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Abstract

This thesis explores the use of supervised learning in combination with evolution-
ary algorithms. The two techniques are used alone and in combination to train
an artificial neural network to solve a small scale combat scenario in the real
time strategy game StarCraft. The thesis focuses on whether or not it is indeed
beneficial to use the two in combination and how injecting human knowledge
through logged examples influences the results of the evolutionary algorithm. In
the small scale combat scenario a number of agents must cooperate to defeat
an equal number number of enemies. The different approaches to training the
network are tested and it is found that using human knowledge to create an
initial population for the evolutionary algorithm dramatically improves perfor-
mance compared to the other approaches, and is able to produce solutions to the
scenario of high quality.
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Chapter 1

Introduction

This chapter introduces the work which will be done in this thesis. Section 1.1
briefly introduces background for the problem and the authors motivation. Sec-
tion 1.2 introduces the goal of the thesis and the underlying research questions.
Section 1.3 introduces how the research questions will be investigated, and what
experiments will be carried out. Section 1.4 outlines what this thesis will con-
tribute to the scientific community, and finally section 1.5 presents the structure
of the rest of the thesis.

1.1 Background and Motivation

StarCraft is a computer game in the real time strategy(RTS) genre. Released in
1998 it was a massive success, popular with gamers and critics alike, it sold more
than 11 million copies making it one of the best selling computer games of all
time. Its popularity was such that it spawned a professional league of StarCraft
players, world championships with considerable prize-money, and was not really
overtaken until the release of its sequel StarCraft 2 in 2010.

Some of the games popularity can no doubt be credited to its complexity and
balanced gameplay, meaning that to date no single strategy has been found that
cannot be countered by a skilled player. To play the game successfully the player
must solve a number of difficult problems in a dynamic multi-agent environment
in real time. These problems range from finding the best strategy and production
plan to path finding and low level control of troops.

1
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In this thesis we will focus on the management of troops referred to by players
as micro-management, and in the rest of this thesis as small scale combat. The
computer will be given a number of military units and tasked with destroying an
equivalent force placed nearby, the second force will be controlled by StarCrafts
default AI. Good solutions to such a problem would not just benefit the games
community, but could potentially be of use in other similar environments, as will
be discussed in section 2.1.

1.2 Goals and Research Questions

In this thesis we will explore different ways of finding good solutions to a small
scale combat scenario in the RTS game StarCraft. Two different methods will be
used, both alone and in combination, to train an artificial neural network(ANN)
which will function as a controller for individual agents in the scenario. The
two methods are an evolutionary algorithm(EA) and learning using the back-
propagation(BP) method. The goal of the thesis can be summarized as fol-
lows:

Goal To determine whether or not BP learning used in conjunction with EAs is
advantageous compared to EAs or BP learning used alone.

Both BP learning and EAs have been used successfully to solve complex problems
in agent control, this thesis will explore if a combination of these two techniques
is better suited for the purpose of finding the weights of an ANN agent controller
than each of them used in isolation.

Research question 1 Is it advantageous to use BP learning prior to EAs?

Used prior to the evolutionary process BP learning can functions as a guide or
seed, avoiding the proliferation of many individuals with very low fitness values,
but it can potentially steer the evolution into a local optima.

Research question 2 Is it advantageous to use BP learning after EAs?

Using BP learning after applying some form of evolution could function as a
fine tuning of the network, refining the findings of the global search of evolution
with the local gradient descent based back-propagation algorithm. It has been
found that this combination can be more effective than either one used indepen-
dently due to EAs perceived weakness in fine tuning and BPs sesitivity to initial
conditions.[Yao, 1999]

BP is however as a supervised learning method entirely dependent on its teaching
examples, and in a complex environment such as StarCraft these examples can
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be hard to accurately capture or find and very hard and time consuming to hand
author. Furthermore even if the examples themselves are very good they may
reflect a different strategy from the one found by the evolutionary process and
may therefore lead to worse performance.

Research question 3 Is an EA better suited to determine the weights of an
ANN controller than BP learning?

Which of these methods, BP, or an EA will be better suited to make a controller
for the chosen scenario when used on its own.

1.3 Research Method

To find answers to the questions asked in the previous section I have built a
system capable of logging actions taken by a StarCraft player, making, training
and using ANNs as controllers for StarCraft and an EA capable of searching for
optimal weights for the ANN. Using this system i will investigate whether or not
using BP learning before or after the evolutionary process, confers advantages
over BP learning or an EA used alone.

The system will be used to conduct a series of experiments. First an EA will be
run 20 times with a population of randomly created individuals.

Secondly a set of training examples will be created, by logging the actions of the
author in the scenario to be solved. These examples will be used to train 20 sets
of weights for the ANN controller using BP learning.

Then 20 experiments will be run with the EA using one or more of the best
performing solution found by BP as seeds to create the initial population.

The best solutions found in each of the EA experiments will then be subjected
to a round of BP learning using the same examples as in the previous experi-
ment.

The solutions found will be compared on how successfully they solve the problem
i.e. how many percent of the games they play they are able to win.

By comparing the performance of the solutions found by the different approaches
used on the problem it will be possible to comment on whether or not using BP
learning in conjunction with an EA is more effective at finding good solutions
than any of the techniques used in isolation.
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1.4 Contributions

The contributions of this thesis can be outlined as follows:

1. Showing whether or not BP learning used in conjunction with EAs is ad-
vantageous compared to EAs or learning used alone on this problem.

2. Determining if ANNs are a suitable choice for agent control in StarCraft
and similar environments.

3. Discussion of the suitability of StarCraft and similar games for research in
bio-inspired AI.

The thesis will explore the suitability of using Neural networks as controllers for
unit behaviour in the real time strategy game StarCraft, and how best to train
these networks. The focus of the thesis is on the use of EAs and BP learning and
how these methods can best be used to solve a complex problem.

The thesis will focus on whether or not combining the two methods have advan-
tages over on or the other used on its own. Based on the results it will also be
possible to comment on whether or not ANNs are suitable for agent control in
complex environments such as StarCraft.

Finally based on the experiments it will be possible to have a discussion about
whether or not StarCraft and games like it are suitable domains for research in
the field of biologically inspired artificial intelligence.

1.5 Thesis Structure

The rest of this Thesis is structured as follows:

Chapter 2 will start with a brief introduction to StarCraft, then the specific prob-
lem to be solved will be presented alongside a discussion on the features of the
problem and its relation to other problems and fields of AI. This is followed by a
brief introduction to the techniques used in this thesis, feed-forward neural net-
works, genetic algorithms, and neuro-evolution. Systems solving similar problems
will be presented and discussed in relation to the work done in the thesis.

Chapter 3 explains the system that has been built, what parts it comprises, and
how they work.

Chapter 4 begins by presenting how the experiments outlined in section 1.3, has
been performed using the system described in chapter 3. Following this the results
of the experiments are presented and discussed in relation to the comparative
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performance of the different approaches and try to explain why some approaches
are performing better than others.

Chapter 5 begins with a discussion of what the results obtained in chapter 4
suggest about the research questions posed in section 1.3. Following this there is
a discussion of the validity of these results, and a summary of the contributions
of the thesis. The chapter ends with a brief description of possible directions for
future research.
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Chapter 2

Background Theory and
Motivation

This chapter presents background theory necessary to understand the rest of
this thesis and related work. Section 2.1 presents information about the game
StarCraft, the problem chosen for this thesis and why StarCraft and games like
it are well suited for AI research. Section 2.2 presents the techniques used in
this thesis i.e. feedforward neural networks and genetic algorithms. Section 2.3
presents work done by others on problems similar to the one used in this thesis.
Section 2.4 discusses how previous works relate to the work of this thesis.

