
Framework for Multi-player GameWall
Interaction

Aleksander Aanesl. Elvemo
Vegard Gamnes

Master of Science in Computer Science

Supervisor: Alf Inge Wang, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Definition

The goal of this project is to design, implement, and evaluate a framework that
makes it easy to build multimodal web applications for large displays with mul-
tiple users. The framework will use cross platform web technology for creation
of simple games or interactive applications. Prototypes will be created in order
to evaluate the framework and investigate the potential learning benefits in an
educational setting.

Assignment given: 16. January 2013
Supervisor: Alf Inge Wang, IDI NTNU

Abstract

This report describes the experiences and results made by developing a multi-
modal web application framework. The framework, called FIGA, is to assist
developers in creating web applications where users share a common screen. The
applications are platform independent and highly accessible, with an entertain-
ment or educational payload. The report consists of four major parts, namely a
prestudy, the FIGA development, the implementation of application prototypes,
and an evaluation of these prototypes.

The prestudy introduces the hardware and software aspects of FIGA in terms of
expected devices and web development. Developing FIGA is explained both in
terms of the software architecture of the framework, in addition to the experi-
ences of creating application prototypes based on FIGA. Each of the developed
FIGA applications sheds light on different aspects and requirements demanded
by different types of applications, specifically video games and educational appli-
cations. The evaluation of the prototypes shows that web applications reaches
the look and feel of native applications, as well as documenting the positive re-
sponses of effortless connectivity and having no installation procedures. Two
experiments gave valuable feedback on the usability and show an increase in per-
ceived learning by using educational applications made with FIGA in a classroom
setting.

Preface

This master thesis was written in the time period from January to June 2013 by
Aleksander Aanesland Elvemo and Vegard Gamnes.

Acknowledgements

First, we would like to thank Alf Inge Wang for this assignment and for his help
and guidance throughout this project.

We would also like to thank everyone who participated in the two conducted
experiment sessions, and provided us with valuable feedback.

Trondheim, 6. June 2013

Aleksander Aanesland Elvemo Vegard Gamnes

Contents

I Introduction 1

1 Problem Description 3
1.1 Motivation . 3
1.2 Project Definitions . 4
1.3 Readers Guide . 6

2 Research Questions and Methods 9
2.1 Research Questions . 9

2.1.1 RQ1 - Reducing Development Time 10
2.1.2 RQ2 - Supporting Different Application Types 10
2.1.3 RQ3 - Locating Performance Bottlenecks 11
2.1.4 RQ4 - Improving Usability 11
2.1.5 RQ5 - Educational Applications and Learning Benefits . . . 11

2.2 Research Methods . 12
2.2.1 The Engineering Approach 13
2.2.2 The Empirical Approach . 13

II Prestudy 15

3 State of the Art 17
3.1 Multimodal Interactions . 17
3.2 Crowd Gaming . 20
3.3 Impact on FIGA . 23

4 Technology 25
4.1 Hardware . 25

4.1.1 ServerApp Hardware . 26
4.1.2 UserApp Hardware . 26

ii CONTENTS

4.1.3 GameWallApp Hardware 26
4.1.4 Development Environment 27

4.2 Software . 27
4.2.1 Web Development . 28
4.2.2 Distributed Systems . 32
4.2.3 Node.js and Socket.IO . 34
4.2.4 Browser Support . 35

4.3 Application Types . 35
4.4 Native Versus Web Applications 36

III Framework for Interactive GameWall Applications 39

5 Requirements 41
5.1 Functional Requirements . 41
5.2 Quality Requirements . 43

6 Architecture 45
6.1 Architectural Components . 45

6.1.1 ServerApp . 47
6.1.2 UserApp . 51
6.1.3 GameWallApp . 52

6.2 Physical View . 54
6.3 Sequence Diagrams . 56
6.4 Architectural Limitations . 58
6.5 Creating a “Hello World” Application 59

6.5.1 Preliminary Work . 59
6.5.2 Developing the ServerApp 60
6.5.3 Developing the UserApp . 61
6.5.4 Developing the GameWallApp 62
6.5.5 Starting the Application . 63

7 Prototypes 67
7.1 PostIt . 67

7.1.1 The UserApp . 68
7.1.2 The ServerApp . 68
7.1.3 The GameWallApp . 69
7.1.4 Lessons Learned . 72

7.2 WordCloud . 73
7.2.1 The UserApp . 73
7.2.2 The ServerApp . 74
7.2.3 The GameWallApp . 75

CONTENTS iii

7.2.4 Lessons Learned . 75
7.3 Categories . 76

7.3.1 The UserApp . 77
7.3.2 The ServerApp . 78
7.3.3 The GameWallApp . 79
7.3.4 Lessons Learned . 79

7.4 1814 . 80
7.4.1 The UserApp . 81
7.4.2 The ServerApp . 83
7.4.3 The GameWallApp . 83
7.4.4 Lessons Learned . 85

8 User Experiments 87
8.1 Empirical Approach . 87

8.1.1 General Information . 88
8.1.2 System Usability Scale . 88
8.1.3 Technical Considerations 89
8.1.4 Application Comparison . 90
8.1.5 Comments Section . 92

8.2 The First Experiment . 92
8.2.1 Experimental Approach . 93
8.2.2 Results . 94
8.2.3 User Comments . 98
8.2.4 Organizer Experiences . 99

8.3 The Second Experiment . 100
8.3.1 Experimental Approach . 100
8.3.2 Results . 105
8.3.3 User Comments . 108
8.3.4 Organizer Experiences . 108
8.3.5 1814 Results . 109
8.3.6 Comments About 1814 . 113

9 Evaluation 115
9.1 Prototype Summary . 115

9.1.1 Development Methodology 115
9.1.2 Application Functionality 116
9.1.3 The Joys of Web Development 116
9.1.4 The Pains of Web Development 117
9.1.5 Scaling the Prototypes . 117

9.2 Experiment Summary . 117
9.2.1 Experimental Approach . 118

iv CONTENTS

9.2.2 Results . 118
9.2.3 User Comments . 124
9.2.4 Organizer Experiences . 125

9.3 Functional and Quality Requirements 125
9.3.1 Functional Requirements 125
9.3.2 Quality Requirements . 126

IV Summary 129

10 Conclusion 131
10.1 RQ1 - Reducing Development Time 132
10.2 RQ2 - Supporting Different Application Types 132
10.3 RQ3 - Locating Performance Bottlenecks 133
10.4 RQ4 - Improving Usability . 134
10.5 RQ5 - Educational Applications and Learning Benefits 135

11 Further Work 137

V Appendix 139

A Test Environment 141

B Experiment Evaluation 143
B.1 Technical Considerations Results from the First Experiment 143
B.2 Technical Considerations Results from the Second Experiment . . 144
B.3 Technical Considerations Results from 1814 145
B.4 Gameplay Results from 1814 . 146

C Evaluation Survey 147

References 156

List of Figures

3.1 Interaction with MobiToss . 18
3.2 Flashlight interaction . 18
3.3 Josh Software’s real-time game . 19
3.4 Osmus’ game architecture . 19
3.5 Nintendo Wii U console . 20
3.6 The audience leans left and right to control the game 21
3.7 Multiplayer soccer game . 22
3.8 MOOSES . 22
3.9 Lecture Quiz . 23

4.1 Test environment during application development 27
4.2 Basic HTML5 structure . 29
4.3 A web site with responsive design 30
4.4 Paper.js example of bouncing balls 32
4.5 One-way communication . 33
4.6 Two-way communication . 33

5.1 ISO/IEC 25051 . 43

6.1 Architectural components with their respective framework depen-
dencies . 46

6.2 ServerApp component . 47
6.3 UserApp component . 51
6.4 GameWallApp component . 53
6.5 A use case scenario of a FIGA application presented with a physical

view . 55
6.6 A second use case scenario of a FIGA application illustrated with

a physical view . 56
6.7 A UserApp connects to the ServerApp 57

vi LIST OF FIGURES

6.8 A UserApp sends a message to the ServerApp, which broadcasts
it to all GameWallApps . 57

6.9 ServerApp using the “Hello World” application 64
6.10 UserApp using the “Hello World” application 64
6.11 GameWallApp using the “Hello World” application 65

7.1 The PostIt UserView on different devices 69
7.2 The PostIt GameWallView filled with post-its 70
7.3 Adding a new PostIt category . 70
7.4 The PostIt GameWallView with a highlighted post-it 71
7.5 All post-its sorted based on their category 72
7.6 A word cloud example . 73
7.7 The WordCloud UserView . 74
7.8 The WordCloud GameWallView 76
7.9 The Categories UserView . 77
7.10 The Categories UserView on a tablet 78
7.11 The Categories GameWallView . 79
7.12 The original game concept of North & South 81
7.13 The UserView is developed with responsive design techniques . . . 82
7.14 The 1814 configuration screen . 84
7.15 The 1814 GameWallView . 84

8.1 Brainstorming with PostIt . 93
8.2 Brainstorming with WordCloud . 94
8.3 Categories in action . 95
8.4 Application comparison results . 98
8.5 A QR code scaled up on the GameWallView 99
8.6 WordCloud during the second experiment 101
8.7 The WordCloud GameWallView result in the second experiment . 102
8.8 The PostIt GameWallView during experiment 102
8.9 The introductory slide for the Categories in the second experiment 103
8.10 Application comparison results from the second experiment 107
8.11 1814 played in a classroom . 110

9.1 WordCloud comparison from the two experiments 121
9.2 PostIt comparison from the two experiments 121
9.3 Categories comparison from the two experiments 122
9.4 The second experiment compared to the first experiment with only

the participants who participated in both experiments 123
9.5 The second experiment compared to the first experiment with only

first-time participants . 124

List of Tables

5.1 The functional requirements . 42
5.2 The non-functional requirements 43

6.1 FIGAServer class diagram . 48
6.2 FIGAUser class diagram . 52
6.3 FIGAGameWall class diagram . 53

8.1 The SUS questions . 89
8.2 The technical considerations . 90
8.3 The application comparison . 90
8.4 The eight different factors that EGameFlow uses to measure the

users enjoyment of an educational application 91
8.5 Eight good characteristics of an educational game 92
8.6 SUS score distribution . 96
8.7 Technical considerations results . 97
8.8 The gameplay and social interaction questions 104
8.9 The SUS score distribution from the second experiment 106
8.10 Technical considerations results from the second experiment 107
8.11 The technical user experience results 109
8.12 The gameplay and social interaction results 112

9.1 SUS score comparison . 119
9.2 Technical considerations comparison 120

B.1 Technical considerations results . 143
B.2 Technical considerations results from the second experiment 144
B.3 Technical user experience results from 1814 145
B.4 Gameplay and social interaction results from 1814 146

viii LIST OF TABLES

Listings

4.1 A Node.js example HTTP server 34
6.1 ServerApp.js . 60
6.2 UserApp.html . 61
6.3 UserApp.js . 62
6.4 GameWallApp.html . 62
6.5 GameWallApp.js . 63
6.6 Start the FIGA application . 63

x LISTINGS

Part I

Introduction

Chapter 1

Problem Description

This chapter introduces the personal motivations for choosing this project, the
project definitions, and a readers guide. The motivation section describes the
personal interests in this particular field of computer science, and why this project
was chosen. The following section introduces the different abbreviations and
definitions used throughout the report to avoid ambiguity. The readers guide
gives an overview of the remaining parts in the report and will be of particular
interest for those with a specific academic field of interest.

1.1 Motivation

Deciding on this particular master thesis was affected by several different per-
sonal motivations. The first motivation is preventing the current trend of isolating
platforms. Different corporations restrict more and more the interconnectivity
between their devices and those of their competitors. This has resulted in tech-
nology islands, where devices are isolated from each other with very few ways
of communication. In order to communicate, a common standardized format is
required. By using web technology to find a common ground between devices
will be of benefit for the users in terms of usability and cross platform develop-
ment. This project will be a part of creating technology that makes even the
most competitive devices collaborate.

To amplify interconnectivity this project will turn towards one of the most
promising technological trends at the time of writing, namely cloud computing.
Shifting the workload to web servers reduces the importance of which device is

4 Chapter 1 Problem Description

used and the location of the device. The only requirement is an Internet connec-
tion and a web browser. The evolution of todays web browsers and server technol-
ogy, combined with clever client-side scripting, masks the previous performance
issues with web applications. Investigating the principles of cloud computing was
another personal motivation for choosing this project.

Another aspect of this project is how ad-hoc communication of an almost serendip-
itous nature is possible, with effortless connectivity. The use of web applications
means that there is no necessity of installing a native application before interac-
tion. The social aspects of the concept of a shared screen are the most important
factor, where technology trends today drifts towards separating persons from
each other. Through cooperation and collaboration, technology can bring people
together. These aspects of the project give confidence that this project provides
a positive contribution to the ever-evolving technological landscape.

1.2 Project Definitions

This report is heavily influenced by a prior research project where technological
choices and suggested approaches were made [32]. The problem definition is
penned by our supervisor.

Definition 1 (Problem definition). The goal of this project is to design,
implement, and evaluate a framework that makes it easy to build multimodal
web applications for large displays with multiple users. The framework will
use cross platform web technology for creation of simple games or interactive
applications. Prototypes will be created in order to evaluate the framework
and investigate the potential learning benefits in an educational setting.

An abbreviation for the framework is defined, in order to avoid ambiguity.

Definition 2 (FIGA). FIGA is an acronym for “Framework for Interactive
GameWall Applications”. The framework supports the development of mul-
timodal web applications with a large collaborative screen.
Note that FIGA will be referred to throughout the report.

A FIGA application consists of three sub applications, respectively GameWal-
lApp, UserApp, and ServerApp. These sub applications are executed on different
devices and communicate with each other using web technology.

1.2 Project Definitions 5

Definition 3 (GameWallApp). The characteristic component of a FIGA
application is the GameWallApp. The GameWallApp is a collective term
for the web application that is publicly displayed.
Note that GameWallApp will be referred to throughout the report.

Definition 4 (UserApp). The UserApp is used to interact with the Game-
WallApp through communication with the ServerApp. This web application
runs in a web browser on a personal device, such as a smartphone or a tablet.
Note that UserApp will be referred to throughout the report.

Definition 5 (ServerApp). The ServerApp works as an intermediary be-
tween UserApps and GameWallApps. In addition to communication, it per-
forms logic operations and insures that everything is synchronized.
Note that ServerApp will be referred to throughout the report.

In addition to the naming convention of these three sub applications, two notable
graphical user interfaces are defined as follows.

Definition 6 (GameWallView). The view of the GameWallApp is the graph-
ical user interface displayed publicly. Commonly associated terms are the
drawing of graphical primitives, text, animations, and buttons. The Game-
WallView is of global scope, meaning that everyone in the room will see what
is displayed on the GameWallView.
Note that GameWallView will be referred to throughout the report.

Definition 7 (UserView). The UserView displays the graphical user inter-
face of the UserApp. While the UserView has the same graphical capacity
of the GameWallView, it will in almost every case be less complex than that
of the GameWallView because of hardware constraints. The UserView is of
local scope, meaning that what is displayed on the UserView is only visible
to the user.
Note that UserView will be referred to throughout the report.

Naming Conventions

The naming convention will be used in this thesis to reference the different parts
of a FIGA application without confusion. Deciding on the naming convention
was surprisingly difficult in order to choose names that was memorable and un-
ambiguous. Some material presented in this thesis will not use the exact same
naming convention, specifically the forms presented in Chapter 8 and Appendix
C. This is the result of determining the final naming convention after the forms
were produced and used in the experiments.

6 Chapter 1 Problem Description

1.3 Readers Guide

Different readers might have different areas of interests. Here are the different
parts and chapters of the report summarized for the benefit of the reader.

Part I - Introduction

The first part defines the goals of the project and is of interest for those wanting
an overview of the project. In order to fully understand the context and scope
of the project one should read these chapters.

Chapter 1 presents the motivation and explains the projects definitions, as well
as providing the readers guide.

Chapter 2 presents the research questions and methods used during the project.

Part II - Prestudy

The second part will be of particular interest for those interested in distributed
interactive web applications, in terms of how they are developed and what kind
of software and hardware to expect.

Chapter 3 describes existing solutions with similar traits to this project.

Chapter 4 explains the hardware and software aspects of the project, the different
application types that can be developed using FIGA, and a discussion of native
applications versus web applications.

Part III - Framework for Interactive GameWall Applications

The third part describes the projects requirements, the technical implementa-
tions and software architecture, the developed prototypes, the user experiments
conducted during the project, and an evaluation of these different parts.

Chapter 5 presents both functional and quality requirements.

Chapter 6 covers the FIGA architecture.

Chapter 7 explains the developed prototypes in detail.

Chapter 8 describes the conducted user experiments, as well as presenting its
results.

Chapter 9 evaluates the prototypes, experiments, and requirements.

1.3 Readers Guide 7

Part IV - Summary

The fourth and final part contains the summary and conclusion of what have been
accomplished during the project, in addition to proposed further work. These
chapters are of interest of those wanting an overall view of the results and further
recommendations.

Chapter 10 presents the summary and conclusion.

Chapter 11 presents the further work that can be accomplished in the future.

8 Chapter 1 Problem Description

Chapter 2

Research Questions and
Methods

This chapter describes the research questions and methods used in the project.
These questions and methods helped direct the project in a clear and concise
path. The questions were formed by drawing inspiration from previous work,
from own curiosity and motivation, and input from our supervisor.

This project entails creating a framework with value. Value is meant by the
amount of reduced implementation time, and supplying a robust technological
platform. In order to further define and measure what is meant with value,
several technical research questions are penned.

2.1 Research Questions

This section presents five major research questions, each with their own respective
sub questions. They will be further described in detail, with explanation of why
they were included and how they are planned to be answered.

RQ1 How much can web application development time be reduced by supplying
a suited framework?

RQ2 What types of applications can be made with FIGA?

RQ3 What is the performance of applications made with FIGA?

10 Chapter 2 Research Questions and Methods

RQ4 What level of usability do applications made with FIGA achieve?

RQ5 Are there an increase in perceived learning by using educational applica-
tions made with FIGA?

2.1.1 RQ1 - Reducing Development Time

The first research question will give answers regarding how a suited framework
can assist developers reduce the implementation time. If the framework reduces
implementation time, then it provides value to the developer. RQ1 has the fol-
lowing sub question:

RQ1.1 What functionality should be provided with FIGA?

In addition to time saved, providing necessary functionality is another way of
providing value to the developer. This means saving time not reinventing the
wheel, and the existing framework functionality becomes more stable and proven
in a variety of projects.

2.1.2 RQ2 - Supporting Different Application Types

The second research question regards what kind of application types that can
be made with FIGA. Event-driven and real-time applications are two genres
regarding application types, but application types can also concern educational
applications and video games. RQ2 has the two following sub questions:

RQ2.1 How easy is it to create an event-driven application with FIGA, and
what are the benefits of using FIGA?

RQ2.2 How easy is it to create a real-time application with FIGA, and what are
the benefits of using FIGA?

Three educational applications and a video game will be developed in order to
answer these questions. Several pedagogical applications will be developed based
on the premise that FIGA is well suited for collaborative applications. Addi-
tionally, our supervisor has experience in development of educational multimodal
application concepts. The video game will push FIGA to its limits, both in terms
of network and computational load.

2.1 Research Questions 11

2.1.3 RQ3 - Locating Performance Bottlenecks

The third research question concerns the performance of applications made with
FIGA. FIGA should be able to support both event-driven and real-time appli-
cations. A major concern regarding distributed systems is network latency. Dis-
tributed applications often require a very low network latency, especially video
games. One of the tasks will be to investigate if FIGA is suited for handling the
network traffic without degrading user satisfaction. RQ3 has the following sub
questions:

RQ3.1 How many users can applications made with FIGA handle?

RQ3.2 How will network latency affect the user experience?

Answers to these questions will be found by testing the applications in ex-
periments where qualitative methods will be used to document user satisfac-
tion.

2.1.4 RQ4 - Improving Usability

The fourth research question examines the usability aspects of applications devel-
oped with FIGA. This research question will give answers on how user friendly
these applications can be made and what developers must be aware of during
development. RQ4 has the following sub questions:

RQ4.1 Can FIGA applications reach the look and feel of native applications?

RQ4.2 How easy is it possible to make the setup and start using applications
developed with FIGA?

Feedback from the users by usability feedback forms will give insight to the user
experience and perspective. To find out how easy it is to setup and use FIGA
applications, two experiments in two different lectures will be performed and
evaluated.

2.1.5 RQ5 - Educational Applications and Learning Bene-
fits

The fifth and final research question will give answers on how the use of FIGA
is beneficial in developing educational applications with learning goals. Adding
a layer of social interaction brings new ways of interacting with each other. RQ5
has the following sub questions:

12 Chapter 2 Research Questions and Methods

RQ5.1 Which FIGA educational application concept returns highest perceived
learning benefits?

RQ5.2 Which FIGA educational application concept cause increased social in-
teraction?

RQ5.3 Which FIGA educational application concept aids a teacher in getting
feedback from the students?

The different sub questions all relate to the educational benefits of using a FIGA
application. The two first sub questions are viewed from the perspective of the
student, and the final one from the perspective of the teacher. These questions
will be answered based on feedback from experiments held in lectures, using
feedback forms to get the opinions of students. Interviews with the teacher after
the lectures will answer the final question.

2.2 Research Methods

This master thesis is heavily based upon a prior research project [32]. The prior
project was initiated to prepare for the master thesis, by researching existing
similar solutions to the one proposed and finding the most suited technology
components.

In literature study, four main approaches are discussed by Victor Basili [28].
These four approaches are the scientific, the engineering, the empirical, and
the mathematical method. Each of these uses different approaches to research
existing material. Of these four methods, the first three will be used in this
project.

The scientific method is a well-suited approach when trying to understand the
software process, product, people, and environment. The first step is to observe
the world in which the technology is to exist in. After observing the world
one propose a model or a theory of behaviour, which is measured and analyzed
further. A validation of the model or theory hypotheses is the last step. These
steps are repeated if possible.

The engineering method is a variation of the scientific approach, which assumes
already existing models of the software process, product, people, and environ-
ment. In order to improve the product being studied one modifies the model or
aspects of the model. Incrementally, one observes existing solutions and proposes
better solutions. This is done by building, developing, measuring, and analyzing.
This process is then repeated until no more improvements appear possible.

2.2 Research Methods 13

The empirical method is another alternative of the scientific approach. The first
step is to propose a new model that does not have to be based upon an existing
model. The new model will provide new effects of the process or product, effects
that are analyzed and used in order to improve the model further. Statistical and
qualitative methods are then developed, and these methods are applied to case
studies before measured and analyzed. The last step is to validate the model and
if possible repeat the procedure.

The first step in the research phase of this project is to collect previous knowledge
and experiences made by others in the field. A literature search will be performed
in order to find this data. There are several search engines that allows for finding
specific publications with valuable information and inspiration to this project,
like Google Scholar [7]. In addition, our supervisor recommends relevant articles
with similar traits to this project. The articles abstract will quickly give an
indication of the articles relevance, and the collected material will then go through
a literature study for further reading. The literature study will give insight into
different relevant technologies and to learn the experiences of previous work.
The study of other projects will give inspirations of what is possible to achieve
with the technology in terms of application concepts, in addition to technical
advice.

2.2.1 The Engineering Approach

The engineering method is used to build on existing solutions and learn from
their past experiences. The iterative nature of the engineering method is found
by rapid prototyping. Rapid prototyping is well suited to develop application
prototypes and discover required framework functionality. The prototypes in
this project will be developed with a specific use case in mind. Three prototypes
will be created to test FIGA applications in a classroom setting. In addition
to the three educational prototypes a video game will be developed to strain
the system to its limits, both in terms of graphical computations and network
load.

2.2.2 The Empirical Approach

The empirical method is used in proposing a new model to be further evaluated.
The concept of using educational web applications with a shared screen has unique
properties that will be evaluated through user experiences.

14 Chapter 2 Research Questions and Methods

Quantitative Methods

Two experiments will be organized to gather valuable data regarding the user
experience of the different applications and the underlying framework. The ex-
periments will be held at lectures taught by our supervisor and supplemented
the lectures with educational activities. After the different prototypes have been
tested, forms will be delivered to the participants. Each form consists of a System
Usability Scale (SUS), a technical consideration, and an application comparison
where the participant can give feedback on the different prototypes. The output
from these experiments determines the success of FIGA applications from a user
experience perspective.

Qualitative Methods

To collect the experiences from the view of the organizer of a class augmented
with educational FIGA applications, interviews will be planned to be held post-
experiment. These interviews will show how useful the organizer finds the appli-
cations, in addition to the level of preliminary work that is required to use the
applications. The organizer will be asked about the different exercises and con-
tent for the educational applications, and how they were planned. In addition to
the practical experiences, the organizer will be asked about the perceived class-
room response of using these applications. Finally, the organizer will be asked
about any recommended changes to the applications, in order to improve FIGA
and its applications.

Part II

Prestudy

Chapter 3

State of the Art

There is a wealth of existing concepts and prototypes with similar traits to FIGA.
The process of finding multimodel systems with a collaborational large screen is
done either through literature search or based on recommendations from our
supervisor, as described in Section 2.2. This chapter goes more into detail on
systems relevant to this project, before a summary on how they impacted the
project.

3.1 Multimodal Interactions

MobiToss: a novel gesture based interface for creating and sharing mobile multi-
media art on large public displays is a system that combines standard interaction
devices, interaction styles, and multimedia processing techniques into a novel
system for creating and sharing mobile multimedia art [45]. Interaction devices
are mobile phones, large public displays, and devices capable of displaying a web
page. In order to interact with the system, the user either uses an interface on
the device or moves the device in gestures. The user takes a photo or captures
a video with the phone and then “throws it” onto a large display by using a
throwing gesture, as illustrated in Figure 3.1. The image or video will then be
transferred onto the large display, where it can be manipulated by tilting the
phone in different directions.

The author of Flashlight interaction: a study on mobile phone interaction tech-
niques with large displays created a light-based interaction between mobile phones
and large screens by using the light from the mobile phones camera flash [46].

18 Chapter 3 State of the Art

Figure 3.1: Interaction with MobiToss

By placing a camera below the display to track the flashlight movements, the
system achieves communication with the display without any wireless connectiv-
ity from the users. Figure 3.2 shows an illustration of the flashlight interaction
system.

