistently had better
Frogger-fitness with fixed coins than with random coins. Again, this suggests that
the networks were unable to generalize to unseen situations, instead learning fixed
patterns when moving towards the coin. Visualization of the best performing
network showed that it seemed to struggle with balancing the task of picking up
coins with the task of avoiding cars, in most cases being too aggressive in moving
towards the coin.

The individual performing best with random coin positions had an error-fitness
of 917 after the 10 generations of running, and a Frogger-fitness of 3734.92 after
100 epochs with random coins. It picked up 62.75 coins per epoch with a stan-
dard deviation of 22.21, while dying 23.64 times with a standard deviation of
11.02. Visualizing this frog with random coin positions show that it has indeed
grasped the concept of turning and moving towards the coin, but it does not ex-
hibit the same carefulness that the evolved ESNs show when moving towards the
coin. In some of the visualization runs it also got stuck trying to move directly
towards the coin without caring about the cars in its way. For a video of the
visualization of the best found evolved feed-forward ANN, the reader is referred
to http://youtu.be/KLvoBuVoiEo.

4.3.4 Method Comparison

Best run method comparison
Heuristic Evo ESNs SL ESNs FF ANNs

Fixed coins fitness 3681 7149 5325 7594
Average random coins fitness 2910.87 11919.85 3734.92 4979.27
St. dev. random coins fitness 413.63 813.46 1304.00 309.98

Average coin pickups per epoch 51.62 66.79 62.75 85.98
St. dev. coin pickups per epoch 6.88 4.43 22.21 5.42

Average deaths per epoch 42.03 0.03 23.64 21.91
St. dev. deaths per epoch 7.51 0.17 11.03 4.08

Table 4.7: Best run method comparison. This table presents the method
comparisons over 100 epochs running with random coin positions. Each epoch
was 1000 simulation steps long. This table presents the best performing solution
for each method.

The best performing 100 epoch network from each of the methods are compared
to determine the best method for controlling Frogger. The results are presented
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in Table 4.7. As can be seen from the table, the evolved ESNs come out on
top with random coin positions, but are beat by the feed-forward ANNs with
fixed coin positions. With fixed coin positions the table is somewhat even, but
with random coin positions the evolved ESNs are unmatched by any of the other
methods tested. The best feed-forward ANN picked up the most coins per epoch,
but did so at the expense of dying a lot more than the best evolved ESN. Worth
noting is that all the methods tested beat the heuristic by a fair margin. This
suggests that there are intricacies in this task that is di�cult for humans to
e↵ectively program, and an optimization procedure such as an EA seem better
fit for this task. Looking at this comparison, determining a winner is a rather
easy task, as none of the other methods were comparatively close to the best
evolved ESN when using random coin positions. For a di↵erent comparison of
the performance, Figure 4.9 shows the average fitness over each generation during
the evolved ESN runs and the evolved feed-forward ANN runs.
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Figure 4.9: Average fitness across evolved runs. This plot shows the average
fitness between the best individuals for every generation in all the evolutionary
runs done during the experiment. As can be seen from the graph, the evolved
ESNs quickly gain an advantage in average fitness, and are never challenged by the
feed-forward ANNs. The average fitness from the 100 epoch runs of the supervised
learning ESNs were added for comparison. On average, the evolved ESNs beat
the supervised learning ESNs after about 20 generations, while the feed-forward
ANNs beat the supervised learning ESNs after about 160 generations. Given the
small di↵erence in the average fitness between feed-forward ANNs and supervised
learning ESNs, they seem to be about equally matched at this task.
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Chapter 5

Evaluation and
Conclusion

This Chapter evaluates the results, provides discussion regarding the project as a
whole, and finally concludes the project with suggestions for future work.

5.1 Evaluation

Looking back at the goal and research questions presented in Section 1.2, the main
goal for the project was to investigate whether or not a combination of ESNs and
EAs would be a good fit for minimally cognitive unsupervised learning tasks,
such as the Frogger agent implemented for this project. In order to achieve this
goal, the ESN specification was implemented by means of subclassing SEVANNs
already existing ANN implementation, and evolved ESNs were then used in an
experiment where they were compared against a hard-coded heuristic, evolved
feed-forward ANNs, and supervised learning ESNs trained with linear regression.
In addition to the main goal of the project, two research questions were posed,
and the conducted experiment was intended to answer these questions.