2.1 StarCraft

As mentioned in section 1.1 StarCraft is a computer game in the real time strat-
egy(RTS) genre. The game is set in the far future in a distant galaxy and the
story revolves around a war between three different races, all of which have dis-
tinctly different buildings and units at their disposal necessitating quite different
play-styles and strategies. The Protoss race are quite humanoid and focuses on
powerful but expensive units, the Zerg are quite diverse but usually insectoid in
appearance and focuses on cheap and plentiful but weak units. The final race
the Terran are humans and fall somewhere in between the two other in relation
to power vs cost. StarCraft updates the game state and draws visuals to screen,
roughly 25 times per second, each of these updates are in the community and in
the rest of this thesis referred to as a frame.

7
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RTS games are characterised by the player being put in charge an initially small
detachment of military units and must use them to collect resources, defend his
position and expand to obtain more resources and ultimately destroy his enemies.
To successfully do this the player must solve a number of problems on two levels
of abstraction commonly referred to as macro- and micro-management.

Macro-management consists of high level strategic decisions which include but
are not limited to:

• Choosing which buildings to build and when to build them.

• Choosing which units to train and when to train them.

• Choosing when, where and with what units to attack the enemy.

Micro-management on the other hand is concerned with carrying out parts of the
larger macro plans and can include but are not limited to:

• Choosing where to place buildings and what workers to use.

• Moving units from one place to the other with minimal casualties.

• Controlling units in battle as effectively as possible.

This thesis focuses on one specific facet of RTS game-play mainly the control of
units in combat situations. To simulate this I have created a custom scenario for
StarCraft, see figure 2.1, containing five units controlled by the player, on the
left, and five enemies controlled by the default AI of StarCraft.

Figure 2.1: The scenario used in this thesis.

The unit chosen for this scenario is the terran marine, the most versatile of the
basic units available in StarCraft. The marine is fills the role of general purpose
infantry being a man with a gun he has a ranged attack able to hit both ground
and air targets from afar.

As a point of clarification in this thesis the word player refers to one of the two
entities which are in control of a number of units, the word agent is used to refer
to the units themselves i.e. the marines. This choice is based on the scope of
the work as it explores only the small scale combat part of StarCraft and not
the larger strategic parts of the game, even though the players can be considered
agents in their own right.
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RTS games are good venues for AI research because they are quite detailed sim-
ulations of reality[Buro and Furtak, 2003]. While the combat of StarCraft is a
simplification over actual tactical combat the agents in this thesis must operate
in a complex environment with the following properties:

• Partial observability: Positions on the map which are not currently oc-
cupied by one or more of the units are not visible to the player. In this
thesis which focuses solely on small scale combat this has been relaxed so
that the agents have access to the enemies position before they are directly
visible. This is done because the development of a scouting/searching strat-
egy is outside the scope of the problem. This also eases implementation of
the system.

• Deterministic(Strategic): The game is largely deterministic with the
exception that bullets fired at a target has some small chance of missing
their target. The chance for a bullet to miss is almost 50% when units are
firing at enemies occupying high ground. In this thesis the map used is flat
containing no high ground as such the only source of real uncertainty is the
actions of the enemy agents.

• Sequential: An action taken in one state effects all subsequent states.

• Dynamic: The environment changes due to the actions of other agents.

• Continuous: The environment is continuous both with respect to time
and state.

• Multi-Agent: In this thesis the ANN player controlling five agents is
opposed by one other player controlling five identical agents. The environ-
ment contains both hostile and friendly agents necessitating that the agents
cooperate to be able to destroy their enemies.

As we can see these characteristics are quite similar to the real world, with the
obvious exception that the real world contains a lot more uncertainty. Making
it plausible that lessons learned by solving problems in StarCraft could poten-
tially be used on real world problems such as autonomous driving or navigation
by other autonomous agents, such as robots, operating in dynamic real time
environments.

2.2 Background Theory

This section will describe the solution techniques used in this thesis.
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2.2.1 Artificial Neural Networks

Artificial neural networks(ANNs) is a name given to a broad class of networks
consisting of simple interconnected processing units called neurons connected to
each other via weighted connections.

The neurons typically function by summing its inputs and then applying some
simple mathematical function to the sum, this is inspired by the functioning of
neurons in the brains of humans and higher life forms where neurons function as
threshold detectors. The weighted connections are meant to simulate the axons
in the nervous system where neurons can both inhibit and excite the neurons
they are connected to in varying degrees.[Floreano and Mattiussi, 2008; Purves,
2012]

These different networks have, in spite of being at best crude approximations to
actual nervous systems, been shown to have remarkable properties. Capable of
learning to solve complex problems like classification, clustering, time series pre-
diction, and function approximation.[Kohonen, 1990; Hornik et al., 1989] ANNs
have been employed in robotics as controllers, and a field known as computa-
tional neuroscience uses them to glean insights into the functioning of the human
brain.[Lewis et al., 1996; Churchland et al., 1993]

The neural networks considered in this thesis belong to a class of networks re-
ferred to as multilayer perceptrons or feedforward neural networks.[Floreano and
Mattiussi, 2008] Feedforward neural networks can, given the right topology and
weights approximate any function to an arbitrary precision.[Hornik et al., 1989]
These networks have three distinguishing characteristics:

1. They are organized into layers consisting of one or more neurons each.

2. The networks have directionality, connections go only in one direction from
layer N to layer N+1.

3. The networks are fully connected. All neurons in layer N receive input from
all neurons in layer N-1 and send their output to all neurons in layer N+1.

Figure 2.2 shows a feedforward neural network with three layers consisting of
a total of seven neurons propagating signals from left to right through the net-
work.

The training method used in this thesis is known as back-propagation(BP). A su-
pervised learning algorithm which uses examples of input and appropriate output
to train the network. The BP algorithm can be described as follows:

1. Read The first input-output example.
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Figure 2.2: Feedforward neural network with three layers.

2. Use the input as input to the ANN.

3. Calculate the error between the desired output and the actual output.

4. Calculate the error of each individual neuron in the network and use it to
change the weights.

5. If there are more examples read the next one and go to step 2.

6. If the error is is greater than a user defined threshold go to step 1.

7. If the error is below the given threshold the algorithm is finished.

The above algorithm is adapted from Callan [1998] page 38.

Learning using this method can, like all gradient descent based methods, poten-
tially get stuck in local error minimum rather than finding the optimal solution
to the problem, and the convergence can be very slow particularly on larger
networks.[Hinton, 1989; Floreano and Mattiussi, 2008]

2.2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) refers to a class of algorithms that use concepts
and operations known from evolutionary biology to search the best solution to a
given problem. EAs differ from actual evolution in a number of ways, but most
drastically in the fact that while evolution is an open ended unguided process
with no end point, EAs need well defined fitness functions which means that
the search is guided and will end when a suitable individual is found or after a
predetermined number of generations.