Figure 3.2: Flashlight interaction

Josh Software posted an article on their web page that addresses how to create
a real-time game using HTML5, WebSocket, Node.js, and Socket.IO [18]. They
wanted to launch a game on a common display in a web browser, control the game
from different browsers, ensure that no installation was required and measure the
latency. The common and user display is illustrated in Figure 3.3. The results for
latency and concurrency were acceptable. The worst-case scenario with latency
was found with Edge, with a latency of 200 ms. The game could easily scale to
hundreds of simultaneous users regarding concurrency.

Figure 3.4 shows the game architecture of a game called osmus [4]. osmus is a
browser-based multiplayer game created with the usage of HTML5 and Node.js.
It is a clone of another game called Osmos, but with multiplayer support [8].
osmus is created with distinct, loosely coupled components. The game uses a

3.1 Multimodal Interactions 19

Figure 3.3: Josh Software’s real-time game

shared game engine, which is a simple state machine whose primary function is
to compute the next game state.

Figure 3.4: Osmus’ game architecture

The Wii U is a video game console from Nintendo, released in November 2012
[14]. Its primary controller, the Wii U GamePad, features an embedded touch-
screen that can be used to supplement the main gameplay shown on the television,
as illustrated in Figure 3.5. While many of the other described systems are pro-
totypes or proposed concepts, the Wii U is a major investment by Nintendo.
Games played with the Wii U can be played only on the television, as a combi-
nation using both the embedded touchscreen and the television, or only on the
embedded touchscreen without the use of an external television.

20 Chapter 3 State of the Art

Figure 3.5: Nintendo Wii U console

3.2 Crowd Gaming

Techniques for Interactive Audience Participation presents a set of techniques
that enables members of an audience to participate in shared entertainment ex-
periences, either cooperatively or competitively [31]. The article discusses three
different techniques for participation, respectively leaning left and right in their
seats, batting a beach ball while its shadow is used as a pointing device, and aim-
ing laser pointers at the screen. One of the benefits of these techniques is that
they can all be implemented with inexpensive, off the shelf hardware. Figure 3.6
shows the interaction techniques where the audience leans left and right in their
seats for controlling the game.

The inspiration behind Techniques for Interactive Audience Participation was the
Cinematrix Interactive Entertainment System [40]. The Cinematrix Interactive
Entertainment System is an audience response system. Each audience member
is provided with a reflective device. This reflective device has a different color on

3.2 Crowd Gaming 21

Figure 3.6: The audience leans left and right to control the game

each side, green on one side and red on the other. The system emits light from
a spotlight that is reflected from the reflectors and recorded by a conventional
video camera. A computer receives the processed image, forms a map of the
audience and distinguishes the red from the green reflections. This gives the
audience members an opportunity to participate interactively in different kinds
of activities by displaying the red or the green side of their paddles.

Multi-player soccer and wireless embedded systems describes experiences from
developing a multiplayer video game on a large screen [29]. The system had
wireless communication between the embedded devices, and they had to devise
a communication protocol to handle the communication between players and the
game coordinator. The game coordinator polls each player for its move and waits
a given time interval for a response before proceeding to the next. A screenshot
from the developed game is illustrated in Figure 3.7.

MOOSES is developed at NTNU in collaboration with the company TellU, and
it is an acronym for “Multiplayer On One Screen Entertainment System” [24].
MOOSES is an entertainment system with focus on social interaction, and lets
several players play against each other by sharing a big screen in the same room.
This is illustrated in Figure 3.8. The user has to download a specific application

22 Chapter 3 State of the Art

Figure 3.7: Multiplayer soccer game

on a mobile phone to be able to interact with the system, and has to connect
to the system through wireless technologies such as either Bluetooth or Wi-Fi.
The mobile phone can then be used as a controller that gives the user feedback
through vibration, sound, and information on the mobile phone display.

Figure 3.8: MOOSES

Lecture Quiz is a multiplayer game concept that utilizes the infrastructure and
equipment available in auditoriums at universities, such as the teachers PC, a
projector, and the students’ PCs or mobile phones [26]. The game boasts two
different game modes that gives the students a series of questions they have to

3.3 Impact on FIGA 23

answer to the best of their abilities on their own PC or mobile phone. The re-
sults of the quiz are displayed using the projector and is visible for everyone in
the auditorium, as illustrated in Figure 3.9. Lecture Quiz received good reviews
from the students that tried the game, claiming it to increase learning and con-
centration during the lecture. The game is also claimed to be easy to integrate
with traditional lecture methods, as lecturers already use a PC combined with a
projector to show presentations.

Figure 3.9: Lecture Quiz

3.3 Impact on FIGA

FIGA has several requirements regarding platform independency, usability, and
connectivity. Josh Software’s real-time game, MOOSES, and Lecture Quiz were
the most relevant and insightful among the reviewed systems. The three systems
use mobile phones as controllers to interact with a common display. MOOSES

24 Chapter 3 State of the Art

and Lecture Quiz require that the user has installed specific software on the user
device, while Josh Software ensures that no installation is required. FIGA makes
the connection phase as easy as possible, without complicated installations and
configurations. Since FIGA is to be used to create different kinds of applications,
for instance video games and more educational applications, the project gained
inspiration from Lecture Quiz with regards to educational applications that can
improve learning.

In addition to these three systems, the Wii U shows that even the larger gaming
companies see the potential of the concept of sharing a screen while having a pri-
vate screen. Most of the existing systems used other types of network technologies
than Wi-Fi for communication between the different devices. The majority used
Bluetooth, while some tried new approaches like light-based interaction. FIGA
will use Wi-Fi, 3G, and Edge, or a network technology that allows HTTP transfer
through a web browser.

FIGA will draw inspiration from osmus’ game architecture, with distinct, loosely
coupled components and its overall architectural structure. This will particularly
be useful regarding real-time applications, using software architecture patterns
like model-view-controller and client-server. Using several software architecture
patterns will help FIGA become a more reliable framework.

Chapter 4

Technology

This chapter contains important information regarding hardware and software
relevant to FIGA. First, a summary of the most relevant hardware components
expected to be used with applications developed with FIGA. Second, a web de-
velopment explanation and the software components utilized during the project.
Third, a section that describes the application areas that will benefit from using
FIGA when creating interactive applications. Fourth and final, is a discussion on
the subject of native applications versus web applications.

4.1 Hardware

The three sub applications of a FIGA application have different hardware de-
mands. If it is a ServerApp instance, then the device is either a laptop or desktop
computer. If it is a UserApp instance, then it is a laptop, tablet, or smartphone.
If it is a GameWallApp instance, then it is either run on the ServerApp instance
running device or a separate device with good graphical and audio capabilities
such as a laptop or PC. While these are the most common occurences, other
combinations of supported hardware are possible.

In educational settings, the required hardware is often readily available. The ex-
periments described later in the report was conducted in the auditoriums at the
Norwegian University of Science and Technology (NTNU). In these auditoriums
there are projectors, sound speakers, and Wi-Fi access. This makes these audi-
toriums excellent experiment environments for technologically enhanced lectures.
The students that participated in the two experiments were mainly computer

26 Chapter 4 Technology

technology students, with everyone possessing smartphones or other hardware
capable of running the developed web applications.

4.1.1 ServerApp Hardware

The ServerApp instance is in most cases executed on a laptop or a PC. In the
case of educational application it is typically the teacher or professor, or a person
in charge, that brings along this device. The device is connected to a local
network either through a wire or wirelessly. If the same device is used to handle
the GameWallApp, then it should be connected to a larger screen such as a
projector or a large TV. The more powerful the hardware is on the device that
executes the ServerApp instance the better, as better hardware leads to increased
performance.

4.1.2 UserApp Hardware

While any device with a web browser can potentially be a UserApp instance,
the focus is on tablets and smartphones. Particularly smartphones, since they
are becoming more and more common and always accompany its owner. The
limitations of less powerful hardware and a smaller screen means reducing the
graphical complexity and the number of elements that is shown on the screen at
the same time. Owners of smartphones and tablets have accustomed to using
touch gestures to interact with the device. The developed applications should
take advantage of this interaction type in order to provide an experience similar
to that of native applications.

4.1.3 GameWallApp Hardware

The GameWallApp instance displays the large common screen in a web browser,
plays the relevant audio through speakers, and is the main source of attention to
everyone in the room. Each user will look and listen towards the GameWallView
and interact with it using their device. The device running the GameWallApp
instance needs to have the required graphical and audio capabilities in order to
provide a smooth audio and visual experience. The GameWallApp running device
can be the same device as the one executing the ServerApp, but the accumulated
workload of running both these instances should be taken into account.

4.2 Software 27

4.1.4 Development Environment

The development environment was limited and small in scale during the project.
The available devices were a 13” MacBook Pro, a 15” MacBook Pro, an iPhone 4S,
an iPad 2, and a Samsung Galaxy SII, connected as shown in Figure 4.1. These
devices used either wired or Wi-Fi connectivity to communicate with each other
during development, using in most cases their native web browser, respectively
Safari and Chrome. A wired connection is symbolized using a filled line, while
wireless connectivity is symbolized with a stippled line.

Figure 4.1: Test environment during application development

Despite small scale and limitations, the test environment was a good indication
of a real case scenario and setting. The specification for these devices can be
found in Appendix A.

4.2 Software

The primary success factors of creating a well-functioning framework is under-
standing its practical use, environment, and interactions with other existing soft-
ware components. Basing FIGA on web technology has several benefits, such as

28 Chapter 4 Technology

avioiding specific software constraints that many technological platforms require.
Examples of such constraints are creating applications for the iOS or Android
platform which require specific tools and programming languages.

4.2.1 Web Development

Web development is a broad term used for the work involved in developing a
web site. Web sites are primarily created for publication on the Internet, but
they can also be deployed in a private network. A web application is a web page
with layout and functionality resembling that of native applications running in
the operating system of the device. The complexity, scale, and scope of a web
application can vary from a static page to dynamic and interactive web pages.
It is therefore important to make FIGA dynamic and flexible, and not hinder
ambitious applications. The following sections describe the different tools of the
trade in the field of web development that is relevant for developing FIGA.

HTML5

HTML5 is the fifth revision and latest version of the HTML
and XHTML standard, and it is an abbreviation for Hyper
Text Markup Language [9]. A markup language is used for
structuring and representing content, in this case the World
Wide Web. HTML5 is also a collection of features, tech-
nologies, and APIs. It improves the HTML-standard by in-
cluding native support of multimedia-standards, partly by
adding new syntactical features. Some of the new features
are <video>, <audio>, <canvas>, <section>, <article>,
and <nav>. These elements make it easy to handle multi-

media and graphical content on the web. A basic HTML5 structure is illustrated
in Figure 4.2.

<video> and <audio> lets the users play video and audio in a web browser, and
<canvas> is used to draw computer graphics. These improvements, combined
with CSS and JavaScript, makes it possible to create large and complex web
applications. By adding new syntactical features, HTML5 improves the semantic
markup. Semantic markup means that the HTML is written in a way that gives
the site content specific meaning. Before HTML5, the semantic markup just told
the different browsers where the site content was. Now, it also gives some detailed
information about it.

4.2 Software 29

Figure 4.2: Basic HTML5 structure

To represent and interact with objects in HTML documents the developer can
take advantage of the Document Object Model (DOM) [5]. DOM is a cross-
platform and language-neutral interface for addressing and manipulating these
objects by using different methods. It can be used to dynamically access and
update the content, structure, and style of documents.

The application cache is another major HTML5 improvement that makes it well
suited for mobile web applications. Application cache lets the website store con-
tent, such as images and videos, locally on the device. This makes the site run
faster and smoother if the web page is highly dependent on larger data sets. The
combination of the application cache with other HTML5-related technologies, al-
lows a web application to run on the device without Internet connection. The web
application can cache pages in advance based on likeliness of the user entering
that page, which results in faster load times. If the application is a video game it
can cache and store assets that are needed in advance, for example a later level
in the game.

HTML5 is designed to be more secure and reliable from both developers and
users point of view. Web applications can not read or write files to the user’s
hard drive. Nor can they read or write data from other web applications or
domains. This prohibit that malware is installed on the device.

30 Chapter 4 Technology

Cascading Style Sheets

Cascading Style Sheets (CSS) is the most common supplement to HTML [2].
CSS makes it possible to style web pages through simple script-like syntax. This
makes customization of the visual representation of the web page easier and more
flexible. The core functionality of CSS is supported by all web browsers, with
some exceptions regarding newer, experimental features.

Responsive web design is the philosophy of adjusting the user interface based on
different viewing devices. It is a web design approach aimed at implementing
web sites to provide an optimal viewing experience across a wide range of de-
vices. The combination of HTML and CSS makes it possible to define different
styles based on device, display size, and screen resolution. Content that is less
important when the display size or screen resolution is reduced can be hidden or
shown differently. Figure 4.3 illustrates the same website with responsive design,
displayed on different devices.

Figure 4.3: A web site with responsive design

4.2 Software 31

JavaScript

JavaScript is an interpreted computer programming lan-
guage integrated in web browsers [33]. JavaScript is pri-
marily used as a client-side scripting language embedded in
web browsers for helping developers with tools necessary to
interact with the user, control the browser, alter the doc-
ument content, create web page animation, or handle user
interaction with more control. Examples of JavaScript us-
age are web pages where lists unfold smoothly, the location

of the cursor alter the layout of the web page, or interactive content based on
user input.

A major benefit with JavaScript is the large selection of libraries. These libraries
typically contain utility functions or functionality tailored towards a specific prob-
lem domain. A popular JavaScript library in use today is the jQuery library
[12, 23]. jQuery is a fast JavaScript library that simplifies and ease the code
traversal of HTML documents, handle events, and performs animations [10]. It
is designed to simplify the client-side scripting of HTML and is frequently used
for rapid web development.

There exists a various amount of JavaScript rendering libraries for drawing com-
puter graphics. Rendering is the process of drawing computer graphics on the
screen through the use of various algorithms. While it is possible to use HTML5
to handle all computer graphics rendering, the JavaScript graphics libraries will
help with using best practices. Paper.js and D3.js are two examples of JavaScript
rendering libraries.

Paper.js is an open source, vector graphics framework that runs on top of the
HTML5 canvas [17]. The library simplifies the rendering process of simple graphi-
cal primitives such as lines, squares, and images. Figure 4.4 illustrates an example
with use of Paper.js.

D3.js is a data-driven visualization JavaScript library [3]. It allows the developer
to bind arbitrary data to a DOM, and then apply data-driven transformations to
the document. An example could be to generate an HTML table from an array
of numbers, or to draw complicated graphs and charts.

Some JavaScript libraries make it easier to integrate JavaScript with other web
development technologies. Several libraries also include code to detect differ-
ences between runtime environments to provide tailor made services for different
platforms.

32 Chapter 4 Technology

Figure 4.4: Paper.js example of bouncing balls

4.2.2 Distributed Systems

Applications created with FIGA are distributed systems. A distributed system
consists of multiple devices that communicate by sending messages through a
network [30]. This network can either be a local network, or the devices can
be geographically separated. Developing distributed systems is a complicated
affair with synchronization issues and error prone messaging. These underlying
problems quickly impact the stability of the application. If the latency, the time it
takes for a message to travel from one device to another, becomes too high then
the user can perceive the application as unresponsive. This hurts the overall
usability and user experience. While physical limitations cannot be avoided, the
user interface can be designed to give the user a clear indication of system status.
Applications, such as video games, have strict requirements regarding low latency
in order for the system to be perceived as responsive.

Traditional HTTP connections work in the following manner. A user requests a
web page through a web browser, by typing the address in the URL field. This
sends an HTTP request to a web server that listens for incoming connections,
which replies to the client with the respective web page data. This type of
communication is called one-way communication. The user requests a service
from the server, and the server responds with the desired response. Figure 4.5
illustres a one-way communication.

There is no concurrent connection over time between the client and the server
in one-way communication. Additionally, the server cannot transfer data to a
client without a prior request from the client. This means that the client needs
to request updates actively from the server in intervals if it is to keep up-to-date
with a server that contains fast changing information. This process is called
polling, or long polling, and can be implemented by the use of jQuery [41]. There
are two main problems with this technique. First, the server cannot send messages

4.2 Software 33

Figure 4.5: One-way communication

to the clients since it does not have a reference to them. Second, this technique
scales poorly. When the number of connections increases, the server will receive
more messages than it can process. This creates delays in responses or in worst
case dropped messages.

If there is a need for a two-way communication, traditional polling is not enough.
In a two-way communication scheme both server and client can initiate communi-
cation. Two-way communication is needed in most applications where the server
needs to be able to actively send information to the clients. FIGA must support
this communication scheme, and it must work through a web browser. A two-way
communication system can be seen in Figure 4.6, where both participants can
send and receive data.

Figure 4.6: Two-way communication

Both Node.js and Socket.IO support the two-way communication scheme using
TCP for guaranteed delivery. In order to support this communication scheme
and supporting every modern web browser, Node.js and Socket.IO was chosen as

34 Chapter 4 Technology

the communication modules.

4.2.3 Node.js and Socket.IO

Node.js is a platform for building scalable network applications [15]. It imports
a JavaScript file when executed which setups the Node.js server according to the
contents of the file. Web applications are well supported by Node.js, where it is
commonly used as a web hosting service. Only a few lines of code is required to
initialize a web server, as can be seen in Listing 4.1.

1 var http = r equ i r e (" http ") ;
2 http . c r e a t eS e rv e r (func t i on (request , r e sponse) {
3 r eque s t . on ("end" , func t i on () {
4 re sponse . writeHead (200 , {
5 ’ Content−Type ’ : ’ t ex t / p l a i n ’
6 }) ;
7 re sponse . end (’ He l l o HTTP! ’) ;
8 }) ;
9 }) . l i s t e n (8080) ;

Listing 4.1: A Node.js example HTTP server

Socket.IO gives developers great compatibility and networking control, by a
framework which maintains persistent connections [19]. It makes it possible to
connect to a Node.js server through a web browser by using JavaScript. Criti-
cal features such as setting up the connection, timeouts, and closing down the
connection is handled by Socket.IO. It follows the event standard from Node.js,
making it easy to integrate them with each other.

The library Socket.IO is used in order to create two-way communication between
a Node.js server and a web application on a client device. A socket on both the
server-side and the client-side handles the low-level communication. A socket is a
controller that parses and sends messages through a network using standardized
protocols. Node.js uses TCP for its networking protocol.

Node.js is built around events. An event is a descriptive character string that is
connected to a function. If a defined event is received, then the corresponding
function is executed. This makes Node.js event-driven in nature, and the events
can have a payload. The payload could be, for instance, state information sent
from the server to a client.

Another characteristic property of Node.js is channels. Channels are used for
categorizing connections to the server application. This makes it easier to send
messages to a specific group of connections, all in one function call. This makes

4.3 Application Types 35

the source code cleaner. The use of channels will be used when differentiating
UserApps from GameWallApps.

Several current web services uses Node.js such as Cloud9, nodejitsu, Transloadit,
eBay, and LinkedIn [15]. There exists a wealth of APIs developed for Node.js
that makes it easy to integrate it with other platforms such as Google services
and PayPal.

Socket.IO claims wide support with almost every browser with backward com-
patibility with older versions. In time of writing the browser support is Internet
Explorer 5.5+, Safari 3+, Google Chrome 4+, Firefox 3+, and Opera 10.61+ on
the desktop, as well as Safari on iPhone and iPad, Android WebKit and WebOs
WebKit on the mobile platform [19]. Socket.IO has good performance, minimal
overhead, lean code base and scales well.

4.2.4 Browser Support

One of the most frustrating aspects of web development is the lack of standards
within web browsers concerning code interpretation. Each web browser has an
independent implementation of HTML5, CSS, and JavaScript, meaning that sev-
eral design considerations must be made. Styling and design is often the main
concern, where the look and feel of the web site differs from browser to browser.
Other differences becomes evident with computer graphics, where some browsers
perform much better than others in terms of how fast they can draw graphical
primitives.

These differences mean extra implementation work with corresponding testing.
Some functionality might be discarded by taking the middle road, where some
functionality support might be missing in some browsers. These differences have
been a key factor in deciding the best suited software with platform independency
being top priority.

4.3 Application Types

FIGA enables developers to create interactive applications with various underly-
ing mechanisms and target audience. Two of the most central application types
that benefit from FIGA are entertainment and educational software.

Entertainment software is primarily associated with video games. A video game
is an electronic game with visual feedback on a device along with interaction in-
volvement through a user interface. While video games started with development

36 Chapter 4 Technology

teams of small sizes, today the video game industry is a billion dollar business
and it is common to find development teams with over a hundred people in the
largest game projects.

Examples of popular video game platforms are Sony’s PlayStation consoles and
Microsoft’s Xbox consoles [20, 13]. A video game console is a dedicated hardware
device optimized for running game software. Multiple people can play together
with their own controller gathered in front of a TV. The similarities between
this and the capabilities of FIGA gave valuable input on game expectations. In
this case the GameWallApp represents the television, the UserApp represents
the controller, and the ServerApp represents the game console. By implement-
ing and developing different views for the UserApp and GameWallApp, and let
the ServerApp compute the game logic, one can converge with the same user
experience as playing a video game on a dedicated video game console.

Computer software with learning aspects is categorized under the term educa-
tional software. Its primary purpose is teaching and self-learning, often using
elements from video game such as gratification to reward the player. Gratifica-
tion is used to show the player that his or her actions are correct by awarding
the player points, gold stars, or other measurements of achievement. Educational
software can be used as a classroom aid, which is used for helping the students get
a better and clearer understanding of the subject and learn more than without
the aid.

Recent experiences show that video games and other educational software can
be effective and compelling context for learning [37, 43]. This has resulted in
video games becoming more and more used within schools over the last couple of
years to teach children and students various subjects. Using video games within a
classroom can be beneficial for academic achievement, motivation, and classroom
dynamic [44].

4.4 Native Versus Web Applications

The idea of creating fully-fledged applications using web technology was a radical
notion only a few years ago. The emergence of successful web applications such
as Facebook and Twitter, in addition to the cloud computing web technology, the
pure web application is now more feasible than ever. One of the major setbacks
of developing web applications has been available resources and performance.
A advantage with native applications is the ability to access lower level hard-
ware acceleration. Native applications use optimized programming languages
that gives better performance, better and larger memory allocation, optimized

4.4 Native Versus Web Applications 37

input handling, access to integrated hardware such as camera and gyroscopes,
and GPU-access. This performance gap is slowly closing with web browser de-
velopers catching up with the performance of native application by optimizing
their virtual environments for code interpretations and interfaces with device
GPUs.

An innate property of web applications is making device location irrelevant. By
making it possible to access the same data regardless of device makes it possible
to use different devices and be at different locations. Cloud computing makes it
possible for devices with reduced computational power to tap into the capabilities
of a server farm. Native mobile applications may also utilize this advantage, which
SoundHound is a good example of. SoundHound uses the power of an external
server farm to match a recorded sound against a database to determine which
song is currently playing [21]. Both the storage and computational limitations of
a mobile device is thereby solved by the use of external power.

Web applications have the benefit of not requiring conventional installation pro-
cedures. Where native applications must be downloaded and installed, web ap-
plications are executed in the web browser. It still needs to download data, but
this is handled automatically by the browser, hidden from the user. This means
that the developers need to be aware of what files are to be transferred to a con-
necting client and the file size. Heavy use of large image files makes the download
process long and increases the danger of overloading the server if too many clients
connect. The client will always access the newest version of the web application
each time the user accesses the web page, instead of requiring the user to manu-
ally update the application. Fortunately, there exist several solutions of reducing
the web server load. One example is to move the computations from the server
to the client, using different scripting languages. However, the developer has to
keep in mind that client-side scripting can present security risks and the need for
additional scripting libraries.

It is possible to create a hybrid application, using a native application shell around
an integrated web view. This makes it possible to access hardware otherwise not
accessible. Pure native applications can communicate with a Node.js server. The
usage of Node.js and Socket.IO makes it possible to create native applications
that can interact with the web server along side with traditional web applica-
tions. However, this requires that the developer holds extra knowledge and other
programming language experience.

Considering the pros and cons mentioned above, it is easy to understand the
motivation for developing a framework that tries to use all of these advantages
to their full extent. The applications developed and documented in Chapter 7
describes the experiences of developing web applications that tries to reach the

38 Chapter 4 Technology

prowess of native applications.

Part III

Framework for Interactive
GameWall Applications

Chapter 5

Requirements

Requirements are used in order to evaluate the success of a project. This chapter
presents the functional and quality requirements for FIGA. These will be used
for measuring how valuable FIGA is to developers.

5.1 Functional Requirements

The functional requirements (FR) of a system is a set of instructions reflecting
the functionality which must be implemented. The functional requirements listed
in Table 5.1 is prioritized in the following manner; “Requirement” (X, Y). X is a
placeholder for the importance of the requirement and is classified as either low,
medium, or high. In addition to importance, it is common to define the expected
implementation difficulty of the requirements. This is done similarly to impor-
tance, using low, medium, and high. Y represents the expected implementation
difficulty of the requirement.

In order to provide the reader with clear definitions, this section describes the
functional requirements in a closer detail.

FR1 Supporting shared screen applications

• The most important functional requirement is that the intrinsic value
of FIGA is as high as possible. In order for the project to be considered
a success, FIGA must allow for shared multimodal web applications.

42 Chapter 5 Requirements

Description
FR1 FIGA must support development of applications with multiple

users sharing a large common screen (H, H)
FR2 FIGA UserApps and GameWallApps must be executed in a

web browser (H, M)
FR3 FIGA must be modular and enable integration of external com-

ponents (M, L)
FR4 FIGA must simplify the low-level networking process for the

developer (M, M)
FR5 FIGA must support the development of event-driven and real-

time applications (M, M)

Table 5.1: The functional requirements

This means that a FIGA application must support one ServerApp, one
GameWallApp, and at least one UserApp.

FR2 Web browser support

• The UserApp and GameWallApp are web applications that must be
supported in web browsers. There must be no additional required
installations of native applications in order to execute the client-side
web application.

FR3 Modularity

• The framework components of FIGA must be able to integrate with
other web technology. Third-party libraries that are supported in a
web browser must be importable in a FIGA application.

FR4 Network simplifications

• The networking process of web applications are controllable on a low-
level scale. FIGA must supply a layer of abstraction on top of the
low-level, in order to simplify the messaging system.