The first research question asked which of the aforementioned methods were best
at controlling Frogger. Out of the methods tested, the results clearly show that
evolved ESNs seem most fit for this task. Evolved ESNs beat the other methods
by a rather wide margin when using random coin positions. The results show
that the methods are more evenly matched with fixed coin positions, but since
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the preferred solution was one that performed well with random coin positions,
evolved ESNs clearly come out on top.

The second research question asked whether or not fully evolved ESNs will yield
a better performance than regular ESNs trained using linear regression. As the
results from the experiment shows, evolved ESNs seem clearly superior to super-
vised learning ESNs in this task. While the results suggest that evolved ESNs are
more suited for motor control tasks than supervised learning ESNs, it is hard to
draw a conclusion as to whether or not this is actually the case. The experiment
done in this thesis only gives a performance measure of a single motor control
task, and more tasks are required before one can conclusively decide which of the
two approaches are best.

In summary, the results from the experiment conducted during the project sup-
port the research questions posed, and the implementation done fulfills the overall
goal for the project.

5.2 Discussion

This section discusses the merits and limitations of the work conducted during
the project.

5.2.1 ESNs, EAs, and Unsupervised Learning

The work discussed in this thesis shines further light on the relationship between
ESNs, EAs, and unsupervised learning. Not only has it been shown that is it
possible to modify the ESN specification for use with EAs, but as the experiment
conducted showed, it can produce better results than conventional methods for
certain tasks, such as the minimally cognitive task tested. These results confirm
the observations reported by previous work when testing the combination of ESNs
and EAs.

In addition to the work done with ESNs, this thesis also introduced a novel
learning task for research in minimally cognitive behavior. The modified version
of the Frogger-videogame introduced interesting minimally cognitive behavior,
and it was easy to observe that the ANNs which had a sense of their current
and previous states behaved better in the environment than those without such
state-sense. Even though the original task of controlling Frogger is a relatively
simple one for humans given our visual access to the entire game board, the
evolved ESNs managed to adequately solve the task with only a fraction of the
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information available through the cone- and vision sensors. In addition, the
hard-coded heuristic, meant to provide an example of how a human could solve
the task given the available sensory information, did not provide comparable
performance to the evolved ESNs. This suggests that the frogger-game with
the sensory equipment available is better suited for computer learning than a
hard-coded human approach.

As shown by the experimental results, some sort of state-sense seems to be re-
quired to adequately solve the task of both picking up coins and avoiding cars. Vi-
sualization of the runs conducted during the experiment, showed that the evolved
ESNs were able to pick up on details such as moving directly out of a tra�cked
lane, or predicting that a car was going to move into a square in the next time
step. The feed-forward ANNs however, lacking a sense of state, did not exhibit
the same behavior, and were sometimes run over in tra�cked lanes when looking
for the coin. The supervised learning ESNs did show some sense of state, but they
were unable to correctly balance both tasks, instead opting for either too much
carefulness or too much aggressiveness when moving towards the coin.

Even though the results are promising for the use of evolved ESNs, the work done
in this thesis is limited in several ways. First of all, the experiment conducted
in this thesis only tested one minimally cognitive learning task. In order to
determine whether or not ESNs in general are a good fit for such tasks, one
would need to test them with other pre-existing minimally cognitive tasks, such
as object avoidance or object catching.

The dataset used for the supervised learning ESNs was created by hand. This
means that there are bound to be errors in it, which again may a↵ect the quality
of the learning done by the supervised learning ESNs. This means that the results
reported in this thesis may not accurately reflect the performance of ESNs trained
with linear regression.

Finally, since this project was done by a single student, the amount of computer
resources available were limited. This limitation means that there was an upper
limit on the amount of runs that could be done for comparison, both in regards
to the complexity of the networks tested, and the longevity of the evolutionary
runs. Just as bigger ESN reservoirs may have provided better results, so could a
bigger feed-forward ANN hidden layer. With unlimited computer resources, feed-
forward ANNs with several hidden layers could also have been tested.