Like ANNs EAs have proven to be useful in solving many difficult problems,
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and excel at global optimisation problems. EAs have also had success designing
digital and electrical circuits, antennas and numerous other applications.[Weile
and Michielssen, 1997; Floreano and Mattiussi, 2008]

Genetic algorithms(GA) are a subset of the larger category of EAs, they are a way
of searching for solutions in a way which is meant to mimic important aspects of
natural evolution. They are characterised by their representation of the genome
as binary strings or vectors of real numbers, and their emphasis on using the
crossover operator.[Whitley, 2001] The basic GA can be expressed as:

1. Initialize a population of individuals

2. Test the individuals on the problem to be solved and assign a performance
measure

3. Create a new population by using genetic operators on the population based
on the performance measure.

4. Let the new population replace the old one.

5. Unless a stopping criterion is met, such as a good enough individual found
or the maximum number of generations performed, go to step 2.

The population consist of a number of individuals whose genes are often ex-
pressed as vectors of binary or real valued numbers. The performance measure is
commonly referred to as a fitness value and is meant to represent the individuals
suitability to its environment.

The genetic operators used in GAs are crossover and mutation. Crossover is
meant to mimic the operation of genetic recombination when parents reproduce
by blending the genetic material of the parents to produce the children.

Figure 2.3: Example of one point crossover.

Figure 2.3 illustrates a simple case of one point crossover where the genes of the
parents are recombined to form the children. The crossover can occur at multiple
points and the points are usually chosen at random.
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Mutation is meant to mimic the natural deviation in the genetic material during
reproduction. When the genome is represented by a binary string mutation
simply takes the form of flipping a one to a zero and vice versa, when the genome
is represented by real numbers, mutation often take the form of adding random
numbers drawn from some distribution.[Yao, 1999]

2.2.3 Neuro-Evolution

The combination of these techniques, ANNS and EAs, is called neuro-evolution(NE),
and the resultant networks are often referred to as evolutionary artificial neural
networks(EANNs). Evolution has been applied to ANNs in a number of dif-
ferent ways from directly finding the best weights, to finding optimal learning
rules or activation functions for the network.[Yao, 1999] EANNs have, like its
constituent parts shown itself to be a viable solution to a wide range of prob-
lems, like controlling legged robots, playing checkers and as controllers for video
game characters.[Chellapilla and Fogel, 1999; Clune et al., 2009; Stanley et al.,
2005]

In this thesis a genetic algorithm will be used to search for weights for an ANN
which will be used to control the marines in the scenario described in section 2.1
and seen in figure 2.1.

2.3 Related Work

Hagelbäck and Johansson [2008a,b] details what the authors call a multi-
agent potential field(MAPF) bot. A bot being a name given to computer pro-
grams takes the place of the human player in a computer game. The principle
to is allow all units and objects in the map to be surrounded by fields which are
meant to mimic electrical fields attracting or repelling the units under the players
control. A matrix is created which details the perceived value of each position
on the map. This allows for the abstraction of spatial information because the
agents do not themselves have to reason about the exact or relative positions of
their allies or enemies, rather they can simply move towards favourable positions
on the map and be repelled from unfavourable ones.

The charges of these fields were set with trial and error. The method was put to
the test in the Open Real Time Strategy(ORTS) competition of 2007 and achieved
below average results. The authors identified a number of weaknesses with their
solution and developed an improved version capable of decisively beating all the
top contenders of the competition. Showing both that the implementation and
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sophistication the potential fields are very important for the overall performance,
and that artificial potential fields can be very effective in an environment very
similar to the one in StarCraft.

Sandberg and Togelius [2011]; Rathe and Svendsen [2012] both uses
genetic algorithms to tune the parameters of potential fields for use in combat
situations in StarCraft. Sandberg and Togelius are able to show a clear improve-
ment in the performance of evolved solution and find solutions which perform
very well, concluding that EAs are indeed effective ways of training MAPF bots
for play in StarCraft. Rathe and Svendsen also uses an EA to tune the charge
values of the different fields differentiating themselves by using multi objective
optimization in lieu of single fitness values. Their results are weaker than those
achieved by Sandberg and Togelius something they attribute to the implemen-
tation of their potential fields, again showing that potential fields are a powerful
technique but very dependent on its design and sophistication to achieve high
performance.

Shantia et al. [2011] uses several neural networks to approximate the value
functions of an agent performing an action in its current situation. The networks
are trained in two different scenarios very similar to the one used in this thesis.
Like the scenario used in this thesis both scenarios consists of equal forces of
marines fighting. In the first scenario each team must coordinate three marines,
in the second each team consists of six marines.

The networks are trained using two variants of a reinforcement learning algorithm
called sarsa, awarding the neural networks rewards or punishments online by the
effects of their actions on the game world every few game frames. In the 6 versus 6
scenario incremental learning starting with the best performing networks from the
3 versus 3 scenario is contrasted with starting the networks of with randomized
weights. The networks are provided complete information of the game world and
uses 9 different vision grids reminiscent of artificial potential fields to abstract
information about the game world such as the firing ranges of enemies.

The learning algorithms are able to successfully solve the 3 versus 3 scenario but
had considerable difficulty finding good solutions to the more difficult 6 versus
6 scenario. The results showed that to find good solutions to the 6 versus 6
problem incremental learning was necessary. The results indicate that neural
networks can be used successfully to evaluate state information and the values
of action in a problem very similar to the one used in this thesis. The results
also suggest that reinforcement learning is better able to solve difficult problems
when starting from some semi functional solution.
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Ki et al. [2006] uses real time NE to tune the weights of an ANN to imitate
the actions of a human player in a RTS. The actions of a human player is logged
during play and used to train the networks in real time. The networks are taught
to imitate a simple strategy of retreating when health gets low to survive. The
results demonstrate that even very simple neural networks without hidden nodes
are able to learn strategies and function well in a problem very similar to the one
used in this thesis. It also shows that it is possible to use an ANN to imitate
human actions in this environment.

Fan et al. [2003] proposes a method called rule-based enforced sub-populations
(RESP) building on the enforced sub-population(ESP) method proposed by Gomez
and Miikkulainen [1997]. ESP is a method of evolving ANNs where each individ-
ual represent a single hidden node in the network rather than the full network
itself. The network topology is decided and for each hidden node in the network
a sub-population of possible hidden nodes are initialized. These sub-population
are closed so that crossover is only performed between members of the same sub-
population. The individuals are evaluated by randomly picking one member of
each sub-population, making up a complete network, and evaluating the network,
this is done many enough times that each individual is likely to have been tested
a sufficient number of times.

RESP is enhanced by creating the initial network by translating a rule-base into
an ANN and using this as a starting point for ESP evolution. The method is
shown to outperform ESP on a task where multiple predators must cooperate to
catch a prey, even if rules are randomly removed from the rule-base. The result
suggest that using a rule base to inject human knowledge into the evolutionary
process allows for solving more difficult problems even if the rule base itself is
incomplete or damaged.

Gabriel et al. [2012] describes their work creating a multi-agent small scale
combat bot for StarCraft using rtNeat a real time variant of neuro-evolution of
augmenting topologies(NEAT).[Stanley et al., 2005]

NEAT is an NE method which evolves both the weights and the topology of
neural networks. NEAT starts from a collection of minimal networks and add
complexity during evolution, using genetic markers to ensure that crossover is ap-
plied between similar individuals, and uses speciation to protect innovation which
may not be immediately beneficial. [Stanley and Miikkulainen, 2002]

RtNeat uses the same method as NEAT but does it in real time running eval-
uations of the individuals after a specified number of frames. This was devised
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and used by Stanley et al. [2005] in the NERO video game in which the player
instructs robots, who each represent an individual with its own ANN, which learn
by rtNEAT and then pit them against robots trained by other players.