FR5 Application types

• Two major types of applications must be implementable using FIGA,
respectively event-driven and real-time applications.

5.2 Quality Requirements 43

Description
NFR1 FIGA should provide persistent connections to at least 85%

UserApps and GameWallApps (M)
NFR2 FIGA should provide a password protection system that pre-

vents at least 95% of intrusion attempts (M)
NFR3 At least 50% of users should experience the look and feel of a

native application with a FIGA application (L)
NFR4 At least 80% of users should experience FIGA applications as

responsive (H)
NFR5 A FIGA ServerApp should be executable on Windows, OSX,

and Linux (H)

Table 5.2: The non-functional requirements

5.2 Quality Requirements

Quality requirements are also known as non-functional requirements (NFR). This
project used the ISO/IEC 25051 as a reference to determine the quality re-
quirements. ISO/IEC 25051 is an international standard for the evaluation of
software quality [38]. Figure 5.1 shows an illustration of the ISO/IEC 25051
standard.

Figure 5.1: ISO/IEC 25051

Quality requirements describe system properties which exerts quality. Quality
means delivering an expected behavior to the target group. The quality require-
ments listed in Table 5.2 is prioritized by the following manner; “Requirement”
(X). X is a placeholder for the importance of the requirement for the system and
is classified as either low, medium, or high.

In order to provide the reader with clear definitions, this section describes the
non-functional requirements in a closer detail.

44 Chapter 5 Requirements

NFR1 Persistent connections

• Connections between a ServerApp and multiple UserApps and Game-
WallApps are fragile. In order to be experienced as a stable and quality
service, the connectivity between network modules must not be broken
by web pages being refreshed or messages delayed.

NFR2 Password protection

• In order to protect administrative functionality from users with ma-
licious intent, this functionality should be password protected. FIGA
should provide a simple password protection system to deter the ma-
jority of unauthorized accesses.

NFR3 Look and feel

• The FIGA applications should be experienced as close to the look and
feel of native applications.

NFR4 Responsiveness

• Responsive applications exert quality and insures the user that the ap-
plication is reacting to the commands it receives as quickly as possible.
If applications are perceived as unresponsive, the user experience will
be degraded.

NFR5 Platform support

• The ServerApp should be executable on as many platforms as pos-
sible. The Windows platform (XP, Vista, 7), OSX (Leopard, Snow
Leopard, Lion), and the most popular Linux distros (Ubuntu and De-
bian) should be supported as a minimum.

Chapter 6

Architecture

The development cycle of the architecture was a continuous process. Finding
needed features was done through the implementation of several prototypes in
search of general functionality needed across different applications. Features and
functionality were expanded upon discovery. The architecture provides an ap-
plication foundation to build upon, which is easy to use, intuitive, and architec-
turally sound. The performance of the application needs to take into account
if the underlying framework limits the applications potential. To ensure a wide
support of different applications, from real-time to event-driven, FIGA was de-
veloped with a major focus on flexibility and modifiability.

This chapter is written with a technical point of view. Some readers might find
the chapter too detailed and beyond their scope of interest. The chapter concludes
with an example of how to create a basic “Hello World” application, to sum up
how easy it is to develop with FIGA and its features.

6.1 Architectural Components

A FIGA application consists of three sub applications, namely ServerApp, Game-
WallApp, and UserApp. Each of these requires different functionality from a
framework. This led to the separation of FIGA into three framework modules,
respectively FIGAServer, FIGAUser, and FIGAGameWall.

A typical FIGA application is described in the following manner. A ServerApp
holds the current state of the application and calculates logic. Different devices

46 Chapter 6 Architecture

with different views, in most cases GameWallApps and UserApps, are connected
to the ServerApp. Their task is to display the current state of the application,
or to manipulate it as desired.

A major architectural difference is found between FIGAServer and the two other
framework modules. FIGAServer is focused on the server-side role of the ap-
plication, while FIGAUser and FIGAGameWall are focused on the client-side.
Figure 6.1 shows how the different sub applications are dependent on different
framework modules.

Figure 6.1: Architectural components with their respective framework dependencies

These three framework modules are written in the JavaScript programming lan-
guage and will be either included as utility functions, as for both FIGAUser and
FIGAGameWall, or be used in an inheritance model, as for the FIGAServer. Util-
ity functions are functions created using the functional programming paradigm
[47]. They treat the functions in a mathematical sense where identical input gives
the same output regardless of state. It is easy to include the framework modules

6.1 Architectural Components 47

and integrate them with different existing libraries.

6.1.1 ServerApp

ServerApp focuses on the server-side of the application. Figure 6.2 presents the
ServerApp component, and its relations with FIGAServer. An application built
upon FIGA creates application specific logic that interacts with FIGAServer in
order to perform communication with UserApps and GameWallApps.

Figure 6.2: ServerApp component

FIGAServer

Applications using FIGA implements an underlying server-client network model,
where FIGAServer provides the server-side functionality required. This frame-
work module contains the necessary components, such as Node.js, for server-
side networking and client session control. FIGAServer was implemented using
JavaScript and an overview of the Unified Model Language (UML) class dia-
gram can be seen in Table 6.1. UML 2.0 is a standardized modeling language for
creating diagrams in the field of software engineering [35].

48 Chapter 6 Architecture

FIGAServer

port : integer
socketBindings : array
storeOldConnections : bool
connections : object
init() : void
setPort(newPort) : void
addBinding(event, func) : void
addChannelBinding(event, channel, func) : void
bindSocket(socket, channel) : void
sendDataToChannel(event, data, channel) : void
sendEventToSocket(socket, event) : void
sendDataToSocket(socket, event, data) : void
addOldConnection(socket) : void
reSyncSocket(socket, oldSocket) : void
addUserApp(userApp) : void
removeUserApp(userApp) : void
getUserAppsConnected() : array
addGameWallApp(gameWallApp) : void
removeGameWallApp(gameWallApp) : void
getGameWallAppsConnected() : array
dataObjectIsEmpty(object) : boolean

Table 6.1: FIGAServer class diagram

Every application that needs the functionality of a FIGAServer must import it
and create a class that inherits from FIGAServer class. This gives the developer
access to FIGAServer functionality through the use of inheritance.

The following paragraphs describe the different attributes and functions con-
tained in FIGAServer. These form the functionality that can be used by appli-
cations that extends the framework.

FIGAServer Attributes

FIGAServer contains the following attributes that an application inherits by using
the framework. The attributes can be seen in Table 6.1.

port - The network port the ServerApp listens for incoming connections.
Must be available in order for the ServerApp to establish connections.

6.1 Architectural Components 49

socketBindings - An array containing all of the different bindings for
both UserApp and GameWallApp sockets. These bindings executes given
functions when receiving specific events.

storeOldConnections - A boolean value that makes the ServerApp store
connection information if a connection is ended, in case it will reconnect
shortly after.

connections - An object containing three arrays, respectively userApps,
gameWallApps, and oldConnections. userApps contains all connected User-
App sockets. gameWallApps contains all connected GameWallApp sockets.
oldConnections contains all recently disconnected sockets along with their
previous state information.

FIGAServer Functions

FIGAServer contains a series of functions that is used to maintain connections,
send messages, and other utility functionality. The different functions can be
seen in Table 6.1.

init - Starts up the ServerApp. Must be called from an application using
the FIGAServer.

setPort - Used to set the port attribute. Must be called before init in
order for the FIGAServer to use the port number.

addBinding - Adds a binding to all incoming connections. If a connection
sends a message with the bound event, then the corresponding function will
be executed.

addChannelBinding - Adds a binding similar to addBinding, but to a
specific channel, such as UserApp or GameWallApp channels.

bindSocket - When a new socket connects this function will be called. It
traverses the bindings in the socketBindings array and binds functions to
the socket if the socket is of correct type.

sendDataToChannel - Sends a message to a channel with an event, pay-
load, and a channel. Makes it possible to send messages only to a specific
channel, such as UserApp or GameWallApp channels.

sendEventToSocket - Sends an event to a specific socket. Used in situa-
tions where an event without a payload is enough.

sendDataToSocket - Sends a message to a specific socket with an event,
containing a payload.

50 Chapter 6 Architecture

addOldConnection - Adds a disconnecting socket to the oldConnections
array for later reference.

reSyncSocket - If a socket reconnects and a matching old connection is
found in the oldConnections array, it will copy the old socket state data to
insure persistent information.

addUserApp - Adds the connecting socket to the userApps array.

removeUserApp - Removes the socket from the userApps array, if found.

getUserAppsConnected - Returns the userApps array.

addGameWallApp - Adds the connecting socket to the gamewallApps
array.

removeGameWallApp - Removes the socket from the gamewallApps ar-
ray, if found.

getGameWallAppsConnected - Returns the gamewallApps array.

dataObjectIsEmpty - Utility function used to determine if a socket con-
tains valuable state information to store, to insure persistent connections.

Persistent Connections

FIGA supports persistent connections to UserApps and GameWallApps. If a user
refreshes the web page or loads another web page using the same device, then
developers might wish that session relevant data persists. Node.js automatically
closes the connection between a ServerApp and a UserApp or a GameWallApp if
a user refreshes the web page, but FIGA has underlying functionality to handle
such events. FIGA gives the developer power to decide if this functionality is
wanted in the application, since session control is not always needed.

Security

If an application requires web applications containing a control panel or admin-
istrative functionality, then a security system should be available for the sake of
integrity. If the administrative web page is displayed on a large screen, it takes no
more than a watchful eye to see the URL of the web page and malicious users can
try to log in with the same administrative rights. A password protection system
will protect the system by requiring a password to authorize the user. FIGA
solves this problem by storing a text file on the ServerApp hosting device with a

6.1 Architectural Components 51

password. This means that the file containing the password is only accessible on
the ServerApp device.

6.1.2 UserApp

UserApp focuses on the client-side of the application. The relations between
UserApp and FIGAUser can be seen in Figure 6.3, where the functionality of the
FIGAUser provides connectivity with the ServerApp.

Figure 6.3: UserApp component

FIGAUser

While FIGAServer provides server-side functionality, FIGAUser handles the client-
side functionality. FIGAUser gives the developer access to a network socket for
communication with the ServerApp. While FIGAUser is code-wise independent
from FIGAServer, the message events might not. Table 6.2 shows an UML class
diagram of the implemented FIGAUser.

FIGAUser Attributes

The attributes are collected from Table 6.2.

52 Chapter 6 Architecture

FIGAUser

socket : object
addDefaultUserAppBindings() : void
addBinding(event, func) : void
sendEventToServer(event) : void
sendDataToServer(event, data) : void
connectToLocalServer() : void
connectToServer(address) : void

Table 6.2: FIGAUser class diagram

socket - An object used for sending and receiving messages to and from
the ServerApp.

FIGAUser Functions

The following functions can be seen in Table 6.2.

addDefaultUserAppBindings - Binds the default events for UserApps.

addBinding - Specifies a binding for the socket with a custom event and
a related function.

sendEventToServer - Sends an event to the ServerApp.

sendDataToServer - Sends an event with a payload to the ServerApp.

connectToLocalServer - Makes the socket connect to the ServerApp,
assuming the location of the UserApp files is hosted by the same device
that runs the ServerApp.

connectToServer - Makes the socket connect to the ServerApp with a
specific IP address.

6.1.3 GameWallApp

Similar to the UserApp, the GameWallApp focuses on the client-side of the ap-
plication. Since the GameWallApp is responsible for the large common display
of a FIGA application, its main task is to display the current state of the appli-
cation. Figure 6.4 presents the GameWallApp component, and how the use of
FIGAGameWall makes it possible to send messages to the ServerApp.

6.1 Architectural Components 53

Figure 6.4: GameWallApp component

FIGAGameWall

FIGAGameWall provides similar functionality to the developer as FIGAUser. It
gives developers access to a network socket that can send and receive messages to
and from the ServerApp. Table 6.3 describes the implemented FIGAGameWall
using an UML class diagram.

FIGAGameWall

socket : object
addDefaultGameWallBindings() : void
addBinding(event, func) : void
sendEventToServer(event) : void
sendDataToServer(event, data) : void
connectToLocalServer() : void
connectToServer(address) : void

Table 6.3: FIGAGameWall class diagram

54 Chapter 6 Architecture

FIGAGameWall Attributes

The attributes are collected from Table 6.3.

socket - An object used for sending and receiving messages to and from
the ServerApp.

FIGAGameWall Functions

The different functions are collected from Table 6.2.

addDefaultGameWallBindings - Binds the default events for Game-
WallApps.

addBinding - Specifies a binding for the socket with a custom event and
a related function.

sendEventToServer - Sends an event to the server.

sendDataToServer - Sends an event with a payload to the server.

connectToLocalServer - Makes the socket connect to the ServerApp,
assuming the location of the UserApp files is hosted by the same device
that runs the ServerApp.

connectToServer - Makes the socket connect to the ServerApp with a
specific IP address.

6.2 Physical View

To ease the understanding of how the different components are connected Philippe
Kruchten designed a view model named 4+1 view model [1]. The 4+1 view
model specifies how software architecture can be described using five different,
but related, viewpoints. These viewpoints represent the perspective of the system
stakeholders. The system stakeholders are people, groups, or entities, which have
an interest in or concerns about the realisation of the architecture.

One of the views in the 4+1 view model, the physical view, describes software
onto hardware mapping. The view depicts the system from a system engineers
point of view. Figure 6.5 presents a physical view diagram of a typical use case
scenario of a FIGA application.

Figure 6.5 contains three nodes, each representing a device. The three devices
in this case is a smartphone, a tablet, and a PC. Both the smartphone and

6.2 Physical View 55

Figure 6.5: A use case scenario of a FIGA application presented with a physical view

tablet runs a UserApp, while the PC runs both ServerApp and GameWallApp
at the same time. This scenario is related to an arbitrary lecture, where the
teacher brings a laptop to the classroom and uses it with a projector during
the lecture. The teacher starts the ServerApp on the laptop, and opens a web
browser with a GameWallApp instance to be shown with the projector. The
students participating the lecture use their smartphones and tablets to interact
with the GameWallApp through a UserApp.

Another typical usage scenario of a FIGA application would be to have a ded-
icated computer only running a ServerApp instance. This will distribute the
workload over several devices and increase individual performance. This scenario
requires an extra device running the GameWallApp, but otherwise the behaviour
is the same as the previously described scenario. Figure 6.6 illustrates the second
use case scenario.

56 Chapter 6 Architecture

Figure 6.6: A second use case scenario of a FIGA application illustrated with a physical
view

6.3 Sequence Diagrams

An UML sequence diagram is an interaction diagram that illustrates how different
processes interact with each other and in what order [27].

Figure 6.7 illustrates the connection phase of an application, when a UserApp
connects to a ServerApp. The ServerApp receives a connection request from a
UserApp. It responds by sending a connection response back to the UserApp
and updates its state. The UserApp responds by sending a verification message
back to the ServerApp, making the ServerApp add the respective bindings for
UserApps. The connection phase is now done and both ServerApp and UserApp
is ready for subsequent messaging.

Another common sequential pattern is when a UserApp triggers an event on the
ServerApp by sending a message. The message is sent to the ServerApp that
updates its own state in accordance to the event. After the internal update the
new state is broadcasted to every connected GameWallApp. Figure 6.8 presents

6.3 Sequence Diagrams 57

Figure 6.7: A UserApp connects to the ServerApp

the sequence diagram when a ServerApp broadcasts a message from a UserApp
to every GameWallApp.

Figure 6.8: A UserApp sends a message to the ServerApp, which broadcasts it to all
GameWallApps

58 Chapter 6 Architecture

6.4 Architectural Limitations

Every architectural design and pattern must be chosen carefully. By standard-
izing parts of the architecture and using external libraries, it is easy to create
architectural drift or performance bottlenecks. The goal was to create a frame-
work that has a net gain in value, if value was measured by helpful functionality
coupled with reduced development time.

The network components of FIGA are heavily based on Node.js and Socket.IO.
Node.js and Socket.IO use TCP sockets for message transmission, with the JSON
format. This gives extra overhead and functionality that might not always be
wanted. Especially in cases where low-level control is paramount, and the per-
formance of the system is dependent on fast messaging without the need for the
extra functionality offered by the TCP standard. A real-time ServerApp sends
messages to each GameWallApps with updates in intervals. Since this informa-
tion is updated 30 times every second, a late arriving packet is discarded rather
than stalling the application waiting for the late packet.

Since FIGA applications are created using HTML, it is difficult to forbid de-
velopers of using additional JavaScript libraries. Contrary, it is much better to
encourage developers to use existing libraries than to use time developing al-
ready existing solutions. However, by using existing JavaScript libraries one also
inherits its problems and limitations. Each external library should therefore be
closely inspected before integration. The effect and influence of these limitations
on the entire system itself is application dependent and often hard to measure.
The usage of several JavaScript libraries means more dependencies. This could
affect different aspects, like modifiability and scalability, of the developed appli-
cation.

A FIGA application uses the client-server pattern, making the ServerApp a single
point of failure. If the ServerApp crashes or looses its connection to the network,
then the entire FIGA application will collapse. This is an issue that needs to
be taken into account when designing applications, especially if there is sensitive
data that needs to be stored across sessions. In addition to a single point of
failure, using only one server might result in an overload of user requests. In
the case of a web server, every file needed to display a web page is transmitted
to the connecting client. The server might be overloaded by requests if several
devices connect simultaneously. One solution of resolving this problem is to keep
the files that are required at the smallest size possible, which results in less data
transmission. Another solution is to import the files from other server hosting
locations, lessening the load on the server.

A web application differs from a static web page in that it actively execute code

6.5 Creating a “Hello World” Application 59

and logic. To insure consistency, the server usually handles logic affecting data
that should be identical across different connected devices. The computational
load can for instance be calculating the application logic before the result is
broadcasted to every connected client. The server needs to be able to calculate
this without performance loss or else the packets will be delayed to all connected
devices, thus hurting the performance of the entire system. To lessen the load
on the server, client-side scripting is used to compute logic that can locally differ
from other connected clients.

6.5 Creating a “Hello World” Application

To demonstrate how easy it is to create a FIGA application this section will
describe how to implement a “Hello World” application. “Hello World” applica-
tions are often the first application programmers create when starting out with a
new programming language or system. The application is simple, as it only dis-
plays the text “Hello World” and then ends. This described example application
will behave similarly, only with barebone connectivity between a ServerApp, a
UserApp, and a GameWallApp.

6.5.1 Preliminary Work

The first task that has to be done is creating a folder where the respective files can
be created. At a minimum, the files that needs to be created and implemented are
UserApp.html, UserApp.js, GameWallApp.html, GameWallApp.js, ServerApp.js,
FIGAServer.js, FIGAUser.js, and FIGAGameWall.js. The last three JavaScript
files, FIGAServer.js, FIGAUser.js, and FIGAGameWall.js, is provided by FIGA
and needs no further work from the developers.

After the folder is created in the desired location, Node.js needs to be installed
in order to start the ServerApp. There are several different ways of installing
Node.js, depending on the device platform. Windows, OSX, and most Linux
distros makes it possible to download packages through the terminal or command
line. Windows and OSX have ready packages that can be installed using the
native operating system installer wizards. Further information on how to install
Node.js can be found on their web site [15].

In order for the system to offer the functionality of Socket.IO, Node.js needs
additional modules downloaded. It is important that the current directory is the
root directory of the ServerApp source files, in order for the installation to be

60 Chapter 6 Architecture

successful. Further information on how to install Socket.IO can be found on their
web site [19].

6.5.2 Developing the ServerApp

The following section describes the implementation details of creating the “Hello
World” ServerApp. The FIGAServer.js file is imported in order for the applica-
tion to extend FIGAServer containing the before mentioned functionality needed.
By using the object-oriented programming paradigm the functionality is extended
from the GameWallServer class located in the file FIGAServer.js. In JavaScript
object-oriented programming this is done through the use of prototyping. Proto-
typing defines inherited attributes and functions to the application specific class.
The required lines of code for the ServerApp can be seen in Listing 6.1.

1 var Framework = r equ i r e (" . . / Framework/FIGAServer . j s ") ;
2

3 f unc t i on HelloWorldApp () {
4 t h i s . i n i t = func t i on () {
5 HelloWorldApp . prototype . i n i t (__dirname) ;
6 }
7 }
8

9 HelloWorldApp . prototype = new Framework . GameWallServer ;
10 var s e r v e r = new HelloWorldApp () ;
11

12 s e r v e r . addChannelBinding (’ ver i fyUserApp ’ , ’ a l l ’ , f unc t i on () {
13 conso l e . l og (’UserApp says : He l l o World ! ’) ;
14 s e r v e r . sendEventToSocket (th i s , ’ HelloUserApp ’) ;
15 }) ;
16

17 s e r v e r . addChannelBinding (’ verifyGameWallApp ’ , ’ a l l ’ , f unc t i on () {
18 conso l e . l og (’GameWallApp says : He l l o World ! ’) ;
19 s e r v e r . sendEventToSocket (th i s , ’HelloGameWallApp ’) ;
20 }) ;
21

22 s e r v e r . i n i t () ;

Listing 6.1: ServerApp.js

Line 1 in Listing 6.1 makes Node.js parse and execute FIGAServers source code
and store a reference to it as a variable named Framework.

Line 3-7 creates a function that defines an init function that forwards the call to
its framework prototype. This insures that the framework parent class is initiated
correctly when the application class specific is initiated.

6.5 Creating a “Hello World” Application 61

Line 9 defines the prototype for the HelloWorldApp to be the GameWallServer
class. Line 10 instantiates a new instance of the HelloWorldApp class.

Line 12-15 and line 17-20 adds channel bindings, which make the ServerApp
answer with the correct information depending on the client, if the client is a
UserApp or a GameWallApp.

Finally, line 22 begins the initiation process of the application and the underlying
framework. The ServerApp is now ready for incoming connections.

6.5.3 Developing the UserApp

This section describes the implementation details of creating the “Hello World”
UserApp. The UserApp consist of three files, respectively UserApp.html, FI-
GAUser.js, and UserApp.js.

The required lines of code for UserApp.html are listed in Listing 6.2.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta cha r s e t="utf−8">
5 <t i t l e>He l lo World UserApp Example</ t i t l e>
6 </head>
7 <s c r i p t s r c="/ socket . i o / l i b / socket . i o . j s "></ s c r i p t>
8 <s c r i p t s r c="// ajax . goog l e ap i s . com/ ajax / l i b s / jquery /1 . 9 . 1 / jquery

. min . j s "></ s c r i p t>
9 <s c r i p t s r c="FIGAUser . j s "></ s c r i p t>

10 <s c r i p t s r c="UserApp . j s "></ s c r i p t>
11 </html>

Listing 6.2: UserApp.html

All of the lines 1-11 in Listing 6.2 are HTML syntax. They are needed for the
UserApp.html to be shown in a web browser, but the lines of interest for FIGA
are line 7, 9, and 10.

Line 7 includes Socket.IO that makes it possible to connect to a Node.js powered
server through a web browser by using JavaScript.

Line 9 includes FIGAUser.js, which makes the connection to the ServerApp and
ease the development of UserApp.js.

Line 10 includes UserApp.js where developers write their implementation code
for additional functionality and behaviour.

The required lines of code for UserApp.js are listed in Listing 6.3.

62 Chapter 6 Architecture

1 $ (document) . ready (func t i on () {
2 connectToLocalServer () ;
3 addBinding (’ HelloUserApp ’ , f unc t i on () {
4 $ (’ body ’) . html (’ Server says to UserApp : He l lo World ! ’) ;
5 }) ;
6 }) ;

Listing 6.3: UserApp.js

Line 1 in Listing 6.3 is a standard jQuery function that is being called when the
document is loaded and ready for input.

Line 2 is function invocation of the method connectToLocalServer() in the FI-
GAUser.js, which set up a connection to the ServerApp.

Line 3-5 adds a binding on the command “HelloUserApp”. Whenever the UserApp
gets the command “HelloUserApp” from the ServerApp it performs the function
content presented in line 4.

6.5.4 Developing the GameWallApp

This section describes the implementation details of creating the “Hello World”
GameWallApp. Similar to the UserApp, the GameWallApp consist of three files,
respectively GameWallApp.html, FIGAGameWall.js, and GameWallApp.js.

The required lines of code for GameWallApp.html are listed in Listing 6.4.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta cha r s e t="utf−8">
5 <t i t l e>He l lo World GameWall Example</ t i t l e>
6 </head>
7 <s c r i p t s r c="/ socket . i o / l i b / socket . i o . j s "></ s c r i p t>
8 <s c r i p t s r c="// ajax . goog l e ap i s . com/ ajax / l i b s / jquery /1 . 9 . 1 / jquery

. min . j s "></ s c r i p t>
9 <s c r i p t s r c="FIGAGameWall . j s "></ s c r i p t>

10 <s c r i p t s r c="GameWallApp . j s "></ s c r i p t>
11 </html>

Listing 6.4: GameWallApp.html

The lines 1-11 in Listing 6.4 is almost identical to the lines of UserApp.html in
Listing 6.2. The exceptions are line 5, 9, and 10. Line 5 determines the title
of the HTML site that now has a GameWallApp reference, while line 9 and 10
includes FIGAGameWall.js and GameWallApp.js.

6.5 Creating a “Hello World” Application 63

The required lines of code for GameWallApp.js are listed in Listing 6.5.

1 $ (document) . ready (func t i on () {
2 connectToLocalServer () ;
3 addBinding (’HelloGameWallApp ’ , f unc t i on () {
4 $ (’ body ’) . html (’ Server says to GameWallApp : He l lo World ! ’) ;
5 }) ;
6 }) ;

Listing 6.5: GameWallApp.js

As with the GameWallApp.html which is almost identical to UserApp.html, the
GameWallApp.js is very similar to UserApp.js described in Listing 6.3. The only
differences are line 3 and 4, where the binding contains a GameWallApp reference
and the text that is displayed on the web site is changed.

6.5.5 Starting the Application

After creating the different sub applications ServerApp, GameWallApp, and User-
App, the FIGA application is ready to launch. To start the ServerApp the devel-
oper navigates to the correct folder in the terminal or command line, and then
type the given command listed in Listing 6.6.

