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Abstract. In this paper we model a two-level cache of a Web search
engine, such that given memory resources, we find the optimal split frac-
tion to allocate for each cache, results and index. The final result is
very simple and implies to compute just five parameters that depend
on the input data and the performance of the search engine. The model
is validated through extensive experimental results and is motivated on
capacity planning and the overall optimization of the search architecture.

1 Introduction

Web search engines are crucial to find information among more than 180 million
Web sites active at the end of 20113, and users expect to rapidly find good
information. In addition, the searchable Web becomes larger and larger, with
more than 50 billion static pages to index, and evaluating queries requires the
processing of larger and larger amounts of data each day. In such a setting,
to achieve a fast response time and to increase the query throughput, using a
specialized cache in main memory is crucial.

The primary use of a cache memory is to speedup computation by exploiting
frequently or recently used data. A secondary but also important use of a cache
is to hold pre-computed answers. Caching can be applied at different levels with
increasing response latencies or processing requirements. For example, the dif-
ferent levels may correspond to the main memory, the disk, or resources in a
local or a wide area network. In the Web, caching can be at the client side, the
server side, or in intermediate locations such as a Web proxy [14].

The cache can be static or dynamic. A static cache is based on historical
information and can be periodically updated off-line. If the item that we are
looking for is found in the cache, we say that we have a hit, otherwise we say that
we have a miss. On the other hand, a dynamic cache replaces entries according
to the sequence of requests that it receives. When a new request arrives, the
cache system has to decide whether to evict some entry from the cache in the
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case of a cache miss. These decisions are based on a cache policy, and several
different policies have been studied in the past.

In a search engine there are two possible ways to use a cache memory:

Caching results: As the engine returns results to a particular query, it may
decide to store these results to resolve future queries. This cache needs to be
periodically refreshed.

Caching index term lists: As the search engine evaluates a particular query,
it may decide to store in memory the inverted lists of the involved query
terms. As usually the whole index does not fit in memory, the engine has to
select a subset to keep in memory and speed up the processing of queries.

For designing an efficient caching architecture for web search engines there
are many trade-offs to consider. For instance, returning an answer to a query
already existing in the cache is much more efficient than computing the answer
using cached inverted lists. On the other hand, previously unseen queries occur
more often than previously unseen terms, implying a higher miss rate for cached
results. Caching of inverted lists has additional challenges. As inverted lists have
variable size, caching them dynamically is not very efficient, due to the complex-
ity involved (both in efficiency and use of space) and the skewed distribution of
the query stream. Neither is static caching of inverted lists a trivial task: when
deciding which terms to cache one faces the trade-off between frequently queried
terms and terms with small inverted lists that are space efficient. Here we use the
algorithm proposed by Baeza-Yates et al. in [2]. In that paper it is also shown
that in spite that the query distribution changes and there are query bursts, the
overall distribution changes so little that the static cache can be precomputed
every day without problems. This paper also leaves open the problem on how
to model the optimal split of the cache between results and inverted lists of the
index, which we tackle here.

In fact, in this paper we model the design of the two cache level explained
before, showing that the optimal way to split a static cache depends in a few
parameters coming from the query and text distribution as well as on the exact
search architecture (e.g. centralized or distributed). We validate our model ex-
perimentally, showing that a simple function predicts a good splitting point. In
spite that cache memory might not be expensive, using this resource well does
change the Web search engine efficiency. Hence, this result is one component in
a complete performance model of a Web search engine, to do capacity planning
and fine tuning of a given Web search architecture in an industrial setting.

The remainder of this paper is organized as follows. Section 2 covers related
work while Section 3 shows the characteristics of the data that we used to find
the model as well as perform the experimental validation. Section 4 presents our
analytical model while Section 5 presents the experimental results. We end with
some conclusions in Section 6.
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2 Related Work

Query logs constitute a valuable source of information for evaluating the effec-
tiveness of caching systems. As first noted by Xie and O’Hallaron [18], many
popular queries are shared by different users. This level of sharing justifies the
choice of a server-side caching system in Web search engines. One of the first pa-
pers on exploiting user query history was proposed by Raghavan and Sever [15].
Although their technique is not properly caching, they suggest using a query
base, built upon a set of persistent “optimal” queries submitted in the past, in
order to improve the retrieval effectiveness for similar future queries. That is,
this is a kind of static result cache. Later, Markatos [10] shows the existence of
temporal locality in queries, and compares the performance of different caching
policies.

Based on the observations of Markatos, Lempel and Moran proposed an im-
proved caching policy, Probabilistic Driven Caching, based on the estimation
of the probability distribution of all possible queries submitted to a search en-
gine [8]. Fagni et al. follow Markatos’ work by showing that combining static and
dynamic caching policies together with an adaptive prefetching policy achieves
a high hit ratio [6].