Gabriel et al. [2012] trains their agents by running 12 vs 12 matches against
both the default AI of StarCraft and two of the best performing bots of the 2010
AIIDE StraCraft AI competition. The method is tried in four different scenarios
where the sides switch between being made up of units which can attack from
range and units using melee attacks for a total of four combinations:

• Ranged vs melee

• Ranged vs ranged

• Melee vs ranged

• Melee vs melee

Each game is run with each side starting with 12 individuals and 100 reinforce-
ments, when a unit is killed another is created subtracting from the remaining
reinforcements until they are depleted. Every 500 frames in the game the units
are evaluated and the worst performing units are replaced. The system is able
to learn to beat the default AI in all the scenarios quite convincingly, but has a
much harder time defeating the more advanced AIs. It still performs quite well
and is able to win or tie 7 out of 8 scenarios against the 2 advanced AIs, even if
some of the victories are very narrow.

The results show that neural networks using evolution can learn to perform very
well in the domain of StarCraft even outperforming very advanced AI imple-
mentations. One of the advanced AIs tested is the Overmind winner of the 2010
AIIDE Stracraft competition which uses potential fields tuned with reinforcement
learning to control its small scale combat behaviour.

2.4 Motivation

The literature seem to suggest ANNs are indeed capable of producing good so-
lutions to problems very similar to the one used in this thesis, and that they can
indeed produce solutions that rival those of the most prevalent and successful
method used on these kinds of problems namely artificial potential fields and
static rules.[Gabriel et al., 2012]

The literature also show that the initial conditions of reinforcement learning
techniques do effect the outcome. Both Fan et al. [2003] and Shantia et al. [2011]
reports improved performance when starting their methods with some imperfect
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solution. In the case of Fan et al. [2003] a manually created network and for
Shantia et al. [2011] solutions found to a less complex problem.

This thesis aims to find out whether or not it is beneficial to include human
knowledge into the evolutionary process in the search for good solutions to a
very complex multi-agent problem which requires the agents to cooperate. As
such the aims of this research are similar to those of Fan et al. [2003]. This work
differs from that of Fan et al. [2003] in both the complexity of the problem to be
solved and the methods used to solve it.

StarCraft is a more complex environment than the predator prey domain used
in Fan et al. [2003], among other factors in that the actions of the enemy agents
are far more unpredictable.

The method is different in that it does not require the manual creation of a rule-
base but rather the logging of actions performed in game which is then learned
by the network through BP. The method also differs from the other works in the
field in that it does not use a variant of the ESP or NEAT method of evolution
but a simpler more conventional GA.

This work also differentiates itself from other works in the field in the way the
ANN will be used. All the above works, which operate in StarCraft and uses
an ANN, uses the ANN as a selector of one of a number of preprogrammed
behaviours whereas in this thesis the output of the ANN directly codes the action
to be taken i.e. what coordinates to move to and what enemy to attack.[Shantia
et al., 2011; Gabriel et al., 2012; Ki et al., 2006]

If successfully able to solve the problem presented in section 2.1 this work would
suggest that while certainly effective in their own right, more advanced NE algo-
rithms, such as ESP and rtNEAT, are not strictly necessary to solve the complex
problem of small scale combat in StarCraft, and that combining human knowl-
edge through BP with a GA can be a very effective strategy for finding solutions
to this and similar problems.



18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION



Chapter 3

Implementation

This chapter presents a brief overview of the system that has been created to
investigate the research questions of section 1.2, what it is capable of doing and
what parts it is made up of. Section 3.1 outlines the capabilities of the system
and the three different components the system comprises. Section 3.2 details how
the different capabilities of the system are implemented.

3.1 Overview

The system consists of three main parts, the BWAPI client, the neural network,
and the population. The client contains the main loop of the program and is
responsible for getting information from, and sending commands to StarCraft,
as well as using the two other components. The neural network is the controller
which is consulted by the client to determine which action to take in a given
situation. The population is used when running the genetic algorithm, it con-
tains the individuals to be tested in StarCraft and uses genetic operators on the
individuals based on the fitness scores it is given by the client.

The system can be used in the following ways:

• Create an ANN.

• Logging actions taken by a human user.

• Training ANNs with back-propagation.

• Running a genetic algorithm to find weights for ANNs.

19
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• Testing the found solutions by running them as many times as deemed
necessary on the problem.

3.1.1 The Client

The client is the main component of the system, it is a stand alone program
which can be injected into StarCraft and has complete access to all information
about the game, and can give all the same commands that a human player could
using. The client uses BWAPI an open source api which allows for the creation
of custom AIs for StarCraft, and is based on the example client which is part of
BWAPI.

The client is responsible for updating and consulting the two other components
it also writes to and reads results and individuals to and from text files.

3.1.2 The Network

The network component implements feedforward neural networks using a sigmoid
activation function. This component can be used to create feedforward neural
networks with any number of inputs, outputs, and hidden layers with an arbitrary
amount of hidden nodes in each.

The network can be fed with information and activated, trained with back-
propagation learning and all its weights can be retrieved and changed. A neural
network can be initiated either with randomly chosen weight values or with an
existing vector of weight values.

3.1.3 The Population

The population is a collection of individuals on which genetic operators can be
used. Each individual is an object containing an id, a fitness score, and a vector
of double precision floating point values(doubles) representing the weights of the
neural network.

A population can be initiated, randomly or using on or more seeds. If initiated
randomly each and every individual of the population will be initiated with its
vector of doubles randomly picked from a Gaussian distribution with a given
mean and deviation. If initiated with one or more seeds the population is made
up of one copy of each seed unchanged and the rest of the population created
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by adding mutated copies of each seed to the population until the population is
full.

Reproduction is done by selecting two parents stochastically based on the fitness
scores of the individuals, giving more successful individuals a greater chance to
procreate than their less successful counterparts.

The genetic operators used on the population is one point crossover and mutation.
Crossover is implemented by picking a random number N ranging from zero to
the number of hidden nodes and then moving over all weights associated with
the first N hidden nodes.

Crossover is handled in this way to avoid the potentially destructive effects of
removing half of the weights associated with a hidden node. Hidden nodes func-
tions as feature detectors in the data they are presented and having half of its
weights randomly removed is almost certainly destructive.[Yao, 1999] Handling
crossover in this way allows networks to switch feature detectors rather than
destroying them.

Mutation is implemented by iterating through the vector of doubles and with a
chosen probability adding a double picked from the Gaussian distribution with a
specified mean and deviation.

3.2 The System

The three components briefly outlined above will be used to create an ANN and
train it to solve the problem presented in section 2.1.

3.2.1 Game Play

When playing the game the client cycles through all five units collecting their
state information, running it through the ANN and sending move or attack com-
mands to the game every 15 frames. The 15 frame delay was chosen as a result
experimentation during development. very short delays between orders was ob-
served to lead to poorer performance. This can be attributed to the commands
being issued faster than the agents were able to carry them out. This was ob-
served to be particularly detrimental to the attack command as it takes several
frames to carry out, leading to largely pacifistic agents. Even with this delay the
client issues 5 commands approximately 100 times in a minute adding up to 500
commands issued per minute.
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3.2.2 Logging Examples

When logging examples for use with the BP algorithm, the client collects the
same information as it does when playing the game itself, and stores it together
with the corresponding actions the units are carrying out. Figure 3.1 shows a
sample of the training data recorded by the system. All the examples code the
same action, in this case attacking the closest enemy. The first line is the game
state and the following line is the action taken in that state. The choice of data
corresponds to the inputs and outputs of the ANN used in this thesis and is
explained in detail in section 3.2.3

Figure 3.1: Example of the data logged by the system.