1 node ServerApp . j s

Listing 6.6: Start the FIGA application

This given command starts a ServerApp instance, and the ServerApp is now
ready for UserApp and GameWallApp connections. Figure 6.9 illustrates the
console output from a ServerApp after one UserApp and one GameWallApp has
connected.

Figure 6.10 presents the web browser of a UserApp using the “Hello World”
application, and Figure 6.11 presents the GameWallApp.

64 Chapter 6 Architecture

Figure 6.9: ServerApp using the “Hello World” application

Figure 6.10: UserApp using the “Hello World” application

6.5 Creating a “Hello World” Application 65

Figure 6.11: GameWallApp using the “Hello World” application

66 Chapter 6 Architecture

Chapter 7

Prototypes

Four prototypes have been developed to test the capabilities of FIGA and to
demonstrate its potential. The four prototypes were developed using rapid pro-
totyping and they revealed different aspects of FIGA that needed improvements.
Some of the prototypes were developed with a particular technical interest in
mind, while other for investigating educational benefits or new ways of interact-
ing with each other. As described in Section 2.2, three of the prototypes were
developed to test FIGA applications in a classroom setting. The experiments con-
ducted with these prototypes would find out if there exists any potential learning
benefit of using social, multimodal applications in a classroom. The fourth pro-
totype was a video game, developed in an effort to strain the FIGA application
and to locate technical bottlenecks.

Some of the applications need functionality not supplied by FIGA, and all but
one uses external frameworks in accordance with FIGA. These are described in
detail for the relevant prototypes and they will give indications on improvements
that can be made to the prototypes for later studies. This chapter documents
the process of creating the ServerApp, the GameWallApp, and the UserApp for
each prototype. Each prototype has an associated lessons learned paragraph,
with helpful knowledge learned by developing the prototype.

7.1 PostIt

Brainstorming with post-its is a well-known, well-used approach. Every partici-
pant involved in the brainstorm receives a stack of post-it notes and are told to

68 Chapter 7 Prototypes

write down everything they relate to a specific topic. All the post-its are then
collected and placed on a large board for further processing.

PostIt is created to mimic this process, removing unnecessary time waste and
making the post-process easier. Every user has their own device, often a smart-
phone, a tablet, or a laptop, where they can write on virtual post-it notes and
submit them. The shared display, the GameWallView, is used for showing all the
different post-its that have been submitted.

PostIt requires administrative features such as categorization and deletion of
post-it notes. This functionality helps the organizer structure the information
sent in and filter out unwanted or redundant words that have been mentioned
before.

7.1.1 The UserApp

The UserApp is as minimalistic and bareboned as possible. The main focus for
the user is to share new ideas and thoughts, and therefore should not be dis-
tracted with a complicated user interface. The UserView interface will resemble
an ordinary post-it, mimicking the physical process as close as possible. The
UserView consists of a logo, a post-it and a submit button. The user can touch
the post-it to start writing new words and press the submit button when ready
to deliver the post-it. Figure 7.1 shows the UserView.

As the target platform for UserApps are smartphones and tablets, this means
supporting different resolutions and screen sizes. The UserView is also aesthet-
ically pleasing on larger screens, as shown in Figure 7.1. The idea of using a
gesture motion to throw the post-it onto the GameWallView was discussed, but
this was not implemented due to limited time. Once a post-it is sent from the
UserApp, the UserView clears all text and is ready for new input.

7.1.2 The ServerApp

The ServerApp contains and maintains the state of the application. Every time
one of the UserApps commits a new post-it to the ServerApp, the ServerApp
broadcasts the new post-it to every connected GameWallApp and updates its
state. The ServerApp also sends the post-it history when a new GameWallApp
connects to insure that the new GameWallApp displays all previously submitted
post-its.

7.1 PostIt 69

Figure 7.1: The PostIt UserView on different devices

7.1.3 The GameWallApp

The GameWallApp functions as an electronic board that displays all submitted
post-its. It will also allow administrators to modify the post-its, such as deleting,
moving, and categorizing them. Figure 7.2 shows the GameWallView when the
application is connected to the ServerApp.

To avoid any misdemeanor from unauthorized users, the application requires a
password when connecting a new GameWallApp to the ServerApp. If the correct
password is entered, the ServerApp will consider the GameWallApp as validated
and start to send it information about submitted post-its. If the password is
incorrect, the ServerApp will ignore the connection attempt and the GameWal-
lView will fail to load.

The GameWallApp has the functionality to categorize the different post-its. The
organizer has to create these categories, which is done by clicking on the +-button
in the lower right of the screen. A popup-box is revealed, as shown in Figure 7.3,

70 Chapter 7 Prototypes

Figure 7.2: The PostIt GameWallView filled with post-its

and the user can enter the name of the category and choose a desired color that
will be associated with it.

Figure 7.3: Adding a new PostIt category

7.1 PostIt 71

At any given time, a validated GameWallApp can sort all the post-its it has
received. This requires that at least one of the post-its have been categorized
prior to sorting. Figure 7.4 shows all the post-its categorized, while Figure 7.5
shows the notes sorted based on their category. This makes it easier for the
organizer to process the responses from the students.

Figure 7.4: The PostIt GameWallView with a highlighted post-it

When someone creates an application that shares anonymous user input publicly,
it is highly recommended to implement moderation functionality. There is always
a chance of misdemeanor when user input is involved, especially if the group
contains immature individuals. If the GameWallApp administrator finds post-its
which are irrelevant to the topic, then the administrator can manually delete and
remove the post-it from the GameWallView. Figure 7.4 illustrates when a post-it
is highlighted with a delete button attached.

In order to make it easier for users to load the UserApp in their web browser, a QR
code image generator that is displayed on the GameWallView is implemented. A
QR code is a two-dimensional image containing information that can be scanned
to retrieve its information [36]. Smartphones and other devices with a camera

72 Chapter 7 Prototypes

Figure 7.5: All post-its sorted based on their category

and additional software can quickly retreive this information. The information
stored in this case is the URL for the UserApp. The QR code image resizes with
an animation if the mouse cursor is hovering over it, making it large enough for
everyone in the room to scan it when needed. The QR code can be seen in the
upper right corner of Figure 7.2.

7.1.4 Lessons Learned

PostIt give the users looking at the GameWallView the impression of an appli-
cation not constricted to web application standards in terms of presentation and
performance. The focus was to create an appearance that closely resembles native
applications in order to blur the lines between web and native applications. This
functionality was created using animations, toolbars with buttons, and avoiding
user interface elements associated with web technology.

7.2 WordCloud 73

7.2 WordCloud

WordCloud is another brainstorming tool with similarities to PostIt. WordCloud
is a collaboration tool used to map subjective associations of various subjects. A
word cloud, or tag cloud, is a visual representation of text data where the most
mentioned words become more prominent than others. The keywords are usually
distinguished by font size and color, based on how often they are mentioned
relative to the other words. By changing these factors one quickly locates the
most important and dominant terms. The resulting visual representation is an
image that visualizes the collective association of a word or term within a group
of people. Word clouds are popular in media to visualize the associations of the
public with a word or term. Figure 7.6 illustrates an example word cloud.

Figure 7.6: A word cloud example

The main difference between WordCloud and PostIt is the flow of input. Where
PostIt makes it possible to submit small sentences, WordCloud processes input as
single words. This makes the brainstorming process more quantitative oriented
than with the PostIt application. The users sends in all their thoughts associated
with a theme or statement. This gives a much greater flow of words than with
PostIt, at the cost of multiple worded sentences.

7.2.1 The UserApp

Similarly to the PostIt UserApp, the WordCloud UserApp is as minimalistic as
possible. The UserView is responsible for displaying an input form with a text

74 Chapter 7 Prototypes

field and a button. Figure 7.7 illustrates the UserView.

Figure 7.7: The WordCloud UserView

When a user submits, the text written in the text field is sent to the Server-
App. The ServerApp then broadcasts the new information to all of the connected
GameWallApps. When text is submitted to the ServerApp, the UserView clears
the text and awaits further input from the user.

7.2.2 The ServerApp

The ServerApp functions as a session and state holder. It stores all mentioned
words submitted by UserApps and how many times they have been mentioned.
The resulting list of words and how many times they have been mentioned is sent
to all GameWallApps every time an arbitrary UserApp submits a word.

Two issues with information sharing applications are vandalism and improper
behaviour from users. The WordCloud application uses no word filter, which
means that what is displayed is at mercy of the users. It was decided to not use
time implementing a filter that needs constant updates, and is easily avoided by
resourceful individuals. It should be noted that there exists libraries and web
services that performs word filtering, but this prototype focused on other aspects
and functionality.

7.2 WordCloud 75

7.2.3 The GameWallApp

The majority of implementation time was spent on the GameWallView. Display-
ing the words by their respective mentioned count is performed by the GameWal-
lApp and it requires sophisticated logic calculations. Since every word should be
placed together tightly with different font sizes, it quickly becomes complicated
to place words without overlapping. At first an own solution got implemented,
but the time spent reinventing the wheel was not worth it. This resulted in ex-
amining different JavaScript libraries that were suited for displaying word clouds.
The popular data-visualizing library D3.js was chosen primarily for its excellent
support of visual representations.

Computation time escalates from milliseconds to seconds when the data set be-
comes large. This means that the time from a user submits a word to the Game-
WallApp refreshes becomes noticeable when the data set contains a significant
selection of words. The computation time depends on the GameWallApp running
device, but noticeable delays was experienced with the development environment
at around 40 unique words. This delay was accepted since the responsiveness of
the application was not of priority. When words are added continuous the view
will update as quickly as possible, without giving the impression of being slow
and unresponsive unless given special attention. Figure 7.8 shows a screenshot
of the GameWallView.

The typical approach when using a word cloud is a two-step process. The first
step is collecting user input, and the corresponding visual presentation is created
in step two. In this case the WordCloud continuously receives data from its
users. This means that the application has to update the GameWallView as users
frequently enter new words, meaning step one and step two is being performed
multiple times. To accomplish this behaviour, the implementation has to support
a frequently updating data set.

7.2.4 Lessons Learned

Time spent reinventing the wheel is time that could be better spent on other
tasks. The D3.js library is efficient and reliable, and displays the word cloud
in a visually pleasing manner. The library is sufficiently customizable for the
applications needs with the ability to define the size of the canvas to render and
the size of the different words. One issue is that the placement of the words
are random each time the word cloud is updated, meaning that the words will
move rapidly around the screen if input is received rapidly. When the data set
increases, so does the time required to calculate the new positions of the words

76 Chapter 7 Prototypes

Figure 7.8: The WordCloud GameWallView

in the word cloud.

WordCloud is dependent on a large dataset of words in order to display a mean-
ingfull visual representation. If all words are mentioned a single time then all of
the words will be of the same size on the GameWallView. Word matching is also
a problem, where this prototype allowed the words to be capitalized. This means
that the following input “test” and “Test” would be considered as two different
words. This is trivial to change, and was left in as a design choice.

7.3 Categories

The Categories concept was penned by our supervisor, who wanted to explore
the pedagogical advantages and user experience of a more active problem solving
application. Categories gives the user two category choices and a serie of terms
that must be placed into the correct category, as illustrated in Figure 7.9.

When every connected user has placed all terms in the correct category, a new
set of categories and terms is broadcasted to all users. A typical use case for this

7.3 Categories 77

Figure 7.9: The Categories UserView

application is a teacher that prepares a series of categories and terms that needs
to be placed in one of two categories. The theme of the categories and terms is in
its entirety up to the teacher and can be anything from history to religion. The
touch interface of the UserView gives the user an intuitive approach, dragging the
terms into the correct category slot. The GameWallApp is tasked with showing
the progress of the entire class.

7.3.1 The UserApp

The main focus of the user is turned towards the UserView, contrary to the
other previous applications where the GameWallView has been the center of
attention. It shows two rectangular shapes with respective headers. Each of
these shapes represents containers of a certain category, and underneath these
shapes are several uncategorized terms. The user must place these terms into the
correct category by dropping them into the correct category container. When

78 Chapter 7 Prototypes

all terms are placed, a message is sent to the ServerApp with a statement of
completion. If the task is correctly categorized then the terms can no longer be
moved. The UserApp now waits for a new set of categories and terms from the
ServerApp. Figure 7.10 shows a screenshot of the UserView on a tablet where
some terms have been placed into the categories.

Figure 7.10: The Categories UserView on a tablet

7.3.2 The ServerApp

The ServerApp contains all combinations of categories and terms, and works
primarily as a content provider for UserApps and as a state holder for Game-
WallApps. It also contains the solutions to each set of categories and terms,
and can determine whether a user has completed correctly the categorization.
When a new UserApp connects to the ServerApp it sends a set of categories and
terms to the connected UserApp, as well as it broadcasts the updated state of all
connected UserApps to all GameWallApps.

When a user is done placing all terms, the UserApp will message the ServerApp
with a statement of completion. The ServerApp then checks if the categorization
is completed correctly, and answers with a corresponding message. If the cate-
gorization is wrong, the UserApp keep on with the current set of categories and
terms. However, correct categorization results in a message letting the UserApp

7.3 Categories 79

know that the task is completed and that the user has to wait for fellow students
to complete the task. The ServerApp also notifies all connected GameWallApps
with the new state information. This state information regards the number of
completed UserApps. Every time a UserApp sends a message to the ServerApp
with a statement of completion it checks if all connected UserApps are finished.
If so, it delivers the next set of categories and terms to every connected UserApp
and broadcasts a notice with the new state to all GameWallApps.

7.3.3 The GameWallApp

The GameWallView displays the current application state of how many UserApps
that are done with the current set of categories and terms, as well as the total
number of connected UserApps. This information is displayed as a circular ring
that fills up according to the percentage of completed UserApps. In addition to
the graphical representation, a label is shown with a textual representation of the
completed percentage. Figure 7.11 shows a screenshot of the GameWallView on
several different devices.

Figure 7.11: The Categories GameWallView

7.3.4 Lessons Learned

Categories was implemented to test if it was possible to create a user interface
that resembles native application in terms of touch interaction. Touch controls
are the de facto standard of modern smartphones, meaning that touch gestures

80 Chapter 7 Prototypes

such as pinch, drag and drop, and swipe are now well-known and expected ways of
interacting with touch screen applications. This functionality was implemented
using the mobile version of jQuery, which implements touch functionality and
mimics the look and feel of native applications [11].

Displaying a meaningful graph on the GameWallView of how many UserApps
that had finished the current category set was to show the class progression.
Several different graphical libraries that took raw data as input and displayed it
using different graph conventions were examined. The D3.js library was selected
as it provided polished and powerful ways of visualizing data.

7.4 1814

The possibilities of using FIGA for entertainment purposes with real-time re-
quirements was daunting, but exciting. The video game 1814 was developed to
test the network and computational capabilities of the chosen framework compo-
nents and to observe the social benefits of playing a video game together in the
same room.

North & South is a video game developed and published by Infogrames in 1989 for
platforms such as Commodore, Atari, and the Nintendo Entertainment System
[16]. The game contains several different mini-games that are played differently,
and one of these mini-games was found well suited. The battlefield mini-game
gives one or two players control over their own army that engages in combat, as
illustrated in Figure 7.12.

Each army has three different characters with different combat roles, respectively
infantry, cavalery, and artillery. These characters work in the rock-paper-scissors
fashion, meaning that different characters are stronger against particular other
characters. The infantry is good against the cavalery, the cavalery is good against
the artillery, and the artillery is good against the infantry. The gameplay is fast
and hectic, and rewards both teamwork and inidividual performance.

This version of the battlefield mini-game is similar in terms of visual presentation,
paying homage to the original while making some adjustments. A localization
change is made where the teams consists of Norway against Sweden, instead of
the Union versus the Confederacy in the American Civil War during the 1860s.
The sole purpose of this change is to use the somewhat humouros competitive
relationship between Norway and Sweden to engage players. In the original mini-
game the player has to control and navigate an entire army. This makes the game
chaotic and hectic, and the player can choose between different game tactics and
approaches. This version will differ from this approach, letting a player control

7.4 1814 81

Figure 7.12: The original game concept of North & South

and navigate only one character within one of the three combat roles. Thirty
players would give thirty different characters on the GameWallView at once. This
approach makes the game scalable and unpredictable, and even more chaotic and
hectic than the original game.

7.4.1 The UserApp

The UserView is simulating a classic game controller with a directional pad, one
attack button, and one information button. In order to accommodate for different
devices with different resolutions, the interface is designed using the responsive
design technique. The directional pad is attached to the lower left of the screen
and the two buttons, attack and information, to the lower right of the screen. This
made the design supportive of different screen sizes and resolutions. By having
the directional pad and buttons in each lower corner, the player holds the device

82 Chapter 7 Prototypes

and use the thumbs for touch interaction. Figure 7.13 shows how the UserView
adjust to the screen size and resolution on smartphones and tablets.

Figure 7.13: The UserView is developed with responsive design techniques

The lack of available screen space on smartphones led to minimalistic design so-
lutions. Displaying too much information will clutter the screen and degrade the
user experience. One decision was to let the background image of the UserView
show the flag of the players’ allegiance. This gives the player an immediate un-
derstanding of which faction the player belongs to and who to attack. In addition
to the background image, the attack button displays an image that indicates the
type of character the player controls. The image on the attack button is a rifle,
a sword, or a cannon. This makes it intuitive to attain both the team and type
of character the player controls, while making the controller design consistent
across different type of characters.

The information button is used to find the whereabouts of the players’ character
on the GameWallView. A lesson learned from the MOOSES project noted that
the players had problems finding their character on the large common screen [24].
While the player presses the information button, the player name will appear over
the player character. This makes it possible to temporary identify the character
the player controls quickly, without distraction, and only when needed.

7.4 1814 83

7.4.2 The ServerApp

The 1814 video game is a real-time application, opposed to the other prototypes
which are event-driven applications. This results in a higher computational load
for the ServerApp. The ServerApp calculates the player characters position, move
projectiles, and update the score and time, all in real time. These factors make
the design and implementation of the ServerApp a complicated affair.

Players are often engaged and have high expectations about the video games
they play. Their expectations and demands related to video games increases with
each new iteration of games. A new game is expected to outperform the previous
games, in terms of simulational complexity or innovative game design. Several
technical considerations have been done to provide an enjoyable experience. In
order to provide a smooth graphical experience, Claypool et al. suggests 30 frames
per seconds [42]. The network latency can not peak above 100 ms, as a noticeable
delay between user input and computer feedback will lead to frustration and
degrade the user experience among the players [39]. This further points to the
critical nature of the design and implementation of the ServerApp.

When a ServerApp starts up, it begins in a configuration mode. The first Game-
WallApp to connect to a ServerApp currently in configuration mode will display
the different settings a game can be configured with. The different settings are
for instance the choice between several game modes, or the time limit of a game.
The configuration screen is illustrated in Figure 7.14.

The player controlling the first GameWallApp choose the desired settings and
submits these settings to the ServerApp. The game is now configured and the
ServerApp is ready for incoming connections. If a UserApp connects to the
ServerApp before the configuration phase is completed, the ServerApp will re-
spond with an error message informing the UserApp to wait until the ServerApp
is configured.

The ServerApp stores for each UserApp connection the players game state. The
players game state is for instance team, character type, position, and score. This
game state will change during the game, for instance when the player kills, dies,
or selects a new character.

7.4.3 The GameWallApp

The GameWallView displays the battlefield with all the player characters on it,
as illustrated in Figure 7.15.

84 Chapter 7 Prototypes

Figure 7.14: The 1814 configuration screen

Figure 7.15: The 1814 GameWallView

7.4 1814 85

The game is graphically significant more sophisticated than the other prototypes,
with real-time rendering and animations. To aid development and to reduce
implementation time of the GameWallApp, the application took advantage of
importing the powerful JavaScript library Easel.js [6]. Easel.js provides utility
functions for working with rich graphics and drawing them on a HTML5 canvas.
The ServerApp sends an updated game state to all connected GameWallApps 30
times per second. The received game state contains information such as the play-
ers position, projectiles position, and updated score and time. This information
makes it possible for the GameWallApp to draw graphics at the correct location
on the GameWallView. The main task of every GameWallApp is to represent
this information in a fast and consistent manner, making the game feel responsive
and smooth for the players.

7.4.4 Lessons Learned

The complexity of creating a fully functional video game should never be under-
estimated, even in a relatively small scale. The algorithms for collision detection,
updating the positions of the players and projectiles, and graphical rendering had
satisfying performance.

The network modules communicate using TCP packets, which is the standard of
the underlying web socket technology used in Node.js and Socket.IO [15, 19]. This
is the recommended technology to use in a system where guaranteed delivery of
message is paramount, but in a video game setting this becomes redundant. This
is because the only relevant information is the current updated game state, mean-
ing a previous game state packet that is sent from the ServerApp is redundant.
TCP packets produce overhead both in terms of creating headers with packet
identifiers and requiring acknowledgements for each sent message, doubling the
network traffic. The performance of the messaging was satisfactory when the
game got tested in small scale, but it is difficult to predict how it would perform
in a larger setting.

Developing applications and games for a large audience requires testing in a real
setting as often as possible. This project had limited time, resources, and man-
power to perform these kinds of tests. This made it hard to find issues that could
arise when the application has a high workload. Testing with virtual connections
is insufficient, since the sporadic and behavioural tendencies of a human player
is hard to mimic virtually with the available development time.

86 Chapter 7 Prototypes

Chapter 8

User Experiments

One approach to test a framework is to test the applications made with it. The
level of success is measured with the user experience response, the development
time, and the experience gained using the framework. Ideally, the framework
should provide short development cycles with flexible functionality to support a
wide variety of features needed in different applications.

In accordance with our supervisor two user experiments were arranged to gather
feedback from users regarding the four developed prototypes. The experiments
were to complement a software architecture lecture. The participants were mostly
software engineering master students with high technical competence, and every
one of them owned modern mobile devices. The first experiment introduced the
WordCloud, PostIt, and Categories applications for user feedback. The second
experiment was a continuation of the first experiment, in addition to the 1814
video game.

This chapter introduces the techniques used for collecting data from the ex-
periments, the experiment procedures, and experiences gained from both the
participants and how the applications were to use from the perspective of an
organizer.

8.1 Empirical Approach

There exists several different ways of collecting valuable user feedback. Qual-
itative methods focus on individual feedback through interviews. Quantitative

88 Chapter 8 User Experiments

methods focus on the average impression through standardized forms. Since the
experiments were set in a classroom setting with tenfolds of students, a quanti-
tative method, and not qualitative, got utilized in terms of data collection. This
resulted in using forms that consisted of five parts, namely general information
about the participant, SUS questions, technical considerations, an application
comparison, and a comments section. The final forms used in the experiments
can be found in Appendix C.

8.1.1 General Information

In order to collect background information about the participants, the survey
included some general information questions at the beginning of the form. This
information was later used for analyzing the results. The questions about the
general information were as follows.

• Age (e.g. 24 years)

• Gender (male/female)

• Study programme (e.g. MTDT)

• Mobile device (e.g. iPhone 4S, Samsung Galaxy SIII, MacBook, Samsung
Galaxy Tab)

• Web browser (e.g. Opera, Safari, Firefox)

• Connectivity (e.g. Edge, 3G, Wi-Fi)

8.1.2 System Usability Scale

SUS is a standardized form used to gather empirical data from user experiments
[22]. The form contains ten questions that can be answered on a scale from 1 to
5, where 1 is strongly disagree and 5 is strongly agree. Every other question is
formulated negatively, making the user reflect upon the questions more carefully.
The sum of the SUS form gives a score from 0 to 100 regarding the usability, where
the higher score means a better user experience. See Table 8.1 for a complete
overview of the questions asked in the SUS form.

SUS forms have been proved to be robust and reliable, and a valuable evaluation
tool. It has been used for a variety of research projects and industrial evaluations

8.1 Empirical Approach 89

SUS questions
1 I think that I would like to use this system frequently
2 I found the system unnecessarily complex
3 I thought the system was easy to use
4 I think that I would need the support of a technical person to be able to

use this system
5 I found the various functions in this system were well integrated
6 I thought there was too much inconsistency in this system
7 I would imagine that most people would learn to use this system very

quickly
8 I found the system very cumbersome to use
9 I felt very confident using the system
10 I needed to learn a lot of things before I could get going with this system

Table 8.1: The SUS questions

multiple times.1

8.1.3 Technical Considerations

Additional and specific questions regarding the technical aspects were desired in
addition to the SUS questions. The technical inquiries were to map the user
experience regarding the technical performance of the applications. Since the ap-
plications were made with FIGA, the best-case performance relies on the frame-
work performance. Questions regarding the ease of connecting to the applications
through a web browser, as well as latency issues, are some of the questions asked.
See Table 8.2 for a complete overview of the questions regarding the technical
aspects.

The technical considerations are based on two articles, namely A Pervasive Game
to Know Your City Better and Lecture Quiz - A Mobile Game Concept for Lec-
tures [49, 26].

Similar to the SUS questions, the technical considerations are answered on a scale
from 1 to 5, where 1 is strongly disagree and 5 is strongly agree. To simplify the
results for the reader, the following tables in this chapter is a simplification where

1This report acknowledge that SUS was developed as part of the usability engineering pro-
gramme in integrated office systems development at Digital Equipment Co Ltd., Reading,
United Kingdom.

90 Chapter 8 User Experiments

Technical considerations
1 I found it easy to setup and start using the applications through the web

browser
2 I did not manage to interact with the GameWall system with at least one

web browser
3 I found it satisfying that I did not have to install any of the applications

on my smartphone
4 I found the applications unresponsive and/or with noticeable network la-

tency
5 I felt that the applications had consistent quality

Table 8.2: The technical considerations

both strongly disagree and disagree, and agree and strongly agree, are merged
together. The complete tables with the whole scale range and respective results
are located in Appendix B.

8.1.4 Application Comparison

RQ5, described in Section 2.1.5, led to an investigation of the best-suited ap-
plication for a classroom setting. Table 8.3 lists the eleven questions regarding
the application comparison. The application comparison is answered on a scale
from 1 to 3, where 1 represents WordCloud, 2 represents PostIt, and 3 represents
Categories.