In summary, the work done in this thesis further shows that ESNs coupled with
EAs are a viable choice for use with unsupervised learning tasks. In addition,
it has been shown that for tasks requiring memory, ESNs trained with EAs can
greatly outperform regular feed-forward ANN structures. ESNs trained with EAs
have also been shown to outperform ESNs trained with linear regression for the
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motor control task tested.

5.2.2 SEVANN

Throughout the project, SEVANN has been used as a toolkit for evolving the
ANNs used. This made for a good opportunity to assess SEVANNs usability as a
general toolkit for evolving ANNs. SEVANN has the advantage in that it makes
it very easy to start with evolving ANNs. The user only needs to specify a few
scripts and SEVANN does the rest. With the additions made to SEVANN during
the project, it is now also much easier to extend it with new types of ANNs in
the future, such as CTRNNs or maybe even deep belief networks. The work
conducted in this thesis has also made it easier to employ SEVANN with big
evolution tasks, by thoroughly testing its usage with linux servers and long-term
evolutionary runs.

While the work conducted in this project has made SEVANN a more robust
tool for evolving ANNs, some work still remains before it is ready for “prime
time”. First of all, SEVANN is still only single threaded, and given how suitable
EAs theoretically are for parallelization, it should be a priority to implement
multithreading soon. Secondly, SEVANN currently only supports one rather
simple kind of EA with a direct representation of the ANN weights. Future
extensions of SEVANN would include implementing support for a wide variety of
EAs and ESs, such as NEAT or CMA-ES.

Another extension to SEVANN would be the implementation of a better GUI, so
that new users can start evolving ANNs without even having to write scripts, but
rather create the ANNs directly using a GUI. Preliminary support for this exists
in SEVANN today, but a future priority should be to extend and build upon this
to make the product easier to use for novices.

5.3 Future Work

This Section address some issues and limitations of this report which remain
unexplored or unanswered. It also tries to provide some potential starting points
for further research involving EAs and ESNs.

The results from the experiments conducted in this thesis shines further light on
the potential uses for ESNs. The fact that they perform so well when coupled
with EAs make them a viable option for both unsupervised and reinforcement
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learning tasks. However, much of the work done in this thesis can be further
explored.

Future explorations may involve trying to evolve even more parameters of the
ESNs, such as network size and input scaling, and also splitting the leaking
rate into separate parameters for each reservoir neuron. This means adding a
lot of complexity to the EA genotype, but it may lead to better performance.
In addition, the performance comparison with supervised learning ESNs in this
thesis is limited by the quality of the dataset used, and a better dataset may result
in completely di↵erent behavior. Future work could look into how to better create
datasets for use with motor control tasks, or provide a performance measure for
the di↵erent linear regression methods available to ESNs. Finally, evolving ESNs
which generalize well regardless of game board, randomly generating a game
board for each epoch, is also left for future work.

Other extensions of this work could also involve trying di↵erent evolutionary
approaches such as NEAT or CMA-ES to evolve the ESNs, and then comparing
the results from these against the ones reported in this thesis, with the goal of
finding an optimal approach to evolving ESNs. Comparisons with other types of
ANNs are also an obvious extension. Comparing ESNs with e.g. CTRNNs may
be a more evenly matched performance measure than feed-forward ANNs. In
addition to just evolving ESNs, further exploration may also involve preprocessing
input data through a di↵erent kind of ANN before feeding it to the ESN, or post-
processing output data from ESNs via ANNs or other classifiers.

ESNs in general would also gain from better analysis of their inner workings,
and as such, the research community working with RC should strive for better
analysis and visualization tools directed at the inner workings of ESNs. This
thesis has measured ESN performance, but not its inner behavior.
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Appendix A

Fitness graphs

This Appendix presents all fitness graphs from the runs done during the exper-
iments. The fitness graphs for the supervised learning ESNs are not included in
this appendix, since the runs almost immediately settled on an optimal fitness,
leading to an uninteresting fitness graph.

A.1 Evolved ESNs

(1) Final fitness 10853, leaking rate 0.85,
spectral radius 0.48.