3.2.3 The Neural Network

The neural network used as a controller in this thesis, shown in figure 3.2, has 3
layers with 29 inputs, 5 hidden nodes, and 6 outputs, for a total of 175 weights,
making it a quite complex network. The black dots in figure 3.2 indicates that
19 input neurons have been left out to simplify the figure.

The inputs used are:

• Agent status

– Agent heading

– Agent hit points

– Agent weapon status

– Agent under attack

• Allies status

– Centroid position relative to the agent

– Centroid heading
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Figure 3.2: The neural network used as a controller in the thesis.

– Relative position of the three closest allies

• Enemies status

– Centroid position relative to the agent

– Centroid heading

– Relative position of the three closest enemies

– Whether or not each of the three closest enemies are under attack

– Hit points of each of the three closest enemies

• The ratio of ally to enemy hit points

The choice of inputs was taken partly based on the work done by Shantia et al.
[2011], and partly based on the authors own understanding of the game.

The choice was also based on trying to make an ANN that could potentially scale
to deal with a larger or smaller number of agents. If the number of agents increase
each agent will still only consider the three closest enemies and allies plus the
centroids of each group, when the number of agents decrease, as it does every
game due to deaths, the corresponding inputs to the network is fed the position
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of the centroid of the corresponding group. The choice to use relative coordinates
was also taken in an effort to let the network generalize better.

The relative coordinates are calculated based on the position of the agent and
the other unit and scaled by the sight range marines have in the game. In the
game this sight range is 7. If the difference in the x- or y- coordinate between
the agent and the other unit is in the range of (-7, 7) it is divided by 7 to get a
number in the range (-1, 1). If the difference is greater the relative coordinate is
set to -1 or 1. The coordinates are then scaled to be in the range of [0, 1].

The choice to use five hidden nodes was taken after experimentation with BP
showed that while more hidden nodes led to better training results the actual
performance on the problem did not improve.

Through experimentation it was found that five hidden nodes were as simple as
the network could be made without sacrificing performance. Fewer hidden nodes
have the advantages of shortening the time it takes to teach the network through
BP, dramatically shrinks the solution space for the GA, and can lead to better
generalization.[Sietsma and Dow, 1991; Fletcher et al., 1998]

The six outputs directly encode the action the agent should take in its current
situation. The first output functions as a boolean determining whether the agent
should move to a new position or attack an enemy. Outputs 2 and 3 are the
relative x and y coordinates the agent should move to. The last three outputs
functions as boolean values determining which of the three closest enemies should
be attacked. As the network uses the sigmoid activation which only takes on the
values one and zero as results of incredibly high activation and approximation by
the computer, activations below 0.2 and above 0.8 will be considered as 0 and 1
respectively.

3.2.4 Back-propagation

The BP algorithm is implemented in the manner described in section 2.2.1 using
examples to train the ANN described in section 3.2.3, with some modifications.
First a momentum term changing the weights based not only on error but also
on the previous weight change to hopefully avoid local minima.[Floreano and
Mattiussi, 2008]

Secondly because the network ignores part of its output during operation based
on the output of the first output-neuron, the error of the ignored output-neurons
do not contribute to the error of the network or cause changes to their weights.
This is done because they are irrelevant and there exists no right answer as to
what value they should take.
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3.2.5 The Genetic Algorithm

The GA works by initializing a population in one of the ways described in section
3.1.3 and each of them are tested as controllers a number of times. Each time
one of the teams of agents are destroyed or the time runs out, the individual is
awarded a fitness score based on its performance.

The fitness score is calculated as 100 points per destroyed enemy, 500 for victory
and 100 points for each living agent. This adds up to a total of 1500 points for
a perfect victory and is averaged over the number of trials. These values were
chosen because they are very easy to obtain and was designed to favour winning
individuals over good but losing individuals, awarding the closest of victories 1100
points, almost three times as many points as the closest of defeats which award
the individual 400 points.

After all the individuals in the population have been tested the fitness scores are
used to produce a new generation using the genetic operators described in section
3.1.3. The algorithm can also uses elitism to avoid losing good solutions when
creating a new generation.

The algorithm runs for a given number of generations to find the best solutions,
a fitness score is not used as a stopping criterion because the performance of each
individual varies significantly between trials and generations. This is primarily
due to the variations in how the default AI behaves which can change between
trials, and generations. If a really good individual is discovered it should survive
or at least be able to make a significant impact on the populations due to the
elitism allowing it to survive multiple generations.

At the end of each generation the best performing individual is saved to file along
with the best, and average fitness obtained during the generation.

3.2.6 Testing

Due to the variability the individuals show in the trials the fitness scores are
not completely representative of the actual performance of the weights of the
individual. To properly test the found solutions the solutions will be evaluated
by running them a sufficient number of times to find their actual performance.
The performance measure used will be the number of victories alongside the
average kill score. The performance measures are not equally important as a
high win percentage is obviously better than a high kill score.

It is technically possible to lose every game and yet get an average kill score
of 400 points out of a maximum 500 points if every game is lost by the closest
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possible margin, while winning half the games but losing the last half without
destroying a single opponent would give a kill score of only 250. As shown by
the quite unlikely examples the kill score can act as a measure of how stable the
performance of the solution is, but is only meaningful as a secondary performance
measure alongside the percentage of games won.

By experimentation it was found that when running the individuals 100 times
the results were consistent to within a couple of percentage points. This usually
takes at least 5 minutes to run even on the fastest possible setting, which would
make it far to time consuming to use in the genetic algorithm.



Chapter 4

Experiments and Results

This chapter presents the experiments done to answer the research questions.
Section 4.1 explains what experiments will be run and in what order. Section 4.2
details the experiments and the parameters used to allow for reproduction of the
results. Section 4.3 presents the results of the experiments. Section 4.4 discusses
what mau cause the differences in performance.

4.1 Experimental Plan

To answer the research questions of section 1.2, the following experiments will be
carried out.

1. The genetic algorithm(GA) will be run 20 times with randomized starting
weights for all individuals.

2. Back-propagation(BP) will be used to generate 20 sets of weights based on
input-output pairs logged from human play.

3. The GA will be run 10 times using the one of the best performing sets of
weights found through BP as a seed as explained in section 3.1.3.

4. The GA will be run 10 times using the five best performing sets of weights
found through BP as seeds as explained in section 3.1.3.

5. BP will be applied to 15 of the best individuals found by the genetic algo-
rithm, the individuals will be picked evenly from the experiments carried
out in step 1, 3 and 4.

27
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The result of these experiments will be compared by testing them in the way
described in section 3.2.6 and noting win percentage and average kill score i.e.
the average number of enemies destroyed per game. This will address the research
questions presented in section 1.2, by showing the quality of the solutions obtained
by the different approaches, and allows for analysis as to what may cause the
differences in performance.

4.2 Experimental Setup

4.2.1 Experiment 1: GA only

The GA was run 20 times with 20 individuals in the population over 100 gen-
erations. In each generation each individual was tested 5 times consecutively.
These parameters were chosen so as to limit the time the algorithm would take
to run to completion while still giving it sufficient time to find good solutions.
With 20 individuals being tested 5 times each per generation for 100 generations,
a total of 10 000 games, the algorithm takes a minimum of 4 hours to run to
completion.