Application comparison
1 The application that was the most fun to use
2 The application that was the most engaging
3 The application that I believe has the highest learning outcome
4 The application that I would like to be used in most classes
5 The application that made me think the most
6 The application that demands the most creativity
7 The application that made me initiate social interaction
8 The application that was the most challenging
9 The application that made me most active
10 The application that held my attention
11 The application that made me contribute the most

Table 8.3: The application comparison

8.1 Empirical Approach 91

The application comparison is related to the educational benefits of using the
applications in a classroom setting. They are based on the work done in the
articles EGameFlow: A scale to measure learners’ enjoyment of e-learning games
by Fu et al. and Improvement of a Lecture Game Concept by Wu and Wang
[34, 48]. These articles describe the value of using the immersion and fun inherent
in video games within a serious application field. Fu et al. introduces several
factors that contribute to users feel of enjoyment while using the application [34].
The factors can be seen in Table 8.4.

EGameFlow factors Factor description
1: Concentration The application should keep the users attention with-

out stress and information overload
2: Goal clarity The tasks to be done should be known and be explained

at the beginning
3: Feedback The user should know his/her knowledge level and what

is required for the ultimate completion of tasks
4: Challenge The application should challenge the knowledge and

skills of the user
5: Autonomy The user should be encouraged to take initiative and

have control of his/her actions in the application
6: Immersion The user should be in a state of immersion while using

the application
7: Social interaction The application should become a tool for social inter-

action
8: Knowledge im-
provement

The application should improve the users knowledge in
a relevant field

Table 8.4: The eight different factors that EGameFlow uses to measure the users
enjoyment of an educational application

Each of these factors are measured by the use of several questions leads to a very
detailed review of an application. Wu and Wang mention eight characteristics of
good educational games [48]. These characteristics are listed in Table 8.5.

Table 8.4 and 8.5 gave inspiration for the questions regarding the educational
prowess of the different applications. The user has to compare the different
applications to each other in the application comparison questions, in order to
force the user to prioritize one application over another.

92 Chapter 8 User Experiments

Concept Description
1: Variable instructional
control

How the difficulty is adjustable or adjusts to the
skills of the player

2: Presence of instruc-
tional support

The possibility to give the player hints when he or
she is incapable of solving a task

3: Necessary external
support

The need for use of external support

4: Inviting screen design The feeling of playing a game and not operating a
program

5: Practice strategy The possibility to practice the game without affect-
ing the users score or status

6: Sound instructional
principles

How well the user is taught how to use and play
the game

7: Concept credibility Abstracting the theory or skills to maintain in-
tegrity of the instruction

8: Inspiring game con-
cept

Making the game inspiring and fun

Table 8.5: Eight good characteristics of an educational game

8.1.5 Comments Section

To receive both positive and negative feedback the survey contained three com-
ment sections, one for each of the applications PostIt, WordCloud, and Cate-
gories. The participants were stressed to write down everything they could think
of regarding the applications in these three comment sections.

8.2 The First Experiment

The first experiment, containing an evaluation of the PostIt, WordCloud, and
Categories applications, was conducted 12. March 2013 in a lecture with the sub-
ject TDT4240 Software Architecture at NTNU. The lecture theme was “Testing
and Implementation” and consisted of problems surrounding software develop-
ment testing. Attending the lecture was 30 students, mostly software engineering
master students. All of the students experienced the applications for the first
time. The student population was 93% male with an average age of 24 years.

8.2 The First Experiment 93

The purpose of the experiment was to collect empirical data regarding the usabil-
ity of the applications, as well as some technical considerations and an application
comparison to investigate if lectures can benefit from using complementary edu-
cational applications.

8.2.1 Experimental Approach

The lecture was taught traditionally with the three applications merged into
the lecture. First the students got some information about the subject “Testing
and Implementation” within software architecture, and then PostIt was used
for brainstorming with the premise “Write keywords about challenges related to
implementation and architecture”. Figure 8.1 shows PostIt being utilized in the
lecture.

Figure 8.1: Brainstorming with PostIt

After the PostIt session, another subject got reviewed and a new brainstorm ses-
sion was started using WordCloud. The theme to brainstorm with the second
time was “Write any keyword about how testing is related to software architec-
ture”. Figure 8.2 presents the WordCloud GameWallView displayed with two
projectors and two smaller screens.

To test the students’ knowledge of the course material, Categories got utilized

94 Chapter 8 User Experiments

Figure 8.2: Brainstorming with WordCloud

at the end of the lecture. A various selection of expressions had to be placed
into the correct category, as illustrated in Figure 8.3. These expressions were
selected by the organizer from previously taught lectures within the same course,
but they were not taught in the current lecture. This exercise was initially done
individually, but the students were encouraged to help each other if they needed
assistance.

After the lecture the participants had to fill out a survey. The survey and its
questions are described in Section 8.1, and can be found in Appendix C.

8.2.2 Results

After analyzing the results, the range of devices was found significantly larger
than the development environment. Samsung Galaxy SII/SIII, iPhone 4/5, Xpe-
ria Mini SK17i, HTC One X+, HTC Desire, Xperia Sola, Samsung Galaxy Note
2, and Huawei Honor was used. A total of 78% of the participant used a smart-
phone during the experiment, and the remaining 22% used a laptop. Almost
everyone used Wi-Fi connectivity, except one that used 3G. The web browsers
used was Opera, Chrome, Safari, and Firefox.

Some of the participants had problems filling out the survey correctly. Of all
the participants, only 20 participants filled out the SUS part completely and 27

8.2 The First Experiment 95

Figure 8.3: Categories in action

participants answered the technical considerations. Regarding the application
comparison, 26 participants marked the form correctly.

SUS Results

The SUS score calculation is a straightforward process. For each question, the
score is ranged from 0 to 4. Since every other question is asked negatively this
means some difference in calculation. For every odd numbered question (1, 3,
5, 7, and 9) the score value is the scale position minus 1. The scale position is
ranged from 1 (strongly disagree) to 5 (strongly agree). For the even questions
(2, 4, 6, 8, and 10) the contribution is 5 minus the scale position. The overall
value is obtained by multiplying the sum of scores by 2.5. This total score have
a range from 0 to 100.

Table 8.6 shows each questions score distribution, and the SUS score as a whole.
The different columns of interest are Avr, Var, and Score, respectively average,
variance, and SUS score. The overall SUS score is calculated to 75.13. This is a
fairly good result, which indicates that the applications are to some extent easy
to use. Table 8.6 shows that question 2, 4, and 10 have a particularly high score.

96 Chapter 8 User Experiments

These questions shows that the applications were simple and not very complex,
the participants did not feel the need for support from a technical assistant, and
the applications were easy to handle and easy to learn how to use. The users felt
no a priori knowledge requirement to use the applications. None of the questions
got a significant low score in total, and each of them are above average.

SUS questions Avr Var Score
1 I think that I would like to use this system fre-

quently
3.45 0.58 2.45

2 I found the system unnecessarily complex 1.60 0.46 3.40
3 I thought the system was easy to use 4.15 0.45 3.15
4 I think that I would need the support of a technical

person to be able to use this system
1.45 0.58 3.55

5 I found the various functions in this system were
well integrated

3.40 0.88 2.40

6 I thought there was too much inconsistency in this
system

2.30 0.85 2.70

7 I would imagine that most people would learn to
use this system very quickly

4.20 0.27 3.20

8 I found the system very cumbersome to use 2.00 0.53 3.00
9 I felt very confident using the system 3.70 0.75 2.70
10 I needed to learn a lot of things before I could get

going with this system
1.50 0.58 3.50

Total score 75.13

Table 8.6: SUS score distribution

Technical Considerations Results

The technical considerations results are promising. The majority of participants
found it easy to use the different applications in a web browser, they managed
to interact with the system, and they did not experience noticeable network
latency. A noticeable result was that 93% found it very satisfying that there was
no installation procedure. This supports the assumptions and conclusions from
the discussion about native versus web applications in Section 4.4. Table 8.7
shows the results from the technical considerations questions.

8.2 The First Experiment 97

Technical considerations Disagree Neutral Agree
1 I found it easy to setup and start using the

applications through the web browser
11% 22% 67%

2 I did not manage to interact with the
GameWall system with at least one web
browser

78% 11% 11%

3 I found it satisfying that I did not have to
install any of the applications on my smart-
phone

0% 7% 93%

4 I found the applications unresponsive
and/or with noticeable network latency

78% 11% 11%

5 I felt that the applications had consistent
quality

8% 44% 48%

Table 8.7: Technical considerations results

Only one participant used 3G connectivity during the experiment. One partici-
pant is not enough to take a valid conclusion, but this result gave some indica-
tion and ideas for further exploration. This participant who interacted with the
applications through 3G experienced noticeable network latency and found the
applications unresponsive. Previous research supports this result and assump-
tion, that 3G used as connectivity should give a much higher latency than Wi-Fi
[25].

Another noticeable result was that 89% answered either strongly disagree, dis-
agree, or neutral regarding if the participant did not manage to interact with
the applications with at least one web browser. Why the remaining 11% did not
manage to interact with the applications is unknown. A possible explanation
could be that they did manage to interact with the applications, but that the
interaction did not work as satisfying as expected. Another explanation could be
that the QR code did not work on their device, or that the entry of URL was
incorrectly typed.

Application Comparison Results

The participants found the WordCloud application most engaging and creative.
PostIt scored best at being most fun to use, made them contribute most, and the
application they would like to use most. Categories received the most decisive
results regarding highest learning outcome, made them think the most, and was
the most challenging. Both WordCloud and PostIt were used as individual exer-

98 Chapter 8 User Experiments

cises during the lecture. An interesting observation is therefore why WordCloud
got a significantly higher score regarding social interaction than PostIt. It also
received almost as good results as Categories where the participants were stressed
that they could help each other if needed. Figure 8.4 presents the results from
the application comparison questions.

Figure 8.4: Application comparison results

8.2.3 User Comments

The participants gave both negative and positive written feedback. Some of the
participants found the applications useless; that it was a distraction and waste
of valuable lecturing time. Other participants found it educational and fun to
use the applications, and that the applications created variety in an otherwise
monotonous lecture. To prove exactly how effective and useful these kinds of
applications will affect students regarding motivation and educational learning is
left for a more in-depth study.

The experiment gained valuable knowledge of how users perceived the applica-
tions. Table 8.7 shows that the process of not having to install any additional
software on the user device was warmly greeted. However, the result regarding
setting up and starting to use the applications was disappointing. To reduce the
number of steps of connecting to the application a QR code was displayed on the
GameWallView, as illustrated in Figure 8.5.

One problem with using QR codes was that just a few of the students participating

8.2 The First Experiment 99

Figure 8.5: A QR code scaled up on the GameWallView

the experiment had the required QR reader software on their device. This resulted
in that most students had to type in the URL anyway, not taking advantage of
the QR code available. The user experience is degraded if the applications need
complicated configuration and installation procedures in order to interact with
them. The effort of joining the collective application should be reduced to a
minimum.

Two persons tried to connect to PostIts password protected GameWallApp during
the experiement. Why they tried to connect will remain unknown, but the factor
that an unauthorized person tried to connect to a password protected page tells
you how important it is to always make sure that malicious users are kept away
and that applications should be developed with security concerns in mind.

8.2.4 Organizer Experiences

Our supervisor was interviewed after the experiment to get his opinion on orga-
nizing and running the lecture using the FIGA applications. Our supervisor had
several notable observations and comments regarding using the application in a
pedagogical setting.

“The technical aspects were promising since it was easy to integrate the applica-
tions into the lecture. While I got assistance starting up the applications due to
time constraints, I still feel confident that I could quickly learn using it without
help. I have experience using command line tools, but I recommend creating eas-
ier ways of starting the ServerApps if the applications are to be targeted towards
less technical adept persons. The use of QR-codes might be unecessary, as I saw

100 Chapter 8 User Experiments

few students using their mobile phone camera with a QR-reader.

Using the applications helped segment the lecture into several parts, each with
a distinct theme with practical tasks at the end. As any educational tool, the
usage and preparation are important to insure that there are any gains from using
it. In this case, the application usage was not prepared well enough because of
limited experience using them. The Categories application seemed to have too
difficult questions. It was somewhat disappointing to see so many of the students
struggle with the questions that were supposed to be easy. Knowing this would
make it easier to plan ahead, but it did help me realize that the material was
not as common knowledge as I thought. The brainstorming applications, PostIt
and WordCloud, made it possible to stream the thoughts and associations of
the students in real time. Some students did not take the assignment seriously
and posted irrelevant information and jokes instead. It is difficult to avoid such
problems when the applications need to be as accessible as possible, and it is
highly dependent on a mature audience to maximise productivity.

Some changes need to be done before the next experiment. WordCloud should
be used continuously, only showing the resulting word cloud after everyone is
done sending their words. Categories should be tested in group assignments,
so that the students helps each other with questions a single individual might
find difficult. This also helps with the social aspects of the application. The
applications are promising, as the students did seem to enjoy using them. I look
forward to the next planned experiment.”

8.3 The Second Experiment

The second experiment was planned to verify and expand on the findings from
the first experiment. The second experiment was held the 11. April 2013 in a
lecture with the same subject and with many students with some experience from
the previous experiment. Some minor tweaks were made on the applications, but
their concepts stayed the same. In order to collect the user response on the
applications the participants received a survey at the end of the lecture. The
same survey was kept with some minor adjustments from the first experiment,
to ease the comparison between the two experiments.

8.3.1 Experimental Approach

A major difference in the second experiment compared to the first experiment
was how the educational applications were integrated into the lecture. The first

8.3 The Second Experiment 101

experiment was not well enough integrated in the lecture, meaning that it could
feel rushed and the questions used in the Categories were too difficult to catego-
rize. The theme of this lecture was the software technology “cloud computing”
and the goal of the lecture was to introduce this concept to the students.

The lecture started with a brainstorming exercise using WordCloud. The students
had to enter any associations related to the material being taught the following
three next slides, as illustrated in Figure 8.6. This was to make the students
more active and give the organizer input on their thoughts and associations with
the information as it was presented.

Figure 8.6: WordCloud during the second experiment

The exercise was conducted without showing the GameWallView, so the students
did not see the result displayed on the wall. After three slides, the application was
shut down. This was done in order to stop the incoming messages and to present
the GameWallView to the class. Keeping the GameWallView hidden meant that
it was possible to moderate the words sent from the students, in order to keep
the displayed information on a serious and mature note, without them noticing
it. The resulting GameWallView is presented in Figure 8.7.

After a short review of the WordCloud result, the students were to use the PostIt
application in a group exercise. They gathered in groups and had to find the
five most important issues related to economy and cloud computing. Figure 8.8
shows some of the issues that the students committed.

102 Chapter 8 User Experiments

Figure 8.7: The WordCloud GameWallView result in the second experiment

Figure 8.8: The PostIt GameWallView during experiment

A few more slides related to cloud computing followed after the PostIt sequence,
until the students were met with a Categories task as illustrated in Figure 8.9.
The next exercise was to place different keywords into the correct categories.

8.3 The Second Experiment 103

Categories was utilized similar to how it was used in the first experiment, only
that the keywords to be sorted had been taught in the current lecture. This
meant that the students had the keywords and terms fresh in their minds when
solving the exercise. The students first tried to complete the exercise individually,
but it was stressed that they could help each other if needed.

Figure 8.9: The introductory slide for the Categories in the second experiment

After the Categories test, the first half of the lecture was finished. In between
the first and second half of the lecture was a fifteen-minute break, where the 1814
video game was started up. This meant that if they did not want a break, they
could test the game.

As with the first experiment, the participants had to fill in a survey at the end
of the lecture. The survey measured the same features as the survey from the
first experiment, namely the usability, some technical considerations, and an
application comparison. Due to time constraints, this form was delivered to the
class only five minutes before the lecture was over, meaning that the majority of
the students were quick to reply. This led to very few written comments from
the participants.

1814 Game Session

The 1814 prototype was developed primarily to find out if a video game using
FIGA was feasible, and as a stress test of the framework components. In order to
collect the user experience playing 1814 the participants had to fill out a survey

104 Chapter 8 User Experiments

after a ten minute play session. The game survey contained four sections, namely
general information, technical user experience, gameplay and social interaction,
and comments. The overall experiment therefore consisted of two individual
surveys, the general FIGA survey regarding the educational applications and one
survey regarding the 1814 video game.

The general information questions in the 1814 survey were identical to the general
survey. These questions were used to get an understanding of the student and
some information on which mobile device that was being used, as well as connec-
tivity and web browser. The technical user experience questions were similar to
the technical considerations in the general survey. The last question about the
consistent quality was removed, but otherwise it was the same questions with
some minor corrections. A complete overview of the technical user experience
questions can be found in Appendix C.

In addition to the technical user experience questions the survey included some
questions concerning the gameplay and social interactions. These questions com-
plemented the technical user experience results, and were used to find out if the
game was fun and the benefits of playing together with a large number of people
in the same room. Even though 1814 is a video game and have other aspects and
features, the classroom setting is well suited for testing a video game. Table 8.8
lists the questions concerning gameplay and social interaction.

Gameplay and social interaction
1 The game was fun to play
2 The game was not engaging
3 I did not notice that the game was played in a web browser
4 Playing the game in the same room with other people made me less com-

petitive
5 Playing the game in the same room with other people made it more fun
6 I would not like to play games this way (shared common screen w/browser

controller) frequently
7 Playing the game in the same room with other people made me cooperate

better (vs online play)

Table 8.8: The gameplay and social interaction questions

The gameplay and social interaction questions are answered on a scale from 1 to 5,
where 1 is strongly disagree and 5 is strongly agree. Notice that the questions are
alternated from a positive attitude to a negative one. This is inspired by the SUS
form, trying to make the user reflect more carefully and take an opinionated stand.

8.3 The Second Experiment 105

At the end of the survey a comment box was included, where the participants
could write their thoughts and experiences from playing the game. This was to
get feedback written with their own words.

8.3.2 Results

A total of 30 technology students participated in the second experiment. Of
these, 18 of the students participated in the first experiment as well, while the
remaining 12 students were first-time users. The range of devices was similar to
the first experiment, but this time two tablets were used as well, one iPad and one
iPad 3. Of all the participants, 80% used a smartphone. The only connectivity
used was Wi-Fi, and Safari, Chrome, Opera, and Firefox was the utilized web
browsers.

As with the first experiment, some of the results were invalid due to incorrectly
entries. 29 participants answered both the SUS and technical considerations
questions correctly, and 26 participants filled out the application comparison.
The following sections describe the results from the second experiment.

SUS Results

The total SUS score was a bit lower than in the first experiment with a score of
73.36. The applications got high scores on the simplicity of starting and using
them. The participants felt confident using the applications and they felt that
they did not need any technical assistance in order to start using them. They
did however feel that there were inconsistencies and that some functions were
not well integrated. One explanation for a reduced score might be the timing of
when the students got their forms delivered to them. The original schedule was
to end the lecture with a WordCloud brainstorm to review the material of the
lecture, but it was cancelled due to time constraints. This meant that when the
students answered the forms regarding the FIGA applications as a whole, with
the experiences from 1814 most fresh in mind. The results can be seen in Table
8.9.

Technical Considerations Results

The technical aspects of the FIGA applications received excellent feedback, as can
be seen in Table 8.10. The technical considerations give the impression of high

106 Chapter 8 User Experiments

SUS questions Avr Var Score
1 I think that I would like to use this system fre-

quently
3.31 0.65 2.31

2 I found the system unnecessarily complex 1.97 0.25 3.03
3 I thought the system was easy to use 4.00 0.21 3.00
4 I think that I would need the support of a technical

person to be able to use this system
1.38 0.32 3.62

5 I found the various functions in this system were
well integrated

3.48 0.33 2.48

6 I thought there was too much inconsistency in this
system

2.45 0.61 2.55

7 I would imagine that most people would learn to
use this system very quickly

4.10 0.31 3.10

8 I found the system very cumbersome/awkward (in
Norwegian: tungvint) to use

1.93 0.42 3.07

9 I felt very confident using the system 3.83 0.36 2.83
10 I needed to learn a lot of things before I could get

going with this system
1.66 0.52 3.34

Total score 73.36

Table 8.9: The SUS score distribution from the second experiment

user satisfaction. The participants felt that the applications were easy to connect
to and use, and the concept of web applications instead of native applications
was positively received. The results of the technical considerations can be found
in Table 8.10.

Application Comparison Results

The application comparison section of the feedback form made the participants
decide which application was best suited in different circumstances. The circum-
stances was, to mention some, the application that was most fun to use or the
application that initiated the most social interactions. The participants had to
choose the best application, forcing the participant to prioritize. The feedback
regarding the application comparison is summarized in Figure 8.10.

Figure 8.10 shows that Categories is superior in almost all of the questions. It was
the most fun to use and the most engaging, most likely because of the activity
it required from the user. Categories also was the application associated with

8.3 The Second Experiment 107

Technical considerations Disagree Neutral Agree
1 I found it easy to setup and start using the

applications through the web browser
3% 3% 94%

2 I did not manage to interact with the
GameWall system with at least one web
browser

87% 10% 3%

3 I found it satisfying that I did not have to
install any of the applications on my smart-
phone

0% 10% 90%

4 I found the applications unresponsive
and/or with noticeable network latency

72% 21% 7%

5 I felt that the applications had consistent
quality

3% 31% 66%

Table 8.10: Technical considerations results from the second experiment

Figure 8.10: Application comparison results from the second experiment

the highest learning outcome and the application that made the user think the
most, again probably related to the activity it requires from the user to sort the
different keywords into the correct category.

WordCloud had a big impact on being the most creative application, followed by
PostIt. This was expected, since the tasks associated with both these applications
were brainstorming exercises.

The application initiating the most social interaction was the PostIt application.

108 Chapter 8 User Experiments

The exercise that the application complemented was a group assignment. This
means that the innate social aspects of the task affected the perception of the
application and its use in a social setting.

A perplexing result is the question regarding the application that made the par-
ticipant contribute the most. The Categories application was again chosen as the
best candidate, but it is difficult to give an answer to why. One explanation is
that the application made the participant help the person sitting next to him or
her. However, WordCloud and PostIt were designed as contribution and brain-
storming tools and should therefore have been a better candidate than Categories
regarding this question.

8.3.3 User Comments

There was a severe lack of user comments to review after the second experiment.
This is connected to time constraints at the end of the lecture, and resulted in
that the participants were eager to leave the auditorium and go to their next
lecture. This meant that most participants skipped the final comments section.
In contrast, the comments section for the 1814 form was answered by almost
everyone, probably since they had good time to write their reply. One alternative,
which is highly unlikely, is that they did not have any comments regarding the
FIGA applications.

8.3.4 Organizer Experiences

Our supervisor was interviewed after the experiment to get his opinion on how
the applications worked with his lecture. The following statements describe his
experience of organizing the applications.

“The second experiment was very different from the first one. Not that the appli-
cations were any different, but the way they were used, the context, was different.
The applications were better integrated into the lecture, with the exercises better
understood and each exercise produced more replies from the students.

WordCloud got a really good response, with the students paying attention from
the very beginning. They seemed more engaged, and sent a lot of words in to the
word cloud.

PostIt had a better exercise this time around, with the students getting together
in groups. The resulting input from the students was more mature, and the
amount of input was much better than the previous experiment. One issue was

8.3 The Second Experiment 109

the amount of text one could write on a single post-it. This resulted in some
unclear post-its, that no one wanted to clarify when I asked out loud if the group
could clarify what they meant.

Categories made the students very concentrated, and I feel like fewer students
gave up this time than the previous experiment. This might be related to the
difficulty of the task. This time the content in the exercise was related to newly
lectured material, where the last experiment used material that was general for
the entire course.

The last point I would like to make is the importance of clarity in the questions
and exercises. Be sure that the questions you want the students to answer is un-
derstood by all, before starting the exercise to avoid misunderstandings.”

8.3.5 1814 Results

To push the limits and test the performance of a FIGA application, the 1814 game
session was started in the classroom with over 30 students playing simultaneously.
This game session was held in the break, in between the first and second part
of the lecture. The ServerApp hosting machine was the same as the one used
for the educational prototypes. This meant that the participants only had to
refresh their web browser to start playing the game. The game got chaotic right
away, and people started to shout, laugh, and scream while playing. Figure 8.11
illustrates the GameWallView some minutes into the game session.

Technical User Experience Results

Table 8.11 shows the result from the questions regarding technical user experi-
ence.

Technical user experience Disagree Neutral Agree
1 I found it easy to setup and start using the

game through the web browser
4% 4% 92%

2 I did not manage to interact with the game
with at least one web browser

59% 33% 8%

3 I found it satisfying that I did not have to
install the game on my smartphone

0% 13% 87%

4 I found the game unresponsive and/or with
noticeable network latency

20% 21% 59%

Table 8.11: The technical user experience results

110 Chapter 8 User Experiments

Figure 8.11: 1814 played in a classroom

The technical user experience results give the impression of an application that
is easy to setup and interact with, and that it was satisfying not having to install
a native application. The last question regarding unresponsiveness and network
latency did receive some inconsistent answers. The high number of players and
a graphical bug made it hard to understand if a player was dead or alive. The
GameWallView was quickly cluttered with images of game characters that should
have been removed. The game was not tested with as many users during devel-
opment, making it hard to predict the issues experienced at this experiment.

8.3 The Second Experiment 111

The technical issue was not related to graphical or logical computation load since
the GameWallView was able to draw the graphics at the recommended rate of
30 frames per second. The characters, projectiles, and game time progresses
smoothly.

The technical user experience questions are almost the same as the questions
regarding the technical considerations as in the primary FIGA survey. Nearly
every participant answered agree or strongly agree regarding question 1 and 3,
respectively if they found it easy to setup and start using the game through a
web browser and that they found it satisfying not having to install the game on
their device. This corresponds to the technical considerations results, described
in Section 8.3.2.

The question regarding responsiveness and network latency is the most concern-
ing one. A total of 59% answered that they found the game unresponsive and/or
with network latency. This is a higher percent than expected. One explanation
could be that they had problems with finding their character on the GameWal-
lView, and therefore did not notice the movement and actions they performed.
Another likely explanation is that the game is not optimized well enough, with
room for improvements. Clever algorithms and design patterns can be used to
lessen the computational load of the ServerApp. The game was developed with
a short development time and with little video game implementation experience.
Modern video games have a high expectancy of running smoothly and small flaws
will severly degrade the user experience. The combination of the network load
and a technical error might be the cause of the poor results in the fourth technical
user experience question, since the other educational applications ran smoothly
without any issues. The network load issue might be that the ServerApp can not
handle the amount of requests and replies necessary for a smooth experience. The
technical issue is most likely an identification mapping error, where the Game-
WallApp creates so called ghost instances that are not animated and removed
correctly. This should be further addressed for future improvements.