(2) Final fitness 10919, leaking rate 0.98,
spectral radius 0.66.
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(3) Final fitness 10218, leaking rate 0.90,
spectral radius 0.22.

(4) Final fitness 10761, leaking rate 0.01,
spectral radius 0.47.

(5) Final fitness 9936, leaking rate 0.81,
spectral radius 0.24.

(6) Final fitness 5189, leaking rate 0.98,
spectral radius 0.09.

(7) Final fitness 8895, leaking rate 0.93,
spectral radius 0.16.

(8) Final fitness 11094, leaking rate 0.97,
spectral radius 0.24.
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(9) Final fitness 10553, leaking rate 0.99,
spectral radius 0.18.

(10) Final fitness 5372, leaking rate 0.06,
spectral radius 0.66.

(11) Final fitness 8292, leaking rate 0.03,
spectral radius 0.32.

(12) Final fitness 5309, leaking rate 0.73,
spectral radius 0.08.

(13) Final fitness 5220, leaking rate 0.47,
spectral radius 0.51.

(14) Final fitness 5274, leaking rate 0.88,
spectral radius 0.39.
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(15) Final fitness 10508, leaking rate 0.01,
spectral radius 0.77.

(16) Final fitness 9985, leaking rate 0.00,
spectral radius 0.66.

(17) Final fitness 10816, leaking rate 0.95,
spectral radius 0.34.

(18) Final fitness 11251, leaking rate 0.00,
spectral radius 0.28.

(19) Final fitness 10670, leaking rate 0.74,
spectral radius 0.38.

(20) Final fitness 4950, leaking rate 0.20,
spectral radius 0.50.



Fitness graphs 77

(21) Final fitness 5015, leaking rate 0.72,
spectral radius 0.21.

(22) Final fitness 6231, leaking rate 0.73,
spectral radius 0.68.

(23) Final fitness 5374, leaking rate 0.00,
spectral radius 0.63.

(24) Final fitness 9869, leaking rate 0.84,
spectral radius 0.00.

(25) Final fitness 10805, leaking rate 0.98,
spectral radius 0.05.

(26) Final fitness 11534, leaking rate 0.92,
spectral radius 0.53.
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(27) Final fitness 8487, leaking rate 0.96,
spectral radius 0.68.

(28) Final fitness 8138, leaking rate 0.88,
spectral radius 0.22.

(29) Final fitness 4732, leaking rate 0.81,
spectral radius 0.39.

(30) Final fitness 9822, leaking rate 0.91,
spectral radius 0.68.
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A.2 Evolved Feed-Forward ANNs

(1) Final fitness 2881, hidden nodes 16 (2) Final fitness 4618, hidden nodes 13

(3) Final fitness 2493, hidden nodes 22 (4) Final fitness 2591, hidden nodes 18

(5) Final fitness 2430, hidden nodes 21 (6) Final fitness 5282, hidden nodes 5
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(7) Final fitness 4628, hidden nodes 7 (8) Final fitness 1504, hidden nodes 13

(9) Final fitness 5263, hidden nodes 11 (10) Final fitness 1480, hidden nodes 4

(11) Final fitness 3274, hidden nodes 16 (12) Final fitness 1209, hidden nodes 12

(13) Final fitness 1882, hidden nodes 16 (14) Final fitness 1129, hidden nodes 12
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(15) Final fitness 4566, hidden nodes 16 (16) Final fitness 3550, hidden nodes 12

(17) Final fitness 4188, hidden nodes 10 (18) Final fitness 1598, hidden nodes 18

(19) Final fitness 1776, hidden nodes 17 (20) Final fitness 1479, hidden nodes 15

(21) Final fitness 2360, hidden nodes 16 (22) Final fitness 2127, hidden nodes 8
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(23) Final fitness 2333, hidden nodes 12 (24) Final fitness 1412, hidden nodes 23

(25) Final fitness 1461, hidden nodes 19 (26) Final fitness 1514, hidden nodes 16

(27) Final fitness 3068, hidden nodes 19 (28) Final fitness 1668, hidden nodes 14

(29) Final fitness 902, hidden nodes 21 (30) Final fitness 3798, hidden nodes 19