The genes of the individuals were randomly instantiated by pulling each of the
175 real numbers from the Gaussian distribution with mean 0 and variance 1.
All 20 trials used 30% elitism, preserving the 6 best individuals for the next
generation.

The mutation rates and the variance of the mutation were varied, each combina-
tion of these parameters were tested 5 times. These parameters can be found in
table 4.1.

4.2.2 Experiment 2: BP only

The BP algorithm was used 20 times to produce 20 individuals with a learning
rate of 0.1 with stopping criteria lower cumulative squared error than 0.02 or
500 revolutions. These parameters were chosen because it was observed during
testing that solutions with significantly higher errors performed very poorly. The
networks were initialized with weights in picked from the Gaussian distribution
with mean 0 and variance 0.3.

The 0.02 was rarely achieved and as such it was necessary to use a secondary stop-
ping criterion, set at 500 because it was observed that at this point the algorithm
had usually got stuck, fluctuating between very similar solutions.
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The test set is a file containing 1167 examples of inputs and corresponding outputs
captured from the author playing the scenario 3 times, using the system in the
way described in section 3.2.2.

4.2.3 Experiment 3: BP then GA 1 seed

The GA was run 10 times using one of the five best sets of weights found in
experiment 2,using only BP, as a seed to initialize the first generation. The
number of generations, individuals per generation and trials per individual were
identical to experiment 1.

The the set of weights used was entry number 19 in 4.4 the overall fourth best
performing set of weights found winning 14% of its matches. This seed was
chosen among the five best seeds because it seemed to be one of the best at
retaining its formation before attacking the enemy. The other individuals in the
first generation are made by mutating the seed as described in section 3.1.3 with
a mutation rate of 0.5 and a variance of 1.

All 10 trials used 30% elitism like experiment 1 and varying rates and variance
of mutation each combination was tested 2 times, these parameters can be found
in table 4.2.

4.2.4 Experiment 4: BP then GA 5 seeds

The setup of this experiment is identical to the one used in experiment 3, with
the exception of the initial population being made up of the 5 best performing so-
lutions found in experiment 2, using BP only, and mutated copies of them.

4.2.5 Experiment 5: GA then BP

The parameters and examples used in experiment 5 are the same as the ones used
in experiment 2. The difference being that BP will be used on networks loaded
with the 5 best performing solutions of experiment 1, 3 and 4, for a total of 15
tests.
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4.3 Experimental Results

4.3.1 Experiment 1: GA only

The detailed results of experiment 1 can be found in table 4.3, and will be sum-
marised here.

When tested it was found that only one of the 20 trials performed produced a set
of weights capable of beating the opposition often enough to be considered a good
solution to the problem. This set of weights, entry number 6 in table 4.3, won
69% of its matches. The other 19 solutions did significantly worse, the second best
performing solution won only 27% of its matches, and the performance averaged
over 20 solutions was 18.75%, as can be seen in the last entry of Table 4.3.

During testing it was observed that the best performing solution was not only
quantitatively better performing than the other solutions but indeed qualita-
tively different in its functioning. It was the only solution where the agents
used the move command to position themselves effectively before attacking the
enemies.

The 19 other solutions did not position themselves effectively before they attacked
but simply ran of to attack the enemies. This sub optimal behaviour was picked
up early and is usually observed in the very first generation. This very simple
strategy was so successful relative to the other early strategies that it dominated
the evolution completely.

4.3.2 Experiment 2: BP only

The complete results of the solutions found by using BP 20 times can be found
in table Table 4.4.

Overall the resulting performance was poor, on average the solutions won only
8.6% of their matches. The best performing solution found performed about
on par with the average performance of the solutions found in experiment 1
i.e. winning 19% of its matches. The difference in average performance between
experiment 1 and 2 is statistically significant at a confidence level of 95%, showing
that the GA is better able to find solutions to this problem than using BP with
the logged examples.

These solutions did however share a characteristic with the best performing solu-
tion found in experiment 1, using GA only, that is they used both the move and
the attack commands to position themselves before and under the attack.
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Trials Mutation rate Variance
1-5 0.3 0.5
6-10 0.4 0.8
11-15 0.5 0.8
15-20 0.5 1

Table 4.1: The mutation rate and mutation variance of experiment 1.

Trials Mutation rate Variance
1-2 0.3 0.4
3-4 0.3 0.5
5-6 0.4 0.8
7-8 0.5 0.8
9-10 0.5 1

Table 4.2: The mutation rate and mutation variance of experiment 3 and 4, BP
then GA 1 and 5 seeds.

Trial Victories Kill score
1 13 284
2 19 315
3 22 360
4 21 322
5 15 287
6 69 410
7 11 290
8 15 284
9 15 302
10 11 291
11 11 290
12 12 288
13 16 298
14 26 337
15 15 293
16 13 298
17 27 326
18 14 283
19 10 283
20 20 291
Average 18.75 306.6

Table 4.3: Results of experiment 1, GA only.
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Trial Victories Kill score
1 16 249
2 4 111
3 4 139
4 4 140
5 5 186
6 4 169
7 2 116
8 8 149
9 3 119
10 10 152
11 11 197
12 2 130
13 10 160
14 14 243
15 13 163
16 5 206
17 17 225
18 7 120
19 14 221
20 19 250
Average 8.6 172.25

Table 4.4: Results of experiment 2, BP only.
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4.3.3 Experiment 3: BP then GA 1 seed

The complete results of experiment 3 can be found in table 4.5. Half of the solu-
tions clearly outperform even the best solution found in experiment 1. The aver-
age performance is as high as 63.7% clearly outperforming both the approaches
of experiment 1 and 2. The difference in average performance between experi-
ment 1, and experiment 2 and 3 is, despite the relatively low number of trials
performed, statistically significant at a confidence level of 95%.

The best performing solution, entry 8 in table 4.5, achieves a win percentage of
96% being an almost perfect solution to the problem.

The two worst performing solutions, achieving win percentages of only 25% and
16%, were observed to be similar to the ones generally found in experiment 1.
Early in the evolutionary process a strategy of attacking the opposition imme-
diately was found, and through the stochastic nature of the algorithm and the
evaluation, these were able to outperform all others leading the algorithm to get
stuck in a local optima.

All other solutions employed strategies where they positioned themselves before
attacking, and the best performing solution has the agents moving towards the
enemy in an almost perfect line formation.

4.3.4 Experiment 4: BP then GA 5 seeds

The complete results of experiment 4 can be found in table 4.6. The average win
percentage of the found solutions is 60.5% slightly lower than the average win
percentage achieved by the solutions found in experiment 3.

Again a qualitative similarity was seen between the solutions generally found
in experiment 1 and the worst performing solution found in this experiment.
This solution employs the strategy of immediate attack, all other solutions found
position themselves before attacking.

The performance achieved is more even than the one observed in experiment 3,
having fewer highs and lows than the results of experiment 3. Its best performing
member achieves a win percentage of 75%, while experiment 3 produced 4 supe-
rior solutions one achieving a win percentage of 96%. The average performance
is better than the ones achieved in experiment 1 and 2, using only the GA or BP
respectively, at a significance level of 95%. The difference in average performance
between experiment 3 and 4 is not statistically significant.
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Trial Victories Kill score
1 63 381
2 78 446
3 72 449
4 87 479
5 87 472
6 57 405
7 56 392
8 96 494
9 25 337
10 16 312
Average 63.7 416.7

Table 4.5: Results of experiment 3, BP then GA 1 seed.