Gameplay and Social Interaction Results

A total of 24 participants answered the gameplay and social interaction ques-
tions. Table 8.12 shows that a slight majority agreed on if the game was fun
to play. The result regarding the engagement shows no clear answer in either
direction. The result is evenly distributed from disagree to agree, with a minor
majority favouring disagree. Table 8.12 shows the gameplay and social interaction
results.

112 Chapter 8 User Experiments

Gameplay and social interaction Disagree Neutral Agree
1 The game was fun to play 29% 29% 42%
2 The game was not engaging 42% 25% 33%
3 I did not notice that the game was played

in a web browser
55% 33% 12%

4 Playing the game in the same room with
other people made me less competitive

75% 21% 4%

5 Playing the game in the same room with
other people made it more fun

0% 12% 88%

6 I would not like to play games this way
(shared common screen w/browser con-
troller) frequently

42% 21% 37%

7 Playing the game in the same room with
other people made me cooperate better (vs
online play)

12% 63% 25%

Table 8.12: The gameplay and social interaction results

A total of 55% answered strongly disagree or disagree that they did not notice
that the game was played in a web browser. Question six, I would not like to
play games this way frequently, does not provide a clear result, with an average
on neutral and a small tendency towards disagree. These two results combined
does not give a definitive answer on the prospects of playing games through a
web browser.

Question five, playing the game in the same room with other people made it
more fun, is worth pointing out. A total of 88% agreed or strongly agreed to this
question, while the remaining 13% was neutral. Table 8.12 shows this compelling
result.

Even if the game was not that fun to play and got mixed results regarding its
engagement, the results shows that the concept and idea of playing a game in
the same room with other people on a shared common screen is fun. The results
from question four, playing the game in the same room with other people made
me less competitive, supports this statement with 75% disagreement.

Another observation of the gameplay and social interaction results is that the
variance on most questions is approximately or more than one, except question
five. An explanation of the high variance could be the low number of participants.
More participants might reduce this variance and give a more decisive result on
the different questions.

8.3 The Second Experiment 113

8.3.6 Comments About 1814

A frequently repeated comment was the problem of finding the character on the
GameWallView. The user got little feedback from their device about the game
state. They did not get any feedback if their characters attack hit someone else
or if they got hit themselves. Most of the players did not use or understand the
use of the information button to help them locate their character on the screen.
The game was supposed to play an animation when players got killed, but this
animation did not work properly during the game session. Instead the characters
remained on the screen, making it impossible to know if the character was dead
or alive.

None of the participants had played the original game which 1814 is based upon,
making the rules and gameplay difficult to grasp. It is hard to jump right into
a new game concept without much explanation beforehand, especially when 30
students play the game simultaneously and can not find their character on the
GameWallView. The game concept should therefore have been better explained
before starting the session. The participants thought however that the game
concept was interesting and that the shared screen concept had potential.

114 Chapter 8 User Experiments

Chapter 9

Evaluation

The collected technical experiences from implementing the prototypes and the
user experiences from the experiments forms an evaluation platform. These ex-
periences forms two viewpoints to evaluate the success of creating a framework
with value.

This chapter is divided into three parts. First, a discussion and experiences
of creating applications and a framework in parallel. Second, a discussion on
organizing user experience experiments and analyzing the results gained from
them. Third and final, a retrospective on the completion of functional and quality
requirements, in order to measure the success of the technical implementation of
FIGA.

9.1 Prototype Summary

The four prototypes gave insight on how easy it is to create applications using
FIGA, and the inherent quality they gain from using it. This summary describes
the overall lessons learned from developing the applications.

9.1.1 Development Methodology

FIGA made it possible to create prototypes in a matter of hours. Native appli-
cations of the same complexity have an estimated development time of five to
six days based on earlier project experiences. Using the bareboned components

116 Chapter 9 Evaluation

without FIGA is estimated to twice the development time used in implementing
the prototypes.

The applications quickly matured with constant updates and bug fixes as they
were developed. The possibility of quick iteration cycles makes it possible to
center the development around feedback from users without wasting time imple-
menting unwanted functionality.

9.1.2 Application Functionality

FIGA made it easy to create different web applications, with different semantics
and usages. The first three prototypes are event-driven applications, where the
ServerApp plays the role of an intermediary between users, only updating upon
receiving messages. The 1814 application is a real-time video game, where the
state of the game has to be updated constantly with updates sent to every con-
nected GameWallApp. The ability to create different applications makes FIGA
flexible and modifiable.

Functionality such as security was added to the PostIt application, when discov-
ering that administrative views of the applications could give unwanted access
to core functionality to a more technical adept user. This additional function-
ality was not added to FIGA, due to limited development time and insufficient
implementation experience.

9.1.3 The Joys of Web Development

Web based technology is among the most documented technologies to develop
with. Simple Internet searches makes it possible to attain a myriad of examples
and approaches to different problems. HTML5 and JavaScript makes it possible
to quickly prototype a potential web application that can be iterated upon. This
means that it is possible to quickly get user feedback on the look and feel of a
web application.

Developing web applications is simplified with the incredible amount of scripting
libraries and tools already available. This reduces development time and gives
developers mature libraries and tools to work with. Examples of JavaScript
libraries used in this project are the rendering engine D3.js used by WordCloud,
and the animation system provided by Easel.js for the video game 1814. These
libraries made it possible to use time on creating the overall applications, instead
of using time reinventing readily available technology. These libraries are easy to
integrate with FIGA.

9.2 Experiment Summary 117

An initial good indication regarding performance was that every prototype per-
formed well in the development environment. One concern was that the client-side
scripting libraries would not be able to handle complex computations without
slowdown. However, even the video game 1814, the most computationally de-
manding prototype, ran seemingly without any troubles during implementation
in the development environment.

9.1.4 The Pains of Web Development

Different web browsers and hardware devices make it hard to develop a web appli-
cation with consistent quality. Web browsers implement different interpretations
of HTML5 and JavaScript, which mean that the same source code leads to dif-
ferent results. Various hardware devices changes what can be expected to run
without slowdowns, and at what resolutions the web application can be displayed
correctly.

Developing prototypes where the look and feel matches a native application is
difficult and time consuming. A significant number of work hours went into
trying to hide default web browser functionality in order to provide the illusion
of a native application. Different JavaScript libraries provide functionality that
make it possible to animate the different components in a web page, but they do
not perform as well in all browsers, degrading the user experience.

9.1.5 Scaling the Prototypes

The prototypes got tested as they were implemented, but it was difficult to do
large scale testing with thirty or more users. This made it difficult to safely con-
clude that certain parts of the applications were made soundly. This is particu-
larly true in the case of the video game 1814 where the functionality became com-
plex, and various bugs surfaced the moment the ServerApp load increased.

9.2 Experiment Summary

This section summarizes and compares the results found in the experiments.
These results can be used in future iterations on the concept, in order to expand
on the FIGA concept.

118 Chapter 9 Evaluation

9.2.1 Experimental Approach

The experimental approach for the two different experiments was almost iden-
tical. The lectures were taught in a traditional fashion with the applications
merged into the lectures. The main difference between the two experiments was
the usage of WordCloud and PostIt. The students saw the WordCloud GameWal-
lView and PostIt GameWallView update in real time during the first experiment,
while it was hidden until all the words and thoughts was collected in the second
experiment. Hiding the GameWallView made it possible to moderate the incom-
ing text, removing distracting and immature input. PostIt was also used as a
group exercise in the second experiment, contrary to an induvidual exercise in
the first experiment.

Categories was the last application to be tested in both experiments. In the first
experiment, the Categories questions regarded general software architecture ques-
tions, while in the second experiment the questions regarded material presented
in the same lecture. After the completion of the lectures the students filled out a
survey. The surveys were nearly identical in both experiments, to make it easier
to compare the results.

9.2.2 Results

Few participants may not give a representative result, as the margin of error can
be critical when the sample size is low. However, the results from the experiments
give good insight into the user experience of technology students. More experi-
ments should be conducted to map the interest of other target groups.

The first and second experiment consists of respectively 20 and 29 answers regard-
ing the SUS questions. Table 9.1 shows that the first experiment had a slightly
higher SUS score on question 1, 2, 3, 6, 7, and 10, while the second experiment
had a higher score than the first experiment regarding the remaining questions,
namely question 4, 5, 8, and 9. The total SUS score is almost identical from the
two experiment results, meaning that the usability is close to equal.

The comparison between the technical consideration results from the two ex-
periments is presented in Table 9.2 with average and variance for each of the
questions. A total of 27 participants answered the technical considerations ques-
tions in the first experiment, while 29 answered them in the second experiment.
Table 9.2 shows that there is a significant positive increase from the first to the
second experiment regarding if the participants found it easy to setup and start

9.2 Experiment Summary 119

SUS questions Test 1 Test 2
Avr Score Avr Score

1 I think that I would like to use this system
frequently

3.45 2.45 3.31 2.31

2 I found the system unnecessarily complex 1.6 3.4 1.97 3.03
3 I thought the system was easy to use 4.15 3.15 4.00 3.00
4 I think that I would need the support of

a technical person to be able to use this
system

1.45 3.55 1.38 3.62

5 I found the various functions in this sys-
tem were well integrated

3.4 2.4 3.48 2.48

6 I thought there was too much inconsis-
tency in this system

2.3 2.7 2.45 2.55

7 I would imagine that most people would
learn to use this system very quickly

4.2 3.2 4.10 3.10

8 I found the system very cumbersome to
use

2.0 3.0 1.93 3.07

9 I felt very confident using the system 3.7 2.7 3.83 2.83
10 I needed to learn a lot of things before I

could get going with this system
1.5 3.5 1.66 3.34

Total score 75.13 73.36

Table 9.1: SUS score comparison

using the applications through a web browser. It also shows that the two exper-
iments were otherwise similar regarding the remaining four questions. However,
one noticeable observation is that the answers had a consistently lower variance
in the second experiment compared to the first.

A major difference between the two experiments is the application comparison
results. As mentioned in the experimental approaches, the two lectures had a
minor different approach regarding the integration of the various applications.
If this was the cause behind the major difference found in the application com-
parison results is unknown. WordCloud received the highest score in the first
experiment regarding engagement and creativity, while it only received the high-
est score concerning the creativity in the second experiment. PostIt received the
highest score concerning most fun to use, should be used in classes, and contribu-
tion in the first experiment, while in the second experiment it only scored highest
on initiating social interaction. Categories received a significant higher score on

120 Chapter 9 Evaluation

Technical considerations Test 1 Test 2
Avr Var Avr Var

1 I found it easy to setup and start using the
applications through the web browser

3.74 1.05 4.17 0.65

2 I did not manage to interact with the Game-
Wall system with at least one web browser

1.78 1.33 1.79 0.81

3 I found it satisfying that I did not have to in-
stall any of the applications on my smartphone

4.41 0.40 4.21 0.38

4 I found the applications unresponsive and/or
with noticeable network latency

1.93 0.99 2.03 0.82

5 I felt that the applications had consistent qual-
ity

3.48 0.80 3.72 0.49

Table 9.2: Technical considerations comparison

most questions in the second experiment, compared to the first.

Figure 9.1 presents the WordCloud results from the two experiments matched
against each other. As Figure 9.1 shows, the first experiment had a noticeable
better result concerning engagement, making the participant think, social inter-
action, challenge, activity, attention, and contribution. The second experiment
has a higher score than the first experiment regarding creativity and has a slightly
better result regarding if it was fun to use. It is hard to explain why WordCloud
received higher scores in total in the first experiment compared to the second,
but a hypothesis is the importance of integration of the application in the lec-
ture.

PostIt had a significantly higher score in the second experiment compared to the
first regarding if it made the participants think and made them initiate social
interaction. The first experiment received a higher score regarding its scale of
fun and engagement. In addition, the question about holding the attention also
got a higher score in the first experiment compared to the second. Otherwise
the two experiments got approximately the same result regarding the remaining
questions. These results are illustrated in Figure 9.2.

Categories was used by the students in the exact same way in the two exper-
iments, with the questions asked the only difference. The second experiment
used questions that the students found easier to answer, as they originated from
material presented earlier in the same lecture rather than general software ar-
chitecture material previously taught. While this difference makes the questions
harder to answer, one would assume that harder questions does not degrade the
usability of the application. Figure 9.3 shows that this is not the case, where

9.2 Experiment Summary 121

Figure 9.1: WordCloud comparison from the two experiments

Figure 9.2: PostIt comparison from the two experiments

the questions asked are paramount in how much potential a student sees in the
application. The first experiment got a slightly higher score regarding if it made
the participants think, and a significantly better result about creativity and so-
cial interaction. Otherwise the first experiment received a lower score compared
to the second experiment regarding the remaining questions.

One interesting observation from the results was how the participants’ opinions

122 Chapter 9 Evaluation

Figure 9.3: Categories comparison from the two experiments

changed from the first to the second experiment. Another evident observation was
the major difference between first-time users in the two experiments. The survey
used in the second experiment included an additional field among the general
information, namely “I participated on the previous experiment conducted March
12th 2013 (yes/no)”. This allowed for the results to be divided into two separate
groups for further analysis.

Figure 9.4 presents the comparison between the results from the second experi-
ment and the results from the first experiment, where the participants answered
“yes” regarding the additional question mentioned above in the second experi-
ment. In other words, a comparison between the results only from the users who
participated in both experiments. If a bar in Figure 9.4 has a positive value it
means that a higher percent of students preferred it in the second experiment,
and vice versa.

There are little to no difference in their answers regarding the questions about
learning, usage, challenge, and contribution. However, it is interesting to see
how different their opinions are on the remaining questions. The participants
found WordCloud significantly more fun in the second experiment compared to
the first, while Categories and PostIt were more fun in the first experiment. They
also thought that Categories was more engaging in the second experiment, while
WordCloud and PostIt was the most engaging applications in the first experiment.
The participants answered that WordCloud and Categories were the two applica-
tions that made them think in the first experiment, while PostIt demanded most
thinking in the second experiment. The participants felt that WordCloud made

9.2 Experiment Summary 123

Figure 9.4: The second experiment compared to the first experiment with only the
participants who participated in both experiments

themselves much more creative in the second experiment compared to the first,
and that Categories demanded no creativity in the second experiment compared
to the first.

The most convincing result is the question about social interaction. During the
second experiment the students used WordCloud individually while the lecture
was taught, and when PostIt was used they were put together in groups. This
differed from the first experiment where the students were supposed to contribute
individually in both applications. Categories was used in the same way in both
experiments, where the task was first to be solved alone and then the students
could help each other complete the task. As Figure 9.4 shows, PostIt is superior
regarding social interaction in the second experiment compared to the first.

The participants answered that PostIt made them most active in the second
experiment, compared to WordCloud in the first experiment. They also answered
that WordCloud held their attention the most in the first experiment, while
Categories held their attention the most in the second experiment.

Figure 9.5 presents a comparison between the results from the second experi-
ment and the results from the first experiment, where only the first-impressions
are included and the answers of students in the second experiment that had
participated in the first experiment are excluded.

Figure 9.5 gives the impression that the first-time participants from the second
experiment favoured Categories in almost every way, except in terms of how the

124 Chapter 9 Evaluation

Figure 9.5: The second experiment compared to the first experiment with only first-time
participants

applications made them think creatively and initiated social interaction.

9.2.3 User Comments

The participants gave more written feedback in the first experiment compared
to the second. Some participants in the first experiment found the applications
useless, while others found it educational and fun to use. A recurring comment
from both experiments was the usage of QR codes for easier connectivity. Only
a few participants had installed QR scanner software on their device, making it
useless for the remaining students. While the use of QR codes was completely
optional, the ones who did not use it found it unnecessary.

There were some unauthorized students that tried to connect to the password
protected GameWallApp in both experiments. The first experiment had three
students trying to log in to the password protected GameWallApp. The second
experiment had one student trying to do the same. Adding a password protection
before gaining access to the functionality caught this behaviour. In addition, the
IP address of the attempts to connect with wrong passwords was logged and a
warning appeared in the application console.

9.3 Functional and Quality Requirements 125

9.2.4 Organizer Experiences

Our supervisor, and the organizer of the two experiments, was pleased with the
results gained from the two experiments. Since the results from the surveys
had deviations, much attention was directed towards the use of the applications
rather the applications themselves. The second experiment had a significant
better integration with regards to the course material, giving the application use
a better sense of purpose.

If the use of the applications are well thought out, then the use of the educational
applications makes it easier to collect input from the students in the classroom
since they are more willing to share information anonymously. The effect of
being anonymous gave the more immature students a way of broadcasting their
distracting comments, but they are a biproduct of an easy to connect application.
The organizer can, and did, moderate the results and reduced the volume of
immature content.

9.3 Functional and Quality Requirements

The functional requirements were chosen to ensure that FIGA fulfilled technical
expectations as a development aid. The listed requirements described in Table 5.1
in Chapter 5 are the most important features that are inherent in FIGA. FIGA
will insure a technical standard for all applications since these requirements are
fulfilled.

9.3.1 Functional Requirements

The development and implementation of the four prototypes, in addition with
the two conducted experiments, shows that all the functional requirements are
tested with positive results.

FR1 Supporting shared screen applications - Success

• All of the prototypes were implemented using the concept of a shared
screen. They all supported multiple GameWallApps and UserApps.

FR2 Web browser support - Success

• In every prototype, the UserApp is a web application that is executed
in a web browser. The results from the conducted experiments shows

126 Chapter 9 Evaluation

that the majority of participants managed to interact with the applica-
tions with at least one arbitrary web browser. The different prototypes
use different ways of displaying information and user interaction.

FR3 Modularity - Success

• FIGA is based on web technology and can import existing JavaScript
libraries such as D3.js, Easel.js, and jQuery. These libraries contain
different, industry proven, functionality that reduces the development
time and ease the implementation.

FR4 Network simplifications - Success

• Simplifying the networking process was achieved through categoriz-
ing the UserApps and GameWallApps together and creating wrap-
per functions for the messaging. This adds a layer on the low-level
functionality, making it easier to handle communication between the
ServerApp and all of the UserApps and GameWallApps.

FR5 Application types - Success

• FIGA must support different types of applications, both real-time
and event-driven. Both types of applications were successfully imple-
mented, with PostIt, WordCloud, and Categories being event-driven
applications and the video game 1814 being a real-time application.

9.3.2 Quality Requirements

The quality requirements were chosen to enhance the quality of the applications,
and to ensure a higher user satisfaction. The quality requirements for FIGA are
listed in Table 5.2 in Chapter 5.

NFR1 Persistent connections - Success

• In order to provide stable service, persistent connections should be
supported. This functionality was implemented and is used in the
video game 1814. If the user refreshes the web page, the ServerApp
remembers the previous information and does not create a new player
instance.

NFR2 Password protection - Partial success

• The PostIt GameWallApp uses a password protection system, but it
is application specific. This means that FIGA itself does not sup-

9.3 Functional and Quality Requirements 127

ply a password protection sytem, but PostIt shows how easy it is to
implement rudimentary protection that prevents simple attacks.

NFR3 Look and feel - Success

• The experiment participants felt that the prototypes had consistent
quality. The second experiment had 66% of the participants agreeing
to this statement. The majority, 90% of the participants, also agreed
in the second experiment that it was satisfying not having to install the
applications. Quality look and feel of applications requires significant
amount of development time, but the conducted experiments shows
that web applications can reach satisfactory levels of perceived quality
even with limited development time.

NFR4 Responsiveness - Partial success

• A total of 78% of the participants in the first experiment, and 72% in
the second experiment, disagreed to that the three educational proto-
types were unresponsive and/or had noticeable network latency. These
results are just short of the quality requirement goal of 80%. However,
if the participants who answered neutral are included, giving the first
experiment 89% and the second 93%, then the responsiveness require-
ment is accomplished.

NFR5 Platform support - Success

• The ServerApps of all the four prototypes can be executed on the
required Windows, OSX, and Linux platforms, granted that Node.js
and Socket.IO are installed on the ServerApp device.

128 Chapter 9 Evaluation

Part IV

Summary

Chapter 10

Conclusion

The project started with five research questions, stated in Chapter 2. First, how
much web application development time could be reduced by supplying a suited
framework was to be explored. Second, a various selection of application proto-
types were developed to discover what types of applications that could be made
with FIGA. Third, locating the performance and limitations of FIGA applica-
tions. Fourth, what level of usability could be achieved in FIGA applications.
Fifth and last, finding if there was an increase in perceived learning by using
educational applications made with FIGA.

Throughout the project the research methods described in Section 2.2 have been
followed to the letter. Four different prototypes have been developed, three edu-
cational and event-driven applications and one real-time video game, using FIGA.
These prototypes helped form and improve FIGA. The prototypes have also been
tested and evaluated in two different lectures, which led to an evaluation of FIGA
since all the prototypes are built using it.

This chapter summarizes the projects findings and results by answering the re-
search questions and problem definition. The content of Part II and Part III is
mainly the source and basis for the results. The project started with the fol-
lowing problem definition; “The goal of this project is to design, implement, and
evaluate a framework that makes it easy to build multimodal web applications for
large displays with multiple users. The framework will use cross platform web
technology for creation of simple games or interactive applications. Prototypes
will be created in order to evaluate the framework and investigate the potential
learning benefits in an educational setting.” Based on this problem definition the
project as a whole is considered as successful.

132 Chapter 10 Conclusion

10.1 RQ1 - Reducing Development Time

RQ1 was concerned with the amount of web application development time that
could be reduced by supplying a suited framework. To ease the development of
web applications, FIGA delivers a foundation with the most commonly needed
functionality for multimodal web applications with a shared common screen. The
scale of success is measured by combining the reduced development time with the
user satisfaction using them.

In terms of development time, the three event-driven applications were made in
approximately one day in terms of working hours. Without the use of FIGA,
the development time is estimated to at least two days. This difference becomes
even more evident if one compares it with native application development. Own
experiences and knowledge would estimate the development time to five or six
days in order to develop similar native applications. However, these assumptions
are not documented and it is recommended that this should be further researched
in the future.

The developed applications received a decent SUS score in the two conducted
experiments, and the participants were pleased with the usability of the different
applications. Therefore, the conclusion is that FIGAs functionality makes it
easier and faster to develop web applications with satisfying usability.

RQ1.1 What functionality should be provided with FIGA?

• FIGA provides the functionality of setting up a web application server
and the necessary functionality needed for a UserApp or GameWal-
lApp to connect to a ServerApp. The ServerApp inherits functionality
required to initialize a listener for incoming connections. The User-
Apps and GameWallApps have functionality for connecting to the
ServerApp. The ServerApp has the required functionality for stor-
ing, updating, and validating connections. See Chapter 6 for more
implementation details.

10.2 RQ2 - Supporting Different Application Types

RQ2 regarded what kind of application types that could be made with FIGA.
Section 4.3 concerns two application types, namely real-time and event-driven
applications. The three educational prototypes were all event-driven, and the
1814 video game prototype was a real-time application. Thus, FIGA supports
development of both event-driven and real-time applications.

10.3 RQ3 - Locating Performance Bottlenecks 133

RQ2.1 How easy is it to create an event-driven application with FIGA, and
what are the benefits of using FIGA?

• The three educational application prototypes, PostIt, WordCloud, and
Categories, were developed over a much shorted iteration cycle than
the video game 1814. FIGA helped considerably in making sure that
the behaviour of the applications was consistent. The functionality
supported by FIGA made it simple to connect the different application
components while application specific events and functionality could
be defined individually.

RQ2.2 How easy is it to create a real-time application with FIGA, and what are
the benefits of using FIGA?

• The main development time of the 1814 video game was close to a
week in terms of working hours. This was the most complicated appli-
cation of the four developed prototypes, pushing the limits of both the
graphical and network module. FIGA helped considerably in making
sure that every device could communicate with the application and
play.

10.3 RQ3 - Locating Performance Bottlenecks

RQ3 was concerned with the performance of applications made with FIGA. The
two conducted experiments got very satisfying results, and none of the educa-
tional prototypes used in the lectures did experience any major performance
issues. This shows the great performance of using FIGA for event-driven appli-
cations. The feedback regarding those where mostly on the application usage and
its user interface, none regarding responsiveness and network latency. The per-
formance is more dependent on additional algorithms and functionality created
by developers than the underlying FIGA.

RQ3.1 How many users can applications made with FIGA handle?

• In the two experiments conducted 12. March and 11. April 2013, de-
scribed in Section 8.2 and Section 8.3, respectively 27 and 30 tech-
nology students participated. The educational and event-driven ap-
plications PostIt, WordCloud, and Categories, did not experience any
delay or problems in these two experiments, so these kinds of appli-
cations made with FIGA have no problems with up to 30 users. The
participants did experience some delay or problems during the 1814
video game session, but everyone managed to interact and play. The

134 Chapter 10 Conclusion

ideal would be to gather hundreds of users and test the applications
simultaneously, but this scenario is beyond the range of this project.
The prestudy revealed that a similar project, Josh Software, had posi-
tive performance results using the same network components as FIGA
and could scale up to hundreds of concurrent users [18].

RQ3.2 How will network latency affect the user experience?

• According to the experiment results in Chapter 8 experienced most
of the students little to none network latency when using the edu-
cational and event-driven applications PostIt, WordCloud, and Cate-
gories. However, when using the video game 1814 the students changed
their opinion regarding the latency. The 1814 game did not work prop-
erly during the experiment, and it is hard to conclude whether or not
it was the game related problems that led to the feeling of network
latency, or if it was the network latency that led to the feeling of
unresponsiveness. Either way, this caused a degraded user experience.

10.4 RQ4 - Improving Usability

RQ4 regarded the achieved level of usability present in applications made with
FIGA. The evaluation summary in Section 9.2 shows that the applications re-
ceived an average SUS score of 73.3, a decent score. The participants did not
answer conclusively if they would like to use the applications frequently, or if the
various functions were well integrated in the applications. The application usage
differed from conventional teaching methods and due to limited development time
the various functions were not as well integrated in the different applications as
wanted. These reasons may be the answers behind the low score regarding the
questions, but it is difficult to prove that they are. The level of usability is still
considered as satisfying and more than good enough for further development and
improvements.

RQ4.1 Can FIGA applications reach the look and feel of native applications?