As search engines are hierarchical system, some researchers have explored
multi-level architectures. Saraiva et al. [16] proposes a new architecture for web
search engines using a dynamic caching system with two levels, targeted to im-
prove response time. Their architecture use an LRU policy for eviction in both
levels. They find that the second-level cache can effectively reduce disk traffic,
thus increasing the overall throughput. Baeza-Yates and Saint-Jean propose a
three level index organization for Web search engines [5], similar to the one used
in current architectures. Long and Suel propose a caching system structured ac-
cording to three different levels [9]. The intermediate level contains frequently
occurring pairs of terms and stores the intersections of the corresponding in-
verted lists. Skobeltsyn at al. [17] adds a pruned index after the result cache
showing that this idea is not effective as inverted list caching basically serves for
the same purpose.

Later, Baeza-Yates et al. [2, 3] explored the impact of different static and
dynamic techniques for inverted list caching, introducing the QtfDf algorithm
for static inverted list caching that we use here. This algorithm improves upon
previous results on dynamic caching with similar ideas [9].

More recent work on search engine caching includes how to avoid cache pol-
lution in the dynamic cache [4] and how to combine static and dynamic caching
[1]. Gan and Suel improve static result caching to optimize the overall processing
cost and not only the hit ratio [7], an idea also explored by Ozcan et al. [13] for
dynamic caching. In a companion paper, Ozcan et al. [12] introduce a 5-level
static caching architecture to improve the search engine performance.
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Fig. 1. Queries and terms distribution as well as the query-text term frequency ratio.

3 Data Characteristics

For the experiments we use a 300GB crawl of the UK domain from 2006, which
contains 37.9 million documents, and a random sample of 80.7 million queries
submitted to a large search engine between April 2006 and April 2007. In both
the query log and the document collection, we normalize tokens, replace punctu-
ation characters with spaces and remove special characters. The complete query
log contains 5.46 million unique terms, with 2.07 million of which appear in the
document collection. For these terms we count the total number of documents
(document frequency) where each of these terms appears. Finally, we split the
query log into two logs - a training log containing the first 40 million queries and
a testing log for evaluation containing the remaining 40.3 million queries.

The query distribution as well as the term distribution in the queries and in
the Web collection are shown in Figure 1. In this figure we also show the distri-
bution of the ratio of the query and text term frequencies, as this is the heuristic
used in the static inverted list caching algorithm (QtfDf), which fills the cache
using the inverted lists in decreasing order of this ratio. All these distributions
follow a power law in their central part and hence a good approximation for
those curves is k/rγ , where r is the item rank in decreasing order. Table 1 shows
these parameters for the different variables, where u is the overall fraction of
unique items, a value needed later.
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Table 1. Characteristics of the power law distributions.

Variable γ k u

Queries 0.8635 1.1276 · 10−6 0.466
Query terms 1.3532 1.0388 · 10−3 0.039
Text terms 1.9276 1.3614 · 10−7

Tfq-Tfd ratio 0.7054 2.0328 · 10−4

Notice that the γ value for the distribution of the ratio of term frequencies
is almost the ratio of the γ values of the two distributions involved in spite that
the correlation between both term distributions is only 0.4649.

4 Modeling the Cache

Our static cache is very simple. We use part of the cache for results and the
rest for the inverted lists of the index. Our memory cache do not need to be
in the same server. That is, we have an overall amount of memory, that can
be split into two parts. Usually the results cache will be closer to the client
(e.g. in the front end Web server or a proxy) and the index cache could in a
local (centralized case) or a remote (distributed or WAN case) search server.
Therefore, our problem is how to split the memory resources in the best possible
way to minimize the search time.

We first need to model the hit ratio, that is, the probability of finding a result
in the cache for a query. As shown in the previous section, the query distribution
follows a power law. Hence, the hit ratio curve will follow the surface under the
power law. That is, if we approximate the query distribution by the function
k/rγ , the hit ratio function will follow a function of the form k′r1−γ reaching a
limit for large r as all unique queries will always be missed (in most query logs
unique queries will be roughly 50% of the volume). This hit ratio curve is shown
for the result cache in Figure 2 (top) and the limit is 1− u from Table 1.

The optimal split for a given query distribution is not trivial as we have two
cascading caches and the behavior of the second will depend on the performance
of the first. Hence, modeling this dynamic process is quite difficult. However,
based in our previous work [17] we notice that the query distribution after the
result cache had basically the same shape as the input query distribution. We
corroborate that finding, plotting in Figure 2 (bottom) the query distribution
after the result cache for different cache sizes. So an approximate model is to
assume that the hit ratio curve for inverted lists is independent of the result
cache. As the distribution of cached inverted lists also follows a power law, we
use the same function as the hit ratio curve for the result cache, and only the
parameters change. That is, the hit ratio in both cases is modeled by

h(x) =
k

xγ
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Fig. 2. Hit ratio in the results (top) and the inverted list (bottom) cache.

where x is the cache fraction used. For large x, h(x) converges to the limit 1−u,
and we force that by defining h(1) = 1 − u which then sets the value of k. As
we will see later, this second approximation does not affect much the analytical
results and is similar to the infinite cache case. Notice that we have already
found the experimental values of u and γ in Section 3.
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Assuming that this model is a good approximation, we can use it to find the
optimal split fraction for this case. Let x be that optimal point and hR and hI
the corresponding hit functions. Hence, the search time is given by

T (x) = tR hR(x) + tI (hI(1− x)− hR(x)) + tP (1− hI(1− x))

where tR, tI , and tP are the average response time of the search engine when
the query is answered from the result cache, the index cache or has to be fully
processed. Notice that for the range of interest (e.g. x > 0.5) and that given
that in practice hI is much larger than hR as we will see in the next section, the
second term is always positive.