Trial Victories Kill score
1 69 429
2 67 414
3 69 428
4 75 441
5 73 441
6 25 336
7 62 392
8 43 352
9 57 392
10 65 424
Average 60.5 405.2

Table 4.6: Results of experiment 4, BP then GA 5 seeds.
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4.3.5 Experiment 5: GA then BP

As can be clearly seen in table 4.7 The application of BP universally degrades the
performance of the solutions subjected to it. The average win percentage of the
solutions subjected to BP tumbles from 62.53% down to only 10.33%. When BP
was applied it was observed that the initial error was often very high, indicating
that most of the solutions had found very different input-output mappings than
the ones encoded in the examples.

4.4 Discussion

A overview of the results of all 5 experiments can be found in table 4.8 presenting
the mean number of victories, the number of victories achieved by the best indi-
vidual and the 95% confidence interval of the mean for each experiment.

The solutions found in experiment 1, using the GA with randomly initialized
individuals, was observed to almost exclusively use the very simple strategy of
using only the attack action. Only one solution was found where the agents
were able to position themselves effectively to achieve a good performance. It
was observed during the early generations that the individuals generally used
either the move command or the attack command exclusively, and because only
one of these actions by themselves provide a direct boost to the fitness score,
the individuals using attack only are able to dominate the early and usually
subsequent generations. This seems to suggest that it is very difficult to find
solutions able to both position themselves and attack capable of performing on
par with this very simple solution through random search.

The problem of getting stuck in local optima could perhaps be remedied by al-
tering the fitness function, which only awards successfully destroying enemies
or winning the game, to also show some form of preference to movement. This
was considered and rejected for two reasons, the first is that this would be more
difficult to implement as all simple strategies, such as awarding fitness points
for the number of move commands, could potentially lead to the proliferation of
individuals which simply walked around taking the most circuitous route possi-
ble.

Furthermore movement is not really useful in this problem unless it is coordi-
nated, that is the agents move in some formation, this would be very hard to
award points for without human inspection during the operation of the GA. As
mentioned in section 4.2 a single run of this GA takes at least 4 hours making
human inspection during operation very impractical.
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Experiment Solution Victories before Victories after
1 GA only 6 69 5
1 GA only 17 27 0
1 GA only 14 26 12
1 GA only 3 22 5
1 GA only 4 21 2
3 BP then GA 1 seed 8 96 44
3 BP then GA 1 seed 4 87 40
3 BP then GA 1 seed 5 87 6
3 BP then GA 1 seed 2 78 0
3 BP then GA 1 seed 3 72 7
4 BP then GA 5 seeds 4 75 14
4 BP then GA 5 seeds 5 73 0
4 BP then GA 5 seeds 1 69 4
4 BP then GA 5 seeds 3 69 4
4 BP then GA 5 seeds 2 67 12
Average 62.53 10.33

Table 4.7: Results of experiment 5, GA then BP.

Experiment Mean Best 95% confidence interval
1 GA only 18.75 69 14.30 - 23.20
2 BP only 8.6 19 4.15 - 13.05
3 BP then GA 1 seed 63.7 96 49.32 - 78.08
4 BP then GA 5 seeds 60.5 75 46.12 - 74.88
5 GA then BP 10.33 44 2.66 - 18.00

Table 4.8: Overview of the results. Showing the mean number of victories, the
number of victories for the best solution, and the 95% confidence interval of the
mean
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The second reason why this was rejected was that this thesis investigates how
human knowledge can be incorporated into the evolutionary process by BP and
the effects of this. It was therefore decided that the fitness function would only
be a measure of how well each individual did on the problem, and not itself inject
constraints on how the problem should be solved.

The solutions found in experiment 2, using the BP algorithm exclusively, showed
poor performance. Not a single truly good solutions was found, and the best
solution was only able to win 19 out of 100 games, only slightly better than
the average from experiment 1. The difference in mean performance between
experiment 1 and 2 was found to be statistically significant. The solutions were
however observed to be able to use both the move and the attack actions although
not particularly effectively. The poor performance can probably be attributed to
the examples captured being of poor quality. This can potentially be attributed
to one or more of three main factors:

• The logging method might capture some idiosyncratic or nonsensical states.

• The examples might include contradictory actions being recorded in similar
states.

• The strategy recorded might be poor.

All of these can potentially explain why the networks which were trained to
conform to the examples fared poorly. Suggesting that the capturing of examples
during game play has not been particularly successful.

The performance of the solutions found in experiment 3 and 4, using one or more
of the solutions found in experiment 2 to initialize the population of the GA,
clearly outperforms all other combinations of these two techniques. The overall
good performance is interesting in light of the poor performance of the solutions
used to initialize the populations. It was hypothesized in section 1.3 that pre-
viously found solutions to could trap the GA in a local optima. Instead it is
observed that using previously found solutions as seeds dramatically improves
performance and results in much more diverse strategies than the ones gener-
ally found by the GA alone. While the GA can still be trapped in the local
optima of only attacking it happens much rarer than with randomly instantiated
individuals.

The author believes that the difference observed is due to the fact that the solu-
tions used as seeds while rather poor, are just good enough to be competitive with
the simple attack strategy early on, while employing more advanced movement
strategies. This prevents the population from being dominated by the simple
attack strategy and allows for the evolution of more advanced strategies.
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Using more than one seed to initialize the GA was tried for fear of the populations
being to homogeneous and steering into a local optima, this leads to more even but
slightly worse results. It is possible that this approach is less susceptible to local
optima but needs more time to find truly good solutions. This is suggested by
experiment 3 producing 4 solutions superior to the best one found in experiment
4. Even so the difference in mean performance is very similar and not statistically
significant.

The performance of the solutions found in experiment 5 showed a universal degra-
dation of performance by training the solutions found with BP. This can be ex-
plained by the same factors that explain the performance of the solutions found
in experiment 2, using BP only. It is interesting to note that the initial ancestors
of entries 6-15 in table 4.7, having used solutions found by BP as seeds, once
complied quite well with the test set used have now removed themselves so sub-
stantially from their origins, that trying to make them comply is very destructive
to their performance. Suggesting that they have been able to develop strategies
significantly different from the one encoded by the examples.

The best performing solution found was found in experiment 3 using a single
solution found through BP as a seed to initialize the GA. This solution was able to
win 96 out of 100 games an almost perfect solution to the problem. The strategy
it employs is to form up into a tightly packed line facing the enemy and moving
slowly towards the enemy usually correcting if they loose formation.

The slow movement towards the enemy allows them to provoke some of the
enemy agents into attacking without backup from the rest of the enemy force,
allowing them to usually fight with their full force against only parts of the
opposition. The tightly packed line maximises the collective shooting range of
the group allowing them to output the maximum damage as early as possible on
approaching enemies. The tightly packed formation also makes it very likely that
the agents input of 3 closest enemies will have significant overlap, this together
with the input of which of the 3 closest enemies are currently under attack it
seems allows them to focus their fire reasonably well.

In summary: As can be seen in table 4.8 using previously found solutions to
initialize the population of a GA clearly outperforms the other methods tested,
even if the previously found solutions shows rather poor performance. The GA
used alone is likely to get stuck in local optima and the difficulty with capturing
appropriate training examples leads to poor performance for both BP used alone
and to tune solutions found by the GA.