• The results in Section 8.3.5 presents that most students noticed that
the applications were dynamic web pages. Although, every participant
found it satisfying that they did not have to install any additional
applications on their device. Almost every participant managed to
interact with the applications with at least one web browser. It is
difficult to achieve the look and feel of native applications with web
applications to the full extent as of today, but different tools and

10.5 RQ5 - Educational Applications and Learning Benefits 135

libraries makes it possible to reach satisfactory levels of positive user
experience.

RQ4.2 How easy is it possible to make the setup and start using applications
developed with FIGA?

• Section 9.2 presents that the participants of both experiments found
it very satisfying that they did not have to install any of the applica-
tions on their device and found it easy to setup and start using the
applications through a web browser. A single line in the terminal is
the only requirement for starting a ServerApp. The organizer with no
experience with FIGA applications prior to the experiments was confi-
dent that he could manage starting the applications without technical
assistance.

10.5 RQ5 - Educational Applications and Learn-
ing Benefits

RQ5 was concerned with finding if there was an increase in perceived learning
by using educational applications made with FIGA. The results from the ex-
periments conducted gave good insight into what types of FIGA applications are
most suited for an educational setting. In order to create good pedagogical appli-
cations, the presentation and integration of them should be carefully considered.
Lecture Quiz, an existing system described in Chapter 3 with similar traits to
FIGA and this project, is easy to integrate with traditional lectural methods [26].
The students that tried Lecture Quiz claimed it to increase learning and concen-
tration during the lecture. Lecture Quiz can easily be compared and related to
the educational applications developed with FIGA.

Application types in Section 4.3 described that recent experiences show that video
games and other educational software can be effective and compelling context
for learning [37, 43]. Using these video games and educational software within a
classroom can be beneficial for academic achievement and motivation [44]. Based
on these experiences, the experiment evaluation, and the Lecture Quiz study, an
increase in perceived learning by using educational applications made with FIGA
is possible. However, it will require further research and work to find the levels
of increased learning and knowledge improvement.

RQ5.1 Which FIGA educational application concept returns highest perceived
learning benefits?

136 Chapter 10 Conclusion

• Categories received the highest scores in both experiments. The focus
on problem solving and matching terms seems to be a good approach
to make the students become active in an otherwise static lecture.
Most lectures are monologues, where the students become a passive
recipient of the lecturer.

RQ5.2 Which FIGA educational application concept cause increased social in-
teraction?

• The students’ perceived usefulness of the educational applications cre-
ated with FIGA is heavily dependent on the preliminary work done by
the lecturer, and how the applications are used in the lecture. The sim-
ple change from an individual to a group exercise has obvious effects
on how it is perceived as a social interaction initiator. This change is
seen from the first to the second experiment as described in Section
9.2, where PostIt was changed from an individual to a group exercise.
In addition to making the students cooperate, having a group exercise
made the responses more mature and less prone to malicious content.

RQ5.3 Which FIGA educational application concept aids a teacher in getting
feedback from the students?

• From the detailed interview with our supervisor after the two experi-
ments it was stated that the experience of organizing a lecture using
the educational applications made him structure the lectures differ-
ently. Knowing that some of the material was to be reviewed in an
exercise made him more attentive to how the material was presented.
The organizer also felt that the feedback from the students was im-
proved using the electronic brainstorming methods, compared to tra-
ditional pen-and-paper solutions.

Chapter 11

Further Work

There are several aspects of FIGA that needs further development and assess-
ments. The functionality proposed in this chapter has either been out of scope
of this project or been a serendipitous discovery while developing FIGA. In ei-
ther case, this further work should improve upon this project or evaluate the
usefulness of it.

The 1814 video game development resulted in several technical difficulties. The
results found in Section 8.3.5 points to either limitations in the network module
or an implementation bug that becomes evident under high network and com-
putational load. A closer look on the behavior of the applications under high
network and computational load should be conducted in order to better conclude
if FIGA is suited for high performance real-time applications.

The three educational prototypes performed above expectations, without giving
a clear indication on the maximum number of active users being able to interact
with them simultaneously. To ensure the capacity of an even larger attending au-
dience, this should be further explored. In addition to a technical evaluation, the
educational prototypes open up a larger scope of pedagogical use of information
technology in a classroom setting. This should be explored further to evaluate
the potential of using educational applications developed with FIGA.

An evaluation of the usefulness of the complementary applications could be per-
formed by having regular use of the applications. By conducting a quiz at the
end of lectures using Categories would make the students reflect on what they
have learned that lecture.

Since the development of FIGA only took place in-house, it lacks feedback from

138 Chapter 11 Further Work

external developers. The application prototypes were also developed in-house,
where they followed the best practices of FIGA. The experience and knowledge
of how FIGA should be used is not likely to be as obvious for external developers.
In order to mature, FIGA should be used in third-party development to validate
its qualities as intuitive and extendable.

The quality requirements of providing security and session control were both im-
plemented, though limited. This functionality should be improved in order to pro-
vide a better service to the applications using FIGA. Security will be paramount
in later development, especially in widespread applications with many partici-
pants. The experiments experienced several cases of immature behaviour with
exhibitionistic tendencies, where the GameWallApp presents the opportunity to
show off in front of the crowd. Adding a banning system could reduce this is-
sue, where a user is tagged as inappropriate and exclude all subsequent input
from that user. This could be implemented using the same approach as with the
persistent connection system, using the IP address of the user as an identifier.
This quality functionality should be improved upon in order to make FIGA more
appealing.

There exists a great potential in the spontaneous nature of the applications made
with FIGA and it shows the promise of localized web applications. This project
shows the possibilities of connecting isolated technology platforms, where the
trend in todays technology marked is to only cater oneself. Collaboration was
one of the main motivations behind FIGA, and this project proves that not
only is it possible that vastly different devices communicate effortlessly, but that
people interacting together is both fun and improves learning. FIGA allows for
rapid prototyping of a wide variety of application concepts, and the future will
hopefully show exciting applications building on the foundations of FIGA.

Part V

Appendix

Appendix A

Test Environment

13” MacBook Pro

One of the test and development devices was a 13” Macbook Pro from early 2011
with a screen resolution of 1280 x 800 pixels. 2.3 GHz Intel Core i5 processor, 4
GB 1333 MHz DDR3 memory and Intel HD Graphics 3000 384 MB. Through the
project it had Mac OS X version 10.8.2 installed, as well as several web browsers,
such as Safari, Chrome, Opera, and Firefox.

15” MacBook Pro

Another test device was a 15" MacBook Pro from spring 2008. Screen resolution
1440 x 900. 2.5 GHz Intel Core 2 Duo processor and 2 GB 667 MHz DDR2
SDRAM. The GPU is a NVIDIA GeForce 8600M GT chip. Mac OSX 10.6.8.
The following browsers are installed Safari, Opera, Chrome, and Firefox.

iPhone 4S

The iPhone 4S has a 3.5 inches retina display with multi-touch, and a resolution
of 960 x 640 pixels at 326 ppi. 512 MB RAM, 32 GB memory and 2x Cortex A9
800 MHz processor. During the project the iPhone 4S had iOS 6 installed, along
with the web browsers Safari and Chrome.

142 Appendix A Test Environment

iPad 2

The iPad 2 has a 9.7 inches display, 4:3 aspect ratio at 132 ppi. It consists of 512
MB DDR2 RAM, 64 GB storage capacity, and 1 GHz dual-core ARM Cortex-
A9 processor. Similar to the iPhone 4S, the iPad 2 also had iOS 6, Safari and
Chrome installed.

Samsung Galaxy SII

Samsung Galaxy SII is an Android mobile phone with the resolution of 800 x
480 and a 1.2 GHz dual-core processor. The device used the native web browser
Google Chrome Mobile and Firefox Mobile.

Appendix B

Experiment Evaluation

B.1 Technical Considerations Results from the First
Experiment

Technical considerations Strongly

dis-

agree

Disagree Neutral Agree Strongly

agree

1 I found it easy to setup and start
using the applications through the
web browser

4% 7% 22% 45% 22%

2 I did not manage to interact with
the GameWall system with at least
one web browser

59% 19% 11% 7% 4%

3 I found it satisfying that I did not
have to install any of the applica-
tions on my smartphone

0% 0% 7% 44% 49%

4 I found the applications unrespon-
sive and/or with noticeable network
latency

41% 37% 11% 11% 0%

5 I felt that the applications had con-
sistent quality

4% 4% 44% 37% 11%

Table B.1: Technical considerations results

144 Appendix B Experiment Evaluation

B.2 Technical Considerations Results from the Sec-
ond Experiment

Technical considerations Strongly

dis-

agree

Disagree Neutral Agree Strongly

agree

1 I found it easy to setup and start
using the applications through the
web browser

3% 0% 3% 63% 31%

2 I did not manage to interact with
the GameWall system with at least
one web browser

41% 46% 10% 0% 3%

3 I found it satisfying that I did not
have to install any of the applica-
tions on my smartphone

0% 0% 10% 59% 31%

4 I found the applications unrespon-
sive and/or with noticeable network
latency

31% 41% 21% 7% 0%

5 I felt that the applications had con-
sistent quality

0% 3% 31% 56% 10%

Table B.2: Technical considerations results from the second experiment

B.3 Technical Considerations Results from 1814 145

B.3 Technical Considerations Results from 1814

Technical user experience Strongly

dis-

agree

Disagree Neutral Agree Strongly

agree

1 I found it easy to setup and start
using the game through the web
browser

0% 4% 4% 50% 42%

2 I did not manage to interact with
the game with at least one web
browser

42% 17% 33% 4% 4%

3 I found it satisfying that I did not
have to install the game on my
smartphone

0% 0% 13% 58% 29%

4 I found the game unresponsive
and/or with noticeable network la-
tency

12% 8% 21% 46% 13%

Table B.3: Technical user experience results from 1814

146 Appendix B Experiment Evaluation

B.4 Gameplay Results from 1814

Gameplay and social interaction Strongly

dis-

agree

Disagree Neutral Agree Strongly

agree

1 The game was fun to play 8% 21% 29% 42% 0%
2 The game was not engaging 4% 38% 25% 33% 0%
3 I did not notice that the game was

played in a web browser
13% 42% 33% 12% 0%

4 Playing the game in the same room
with other people made me less
competitive

25% 50% 21% 4% 0%

5 Playing the game in the same room
with other people made it more fun

0% 0% 12% 75% 13%

6 I would not like to play games
this way (shared common screen
w/browser controller) frequently

4% 38% 21% 29% 8%

7 Playing the game in the same room
with other people made me cooper-
ate better (vs online play)

12% 0% 63% 25% 0%

Table B.4: Gameplay and social interaction results from 1814

Appendix C

Evaluation Survey

This chapter contains the different evaluation surveys used during the project, as
well as the respective results.

First, the evaluation survey from the first experiment, followed by its results.
Second, the evaluation survey from the second experiment, followed by its results.
Third and last, the evaluation survey from the 1814 game session, followed by its
results.

Evaluation	 	 2013.03.12	 	 	

1/2	

GameWall	 evaluation	
	

General	 Information	 	

Age	 (eg.	 24	 years)	 	
Sex	 (male/female)	 	
Study	 programme	 (eg.	 MTDT)	 	
Mobile	 device	 (eg.	 iPhone	 4S,	 Samsung	 Galaxy	 SIII,	
MacBook,	 Samsung	 Galaxy	 Tab)	 	

Web	 browser	 (eg.	 Opera,	 Safari,	 Firefox)	 	
Connectivity	 (eg.	 Edge,	 3G,	 Wifi)	 	
	
The	 questions	 below	 on	 page	 1	 (SUS	 Questions	 and	 Technical	 Considerations)	 considers	
the	 overall	 concept	 of	 using	 a	 shared	 GameWall	 within	 a	 classroom.	 Use	 the	 overall	
impressions	 from	 all	 three	 applications	 combined	 and	 mark	 a	 single	 box	 of	 your	 choice.	
	
	 SUS	 Questions	 -‐	 GameWall	 System	 Strongly	

disagree	 Disagree	 Neutral	 Agree	 Strongly	
agree	

1	 I	 think	 that	 I	 would	 like	 to	 use	 this	 system	 frequently	 	 	 	 	 	

2	 I	 found	 the	 system	 unnecessarily	 complex	 	 	 	 	 	

3	 I	 thought	 the	 system	 was	 easy	 to	 use	 	 	 	 	 	

4	 I	 think	 that	 I	 would	 need	 the	 support	 of	 a	 technical	
person	 to	 be	 able	 to	 use	 this	 system	 	 	 	 	 	

5	 I	 found	 the	 various	 functions	 in	 this	 system	 were	
well	 integrated	 	 	 	 	 	

6	 I	 thought	 there	 was	 too	 much	 inconsistency	 in	 this	
system	 	 	 	 	 	

7	 I	 would	 imagine	 that	 most	 people	 would	 learn	 to	 use	
this	 system	 very	 quickly	 	 	 	 	 	

8	 I	 found	 the	 system	 very	 cumbersome	 to	 use	 	 	 	 	 	

9	 I	 felt	 very	 confident	 using	 the	 system	 	 	 	 	 	

10	 I	 needed	 to	 learn	 a	 lot	 of	 things	 before	 I	 could	 get	
going	 with	 this	 system	 	 	 	 	 	

	

	 Technical	 Considerations	 Strongly	
disagree	 Disagree	 Neutral	 Agree	 Strongly	

agree	

1	 I	 found	 it	 easy	 to	 setup	 and	 start	 using	 the	
applications	 through	 the	 web	 browser	 	 	 	 	 	

2	 I	 did	 not	 manage	 to	 interact	 with	 the	 GameWall	
system	 with	 at	 least	 one	 web	 browser	 	 	 	 	 	

3	 I	 found	 it	 satisfying	 that	 I	 did	 not	 have	 to	 install	 any	
of	 the	 applications	 on	 my	 smartphone	 	 	 	 	 	

4	 I	 found	 the	 applications	 unresponsive	 and/or	 with	
noticable	 network	 latency	 	 	 	 	 	

5	 I	 felt	 that	 the	 applications	 had	 consistent	 quality	 	 	 	 	 	

Evaluation	 	 2013.03.12	 	 	

2/2	

The	 questions	 on	 page	 2	 (Application	 Comparison	 and	 Comments)	 considers	 each	
application	 individually.	 The	 answers	 will	 be	 used	 as	 feedback	 to	 improve	 each	 of	 the	
applications	 and	 find	 the	 most	 suited	 classroom	 application.	 Rate	 the	 applications	 from	
1	 to	 3,	 where	 1	 is	 the	 worst	 and	 3	 is	 the	 best.	
	
	 Application	 Comparison	 WordCloud	 Post-‐it	 Categories	

1	 The	 application	 that	 was	 the	 most	 fun	 to	 use	 	 	 	
2	 The	 application	 that	 was	 the	 most	 engaging	 	 	 	
3	 The	 application	 that	 I	 believe	 has	 the	 highest	 learning	 outcome	 	 	 	
4	 The	 application	 that	 I	 would	 like	 to	 be	 used	 in	 most	 classes	 	 	 	
5	 The	 application	 that	 made	 me	 think	 the	 most	 	 	 	
6	 The	 application	 that	 demands	 the	 most	 creativity	 	 	 	
7	 The	 application	 that	 made	 me	 initiate	 social	 interaction	 	 	 	
8	 The	 application	 that	 was	 the	 most	 challenging	 	 	 	
9	 The	 application	 that	 made	 me	 most	 active	 	 	 	
10	 The	 application	 that	 held	 my	 attention	 	 	 	
11	 The	 application	 that	 made	 me	 contribute	 the	 most	 	 	 	

	

Comments	 about	 WordCloud	
	
	
	
	
	
	
	
Comments	 about	 Post-‐it	
	
	
	
	
	
	
	
Comments	 about	 Categories	
	
	
	
	
	
	
	

General information

Strongly disagree (1), disagree (2), neutral (3), agree (4), strongly agree
(5)

Application comparisonSUS Technical

Nr Age Gender
Study
programme Device Unit (device) Browser Connectivity 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11

1 27 Male MTDT Notebook Laptop Chrome Wifi 4 2 4 1 3 3 5 X 5 2 5 2 5 2 3 2 2 2 2 3 1 2 3 2 2 2

2 23 Male MTDT
HTC Desire S
Android Smart Phone

Opera
for
Mobile Wifi 5 1 5 1 4 1 5 X 4 1 4 4 5 1 5 3 3 3 1 1 3 3 1 1 3 1

3 22 Male MTDT
Samsung Galaxy
SII, PC Win8

Smart Phone,
Laptop

mobile
Dolphin,
win8
Chrome Wifi 4 1 4 2 3 3 4 2 4 1 5 3 4 1 4 2 1 3 3 3 2 3 3 3 1 3

4 21 Male MTDT
Xperia Mini
SK17i Laptop Opera Wifi 3 1 5 1 3 2 5 1 4 1 3 1 5 1 3 3 3 3 1 3 X 3 3 3 3 X

5 22 Male MTDT iPhone Smart Phone Chrome Wifi 1 1 4 2 1 4 4 2 4 2 4 1 4 2 1 3 3 2 3 3 2 3 3 3 1 2
6 43 Male MiT iPhone Smart Phone Chrome Wifi 4 4 2 3 4 4 X 2 3 4 1 4 4 2 4 2 1 2 2 1 2 1 3 3 3 2

7 25 Male MTDT
Samsung Galaxy
SIII Smart Phone Chrome Wifi 3 1 4 1 3 3 4 3 2 3 4 1 5 1 4 3 1 3 3 3 1 3 3 1 1 1

8 23 Male MTDT HTC One X+ Smart Phone Chrome Wifi 4 2 4 1 3 2 4 2 3 2 4 1 5 2 3 3 1 3 2 3 1 1 3 3 3 2
9 22 Male MTDT iPhone 4 Smart Phone Safari Wifi 3 2 4 1 3 4 4 3 3 1 4 1 4 2 3 X X X X X X X X X X X

10 21 Male MTDT HTC Desire Smart Phone Wifi 4 3 4 2 3 3 4 2 3 1 4 1 5 1 2 1 1 1 1 1 3 1 1 1 3 1

11 24 Male
Software
Engineering - Laptop Chrome Wifi 3 1 5 4 3 2 4 3 3 3 3 1 5 3 4 2 2 1 2 1 3 3 1 1 2 3

12 21 Male MTDT iPhone 4 Smart Phone Safari Wifi 3 2 4 2 3 3 4 3 3 2 3 2 4 2 3 3 2 3 2 3 2 3 3 2 2 2
13 21 Female MTDT iPhone 4S Smart Phone Safari Wifi 4 2 5 1 4 3 5 X 2 1 2 1 3 1 3 1 1 X 1 X 1 X 3 1 1 X
14 24 Male MTDT iPhone 5 Smart Phone Chrome 3G 4 1 5 1 5 1 5 1 5 1 3 1 5 4 4 1 1 1 1 2 1 1 3 1 1 1
15 25 Male MTDT Xperia Sola Smart Phone Opera Wifi 4 2 4 1 3 3 4 2 3 3 4 1 5 3 3 3 3 1 2 1 3 1 2 1 2 2
16 23 Male MTDT iPhone 4 Smart Phone Safari Wifi 4 2 4 2 4 2 4 2 3 1 3 3 4 2 3 1 1 3 1 3 1 1 3 1 1 1
17 25 Male MTDT iPhone 5 Smart Phone Safari Wifi 4 2 4 1 3 3 4 2 4 1 5 1 5 1 4 2 1 3 3 3 3 3 3 1 1 1
18 22 Male MTDT Calaxy S2 Smart Phone Chrome Wifi 4 2 4 1 3 2 3 2 4 1 4 1 5 4 4 2 2 3 3 3 X 3 3 3 3 3
19 24 Male MTEL - - - - 4 X

20 22 Male MTDT iPhone 4S Smart Phone
Google
Chrome Wifi 3 2 4 1 4 2 4 2 4 1 3 2 4 1 4 1 3 3 3 3 1 1 3 3 1 1

21 24 Male MTDT iPhone 4 Smart Phone Safari Wifi 3 3 3 3 3 3 3 3 3 3 1 5 3 5 3 X X X X X X X X X X X
22 21 Male MTDT iPhone 4 Smart Phone Safari Wifi X X X X X X X X X X 2 5 4 4 3 2 2 3 2 3 2 1 3 3 2 2

23 24 Male MTDT
Samsung Galaxy
Note 2 Smart Phone Chrome Wifi 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 2 2 2 2 2 2 2 2 2 2 3

24 23 Male MTDT None None None None 1 2 3 1 3 4 3 3 3 3 3 3 3 3 3 X X X X X X X X X X X
25 21 Male MTDT Laptop Chrome Wifi 4 1 5 1 5 1 5 1 5 1 5 1 4 1 5 1 2 2 2 3 2 1 3 3 3 3
26 24 Male Datateknikk Macbook Laptop Safari Wifi 3 3 2 2 3 2 4 3 3 2 4 2 4 2 3 3 3 3 3 3 3 3 3 3 3 3
27 25 Male Datateknikk iPhone Smart Phone Safari Wifi 3 1 4 1 4 1 4 2 4 1 5 1 4 1 4 2 1 2 3 1 1 3 1 2 1 1
28 29 Male Data iPhone Smart Phone Safari Wifi 4 2 4 1 3 2 X 4 5 2 4 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3
29 23 Male MTDT Huawei Honor Smart Phone Mozilla Wifi 4 1 4 1 4 2 5 1 5 1 4 3 4 2 4 2 2 3 2 3 1 X 3 2 2 2

30 23 Female BIT
Samsung Galaxy
S3 Smart Phone Chrome Wifi 3 3 3 1 2 3 4 X 4 1 4 2 3 2 3 2 2 2 2 3 2 X 2 2 2 2

Evaluation	 	 2013.04.11	 	 	

1/2	

GameWall	 evaluation	
	

General	 Information	 	

Age	 (eg.	 24	 years)	 	
Gender	 (male/female)	 	
Study	 programme	 (eg.	 MTDT)	 	
Mobile	 device	 (eg.	 iPhone	 4S,	 Samsung	 Galaxy	 SIII,	
MacBook,	 Samsung	 Galaxy	 Tab)	 	

Web	 browser	 (eg.	 Opera,	 Safari,	 Firefox)	 	
Connectivity	 (eg.	 Edge,	 3G,	 Wifi)	 	
I	 participated	 on	 the	 previous	 test	 conducted	
March	 12th	 2013	 (yes/no)	 	
	

The	 questions	 below	 on	 page	 1	 (SUS	 Questions	 and	 Technical	 Considerations)	 considers	
the	 overall	 concept	 of	 using	 a	 shared	 GameWall	 within	 a	 classroom.	 Use	 the	 overall	
impressions	 from	 all	 three	 applications	 combined	 and	 mark	 a	 single	 box	 of	 your	 choice.	
	

	 SUS	 Questions	 -‐	 GameWall	 System	 Strongly	
disagree	 Disagree	 Neutral	 Agree	 Strongly	

agree	

1	 I	 think	 that	 I	 would	 like	 to	 use	 this	 system	 frequently	 	 	 	 	 	

2	 I	 found	 the	 system	 unnecessarily	 complex	 	 	 	 	 	

3	 I	 thought	 the	 system	 was	 easy	 to	 use	 	 	 	 	 	

4	 I	 think	 that	 I	 would	 need	 the	 support	 of	 a	 technical	
person	 to	 be	 able	 to	 use	 this	 system	 	 	 	 	 	

5	 I	 found	 the	 various	 functions	 in	 this	 system	 were	
well	 integrated	 	 	 	 	 	

6	 I	 thought	 there	 was	 too	 much	 inconsistency	 in	 this	
system	 	 	 	 	 	

7	 I	 would	 imagine	 that	 most	 people	 would	 learn	 to	 use	
this	 system	 very	 quickly	 	 	 	 	 	

8	 I	 found	 the	 system	 very	 cumbersome/awkward	 (in	
norwegian:	 tungvint)	 to	 use	 	 	 	 	 	

9	 I	 felt	 very	 confident	 using	 the	 system	 	 	 	 	 	

10	 I	 needed	 to	 learn	 a	 lot	 of	 things	 before	 I	 could	 get	
going	 with	 this	 system	 	 	 	 	 	

	

	 Technical	 Considerations	 Strongly	
disagree	 Disagree	 Neutral	 Agree	 Strongly	

agree	

1	 I	 found	 it	 easy	 to	 setup	 and	 start	 using	 the	
applications	 through	 the	 web	 browser	 	 	 	 	 	

2	 I	 did	 not	 manage	 to	 interact	 with	 the	 GameWall	
system	 with	 at	 least	 one	 web	 browser	 	 	 	 	 	

3	 I	 found	 it	 satisfying	 that	 I	 did	 not	 have	 to	 install	 any	
of	 the	 applications	 on	 my	 smartphone	 	 	 	 	 	

4	 I	 found	 the	 applications	 unresponsive	 and/or	 with	
noticable	 network	 latency	 	 	 	 	 	

5	 I	 felt	 that	 the	 applications	 had	 consistent	 quality	 	 	 	 	 	

Evaluation	 	 2013.04.11	 	 	

2/2	

The	 questions	 on	 page	 2	 (Application	 Comparison	 and	 Comments)	 considers	 each	
application	 individually.	 The	 answers	 will	 be	 used	 as	 feedback	 to	 improve	 each	 of	 the	
applications	 and	 find	 the	 most	 suited	 classroom	 application.	 Mark	 a	 single	 box	 of	 your	
choice.	
	