Simplifying the previous formula and computing the partial derivative of the
resultant expression with respect to x, we obtain that the optimal split must
satisfy the following equation

(1− x)γL

xγR
=
kL (tP − tI)(1− γL)

kR (tI − tR)(1− γR)

which can be solved numerically. However, by expanding the left hand side, and
considering the relative answer time (that is, we set tR = 1) and that tI >> tR
in the right hand side, we obtain that the split point x∗ can be approximated
by a simple function

x∗ =
1

TRr1+γL/γR
,

where TRr = tP /tI . In the following section we validate this model.

5 Experimental Validation

We performed experiments simulating both cases, the centralized and the dis-
tributed case. In the centralized case the front end Web server is directly con-
nected to the search server. The distributed architecture implies a local front
end connected to a remote server through an Internet connection. We did not
consider the local area network case (e.g. the case of a cluster) because the
results were basically the same as in the centralized case. For comparison pur-
poses we used the processing times of [2], shown in Table 2. Here we consider
only the compressed case as this is what it is used in practice, but we compare
our model also with the previous uncompressed results in the next section. We
also consider two cases when processing the query: full evaluation (compute all
possible answers) and partial evaluation (compute the top-10k answers). The
two-level cache was implemented using a fraction of the main memory available
with the result cache in the front end Web server and the index cache in the
search server. We do not consider the refreshing of the result cache as there
are orthogonal techniques to do it, and that refreshing the stored results do not
change the queries stored in the cache.

We model the size of compressed inverted lists as a function of the document
frequency. In our previous work [2] we used the Terrier system [11] that uses
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Table 2. Ratios between the average time to evaluate a query and the average time
to return cached results for the centralized and distributed cases with full or partial
evaluation, and uncompressed (1Gb cache) and compressed (0.5Gb cache) index.

System Uncompressed Compressed

Centralized TRC
1 TRC

2 TR′C1 TR′C2
Full evaluation 233 1760 707 1140
Partial evaluation 99 1626 493 798

Distributed TRD
1 TRD

2 TR′D1 TR′D2
Full evaluation 5001 6528 5475 5908
Partial evaluation 4867 6394 5270 5575

gamma encoding for document ID gaps and unary codes for frequencies. Here
we use the state of the art, compressing the inverted lists with the NewPFor
approach by Zhang, Long and Suel [19]. We have analyzed both techniques in
the TREC GOV2 corpus and NewPFor is in general a bit better. In this method
inverted lists are grouped into blocks of 128 entries and compressed together -
one block of compressed d-gaps is followed by a block of compressed frequencies.
Blocks shorter than 100 entries are compressed using VByte. In the following we
use NewPFor compression which we approximate with the following function:

sizeB(docs) =

{
if docs < 100 then 1.81 + 3.697 · docs
else 176.42 + 2.063 · docs

For the results cache we use entries of size 1264 bytes.
We consider cache memories that are a power of 2 starting with 128Mb and

finishing in 8Gb, using query frequency in decreasing order to setup the results
cache and using the QtfDf algorithm to setup the index cache. The setup is
done with the training query log while the experimental results are done with
the testing query log that were described in Section 3. In Figure 3 we show
one example for the response time for a memory cache of 1Gb in function of the
cache size used for results. In the centralized case the optimal slit is in 0.62 while
in the distributed case is almost 1. In Figure 4 we show the optimal fraction for
the results cache in function of the overall cache size. As the results cache size
reaches a saturation point, the optimal fraction decreases while the overall cache
size increases.

We also tried a variant of the static caching algorithm by not considering
terms with fq < A and then using a modified weight: fq/min(fd, B) with dif-
ferent A and B in the set {100, 1000, 10000}. This did improve the performance
but only for queries involving very long inverted lists.

In Figure 5 we compare our experimental results and the results of our previ-
ous work [2] with our model and our approximated solution depending on TRr
which is the ratio tP /tI > 1 for the different cases. The predicted optimal ratio
is quite good, in particular for partial evaluation (lower data points) which is
also the most realistic case in a Web search engine.
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Fig. 3. Answer time performance for different splits in a cache of 1GB.

6 Conclusions

We have shown that to split almost optimally a static cache, for our Web search
engine, we just need to compute five parameters: the power law exponent esti-
mation for the distribution of queries and query terms as well as for document
terms, plus the average response time when answering with the index cache or
when processing the whole query. Notice that this assumes that we can compute
the power law of the query-document term ratio with just a division. Otherwise
a sixth parameter needs to be computed.

Further work includes doing further experimental results with more query
log samples, using those results to improve this model and later extend it to
more complex static caching schemes [7, 12].
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