Chapter 5

Evaluation and
Conclusion

This chapter concludes the report. Section 5.1 evaluates the results presented
in chapter 4 in relation to what they can tell us about the research questions
presented in section 1.2. Section 5.2 discusses the merits and limitation of the
thesis. Section 5.3 lists the contributions of the work. Section 5.4 concludes the
thesis with suggestions on possible directions for further research.

5.1 Evaluation

In section 1.2 the goal of the thesis was defined as:

Goal To determine whether or not learning used in conjunction with EAs is
advantageous compared to EAs or learning used alone.

From this broad goal formulation the research questions were defined as fol-
lows:

Research question 1 Is it advantageous to use learning prior to EAs?

Research question 2 Is it advantageous to use learning after EAs?

Research question 3 Is an EA better suited to determine the weights of an
ANN controller than BP?

39
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5.1.1 Research Question 1

The results of experiment 3 and 4, presented in section 4.3 clearly shows that
using BP learning prior to the EA results in drastically better performance on
the problem. It was observed that using BP prior to the EA prevented the EA
from getting stuck in local optima and find better solutions. This despite the
poor performance achieved by the BP algorithm in experiment 2.

The difference in mean performance is statistically significant from the mean
performance obtained in experiment 1 and 2, using an EA and BP in isolation
respectively. One solution found successfully solves the problem 94 out of 100
times being an almost perfect solution to the problem, whereas the best perform-
ing solution found using the EA in isolation solves the problem 69 out of 100
times. Suggesting that injecting human knowledge through supervised learning
prior to an EA can indeed be advantageous.

5.1.2 Research Question 2

The results of experiment 5, presented in section 4.3 shows that the performance
of the solutions subjected to BP after being found by the EA fell drastically. This
is probably caused by poor quality of the examples, and that the solutions found
by the EA are using different more effective strategies than the one encoded by the
examples. On this and other problems where it can be very difficult to capture or
manufacture training examples for supervised learning the results indicate that
it is not advantageous to use supervised learning on the solutions found by the
EA.

5.1.3 Research Question 3

The result of experiment 1 and 2, using an EA and BP alone respectively, pre-
sented in section 4.3 suggest that when training examples are hard to obtain an
EA is better suited to find weights for an ANN than BP.

5.1.4 Conclusion

The experimental results suggest that it is indeed advantageous to use learning
together with an EA on this problem, but only prior to the application of the
EA. Using supervised learning in the form of BP prior to the EA can potentially
prevent the EA from getting stuck in local optima and thereby being able to
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find better solutions to the problem. Interestingly using BP after the EA to fine
tune the found solution was found to not result in better performance despite
numerous findings indicating this methods efficacy.[Yao, 1999] This is probably
due to the difficulty of obtaining good training examples and the multitude of
different strategies available. Finally the results indicate that on a problem where
training examples can be hard to obtain EAs are better suited than supervised
learning to determine the weights of an ANN.

5.2 Discussion

The experimental results obtained in this thesis suggest that injecting human
knowledge through supervised learning into an EA has significant advantages
over using randomly instantiated individuals. The result show that this approach
clearly outperforms all other combinations of these two methods and is capable
of finding very good solutions to the complex problem used in this thesis.

The results are very unlikely to be an aberration as they are statistically signifi-
cant at a confidence level of 95%. The results are also strengthened by the fact
that they suggest the same conclusion as the work of Fan et al. [2003] and to
a certain extent Shantia et al. [2011] namely that the performance of EAs are
dependent on their initial conditions. How this work relates to other works was
discussed in section2.3.

The results of the work is limited by the fact that it has only been subjected to a
single problem in a single domain and as such it can not be guaranteed that the
results are transferable to other domains or problems. As discussed in section
2.1 RTS games are very complex environments which presents simplified but
still very complex problems to be solved. The author argues that the properties
of the environment and the nature of the problems are complex enough that
solutions and methods found to work in StarCraft are likely transferable to other
domains.

Another limitation of the work is the relatively low number of experiments run,
this is a direct consequence of the properties of StarCraft. StarCraft is a com-
mercial game not meant for research purposes, as such the only way to access it
is through the open source project BWAPI, which as mentioned in section 3.1 is
an open source project. Because of it being a commercial game, it can only be
sped up so far, meaning that a single run of the GA used in this thesis takes at
least 4 hours, which over 40 runs adds up to at least 160 hours of pure simulation
time. This has limited the number of runs and the number of parameters which
were tried out.
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5.3 Contributions

The contributions of this work were briefly presented in section 1.4 as

1. Showing whether or not learning used in conjunction with EAs is advanta-
geous compared to EAs or learning used alone on this problem.

2. Determining if ANNs are a suitable choice for Agent control in StarCraft
and similar environments.

3. Discussion of the suitability of StarCraft and similar games for research in
bio-inspired AI.

This work has showed that using BP prior to create better initial individuals
for an EA can be a simple and effective way of training ANNs to be effective
controllers for agents in StarCraft, and likely other similar environments.

The performance of the best solutions obtained in this thesis and the work of
Gabriel et al. [2012], Shantia et al. [2011] and Ki et al. [2006] shows that ANNs
can function effectively as controllers in StarCraft.

As discussed in section 2.1 StarCraft is a very complex environment containing
a multitude of complex problems good solutions to which can be of use in other
arenas. The main drawback of StarCraft is the time it takes to run the simulations
necessary when working with EAs. The author has also frequently read that there
is a limitation on the number of games that can be run without incident, but has
himself run over 20 000 games consecutively without incident, and has had none of
the 40 experiments stopped due to technical difficulties.[Sandberg and Togelius,
2011; Rathe and Svendsen, 2012; Gabriel et al., 2012] In the authors estimation
StarCraft is a suitable but not perfect environment for bio-inspired AI research,
with the drawback being long simulation times.

5.4 Future Work

This section suggests possible directions in which to extend the work of this
thesis.

5.4.1 Generality

The solutions found in this thesis are optimised to perform well on a single
problem it would be interesting to see if it would be possible to train ANNs which



5.4. FUTURE WORK 43

performed well in more than one scenario. Varying the layout of the map the
units in them and so on to see if it would be possible to find networks with good
performance in all situations. Showing ANNs capable of being a more general
solution of the problem rather than a single solution to a single problem.

This could take the form of successive incremental evolution using good solutions
from simpler task as a starting point to solve more complex problems as in Shantia
et al. [2011].

5.4.2 Coevolution

The ANN in this thesis only plays against the default AI of StarCraft it would be
interesting to see what kind of solutions could be found using coevolution. Co-
evolution can be used in two different ways competitively or cooperatively.

Competitive coevolution would pit two teams of agents against each other allow-
ing them to potentially develop much more sophisticated and effective strategies
than the current setup where the opposition is more static.

Cooperative coevolution could evolve each agent individually on the to see if
different behaviours would arise for each agent potentially allowing them to carry
out more advanced and effective tactics. Even more interestingly if the team was
made up of different units it could be observed whether this led to them taking
distinctly different roles in the team.

5.4.3 Integration with Artificial Potential Fields

Artificial potential fields have been used with success by Hagelbäck and Johansson
[2008a], Sandberg and Togelius [2011], and UC Berkleys entry in the 2010 AIIDE
Starcraft competition as described by Buro and Churchill [2012]. They provide
a powerful way of abstracting several key features of the environment such as
the shooting ranges of enemies, high ground, impassable terrain and so on. The
technique itself does not specify how the agents should make decisions based on
the information that is usually implemented with simple means. It would be
interesting to see how an ANN could use this information and what strategies
could be found.
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