	 Application	 Comparison	 WordCloud	 Post-‐it	 Categories	

1	 The	 application	 that	 was	 the	 most	 fun	 to	 use	 	 	 	
2	 The	 application	 that	 was	 the	 most	 engaging	 	 	 	
3	 The	 application	 that	 I	 believe	 has	 the	 highest	 learning	 outcome	 	 	 	
4	 The	 application	 that	 I	 would	 like	 to	 be	 used	 in	 most	 classes	 	 	 	
5	 The	 application	 that	 made	 me	 think	 the	 most	 	 	 	
6	 The	 application	 that	 demands	 the	 most	 creativity	 	 	 	
7	 The	 application	 that	 made	 me	 initiate	 social	 interaction	 	 	 	
8	 The	 application	 that	 was	 the	 most	 challenging	 	 	 	
9	 The	 application	 that	 made	 me	 most	 active	 	 	 	
10	 The	 application	 that	 held	 my	 attention	 	 	 	
11	 The	 application	 that	 made	 me	 contribute	 the	 most	 	 	 	

	

Comments	 about	 WordCloud	
	
	
	
	
	
	
	
Comments	 about	 Post-‐it	
	
	
	
	
	
	
	
Comments	 about	 Categories	
	
	
	
	
	
	
	

General information

Strongly disagree (1), disagree (2), neutral (3), agree (4), strongly agree
(5)

Application comparisonSUS Technical

Nr Age Gender
Study
programme Device Unit (device) Browser Connectivity

Participated
last 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11

1 23 Male MTING iPhone 4 Smart phone Safari Wifi No 4 2 4 2 4 2 4 2 4 2 5 1 5 1 5 1 1 3 2 2 2 2 3 3 3 3

2 21 Male MTDT
Sony Ericsson /
Lenovo Thinkpad

Cell phone /
laptop Opera Wifi Yes 4 1 5 1 4 2 5 1 4 1 5 1 5 1 X 1 1 3 X 1 1 X 1 1 X X

3 22 Female MTDT LG Phone Smart phone Chrome Wifi No 3 2 4 2 4 2 4 2 4 1 4 2 4 3 4 3 3 3 3 3 1 2 X 3 3 3
4 21 Female MTDT iPhone 4 Smart phone Safari Wifi No 3 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 3 3 3 3 1 2 3 3 3 3
5 21 Male MTDT One X HTC Smart Phone Chrome Wifi Yes 3 2 4 1 4 2 4 2 4 1 4 2 4 2 4 1 2 3 2 3 2 2 3 2 3 3
6 24 Male MTDT iPad 1. gen Tablet Safari Wifi Yes 3 2 4 1 3 2 4 2 4 1 1 5 3 3 3 1 1 2 2 2 2 2 X 2 2 2
7 24 Male MIT LG Smart phone Chrome Wifi No 2 2 4 1 3 1 5 1 5 1 5 1 3 1 4 3 3 3 3 3 1 X X 3 3 3
8 43 Male MIT iPhone 4S Smart phone Chrome Wifi No 2 2 4 1 4 2 4 2 4 2 4 2 4 2 4 3 3 3 3 3 1 2 3 2 3 1
9 22 Female MTDT Galaxy Nexus Smart phone Chrome Wifi No 4 2 5 1 4 2 5 1 5 1 5 1 5 1 5 X X X X X X X X X X X

10 21 Male MTDT iPhone 4 Smart phone Safari Wifi Yes 4 2 4 1 3 3 4 2 3 2 4 1 4 2 3 2 2 2 2 3 1 2 3 2 2 2
11 23 Male MTDT Huawei Honor Smart phone Firefox Wifi Yes 4 2 4 1 4 1 4 1 4 1 5 3 4 2 4 1 3 3 1 3 1 2 3 3 1 1
12 22 Male MTDT iPhone 4S Smart phone Safari Wifi No 3 2 4 1 3 3 4 2 4 1 4 1 4 2 4 3 3 3 X 3 1 3 3 3 3 X
13 22 Male MTDT iPhone 5 Smartphone Chrome Wifi Yes 4 2 5 1 4 2 4 1 4 1 5 2 4 2 4 2 3 3 3 3 1 3 3 3 3 3

14 21 Female MTDT
iPad3 and
iPhone 4S

Smartphone
and Tablet Safari Wifi Yes 3 2 4 1 3 3 5 3 3 3 5 1 4 1 3 1 1 1 1 X X X 3 X 1 1

15 23 Male MTDT
Samsung Galaxy
SIII Smartphone Firefox Wifi No 3 3 4 1 4 3 4 2 4 3 4 2 4 4 4 1 3 3 1 2 1 3 3 3 1 3

16 26 Male MTING - - Chrome Wifi - 4 2 4 1 4 2 4 2 3 1 4 1 3 1 4 2 1 2 2 3 1 2 3 3 3 2
17 22 Male MTDT None None None None Yes 2 3 3 2 3 4 3 3 3 3 X X X X X X X X X X X X X X X X

18 24 Male MTEL
Samsung Nexus
S Smartphone Standard Wifi Yes 3 2 4 2 3 3 4 2 4 2 4 2 5 3 3 3 3 2 3 1 2 3 2 2 3 2

19 24 Male
Exchange
student - - Chrome Wifi Yes 4 1 4 2 3 2 3 2 3 2 3 2 5 3 4 2 3 3 1 3 1 1 3 3 3 1

20 23 Male - HTC Desire S Smartphone

Opera
for
android Wifi Yes 4 2 5 1 5 1 5 X 5 5 5 1 5 4 5 2 2 2 2 3 1 1 3 3 2 1

21 23 Female DIT
Samsung Galaxy
S3 Smartphone Chrome Wifi Yes 4 2 4 2 4 3 4 2 4 2 4 3 4 2 3 3 3 3 3 3 1 2 3 3 3 3

22 25 Male MTDT Xperia Sola Smartphone Chrome Wifi Yes 4 2 4 1 3 2 4 1 4 2 4 1 4 1 4 X X X X X X X X X X X
23 24 Male MTDT MacBook Laptop Safari Wifi Yes 3 2 4 2 4 2 4 2 3 2 4 2 4 2 4 X X X X X X X X X X X
24 23 Male MTDT HTC One X+ Smartphone Chrome Wifi Yes 5 2 4 2 3 4 5 2 4 2 4 1 5 2 4 2 3 3 2 3 1 12 3 3 3 2
25 25 Male MTDT iPhone 5 Smartphone Safari Wifi Yes 3 2 4 1 3 3 4 2 4 1 4 1 4 2 3 2 3 3 3 3 2 3 3 3 3 2
26 24 Male MIT Android Smart phone Chrome Wifi No 4 2 3 1 4 2 4 3 3 1 4 2 5 1 4 1 1 1 1 2 2 2 3 2 3 3

27 22 Male MTDT
Samsung Galaxy
S2 Smartphone Chrome Wifi Yes 2 2 4 1 3 2 4 2 4 1 4 2 4 2 4 3 3 3 3 3 2 2 3 3 3 3

28 24 Male
Exchange
student Asus X55C Laptop Chrome Wifi No 4 1 4 1 4 2 5 1 5 1 5 2 4 1 3 3 3 3 3 2 2 2 3 2 3 2

29 22 Male MTDT iPhone Smartphone Chrome Wifi Yes 2 2 4 2 2 4 4 3 4 2 4 2 4 3 2 3 2 2 3 2 2 2 2 2 2 3
30 23 Female MTDT iPhone Smart phone Safari Wifi No 3 1 4 1 4 3 4 2 4 2 4 2 5 2 4 3 3 3 2 2 2 2 2 3 3 3

Evaluation	 	 2013.04.11	 	 	

1/1	

1814	 evaluation	
	

General	 Information	 	

Age	 (eg.	 24	 years)	 	
Gender	 (male/female)	 	
Study	 programme	 (eg.	 MTDT)	 	
Mobile	 device	 (eg.	 iPhone	 4S,	 Samsung	 Galaxy	 SIII,	
MacBook,	 Samsung	 Galaxy	 Tab)	 	

Web	 browser	 (eg.	 Opera,	 Safari,	 Firefox)	 	
Connectivity	 (eg.	 Edge,	 3G,	 Wifi)	 	
	

The	 questions	 below	 considers	 the	 game	 1814.	 Use	 the	 overall	 impressions	 from	 the	
game	 sequence	 and	 mark	 a	 single	 box	 of	 your	 choice.	
	

	 Technical	 User	 Experience	 Strongly	
disagree	 Disagree	 Neutral	 Agree	 Strongly	

agree	

1	 I	 found	 it	 easy	 to	 setup	 and	 start	 using	 the	 game	
through	 the	 web	 browser	 	 	 	 	 	

2	 I	 did	 not	 manage	 to	 interact	 with	 the	 game	 with	 at	
least	 one	 web	 browser	 	 	 	 	 	

3	 I	 found	 it	 satisfying	 that	 I	 did	 not	 have	 to	 install	 the	
game	 on	 my	 smartphone	 	 	 	 	 	

4	 I	 found	 the	 game	 unresponsive	 and/or	 with	
noticable	 network	 latency	 	 	 	 	 	

	

	 Gameplay	 &	 Social	 Interaction	 Strongly	
disagree	 Disagree	 Neutral	 Agree	 Strongly	

agree	

1	 The	 game	 was	 fun	 to	 play	 	 	 	 	 	

2	 The	 game	 was	 not	 engaging	 	 	 	 	 	

3	 I	 did	 not	 notice	 that	 the	 game	 was	 played	 in	 a	 web	
browser	 	 	 	 	 	

4	 Playing	 the	 game	 in	 the	 same	 room	 with	 other	
people	 made	 me	 less	 competative	 	 	 	 	 	

5	 Playing	 the	 game	 in	 the	 same	 room	 with	 other	
people	 made	 it	 more	 fun	 	 	 	 	 	

6	 I	 would	 not	 like	 to	 play	 games	 this	 way	 (shared	
common	 screen	 w/browser	 controller)	 frequently	 	 	 	 	 	

7	 Playing	 the	 game	 in	 the	 same	 room	 with	 other	
people	 made	 me	 cooperate	 better	 (vs	 online	 play)	 	 	 	 	 	

	

Comments	 about	 1814	
	
	
	
	
	
	

	

General information

Strongly disagree (1), disagree (2), neutral (3), agree (4), strongly
agree (5)
Technical User Ex. Gameplay & Social Interaction

Nr Age Gender
Study
programme Device Unit (device) Browser Connectivity 1 2 3 4 1 2 3 4 5 6 7 Comments

1 24 Male MTDT iPad 1. gen Tablet Safari Wifi 4 1 4 4 4 2 3 4 4 4 3

2 24 Male MTEL
Samsung
Nexus S Smartphone Chrome Wifi 4 1 4 3 4 4 2 3 3 2 3 A bit hard to understand the rules of the game at the beginning

3 43 Male MIT iPhone 4S Smartphone Chrome Wifi 4 5 4 4 4 2 2 2 4 4 4
På iPhone 4S, chrome, ble ikke "control-knappen" riktig skalert
på skjermen. "Ned-knappen" var ikke synlig

4 24 Male MIT
LG
something Smartphone Chrome Wifi 3 2 4 4 1 4 3 3 5 3 3

Shot my cannon at a horse for 2 min with no response from the
game (was the horse supposed to just live, or die?
Questionaire is full of "not"-questions, which should be avoided:
eg "The game was not engaging" should be "The game was
engaging"

5 22 Male MTDT
Samsung
Galaxy SII Smartphone Chrome Wifi 5 3 4 5 2 4 3 2 4 2 3

I did not understand why, nor did I like that i swapped character
(died?). I had difficulty finding my character, I missed my
nametag

6 22 Male MTDT iPhone Smartphone Chrome Wifi 4 4 4 3 2 4 2 3 4 4 3

Bad hitbox detection. Sprites was not removed upon death.
Should have nicknames over characters to make it easier to
find yourself.

7 22 Female MTDT
Galaxy
Nexus Smartphone Chrome Wifi 4 3 5 4 4 2 3 1 4 2 4

Hard to figure out who you were / which charater on the screen
you control

8 24 Male
Exchange
student Asus X55c Laptop Chrome Wifi 5 1 3 1 4 1 1 1 5 1 4 Add more instructions about playing (How to play)

9 22 Female MTDT iPhone 4 Smartphone Safari Wifi 5 3 4 4 4 3 3 2 4 3 3 Hard to figure out which player I am in the game

10 23 Male MTDT
Huawei
Honor Smartphone Mozilla Wifi 4 3 4 2 4 2 2 2 4 4 4

need indications of hit targets. needs to be easier to know who
you are

11 21 Female MTDT iPhone 4 Smartphone Safari Wifi 4 3 4 4 2 3 2 3 3 3 3
i did not understand who i was and how to do stuff. and my
player changed and my team changed and i dont know how

12 21 Male MTDT

Lenovo
ThinkPad
E130 laptop Chrome Wifi X X 5 X X X X X X X X

you did not say we used only the common screen - the image
on the PC looked like a loading screen, so most of the time i
thought the game was not ready on my computer yet, and just
waited. when my neighbour noticed how it worked, he told me,
and i started trying to find myself on the screen, but due to my
poor eyesight and the unexplained show-name (aka "?") button,
i did not. might be a fun game, but i did not really play it.

13 23 Female BIT
Samsung
galaxy s3 Smartphone Chrome Wifi 4 3 3 5 1 2 1 2 4 4 1

it did not scale well on my device/browser, hard to see where
my character was, seemed like it did not detect when i hit - or
taught i hit.

16 27 Male MTDT HTC Desire Smartphone Android Wifi 5 3 4 4 3 3 4 2 4 3 4

I could not move left/right. Usability: make moving interactive.
Pause game at start (lobby). Missing nicknames, difficult to
locate player

17 23 Male MTDT - - Firefox Wifi 2 1 4 4 3 3 3 2 4 5 1

18 21 Female MTDT
"The new
iPad", iPad3 Tablet Safari Wifi 5 1 5 1 3 3 3 1 4 2 1

Vanskelig å se hva som skjedde da jeg angrep. Fikk ikke
inntrykket av at jeg traff noen. Også var det litt rart at jeg
plutselig byttet side. Først norsk, så svensk.

19 22 Male MTDT iPhone 5 Smartphone Chrome Wifi 5 1 4 4 3 4 4 2 4 4 3
20 22 Male MTDT iPhone 4s Smartphone Chrome Wifi 5 1 5 4 4 3 1 1 5 2 3 Kult konsept
21 25 Male MTDT Xperia Sola Smartphone Chrome Wifi 5 1 4 3 3 2 4 1 4 4 3
22 24 Male MTDT Macbook Laptop Safari Wifi 4 2 4 4 2 4 2 2 4 2 3
23 23 Male MTDT TC One X+ Smartphone Chrome Wifi 5 3 5 5 3 2 2 1 4 3 4 I did not know where/who i was

24 26 Male MTING - - Chrome Wifi 4 2 3 2 2 4 3 2 3 5 3

hard to find who you controll. no feedback on if you are hit or
are hitting someone. feels completly random. because you cant
see who is doing well.

25 23 Male MTING Macbook Laptop Safari Wifi 5 1 5 1 4 2 2 3 4 2 3
26 23 Female MTDT iPhone Smartphone Safari Wifi 4 1 5 3 3 4 2 2 4 2 3

156 Appendix C Evaluation Survey

Bibliography

[1] 4+1 Architectural View Model. http://www.cs.ubc.ca/~gregor/teaching/
papers/4+1view-architecture.pdf. Accessed: 04/03/2013. 54

[2] Cascading Style Sheets. http://www.w3.org/Style/CSS/. Accessed:
12/11/2012. 30

[3] D3.js. http://d3js.org/. Accessed: 03/03/2013. 31

[4] Developing multiplayer HTML5 games with Node.js. http://smus.com/
multiplayer-html5-games-with-node/. Accessed: 18/01/2013. 18

[5] Document Object Model (DOM). http://www.w3.org/DOM/. Accessed:
13/11/2012. 29

[6] EaselJS. http://www.createjs.com/#!/EaselJS. Accessed: 27/01/2013. 85

[7] Google scholar. http://scholar.google.no/. Accessed: 21/01/2013. 13

[8] Hemisphere games. http://www.hemispheregames.com/. Accessed:
18/01/2013. 18

[9] HTML. http://www.w3.org/MarkUp/. Accessed: 12/11/2012. 28

[10] jQuery. http://jquery.com/. Accessed: 14/11/2012. 31

[11] jQuery mobile. http://jquerymobile.com/. Accessed: 14/11/2012. 80

[12] jQuery Usage Trends. http://trends.builtwith.com/javascript/JQuery. Ac-
cessed: 07/03/2013. 31

[13] Microsoft xbox. http://www.xbox.com/nb-NO. Accessed: 14/02/2013. 36

[14] Nintendo Wii U. http://www.nintendo.com/wiiu. Accessed: 19/01/2013. 19

[15] Node.js. http://nodejs.org/. Accessed: 16/10/2012. 34, 35, 59, 85

http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.w3.org/Style/CSS/
http://d3js.org/
http://smus.com/multiplayer-html5-games-with-node/
http://smus.com/multiplayer-html5-games-with-node/
http://www.w3.org/DOM/
http://www.createjs.com/#!/EaselJS
http://scholar.google.no/
http://www.hemispheregames.com/
http://www.w3.org/MarkUp/
http://jquery.com/
http://jquerymobile.com/
http://trends.builtwith.com/javascript/JQuery
http://www.xbox.com/nb-NO
http://www.nintendo.com/wiiu
http://nodejs.org/

158 BIBLIOGRAPHY

[16] North & South at MobyGames. http://www.mobygames.com/game/
north-south. Accessed: 17/04/2013. 80

[17] Paper.js. http://paperjs.org/. Accessed: 08/11/2012. 31

[18] Real-time Games using HTML5, WebSockets, Nodejs
and Socket.io. http://blog.joshsoftware.com/2012/04/12/
real-time-games-using-html5-websockets-nodejs-and-socket-io/. Accessed:
17/01/2013. 18, 134

[19] Socket.IO. http://socket.io/. Accessed: 17/10/2012. 34, 35, 60, 85

[20] Sony playstation. http://no.playstation.com/. Accessed: 14/02/2013. 36

[21] SoundHound. http://www.soundhound.com/. Accessed: 18/03/2013. 37

[22] SUS - A quick and dirty usability scale. http://hell.meiert.org/core/pdf/sus.
pdf. Accessed: 11/03/2013. 88

[23] Usage of JavaScript libraries for websites. http://w3techs.com/technologies/
overview/javascript_library/all. Accessed: 07/03/2013. 31

[24] Morten Versvik Aleksander Baumann Spro. Multiplayer on one screen en-
tertainment system, jul. 2007. 21, 82

[25] Eivind Sorteberg Alf Inge Wang, Martin Jarret. Experiences from imple-
menting a mobile multiplayer real-time game for wireless networks with high
latency. 2009. 97

[26] Terje Øfsdahl Alf Inge Wang and Ole Kristian Mørch-Storstein. Lecture Quiz
- A Mobile Game Concept for Lectures. http://www.idi.ntnu.no/grupper/su/
publ/alfw/aiw-sea2007.pdf, 2007. 22, 89, 135

[27] Scott W. Ambler. UML 2 sequence diagrams. http://www.agilemodeling.
com/artifacts/sequenceDiagram.htm, okt. 2012. 56

[28] Victor R. Basili. The experimental paradigm in software engineering. In
Proceedings of the International Workshop on Experimental Software En-
gineering Issues: Critical Assessment and Future Directions, pages 3–12,
London, UK, UK, 1993. Springer-Verlag. 12

[29] Gaetano Borriello, Carl Hartung, Bruce Hemingway, Karl Koscher, and
Brian Mayton. Multi-player soccer and wireless embedded systems. SIGCSE
Bull., 40(1):82–86, March 2008. 21

[30] Coulouris, George; Jean Dollimore, Tim Kindberg, Gordon Blair. Distributed
Systems: Concepts and Design. Boston: Addison-Wesley, 5th edition, 2011.
32

http://www.mobygames.com/game/north-south
http://www.mobygames.com/game/north-south
http://paperjs.org/
http://blog.joshsoftware.com/2012/04/12/real-time-games-using-html5-websockets-nodejs-and-socket-io/
http://blog.joshsoftware.com/2012/04/12/real-time-games-using-html5-websockets-nodejs-and-socket-io/
http://socket.io/
http://no.playstation.com/
http://www.soundhound.com/
http://hell.meiert.org/core/pdf/sus.pdf
http://hell.meiert.org/core/pdf/sus.pdf
http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all
http://www.idi.ntnu.no/grupper/su/publ/alfw/aiw-sea2007.pdf
http://www.idi.ntnu.no/grupper/su/publ/alfw/aiw-sea2007.pdf
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

BIBLIOGRAPHY 159

[31] Randy Pausch Dan Maynes-Aminzade and Steve Seitz. Techniques for in-
teractive audience participation. aug. 2002. 20

[32] Aleksander Elvemo and Vegard Gamnes. Framework for Multi-player Game-
Wall Interaction - A prestudy. NTNU, IDI, TDT4501, 2012. 4, 12

[33] David Flanagan. JavaScript: The Definitive Guide. O’Reilly and Associates,
2006. 31

[34] Sheng-Chin Yu Fong-Ling Fu, Rong-Chang Su. EGameFlow: A scale to
measure learners’ enjoyment of e-learning games. http://www.sciencedirect.
com/science/article/pii/S0360131508001024, 2009. 91

[35] Martin Fowler. UML distilled. Addison-Wesley Professional, 2004. 47

[36] Borko Furht. Handbook of Augmented Reality. Springer, 2011. 71

[37] James Paul Gee. What video games have to teach us about learning and
literacy, 2003. 36, 135

[38] ISO/IEC. Software engineering — Software product Quality Requirements
and Evaluation (SQuaRE) — Requirements for quality of Commercial Off-
The-Shelf (COTS) software product and instructions for testing. Computer,
aug. 2011. 43

[39] L. C. Wolf L. Pantel. On the impact of delay on real-time multiplayer games.
2002. 83

[40] 82 Queva Vista Novato CA 94947 Loren C. Carpenter. Video imaging
method and apparatus for audience participation. Patent, 11 1994. US
5365266. 20

[41] Salvatore Loreto, P Saint-Andre, S Salsano, and G Wilkins. Known issues
and best practices for the use of long polling and streaming in bidirectional
http. Internet Engineering Task Force, Request for Comments, 6202:2070–
1721, 2011. 32

[42] Kajal Claypool Mark Claypool and Feissal Damaa. The effects of frame rate
and resolution on users playing first person shooter games. 2005. 83

[43] Seymour Papert. Does easy do it? Children, Games, and Learning, 1998.
36, 135

[44] Cumsille Marianov Correa Flores Grau Lagos V. Lopez X. Lopez Rodriguez
Rosas, Nussbaum and Salinas. Beyond Nintendo: design and assessment of
educational video games for first and second grade students, 2003. 36, 135

http://www.sciencedirect.com/science/article/pii/S0360131508001024
http://www.sciencedirect.com/science/article/pii/S0360131508001024

160 BIBLIOGRAPHY

[45] Jürgen Scheible, Timo Ojala, and Paul Coulton. MobiToss: a novel ges-
ture based interface for creating and sharing mobile multimedia art on large
public displays. In Proceedings of the 16th ACM international conference on
Multimedia, MM ’08, pages 957–960, New York, NY, USA, 2008. ACM. 17

[46] Alireza Sahami Shirazi, Christian Winkler, and Albrecht Schmidt. Flash-
light interaction: a study on mobile phone interaction techniques with large
displays. In Proceedings of the 11th International Conference on Human-
Computer Interaction with Mobile Devices and Services, MobileHCI ’09,
pages 93:1–93:2, New York, NY, USA, 2009. ACM. 17

[47] Peter Van Roy and Seif Haridi. Concepts, techniques, and models of computer
programming. MIT press, 2004. 46

[48] Bian Wu and Alf Inge Wang. Improvement of a Lecture Game Concept
- Implementing Lecture Quiz 2.0. http://www.idi.ntnu.no/~alfw/papers/
csedu2011-lecturegame.pdf, 2011. 91

[49] Bian Wu and Alf Inge Wang. A pervasive game to know your city better.
2011. 89

http://www.idi.ntnu.no/~alfw/papers/csedu2011-lecturegame.pdf
http://www.idi.ntnu.no/~alfw/papers/csedu2011-lecturegame.pdf

	I Introduction
	Problem Description
	Motivation
	Project Definitions
	Readers Guide

	Research Questions and Methods
	Research Questions
	RQ1 - Reducing Development Time
	RQ2 - Supporting Different Application Types
	RQ3 - Locating Performance Bottlenecks
	RQ4 - Improving Usability
	RQ5 - Educational Applications and Learning Benefits

	Research Methods
	The Engineering Approach
	The Empirical Approach

	II Prestudy
	State of the Art
	Multimodal Interactions
	Crowd Gaming
	Impact on FIGA

	Technology
	Hardware
	ServerApp Hardware
	UserApp Hardware
	GameWallApp Hardware
	Development Environment

	Software
	Web Development
	Distributed Systems
	Node.js and Socket.IO
	Browser Support

	Application Types
	Native Versus Web Applications

	III Framework for Interactive GameWall Applications
	Requirements
	Functional Requirements
	Quality Requirements

	Architecture
	Architectural Components
	ServerApp
	UserApp
	GameWallApp

	Physical View
	Sequence Diagrams
	Architectural Limitations
	Creating a ``Hello World'' Application
	Preliminary Work
	Developing the ServerApp
	Developing the UserApp
	Developing the GameWallApp
	Starting the Application

	Prototypes
	PostIt
	The UserApp
	The ServerApp
	The GameWallApp
	Lessons Learned

	WordCloud
	The UserApp
	The ServerApp
	The GameWallApp
	Lessons Learned

	Categories
	The UserApp
	The ServerApp
	The GameWallApp
	Lessons Learned

	1814
	The UserApp
	The ServerApp
	The GameWallApp
	Lessons Learned

	User Experiments
	Empirical Approach
	General Information
	System Usability Scale
	Technical Considerations
	Application Comparison
	Comments Section

	The First Experiment
	Experimental Approach
	Results
	User Comments
	Organizer Experiences

	The Second Experiment
	Experimental Approach
	Results
	User Comments
	Organizer Experiences
	1814 Results
	Comments About 1814

	Evaluation
	Prototype Summary
	Development Methodology
	Application Functionality
	The Joys of Web Development
	The Pains of Web Development
	Scaling the Prototypes

	Experiment Summary
	Experimental Approach
	Results
	User Comments
	Organizer Experiences

	Functional and Quality Requirements
	Functional Requirements
	Quality Requirements

	IV Summary
	Conclusion
	RQ1 - Reducing Development Time
	RQ2 - Supporting Different Application Types
	RQ3 - Locating Performance Bottlenecks
	RQ4 - Improving Usability
	RQ5 - Educational Applications and Learning Benefits

	Further Work

	V Appendix
	Test Environment
	Experiment Evaluation
	Technical Considerations Results from the First Experiment
	Technical Considerations Results from the Second Experiment
	Technical Considerations Results from 1814
	Gameplay Results from 1814

	Evaluation Survey
	References

